Please use this identifier to cite or link to this item: http://dspace.centre-univ-mila.dz/jspui/handle/123456789/1779
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYacine, Halim-
dc.date.accessioned2022-06-28T09:55:42Z-
dc.date.available2022-06-28T09:55:42Z-
dc.date.issued2021-06-02-
dc.identifier.issn1787-2413-
dc.identifier.urihttp://dspace.centre-univ-mila.dz/jspui/handle/123456789/1779-
dc.description.abstractIn this paper we represent the well-defined solutions of the system of the higher-order rational difference equations x( j) n+1 = 1+2x( j+1)mod(2p+1) n􀀀k 3+x( j+1)mod(2p+1) n􀀀k ; n;k; p 2 N0 in terms of Fibonacci and Lucas sequences, where the initial values x( j) 􀀀k;x( j) 􀀀k+1; : : : ;x( j) 􀀀1 and x( j) 0 , j = 1;2; : : : ;2p+1, do not equal -3. Some theoretical explanations related to the representation for the general solution are also given. 2010 Mathematics Subject Classification: 39A10; 40A05en_US
dc.language.isoenen_US
dc.publisheruniversity center of abdalhafid boussouf - MILAen_US
dc.subjectFibonacci sequence, Lucas sequence, system of difference equations, representation of solutionsen_US
dc.titleON THE SOLUTIONS OF A SYSTEM OF (2p+1) DIFFERENCE EQUATIONS OF HIGHER ORDERen_US
dc.typeArticleen_US
Appears in Collections:Mathematics and Computer Science

Files in This Item:
File Description SizeFormat 
ON THE SOLUTIONS OF A SYSTEM OF (2p+1) DIFFERENCE.pdf1,11 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.