
Centre Universitaire AbdelhafidBoussouf -Mila 
Institut des Sciences et de la Technologie 

Département de Génie Civil et Hydraulique 

 
NoRef :…………… 
   

 

Graduation thesis prepared to obtaine  

  The MASTER degree 
Speciality :Urban Hydraulics 

 
 

 
 
 
 
 
 
 
 

 
 

Presented by:                                                                             
 FERKHI Zineddine 

 
 
 

 

In front of a jury composed of : 
 

 

Mr. KEMOUKH Sami Chairman 
Mrs ALLIA Zineb Examiner  
Mr.  MOUSSOUNI Abderzak supervisor 
Mr ZEGHMAR Amer Co-supervisor 

 
  

 
Academic year: 2024/2025

  الجمهوريـة الجزائـريـة الديمقراطيـة الشعبيـة 
République Algérienne Démocratique et Populaire 

 وزارة التعليــم العالـي والبحـث العلمـي
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique 

Predictive Modeling of Soil Erosion Using GIS and 

Artificial Intelligence. 

Tafna watershed case. 
 



 
 

Dedication 

First of all, I thank Allah for giving me the courage and willpower to 

finish my work. 

I dedicate this work with all my love and gratitude: 

To my parents, who gave me life and instilled in me the values of hard 

work, patience, and perseverance. Thank you for your unconditional 

love, your silent sacrifices, and your unwavering support throughout 

my academic journey. 

To my brothers and sisters, for always being there with 

encouragement, prayers, and kind words when I needed them most. 

To my teachers, who guided me with knowledge and passion, and to 

everyone who contributed to my education this work is a tribute to 

your dedication. 

To my colleagues in all the years in this university 

To my friends who been with all the time by my side either I was right 

or wrong. 

And to all those who believed in me, near or far this achievement is 

also yours. 

 

 



 
 

Acknowledgements 

I would like to express my deepest gratitude to all those who supported and 

guided me throughout the completion of this thesis. 

First and foremost, my sincere thanks go to Dr. Moussouni, my academic 

advisor, for his guidance, patience, and constant availability. Their expertise, 

insightful advice, and constructive feedback greatly contributed to the quality of 

his work. It has been an honor to work under your supervision. 

I also extend my thanks to Dr. Zeghmar Amer, for their valuable observations 

and recommendations, which helped shape and improve this research. 

My appreciation goes to the entire faculty and staff of the urban hydraulics for 

providing a supportive academic environment and the resources needed for this 

study. 

A heartfelt thanks to my classmates, colleagues, and friends, whose support, 

collaboration, and encouragement made this journey both intellectually 

enriching and personally fulfilling. 

Lastly, I am deeply grateful to my family, who has always stood by me with love, 

patience, and strength. Without their support, this work would not have been 

possible. 

To all of you thank you from the bottom of my heart. 

 

 

 

  



 
 

Content table 
 

General introduction ................................................................................................................... 1 

CHAPTER I: BIBLIOGRAPHIC SYNTHESIS 
I.1. Introduction........................................................................................................................ 3 

I.2. Soil Erosion......................................................................................................................... 3 

I.2.1. Types and Agents of Soil Erosion .............................................................................. 3 

I.2.1.1. Water Erosion ...................................................................................................... 3 

I.2.1.2. Splash Erosion ...................................................................................................... 4 

I.2.1.3. Sheet Erosion ........................................................................................................ 5 

I.2.1.4. Rill Erosion ........................................................................................................... 5 

I.2.1.5. Gully Erosion ....................................................................................................... 5 

I.2.1.6. Ravine Erosion ..................................................................................................... 6 

I.2.1.7. Landslide or Slip Erosion .................................................................................... 6 

I.2.1.8. Stream Bank Erosion .......................................................................................... 7 

I.2.2. Wind Erosion .............................................................................................................. 7 

I.2.2.1. Saltation ................................................................................................................ 8 

I.2.2.2. Suspension ............................................................................................................ 8 

I.2.2.3. Surface Creep ....................................................................................................... 8 

I.2.3. Factors That Enhance Soil Degradation................................................................... 8 

I.2.3.1. Rainfall and Surface Runoff ............................................................................... 8 

I.2.3.2. Agricultural Activities ......................................................................................... 9 

I.2.3.3. Vegetative Cover .................................................................................................. 9 

I.2.3.4. Wind ...................................................................................................................... 9 

I.2.3.5. Slope of the Land ................................................................................................. 9 

I.3. Remote Sensing Data Sources Available for Soil Erosion Research ........................... 10 

I.5. Soil Erosion Models ......................................................................................................... 12 

I.4.1. The Revised Universal Soil Loss Equation (RUSLE)model ................................. 14 

I.4.2. The Modified Universal Soil Loss Equation (MUSLE) ......................................... 14 

I.4.3. The Soil and Water Assessment Tool (SWAT) ...................................................... 15 

I.4.4. The Water Erosion Prediction Project (WEPP) .................................................... 15 

I.5. Conclusions ....................................................................................................................... 16 

CHAPTER II: PRESENTATION OF THE STUDY AREA 

II.1.Introduction ..................................................................................................................... 17 

II.2.Geographic overview ...................................................................................................... 17 

II.3.Topographical Characteristics of the Study Area........................................................ 18 

II.4. Altimetry ......................................................................................................................... 18 



 
 

II.5. Altitude classes ............................................................................................................... 19 

II.6. Hypsometric Curve Interpretation ............................................................................... 20 

II.7. Spatial Distribution Analysis of Slopes ........................................................................ 21 

II.8. Sediment Transport Implications ................................................................................. 22 

II.9. Overall Slope Index (Ig)................................................................................................. 23 

II.10. Soil types ....................................................................................................................... 24 

II.10.1 Soil Types and Distribution ................................................................................... 24 

II.11.1.1. Be6-2b, Algeria ............................................................................................... 24 

II.10. 1.2. Bk14-2b, Algeria ............................................................................................ 25 

II.10.1.3. Bk14-2b, Morocco .......................................................................................... 25 

II.10.1.4. X3-2ab, Morocco ............................................................................................ 25 

II.10.1.5. X3-2ab, Algeria ............................................................................................... 25 

II.10.1.6. Jc14-2a, Algeria .............................................................................................. 25 

II.10.1.7. Lc44-3c, Algeria .............................................................................................. 25 

II.10.1.8. Lc46-2a, Algeria ............................................................................................. 25 

II.10.1.9. Lc46-2a, Morocco ........................................................................................... 25 

II.10.1.10. Xh10-2a, Algeria ........................................................................................... 26 

II.10.1.12. Xh10-2a, Morocco ........................................................................................ 26 

II.10.1.13. Jc14-2a, Morocco .......................................................................................... 26 

II.10.1.14. Lc44-3c, Morocco (Light Green) ................................................................ 26 

II.10.1.15. Spatial Distribution ...................................................................................... 26 

II.11. Conclusion ..................................................................................................................... 26 

CHAPTER III: MAPPING AND MODELING OF SOIL WATER EROSION OF 
TAFNA WATERSHED 

III.1. Introduction .................................................................................................................. 28 

III.2. RUSLE model ............................................................................................................... 28 

III.2.1. RUSLE Structure and Factors ............................................................................. 28 

III.2.2. Key Applications and Use Cases .......................................................................... 29 

III.2.3. RUSLE Strengths .................................................................................................. 29 

III.2.4. Limitations and Solutions ..................................................................................... 29 

III.2.5. Relevance in Current Research ............................................................................ 30 

III.3. Rustle model factors ..................................................................................................... 30 

III.3.1. Rainfall Erosivity (R-Factor) ................................................................................ 30 

III.3.1.1. Spatial Distribution and Interpretation ....................................................... 31 

III.3.1.2. Hydrological and Erosion Implications ........................................................ 31 

III.3.2. Soil Erodibility (K-Factor) .................................................................................... 32 

III.3.3. Slope Length and Steepness (LS-Factor) ............................................................. 34 



 
 

III.3.3.1. Topographic Patterns ..................................................................................... 34 

III.3.3.2. Area Distribution by LS Classes ................................................................... 35 

III.3.4. Cover Management (C-Factor) ............................................................................ 35 

III.3.4.1. Spatial Distribution of C-Factor Classes ...................................................... 36 

III.3.4.2. Interpretation of Coverage ............................................................................ 37 

III.3.4.3. Interaction with LS Factor (Synergistic Risk Zones) .................................. 37 

III.3.4.4. Spatial Contribution Summary ..................................................................... 37 

III.3.5. Support Practice (P-Factor) .................................................................................. 37 

III.3.5.1. Land Management and Conservation Implications ........................................... 39 

III.3.6. Annual Soil Loss (A) ............................................................................................... 39 

III.3.6.1. Hydrological and Management Implications ............................................... 40 

III.3.6.2. Methodological Considerations ..................................................................... 41 

III.3.7. Average Soil Loss Map in the Tafna Watershed ................................................ 41 

III.3.7.1. Spatial Distribution and Interpretation ....................................................... 42 

III.3.7.2. Hydrological and Management Implications .................................................... 42 

III.4. Conclusion ..................................................................................................................... 43 

CHAPTER IV: MODELING SUSPENDED SOLID TRANSPORT USING MACHINE 
LEARNING 

IV.1. Introduction:.................................................................................................................. 45 

IV.2. History ............................................................................................................................ 45 

IV.3. Fundamental Components: Neurons, Layers, Weights, Biases, and Activation 
Functions ................................................................................................................................. 46 

IV.4. Activation Functions ..................................................................................................... 47 

IV.5. Learning vs Hyperparameters ..................................................................................... 47 

IV.6. Multilayer Perceptron (MLP) ...................................................................................... 47 

IV.6.2.OperationalPrinciples:Forward Propagation ...................................................... 48 

IV.6.3. Supervised Learning Paradigm ............................................................................ 49 

IV.7. Feed-Forward Backpropagation (FFBP) .................................................................... 49 

IV.7.1. Algorithm: Objective and Mathematical Foundation ........................................ 50 

IV.7.2. Training Process: Four Iterative Steps ................................................................ 50 

IV.7.3. Role of FFBP in Training Multilayer Perceptrons ............................................. 50 

IV.8. Cascade Forward Backpropagation (CFBP) ............................................................. 51 

IV.8.1. Architecture: Enhanced Connectivity and Direct Links .................................... 51 

IV.8.2. Key Differences and Advantages Over Standard Feedforward Models .......... 51 

IV.8.3. Training Algorithms and Performance Characteristics .................................... 52 

IV.9. Random Forest Models ................................................................................................ 52 

IV.9.1. Principles of Ensemble Learning and Decision Trees ........................................ 52 



 
 

IV.9.2. Architecture and Operational Mechanisms: Bagging, Feature Randomness, 
Aggregation ......................................................................................................................... 53 

IV.10. Learning Paradigms in Neural Networks ................................................................. 53 

IV.10.1. Supervised Learning ............................................................................................ 54 

IV.10.4. Semi-Supervised Learning .................................................................................. 54 

IV.11. Evaluation Metrics for Machine Learning Models ................................................. 54 

IV.11.2.Model Efficiency Metrics: Nash–Sutcliffe Efficiency (NSE) ............................. 54 

IV.11.2.1. Nash–Sutcliffe Efficiency (NSE) .................................................................. 54 

IV.12. Machine Learning with MATLAB ............................................................................ 55 

IV.12.1 Overview of MATLAB ......................................................................................... 55 

IV.13. Results and Discussion................................................................................................ 56 

IV.13.1. Application of the MLPNN Model ................................................................. 56 

IV.13.1.1.1. Model Configuration with 70% Training and 30% Validation Data ... 57 

IV.13.1.1.2. Model Configuration with 80% Training and 20% Validation Data ... 59 

IV.13.1.1.3. Model Performance Comparison Under Two Data Splits: 70%–30% 
and 80%–20% ................................................................................................................ 61 

       IV.13.1.2. Model Configuration with 80% Training and 20% Validation  Data.......63 
        IV.13.1.2.1. MLPNN1 model…………………………………………...……………...63 
        IV.13.1.2.2. MLPNN2 model………………………………………...………………...65 
        IV.13.1.2.3. MLPNN3 model…………………………...……………………………...66 
        IV.13.1.3. Model Performance Comparison Under Two Data Splits: 70%–30% and 
       80%–20%..........................................................................................................................67 

IV.13.2. Random forest (RF) ............................................................................................. 68 

IV.13.3. Comparison of MLPNN and Random Forest (RF) Models ............................. 70 

IV.14. Conclusion ................................................................................................................... 71 

General Conclusion ................................................................................................................ 72 

 
 

 

 

 

 

 

  



 
 

Figures list: 

Figure I.1: Classification of Soil Erosion Types Based……………………………………......4 

Figure I.2: Illustration of Splash Erosion Caused by Raindrop Impact……………………......4 

Figure I.3. Visual Representation of Sheet Erosion ……………………………………….…..5 

Figure I.4. Formation of Rill Erosion Due to Concentrated Surface Runoff ………………….5 

Figure I.5. Development of Gully Erosion from Concentrated Runoff in Degraded 
 Landscapes ……………………………………………………………………………………6 

FigureI.6.Formation of Ravine Erosion as an Advanced Stage of Gully Development…...…..6 

Figure I.7. Landslide (Slip) Erosion Triggered by Rainfall or Slope Instability in  
Steep Terrain……………………………………………………………………...……………7 

Figure I.8. Stream Bank Erosion During High-Flow Events…………………………….….....7 

Figure I.9. Primary Processes of Wind Erosion in Dryland Environments ……...……….…...8 

Figure I.10. Primary Processes of Wind Erosion ………………………………………….......9 

Figure I.12. Common remote sensing data sources and their applications in soil erosion  
(Wang et all., 2024)……………………...……………………………………………………10 

Figure I.13. Global Trends and Applications of Soil Erosion Models………….…………....13 

Figure II.1.Geographic location and boundaries of the Tafna watershed ……..……………..18 

Figure II.2. Tafna watershed MNT…………………………………………….……………..19 

Figure II.3. Elevation Classes within the Tafna Watershed ………………..……………….. 19 

Figure II.4. Altitude classes of the Tafna watershed ……………………….………………...21 

Figure II.5. slope classes and area % covered by every class in the Tafna watershed....…….22 

Figure II.6.Soil classes in Tafna Watershed……………………………………………..….. 24 

Figure III.1: Spatial Distribution of Rainfall Erosivity (R Factor) in the Tafna Watershed 

 Based on CHIRPS Data……………………………………………………………………...31 

FigureII.2. Soil Erodibility (K Factor) Map of the Tafna Watershed Derived from  
Pedological and Textural Data………………………………………………………………..32 

 

Figure III.3. Spatial Distribution of LS Factor in the Tafna Watershed Derived  
from DEM Analysis…………………………………………………..……………………....34 



 
 

Figure III.4. Spatial Distribution of Cover Management (C Factor) in the Tafna  
Watershed Based onLand Use Classification………………………………………………...36 

Figure III.5.Support Practice Factor (P-Factor) Map of the Tafna Watershed…………..…...38 

Figure III.6.Estimated Annual Soil Loss (A) Map Using RUSLE in the Tafna Watershed….40 

Figure III.7. Average Annual Soil Loss per Sub-Watershed in the Tafna Basin (t/ha/year)....41 

FigureIV.1. Multi-layer perceptron (MLP-NN) basic Architecture (adapted from  
Haykin, 1998) ………………………………………………………………………………...48 

FigureIV.2. Feed-forward back-propagation mechanism in artificial neural network (adapted 
from Rumelhart et al.,1986)…………………………………………...……………………...49 

Figure IV.3. Feed-Forward and Cascade-Forward Network Architectures                 
 (MATLAB Image)…………………………………………………………………………...51 

Figure IV.4. Main MATLAB interface(Demuth et Beale, 2002)…………….……..………..56 

Figure IV.5. Architecture of the MLPNN1 model(70%, 30%)………………..……….…….57 

Figure IV.6. Regression Lines of predicted and Measured Solid Flow Rate (kg/s) 
 Using MLPNN1 (70%, 30%)……………………………………………………………..….58 

Figure IV.7. Predicted and observed Solid Flow Rate using MLPNN1 (70%, 30%) …....…. 58 

Figure IV.8. Architecture of the MLPNN2 model(70%,30%) .….…………………………..59 

Figure IV.9. Regression Lines of predicted and Measured Solid Flow Rate (kg/s)  
Using MLPNN2 (70%, 30%) ………………………………………………………………...60 

Figure IV.10. Predicted and observed Solid Flow Rate using MLPNN2 (70%, 30%)…..…...60 

Figure IV.11. Architecture of the MLPNN3 model (70%, 30%) ……………………………61 

Figure IV.12. Regression Lines of predicted and Measured Solid Flow Rate (kg/s)  
Using MLPNN3 (70%, 30%)  ………………………………………………………………. 62 

Figure IV.13.Predicted and observed Solid Flow Rate using MLPNN3 (70%, 30%) ……….62 

Figure IV.14. Architecture of the MLPNN1 model (80%,20%).…..……………...……….   63 

Figure IV.15. Regression Lines of predicted and Measured Solid Flow Rate (kg/s)  
Using MLPNN (80%, 20%) ………………………………………………………………….64 

FigureIV.16.Architecture of the MLPNN2 model (80%, 20%)  ………………..……..…….65 

Figure IV.17. Regression Lines of predicted and Measured Solid Flow Rate (kg/s)  
Using MLPNN2 (80%, 20%) …………………………………………………………….......65 

Figure IV.18. Architecture of the MLPNN3 model (80%, 20%)………………………….....66 



 
 

Figure IV.19. Regression Lines of predicted and Measured Solid Flow Rate (kg/s) 
 Using MLPNN3 (80%, 20%)………………………………………………………………...67 

Figure IV.20. Regression Lines of predicted and Measured Solid Flow Rate (kg/s)  
Using RF (70%, 30%) ………………………………………………………………………..68 

Figure IV.21. Regression Lines of predicted and Measured Solid Flow Rate (kg/s)  
Using RF (80%, 20%) …………… ………………………………………………………… 69 

 

  



 
 

 

Tables list 

Table II.1. Distribution of the partial surface area according to the altitude of  
the watershed……………………………………………………………………………..…..33 

Table III.1. Classification of Soil Erodibility (K-Factor) in the Tafna Watershed………..….35 

TableIII.2.Area Distribution by LS Factor Classes in the Tafna Watershed……...………….36 

TableIII.3.Spatial Distribution of C-Factor Classes in the Tafna Watershed………………...36 

Table III.4.Spatial Contribution of C-Factor Zones to Erosion in the Tafna Watershed…..…37 

Table III.5. Classification of Support Practice(P-Factor) in the Tafna Watershed………...…38 

Table III.6. Average Annual Soil Loss by Sub-Watershed…………………………………...42 

Table III.7. Classification and Analysis of Estimated Soil Loss Across Sub-Watersheds in 
 the Tafna Basin…………………………………………………………………………...….43 

TableIV.1. Comparative Analysis of Random Forests and Neural Networks……….……… 53 

TableIV.2. Performance parameters of the MLPNN1 model (70%, 30%)……………….…..58 

Table IV.3.Performance parameters of the MLPNN2 model (70%, 30%)……………….…..60 

Table IV.4. Performance parameters of the MLPNN3 model (70%, 30%)……………….….62 

Table IV.5. Performance parameters of the MLPNN1 model (80%, 20%)…….………….…64 

Table IV.6. Performance parameters of the MLPNN2 model (80%, 20%)………………......65 

Table IV.7. Performance parameters of the MLPNN3 model (80%, 20%)……………….….67 

Table IV.8. Performance parameters of the RF model ……………………………………....69 

  



 
 

 

 الملخص 
تعُد التعرية المائية من التحديات الرئيسية التي تؤدي إلى انخفاض إنتاجية الأراضي الزراعية الواقعة في منابع الأحواض 
المنشآت  عمر  من  نفسه  الوقت  في  يقلل  مما  العضوية،  والمادة  الغذائية  والعناصر  والأسمدة  التربة  فقدان  بسبب  المائية 

ب السدود،  المصب مثل  في  لعوامل الهيدروليكية  نتيجة  المائية  التعرية  في خزاناتها. وتحدث  بسرعة  الرواسب  تراكم  سبب 
النباتي وخصائص   فيزيائية مناخية وأنثروبوجينية، مثل شدة الأمطار وتضاريس الأرض واستعمالات الأراضي والغطاء 

جزائر لتسبب وتشجع على التربة، حيث تتضافر هذه العوامل جميعها بشكل خاص في حوض تافنة الواقع في شمال غرب ال
 .التعرية المائية

تهدف هذه الدراسة إلى تقدير فقدان التربة بسبب التعرية المائية وتقييم المناطق المعرضة لهذا التغير في حوض تافنة. وقد 
التربة لفقدان  المعدلة  العالمية  المعادلة  استخدام  المتأثرة ضمن (RUSLE) تم  والمناطق  التربة  في  الفقد  نظم    لتقدير  بيئة 

التعرية  RUSLE تأخذ تطبيقات نموذج .(GIS) المعلومات الجغرافية بعين الاعتبار خمسة عوامل رئيسية وهي: معامل 
النباتي/استعمالات   الغطاء  عامل  للتعرية؛  التربة  قابلية  معامل  المنحدر)؛  وانحدار  (طول  الطبوغرافي  العامل  المطرية؛ 

ال مكافحة  وممارسات  المعلومات  الأراضي/الغطاء؛  نظم  في  مكانياً  ودمجها  العوامل  هذه  تقييم  عملية  سمحت  وقد  تعرية. 
 .الجغرافية بمحاكاة الفقدان السنوي المحتمل للتربة وتحديد المناطق ذات الأولوية للإدارة

تافنة يتراوح بين   التربة في حوض  فقدان  أن  إلى  النتائج  مالات  طن/هكتار/سنة حسب الانحدار واستع  5.87و  2.92تشير 
الأراضي ومعامل التعرية المطرية، مما يدل على وجود تباين في قابلية التعرية. وبينما تبقى الغالبية العظمى من الحوض 

طن/هكتار)، تسجل بعض المناطق المحلية فقداناً أعلى بكثير؛ حيث تعرف العديد   7.0تحت العتبة المقبولة للتعرية (أقل من  
طن/هكتار/سنة في نقاط حرجة محلية على منحدرات شديدة وضعيفة الغطاء   45ربة تتجاوز  من المناطق معدلات فقدان للت

إنتاج الرواسب داخل الحوض، وبالتالي   النباتي داخل الحوض. وتسهم هذه المناطق غير المعالجة بشكل غير متناسب في 
 .تعُد مناطق ذات أولوية في الحفاظ على التربة والإدارة

إجراء   تم  الاصطناعيةكما  العصبية  الشبكات  باستخدام  الرواسب  لحركة  الانتشار  – (ANN) نمذجة  إصدارات  تحديداً 
الأمامي الأمامي(FFBP) الخلفي  المتسلسل  الخلفي  والانتشار   ، (CFBP)الطبقات والمتعدد   ، (MLP) بيئة  في 

MATLAB – دلات الجريان. وقد اعتبُرت نتائج أداء وذلك بالاعتماد على القياسات الفعلية لتركيز الرواسب العالقة ومع
،  (NSE) سوتكليف–النماذج في التنبؤ بإنتاج الرواسب مُرضية، كما تم التحقق منها باستخدام معامل الارتباط، ومعامل ناش

(R)مما يبرز فائدتها في توقع إنتاج الرواسبمعامل الارتباط ،. 

، حوض تافنة، نظم المعلومات  (ANN) الشبكات العصبية الاصطناعيةالتعرية المائية، نقل الرواسب،   :الكلمات المفتاحية
 .RUSLE، (GIS) الجغرافية

 
 
  



 
 

Abstract 

Water erosion still presents a significant challenge that leads to the negative change of 

productivity of arable land located sources of watersheds through loss of soil, fertilizers, 

nutrients, and organic matter, which simultaneously reduces the longevity of hydraulic 

structures downstream, such as dams, due to quickly accumulating sediments in their 

reservoirs. Water erosion is triggered by factors that include a combination of physico-

climatic and anthropogenic agents, such as rainfall intensities, terrain morphology, land use, 

vegetative cover, and soil characteristics, and in the Tafna watershed in northwestern Algeria, 

all of these factors are particularly effective in the triggering and encouragement of water 

erosion. 

The aim of this research is to estimate soil loss by water erosion and to assess areas 

susceptible to this change in the Tafna watershed. The Revised Universal Soil Loss Equation 

(RUSLE) was used to estimate soil loss and areas affected, within a Geographic Information 

System (GIS). The application of the RUSLE model considers five main factors, which are 

Rainfall Erosivity; Topographical factor (Slope, length, slope steepness); Soil Erodibility; 

Cover Management/Land cover/ Vegetation; and Anti-Erosion Practices. Their assessment 

and spatial integration in GIS allowed the simulation of potential annual soil loss and 

identification of areas with priority issues for management. 

The results indicate that soil loss in the Tafna watershed is as low as 2.92 t/ha/year and as 

high as 5.87 t/ha/year based upon slope, land use, and rainfall erosivity, indicating a 

variability of erosion potential. While, also the vast majority of the watershed continues to be 

below an acceptable erosion threshold (less than 7.0 t/ha), local areas experience considerably 

higher soil loss; many areas experience soil loss rates over 45 t/ha/year in local hotspots in 

steep poorly vegetated sub-basins in the watershed catchment. These unresolved critical zones 

contribute an inordinate share of the sediment yield in the watershed and thus, are indeed 

priority areas for soil conservation and management. 

Also, modeling of sediment transport was undertaken using artificial neural networks (ANN) 

- specifically the Multi Layer Perceptron (MLP) versions in MATLAB - based upon 

measured suspended sediment concentrations and flow rates. The performance of the models 

to predict sediment yield were deemed satisfactory, as validated through determination of 

correlation constant and Nash–Sutcliffe Efficiency (NSE),The correlation coefficient(R) 

highlighting their utility in forecasting sediment yield. 

Keywords: Soil erosion, Sediment transport, Artificial Neural Networks (ANN), Tafna 

watershed, GIS, RUSLE. 



 
 

Résumé 
L’érosion hydrique reste un défi important qui entraîne une diminution de la productivité des 
terres arables situées en amont des bassins versants par la perte de sol, d’engrais, de 
nutriments et de matière organique, réduisant simultanément la longévité des ouvrages 
hydrauliques en aval, tels que les barrages, en raison de l’accumulation rapide de sédiments 
dans leurs réservoirs. L’érosion hydrique est déclenchée par une combinaison de facteurs 
physico-climatiques et anthropiques, tels que l’intensité des précipitations, la morphologie du 
terrain, l’utilisation des terres, la couverture végétale et les caractéristiques du sol. Dans le 
bassin versant de la Tafna, au nord-ouest de l’Algérie, tous ces facteurs contribuent 
particulièrement au déclenchement et à l’intensification de l’érosion hydrique. 
L’objectif de cette recherche est d’estimer la perte de sol due à l’érosion hydrique et d’évaluer 
les zones sensibles à ce phénomène dans le bassin versant de la Tafna. L’équation universelle 
révisée de perte de sol (RUSLE) a été utilisée pour estimer la perte de sol et les zones 
affectées, dans un système d’information géographique (SIG). L’application du modèle 
RUSLE prend en compte cinq facteurs principaux : l’érosivité des précipitations ; le facteur 
topographique (longueur et pente de la pente) ; l’érodibilité du sol ; la couverture 
végétale/l’utilisation des terres/la végétation ; et les pratiques anti-érosives. Leur évaluation et 
leur intégration spatiale dans le SIG ont permis la simulation de la perte de sol annuelle 
potentielle et l’identification des zones prioritaires à gérer. 
Les résultats indiquent que la perte de sol dans le bassin versant de la Tafna varie entre 2,92 
t/ha/an et 5,87 t/ha/an selon la pente, l’utilisation des terres et l’érosivité des précipitations, 
montrant une variabilité du potentiel d’érosion. Alors que la grande majorité du bassin versant 
reste en dessous du seuil acceptable d’érosion (moins de 7,0 t/ha), certaines zones locales 
enregistrent des pertes de sol nettement plus élevées ; de nombreuses zones subissent des 
pertes de sol supérieures à 45 t/ha/an dans des points chauds locaux situés dans des sous-
bassins escarpés et faiblement végétalisés du bassin versant. Ces zones critiques non traitées 
contribuent de manière disproportionnée à la production de sédiments dans le bassin et 
doivent donc être considérées comme prioritaires pour la conservation des sols et la gestion. 
En outre, la modélisation du transport de sédiments a été réalisée à l’aide de réseaux de 
neurones artificiels (RNA) – en particulier la version Multi Layer Perceptron (MLP) sous 
MATLAB – basées sur les concentrations mesurées de sédiments en suspension et les débits. 
Les performances des modèles pour prédire la production de sédiments ont été jugées 
satisfaisantes, comme validées par la détermination du coefficient de corrélation, de 
l’efficacité de Nash–Sutcliffe (NSE) et le coefficient de correlation (R), soulignant leur utilité 
pour la prévision de la production de sédiments. 
Mots-clés : Érosion des sols, Transport de sédiments, Réseaux de neurones artificiels (RNA), 
Bassin versant de la Tafna, SIG, RUSLE. 
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General introduction 

Water erosion of soils is one of the most serious and extensive forms of land degradation on 

Earth, with downstream consequences on agricultural efficiency, water resources, and 

ecosystem sustainability. In semi-arid regions coupled with climate variability, such as the 

Mediterranean basin, increasing environmental pressures arising from deforestation, 

unsustainable land-use practices and increasing anthropogenic pressures have amplified rates 

of soil loss. The case of Algeria, more precisely the Tafna watershed located in the 

northwestern portion of the country, demonstrates the vulnerability of such territories where 

surface erosion, sedimentation and environmental degradation directly threaten agricultural 

production processes. 

Understanding and quantifying the processes that generate soil erosion is a requisite 

consideration for ecosystem and environmental management as well as for sustainable land-

use planning, water resource management, and the agricultural development process. 

Traditional empirical models, such as the Universal Soil Loss Equation (USLE) and more 

recently the Revised Universal Soil Loss Equation (RUSLE), have long been used as tools for 

estimating long-term averages of annual soil loss due to sheet and rill erosion. In combination 

with Geographic Information Systems (GIS) and remote sensing information (satellite-

imagery, elevation etc), RUSLE has provided researchers a spatially explicit approach to 

understanding erosion risk and to identifying which areas may be more threatened. 

While erosion is non-linear and complex in nature, which include climatic, topographic, 

edaphic, and anthropogenic variables - traditional methods for measuring soil erosion failure 

don't capture such inter-relational dependence and process interactions with sufficient 

precision, especially in contrasting and spatially complex environments. Artificial intelligence 

(AI) and machine-learning (ML) methods have joined the ranks in the last few years as 

plausible alternatives or complements to these traditional models. ML algorithms (eg. 

Random Forests, Support Vector Machines, Artificial Neural Networks etc) are capable of 

learning from large amounts of data to find patterns or relationships that the linear models 

have neglected, and thus can improve prediction of erosion susceptibility and sediment yield. 

This graduation project proposes an integrated framework that combines the strengths of both 

empirical and data-driven approaches to model and analyze soil erosion risk in the Tafna 

watershed, a region characterized by steep slopes, variable rainfall patterns, and increasing 

anthropogenic disturbance. The study leverages the RUSLE model within a GIS environment 
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to estimate soil loss spatially, and integrates it with machine learning techniques trained on 

biophysical and environmental data to improve predictive accuracy.  

The objectives of this research are multiple: 

 To assess the spatial distribution and intensity of soil erosion within the Tafna basin 

using RUSLE-GIS methodology. 

 To evaluate the added value of machine learning models in erosion susceptibility 

mapping. 

 To compare hydrological model outputs with empirical estimates for validation and 

cross-analysis. 

 To identify priority areas for conservation and propose informed land management 

strategies. 

This work contributes to bridging the gap between theoretical modeling and practical land 

management in semi-arid regions, offering a replicable methodology for erosion analysis 

under current and future environmental pressures. By demonstrating the synergy between 

conventional and AI-driven tools, it seeks to enhance decision-making in watershed 

protection and natural resource sustainability. 
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I.1. Introduction 

Soil is a vital component of terrestrial ecosystems, providing essential nutrients, moisture, 

and habitat for diverse biological communities. However, soil erosion poses a significant 

threat to land productivity, water quality, and ecological balance, emerging as one of the most 

pressing environmental challenges today. Erosion, driven by hydraulic, wind, and freeze-

thaw forces, leads to detrimental effects such as sedimentation in waterways and depletion of 

land resources (Bach et al., 2020; Zhang et al., 2024). 

Traditional methods for studying soil erosion are often labor-intensive and geographically 

limited. In contrast, remote sensing technology has revolutionized the field by enabling rapid 

data collection and spatial analysis, thereby enhancing our understanding of erosion processes 

(Wu et al., 2024). This technology encompasses a variety of methods, including satellite 

imaging and GIS analysis, which allow for comprehensive assessments of erosion 

characteristics and dynamics across large areas (Gong et al., 2022). 

This study reviews existing literature on remote sensing applications in soil erosion research, 

highlighting key methodologies, influential factors, and the role of advanced models. 

I.2. Soil Erosion 

Soil erosion is a fundamental geomorphological process that reshapes terrestrial landscapes 

and plays a critical role in the degradation of soil stability and fertility across diverse 

ecological zones. Driven by natural forces such as water and wind, soil erosion begins when 

external agents detach and transport soil particles, leading to surface degradation, reduced 

agricultural productivity, and altered landforms. This process contributes significantly to land 

degradation and the long-term loss of arable land. Research has shown that soil erosion can 

lead to an estimated 0.3% annual reduction in global agricultural productivity, posing a direct 

threat to food security (Sartori et al., 2019; Borrelli et al., 2020). 

I.2.1. Types and Agents of Soil Erosion 

I.2.1.1. Water Erosion 

Water erosion is the most common form of accelerated erosion. It results from two main 

energy sources: the impact of falling raindrops (vertical force) and surface runoff (horizontal 

force). Raindrop impact detaches soil particles, while surface runoff transports them 

downslope (Telkar et al., 2015). Several types of water erosion are recognized (Figure I.1): 
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Figure I.1: Classification of Soil Erosion Types Based 

I.2.1.2. Splash Erosion 

Splash erosion is the initial stage of the soil erosion process, where individual raindrops strike 

the soil surface with enough force to dislodge particles. These dislodged particles are then 

propelled a short distance from their original location, leading to surface sealing and reduced 

infiltration. Although this form of erosion may appear minor, it plays a critical role in 

initiating more severe erosion types by loosening soil for subsequent transport by runoff 

(Figure I.2). 

 

Figure I.2: Illustration of Splash Erosion Caused by Raindrop Impact 
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I.2.1.3. Sheet Erosion 

Sheet erosion involves the uniform removal of a thin layer of topsoil over large surface areas 

during rainfall events. This type of erosion often goes unnoticed because it does not leave 

visible scars on the land, yet it cumulatively results in substantial loss of fertile soil. Due to 

its subtle and widespread nature, it is sometimes referred to as the “silent thief” or the “death 

of the farmer.” It frequently follows splash erosion and often precedes more severe forms 

such as rill or gully erosion. The progression and classification of these erosion types are 

depicted in Figure I.3. 

 

Figure I.3. Visual Representation of Sheet Erosion 

I.2.1.4. Rill Erosion 

Rill erosion occurs when surface runoff begins to concentrate, forming small but clearly 

defined channels known as rills. These channels indicate a transition from sheet erosion to 

more localized erosion patterns. While rills can typically be removed through standard tillage 

practices, neglecting them allows the erosion process to intensify, potentially leading to gully 

formation. The formation and progression of rill erosion are illustrated in Figure I.4. 

 

Figure I.4. Formation of Rill Erosion Due to Concentrated Surface Runoff 

I.2.1.5. Gully Erosion 

Gully erosion represents a more advanced and visibly destructive form of soil erosion. It 

occurs when concentrated surface runoff carves deep, wide channels referred to as gullies 
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into the landscape. These features can severely fragment the land, making it difficult or 

impossible to cultivate. Gully erosion often results from the unchecked progression of rill 

erosion and can expand rapidly during intense rainfall events. The typical appearance and 

impact of gully formation are depicted in Figure I.5. 

 

Figure I.5. Development of Gully Erosion from Concentrated Runoff in Degraded 

Landscapes 

I.2.1.6. Ravine Erosion 

Ravine erosion is the prolonged and advanced stage of gully erosion, typically observed in 

deep alluvial soils. Over time, continuous runoff enlarges gullies into extensive, deep, and 

wide chasms called ravines that permanently scar the landscape. These formations 

significantly reduce land usability and agricultural productivity. The severe degradation and 

characteristic form of ravines are illustrated in Figure I.6. 

 

Figure I.6. Formation of Ravine Erosion as an Advanced Stage of Gully Development 

I.2.1.7. Landslide or Slip Erosion 

Landslide or slip erosion occurs on steep slopes exceeding 20%, especially in mountainous or 

hilly terrains. This form of erosion is typically triggered by heavy rainfall, seismic activity, or 

the saturation of soil layers, which reduces cohesion and causes large masses of soil and rock 
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to slide downslope. Such events can lead to sudden and severe land degradation, 

infrastructure damage, and loss of vegetation. The dynamics and visual characteristics of this 

erosion type are illustrated in Figure I.7. 

 

Figure I.7. Landslide (Slip) Erosion Triggered by Rainfall or Slope Instability in Steep 

Terrain 

I.2.1.8. Stream Bank Erosion 

Stream bank erosion occurs primarily during high-flow conditions in rivers and streams, 

when increased water velocity and volume can cause channels to shift or meander. As the 

water undercuts and erodes the banks, large sections of soil become detached and are carried 

downstream, contributing to sedimentation and the degradation of adjacent land. This process 

can significantly impact agricultural areas, infrastructure, and ecosystems along riverbanks. 

The process and effects of stream bank erosion are illustrated in Figure I.8. 

 

Figure I.8. Stream Bank Erosion During High-Flow Events 

I.2.2. Wind Erosion 

Wind erosion is a major form of soil degradation, particularly in arid and semi-arid regions 

with minimal vegetation and loose, dry soil surfaces. Strong winds mobilize soil particles 

especially during dust storms leading to the removal of fertile topsoil, exposure of nutrient-
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poor subsoil, and the formation of sand dunes. This process significantly reduces land 

productivity. Wind erosion occurs primarily through saltation, suspension, and surface creep, 

as illustrated in Figure I.9. 

 

Figure I.9. Primary Processes of Wind Erosion in Dryland Environments 

I.2.2.1. Saltation 

The primary mechanism, involving the bouncing movement of soil particles (0.1–0.5 mm in 

diameter) caused by wind pressure and inter-particle collision. Saltation accounts for 50–75% 

of wind-driven soil erosion. 

I.2.2.2. Suspension 

Fine soil particles (<0.1 mm) are lifted and suspended in the air for long distances. These are 

eventually deposited when gravity overcomes the uplifting wind force. 

I.2.2.3. Surface Creep 

Larger soil particles (typically >0.5 mm) are rolled or dragged along the ground surface due 

to wind pressure and collision with saltating particles. 

I.2.3. Factors That Enhance Soil Degradation 

Soil erosion occurs when the land surface is left bare and exposed to the forces of wind and 

raindrops. The severity of erosion depends on the intensity of rainfall and wind activity 

across unprotected land(Gandhi krishiVishwavidyalaya, n.d.; Pal et al., 2025). According to 

Pimentel and Burgess (2013), several key factors contribute to soil degradation: 

I.2.3.1. Rainfall and Surface Runoff 

Rainfall initiates the breakdown of soil aggregates and disperses soil particles. Runoff 

primarily transports lighter materials such as organic matter, silt, and fine sand. However, 

during intense rainfall events, even larger and denser soil particles may be displaced, 

accelerating soil loss. 
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I.2.3.2. Agricultural Activities 

Farming practices can significantly alter soil structure and reduce organic matter content, 

making soils more vulnerable to erosion. In particular, land tillage disrupts soil cohesion, 

weakening its structure and increasing erosion susceptibility. Conversely, less intensive 

agricultural practices tend to exert a reduced impact on soil degradation. 

I.2.3.3. Vegetative Cover 

Plants and ground cover play a critical role in protecting soil from erosion by anchoring soil 

particles and reducing the force of rainfall impact. Areas lacking sufficient natural vegetation 

are more prone to erosion, particularly during heavy rains or dry, windy conditions. 

I.2.3.4. Wind 

Wind contributes to soil degradation, particularly in arid and semi-arid regions where soils 

are dry and loosely structured. Light winds may have minimal impact, but strong winds can 

transport lighter soil particles especially sandy soils over long distances, leading to significant 

erosion. 

I.2.3.5. Slope of the Land 

Topography also influences soil erosion. Steep slopes accelerate water flow, increasing the 

volume and speed of runoff, which in turn intensifies soil displacement (Chen et al., 2011; 

Nenadović et al., 2013). Sloped lands are particularly at risk when vegetation is sparse or 

removed. 

 

 

Figure I.10. Primary Processes of Wind Erosion  
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I.3. Remote Sensing Data Sources Available for Soil Erosion Research 

Soil erosion is a complex and dynamic process influenced by a combination of natural and 

anthropogenic factors, including climate, topography, soil characteristics, vegetation cover, 

geology, and land use practices (Zhang et al., 2024). Effective monitoring and modeling of 

soil erosion require detailed, multi-scale data to capture both spatial variability and temporal 

dynamics. 

Remote sensing has emerged as a powerful tool for observing and analyzing these factors due 

to its multi-temporal, multi-spectral, and multi-resolution capabilities. Satellite imagery 

facilitates the extraction of critical erosion-related variables such as vegetation indices, land 

cover changes, rainfall distribution, and terrain parameters (e.g., slope and aspect) (Gong et 

al., 2022). The availability of long-term satellite datasets enables researchers to assess 

historical erosion trends and predict future scenarios over large and inaccessible areas, 

overcoming many limitations of traditional field-based methods (Seutloali et al., 2018). 

Today, Earth observation missions such as Landsat, Sentinel, MODIS, and others provide an 

extensive archive of freely accessible imagery, making satellite remote sensing the most 

widely adopted approach in soil erosion studies. The simplicity of data acquisition and 

preprocessing further supports its integration into erosion modeling frameworks. Figure 1 and 

Table 1 summarize the most commonly used satellite data sources, classified by spatial 

resolution and application type in soil erosion research. 

 

Figure I.12. Common remote sensing data sources and their applications in soil erosion 

(Wang et all., 2024). 
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Table I.1. Basic information on common remote sensing data sources used in soil erosion 

(Wang et all., 2024). 

Data Type Satellite Sensor Spatial 

Resolution 

(m) 

Temporal 

Resolutio

n (day) 

Spectral 

Domains 

Involved 

Application Cases 

Low Spatial 

Resolution 

NOAA AVHRR 1100 6 VNIR, 

SWIR, 

TIR 

Soil erosion 

monitoring, climate 

 

 

 

 

 

 

 

 

 

Medium 

Spatial 

Resolution 

Landsat MSS 80 18 VNIR LULC change, erosion 

modeling 

Landsat TM 30/120 16 VNIR, 

SWIR, 

TIR 

  

Landsat ETM+ 15/30/60 16 VNIR, 

SWIR, 

TIR 

  

Landsat OLI, 

TIRS 

15/30/100 16 VNIR, 

SWIR, 

TIR 

  

SPOT HRV 10/20 26 VNIR   

SPOT HRVIR 10/20 26 VNIR, 

SWIR 

  

CBERS-01/02 20/78/156/2

58 

3/26 VNIR, 

SWIR, 

TIR 

  

Sentinel-2A MSI 10/20/60 5 VNIR, 

SWIR 

  

Terra ASTER 15/30 16 VNIR, 

SWIR, 

TIR 

  

 

 

GF-2 0.81/3.24 5 VNIR Urban analysis, 

precision agriculture 
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High Spatial 

Resolution 

IKONOS 0.82/3.2 3 VNIR   

QuickBird 0.61/2.44 1–6 VNIR   

WorldView-2 0.46/1.85 1.1/3.7 VNIR   

ZY-1-02C 2.36/5/10 3–5 VNIR   

CBERS 2.36/20/258 3 VNIR   

PAN, IRS, MUX, 

WFI 

5/10/20/40/

73/80 

3/26 VNIR, 

SWIR, 

TIR 

  

Radar Data Sentinel-1 C-SAR 5–40 12 C-Band Flood mapping, 

terrain structure 

Hyperspectral 

Data 

AISA Sub-meter -- VNIR Mineralogy, 

vegetation studies 

 

I.5. Soil Erosion Models 

A review of global soil erosion modelling practices reveals the use of 435 distinct models and 

model variants, though overlaps in naming suggest that some are functionally equivalent. 

Among these, models in the (R)USLE familyincluding USLE, RUSLE, USLE-SDR, 

RUSLE-SDR, and SEDDare by far the most widely applied, accounting for over 1200 

applications, or around 41% of total usage. This figure would increase further if related 

empirical models such as WaTEM/SEDEM, EPIC, SWAT, and USPED were grouped under 

the (R)USLE umbrella. 

Other commonly used process-based models include WEPP (7.4%), LISEM (1.9%), and 

EROSION-3D (1%), while regional models like PESERA (0.8%) and EUROSEM (0.6%) are 

less frequently used. Among the empirical alternatives to (R)USLE, SWAT (6%), 

WaTEM/SEDEM (4.6%), and (R)MMF (2%) are prominent(Borrelli et al., 2021). 

Trends over time, broken into four-year intervals, show a consistent increase in the use of 

(R)USLE, SWAT, and WaTEM/SEDEM, with moderate growth for models like WEPP, 

AGNPS, MMF, Erosion-3D, and LISEM. In contrast, EUROSEM usage has declined. This 

evolution in model preference and deployment over time is illustrated in Figure I.13, which 

presents a 2D digital infographic summarizing the prevalence, development, and spatial 

resolution of soil erosion modelling across global applications. 

In terms of spatial resolution, more than 56% of studies did not report grid size. Among those 

that did, very high-resolution outputs (≤5 m) represented 7.2%, high-resolution outputs (>5–
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25 m) accounted for 11.9%, medium resolution (>25–150 m) for 19.8%, and moderate 

resolution (>150–300 m) for 1.6%. A small portion (~3%) used coarse resolutions between 

330 and 60,000 meters. There is a clear trend toward finer spatial resolutions in more recent 

applications, particularly at watershed and hillslope scales. However, a consistent link 

between model type and grid size is absent, except in large-scale studies where empirical 

(R)USLE and (R)WEQ models dominate. 

Regarding model validation, it was performed in about 58% of the reviewed studies. The 

most common method involved comparing model results to measured sediment yield (26%), 

followed by comparisons with field-measured erosion rates (18%), outputs from other models 

(10%), and expert judgment (3%). This indicates a growing commitment to validation and 

model reliability, especially in newer studies. 

 

 

Figure I.13. Global Trends and Applications of Soil Erosion Models 
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I.4.1. The Revised Universal Soil Loss Equation (RUSLE)model 

The Revised Universal Soil Loss Equation (RUSLE) is widely applied within GIS 

frameworks to estimate annual soil erosion across varied landscapes, including tropical, 

agricultural, and mountainous watersheds, as well as regions experiencing dynamic land-use 

change(Ganasri and Ramesh, 2016; Ghosal and Das Bhattacharya, 2020; Jahun et al., 2015). 

RUSLE integrates five erosion-related factors, drawn from three key data sources: 

Climatic and topographic data – provide inputs for calculating the rainfall-runoff erosivity 

factor (R) and the topographic factor (LS), which combines slope length (L) and slope 

steepness (S) derived from digital elevation models (DEMs). 

Crop or land cover database – used to determine the cover and management factor (C). 

Soil data – informs the soil erodibility factor (K) through texture and organic matter 

properties. 

The general method involves estimating each of the RUSLE factors (R, K, LS, C, P) using 

diverse data sources such as satellite imagery, climate records, topographic maps, and soil 

surveys. The topography of the landscape, especially slope and elevation change, plays a 

critical role in defining the LS factor, which governs how terrain influences erosion potential. 

The model calculates average annual soil loss using the formula: 

A=R×K×L×S×C×P 

Where: 

A = Predicted annual soil loss (t/ha/year) 

R = Rainfall-runoff erosivity factor 

K = Soil erodibility factor 

L = Slope length factor 

S = Slope steepness factor 

C = Cover-management factor 

P = Support practice factor 

I.4.2. The Modified Universal Soil Loss Equation (MUSLE) 

The Modified Universal Soil Loss Equation (MUSLE) was developed as an event-based 

enhancement to the RUSLE model, allowing for more accurate estimation of soil erosion at 

shorter temporal scales such as daily or per storm event(CHESIRE, 2022; Mohammadi et al., 

2025; Reda et al., 2024). Unlike RUSLE, which uses rainfall erosivity (R) to estimate long-

term average erosion, MUSLE replaces the R factor with runoff volume (Q) and peak runoff 

rate (qp)key hydrological parameters that directly influence sediment transport during rainfall 

events. This modification enables MUSLE to be integrated into hydrological models such as 
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SWAT (Soil and Water Assessment Tool), making it suitable for continuous simulations 

under varying land use and climate conditions. The MUSLE formula is expressed as: 

A=11.8×(Q×qp)
0.56×K×C×P×LS  

Where: 

 A = Sediment yield per event (tons) 

 Q = Runoff volume (mm) 

 q� = Peak runoff rate (m³/s) 

 K, C, P, and LS = Soil erodibility, cover-management, conservation practices, and 

topographic factors, respectively 

I.4.3. The Soil and Water Assessment Tool (SWAT) 

The Soil and Water Assessment Tool (SWAT) is a semi-distributed, process-based watershed 

model developed to predict the long-term impacts of land management practices on water, 

sediment, and agricultural chemical yields(Lei et al., 2024; Zhao et al., 2024). It operates at 

the watershed scale and divides the area into multiple sub-basins and Hydrologic Response 

Units (HRUs), which represent unique combinations of land use, soil type, and slope 

class(Muauz et al., 2024; Prakash et al., 2024). 

SWAT simulates the water balance using the equation: 

SWt=SW0+∑ (Rday−Qsurf – Ea – Wseep−Qgw) 

Where: 

 SWt is the final soil water content, 

 SW0 is the initial soil water content, 

 Rday is daily precipitation, 

 Qsurf is surface runoff, 

 Ea is evapotranspiration, 

 Wseep is percolation, 

 Qgwis return flow. 

I.4.4. The Water Erosion Prediction Project (WEPP) 

The Water Erosion Prediction Project (WEPP) model is a physically-based, continuous 

simulation model designed to predict soil erosion and sediment transport on hillslopes and 

small watersheds(Bhat et al., n.d.; MAHRUKH et al., 2025; Ugwu et al., 2024). Unlike 

empirical models such as RUSLE or MUSLE, WEPP simulates fundamental hydrological 

and erosion processes using climate, soil, topography, and land management data. 
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WEPP calculates soil erosion by simulating the following processes: 

 Infiltration and surface runoff generation, 

 Soil detachment by raindrop impact and overland flow, 

 Sediment transport and deposition across the slope or channel. 

The core equation for sediment transport capacity in WEPP is: 

Tc=a×q×Sb 

Where: 

 Tc = sediment transport capacity, 

 q = flow discharge per unit width, 

 S = slope gradient, 

 a,b = empirical coefficients based on soil and flow characteristics. 

 

I.5. Conclusions 

This comprehensive review underscores the complexity of soil erosion and the evolving role 

of remote sensing and modeling techniques in understanding and mitigating its impacts. Soil 

erosion, driven primarily by water and wind, continues to degrade landscapes, reduce 

agricultural productivity, and disrupt ecosystems—particularly in regions with poor land 

management or insufficient vegetation cover. 

Remote sensing technologies, such as satellite imagery and GIS, have transformed erosion 

research by enabling large-scale, multi-temporal monitoring of erosion dynamics. Coupled 

with digital elevation models, land use data, and climatic records, these tools offer 

unprecedented insights into spatial patterns and temporal changes in erosion risk. 

Modeling tools like RUSLE, MUSLE, SWAT, and WEPP each contribute distinct 

advantages. RUSLE remains the most widely used due to its simplicity and empirical 

strength, while MUSLE introduces hydrologic responsiveness suitable for event-based 

analysis. SWAT enables holistic watershed-scale assessments, integrating land management 

and hydrological interactions, and WEPP provides a detailed, process-based simulation of 

erosion mechanisms. However, a significant limitation persists in the lack of field validation 

across many modeling applications, which can undermine result reliability. 

Moving forward, integrating high-resolution remote sensing, validated process-based models, 

and localized field data is essential for developing robust, actionable soil conservation 

strategies. Improved model calibration and validation, especially in data-scarce, erosion-

prone regions, are critical for guiding sustainable land management and informing global 

efforts to combat soil degradation. 
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II.1.Introduction  

A watershed is a land unit defined by natural boundaries where all surface water drains 
toward a single outlet (Anctil et al., 2012). This chapter focuses on the Tafna watershed, 
located in the extreme northwest of Algeria. The goal is to present a detailed description of its 
main morphometric features. The approach is descriptive and based on spatial data analysis. 
Morphometric analysis is a reliable tool for watershed evaluation and supports effective 
planning and integrated water resource management (Pingale et al., 2012). A clear 
understanding of these physical characteristics is necessary to design sustainable strategies 
for soil conservation, erosion control, and optimal water use across the Tafna basin. 

II.2.Geographic overview 

Oued Tafna (Latitude: 35° 05' N; Longitude: 1° 20' W) rises from the mountainous regions 
of Tlemcen in northwestern Algeria. It flows over a course of about 170 kilometers before 
emptying into the Mediterranean Sea near Rachgoun. The Tafna watershed, located at the 
extreme west of Algeria. It is bounded by 1° and 2° west longitude and34°5' at 35°3' north 
latitude. Covers an area of 7700 km2,less than one third of its surface area is located on 
Moroccan territory. However, 5340 km2 is on the Algerian territory (Aboura, 2006; ABH, 
2006). The basin is delimited by Tlemcen Mountains, mainly composed of mountains in the 
south (800 to 1400 m of altitude). This orographic structure, which is dominated to the north 
by the Taras Mountains (1081 m) of narrow width, constitutes an important barrier against 
precipitation (Meddi et al.,2013). The hydrographic network of the Tafna River is composed 
of two main wadis, the East Isser and the Tafna. It lies about 500 kilometers west of Algiers. 

The Tafna watershed is part of the Tell Atlas system. It is bounded: 

 To the south: by the Tlemcen Mountains, forming a rugged natural barrier with steep 
slopes and marked altitudinal contrasts 

 To the east: by the Oued Isser sub-watershed, transitioning toward the central Tell 
 To the north: by the coastal strip and hills that separate the basin from the 

Mediterranean Sea 
 To the west: by the Moroccan border and the lower catchments of the Moulouya 

River system 

The basin features a varied topography ranging from high-altitude zones in the southern 
mountains to intermediate hills and low coastal plains. This topographic diversity strongly 
affects rainfall distribution, hydrological response, and soil types across the basin, resulting in 
high spatial variability in erosion dynamics. 

Oued Tafna is the main watercourse draining this region. It collects surface runoff from 
seasonal and irregular rainfall, making it a vital water source. Snowmelt from higher altitudes 
contributes significantly to stream flow in wet years. The oued plays a key role in local 
ecosystems, agriculture, and rural livelihoods. 

The watershed holds economic importance in the region. Agriculture, especially cereal 
production, olive cultivation, and orchards, relies on water availability from Tafna and its 
tributaries. The forested zones in the upper basin support biodiversity and provide ecological 
balance. 
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However, the Tafna watershed faces several environmental challenges, notably soil erosion. 
Steep slopes, degraded vegetation cover, and unsustainable land use practices accelerate 
surface runoff and sediment loss, increasing pressure on natural and agricultural systems. 

The geographical location and precise limits of the watershed are shown in Figure II.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure II.1. Geographic location and boundaries of the Tafna watershed 

II.3.Topographical Characteristics of the Study Area 

Using a Geographic Information System (GIS) with remote sensing data allowed 
identification of the topographic profile of the Tafna watershed. A Digital Elevation Model 
(DEM) of the SRTM type (Shuttle Radar Topography Mission) with a spatial resolution of 30 
meters was downloaded and integrated into the ArcGIS software interface. After various 
operations and data processing within the GIS environment, it was possible to calculate 
several relevant topographic and morphometric parameters, which we present below: 

II.4. Altimetry 

The DEM demonstrates that the Tafna watershed exhibits significant elevation variation, 
ranging from approximately -3.93 m (likely coastal or river mouth depression zones) to about 
1809.14 m in the southern highlands. This elevation gradient defines the basin's 
geomorphology, flow dynamics, and erosion potential as its shown in the figure bellow 
(Figure II.2.) 

Algeria 
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II.5. Altitude classes 
In order to conduct a more comprehensive analysis of the altimetric characteristics of the 
Tafna watershed, the elevation values were classified into ten categories with an average 
interval of 200 meters. Furthermore, the surface areas corr
extracted using GIS techniques, allowing for a more detailed interpretation of the spatial 
distribution of elevation across the watershed domain (Figure 

Figure II.3. 
(Figure II.3) reveals a distinct altitudinal distribution, with a clear dominance of elevation 
classes ranging from 200 to 1000 meters. These elevation ranges, represented in light blue, 
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Figure II.2. Tafna watershed MNT 

In order to conduct a more comprehensive analysis of the altimetric characteristics of the 
watershed, the elevation values were classified into ten categories with an average 

interval of 200 meters. Furthermore, the surface areas corresponding to each class were 
extracted using GIS techniques, allowing for a more detailed interpretation of the spatial 
distribution of elevation across the watershed domain (Figure II.3). 

 Elevation Classes within the Tafna Watershed
reveals a distinct altitudinal distribution, with a clear dominance of elevation 

classes ranging from 200 to 1000 meters. These elevation ranges, represented in light blue, 
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reveals a distinct altitudinal distribution, with a clear dominance of elevation 
classes ranging from 200 to 1000 meters. These elevation ranges, represented in light blue, 
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green, and yellow tones, occupy approximately 60 to 70% of the total watershed area. They 
are primarily concentrated in the northern and central regions, extending along a northwest 
southeast axis. 

The southeastern and southwestern regions of the watershed indicate areas of highest 
elevation (1400 -1809 m) represented by orange-red to deep red coloring, and they represent 
the extreme rugged and steepest regions in the watershed that may have higher continued 
runoff generation potential while having a risk for water erosion. This elevation class is about 
15 -20% total functional area. 

Conversely, the lowest elevation class (below -4m to 200m) is in northern and north east part 
of the watershed which were shown with dark blue coloring, which recognizes these areas 
represent the down stream zones or potential outlets for the water catchment areas that have a 
convergence or accumulation of water. The flat land forms and topography in this area would 
suggest that these areas will likely enter contribute critical seasonal habitat for retention and 
deposition processes. 

II.6. Hypsometric Curve Interpretation 

The hypsometric curve provides a synthetic view of the Tafna watershed’s topographic 
structure, and it represents the distribution of area of the watershed. The area is depicted as a 
function of elevation. This curve is a reflection of the potential dynamic state of equilibrium 
of the basin, and it can be a very powerful means of comparison—not only of different 
watersheds, but also of different sections of the watershed itself, such as sub-basins. 

In the Tafna watershed, the hypsometric curve aids in the assessment of average precipitation 
distribution, while also giving us a good understanding of the hydrologic and hydraulic 
behavior of the watershed and its drainage network, which is very useful for interpreting 
hydrological/ hydraulic behavior and basin variability through time. Furthermore, the curve 
can be used to estimate the morphological age of the watershed and the extent of erosion 
development, especially helpful in planning integrated erosion control programs. 

The curve gives a general idea of the altimetric profile of the Tafna watershed and it is also 
an effective preliminary means of assessing the relief's susceptibility to various types of 
erosion (e.g. hydraulic or wind). As a visual and quantitative reading of the curve, it allows us 
to better specify the spatial dynamics involved in the evolution of the watershed. 

Figure x8 plots the cumulative percentages of the area between successive altitude classes on 
the x-axis and mean elevations of these classes on the y-axis. The graphical view allows a 
fairly good reading of the altitudinal distribution of the Tafna watershed, for example, the 
curve shows that the area of the watershed found mainly in the mid elevation range (200- 
1000m) of the curve where the terrain is typified by moderate slopes and balanced runoff-
infiltration processes. In contrast, the higher elevation classes—located primarily in the 
southern sectors of the watershed, which exhibit steep gradients—have the potential to 
generate rapid surface runoff, providing further erosive energy to the flood peaks associated 
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with significant storm events.

Figure II.4.

The distribution of partial areas according to the watershed altitudes is shown in Table II.1.

Table II.1. Distribution of the partial surface area according to the altitude of the watershed

Elevation 
class (m) 

Class 
centre 

perimeter

-3.935-200 98.032 535400.5
200-400 300 1453508.83
400-600 500 1702751.03
600-800 700 1714245.59
800-1000 900 1919073.43
1000-1200 1100 2077818.52
1200-1400 1300 1499938.1
1400-1600 1500 549339.17
1600-1809 170.45 64499.53

 

II.7. Spatial Distribution Analysis of Slopes

The calculation of slopes and the analysis of the spatial distribution of gradients are 
fundamental for understanding the morphogenic potential of watersheds (Durand Delga, 
1969). It is primarily the magnitude of slo
determine the erosive dynamics (Bouhali, 2016).

By deriving the previously used Digital Elevation Model (DEM) (Figure II.2) based on 
planimetric distances, it was possible to create a slope map for the boun
watershed. The slopes, calculated using GIS, are expressed as percentages, yielding values 
ranging from 0% to 40%. The most dominant slopes, ranging from 0% to 5%, cover 45.408% 
of the total area, followed by 24.528% for the 5.1
the least dominant, representing 15.085% of the area. However, the average slope of the 
watershed is estimated at 15%.
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with significant storm events.

Figure II.4.Altitude classes of the Tafna watershed 

The distribution of partial areas according to the watershed altitudes is shown in Table II.1.

Distribution of the partial surface area according to the altitude of the watershed

perimeter Area Area km Area %

535400.5 368281892.15 368.2819 4.742138
1453508.83 1002501368.23 1002.501 12.90859
1702751.03 1755059311.03 1755.059 22.59881
1714245.59 1613847536.83 1613.848 20.78052
1919073.43 945917523.37 945.9175 12.18 
2077818.52 1206976444.56 1206.976 15.54149
1499938.1 651364130.97 651.3641 8.387214
549339.17 210729882.7 210.7299 2.713439
64499.53 11478612.79 11.47861 0.147803

Spatial Distribution Analysis of Slopes 

The calculation of slopes and the analysis of the spatial distribution of gradients are 
fundamental for understanding the morphogenic potential of watersheds (Durand Delga, 
1969). It is primarily the magnitude of slopes and their locations within the watershed that 
determine the erosive dynamics (Bouhali, 2016). 

By deriving the previously used Digital Elevation Model (DEM) (Figure II.2) based on 
planimetric distances, it was possible to create a slope map for the boundaries of the Tafna 
watershed. The slopes, calculated using GIS, are expressed as percentages, yielding values 
ranging from 0% to 40%. The most dominant slopes, ranging from 0% to 5%, cover 45.408% 
of the total area, followed by 24.528% for the 5.1–10% class. The 10.1–
the least dominant, representing 15.085% of the area. However, the average slope of the 
watershed is estimated at 15%. 
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with significant storm events.

 

The distribution of partial areas according to the watershed altitudes is shown in Table II.1. 

Distribution of the partial surface area according to the altitude of the watershed 

Area % Cumulative 
area % 

4.742138 4.742138 
12.90859 17.65073 
22.59881 40.24954 
20.78052 61.03006 

73.21006 
15.54149 88.75155 
8.387214 97.13876 
2.713439 99.8522 
0.147803 100 

The calculation of slopes and the analysis of the spatial distribution of gradients are 
fundamental for understanding the morphogenic potential of watersheds (Durand Delga, 

pes and their locations within the watershed that 

By deriving the previously used Digital Elevation Model (DEM) (Figure II.2) based on 
daries of the Tafna 

watershed. The slopes, calculated using GIS, are expressed as percentages, yielding values 
ranging from 0% to 40%. The most dominant slopes, ranging from 0% to 5%, cover 45.408% 

–15% slope class is 
the least dominant, representing 15.085% of the area. However, the average slope of the 
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To facilitate the interpretation of results and provide a clear representation of the spatial 
distribution of slopes within the studied watershed, it was prudent to group all values into 
defined classes (Figure II.5). 

Figure II.5.slope classes and area % covered by every class in the Tafna watershed

Total percentages sum to 100%, which aligns perfectly. 

 0–5°: 45.408% of 7,700 km² = 3,496.416 km²  

 5.1–10°: 24.528% of 7,700 km² = 1,888.656 km²  

 10.1–15°: 15.085% of 7,700 km² = 1,161.545 km²  

 15.1–20°: 8.274% of 7,700 km² = 637.098 km²  

 20.1–25°: 4.251% of 7,700 km² = 327.327 km²  

 25.1–72.25°: 2.453% of 7,700 km² = 188.881 km²

Total: 3,496.416 + 1,888.656 + 1,161.545 + 637.098 + 327.327 + 188.881 = 7,700 km² 

II.8. Sediment Transport Implications

With this revised distribution, the Tafna

 0–5° (3,496.416 km²): Avg. slope S
sediment sink, with low bed shear stress promoting deposition of suspended load (silt, 
clay). Over 3,496 km², expect significant agg
during high flows. 

 5.1–10° (1,888.656 km²): Avg. S
transport (sand, small gravel) during peak flows, acting as a key sediment conveyor.

 

 10.1–15° (1,161.545 km²): Avg. S
potentially mobilizing coarser bed load and contributing to gully formation.
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To facilitate the interpretation of results and provide a clear representation of the spatial 
n of slopes within the studied watershed, it was prudent to group all values into 

slope classes and area % covered by every class in the Tafna watershed

Total percentages sum to 100%, which aligns perfectly. Now, scaling to 7,700 km²:

5°: 45.408% of 7,700 km² = 3,496.416 km²   

10°: 24.528% of 7,700 km² = 1,888.656 km²   

15°: 15.085% of 7,700 km² = 1,161.545 km²   

20°: 8.274% of 7,700 km² = 637.098 km²   

25°: 4.251% of 7,700 km² = 327.327 km²   

72.25°: 2.453% of 7,700 km² = 188.881 km² 

Total: 3,496.416 + 1,888.656 + 1,161.545 + 637.098 + 327.327 + 188.881 = 7,700 km² 

Sediment Transport Implications 

With this revised distribution, the Tafna watershed’s sediment dynamics shift notably:

5° (3,496.416 km²): Avg. slope S≈0.087 rad. This 45.4% flat area is a major 
sediment sink, with low bed shear stress promoting deposition of suspended load (silt, 
clay). Over 3,496 km², expect significant aggradation in channels or floodplains 

10° (1,888.656 km²): Avg. S≈0.174 rad. This 24.5% zone transitions to bed load 
transport (sand, small gravel) during peak flows, acting as a key sediment conveyor.

15° (1,161.545 km²): Avg. S≈0.262 rad. This 15.1% area boosts erosion, 
potentially mobilizing coarser bed load and contributing to gully formation.

PRESENTATION OF THE STUDY AREA 

To facilitate the interpretation of results and provide a clear representation of the spatial 
n of slopes within the studied watershed, it was prudent to group all values into 

 

slope classes and area % covered by every class in the Tafna watershed 

Now, scaling to 7,700 km²: 

Total: 3,496.416 + 1,888.656 + 1,161.545 + 637.098 + 327.327 + 188.881 = 7,700 km²  

watershed’s sediment dynamics shift notably: 

≈0.087 rad. This 45.4% flat area is a major 
sediment sink, with low bed shear stress promoting deposition of suspended load (silt, 

radation in channels or floodplains 

≈0.174 rad. This 24.5% zone transitions to bed load 
transport (sand, small gravel) during peak flows, acting as a key sediment conveyor. 

≈0.262 rad. This 15.1% area boosts erosion, 
potentially mobilizing coarser bed load and contributing to gully formation. 
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 15.1–20° (637.098 km²): Avg. S≈0.349rad. At 8.3%, this steepens the game, 
increasing erosion risk and sediment supply. 

 20.1–25° (327.327 km²): Avg. S≈0.436 rad. This 4.3% zone is a significant erosion 
source, likely yielding gravel or cobbles. 

 25.1–72.25° (188.881 km²): Avg. S≈1.26rad. The 2.5% steepest areas are prime 
erosion hotspots, driving high-energy sediment transport during rains. 

 
The increased proportion of steeper slopes (22.1% >10°) compared to earlier estimates 
suggests a more dynamic sediment system, with the 188.881 km² >25° zones as critical 
sources. Seasonal Mediterranean rains could flush substantial sediment from these areas, with 
the 3,496 km² flat zone trapping it downstream. 

II.9. Overall Slope Index (Ig) 

To calculate the Overall Slope Index (Ig) , we use the formula: 

Ig =  
���%���%

��
 

where: 

 ���%is the elevation at which 95% of the watershed area lies below, 

 ��%is the elevation at which 5% of the watershed area lies below, 

 ( Lb ) is the length of the equivalent rectangle in kilometers, 

 ( Ig ) is expressed in meters per kilometer (m/km). 

��%: This is the elevation where the cumulative area reaches 5%. The cumulative area 

increases from 4.742138% at 200 m (end of the -3.935–200 m class) to 17.65073% at 400 m 
(end of the 200–400 m class). Since 5% lies between 4.742138% and 17.65073%, we 
interpolate within the 200–400 m class. 

The area percentage of the 200–400 m class is 12.90859% (17.65073% - 4.742138%). 
Assuming a linear distribution within the class: 

Proportion within class = 
���.���

��.����
≈ 0.01997 

The elevation range is 400 m - 200 m = 200 m, so: 

��% = ��� + �.����� × ��� ≈ ��� � 

���% : This is the elevation where the cumulative area reaches 95%. The cumulative area 
increases from 88.75155% at 1200 m (end of the 1000–1200 m class) to 97.13876% at 1400 
m (end of the 1200–1400 m class). Since 95% lies between 88.75155% and 97.13876%, we 
interpolate within the 1200–1400 m class. 

The area percentage of the 1200–1400 m class is 8.387214% (97.13876% - 88.75155%): 

 Proportion within class=
�����.��

�,���
≈ 0.745 

The elevation range is 1400 m - 1200 m = 200 m, so: 
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The elevation difference is: 

D=

 
The length of the equivalent rectangle ( Lb ) 

 ��

(Ig): 

II.10. Soil types 

Soil classes in Tafna Watershed is show in figure II.6.

 

Figure

The Tafna watershed, located in northwest Algeria, exhibits a diverse range of soil types, as 
depicted in the provided soil type map and associated bar chart. These soil types are critical 
for understanding the watershed's hydrological behavior, erosion potential, and agricultural 
suitability. The map uses color
the bar chart providing the percentage area coverage for each soil type. Below is a description
of the soil types identified in the region, based on the l

II.11. Soil Types and Distribution

II.11.1. Be6-2b, Algeria  
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��% = 1200+ 0.745 × 200 ≈ 1349 � 

= ���% − ��% =1349−204=1145 m 

The length of the equivalent rectangle ( Lb )  

≈ 180 �� 

�� =
�

��
=

1145

180
≈ 6.36 �/�� 

ershed is show in figure II.6. 

Figure II.6. Soil classes in Tafna Watershed 

The Tafna watershed, located in northwest Algeria, exhibits a diverse range of soil types, as 
depicted in the provided soil type map and associated bar chart. These soil types are critical 

hed's hydrological behavior, erosion potential, and agricultural 
suitability. The map uses color-coded regions to represent different soil classifications, with 
the bar chart providing the percentage area coverage for each soil type. Below is a description
of the soil types identified in the region, based on the legend and data. 

Soil Types and Distribution 

PRESENTATION OF THE STUDY AREA 

The Tafna watershed, located in northwest Algeria, exhibits a diverse range of soil types, as 
depicted in the provided soil type map and associated bar chart. These soil types are critical 

hed's hydrological behavior, erosion potential, and agricultural 
coded regions to represent different soil classifications, with 

the bar chart providing the percentage area coverage for each soil type. Below is a description 
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Percentage Area is 22.089%. This soil type occupies the largest area within the watershed. It 
is likely a well-drained, moderately fertile soil, possibly a calcic or cambic type, common in 
semi-arid Mediterranean climates. Its extensive coverage suggests it plays a significant role 
in the watershed's water retention and erosion dynamics. 

II.11.2. Bk14-2b, Algeria  

Percentage Area is 18.978%. Representing the second most common soil, this type may be a 
variant of calcic or gypsic soils with a moderate organic content. These soils are typically 
found in semi-arid regions and can support limited agriculture, though they may be prone to 
crusting and erosion under intense rainfall. 

II.11.3. Bk14-2b, Morocco  

Percentage Area is 13.842%. Similar to the Algerian Bk14-2b but with regional variations, 
this soil type likely reflects a calcic or gypsic profile influenced by Moroccan soil-forming 
processes. Its presence indicates cross-border consistency in soil characteristics, covering a 
notable portion of the watershed. 

II.11.4. X3-2ab, Morocco 

Percentage Area is 11.892%. This soil type could be a lithic or shallow soil, often found on 
steeper slopes or rocky terrains. Its moderate coverage suggests it contributes to runoff and 
sediment transport, particularly in the watershed's hilly areas. 

II.11.5. X3-2ab, Algeria 

Percentage Area is 7.785%. A variant of the Moroccan X3-2ab, this soil likely shares similar 
shallow or rocky characteristics but is adapted to Algerian conditions. It occupies a smaller 
but significant area, influencing local erosion patterns. 

II.11.6. Jc14-2a, Algeria  

Percentage Area is 5.414%. This soil type may be a vertisol or clay-rich soil, known for its 
shrink-swell properties. Its limited distribution suggests it occurs in specific low-lying or flat 
areas, impacting water infiltration and stability. 

II.11.7. Lc44-3c, Algeria  

Percentage Area is 4.403%. Likely a leptosol or shallow skeletal soil, this type is typical of 
rocky or mountainous regions. Its small coverage indicates it is confined to higher elevations 
or steep slopes, contributing to rapid runoff. 

II.11.8. Lc46-2a, Algeria 

Percentage Area is 3.811%. Another leptosol variant, this soil may have slightly deeper 
profiles than Lc44-3c but remains rocky and poorly developed. It adds to the watershed's 
erosion potential in steeper zones. 

II.11.9. Lc46-2a, Morocco  

Percentage Area is 2.738%. A Moroccan counterpart to the Algerian Lc46-2a, this soil type 
reinforces the presence of shallow, rocky soils along the watershed's boundaries, influencing 
sediment yield. 
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II.11.10. Xh10-2a, Algeria  

Percentage Area is 2.024%. This soil could be a xerosol or aridic soil, characterized by low 
organic matter and high carbonate content. Its minor coverage suggests localized occurrence 
in dry, flat areas. 

II.11.12. Xh10-2a, Morocco  

Percentage Area is 1.143%. A variant of the Algerian Xh10-2a, this soil type is similarly 
aridic and occupies a small area, likely in the watershed's drier margins. 

II.11.13. Jc14-2a, Morocco  

Percentage Area is 0.409%. A minor occurrence of vertisol-like soil, this type mirrors the 
Algerian Jc14-2a but is less prevalent, suggesting localized clay-rich deposits. 

II.11.14. Lc44-3c, Morocco (Light Green) 

Percentage Area is 0.047%. A trace amount of leptosol, this soil type is negligible in area but 
indicates the presence of rocky outcrops in specific Moroccan sections. 

II.11.15. Spatial Distribution 

The map shows a heterogeneous distribution, with Be6-2b (Algeria) dominating the central 
and western parts, while Bk14-2b (Algeria and Morocco) and X3-2ab (Algeria and Morocco) 
are interspersed across the watershed. 

Steeper, rocky soils (e.g., Lc44-3c, Lc46-2a) are concentrated in the northern and eastern 
edges, aligning with the higher slope classes (>10%) previously analyzed. 

Flat to gently sloping areas (0–5%, 45.408% of the watershed) are likely dominated by Be6-
2b and Bk14-2b, facilitating deposition, while steeper zones (>25%, 2.453%) host more 
erodible soils like Lc46-2a. 

 
II.12. Conclusion 

The Tafna watershed, nestled in northwestern Algeria, showcases a striking mix of 
geomorphological and hydrological traits that deeply affect water resource management and 
efforts to curb erosion. Its altimetric profile stretches from low-lying areas near sea level up 
to peaks soaring past 1800 meters, shaping a diverse range of slope dynamics and runoff 
patterns across the basin. The mid-elevation belt, spanning 200 to 1000 meters, forms the 
heart of the watershed, acting as a buffer where infiltration and surface flow strike a balance. 
Meanwhile, the rugged southern mountains stand out as key zones for runoff generation and 
erosion, driving significant sediment movement. 
A hypsometric breakdown reveals the basin’s mature stage, shedding light on its ongoing 
erosional evolution and sediment transport processes. Steep slopes, covering more than 22% 
of the watershed, play an outsized role in sediment production, especially during the intense 
storms typical of the Mediterranean climate. This insight is backed by slope distribution data 
and gradient analyses derived from digital elevation models, which pinpoint certain sub-
regions as particularly vulnerable to erosion triggered by water flow. 
The variety in soil types further shapes how the watershed responds to water. Dominant soils 
like Be6-2b and Bk14-2b, found in flatter regions, help retain water and trap sediment, while 
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the shallow, rocky soils such as Lc44-3c and Lc46-2a—in steeper areas heighten the risk of 
erosion. This interplay between terrain, slope angles, and soil makeup highlights the intricate 
nature of sediment movement and water spread across the basin. 
The uneven relief and hydrologic conditions make the Tafna watershed especially responsive 
to shifts in climate and land use. As a result, any solid management strategy needs to weave 
together this detailed morphometric and spatial knowledge to guide targeted actions. 
Priorities should include erosion control in the steep, delicate zones, sediment management in 
flat deposition areas, and land use planning that fits the natural landscape. 
This chapter lays a solid groundwork on the Tafna watershed’s physical makeup, providing 
essential insights for integrated water resource management (IWRM) moving forward. 
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III.1. Introduction 

Soil erosion by water is more than just a scientific concern it’s a real and growing threat to 
the environment, agriculture, and water systems, especially in fragile regions like the Tafna 
watershed in northwestern Algeria. Here, the combination of intense seasonal rains, steep 
terrain, and often unsustainable land practices makes the land highly vulnerable. Erosion 
strips away fertile topsoil, clogs rivers and dams with sediment, and reduces the land’s long 
term productivity (Mazour&Roose, 2002; Meddi&Toumi, 2015). To manage these risks 
effectively, we need tools that help us see where erosion is happening and how severe it is. 

That’s where the Revised Universal Soil Loss Equation, or RUSLE, comes in. This model, 
developed by Renard et al. (1991, 1997), lets us estimate how much soil is being lost over 
time by combining several key factors like rainfall, soil type, slope, vegetation, and land use 
practices. More importantly, RUSLE works well with modern geospatial technologies such as 
GIS and remote sensing (Parveen & Kumar, 2012; Kateb et al., 2020), which makes it 
especially valuable in large and complex landscapes. 

In this chapter, we apply the RUSLE model to the Tafna watershed using a combination of 
ArcGIS and Google Earth Engine. We’ve pulled in multiple data sources from rainfall 
estimates using CHIRPS, to terrain data from digital elevation models, to vegetation indices 
derived from satellite images. This integrated approach allows us not only to map erosion risk 
across the basin, but also to identify priority areas where action is most urgently needed 
(Hamdan et al., 2021; Sahli et al., 2019). Our aim is to build a clear, spatial understanding of 
how soil erosion operates here and how it can be managed more sustainably. 

 III.2. RUSLE model 

The RUSLE model represents an evolution of the original USLE, incorporating 
improvements in the estimation of topographic (LS), cover-management (C), and support 
practice (P) factors, as well as updated rainfall erosivity (R) and soil erodibility (K) data 
(Renard et al., 1991; McCool et al., 1987, 1989). Unlike its predecessor, RUSLE accounts for 
temporal variability and spatial heterogeneity by integrating GIS and remote sensing tools, 
allowing for detailed erosion risk mapping across large and diverse watersheds (Parveen & 
Kumar, 2012; Sahli et al., 2019). 

Widely applied across the globe and particularly adapted for the Mediterranean and North 
African contexts (Mazour&Roose, 2002; Meddi&Toumi, 2015), RUSLE is a practical and 
flexible tool that supports land conservation planning, sediment yield analysis, and the design 
of soil erosion mitigation strategies in both data-rich and data-scarce environments (Kateb et 
al., 2020; Hamdan et al., 2021). 

III.2.1.RUSLE Structure and Factors 
The RUSLE model estimates soil loss using the equation: 

A = R × K × LS × C × P 

Where: 

 A: predicted average annual soil loss (tons per hectare per year) 
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 R: rainfall-runoff erosivity factor, derived from rainfall intensity and volume (Renard, 
1997) 

 K: soil erodibility factor, which expresses the rate at which soil particles detach and 
move based on soil texture, structure, permeability, and organic content 

 LS: slope length and steepness factor; Moore and Burch (1986), McCool et al. (1987, 
1989) refined its calculation to better reflect real topography 

 C: cover-management factor; represents the protective effects of vegetation and land 
use (Mazour and Roose, 2002; Roose, 1994) 

 P: support practice factor; includes practices like strip cropping, contour farming, or 
terracing that reduce runoff velocity and soil transport 

Each factor can be mapped using spatial datasets and incorporated into GIS to produce 
erosion risk maps. 

III.2.2. Key Applications and Use Cases 

 Erosion Risk Zoning 
Sahli et al. (2019) applied RUSLE in the Soummam watershed (Algeria) using GIS to 
map areas of high erosion potential. This allowed spatial prioritization for 
conservation measures. 

 Dam Siltation Assessment 
Ranzi et al. (2012) used RUSLE to evaluate suspended sediment yield in Vietnam’s 
Lo River. Their results highlighted the role of land use and upstream reservoir 
operation in sediment delivery. 

 Agricultural Planning 
Parveen and Kumar (2012) used a combined RUSLE-GIS approach to assess soil loss 
risk in Jharkhand, India, helping identify areas where agricultural land needed 
immediate soil conservation intervention. 

 Watershed Management 
Kateb et al. (2020) modeled sediment transport in the Beni Haroun dam catchment 
(Algeria) using RUSLE integrated with the SWAT model to analyze land use impacts 
under two scenarios. 

III.2.3. RUSLE Strengths  

 Empirical and straightforward 

 Requires moderate input data 

 Validated across many climates and landscapes 

 Easily integrated with GIS and remote sensing tools 

 Can be used for future scenario analysis when combined with land use or climate 
change models (Somura et al., 2009; Sahli et al., 2019) 

III.2.4. Limitations and Solutions 

Despite its utility, RUSLE does not simulate: 

 Gully or rill erosion 

 Sediment deposition or routing 
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 Event-based erosion dynamics 

These limitations can be addressed by coupling RUSLE with: 

Hydrological models such as HEC-HMS (used in runoff simulation studies like Ismael et al., 
2017), machine learning methods (Hasanuzzaman et al., 2022; Jimeno-Sáez et al., 2022) to 
enhance prediction accuracy, physically-based models like SWAT, which simulate sediment 
transport over time and space (Neitsch et al., 2011). 

III.2.5. Relevance in Current Research 

With climate variability intensifying rainfall patterns and land use rapidly changing due to 
urbanization and agriculture, tools like RUSLE are critical. They help quantify the impact of 
these changes on soil erosion and sediment yield, informing long-term land management 
strategies. 

III.3. Rustle model factors 

III.3.1.Rainfall Erosivity (R-Factor) 

Rainfall erosivity (R-factor) quantifies the impact of raindrop energy and intensity on soil 
detachment and runoff generation. It is expressed in MJ·mm/(ha·h·year), and plays a critical 
role in RUSLE by representing the climatic aggressiveness of a region (Wischmeier & Smith, 
1978; Renard et al., 1997). In Mediterranean and semi-arid environments like the Tafna 
watershed, highly variable seasonal rainfall intensities can amplify soil loss risk (Meddi & 
Toumi, 2015; Jayawardena et al., 2017). The R-factor was derived from long-term CHIRPS 
precipitation datasets, interpolated and processed in a GIS environment. Spatial analysis of R 
is essential to identify erosion-prone zones and support hydrological modeling efforts such as 
HEC-HMS (Hamdan et al., 2021).  

Figure III.1 quantifies the erosive power of rainfall over the Tafna watershed using CHIRPS 
daily precipitation data 
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Figure III.1: Spatial Distribution of Rainfall Erosivity (R Factor) in the Tafna Watershed 

The map shows the spatial distribution of rainfall erosivity (R
with values ranging from 37.07 to 89.19 MJ·mm/(ha·h·yr). The R
RUSLE, as it reflects the kinetic energy of rainfall events, which controls thei
detach soil particles (Renard et al., 1991; Wischmeier

III.3.1.1. Spatial Distribution and Interpretation

    Central-eastern region (dark blue): These areas display the highest R
MJ·mm/(ha·h·yr)), indicating intense rainfall events and high erosive potential. This 
coincides with areas likely affected by convective storms or orographic rainfall (Meddi
Toumi, 2015). 

    Southwest and western parts (light blue): Here, values drop
suggesting lower rainfall intensities and reduced erosivity. This aligns with more semi
zones and rain-shadowed regions in the Tafna basin

  This spatial variability in erosivity strongly correlates with topographic and cli
gradients, as noted by Mazour

III.3.1.2. Hydrological and Erosion Implications

    High R-Factor zones are likely to contribute significantly to soil loss, especially where 
combined with steep slopes and degraded vegeta
2012). 
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: Spatial Distribution of Rainfall Erosivity (R Factor) in the Tafna Watershed 
Based on CHIRPS Data. 

the spatial distribution of rainfall erosivity (R-Factor) in the Tafna watershed, 
with values ranging from 37.07 to 89.19 MJ·mm/(ha·h·yr). The R-Factor is a critical input in 
RUSLE, as it reflects the kinetic energy of rainfall events, which controls thei
detach soil particles (Renard et al., 1991; Wischmeier & Smith, 1978). 

Spatial Distribution and Interpretation 

eastern region (dark blue): These areas display the highest R-
MJ·mm/(ha·h·yr)), indicating intense rainfall events and high erosive potential. This 
coincides with areas likely affected by convective storms or orographic rainfall (Meddi

Southwest and western parts (light blue): Here, values drop below 45 MJ·mm/(ha·h·yr), 
suggesting lower rainfall intensities and reduced erosivity. This aligns with more semi

shadowed regions in the Tafna basin. 

This spatial variability in erosivity strongly correlates with topographic and cli
gradients, as noted by Mazour & Roose (2002) for NW Algeria. 

ogical and Erosion Implications 

Factor zones are likely to contribute significantly to soil loss, especially where 
combined with steep slopes and degraded vegetation (as per Sahli et al., 2019; Ranzi et al., 
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: Spatial Distribution of Rainfall Erosivity (R Factor) in the Tafna Watershed 

Factor) in the Tafna watershed, 
Factor is a critical input in 

RUSLE, as it reflects the kinetic energy of rainfall events, which controls their potential to 

-factor values (>83 
MJ·mm/(ha·h·yr)), indicating intense rainfall events and high erosive potential. This 
coincides with areas likely affected by convective storms or orographic rainfall (Meddi & 

below 45 MJ·mm/(ha·h·yr), 
suggesting lower rainfall intensities and reduced erosivity. This aligns with more semi-arid 

This spatial variability in erosivity strongly correlates with topographic and climatic 

Factor zones are likely to contribute significantly to soil loss, especially where 
tion (as per Sahli et al., 2019; Ranzi et al., 
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    In modeling efforts, these zones would be the priority areas for conservation (e.g., 
reforestation, contour farming).

Integrating such spatial data into HEC
prediction accuracy (Hamdan et al. 2021; 
sediment yield estimation. 

III.3.2.Soil Erodibility (K-Factor)

The K-factor represents the susceptibility of soil particles to detachment and transport 
rainfall and surface runoff. Influenced by soil texture, organic matter, structure, and 
permeability, it is expressed in t·ha·h/(ha·MJ·mm) (Renard et al., 1997; Wischmeier
Smith, 1978). In the Tafna watershed, K was computed using harmonized soil data
reflects the geopedological variability of the basin. Regions with fine silty textures or low 
organic content present higher erodibility (Toy et al., 2002; Mazour
sandy or well-aggregated soils exhibit lower values. Accurate mapp
identifying soil types that are inherently vulnerable to erosion, as shown in regional studies 
(Kateb et al., 2020; Sahli et al., 2019).

FigureII.2. Represent the P-factor (support practice factor) in the RUSLE model quantifies 
the effectiveness of soil conservation measures in reducing the rate of water erosion.

FigureII.2.Soil Erodibility (K Factor) Map of the Tafna Watershed Derived from 

The map reveals spatial variability in soil erodibility, 
structure, permeability, and organic matter content. In general:
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In modeling efforts, these zones would be the priority areas for conservation (e.g., 
reforestation, contour farming). 

ntegrating such spatial data into HEC-HMS or RUSLE in ArcGIS improves 
Hamdan et al. 2021; Ismael et al. 2017), particularly for runoff and 

Factor) 

factor represents the susceptibility of soil particles to detachment and transport 
rainfall and surface runoff. Influenced by soil texture, organic matter, structure, and 
permeability, it is expressed in t·ha·h/(ha·MJ·mm) (Renard et al., 1997; Wischmeier
Smith, 1978). In the Tafna watershed, K was computed using harmonized soil data
reflects the geopedological variability of the basin. Regions with fine silty textures or low 
organic content present higher erodibility (Toy et al., 2002; Mazour & Roose, 2002), while 

aggregated soils exhibit lower values. Accurate mapping of K is crucial for 
identifying soil types that are inherently vulnerable to erosion, as shown in regional studies 
(Kateb et al., 2020; Sahli et al., 2019). 

factor (support practice factor) in the RUSLE model quantifies 
effectiveness of soil conservation measures in reducing the rate of water erosion.

Soil Erodibility (K Factor) Map of the Tafna Watershed Derived from 
Pedological and Textural Data. 

The map reveals spatial variability in soil erodibility, reflecting the influence of soil texture, 
structure, permeability, and organic matter content. In general: 
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In modeling efforts, these zones would be the priority areas for conservation (e.g., 

HMS or RUSLE in ArcGIS improves hydrological 
, particularly for runoff and 

factor represents the susceptibility of soil particles to detachment and transport by 
rainfall and surface runoff. Influenced by soil texture, organic matter, structure, and 
permeability, it is expressed in t·ha·h/(ha·MJ·mm) (Renard et al., 1997; Wischmeier & 
Smith, 1978). In the Tafna watershed, K was computed using harmonized soil data and 
reflects the geopedological variability of the basin. Regions with fine silty textures or low 

Roose, 2002), while 
ing of K is crucial for 

identifying soil types that are inherently vulnerable to erosion, as shown in regional studies 

factor (support practice factor) in the RUSLE model quantifies 
effectiveness of soil conservation measures in reducing the rate of water erosion. 

 

Soil Erodibility (K Factor) Map of the Tafna Watershed Derived from 

reflecting the influence of soil texture, 
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    Higher K values are observed in zones dominated by silt-loam or fine-textured soils, 
indicating a greater susceptibility to erosion under rainfall impact. These zones are 
particularly vulnerable if they coincide with steep slopes or intense land use. 

    Lower K values correspond to coarser soils (e.g., sandy or gravelly textures) or soils with 
better structure and organic content, which exhibit greater resistance to particle detachment 
and surface runoff. 

This spatial distribution of the K factor highlights critical areas for soil conservation 
interventions, especially where high erodibility overlaps with erosive rainfall and steep 
topography. 

Values range from 0 (maximum erosion control) to 1 (no control), with intermediate values 
indicating partial effectiveness of conservation techniques. 

The P-factor map of the Tafna watershed is divided into seven classes, indicating varied 
conservation levels. 

Table III.1. Classification of Soil Erodibility (K-Factor) in the Tafna Watershed 

Class (P) Conservation 
Level 

Color Spatial Observation 

0 Ideal (maximum 
control) 

Light 
Yellow 

Rare, minimal patches 

0.01–0.3 High control Light 
Green 

Found in isolated zones, mostly in central and 
southern areas 

0.31–0.4 Moderate control Green Moderate presence in hilly regions 
0.41–0.6 Low control Dark 

Green 
Dominant across the watershed, especially 
central and western parts 

0.61–0.9 Very low control Navy Blue Found across mid-slopes and lower terrain 
0.91–1 No control 

(critical) 
Purple Concentrated in urban edges and along bare 

slopes 

These spatial patterns suggest: 

 Better conservation efforts in southern and central hilly zones due to terracing or 
vegetative barriers. 

 Poor conservation (P > 0.6) across flatter or heavily farmed areas, likely lacking in 
erosion control infrastructure. 

 Urban and peri-urban zones show P = 1, meaning no conservation support at all  
matchingKateb et al. (2020) and Sahli et al. (2019) in similar Algerian basins. 

 Low P values (<0.3) align with areas practicing contour plowing, vegetative strips, or 
retaining vegetation (Mazour & Roose, 2002). 

 High P values (>0.6) may reflect: 
o Lack of soil conservation policies. 
o Expanding agriculture on steep slopes. 
o Urban development and road construction (Marouf (2012) and Ouzerbane 

(2019)). 
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III.3.3.Slope Length and Steepness

The LS-factor integrates the influence of 
both slope length (L) and slope steepness (S). It reflects the accumulation of runoff along a 
slope and the increasing energy with gradient (Moore & Burch, 1986; McCool et al., 1987, 
1989). The factor was derived from
GIS-based hydrological tools. Within the Tafna watershed, steep slopes in mountainous sub
basins present elevated LS values, correlating with high sediment detachment potential. This 
terrain-driven influence on soil loss is particularly pronounced in poorly vegetated or 
deforested hill zones, in line with findings from Sahli et al. 
(2011). 

Figure III.3.1.Spatial Distribution of LS Factor in the Tafna Watershed Derived from D

The LS-factor map captures the spatial variability of slope length and steepness within the 
Tafna watershed.It reflects topographic control on erosion potential as per the RUSLE model 
framework (Renard et al., 1997).

III.3.3.2. Topographic Patterns

 Low LS values (0.09–
o Dominant in flatter areas, especially in the northern and southeastern basin 

zones. 
o Indicates low slope gradients or short flow paths.
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Length and Steepness (LS-Factor) 

factor integrates the influence of topographyon erosion processes by accounting for 
both slope length (L) and slope steepness (S). It reflects the accumulation of runoff along a 
slope and the increasing energy with gradient (Moore & Burch, 1986; McCool et al., 1987, 
1989). The factor was derived from a high-resolution Digital Elevation Model (DEM) using 

based hydrological tools. Within the Tafna watershed, steep slopes in mountainous sub
basins present elevated LS values, correlating with high sediment detachment potential. This 

luence on soil loss is particularly pronounced in poorly vegetated or 
deforested hill zones, in line with findings from Sahli et al. (2019) and Marouf

Spatial Distribution of LS Factor in the Tafna Watershed Derived from D
Analysis. 

factor map captures the spatial variability of slope length and steepness within the 
Tafna watershed.It reflects topographic control on erosion potential as per the RUSLE model 
framework (Renard et al., 1997). 

Patterns 

–3.47): 
Dominant in flatter areas, especially in the northern and southeastern basin 

Indicates low slope gradients or short flow paths. 
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on erosion processes by accounting for 
both slope length (L) and slope steepness (S). It reflects the accumulation of runoff along a 
slope and the increasing energy with gradient (Moore & Burch, 1986; McCool et al., 1987, 

resolution Digital Elevation Model (DEM) using 
based hydrological tools. Within the Tafna watershed, steep slopes in mountainous sub-

basins present elevated LS values, correlating with high sediment detachment potential. This 
luence on soil loss is particularly pronounced in poorly vegetated or 

(2019) and Marouf & Remini 

 

Spatial Distribution of LS Factor in the Tafna Watershed Derived from DEM 

factor map captures the spatial variability of slope length and steepness within the 
Tafna watershed.It reflects topographic control on erosion potential as per the RUSLE model 

Dominant in flatter areas, especially in the northern and southeastern basin 
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o Representslowerosionsusceptibility. 
 Moderate LS values (3.48–19.25): 

o Covers the majority of the watershed. 
o Common in undulating terrains. 
o Suggests moderate overland flow concentration and slope. 

 High to very high LS values (≥31.09): 
o Concentrated along deeply incised valleys, drainage lines, escarpments, and 

converging slopes. 
o Especially evident in the south-central and west-central parts. 
o High erosion potential if not counteracted by vegetation or land management 

practices. 

 These high-LS areas likely coincide with zones of higher runoff velocity (relevant for 
HEC-HMS flow routing). 

 Strong LS values may contribute to concentrated sediment transport, as described in 
Ranzi et al. (2012) and Marouf & Remini (2011). 

 Overlap with bare soil or agricultural land will increase RUSLE A-values 
dramatically (check against C and P layers). 

III.3.3.3. Area Distribution by LS Classes 

Estimate spatial impact using class ranges shown on the map: 

Table III.2. Area Distribution by LS Factor Classes in the Tafna Watershed. 

LS Class 
(Range) 

Interpretation Estimated Area Coverage 
(Visual) 

0.09 – 3.47 Flat zones, low erosion risk Moderate to high 
3.48 – 10.23 Gentle slopes, stable unless bare Very high 
10.24 – 19.25 Rolling hills, moderate erosion 

potential 
High 

19.26 – 31.08 Steeper slopes, early rill formation 
risk 

Medium 

31.09 – 51.94 Strong slopes, concentrated flow 
paths 

Low 

51.95 – 143.8 Critical steep channels/erosion 
hotspots 

Very low 

 Majority of the watershed falls between 3.48–19.25. 
 Less than 10% of the watershed has LS values above 31, but these zones contribute 

disproportionately to erosion and sediment production. 

III.3.4. Cover Management (C-Factor) 

The cover management factor (C-factor) represents the effect of vegetative cover and land 
use on soil erosion. It accounts for the protective role of crops, forests, and residues in 
reducing raindrop impact and runoff velocity (Renard et al., 1997; Wischmeier & Smith, 
1978). C was estimated using NDVI-derived classifications from Landsat imagery (e.g., 
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Jasinski, 1990; Sader & Winne, 1992), allowing for dynamic assessment of vegetation cover. 
Within the Tafna watershed, agricultural zones and degraded lands exhibit higher C values, 
indicating minimal protection, whereas forested and natural vegetati
signifying better soil conservation. This factor is vital in land
sustainable agricultural strategies

The figureIII.4 shows how land cover affects erosion potential 

Figure III.4.Spatial Distribution of Cover Management (C Factor) in the Tafna Watershed 
Based on Land Use Classification.

The C-factor reflects the effect of land cover and land management on soil erosion
range from 0 (full protection) to 1 (no protection).Based on NDVI or land use classification 
(Jasinski, 1990; Sader & Winne, 1992).

III.3.4.1. Spatial Distribution of C

Table III.3. Spatial Distribution of C

C-Factor Class Cover Type (Indicative)
0.2 – 0.3 Dense forest, wetlands
0.31 – 0.45 Shrubs, semi
0.46 – 0.6 Mixed vegetation, light crops
0.61 – 0.75 Sparsevegetation, dryland ag.
0.76 – 0.9 Baresoil, overgrazed land
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& Winne, 1992), allowing for dynamic assessment of vegetation cover. 
Within the Tafna watershed, agricultural zones and degraded lands exhibit higher C values, 
indicating minimal protection, whereas forested and natural vegetative areas present lower C, 
signifying better soil conservation. This factor is vital in land-use planning and supports 
sustainable agricultural strategies (Mazour & Roose, 2002) (Marouf, 2012).

shows how land cover affects erosion potential in the Tafna watershed.

Spatial Distribution of Cover Management (C Factor) in the Tafna Watershed 
Based on Land Use Classification. 

factor reflects the effect of land cover and land management on soil erosion
protection) to 1 (no protection).Based on NDVI or land use classification 

& Winne, 1992). 

. Spatial Distribution of C-Factor Classes 

Spatial Distribution of C-Factor Classes in the Tafna Watershed

Cover Type (Indicative) Visual Dominance (Map)
Dense forest, wetlands Sparse (smalldark green)
Shrubs, semi-natural land Low 
Mixed vegetation, light crops Moderate 
Sparsevegetation, dryland ag. High 
Baresoil, overgrazed land Moderate to high 
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& Winne, 1992), allowing for dynamic assessment of vegetation cover. 
Within the Tafna watershed, agricultural zones and degraded lands exhibit higher C values, 

ve areas present lower C, 
use planning and supports 

2012). 

in the Tafna watershed. 

 

Spatial Distribution of Cover Management (C Factor) in the Tafna Watershed 

factor reflects the effect of land cover and land management on soil erosion, alues 
protection) to 1 (no protection).Based on NDVI or land use classification 

Factor Classes in the Tafna Watershed 

Visual Dominance (Map) 
Sparse (smalldark green) 
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0.91 – 1 Urban zones, bare rock, dry ag Moderate 

III.3.4.2. Interpretation of Coverage 

 Majority of watershed has medium to high C values (0.46–0.9). 
o Indicates vulnerable land use types (fallow, degraded rangelands). 

 Very few areas with dense vegetation (C < 0.3) remain. 
o Found mainly in scattered forested highlands (north-central zones). 

 High-C areas (>0.75) visible in: 
o Southernslopebelts 
o Central zonesnearerosion-pronecatchments 

This spatial structure aligns with patterns in Sahli et al. (2019) for Soummam Basin and 
Marouf (2012) for Beni Haroun. 

III.3.4.3. Interaction with LS Factor (Synergistic Risk Zones) 

 Overlay zones of C > 0.6 and LS > 31 = critical erosion hotspots 
 These areas contribute maximum values of RUSLE's A = R × K × LS × C × P 
 They should be prioritized for soil conservation: 

o Afforestation 
o Stone lines 
o Agroforestry buffers 

III.3.4.4. Spatial Contribution Summary 

Table III.4 shows the spatial contribution of C-factor zones to erosion in the Tafna watershed. 

Table III.4.Spatial Contribution of C-Factor Zones to Erosion in the Tafna Watershed 

Zone Type C Range Estimated Area 
Share 

Impact 

Protected zones 0.2 – 0.45 Low Minimal erosion contribution 
Vulnerable agri 
zones 

0.46 – 0.75 Moderate to high Major source of sediment 
transport 

Critical erosion 
zones 

>0.75 Moderate High erosion risk, runoff 
producer 

III.3.5.Support Practice (P-Factor) 

The P-factor accounts for conservation practices that reduce erosion by modifying the flow 
direction or velocity of surface runoff, such as contour farming, terracing, and strip cropping 
(Renard et al., 1997). It ranges from 0 (maximum protection) to 1 (no support practices). In 
data-scarce regions like the Tafna basin, P was estimated based on land use and slope class 
combinations, a method validated by Sahli et al. (2019) and Parveen & Kumar (2012). Areas 
with steep slopes and minimal conservation practices display high P values, indicating urgent 
need for intervention. Conversely, regions with vegetative buffers or engineered control 
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structures show lower values. P
investments. 

Figure III.5depicts spatial variation in conservation practices af

Figure III.5. Support Practice Factor (P

The P-Factor (support practice factor) reflects the degree to which soil conservation 
measures (like contouring, terracing, or strip cropping) are implemented to reduce runoff and 
prevent erosion. It is a dimensionless factor ranging from 0 (maximum protection) to 1 (
protection), and it plays a significant role in modifying predicted soil loss in the RUSLE 
model (Wischmeier & Smith, 1978; Renard et al., 1997).

The P-Factor values in the Tafna watershed show a wide spatial variability:

Table III.5. Classification of Support Practice (P

P-Factor 
Class 

Description 

0.00–0.30 Strong 
Conservation 

0.31–0.60 Moderate 
Conservation 

0.61–0.85 Poor Conservation
0.86–1.00 No Conservation / 
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structures show lower values. P-factor mapping enhances decision-making for erosion control 

spatial variation in conservation practices affecting soil erosion potential.

Support Practice Factor (P-Factor) Map of the Tafna Watershed

(support practice factor) reflects the degree to which soil conservation 
measures (like contouring, terracing, or strip cropping) are implemented to reduce runoff and 
prevent erosion. It is a dimensionless factor ranging from 0 (maximum protection) to 1 (
protection), and it plays a significant role in modifying predicted soil loss in the RUSLE 

& Smith, 1978; Renard et al., 1997). 

Factor values in the Tafna watershed show a wide spatial variability:

Classification of Support Practice (P-Factor) in the Tafna Watershed

 Color 
Range 

Observations

Light 
Green 

Found in central and western zones; indicates 
effective practices (e.g., contouring).

Green to 
Cyan 

Scattered throughout, possibly mixed land 
uses (fallow, rainfed farming).

Poor Conservation Blue Found on steep slopes and transitional zones.
No Conservation / Red Concentrated in the northwestern and 
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making for erosion control 

fecting soil erosion potential. 

 

Factor) Map of the Tafna Watershed. 

(support practice factor) reflects the degree to which soil conservation 
measures (like contouring, terracing, or strip cropping) are implemented to reduce runoff and 
prevent erosion. It is a dimensionless factor ranging from 0 (maximum protection) to 1 (no 
protection), and it plays a significant role in modifying predicted soil loss in the RUSLE 

Factor values in the Tafna watershed show a wide spatial variability: 

Factor) in the Tafna Watershed 

Observations 

Found in central and western zones; indicates 
effective practices (e.g., contouring). 
Scattered throughout, possibly mixed land 
uses (fallow, rainfed farming). 
Found on steep slopes and transitional zones. 
Concentrated in the northwestern and 
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Degraded southeastern sub-basins. 

This spatial pattern mirrors topographic and land use conditions. Regions with high P-values 
(red zones) likely correspond to steep slopes, low vegetation cover, and unmanaged 
agriculture, consistent with Sahli et al. (2019) and Mazour & Roose (2002). 

III.3.5.1. Land Management and Conservation Implications 

 Zones with P > 0.85 are priority zones for intervention through terracing, 
reforestation, or controlled grazing. 

 The combination of high P, R, and LS factors significantly increases the risk of 
erosion and sediment export. 

 GIS-integrated P-Factor layers help identify where conservation farming techniques 
should be implemented (Parveen & Kumar, 2012). 

P-Factor values were derived from land use/land cover classification and slope, based on the 
method by Sahli et al. (2019). Remote sensing and DEM processing in ArcGIS enabled a 
spatially distributed assignment of conservation levels. 

III.3.6. Annual Soil Loss (A) 

The final RUSLE output (A)represents the mean annual soil lossin tons per hectare per year 
(t/ha/year). It results from the combined effect of all factors: climate, soil, topography, land 
cover, and human practices. Mapping A spatially enables the identification of erosion 
hotspots, guiding prioritization of soil conservation interventions (Renard et al., 1997; 
Moriasi et al., 2007). In the Tafna watershed, annual soil loss was computed using GIS-based 
multiplication of all factor layers. Results reveal severe erosion risks in southern and central 
sub-watersheds, correlating with high LS, K, and P zones. These outputs serve as critical 
input for hydrological sediment yield modeling (e.g., HEC-HMS or SWAT) and watershed 
restoration planning (Hamdan et al., 2021; Sahli et al., 2019). 

Figure III.6 shows spatial distribution of predicted soil erosion rates (t/ha/yr) based on 
RUSLE modeling. 
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Figure III.6. Estimated Annual Soil Loss (A) Map Using RUSLE in the Tafna Watershed

This map illustrates the average 
calculated using the RUSLE model. The values range from less than 5 to approximately 146 
t/ha/year, offering a comprehensive view of erosion intensity influenced by rainfall erosivity, 
topography, soil erodibility, 
1997). 

 Low erosion zones (0
particularly in flat, forested, or well
represent stable environments wi

 Moderate erosion zones (5
central sub-watersheds, likely corresponding to transitional zones with moderate 
slopes, mixed cropping, and patchy vegetat

 Severe erosion zones (15
southern, central, and some eastern sub
poor vegetation cover, and limited soil conservation. These coincide with sedim
prone areas identified in past studies (Mokhtari, 2017; Marouf, 2012).

This spatial heterogeneity confirms the findings of Sahli et al. (2019) and Kateb et al. (2020) 
in similar Algerian watersheds where erosion correlates with terrain, rainfall, and l
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Estimated Annual Soil Loss (A) Map Using RUSLE in the Tafna Watershed

This map illustrates the average annual soil loss (A) in t/ha/year across the Tafna watershed, 
calculated using the RUSLE model. The values range from less than 5 to approximately 146 
t/ha/year, offering a comprehensive view of erosion intensity influenced by rainfall erosivity, 

 vegetation cover, and conservation practices (Renard et al., 

Low erosion zones (0–5 t/ha/yr, blue): These dominate most of the basin, 
particularly in flat, forested, or well-managed agricultural areas. These regions 
represent stable environments with effective land cover and limited erosive force.
Moderate erosion zones (5–15 t/ha/yr, green to yellow): These occur mainly in the 

watersheds, likely corresponding to transitional zones with moderate 
slopes, mixed cropping, and patchy vegetation. 
Severe erosion zones (15–45+ t/ha/yr, orange to red): These are concentrated in the 
southern, central, and some eastern sub-basins, indicating steep slopes, high R
poor vegetation cover, and limited soil conservation. These coincide with sedim
prone areas identified in past studies (Mokhtari, 2017; Marouf, 2012).

This spatial heterogeneity confirms the findings of Sahli et al. (2019) and Kateb et al. (2020) 
in similar Algerian watersheds where erosion correlates with terrain, rainfall, and l

. Hydrological and Management Implications 
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Estimated Annual Soil Loss (A) Map Using RUSLE in the Tafna Watershed. 

in t/ha/year across the Tafna watershed, 
calculated using the RUSLE model. The values range from less than 5 to approximately 146 
t/ha/year, offering a comprehensive view of erosion intensity influenced by rainfall erosivity, 

vegetation cover, and conservation practices (Renard et al., 

: These dominate most of the basin, 
managed agricultural areas. These regions 

th effective land cover and limited erosive force. 
: These occur mainly in the 

watersheds, likely corresponding to transitional zones with moderate 

: These are concentrated in the 
basins, indicating steep slopes, high R-values, 

poor vegetation cover, and limited soil conservation. These coincide with sediment-
prone areas identified in past studies (Mokhtari, 2017; Marouf, 2012). 

This spatial heterogeneity confirms the findings of Sahli et al. (2019) and Kateb et al. (2020) 
in similar Algerian watersheds where erosion correlates with terrain, rainfall, and land use. 
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 High erosion risk zones should be priority targets for intervention, particularly where 
they overlap with headwaters and agricultural lands.

 Conservation techniques such as reforestation, check 
should be concentrated in high

 This soil loss map can serve as a critical input for sediment yield modeling in HEC
HMS or SWAT for watershed

III.3.6.2. MethodologicalConsiderations

 The final erosion map was generated by multiplying all RUSLE factors (R, K, LS, C, 
and P), with factor layers derived from remote sensing, CHIRPS data, DEMs, and 
classified land use. 

 GIS integration enables dynamic updates to the 
land use changes (Parveen & Kumar, 2012).

III.3.7. Average Soil Loss Map in the Tafna Watershed

The average soil loss map offers a spatially aggregated view of erosion severity across the 
sub-watersheds within the Tafna 
summarizes erosion risk by hydrological unit, providing an effective way to prioritize 
conservation actions and manage sediment sources at a watershed scale. In the context of 
RUSLE (Revised Universal So
the potential long-term average annual erosion, as influenced by the interaction of all 
contributing factors (R, K, LS, C, and P).
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High erosion risk zones should be priority targets for intervention, particularly where 
they overlap with headwaters and agricultural lands. 
Conservation techniques such as reforestation, check dams, and slope stabilization 
should be concentrated in high-loss zones (Ranzi et al., 2012; Hamdan et al., 2021).
This soil loss map can serve as a critical input for sediment yield modeling in HEC
HMS or SWAT for watershed-scale planning. 

odologicalConsiderations 

The final erosion map was generated by multiplying all RUSLE factors (R, K, LS, C, 
and P), with factor layers derived from remote sensing, CHIRPS data, DEMs, and 

GIS integration enables dynamic updates to the model by incorporating climate and 
land use changes (Parveen & Kumar, 2012). 

Average Soil Loss Map in the Tafna Watershed 

The average soil loss map offers a spatially aggregated view of erosion severity across the 
watersheds within the Tafna basin. Rather than pixel-level detail, this approach 

summarizes erosion risk by hydrological unit, providing an effective way to prioritize 
conservation actions and manage sediment sources at a watershed scale. In the context of 
RUSLE (Revised Universal Soil Loss Equation), the soil loss value A (t/ha/year) represents 

term average annual erosion, as influenced by the interaction of all 
contributing factors (R, K, LS, C, and P). 

MAPPING AND MODELING OF SOIL WATER EROSION 

High erosion risk zones should be priority targets for intervention, particularly where 

dams, and slope stabilization 
loss zones (Ranzi et al., 2012; Hamdan et al., 2021). 

This soil loss map can serve as a critical input for sediment yield modeling in HEC-

The final erosion map was generated by multiplying all RUSLE factors (R, K, LS, C, 
and P), with factor layers derived from remote sensing, CHIRPS data, DEMs, and 

model by incorporating climate and 

The average soil loss map offers a spatially aggregated view of erosion severity across the 
level detail, this approach 

summarizes erosion risk by hydrological unit, providing an effective way to prioritize 
conservation actions and manage sediment sources at a watershed scale. In the context of 

il Loss Equation), the soil loss value A (t/ha/year) represents 
term average annual erosion, as influenced by the interaction of all 
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Figure III.7. Average Annual Soil Loss per Sub-Watershed in the Tafna Basin (t/ha/year) 

The map represents the mean annual soil loss (t/ha/year) calculated at the sub-watershed 
level using the RUSLE model. Average values range from 2.92 to 5.87 t/ha/year, with each 
sub-watershed delineated and color-coded according to its computed erosion rate. 

This aggregated visualization provides a strategic overview of erosion severity across 
administrative or hydrological units, supporting watershed-scale decision-making (Renard et 
al., 1997; Sahli et al., 2019). 

III.3.7.1. Spatial Distribution and Interpretation 

The average Annual Soil Loss by Sub-Watershedis show in table III.6. 

Table III.6. Average Annual Soil Loss by Sub-Watershed 

Class Range 
(t/ha/year) 

Color Code Sub-
WatershedBehavior 

Interpretation 

2.92 – 3.43 Light blue to 
light pink 

Southern& western sub-
watersheds 

Lower soil loss due to flatter 
terrain, better vegetative cover or 
soil types. 

3.44 – 4.61 Green to 
orange 

Central sub-watersheds Moderate erosion likely linked to 
mixed land use and moderate 
slopes. 

5.06 – 5.87 
 
 
 
 
 

Darker hues 
(e.g. purple, 
brown) 
 
 
 

Eastern and northern 
sub-watersheds 

High erosion pressure—likely 
caused by steep slopes, intense 
rainfall, and land use degradation. 

These spatial patterns correlate strongly with the topography, climate, and land use 
heterogeneity across the watershed. According to Mazour&Roose (2002), erosion-prone 
zones often coincide with sedimentary hills and deforested lands in northwestern Algeria. 

III.3.7.2. Hydrological and Management Implications 

 Priority areas for intervention are those with average soil loss >5 t/ha/year, 
particularly in eastern and central-eastern sub-watersheds, where high LS and R 
factors overlap. 

 These areas may be targeted for conservation measures, such as: 
o Check dams and terraces in steep areas (Parveen & Kumar, 2012), 
o Reforestation and controlled grazing zones (Sahli et al., 2019), 
o Promotion of contour farming and mulching. 

 Sub-watershed-level results also support sediment routing and sediment yield analysis 
in hydrological models like HEC-HMS or SWAT (Hamdan et al., 2021). 
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The Classification and Analysis of Estimated Soil Loss Across Sub-Watersheds in the 
Tafna Basin is show in table III.7 
 

Table III.7. Classification and Analysis of Estimated Soil Loss Across Sub-

Watersheds in the Tafna Basin 
Sub-
Watershed 

Average Soil Loss 
(t/ha/year) 

Classification Remarks 

SW1 2.92 Very Low Likely dominated by forest or low-slope 
terrain. 

SW2 2.95 Very Low Stable areas with minimal human 
disturbance. 

SW3 3.22 Low Moderatelysloped, possiblycultivated. 
SW4 3.43 Low Likely affected by mixed land uses and 

moderate LS factor. 
SW5 4.04 Moderate Steeper slopes or more degraded cover. 
SW6 4.06 Moderate Possibly deforested or cultivated 

hillsides. 
SW7 4.25 Moderate Area requiring monitoring, depending on 

rainfall intensity. 
SW8 4.32 Moderate Could be affected by upstream sediment 

transport. 
SW9 4.43 Moderate Could be affected by upstream sediment 

transport. 
SW10 4.61 High High erosion potential; overlaps with 

high R-factor zones. 
SW11 5.06 High Priority area for conservation measures. 
SW12 5.26 High Erosion may be driven by slope and 

rainfall erosivity. 
SW13 5.6 Very High Erosion hotspot — likely degraded soils 

and steep terrain. 
SW14 5.73 Very High Confirmed erosion-prone area, 

intervention urgently needed. 
SW15 5.87 Very High Peak erosion rate; coincides with critical 

sediment yield zones. 

 These averages were extracted using zonal statistics tools in GIS, based on the pixel-
level soil loss layer derived from RUSLE. 

 Use of remote sensing (e.g., CHIRPS rainfall, land cover data) and platforms like 
ArcGIS and GEE helps automate and validate such basin-wide assessments (Kateb et 
al., 2020). 

III.4. Conclusion 

This chapter has shown how combining the RUSLE model with modern mapping tools like 
ArcGIS and Google Earth Engine can give us a powerful window into the soil erosion risks 
facing the Tafna watershed. By analyzing factors like rainfall intensity, slope steepness, soil 
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properties, vegetation cover, and land practices all using reliable spatial data we’ve been able 
to paint a detailed picture of where the land is most at risk of washing away. 

The results aren’t just academic. They reveal specific zones particularly in the southern and 
central parts of the basin where steep slopes, erodible soils, and limited vegetation combine to 
drive serious soil loss, sometimes exceeding 45 tons per hectare each year. These findings 
echo earlier studies (Kateb et al., 2020; Sahli et al., 2019) and underline the urgency of 
intervention in these areas. Whether through reforestation, terracing, or better agricultural 
practices, targeted action here could make a real difference. 

We’ve also shown how erosion patterns can be averaged at the sub-watershed scale, which is 
useful for broader watershed planning and hydrological modeling, particularly with tools like 
HEC-HMS or SWAT (Hamdan et al., 2021; Ranzi et al., 2012). Perhaps most importantly, 
this approach is not only robust, but also flexible it can be updated as conditions change, 
whether through new land use trends or shifts in climate. In short, this kind of modeling helps 
turn complex data into clear, actionable insight something every land manager and 
policymaker needs when facing the real-world challenges of erosion and water resource 
management. 
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IV.1. Introduction: 

Artificial neural networks (ANNs) are computational models inspired by the structure and 
function of biological neural systems. An ANN is composed of interconnected processing 
units (neurons), where each node performs a simple computation. The links between these 
nodes represent synapses, and each carries a weight that adjusts as learning progresses 
(Haykin, 1994). 

The structure of an artificial neuron was derived from the basic functioning of a biological 
neuron. In biological systems, dendrites receive signals from neighboring neurons. These 
signals, whether excitatory or inhibitory, are integrated by the soma. When a threshold is 
reached, the neuron fires an action potential via the axon. This principle inspired early neuron 
models like the McCulloch–Pitts neuron, which introduced a binary model capable of 
implementing logic gates (McCulloch & Pitts, 1943; Haykin, 1994). 

Despite the biological roots, the field of artificial intelligence rapidly shifted focus toward 
empirical performance. As a result, most artificial neurons became simplified 
approximations, optimized for computational efficiency rather than strict biological realism 
(Gupta et al., 2009). Feedforward structures and multilayer perceptrons (MLPs), trained 
through backpropagation algorithms, now form the foundation of many AI systems (Althoff 
& Rodrigues, 2021). 

Neurons in the brain communicate on a millisecond scale, far slower than artificial circuits 
that operate in nanoseconds. However, the brain compensates with enormous parallelism, 
capable of performing an estimated 10^16 operations per second (Haykin, 1994; Ghorbani et 
al., 2021). Artificial neural networks, while faster in clock speed, remain limited in 
parallelism, but achieve strong results through model optimization and efficient learning 
algorithms. 

The modern use of ANNs reflects a pragmatic evolution. Though early researchers aimed to 
mirror biological processes, the field today prioritizes models that generalize well, optimize 
efficiently, and scale effectively. The transition underscores a key philosophy in machine 
learning: practical utility outweighs biological fidelity (He et al., 2022; Ikram et al., 2022). 

IV.2. History  

The origins of deep learning can be traced to 1943, when Warren McCulloch and Walter Pitts 
proposed a simplified model of the human brain using logical calculus. They introduced the 
McCulloch–Pitts neuron, the first mathematical representation of a neural network, laying the 
theoretical foundation for artificial neural networks (McCulloch & Pitts, 1943). 

In 1957, Frank Rosenblatt developed the perceptron, the first algorithm capable of learning 
through weight adjustments. He simulated it on an IBM 704 and later presented the custom-
built Mark I Perceptron in 1960. While it generated significant attention, Rosenblatt's claims 
were considered overly optimistic, triggering skepticism in the early AI community 
(Rosenblatt, 1958). 
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Backpropagation, a core mechanism of modern deep learning, was first introduced 
conceptually in the 1960s by Henry J. Kelley (1960) and Stuart Dreyfus (1962), though it 
remained computationally inefficient. In 1986, Rumelhart, Hinton, and Williams made it 
viable by demonstrating its effectiveness for training multilayer perceptrons (Rumelhart, 
Hinton &Williams, 1986). This breakthrough allowed deep networks to learn useful 
distributed representations. 

The field experienced cycles of intense enthusiasm and disappointment, commonly referred 
to as "AI winters." The second AI winter in the late 1980s was partly triggered by Minsky 
and Papert’s (1969) critique of the perceptron’s limitations, particularly its inability to solve 
nonlinear problems like XOR. Despite reduced funding and interest, some researchers 
continued to refine neural network methods. 

A major turning point came with the rise of powerful hardware. From 1999 onwards, the 
development and use of graphics processing units (GPUs) enabled faster training of deep 
neural networks. Over a decade, GPUs improved training speeds by over 1000×, making it 
possible to train complex networks without layer-wise pretraining (He et al., 2022; Ikram et 
al., 2022). 

Several milestones marked the modern deep learning era: 

 ImageNet (2009): Created by Fei-Fei Li and her team, this large-scale visual database 
with over 14 million labeled images enabled breakthroughs in computer vision (Deng 
et al., 2009). 

 AlexNet (2012): Krizhevsky, Sutskever, and Hinton trained this deep convolutional 
network using GPUs, winning the ImageNet competition and reducing error rates by a 
large margin (Krizhevsky et al., 2012). 

 GANs (2014): Ian Goodfellow introduced generative adversarial networks, where two 
networks (generator and discriminator) compete, greatly advancing generative 
modeling (Goodfellow et al., 2014). 

These milestones reflect a shift from biologically inspired models toward performance-
focused architectures. While artificial neural networks were inspired by biology, practical 
deep learning has evolved based on computational efficiency, mathematical optimization, and 
empirical success (Haykin, 1994; Ghorbani et al., 2021). 

IV.3. Fundamental Components: Neurons, Layers, Weights, Biases, and Activation 
Functions 

An artificial neural network (ANN) consists of neurons organized into layers. It 
typicallyincludes: 

 An input layer that receives external data 
 One or more hidden layers for intermediate computations 
 An output layer that delivers final results 

Neurons connect across layers through links, each with an associated weight. The weight 
reflects the influence of one neuron on another. These weights are trainable and are tuned 
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during learning (Haykin, 1994). Except for input neurons, most neurons also include a bias a 
constant input adjustable during training enabling the network to shift its activation threshold 
and improve flexibility (Gupta et al., 2009). 

For eachneuron: 

 

1. Compute the weighted sum of its inputs plus bias: 
� = ∑���� + � 

2. Apply a nonlinear activation functionf(z) to produce the neuron's output 

This process allows the network to respond only when sufficient weighted input is received. 

IV.4. Activation Functions 

Activation functions are critical as they introduce nonlinearity. Without them, the network 
behaves like a simple linear regression model, incapable of capturing complex relationships 
in data (Gupta et al., 2009). Common activation functionsinclude: 

 Sigmoid: maps input to (0, 1); traditionally used in early MLPs 
 Tanh: outputs between -1 and +1, zero-centered 
 ReLU (Rectified Linear Unit): activates only positive inputs; effective in mitigating 

the vanishing gradient problem (He et al., 2022) 

These nonlinear functions empower networks to model complex hydrological patterns and 
non-linear sediment-runoff relationships. 

IV.5. Learning vs Hyperparameters 

 Parameters (weights and biases): learned during training via algorithms like 
backpropagation (Rumelhart et al., 1986) 

 Hyperparameters: set before training, include: 
o Learning rate 
o Number of hiddenlayers 
o Batch size 
o Number of epochs 

Tuning these hyperparameters is crucial. Limiting them hampers learning; excessive values 
may cause overfitting or inefficiency (Althoff& Rodrigues, 2021). 

IV.6. Multilayer Perceptron (MLP) 

The Multilayer Perceptron (MLP) is a classic feedforward neural network essential to modern 
deep learning. 
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FigureIV.2. Multi-layer perceptron (MLP

IV.6.1. Architecture: Input, Hidden, and Output Layers

An MLP consistsof: 

 Input Layer: Receives raw data features. Each neuron corresponds to an input 
variable. Example:fertilitypredictionusing 9 input neurons (Haykin, 1994).

 Hidden Layers: One or more layers of neurons that process inputs using nonlinear 
activation, enabling the network 
1943; Haykin, 1994). 

 Output Layer: Produces the final result. The number of neurons aligns with the task 
(e.g., one neuron for regression). Outputs use functions like softmax for classification 
confidence (Gupta et al., 2009; Althoff& Rodrigues, 2021).

Neurons are fully connected forward across layers. Inputs flow from input to output without 
recursion—this structure defines feedforward connectivity.

The Universal Approximation Theorem
approximate any continuous function to arbitrary accuracy (Haykin, 1994).

IV.6.2.OperationalPrinciples:Forward Propagation

Forward propagation executesdeterministiccalculations:

1. Inputs Received: A data vector is supplied to 
2. Weighted Transmission

hidden-layer neurons. 
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layer perceptron (MLP-NN) basic Architecture(adapted from Haykin, 

1998) 

Architecture: Input, Hidden, and Output Layers

: Receives raw data features. Each neuron corresponds to an input 
Example:fertilitypredictionusing 9 input neurons (Haykin, 1994).

: One or more layers of neurons that process inputs using nonlinear 
activation, enabling the network to learn complex relationships (McCulloch & Pitts, 

 
: Produces the final result. The number of neurons aligns with the task 

(e.g., one neuron for regression). Outputs use functions like softmax for classification 
(Gupta et al., 2009; Althoff& Rodrigues, 2021). 

Neurons are fully connected forward across layers. Inputs flow from input to output without 
this structure defines feedforward connectivity. 

Universal Approximation Theorem states that an MLP with sufficient hidden units can 
approximate any continuous function to arbitrary accuracy (Haykin, 1994).

OperationalPrinciples:Forward Propagation 

Forward propagation executesdeterministiccalculations: 

: A data vector is supplied to input neurons. 
Weighted Transmission: Each value is multiplied by the weight of its connection to 
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(adapted from Haykin, 

Architecture: Input, Hidden, and Output Layers 

: Receives raw data features. Each neuron corresponds to an input 
Example:fertilitypredictionusing 9 input neurons (Haykin, 1994). 

: One or more layers of neurons that process inputs using nonlinear 
to learn complex relationships (McCulloch & Pitts, 

: Produces the final result. The number of neurons aligns with the task 
(e.g., one neuron for regression). Outputs use functions like softmax for classification 

Neurons are fully connected forward across layers. Inputs flow from input to output without 

th sufficient hidden units can 
approximate any continuous function to arbitrary accuracy (Haykin, 1994). 

: Each value is multiplied by the weight of its connection to 
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3. Summation with Bias
bias term:

4. Activation Function: Applies a 
produce neuron output (He et al., 2022).

5. Layer to Layer: Output of one layer becomes input to the next.
6. Prediction Output: Final values are produced. For classification, the output layer 

may use softmax to generate probabilities (Gupta et al., 2009).

Although deterministic, adding softmax provides meaningful confidence scores, critical for 
informed decision-making. 

IV.6.3. Supervised Learning Paradigm

MLPs learn through supervised learning
truth"). The goal is to approximatethis mapping.

Training involves: 

 Error Computation: Comparing network output to the true value using a loss 
function (e.g., mean squared error, cross

 Backpropagation: Errors 
gradient descent (Rumelhart et al., 1986).

 Iterative Optimization
to minimize error (Althoff& Rodrigues, 2021; He et al., 2022).

IV.7. Feed-Forward Backpropagation (FFBP)
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Summation with Bias: Hidden and output neurons compute a weighted sum plus a 
bias term:

� = ∑���� + � 
: Applies a nonlinear function (e.g., sigmoid, tanh, ReLU) to 

produce neuron output (He et al., 2022). 
: Output of one layer becomes input to the next. 

: Final values are produced. For classification, the output layer 
generate probabilities (Gupta et al., 2009). 

Although deterministic, adding softmax provides meaningful confidence scores, critical for 

Supervised Learning Paradigm 

supervised learning: each input is paired with a known output ("ground 
The goal is to approximatethis mapping. 

: Comparing network output to the true value using a loss 
function (e.g., mean squared error, cross-entropy). 

: Errors propagate backward to update weights and biases via 
gradient descent (Rumelhart et al., 1986). 
Iterative Optimization: Through repeated epochs, the network refines its parameters 
to minimize error (Althoff& Rodrigues, 2021; He et al., 2022). 

ward Backpropagation (FFBP) 
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: Hidden and output neurons compute a weighted sum plus a 
bias term: 

nonlinear function (e.g., sigmoid, tanh, ReLU) to 

: Final values are produced. For classification, the output layer 

Although deterministic, adding softmax provides meaningful confidence scores, critical for 

red with a known output ("ground 

: Comparing network output to the true value using a loss 

propagate backward to update weights and biases via 

: Through repeated epochs, the network refines its parameters 
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FigureIV.1. Feed-forward back-propagation mechanism in artificial neural network 
 
 
 

IV.7.1. Algorithm: Objective and Mathematical Foundation 

Backpropagation (BP) computes gradients of a loss function with respect to network weights 
and biases. It applies the chain rule in reverse through the network layers, enabling efficient 
optimization without redundant calculations. Early concepts were introduced by Kelley 
(1960) and Dreyfus (1962), but the method became practical after Rumelhart, Hinton, and 
Williams (1986) demonstrated its ability to train deep, nonlinear networks. FFBP is essential 
for handling multilayer networks. 

IV.7.2. Training Process: Four Iterative Steps 

1. ForwardPass 
o Input vector passes through the network using initial (often random) weights 

and biases. 
o Each neuron computes a weighted sum plus bias, applies a nonlinear 

activation, and forwards output to the next layer. 
2. Loss Calculation 

o Loss functions like Mean Squared Error (MSE) for regression or cross-entropy 
for classification quantify the error between network output and ground truth 
labels. 

3. BackwardPass (ErrorBackpropagation) 
o Gradient of loss with respect to each parameter is computed via reverse-mode 

differentiation. 
o This step determines each weight’s contribution to the total error. 

4. Weight Update (Gradient Descent) 
o Use optimization methods like stochastic gradient descent or its variants to 

update weights. 
o Learning rate controls update magnitude; too large may overshoot minima, too 

small slows convergence. 

Training with FFBP is an iterative optimization in a complex loss landscape, where 
hyperparameters such as learning rate and batch size critically influence convergence and 
generalization. 

IV.7.3. Role of FFBP in Training Multilayer Perceptrons 

FFBP is the standard algorithm for training MLPs. It enables them to learn complex nonlinear 
mappings by adjusting connection strengths to minimize error, surpassing what single-layer 
perceptrons can accomplish. 

The combination of: 

 Flexible MLP architecture (multiple layers and nonlinear activations) 
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 Efficient gradient-based learning

forms the cornerstone of modern neural networks. FFBP unlocks the representational power 
of MLPs, enabling them to solve real

 

IV.8. Cascade Forward Backpropagation (CFBP)

Cascade forward backpropagation networks (CFBP) are a variant of multilayer perceptrons 
(MLPs) designed with enhanced inter
learning efficiency. 

FigureIV.3. Feed-Forward and Cascade

IV.8.1.Architecture: Enhanced Connectivity and Direct Links

CFBP networks consist of input, hidden, and output layers like standard MLPs. However, 
they differ in that each layer is connected
all following layers, including the output. 

 Direct connections from the input layer to each hidden layer
 Direct connections from the input layer to the output layer
 Standard forward conn

This architecture introduces more weights and biases than typical MLPs. The increased 
connectivity allows deeper layers to access raw input features directly. This can preserve 
important feature information and sup
inputs carry high predictive value across the network (Haykin, 1994; He et al., 2022).

IV.8.2. Key Differences and Advantages Over Standard Feedforward Models
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based learning via FFBP 

forms the cornerstone of modern neural networks. FFBP unlocks the representational power 
of MLPs, enabling them to solve real-world tasks that demand nonlinear modeling capacity.

Cascade Forward Backpropagation (CFBP) 

Cascade forward backpropagation networks (CFBP) are a variant of multilayer perceptrons 
(MLPs) designed with enhanced inter-layer connectivity to improve convergence and 

Forward and Cascade-Forward Network Architectures (MATLAB Image)

Architecture: Enhanced Connectivity and Direct Links 

CFBP networks consist of input, hidden, and output layers like standard MLPs. However, 
they differ in that each layer is connected not only to the subsequent layer but also directly to 
all following layers, including the output. This includes: 

Direct connections from the input layer to each hidden layer 
Direct connections from the input layer to the output layer 
Standard forward connections between consecutive hidden layers 

This architecture introduces more weights and biases than typical MLPs. The increased 
connectivity allows deeper layers to access raw input features directly. This can preserve 
important feature information and support more robust learning, especially when certain 
inputs carry high predictive value across the network (Haykin, 1994; He et al., 2022).

Key Differences and Advantages Over Standard Feedforward Models
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forms the cornerstone of modern neural networks. FFBP unlocks the representational power 
world tasks that demand nonlinear modeling capacity. 

Cascade forward backpropagation networks (CFBP) are a variant of multilayer perceptrons 
layer connectivity to improve convergence and 

 

Forward Network Architectures (MATLAB Image) 

CFBP networks consist of input, hidden, and output layers like standard MLPs. However, 
not only to the subsequent layer but also directly to 

This architecture introduces more weights and biases than typical MLPs. The increased 
connectivity allows deeper layers to access raw input features directly. This can preserve 

port more robust learning, especially when certain 
inputs carry high predictive value across the network (Haykin, 1994; He et al., 2022). 

Key Differences and Advantages Over Standard Feedforward Models 
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CFBP networks, when coupled with cascade correlation learning (Fahlman &Lebiere, 1990), 
exhibit several benefits: 

 Faster learning and real-time adaptation: CFBP allows continuous online learning 
by providing direct access to inputs throughout the architecture, facilitating faster 
convergence (Ikram et al., 2022). 

 Improved convergence and gradient flow: Shortcut connections help gradients 
reach deeper layers without vanishing, reducing training time and improving accuracy 
(Gupta et al., 2009). 

 Ability to escape local minima: Cascade designs help the network avoid poor local 
solutions in the loss landscape, enhancing optimization robustness (Althoff& 
Rodrigues, 2021). 

 Support for VLSI implementation: Cascade forward architectures have been used in 
real-time hardware designs, making them suitable for embedded systems (Ghorbani et 
al., 2021). 

IV.8.3. Training Algorithms and Performance Characteristics 

CFBP networks are commonly trained using variants of the backpropagation algorithm. Key 
algorithmsinclude: 

 Resilient Backpropagation (RBP): Offers faster convergence by adapting weight 
step sizes (He et al., 2022) 

 Levenberg–Marquardt (LM): Provides fast and stable optimization for moderate-
sized networks (Haykin, 1994) 

 Bayesian Regularization (BR): Improves generalization, especially on noisy datasets 

Metaheuristic approaches such as Genetic Algorithms (GA), Grey Wolf Optimizer (GWO), 
and Hunger Games Search (HGS) have also been applied to fine-tune hyperparameters and 
improve model robustness (Ikram et al., 2022). 

When compared to MLPs and traditional feedforward networks, CFBP models often 
converge more quickly and can deliver competitive accuracy. However, performance still 
depends heavily on the nature of the data, the model's complexity, and the chosen optimizer 
(Gupta et al., 2009; Althoff& Rodrigues, 2021). 

IV.9. Random Forest Models 

Random Forest (RF) is a powerful ensemble learning method that leverages the collective 
intelligence of multiple decision trees to produce more robust and accurate predictions. 

IV.9.1. Principles of Ensemble Learning and Decision Trees 

RF belongs to the class of ensemble methods that aim to enhance predictive performance by 
combining several “weak learners” (typically decision trees). While individual decision trees 
are prone to overfitting and high variance, Random Forest mitigates this by aggregating the 
outputs of many deep trees trained on various bootstrapped samples of the dataset (He et al., 
2022; Ikram et al., 2022). 
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This technique builds on the concept that an ensemble of weak models, when trained with 
diversity and aggregated properly, can outperform a single strong learner. It’s an embodiment 
of the “wisdom of crowds” principle in machine learning (Haykin, 1994). 

IV.9.2. Architecture and Operational Mechanisms: Bagging, Feature Randomness, 
Aggregation 

The operational flow of a Random Forest model includes: 

 Bootstrap Aggregating (Bagging): Multiple subsets are created from the training 
data using sampling with replacement. Each subset is used to train an individual 
decision tree (He et al., 2022). 

 Random Feature Selection: At each decision node, a random subset of features is 
chosen for splitting, ensuring decorrelation between trees (Ikram et al., 2022). 

 Tree Construction: Trees are grown to maximum depth without pruning. Overfitting 
is prevented not by restricting tree complexity but by averaging across diverse trees. 

 Prediction Aggregation: For classification tasks, majority voting is used; for 
regression, predictions are averaged. 

 Out-of-Bag Error Estimation: Data not included in a bootstrap sample serves as a 
validation set for that tree, enabling unbiased error estimation without cross-validation 
(Ghorbani et al., 2021). 

This dual-randomness—both in data sampling and feature selection—is the cornerstone of 
Random Forest’s strength and generalization ability (Gupta et al., 2009). 

TableIV.1. Comparative Analysis of Random Forests and Neural Networks 

Criteria Random Forest Neural Networks 
Data Type Structured/tabular Structured, images, text, audio 
Training Complexity Low (few hyperparameters) High (architecture, learning rate, 

optimizer) 
ComputationalNeeds Moderate High (especiallydeepmodels) 
Interpretability High (feature importance 

available) 
Low ("black box") 

Overfitting Risk Low (due to ensemble) Medium-High (needsregularization) 

Neural networks are more flexible and powerful for complex data types like images or 
sequences, but Random Forests are often more efficient and interpretable for structured 
datasets (Althoff& Rodrigues, 2021). Neural networks require careful architecture design and 
hyperparameter tuning, while Random Forests tend to perform well with minimal tuning 
(Haykin, 1994; He et al., 2022). 

In research contexts involving hydrology or sediment modeling, Random Forests have been 
successfully applied due to their ability to capture nonlinear relationships without complex 
training regimes, making them ideal for initial modeling trials or when computational 
resources are limited (Touaibia, 1999). 

IV.10. Learning Paradigms in Neural Networks 
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Neural networks learn from data via several paradigms, each suited to differing data 
availability and problem types. 

IV.10.1. Supervised Learning 

Principle 
Supervised learning uses labeled datasets each input has a correct output (ground truth). The 
model learns a mapping from inputs to outputs. Performance depends on the quality and 
quantity of labels, making data annotation a critical bottleneck (Althoff& Rodrigues, 2021). 

Mechanism 
Duringtraining: 

 The model predicts outputs. 
 It computes error between predictions and true labels using a loss function (e.g., MSE, 

cross-entropy). 
 Backpropagation adjusts weights and biases to minimize this error (Rumelhart et al., 

1986; Althoff& Rodrigues, 2021). 

Common in classification (image recognition, spam detection, medical diagnosis) and 
regression (real estate pricing, financial forecasting). 

IV.10.4. Semi-Supervised Learning 

Principle 
Semi-supervised learning (SSL) uses both labeled and unlabeled data. This is valuable when 
labels are scarce or expensive, but unlabeled data is abundant (Ikram et al., 2022). 

Mechanism 

 Train on labeledsamples. 
 Use the model to generate pseudo-labels on unlabeled data. 
 Retrain on combined datasets. Techniques include self-training, co-training, and 

graph-based SSL. 

IV.11. Evaluation Metrics for Machine Learning Models 

Evaluating machine learning models is essential to assess their performance and 
generalizability. Different metrics offer unique insights into model accuracy and reliability. 

IV.11.2.Model Efficiency Metrics: Nash–Sutcliffe Efficiency (NSE)  

IV.11.2.1. Nash–Sutcliffe Efficiency (NSE) 

��� = 1 −
∑���
� (��,� − ��,�)

�

∑���
� (��,� − ���)

�
 

 ��,�: observed flow at time t 
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 ��,�: modeled flow at time t 
 ���: mean observed flow 

 Range:]−∞,1] 
 1:perfect match 
 0: as good as the observed mean 
 < 0: worse than using the observed mean as prediction (Althoff & Rodrigues, 2021) 
 Sensitive to extreme values. 

 

IV.12. Machine Learning with MATLAB 
IV.12.1 Overview of MATLAB 
MATLAB (Matrix Laboratory) is a high-level programming language designed for numerical 
computation, developed by The MathWorks. It enables users to perform matrix 
manipulations, visualize data through plots and graphs, and develop complex algorithms. 
MATLAB is one of the most widely used tools in engineering and applied sciences. 
The software has a broad range of applications across various fields, including: 

 Automotive systems, 
 Health monitoring, 
 Smart power grids, 
 Machine learning, 
 Robotics, 
 Signal and image processing, 
 Communication systems, 
 Finance, 

and manyothers. 
MATLAB can be used independently or in combination with specialized add-on packages 
known as toolboxes, which expand its functionality for specific domains such as advanced 
mathematics, statistics, and optimization. 
Among the available toolboxes are: 

 the Partial Differential Equation Toolbox, 
 the CurveFitting Toolbox, 
 and the Neural Network Toolbox, which will be discussed in more detail later in this 

work. 

The figure IV.4 shows the main MATLAB interface 
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Figure IV.4. Main MATLAB interface  (Demuth et Beale, 2002). 

New Project (New): As its name suggests, this button is used to open a new Command 
Window, effectively starting a new project. 
Command Window: This is where all program instructions are entered. Commands are 
written and executed one after another in this area, allowing real-time interaction with 
MATLAB. 
MATLAB Editor: Unlike the Command Window, here the instructions are written all at 
once in the form of a script or function. Once completed, the entire block of code can be 
executed as a single program. 
Workspace: This section displays all the variables and constants currently in use in the 
Command Window. It provides information such as variable names, formats, sizes, and 
types. 
Command History: This area shows a log of all commands executed during the current and 
previous MATLAB sessions, providing a useful history for review or reuse. 

IV.13. Results and Discussion 

IV.13.1. Application of the MLPNN Model 

In this study, the Multi-Layer Perceptron Neural Network (MLPNN) model was used to 
predict solid discharge based on input hydrological variables. The MLPNN is a type of 
feedforward artificial neural network that is well-suited for nonlinear regression problems. It 
consists of an input layer, one or more hidden layers, and an output layer, with each layer 
containing interconnected neurons. The model is trained using historical data to learn the 
underlying patterns and relationships between inputs and outputs, which are then used for 
prediction. 

The dataset used in this modeling was collected from the SIDI AISSA hydrometric station 
(station code: 16 06 14). The data were divided into two phases for training and validation. In 
the first configuration, 70% of the data were used for training the model, while the 
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remaining 30% were used for validation. In a second configuration, 80% of the data were 
used for training and 20% for validation, allowing for a comparison of model performance 
under different training ratios. 

Several simulation attempts were carried out using the Multi-Layer Perceptron 
NeuralNetwork (MLPNN) to predict solid transport. To achieve this, the number of hidden 
layersand thenumber of neurons per layer were varied, while keeping the sigmoid transfer 
function fixed in the hidden layers. 

Among all tested configurations, the most relevant architectures, in terms of predictive 
performance, are the following: 

 The first configuration MLPNN1 is a (1–9–1) structure, meaning the input layer 
contains 1 neuron representing the input parameter (liquid flow rate, Ql), followed by 
1 hidden layer with 9 neurons, and an output layer with 1 neuron representing the 
predicted solid flow rate. 

 The second configuration MLPNN2 consists of a (1–3–2–1) architecture, with two 
hidden layers containing 3 and 2 neurons, respectively. 

 The third configuration MLPNN3 retained is a deeper network: (1–5–3–1–1), with 
three hidden layers containing 5, 3, and 1 neuron, respectively, between the input and 
output layers. 

 

IV.13.1.1.Model Configuration with 70% Training and 30% Validation Data 

IV.13.1.1.1. MLPNN1 model 

The architecture of the MLPNN1 model is shown in figure IV.5 

 

Figure IV.5. Architecture of the MLPNN1 model (70%, 30%) 

The regression lines obtained are shown in Figures IV.6. 
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Figure IV.6. Regression Lines of predicted and Measured Solid Flow Rate (kg/s) Using 
MLPNN1 (70%, 30%) 

The Predicted and observedSolid Flow Rate using MLPNN1 is show in figure IV.7. 

 

Figure IV.7. Predicted and observedSolid Flow Rate using MLPNN1 (70%, 30%) 

The performance parameters are shown in the table IV.2. 

Table IV.2. Performance parameters of the MLPNN1 model (70%, 30%) 

Model Hidden Training Test 
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MLPNN Input Output   R NSE R NSE 

MLPNN1 Ql Qs 1(9) 0.89 0.79 0.89 0.68 

The results shown in table IV.2, figure IV.6 and figure IV.7,presents the performance of the 
MLPNN1 model used to predict solid flow rate (Qs) based on a single input: the liquid flow 
rate (Ql). The neural network architecture consists of one hidden layer with 9 neurons, 
denoted as 1(9). The model’s performance was evaluated using two statistical indicators: the 
correlation coefficient (R) and the Nash-Sutcliffe efficiency (NSE), for both the training 
and test (validation) phases. 

During the training phase, the model achieved an R value of 0.89, indicating a strong linear 
correlation between the predicted and measured solid flow rates. The NSE value of 0.79 
confirms that the model has a high predictive capability and is able to reproduce the observed 
data with a good level of accuracy. 

In the test phase, the model maintained a similar correlation coefficient (R = 0.89), which 
shows that the model generalizes well and retains its prediction performance even on unseen 
data. However, the NSE decreased to 0.68, which is still considered satisfactory but slightly 
lower than in the training phase. This drop may be attributed to the complexity of the 
physical process or the limited variability in the test data. 

Overall, the results demonstrate that the MLPNN1 architecture, despite its relatively simple 
structure, is capable of capturing the nonlinear relationship between liquid and solid 
discharge. The consistency of the correlation values across both phases reflects the model’s 
robustness, while the NSE values confirm its efficiency in simulating solid transport behavior 
based on hydrological input. 

IV.13.1.1.2. MLPNN2 model 

The architecture of the MLPNN2 model is shown in figure IV.8 

 

Figure IV.8. Architecture of the MLPNN2 model (70%, 30%) 

The regression lines obtained are shown in Figures IV.9. 
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Figure IV.9. Regression Lines of predicted and Measured Solid Flow Rate (kg/s) Using 
MLPNN2 (70%, 30%) 

The Predicted and observedSolid Flow Rate using MLPNN2 is show in figure IV.10. 

 

Figure IV.10. Predicted and observedSolid Flow Rate using MLPNN2 (70%, 30%) 

The performance parameters are shown in the table IV.3. 

Table IV.3. Performance parameters of the MLPNN2 model (70%, 30%) 

Model Hidden Training Test 

Layers 

MLPNN Input Output   R NSE R NSE 

MLPNN2 Ql Qs 2(3,2) 0.89 0.80 0.89 0.67 
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The architecture of this model consists of two hidden layers with 3 and 2 neurons, 
respectively, represented as 2(3,2).During the training phase, the model achieved a 
correlation coefficient (R) of 0.89, which indicates a strong linear relationship between the 
predicted and measured values of the solid discharge. The Nash-Sutcliffe Efficiency (NSE) 
value of 0.80 reflects a very good agreement between the model’s predictions and the 
observed data, suggesting that the model captures the underlying dynamics of the system with 
high accuracy. 

In the test phase, the model maintained the same correlation coefficient (R = 0.89), 
confirming that it generalizes well and maintains prediction quality on unseen data. However, 
the NSE dropped slightly to 0.67, indicating a small decrease in predictive performance, 
which is a common occurrence due to variability in testing data or possible overfitting to the 
training dataset. 

The results overall demonstrate that the MLPNN2 architecture, with two hidden layers, 
performs reliably in predicting solid transport from liquid flow rate. The consistency in R 
values across both phases indicates robustness, while the NSE values above 0.65 suggest 
good model efficiency and reasonable generalization capability. The slightly improved NSE 
in training compared to the previous architecture (MLPNN1) may reflect the advantage of a 
deeper network in capturing more complex nonlinear patterns. 

 

IV.13.1.1.3. MLPNN3 model 

The architecture of the MLPNN3 model is shown in figure IV.11 

 

Figure IV.11. Architecture of the MLPNN3 model (70%, 30%) 

The regression lines obtained are shown in Figures IV.12. 
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Figure IV.12. Regression Lines of predicted and Measured Solid Flow Rate (kg/s) Using 
MLPNN3 (70%, 30%) 

The Predicted and observedSolid Flow Rate using MLPNN3 is show in figure IV.13. 

 

Figure IV.13. Predicted and observedSolid Flow Rate using MLPNN3 (70%, 30%) 

The performance parameters are shown in the table IV.4. 

Table IV.4. Performance parameters of the MLPNN3 model (70%, 30%) 

Model Hidden Training Test 

Layers 

MLPNN Input Output   R NSE R NSE 
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MLPNN3 Ql Qs 3(5,3,1) 0.89 0.80 0.89 0.67 

The network architecture includes three hidden layers, with 5, 3, and 1 neurons 
respectively, denoted as 3(5,3,1). This deeper structure was intended to explore the impact of 
increased complexity on model performance. 

During the training phase, the model achieved a correlation coefficient (R) of 0.89, which 
indicates a strong linear correlation between predicted and observed solid flow values. The 
Nash-Sutcliffe Efficiency (NSE) during training was 0.80, which demonstrates a good 
ability of the model to replicate the behavior of the target variable. 

In the test phase, the R value remained at 0.89, indicating excellent consistency between 
training and testing performance. However, the NSE slightly decreased to 0.67, similar to 
the MLPNN2 configuration. This drop suggests a modest loss of accuracy in generalization, 
which could be due to the higher model complexity leading to slight overfitting. 

Overall, the MLPNN3 model shows performance that is comparable to MLPNN2, with 
identical R values and slightly varied NSE values. Despite having an additional hidden 
layer, MLPNN3 does not significantly outperform simpler architectures, suggesting that 
increasing model depth beyond a certain point may not yield substantial gains in this 
particular application. Nonetheless, the model remains robust and effective for predicting 
solid transport based on liquid flow input. 

IV.13.1.2. Model Configuration with 80% Training and 20% Validation Data 

IV.13.1.2.1. MLPNN1 model 

The architecture of the MLPNN1 model is shown in figure IV.14 

 

Figure IV.14. Architecture of the MLPNN1 model (80%, 20%) 

The regression lines obtained are shown in Figures IV.15. 
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Figure IV.15. Regression Lines of predicted and Measured Solid Flow Rate (kg/s) Using 
MLPNN (80%, 20%) 

The performance parameters are shown in the table IV.5. 

 

 

Table IV.5. Performance parameters of the MLPNN1 model (80%, 20%) 

Model Hidden Training Test 

Layers 

MLPNN Input Output   R NSE R NSE 

MLPNN1 Ql Qs 1(9) 0.88 0.77 0.92 0.75 

In the training phase, the model achieved a correlation coefficient (R) of 0.88, indicating a 
strong correlation between the predicted and the measured solid flow rates. The Nash-
Sutcliffe Efficiency (NSE) during training was 0.77, which reflects a good level of 
agreement between the simulated and observed values, confirming the model’s ability to 
capture the underlying physical process during learning. 

In the test phase, the model showed improved performance, with an R value of 0.92, 
demonstrating an even stronger correlation between the predicted and actual solid flow rates 
on unseen data. The NSE also increased to 0.75, confirming that the model not only 
generalizes well but may even perform better on the validation dataset. This could be due to 
the representative nature of the validation data or the network’s robustness against 
overfitting. 

Overall, the MLPNN1 model shows excellent performance in both training and testing 
phases. The results indicate that even with a relatively simple architecture, the model 
effectively captures the nonlinear relationship between liquid flow and solid transport. The 
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improvement in both R and NSE during testing highlights the model’s strong generalization 
capability, making it a reliable tool for solid flow rate prediction based on liquid discharge 
measurements. 

IV.13.1.2.2. MLPNN2 model 

The architecture of the MLPNN2 model is shown in figure IV.16 

 

Figure IV.16. Architecture of the MLPNN2 model (80%, 20%) 

The regression lines obtained are shown in Figures IV.17. 

 

 

Figure IV.17. Regression Lines of predicted and Measured Solid Flow Rate (kg/s) Using 
MLPNN2 (80%, 20%) 

The performance parameters are shown in the table IV.6. 

Table IV.6. Performance parameters of the MLPNN2 model (80%, 20%) 

Model Hidden Training Test 



CHAPTER IV:  

MODELING SUSPENDED SOLID TRANSPORT USING MACHINE LEARNING 

 

66 
 

Layers 

MLPNN Input Output   R NSE R NSE 

MLPNN2 Ql Qs 2(3,2) 0.88 0.78 0.92 0.74 

In the training phase, the model achieved a correlation coefficient (R) of 0.88, suggesting a 
strong positive correlation between the predicted and observed solid discharge values. The 
Nash-Sutcliffe Efficiency (NSE) was 0.78, which indicates that the model captures the 
variance in the observed data well, and that the predictions are close to the measured values. 

In the test (validation) phase, the model showed a notable improvement, with an R value 
increasing to 0.92. This reflects an even stronger correlation in the testing phase, indicating 
excellent generalization capability. The NSE reached 0.74, which is also very good and 
confirms the reliability of the model when applied to unseen data. 

Overall, the MLPNN2 model demonstrates robust and consistent performance across both 
training and testing. The slight increase in performance during validation suggests that the 
model is not overfitted and is able to generalize effectively. The use of two hidden layers 
appears to enhance the model’s ability to capture the nonlinear behavior of solid transport, 
making MLPNN2 a reliable architecture for predicting solid discharge based on 
hydrological input. 

IV.13.1.2.3. MLPNN3 model 

The architecture of the MLPNN3 model is shown in figure IV.18 

 

Figure IV.18. Architecture of the MLPNN3 model (80%, 20%) 

The regression lines obtained are shown in Figures IV.19. 
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Figure IV.19. Regression Lines of predicted and Measured Solid Flow Rate (kg/s) Using 

MLPNN3 (80%, 20%) 

The performance parameters are shown in the table IV.7. 

Table IV.7. Performance parameters of the MLPNN3 model (80%, 20%) 

Model Hidden Training Test 

Layers 

MLPNN Input Output   R NSE R NSE 

MLPNN3 Ql Qs 3(5,3,1) 0.88 0.78 0.92 0.74 

In the training phase, the model achieved a correlation coefficient (R) of 0.88, indicating a 
strong relationship between the predicted and measured values of solid discharge. The Nash-
Sutcliffe Efficiency (NSE) was 0.78, suggesting that the model can reliably replicate the 
dynamics of the training data. 

During the test phase, the model showed a notable improvement in performance, with an R 
value of 0.92, confirming a very strong linear relationship between predicted and observed 
solid flow rates on unseen data. The NSE also improved to 0.74, further supporting the 
model’s ability to generalize effectively without overfitting. 

These results demonstrate that the MLPNN3 architecture, despite being deeper than 
MLPNN1 and MLPNN2, performs equally well in terms of correlation and efficiency. The 
consistent values of R and NSE in both training and testing phases highlight the robustness of 
the model. The deeper structure may offer a slight advantage in capturing more complex 
nonlinearities in the relationship between liquid and solid discharge, though the performance 
gain compared to simpler architectures is relatively modest.In conclusion, MLPNN3 
provides a strong and stable prediction performance, making it a valid and reliable model 
for solid transport modeling based on hydrological input. 

IV.13.1.3. Model Performance Comparison Under Two Data Splits: 70%–30% and 
80%–20% 
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The performance of three MLPNN models (MLPNN1, MLPNN2, and MLPNN3) was 
evaluated under two different training–validation data splits: 70% for training and 30% for 
testing, and 80% for training and 20% for testing. The objective of this comparison is to 
assess how the proportion of training data affects the generalization and predictive accuracy 
of each model. 

In the 70%–30% configuration, all three models exhibited consistent results: 

 R = 0.89 across training and testing phases for all models, showing strong correlation 
between predicted and measured solid discharge values. 

 NSE values ranged from 0.79 to 0.80 during training and from 0.67 to 0.68 during 
testing, indicating reliable performance but with a moderate drop in predictive 
accuracy on unseen data. 

Under the 80%–20% configuration, the models showed slightly lower R values during 
training (R = 0.88), which is expected due to reduced training variability, but higher R values 
during testing (R = 0.92). This suggests better generalization when more data is available 
during model learning. The NSE values also improved on the test set, reaching 0.74–0.75, 
compared to 0.67–0.68 with the 70%–30% split. 

These results reveal that increasing the training portion from 70% to 80% leads to slightly 
improved generalization and prediction accuracy, especially in the testing phase. This is 
evident for all models, but particularly for MLPNN1, which achieved the highest test NSE of 
0.75 under the 80%–20% split, along with a very strong R = 0.92.In conclusion, the 80%–
20% configuration is more favorable for all MLPNN architectures tested, as it enhances the 
models’ ability to generalize and predict solid transport behavior. This comparison highlights 
the importance of optimizing data partitioning to improve model robustness and performance. 

IV.13.2. Random forest (RF) 

The regression lines obtained for two configuration (70%-30%) and (80%-20%) are shown in 
Figures IV.20 and figure IV21. 
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Figure IV.20. Regression Lines of predicted and Measured Solid Flow Rate (kg/s) Using RF 
(70%, 30%) 

 

Figure IV.21. Regression Lines of predicted and Measured Solid Flow Rate (kg/s) Using RF 
(80%, 20%) 

The performance parameters are shown in the table IV.8. 

Table IV.8. Performance parameters of the RF model 

Model Training Test 

      70% 30% 

RF 

Input Output R NSE R NSE 

Ql Qs 

0.95 0.91 0.88 0.77 

80% 20% 

R NSE R NSE 

0.95 0.91 0.86 0.71 

The performance of the Random Forest (RF) model in predicting solid flow rate (Qs) from 
liquid flow rate (Ql) was evaluated using two different data partitioning strategies: 70% for 
training and 30% for testing, and 80% for training and 20% for testing. The goal is to assess 
the influence of the training set size on the model's predictive accuracy and generalization. 

For the first configuration, the model was trained on 70% of the dataset and validated on the 
remaining 30%. The results show a very high correlation coefficient (R) of 0.95 and an NSE 
of 0.91 during training, indicating that the model fits the training data extremely well. In the 
testing phase, the RF model achieved R = 0.88 and NSE = 0.77, which reflects a strong 
predictive capability and effective generalization to unseen data. These results suggest that 
the model captures the underlying relationship between input and output variables with high 
accuracy. 
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In the second configuration, with 80% of the data used for training and 20% for testing, the 
model again achieved R = 0.95 and NSE = 0.91 during training — identical to the previous 
configuration, demonstrating the model's stability and reliability. However, the test 
performance slightly decreased, with R dropping to 0.86 and NSE to 0.71. This indicates a 
small decline in generalization, which might be due to the smaller test set containing data 
with higher variability or complexity. 

Both configurations show that the RF model is highly robust and accurate in modeling solid 
transport. The training results remain constant across both splits, reflecting the model’s 
ability to learn consistently from larger datasets. The 70%–30% configuration yielded slightly 
better test performance (R = 0.88, NSE = 0.77) compared to the 80%–20% configuration (R 
= 0.86, NSE = 0.71). This suggests that a slightly larger test set may have provided a more 
representative evaluation of model generalization. 

Overall, the RF model demonstrates excellent performance in both configurations, with only 
a minor trade-off between training size and validation accuracy. Its consistently high 
correlation and efficiency metrics make it a reliable and effective tool for predicting solid 
discharge from liquid flow in hydrological systems. 

IV.13.3. Comparison of MLPNN and Random Forest (RF) Models 

The comparative analysis between the Multi-Layer Perceptron Neural Network (MLPNN) 
models and the Random Forest (RF) model highlights the strengths and limitations of each in 
predicting solid flow rate (Qs) from liquid flow rate (Ql). Three MLPNN architectures were 
tested: MLPNN1 with one hidden layer (1(9)), MLPNN2 with two hidden layers (2(3,2)), and 
MLPNN3 with three hidden layers (3(5,3,1)). Under the 70%–30% configuration, all 
MLPNN models demonstrated identical training correlation coefficients (R = 0.89) with NSE 
values ranging from 0.79 to 0.80, and testing R values also equal to 0.89, with NSEs between 
0.67 and 0.68. These results suggest that MLPNNs, regardless of depth, provided stable but 
moderate generalization performance. 

In contrast, the RF model significantly outperformed MLPNNs during training, achieving R 
= 0.95 and NSE = 0.91, which indicates an excellent fit to the training data. During testing, 
RF maintained high performance with R = 0.88 and NSE = 0.77, outperforming all MLPNN 
configurations in terms of predictive accuracy and robustness on unseen data in the 70%–
30% setup. 

In the 80%–20% configuration, MLPNN models showed slightly lower R values during 
training (R = 0.88) but improved testing performance, with R values rising to 0.92 and NSEs 
up to 0.75. This suggests better generalization when more data is allocated to training. On the 
other hand, the RF model maintained consistent training performance (R = 0.95, NSE = 
0.91), but test performance decreased slightly compared to the 70%–30% case (R = 0.86, 
NSE = 0.71), likely due to the smaller and potentially less diverse validation set. 

In summary, the RF model consistently achieved the highest training accuracy and 
strong generalization, especially under the 70%–30% split. However, MLPNNs, 
particularly under the 80%–20% configuration, demonstrated better generalization in 
terms of test correlation (R = 0.92). Thus, while RF excels in accuracy and robustness, 
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MLPNNs may offer better generalization under specific training conditions. The choice 
between these models should therefore consider both predictive strength and sensitivity to 
training/validation split strategies. 

IV.14. Conclusion 

The results obtained for solid transport modeling based on liquid flow demonstrate the 
effectiveness of both Random Forest (RF) and MLPNN models. The RF model achieved 
superior overall performance, with high R and NSE values, indicating excellent accuracy 
during both training and testing. MLPNN models, although slightly less accurate in training, 
showed strong generalization ability, especially with the 80%–20% data split. This 
highlights the reliability of both approaches in predicting solid discharge, with RF being 
more precise and MLPNN offering better predictive stability under certain configurations. 
These findings confirm the value of machine learning techniques in hydrological modeling. 
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General Conclusion 

 This research study focused on evaluating soil erosion and suspended sediment 

transfers in the Tafna watershed (Algeria, North-West). The study presented an integrated 

framework by combining the empirical RUSLE model with machine learning models 

(MLPNN and Random Forest), which represents a new usable paradigm to quantify the risk 

of erosion, as well as incorporating potential sediment yield through using both spatial and 

temporal dimensions. 

This project also can push forward watershed management by merging GIS and remote 

sensing, and artificial intelligence addressing, both the spatial aspect of erosion in terms of 

physical characteristics of erosion along with the temporal nature of sediment transport as an 

additional addressable ecosystem service. 

Watershed Characteristics 

• The Tafna Basin has an approximate area of 7,700 km² and is characterized by highly 

heterogeneous topography 

 

• Steep slope (>25%) occupy approximately 2.45% the basin, while moderately steep terrain 

(10–25%) occupies 22.1% of the area – confirming the naturally erosion susceptible 

conditions of this region. 

The Revised Universal Soil Loss Equation (RUSLE) implemented by using the RUSLE 

equation directly in ArcGIS and incorporating Google Earth Engine, developed multi on the 

erosion risks using five spatially derived descriptive factors including: rainfall erosivity factor 

(R), soil erodibility factor (K), topographic slope and length factor (LS), cover management 

factor (C) and conservation practices factor (P). Key Findings from RUSLE modeling are: 

• The average annual soil loss at the sub-watershed scale ranged from 2.92 to 5.87 t/ha/year 

and remained below the tolerable value of 7 t/ha/year. 

• However, pixel-level average values identified hotspots with soil erosion values exceeding 

146 t/ha/year seems to be limited to the southern and centre eastern sub-basins with steep 

slopes and high degrading vegetation. 

The dominant zones for RUSLE classes representing soil loss throughout the Tafna basin are: 
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 Low erosion (<5 t/ha/year) in forested and flat areas 

 Moderate erosion (5-15 t/ha/year) in transitional slope areas 

 Severe erosion zones (>30 t/ha/year) in steep exposed zones with high values of 

Conservation practices (P ≈ 1) 

These key findings highlight a need for better sourcing land management practices to assess 

and mitigate erosion in specific hotspot zones, while recognizing that the basin-wide average 

is moderate. 

 

To complement erosion mapping, sediment discharge prediction was performed using 

Artificial Neural Networks (MLPNNs) and Random Forest (RF), trained on rainfall and 

streamflow data from hydrometric stations. The models performances are: 

 MLPNNs achieved good predictive accuracy, with: 

o R valuesaround0.88–0.89, 

o and NSE values up to 0.75 on test datasets. 

 Random Forest outperformed neural networks, yielding: 

o R = 0.95 in training and 0.86–0.88 in testing, 

o NSE = 0.91 (train) and 0.71–0.77 (test), 

confirming its robustness for sediment prediction in complex hydrological 

settings. 

This study highlights the valuable contribution of integrating physical modeling, specifically 

the RUSLE model, with data-driven machine learning approaches to improve the accuracy of 

erosion and sediment transport forecasting. It offers practical outcomes, including high 

resolution erosion risk maps, predictive sediment transport tools, and the identification of 

priority areas requiring urgent intervention. These results equip decision-makers with robust 

and reliable tools to support soil conservation programs, promote sustainable land-use 

planning, and guide watershed restoration efforts effectively. 
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Outlook and Future Perspectives 

This research opens the way for several future developments and improvements, including the 

following directions: 

1. Application of Alternative Erosion Models 

Extend the erosion modeling approach in the Tafna watershed by applying other 

empirical or data-driven models to compare results and improve accuracy. 

2. Development of an Erosion Control Planning Strategy 

Establish a comprehensive anti-erosion land management plan based on the erosion 

sensitivity map. Priority zones should be classified and treated first using suitable 

vegetative or mechanical conservation methods. 

3. Updating and Refining RUSLE Results 

In future studies, update RUSLE outputs with more recent land use, rainfall, and soil 

data to improve monitoring and support the design of revised soil conservation 

strategies. 

4. Field Validation of RUSLE Outputs 

Validate model results through on-site measurements of soil loss using monitoring 

plots distributed across different zones of the watershed. 

5. Transfer of Neural Network Models to Other Watersheds 

Apply the trained MLPNN and Random Forest models to neighboring or comparable 

watersheds to test their generalizability and support regional erosion prediction. 

6. Testing Other Machine Learning Models 

Explore the use of other advanced neural or machine learning models to improve the 

precision of sediment yield predictions in the Tafna basin. 
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