Please use this identifier to cite or link to this item: http://dspace.centre-univ-mila.dz/jspui/handle/123456789/1779
Title: ON THE SOLUTIONS OF A SYSTEM OF (2p+1) DIFFERENCE EQUATIONS OF HIGHER ORDER
Authors: Yacine, Halim
Keywords: Fibonacci sequence, Lucas sequence, system of difference equations, representation of solutions
Issue Date: 2-Jun-2021
Publisher: university center of abdalhafid boussouf - MILA
Abstract: In this paper we represent the well-defined solutions of the system of the higher-order rational difference equations x( j) n+1 = 1+2x( j+1)mod(2p+1) n􀀀k 3+x( j+1)mod(2p+1) n􀀀k ; n;k; p 2 N0 in terms of Fibonacci and Lucas sequences, where the initial values x( j) 􀀀k;x( j) 􀀀k+1; : : : ;x( j) 􀀀1 and x( j) 0 , j = 1;2; : : : ;2p+1, do not equal -3. Some theoretical explanations related to the representation for the general solution are also given. 2010 Mathematics Subject Classification: 39A10; 40A05
URI: http://dspace.centre-univ-mila.dz/jspui/handle/123456789/1779
ISSN: 1787-2413
Appears in Collections:Mathematics and Computer Science

Files in This Item:
File Description SizeFormat 
ON THE SOLUTIONS OF A SYSTEM OF (2p+1) DIFFERENCE.pdf1,11 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.