Please use this identifier to cite or link to this item: http://dspace.centre-univ-mila.dz/jspui/handle/123456789/2539
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSara, Amimour , Belmahbou Manel-
dc.date.accessioned2023-07-26T09:39:08Z-
dc.date.available2023-07-26T09:39:08Z-
dc.date.issued2023-06-
dc.identifier.citationMathématiques fondamentalesen_US
dc.identifier.urihttp://dspace.centre-univ-mila.dz/jspui/handle/123456789/2539-
dc.descriptionCette th ese pr esente une approche bas ee sur la m ethode de (RKHSM) pour r esoudre e cacement des equations di erentielles ordinaires d'ordre fractionnaire. Cette approche consistait a utiliser la m ethode RKHSM a n d'obtenir une solution approximative aux equations di erentielles fractionnaires du premier et du second ordre, dans une forme g en erale. Les solution analytiques et approximatives sont repr esent ees sous forme de s eries dans l'espace de noyau reproducteur W m 2 [a; b]. L'approximation en n termes et ses d eriv ees sont obtenues et prouv ees converger uniform ement vers la solution analytique et toutes ses d eriv ees respectivement. L'avantage de la m ethode propos ee est la exibilit e de choisir n'importe quel point dans l'intervalle d'int egration. Des exemples num eriques sont fournis pour d emontrer l'e cacit e de calcul de la m ethode pr esent ee. Les r esultats obtenus montrent une grande pr ecision, simplicit e et e cacit e de cette approche dans les cas etudi es.en_US
dc.description.abstractIn this thesis, based on the reproducing kernel Hilbert space method (RKHSM) an e cient algorithm is presented for solving ordinary di erential equations of frac- tional order. We applied RKHSM to obtain pproximate solution for a general form of rst and second order fractional di erential equations. The analytical and ap- proximate solutions are represented in the form of series in the reproducing kernel space W m 2 [a; b]. The n􀀀term approximation and all its derivatives are obtained and proved to converge uniformly to the analytical solution and all its derivatives, re- spectively. The proposed method has an advantage that it is possible to pick any point in the interval of integration. Numerical examples are given to demonstrate the computation e ciency of the presented method. The results of applying this method to the studied cases show the high accuracy, simplicity and e ciency of the approach.en_US
dc.language.isoenen_US
dc.publisheruniversity center of abdalhafid boussouf - MILAen_US
dc.titleApplication of reproducing kernel Hilbert space method to some ordinary Differential equations of fractional orderen_US
dc.typeThesisen_US
Appears in Collections:Mathematics

Files in This Item:
File Description SizeFormat 
Application of reproducing kernel.pdf956,42 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.