Please use this identifier to cite or link to this item:
http://dspace.centre-univ-mila.dz/jspui/handle/123456789/2539
Title: | Application of reproducing kernel Hilbert space method to some ordinary Differential equations of fractional order |
Authors: | Sara, Amimour , Belmahbou Manel |
Issue Date: | Jun-2023 |
Publisher: | university center of abdalhafid boussouf - MILA |
Citation: | Mathématiques fondamentales |
Abstract: | In this thesis, based on the reproducing kernel Hilbert space method (RKHSM) an e cient algorithm is presented for solving ordinary di erential equations of frac- tional order. We applied RKHSM to obtain pproximate solution for a general form of rst and second order fractional di erential equations. The analytical and ap- proximate solutions are represented in the form of series in the reproducing kernel space W m 2 [a; b]. The nterm approximation and all its derivatives are obtained and proved to converge uniformly to the analytical solution and all its derivatives, re- spectively. The proposed method has an advantage that it is possible to pick any point in the interval of integration. Numerical examples are given to demonstrate the computation e ciency of the presented method. The results of applying this method to the studied cases show the high accuracy, simplicity and e ciency of the approach. |
Description: | Cette th ese pr esente une approche bas ee sur la m ethode de (RKHSM) pour r esoudre e cacement des equations di erentielles ordinaires d'ordre fractionnaire. Cette approche consistait a utiliser la m ethode RKHSM a n d'obtenir une solution approximative aux equations di erentielles fractionnaires du premier et du second ordre, dans une forme g en erale. Les solution analytiques et approximatives sont repr esent ees sous forme de s eries dans l'espace de noyau reproducteur W m 2 [a; b]. L'approximation en n termes et ses d eriv ees sont obtenues et prouv ees converger uniform ement vers la solution analytique et toutes ses d eriv ees respectivement. L'avantage de la m ethode propos ee est la exibilit e de choisir n'importe quel point dans l'intervalle d'int egration. Des exemples num eriques sont fournis pour d emontrer l'e cacit e de calcul de la m ethode pr esent ee. Les r esultats obtenus montrent une grande pr ecision, simplicit e et e cacit e de cette approche dans les cas etudi es. |
URI: | http://dspace.centre-univ-mila.dz/jspui/handle/123456789/2539 |
Appears in Collections: | Mathematics |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Application of reproducing kernel.pdf | 956,42 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.