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Introduction

These courses contain the official program for the subject Analysis 3 in-

tended primarily for students in the second year of a mathematics degree.

The content of this subject is the basis of any introduction to mathematical

analysis. It is considered a direct extension of the two subjects Analysis

1 and Analysis 2 seen in the first year of a mathematics degree. For this

reason, I recommend that all students who take the subject Analysis 3 also

take the two subjects Analysis 1 and Analysis 2, which essentially aims to

consolidate the knowledge acquired in secondary school in order to be used

in the second year of a mathematics degree.

These courses contain six main chapters, where the concepts of numer-

ical series, sequences or series of functions, power series, Fourier series,

generalized integrals and functions defined by integrals are presented. Each

chapter of these courses ends with uncorrected exercises allowing the su-

dent to go further in understanding and assimilation of the mathematical

concepts introduced.

1



Chapter 1

Numerical series

1.1 Series with real or complex terms

Definition 1.1.1. Let (un)n∈N be a sequence of real or complex numbers. We call a

numerical series (respectively complex series) of general term un, any expression of

the form:

u0 + u1 + ... + un + ... =
∑
n≥0

un. (1.1)

The real numbers (respectively the complexe numbers) u0,u1, ... un, ... are called

terms of the series.

Let us now consider the following partial sums:

Sn = u0 + u1 + ... + un =

n∑
k=0

uk. (1.2)

The number Sn is called partial sum of order n of the series
∑

n≥0
un, and the sequence

(Sn) is called sequence of partial sums of the series
∑

n≥0
un.

Definition 1.1.2. Let
∑

n≥0
un be a series with real terms or complex. We say that the

series
∑

n≥0
un converges if the sequence of partial sums (Sn) converges, and it diverges

if the sequence of partial sums diverges.

2
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Definition 1.1.3. When the series
∑

n≥0
un converges, we call sum of the series, the

limit S of the sequence of partial sums and we write:

S = lim
n→+∞

Sn =
∑
n≥0

un. (1.3)

Definition 1.1.4. Let
∑

n≥0
un be a convergent series of sum S. We call rest of order

n of the series
∑

n≥0
un, the number Rn which defined by:

Rn = S − Sn =
∑

k≥n+1

uk. (1.4)

We then have the following equivalence:∑
n≥0

un converge ⇔ lim
n→+∞

Sn = S⇔ lim
n→+∞

Rn = 0. (1.5)

Remak 1.1. We also deduce that the nature of a series does not change, in removing

a finite number of its terms. On the other hand, if the series converges, the value of

its sum depends on all the terms of the series.

Example 1.1.1. (Geometric series)

The geometric series
∑

n≥0
Rn is:

1. convergent if and only if |R| < 1, in this case S =
1

1 − R
.

2. divergent if and only if |R| ≥ 1.

Proposition 1.1.1. ( Telescopic process) Let (un) and (vn) be two sequences of

real or complex numbers, such that un = vn+1−vn. Then, the series
∑

n≥0
un converges

if and only if the sequence (vn) converges, and in this case:∑
n≥0

un = lim
n→+∞

vn − v0. (1.6)

Proof. Indeed, the proof is made of the following equality:

n∑
k=0

uk =

n∑
k=0

(vk+1 − vk) = vk+1 − v0.

�
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Example 1.1.2. (Case of convergence) Let us consider the series of general term

un =
1

n(n + 1)
, n ≥ 1.

The term un can be rewritten as:

un =
1
n
−

1
n + 1

,n ≥ 1.

The term un can be rewritten as:

Sn =

n∑
k=1

uk =
(1

1
−

1
2

)
+

(1
2
−

1
3

)
+ ... +

(1
n
−

1
n + 1

)
= 1 −

1
n + 1

.

Since limn→+∞ Sn = 1, it follows that the series
∑

n≥1
un is convergent of sum S = 1.

Example 1.1.3. (Case of divergence) Let us consider the series of general term

un = ln(1 +
1
n

), n ≥ 1.

The term un can be rewritten as:

un = ln(n + 1) − ln(n), n ≥ 1. (1.7)

Hence:

Sn =

n∑
k=1

uk = (ln 2 − ln 1) + (ln 3 − ln 2) + ... + (ln(n + 1) − ln(n))

= ln(n + 1).

Since limn→+∞ Sn = +∞, it follows that the series
∑

n≥1
un diverges.

Proposition 1.1.2. ( Necessary condition of convergence) For a numerical series∑
n≥0

un to be convergent, it is necessary that its general term un tends towards zero.

Proof. Suppose that
∑

n≥0
un converges to S = limn→+∞ Sn. We then have:

lim
n→+∞

un = lim
n→+∞

Sn − Sn−1 = S − S = 0. (1.8)

Corollary 1.1.1. (Sufficient condition of divergence) A sufficient condition for a

serie is divergent, is that its general term does not tend towards zero.
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Corollary 1.1.2. The converse of Proposition 1.1.2 is false in general. Indeed, the

series harmonic
∑

n≥1

1
n

diverges, while its general term tends towards zero.

�

1.1.1 Algebraic structure of the set of convergent

series

Proposition 1.1.3. Let
∑

n≥0
un and

∑
n≥0

vn be two numerical or complex series. We

then have the following properties:

1. If
∑

n≥0
un is convergent with sum S1 and if

∑
n≥0

vn is convergent with sum S2,

then
∑

n≥0
(un + vn) is convergent with sum S1 + S2.

2. If
∑

n≥0
un is convergent with sum S1 and if α ∈ R (where C ), then

∑
n≥0

(αun)

is convergent with sum αS1.

Proof. The proof of this proposition follows immediately from the properties

of the limits of sequences. �

Remak 1.2. With these two previous operations, we can easily demonstrate that

the set of convergent series is a subspace vector.

1.1.2 Other algebraic operations

Proposition 1.1.4. Let
∑

n≥0
un and

∑
n≥0

vn be two numerical or complex series. We

then have the following supplimentary properties:

1. If
∑

n≥0
un diverges and if α ∈ R∗, then

∑
n≥0

(αun) diverges.

2. If
∑

n≥0
un converges and if

∑
n≥0

vn diverges, then
∑

n≥0
(un + vn) diverges.

3. If the two series
∑

n≥0
un and

∑
n≥0

vn are divergent, we cannot conclude anything

about the nature of the series
∑

n≥0
(un +vn), it can be convergent, as it can be divergent.

Proof. The proof of this proposition follows immediately from the properties

of the limits of sequences. �
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1.1.3 Cauchy criterion

Theorem 1.1.1. Let
∑

n≥0
un be a series with real terms or complex. This series is

convergent if and only if:

∀ε > 0, ∃n0 ∈N, ∀p, q ∈N, p > q ≥ n0, we have

∣∣∣∣∣∣∣∣
p∑

k=q+1

uk

∣∣∣∣∣∣∣∣ < ε. (1.9)

Proof. The proof of this theorem is done using the Cauchy criterion following

the partial sums Sn =
n∑

k=0
uk, and the fact that Sp − Sq =

p∑
k=q+1

uk. �

1.2 Positive terms series

Definition 1.2.1. We call a series with a positive terms any series whose general

term un verifies:

un ≥ 0, for all n ≥ 0. (1.10)

Proposition 1.2.1. Let
∑

n≥0
un be a series with real terms positive. Then this series

converges towards S, if and only if the sequence (Sn) of its partial sums is majorized.

In this case, we have:

Sn ≤ S, for all n ≥ 0. (1.11)

Proof. Since Sn+1−Sn = un+1 ≥ 0, for all n ≥ 0, it follows that (Sn) is increased,

so for it to be convergent, it is necessary and sufficient that it be majorized.

In this case, the limit of the sequence of partial sums (Sn) majore all the terms

of the sequence. �

Remak 1.3. If (Sn) is not majorized, limn→+∞ Sn = +∞, and the series
∑

n≥0
un

diverges.

1.2.1 Comparison theorems

Theorem 1.2.1. Given two series with positive terms
∑

n≥0
un and

∑
n≥0

vn verifying :

∃n0 ∈N, such that for all n ≥ n0,un ≤ vn, (1.12)
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we then have:

1.
∑

n≥0
vn converge implies

∑
n≥0

un converges.

2.
∑

n≥0
un diverges implies

∑
n≥0

vn diverges.

Proof. 1. Let’s pose for all n ∈ N, Sn =
n∑

k=0
uk and Tn =

n∑
k=0

vk. Since un ≤ vn,

for all n ≥ n0, we then obtain :

Sn ≤ Tn, for all n ≥ n0. (1.13)

If the series
∑

n≥0
vn converges, the sequence (Tn) is therefore majorized, then

the sequence (Sn) is also majorizd, and thus the series
∑

n≥0
un converges.

2. The second property is the contrapositive of the first, so is also true. �

Corollary 1.2.1. Let
∑

n≥0
un and

∑
n≥0

vn be two series with positive terms. Suppose

that there exist two strictly positive real numbers α and β verifying:

αun ≤ vn ≤ βun, (1.14)

then
∑

n≥0
un and

∑
n≥0

vn are of the same nature.

Proof. Applying the Theorem 1.2.1 twice, gives us: if the series with general

term vn converges, the series with general term un converges and if the series

with general term un converges, the series with general term vn converges.

Which shows that the two series are of the same nature. �

Example 1.2.1. Consider the general term number series:

un =
θn

√
n

, θ ≥ 0 and n > 0. (1.15)

* If θ ≥ 1, un ≥
1
√

n
≥

1
n

. Since
∑

n≥1

1
n

diverges, the considered series also diverges.

* If 0 ≤ θ < 1, un ≤ θn. Since
∑

n≥1
θn converges (geometric series), the considered

series also converges.

Theorem 1.2.2. Let
∑

n≥0
un and

∑
n≥0

vn be two series with positive terms. Suppose

there exists a positive real l (or l = +∞), such that limn→+∞
un

vn
= l, we then have:
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1. If l = 0 and the series
∑

n≥0
vn converge, the series

∑
n≥0

un converges.

2. If l = +∞ and the series
∑

n≥0
vn diverge, the series

∑
n≥0

un diverges.

3. If l , 0 and , +∞, both
∑

n≥0
vn and

∑
n≥0

un are of the same nature.

Proof. 1. By definition

lim
n→+∞

un

vn
= 0⇐⇒ ∀ε > 0, ∃n0 ∈N, ∀n ∈N, n ≥ n0, we have

un

vn
< ε.

(1.16)

Let us choose ε = 1, so we have un < vn. Since the series
∑

n≥0
vn converges, the

series
∑

n≥0
un also converges.

2. Similarly

lim
n→+∞

un

vn
= +∞⇔ lim

n→+∞

vn

un
= 0⇐⇒ ∀ε > 0, ∃n0 ∈N, ∀n ∈N, n ≥ n0, we have

vn

un
< ε.

(1.17)

Let us choose ε = 1, so we have un > vn. Since the series
∑

n≥0
vn diverges, the

series
∑

n≥0
un also diverges.

3. If l , 0 and , +∞,

lim
n→+∞

un

vn
= l⇐⇒ ∀ε > 0, ∃n0 ∈N, ∀n ∈N, n ≥ n0, we have

(un

vn
− l

)
< ε.

(1.18)

Let us choose ε < l,we therefore have (l−ε)vn < un < (l+ε)vn. Using Corollary

1.2.1 confirms us the reresult, by taking α = l − ε > 0 and β = l + ε. �

1.2.2 Usual rules of convergence

Riemann’s rule

Riemann’s rule amounts to comparing a series with given positive terms to

a Riemann series.

Definition 1.2.2. A Riemann series is any numerical series whose general term

un =
1

nα
, α ∈ R

.
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Proposition 1.2.2. The Riemann series converges, for all α > 1.

Proof. If α ≥ 0, limn→+∞ un , 0, the series
∑

n≥1
un is therefore divergent.

Let us now assume that α > 0, and consider the function f , which is defined

on ]0,+∞[ by f (x) =
1
xα
.

This function is positive defined, continuous and decreasing on ]0,+∞[ .By

Theorem 5.6.2 (see Chapter 5), the series
∑

n≥1
un and the generalized integral

+∞∫
1

f (x)dx are the same nature. Let

F(x) =

y∫
1

f (x)dx =


ln(y), if α = 1,

1
(1 − α)yα−1 −

1
1 − α

, if α , 1.
(1.19)

The function F has a finite limit, if and only if α > 1, which shows that the

series
∑

n≥1
un converges if and only if α > 1. �

Proposition 1.2.3. (Riemann’s rule)

Let
∑

n≥1
un be a series with positive real terms and let α ∈ R. Suppose there exists a

positive real number l (or l = +∞) , such that lim nαun = l . We then have:

1. If l = 0 and α > 1, the series
∑

n≥1
un converges.

2. If l = +∞ and α ≤ 1, the series
∑

n≥1
un diverges.

3. If l , 0 and if l , +∞, the two series
∑

n≥1
un and

∑
n≥1

1
nα

are the same nature.

Proof. 1. By definition

lim
n→+∞

nαun = 0⇐⇒ ∀ε > 0, ∃n0 ∈N, ∀n ∈N, n ≥ n0, we have nαun < ε.

(1.20)

Let us choose ε = 1, we therefore have un <
1

nα
. Since

∑
n≥1

1
nα

converges for

all α > 1, the series
∑

n≥1
un also converges for all α > 1.

2. If l = +∞ and α ≤ 1, still according to the definition of the limit

∃n1 ∈N, ∀n ∈N, n ≥ n1, we have nαun > ε. (1.21)

Let us choose ε = 1,we then have un >
1

nα
. Since

∑
n≥1

1
nα

diverges for all α ≤ 1,

the series
∑

n≥1
un also diverges for all α ≤ 1.
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3. The third property is the intersection of properties 1 and 2. �

D’Alembert’s rule

D’Alembert’s rule amounts to comparing a series with positive terms to a

geometric series.

Proposition 1.2.4. Let
∑

n≥1
un be a series with strictly positive real terms. Suppose

that there exists a positive real number l (or l = +∞), such that limn→+∞
un+1

un
= l

. We then have:

1. If l < 1, the series
∑

n≥1
un converges .

2. If l > 1, the series
∑

n≥1
un diverges.

Proof. By definition

lim
n→+∞

un+1

un
= l.⇐⇒ ∀ε > 0, ∃n0 ∈N, ∀n ∈N, n ≥ n0, we have

∣∣∣∣∣un+1

un
− l

∣∣∣∣∣ < ε.
(1.22)

1. If l < 1, let us choose ε, such that l + ε = k < 1, we therefore have
un+1

un
< k =

vn+1

vn
( by setting vn = kn). We therefore have:

un+1

vn+1
<

un

vn
< .... <

un0

vn0

= a (a > 0). (1.23)

That is, un < avn. Since
∑

n≥1
vn converges, the series

∑
n≥1

un converges .

2. If l > 1, let us choose ε, such that l − ε = k ≥ 1, we therefore have
un+1

un
≥ 1. Since (un) is increasing non-identically zero, we therefore have

limn→+∞ un , 0, and then the series
∑

n≥1
un diverges. �

Cauchy’s rule

Cauchy’s rule also amounts to comparing a series with positive terms to a

geometric series.



Smail Kaouache. Courses of Mathematical Analysis 3 (2024/2025) 11

Proposition 1.2.5. Let
∑

n≥1
un be a series with strictly positive real terms. Suppose

that there exists a positive real number l (or l = +∞), such that limn→+∞
n
√

un = l .

We then have:

1. If l < 1, the series
∑

n≥1
un converges .

2. If l > 1, the series
∑

n≥1
un diverges.

Proof. By definition

lim
n→+∞

n
√

un = l⇐⇒ ∀ε > 0, ∃n0 ∈N, ∀n ∈N, n ≥ n0, we have
∣∣∣ n
√

un − l
∣∣∣ < ε.
(1.24)

1. If l < 1, let’s choose ε, such that l + ε = k < 1, we then have un < kn.

Since
∑

n≥1
kn converges for all k < 1 (geometric series), the series

∑
n≥1

un also

converges .

2. If l > 1, let us choose ε, such that l − ε = k ≥ 1, we therefore have un ≥ 1.

Since limn→+∞ un , 0, the series
∑

n≥1
un diverges . �

Raabe and Duhamel rule

The Raabe-Duhamel rule amounts to comparing a given series with positive

terms to a Riemann series.

Proposition 1.2.6. Let
∑

n≥1
un be a series with positive terms. Assume that the

following limit exists:

l = lim
n→+∞

n(
un

un+1
− 1), (1.25)

we then have:

1. If l > 1, the series
∑

n≥1
un converges.

2. If l < 1, the series
∑

n≥1
un diverges.

Proof. By definition:

lim
n→+∞

n(
un

un+1
−1) = l⇔ ∀ε > 0, ∃n0 ∈N, ∀n ∈N, n ≥ n0, we have: l−ε < n(

un

un+1
−1) < l+ε.

(1.26)

1. Suppose that l > 1 and choose ε, such that n(
un

un+1
− 1) > l − ε = q > 1.

Let m ∈ R∗+ such that m ∈
]
1, q

[
, the series of general term wn =

1
nm is therefore



Smail Kaouache. Courses of Mathematical Analysis 3 (2024/2025) 12

convergent.

We can write:
wn

wn+1
=

(n + 1
n

)m

=
(
1 +

1
n

)m

. (1.27)

By performing the limited development of the function x 7→
1

1 + x
in the

neighborhood of 0, we obtain:

wn

wn+1
= 1 +

m
n

+
1
n2 δ(n), (1.28)

where
δ(n)

n
→ 0, when n→ +∞. That is to say:

For all η = q −m > 0, ∃n1 ∈N, ∀n ∈N, n ≥ n1, we have:
δ(n)

n
< q −m.

(1.29)

We then have the following inequalities:

m +
δ(n)

n
< q < n(

un

un+1
− 1), for all n ≥ max(n0,n1) = n2, (1.30)

or in an equivalent manner:

wn

wn+1
= 1 +

m
n

+
1
n2 δ(n) ≤

un

un+1
. (1.31)

That is to say:
un+1

wn+1
≤

un

wn
≤ ... ≤

un2

wn2

= a (a > 0 (1.32)

Since
∑

n≥1
wn is convergent, it follows from the comparison theorem that

∑
n≥1

un

is also convergent.

2. Now, suppose that l < 1 and choose ε, such that:

n(
un

un+1
− 1) < l + ε = q ≤ 1, for all n ≥ n0. (1.33)

Let us also consider the series with general term wn = 1
n , which is divergent.

From the inequality (1.33), we can easily see:

un

un+1
≤ 1 +

1
n

=
n + 1

n
=

wn

wn+1
. (1.34)

Since
∑

n≥1
wn is divergent, it follows from the previous method that

∑
n≥1

un is

also divergent. �
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Bertrand Series

Definition 1.2.3. A Bertrand series is any numerical series whose general term

un =
lnβ(n)

nα
, α ∈ R+

∗ and β ∈ R.

Proposition 1.2.7. The Bertrand series is:

1. convergent, if and only if

1.1. α > 1 and β ∈ R,

or else

1.2. α = 1 and β < −1.

2. divergent if and only if

2.1. α < 1 and β ∈ R,

or else

2.2. α = 1 and β ≥ −1.

Proof. 1.1. Let’s assume that α > 1 and β ∈ R. So it exists γ ∈ ]1, α[ verifying

lim
n→+∞

nγun = lim
n→+∞

lnβ(n)
nα−γ

= 0, (since α − γ > 0). (1.35)

Since γ > 1, the use of Proposition 1.2.3 confirms the convergence of the

considered series.

1.2 and 2.2. Now suppose that α = 1. We can write un =
lnβ(n)

n
.

* If β = 0,
∑

n≥1
un =

∑
n≥1

1
n

which is divergent.

* If β > 0, we have:

lim
n→+∞

nun = lim
n→+∞

lnβ(n) = +∞, (1.36)

and the series
∑

n≥1
un is divergent by applying comparaison theorem.

* If β < 0, consider the function f defined by:

f (x) =
lnβ(x)

xα
, x ∈ ]δ,+∞[ (δ > 1). (1.37)

This function is positive defined, continuous and decreasing on ]δ,+∞[ .

According to Cauchy’s theorem, the series
∑

n≥2

lnβ(n)
nα

and the generalized
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integral
+∞∫
δ

lnβ(x)
xα

dx are of the same nature.

We know that

t∫
δ

lnβ(x)
xα

dx =


1

β + 1

[
lnβ+1(t) − lnβ+1(δ)

]
, if β , −1,

ln
( ln t

ln δ

)
, if β = −1.

(1.38)

Which gives:

lim
t→+∞

t∫
δ

lnβ(x)
xα

dx =


−

lnβ+1(δ)
β + 1

, if β < −1,

+∞, if β > −1,

+∞, if β = −1

(1.39)

So, ifα = 1 and β < −1, the integral
+∞∫
δ

lnβ(x)
xα

dx converges, whereas if α = 1

and β ≥ −1, the integral
+∞∫
δ

lnβ(x)
xα

dx diverges.

2.2 Now, let us suppose that α < 1 and β ∈ R. So it exists γ ∈ ]α, 1[ verifying

lim
n→+∞

nγun = lim
n→+∞

nγ−α lnβ(n) = +∞, since γ − α > 0. (1.40)

Since γ < 1, the use of Proposition 1.2.3 confirms the divergence of the

series
∑

n≥1
un. �

1.3 Series of arbitrary sign

1.3.1 Convergence rules for series of arbitrary sign

Abel’s Rule

Proposition 1.3.1. Let (bn) be a positive sequence decreasing towards 0, and let

(an) be a sequence verifying:

∃M > 0,∀n ∈N,

∣∣∣∣∣∣∣An =

n∑
k=1

ak

∣∣∣∣∣∣∣ ≤M. (1.41)

Then, the series of general term un = anbn is convergent.
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Proof. We can write:

+∞∑
n≥1

un = a1(b1 − b2) + (a1 + a2)(b2 − b3) + ... + (a1 + a2 + ... + an)(bn − bn−1) + ...

=

+∞∑
n≥1

(a1 + a2 + ... + an)(bn − bn+1)

=

+∞∑
n≥1

An(bn − bn+1). (1.42)

We can then see the series of general terms appear:

vn = An(bn − bn+1). (1.43)

We just need to show that this series is convergent. Indeed:

|vn| = |An(bn − bn+1)|

≤ M(bn − bn+1), car bn − bn+1 ≥ 0 ((bn) is decreasing). (1.44)

The series
+∞∑
n≥1

(bn − bn+1) is convergent, since the sequence of its partial sums

is verified:
n∑

k=1

(bk − bk+1) = b1 − bn+1 → b1, as n→ +∞. (1.45)

The comparison theorem asserts the absolute convergence of the series
+∞∑
n≥1

vn.

It follows that the starting series
+∞∑
n≥1

un is convergent. �

1.3.2 Alternating series

Definition 1.3.1. An alternating series is any series whose general term

un = (−1)nan, an ≥ 0, for all n ∈N. (1.46)

Convergence rule for alternating series

Proposition 1.3.2. (Leibniz criterion)

Let
∑

n≥0
un be an alternating series. If (|un| is a sequence decreasing towards 0, then
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the series
∑

n≥0
un is convergent, moreover we have:

∣∣∣∣∣∣∣
+∞∑

k=n+1

(−1)kuk

∣∣∣∣∣∣∣ ≤ un+1. (1.47)

Proof. The series
∑

n≥0
un is alternating, so we can write:

un = un = an × bn, such thate bn = (−1)n and an ≥ 0, for all n ∈N. (1.48)

Since

∣∣∣∣∣∣ n∑
k=0

bk

∣∣∣∣∣∣ ≤ 1 and (|un| = an) a sequence decreasing towards 0, the use of

Abel’s criterion shows the convergence of the series
∑

n≥0
un.

Let now (Sn) be the partial sum of the series
∑

n≥0
un, we then have

S2n+2 − S2n = u2n+2 − u2n+1 ≤ 0, (1.49)

S2n+1 − S2n−1 = −u2n+1 + u2n ≥ 0, for all n ∈N. (1.50)

So the sequence (S2n) is decreasing and the sequence (S2n+1) is increasing.

Moreover we have:

S2n+1 − S2n = −u2n+1, for all n ∈N. (1.51)

Which shows that the sequence (S2n+1 − S2n) tends to 0. The sequences (S2n)

and (S2n+1) are therefore adjacent and thus both converge to the same finite

limit S. Consequently the sequence (Sn) converges to S, which shows once

again that the series
∑

n≥0
un converges. Furthermore, we have:

S2n+1 ≤ S ≤ S2n+2 = S2n+1 + u2n+2, for all n ∈N. (1.52)

That is to say

S − S2n+2 =≤ u2n+2, for all n ∈ (1.53)

We also have

S2n − u2n+1 = S2n+1 ≤ S ≤ S2n, for all n ∈N, (1.54)

or in an equivalent manner:

− u2n+1 ≤ S − S2n ≤ 0, for all n ∈N. (1.55)
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It follows that, for all n ∈N :∣∣∣∣∣∣∣
+∞∑

k=n+1

(−1)kuk

∣∣∣∣∣∣∣ = |S − Sn| ≤ un+1, (1.56)

where S is the sum of the series. �

1.3.3 Absolutely convergent series

Definition 1.3.2. A series with general term un is said to be absolutely convergent

if the series with general term |un| converges.

Proposition 1.3.3. If the numerical series with general term un converges abso-

lutely, then this series is convergent.

Proof. Suppose that the series of general term un converges absolutely. Ap-

plying the Cauchy criterion to the series of general term |un|, we find:

∀ε > 0, ∃n0 ∈N, ∀p, q ∈N, p > q ≥ n0, we have
p∑

k=q+1

|uk| < ε. (1.57)

On the other hand, we have:∣∣∣∣∣∣∣∣
p∑

k=q+1

uk

∣∣∣∣∣∣∣∣ ≤
p∑

k=q+1

|uk| < ε. (1.58)

The series of the general term un then verifies the Cauchy criterion. This

series is therefore indeed convergent. �

Remak 1.4. The converse of this proposition is false. For example, the series with

general term
(−1)n

n
converges, while it does not converge absolutely.

Proposition 1.3.4. Let
∑

n≥0
un be a numerical series with arbitrary terms. Suppose

that there exists a positive numerical sequence verifying:

∃n0 ∈N,∀n ≥ n0, we have |un| ≤ vn, (1.59)

then, if
∑

n≥0
vn converges,

∑
n≥0

un converges absolutely.

Proof. The proof proceeds immediately, using the comparison theorem of

series with positive terms. �
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1.3.4 Semi-convergent series

Definition 1.3.3. A series with general term un is said to be semi-convergent, when

it converges without being absolutely convergent.

We also have the following immediate properties:

Proposition 1.3.5. Suppose that the two series of respective general terms un and

vn are absolutely convergent (respectively semi-convergent), then the sum series

of general term (un + vn) is absolutely convergent (respectively semi-convergent),

and the series produced by a scalar of general term αun is absolutely convergent

(respectively semi-convergent), for all α ∈ k(k = R or C).

Proof. The proof of this proposition proceeds immediately using the Cauchy

criterion. �

Example 1.3.1. It can be easily shown that the alternating Riemann series
∑

n≥1

(−1)n

nα
,

α ∈ R is:

* divergent for all α ≤ 0,

* absolutely convergent, for all α > 1,

* semi-convergent, for all 0 < α ≤ 1.

1.3.5 Additional properties of series convergent

Property 1: Use of the D’Alembert and Cauchy criteria

We know that these two criteria apply a priori to series with positive terms.

Let
∑

n≥0
un be a series with of arbitray sign. We can therefore perfectly use

these criteria with any series of terms, but we must be very careful not to

forget the absolute values.

Let us now suppose that l1 = limn→+∞

∣∣∣∣∣un+1

un

∣∣∣∣∣ exists (respectively

l2 = limn→+∞
n√
|un| exists).

* If l1 < 1 (respect. l2 < 1), the D’Alembert criterion (resp. the Cauchy

criterion) asserts that the series
∑

n≥0
|un| is convergent. The

∑
n≥0

un is then

absolutely convergent.
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* If l1 > 1 (respect. l2 > 1), the D’Alembert criterion (resp. the Cauchy

criterion) asserts that the general term |un| tends to +∞. The series
∑

n≥0
un is

then divergent.

Example 1.3.2. Consider the series of general term un =
(3n + 1

n + 1

)3n

αn, α ∈ R

and n ≥ 0.

We have limn→+∞
n√
|un| = 27 |α| . the Cauchy criterion states that:

1. If |α| <
1
27

, the considered series is absolutely convergent.

2. 1. If |α| >
1
27

, the considered series is divergent.

3. If 1. If |α| =
1

27
, the value absolute of general term becomes

|un| =
(3n + 1

3n + 3

)3n

=
(
1 −

2
3n + 3

)3n

→ exp(−2)(, 0), when n→ +∞,

and the considered series is divergent.

Property 3: Use of Limited Developments

By performing a limited development of the general term un of the series∑
n≥0

un in the neighborhood of infinity at a sufficiently high order (to have an

absolutely convergent remainder), we can quickly conclude on the nature of

this series.

As an example, the series of general term un =
(−1)n

n + (−1)n . We can éwrite:

un =
(−1)n

n
×

1

1 +
(−1)n

n

. (1.60)

By performing the limited development of the function x 7→
1

1 + x
in the

neighborhood of 0, we obtain:

un =
(−1)n

n

(
1 −

(−1)n

n
+

1
n
ε(n)

)
=

(−1)n

n
−

1
n2 +

(−1)n

n2 ε(n), où ε(n)→ 0, when n→ +∞. (1.61)

We therefore have the sum of two convergent series and an absolutely con-

vergent remainder. The considered series is therefore convergent.
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1.4 Cauchy product of series

Definition 1.4.1. We consider two numerical series with general terms un and vn,

respectively. We call the Cauchy product of these two series the series with general

term:

wn =

n∑
k=0

ukvn−k. (1.62)

Proposition 1.4.1. Let
∑

n≥0
un and

∑
n≥0

un be two absolutely convergent series. Then

the Cauchy product series with general term defined by (1.62) is absolutely conver-

gent, and moreover, we have:∑
n≥0

wn =

∑
n≥0

un

 ×
∑

n≥0

un

 . (1.63)

Proof. For all n ∈N, Let us consider the following partial sums:

Sn =

n∑
k=0

uk,Tn =

n∑
k=0

vn and Rn =

n∑
k=0

wn. (1.64)

Let us also consider the following notations:

S =
∑
n≥0

|un| and T =
∑
n≥0

|vn| . (1.65)

The two sequences (Sn) and (Tn) are convergent, so they satisfy the following

Cauchy criterion:

∀ε > 0, ∃n0 ∈N, ∀p,n ∈N, p > n ≥ n0, we have

∣∣∣∣∣∣∣
p∑

k=n+1

uk

∣∣∣∣∣∣∣ < ε and

∣∣∣∣∣∣∣
p∑

k=n+1

vk

∣∣∣∣∣∣∣ < ε,
(1.66)

On the one hand, R2n − SnTn can be rewritten in the form:

R2n − SnTn = u0(vn+1 + ... + v2n) + u1(vn+1 + ... + v2n−1) + ... + un−1vn+1

+v0(un+1 + ... + u2n) + v1(un+1 + ... + u2n−1) + ... + vn−1un+1.

For all p,n ∈N, p > n ≥ n0, we then have

|R2n − SnTn| ≤ ε

 n∑
k=0

|uk|

n∑
k=0

|vk|


≤ ε(S + T). (1.67)
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So (R2n) is convergent, and furthermore, we have:

lim
n→+∞

R2n = lim
n→+∞

SnTn =

∑
n≥0

un

 ×
∑

n≥0

un

 . (1.68)

On the other hand, for all n ≥ n0, we have:

|R2n+1 − R2n| = |(u0v2n+1 + ... + un+1vn) + (v0u2n+1 + ... + vn+1un)|

≤ ε(S + T), (1.69)

which ensures the convergence of (R2n+1).

Since (R2n) and (R2n+1) are convergent, (Rn) is also convergent, and moreover:

lim
n→+∞

Rn = lim
n→+∞

R2n+1 = lim
n→+∞

R2n =

∑
n≥0

un

 ×
∑

n≥0

un

 . (1.70)

That is to say: ∑
n≥0

wn

 =

∑
n≥0

un

 ×
∑

n≥0

un

 .
�

1.5 Exercises about chapter 1

Exercise 1.5.1. Show that the following numerical series are convergent and cal-

culate their sums:

1)
+∞∑
n=2

1
n(n − 1)

2)
+∞∑
n=0

n2

n!
3 )

+∞∑
n=0

(−1)n+1 cos(nx)
2n , x ∈ R.

Exercise 1.5.2. Study the nature of the following numerical series:

1)
+∞∑
n=1

n sin
(1

n

)
2)

+∞∑
n=1

arctan
( 1

n2

)
3)

+∞∑
n=1

αn

α2n + αn + 1
(α ≥ 0)

4)
+∞∑
n=1

(n + a
n + b

)n2

, a et b ∈ R 5)
+∞∑
n=1

ln(n)
n2 + 2

6)
+∞∑
n=1

1 × 3 × ... × (2n − 1)
2 × 4 × ... × (2n)

7)
∑
n≥1

2n

n2 sin2n(θ), θ ∈
[
0,
π
2

]
8)

exp(inx)
n

, x ∈ R.
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Exercise 1.5.3. Let θ be a real number. Study, according to the value of θ, the

absolute convergence, the semi-convergence and the divergence of the following

numerical series:

1)
+∞∑
n=1

(−1)n

nθ
, 2)

+∞∑
n=1

(2n − 1
n + 1

)2n

θn , 3)
+∞∑
n=1

cos(n)
nθ + cos(n)

.



Chapter 2

Sequences and series of

functions

2.1 Sequences of functions

Let k be one of the fields R or C and let E and F be two non-empty subsets

of k.

Definition 2.1.1. We call a sequence of functions any application fn: N → £,

where £ = £(E,k) is the set of applications of E in F.

2.1.1 Simple convergence of a sequence of func-

tions

In general, to study the simple convergence of a sequence of functions fn(x)

on a subset E of R, we will try to fix the real x and we will study the

corresponding numerical sequence.

Definition 2.1.2. We say that the sequence of functions ( fn)n∈N simply converges

on E to a function f (x0), when the numerical series ( fn(x0))n∈N is convergent, for

23
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all x0 ∈ E. We thus define a function f on the domain E by:

f (x) = lim
n→+∞

fn(x). (2.1)

We will then say that f is the simple limit of the sequence of functions ( fn)n∈N.

Example 2.1.1. Let the sequence of functions fn be defined on R by

fn(x) =
x

x2 + n
, n ∈N. (2.2)

If x = 0, fn(0) = 0, and the sequence converges to 0, and if x , 0, limn→+∞ fn(x) =

limn→+∞
x
n

= 0.

Finally, the sequence fn simply converges on R, and its limit is f (x) = 0.

2.1.2 Uniform convergence of a sequence of func-

tions

Definition 2.1.3. We say that the sequence of functions ( fn)n∈N converges uni-

formly on E to a function f if and only if:

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0 and ∀x ∈ E, we have
∣∣∣ fn(x) − f (x)

∣∣∣ < ε. (2.3)

Remak 2.1. This integer n0 obviously depends only on ε and not on x. On the

other hand, if n0 depends a priori on both x and ε, we will say that the convergence

is simple on E.

Remak 2.2. Uniform convergence on E implies simple convergence on E.

2.1.3 A sufficient condition for uniform conver-

gence (convergence normal

Proposition 2.1.1. Let ( fn)n∈N be a sequence of functions which simply converges

on E to a function f . If there exists a positive sequence (bn) that converges to 0, such

that

∀x ∈ E,
∣∣∣ fn(x) − f (x)

∣∣∣ < bn, (2.4)
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then the sequence of functions ( fn)n∈N is uniformly convergent on E.

In this case, we say that the sequence of functions ( fn)n∈N is normally convergent

on E.

Proof. Suppose that bn tends to 0, when n→ +∞, that is:

∀ε > 0, ∃n0 ∈N, such that ∀n ≥ n0 we have bn <
ε
2

. (2.5)

Since: ∣∣∣ fn(x) − f (x)
∣∣∣ < bn <

ε
2
, for all x ∈ E. (2.6)

We find

sup
x∈E

∣∣∣ fn(x) − f (x)
∣∣∣ ≤ ε

2
< ε, for all x ∈ E. (2.7)

�

2.1.4 A necessary and sufficient condition for uni-

form convergence

Proposition 2.1.2. Let ( fn)n∈N be a sequence of functions that simply converges on

E to a function f . For ( fn)n∈N to be uniformly convergent to f on E, it is necessary

and sufficient that the numerical sequence (an) which is defined by:

an = sup
x∈E

∣∣∣ fn(x) − f (x)
∣∣∣ , (2.8)

is convergent to 0.

Proof. ⇒ Suppose that ( fn)n∈N be uniformly convergent to f , then:

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0 and ∀x ∈ E,
∣∣∣ fn(x) − f (x)

∣∣∣ < ε
2

. (2.9)

As a result:

an = sup
x∈E

∣∣∣ fn(x) − f (x)
∣∣∣ ≤ ε

2
< ε. (2.10)

⇐ Snow let’s assume that an tends to 0, when n→ +∞, we then have:

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0, an < ε. (2.11)
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As a result:∣∣∣ fn(x) − f (x)
∣∣∣ ≤ sup

x∈E

∣∣∣ fn(x) − f (x)
∣∣∣ = an < ε, for all x ∈ E. (2.12)

�

Remak 2.3. A sufficient condition for the sequence of functions ( fn)n∈N not to

converge uniformly to f on E is the existence of a sequence of points (xn) ⊂ E,

verifying: ∣∣∣ fn(xn) − f (xn)
∣∣∣9 0, when n→ +∞. (2.13)

Example 2.1.2. Let the sequence of functions fn be defined on [0, 1] by:

fn(x) = xn(1 − x), n ∈N. (2.14)

* If x = 0 or x = 1, fn(0) = fn(1) = 0, and the sequence converges to 0.

* If x ∈ ]0, 1[ , limn→+∞ fn(x) = 0.

Finally, the sequence fn simply converges on [0, 1] and its limit is the zero function

f (x) = 0.

By performing a simple calculation, we find

sup
x∈[0,1]

∣∣∣ fn(x) − f (x)
∣∣∣ = an, such that an =

1
n + 1

( n
n + 1

)n
. (2.15)

This last quantity is equivalent to the neighborhood of infinity by
1
ne
. Since this

quantity tends to 0, when n tends to +∞, the sequence of functions considered

converges uniformly to 0 on the segment [0, 1] .

2.1.5 Cauchy criterion for uniform convergence

Proposition 2.1.3. For the sequence of functions ( fn)n∈N to be uniformly conver-

gent to f on E, it is necessary and sufficient that:

∀ε > 0, ∃n0 ∈N, ∀p, q ∈N, p > q ≥ n0 and ∀x ∈ E,
∣∣∣ fp(x) − fq(x)

∣∣∣ < ε.
(2.16)
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Proof. ⇒ Suppose that ( fn)n∈N be uniformly convergent to f , then:

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0 and ∀x ∈ E,
∣∣∣ fn(x) − f (x)

∣∣∣ < ε
2

. (2.17)

Let ε > 0, then for all p > q ≥ n0, we have:∣∣∣ fp(x) − fq(x)
∣∣∣ ≤ ∣∣∣ fp(x) − f (x)

∣∣∣ +
∣∣∣ fq(x) − f (x)

∣∣∣
<

ε
2

+
ε
2

= ε, for all x ∈ E.

⇐ Now let’s assume that:

∀ε > 0, ∃n0 ∈N, ∀p, q ∈N, p > q ≥ n0 and ∀x ∈ E,
∣∣∣ fp(x) − fq(x)

∣∣∣ < ε.
(2.18)

Let p tend towards +∞, we fin the result. �

2.1.6 Properties of uniformly convergent sequences

of functions

Continuity of the uniform limit of a sequence of functions

Proposition 2.1.4. Let ( fn) be a sequence of continuous functions on a segment

[a, b] , converging uniformly on the same segment to a function f . Then f is a

continuous function on [a, b] .

Proof. Let x0 be any point of [a, b] .

fn is continuous at the point x0, then:

∀ε > 0, ∃δ > 0, ∀x ∈ [a, b] , |x − x0| < δ⇒
∣∣∣ fn(x) − fn(x0)

∣∣∣ < ε
3

. (2.19)

( fn)n∈N converges uniformly to f , then:

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0 and ∀x ∈ E,
∣∣∣ fn(x) − f (x)

∣∣∣ < ε
3

. (2.20)

We can write:∣∣∣ f (x) − f (x0)
∣∣∣ =

∣∣∣ f (x) − fn(x) + fn(x) − fn(x0) + fn(x0) − f (x0)
∣∣∣∣∣∣ f (x) − fn(x)

∣∣∣ +
∣∣∣ fn(x) − fn(x0)

∣∣∣ +
∣∣∣ fn(x0) − f (x0)

∣∣∣
<

ε
3

+
ε
3

+
ε
3

= ε.
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�

Remak 2.4. Under the conditions of the previous proposition, we can write:

lim
x→x0

lim
n→+∞

fn(x) = lim
n→+∞

lim
x→x0

fn(x) = f (x0). (2.21)

Integration of the uniform limit of a sequence of functions

Proposition 2.1.5. Let ( fn) be a sequence of continuous functions on a segment

[a, b] , converging uniformly on the same segment to a function f . Then f is an

integrable function on [a, b], and moreover:∫ b

a
f (x)dx = lim

n→+∞

∫ b

a
fn(x)dx. (2.22)

Proof. Under the assumptions of proposition 2.1.5, the uniform limit f is also

continuous, which ensures the integrability of fn(x) and f .

( fn)n∈N converges uniformly to f , then:

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0 and ∀x ∈ E,
∣∣∣ fn(x) − f (x)

∣∣∣ < ε
b − a

. (2.23)

We can write:∣∣∣∣∣∣
∫ b

a
fn(x)dx −

∫ b

a
f (x)dx

∣∣∣∣∣∣ ≤
∫ b

a

∣∣∣( fn(x) − f (x
)∣∣∣ dx

<
ε

b − a

∣∣∣∣∣∣
∫ b

a
dx

∣∣∣∣∣∣ = ε.

�

Corollary 2.1.1. Under the assumptions of proposition 2.1.5, we deduce that the

sequence of integrals
(∫ x

a fn(y)dy
)

n
is uniformly convergent to

(∫ x

a f (y)dy
)

n
, for all

x ∈ [a, b] .

Proof. Since the rank n0 in the relation (2.23) does not depend on b, it suffices

to replace b by x. �
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Differentiability of the uniform limit of a sequence of func-

tions

Proposition 2.1.6. Let ( fn) be a sequence of functions defined on a segment [a, b]

and verify the following three conditions:

1. fn, n = 0, 1, ... are of class C1 on a segment [a, b].

2. ( fn) simply converges on the same segment to a function f .

3. The sequence of derivatives ( ˙fn) converges uniformly to a function g.

Then, the sequence of functions ( fn) converges uniformly to a derivable function f

and moreover ˙f = g.

Proof. Since ( ˙fn) is a sequence of continuous functions on a segment [a, b] ,

converging uniformly on the same segment to a function g , then the use

of the proposition of integration affirms that ˙fn is an integrable function on

[a, b], and moreover:

fn(x) = fn(a) +

∫ x

a

˙fn(x)dx. (2.24)

According to Corollary 2.1.1, the sequence
(∫ x

a
˙fn(x)dx

)
fn converges uni-

formly, and the numerical sequence ( fn(a)) is also convergent, ( fn(x)) is

therefore the sum of two uniformly convergent sequences, so it is uniformly

convergent.

We have:

lim
n→+∞

∫ x

a

˙fn(x)dx =

∫ x

a
g(x)dx, (2.25)

On the other hand:

lim
n→+∞

∫ x

a

˙fn(x)dx = lim
n→+∞

(
fn(x) = fn(a)

)
= f (x) − f (a). (2.26)

Using (2.25) and (2.26), we get:∫ x

a
g(x)dx = f (x) − f (a). (2.27)

We derive this last equality, we find:

g(x) = ˙f (x). (2.28)



Smail Kaouache. Courses of Mathematical Analysis 3 (2024/2025) 30

�

Remak 2.5. Under the conditions of the previous proposition, we can write:

lim
n→+∞

(
∂
∂x

fn(x)
)

=
∂
∂x

(
lim

n→+∞
fn(x)

)
= ˙f (x0). (2.29)

2.2 Series of functions

Definition 2.2.1. Let ( fn) be a sequence of functions from E to k. A series of

functions with general term fn is any expression of the form =
∑+∞

k=0 fn(x).

Let Sn(x) =
∑n

k=0 fn(x), n ∈N and x ∈ E.

Sn is called the partial sum of order n of the series
∑

n≥0 fn(x).

2.2.1 Simple convergence

Definition 2.2.2. A series of functions with general term fn is aid to ne simply

convergent on a subset E of R, if for all x ∈ E, the numerical series with general

term fn(x) converges.

If the series simply converges, the term:

Rn(x) = S(x) − Sn(x) =

+∞∑
k=n+1

fn(x), n ∈N and x ∈ E. (2.30)

is called the rest of order n of the series with general term fn.

The convergence of the series of general term fn is then expressed by the convergence

of the sequence of partial sums (Sn(x)). That is to say:

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0 and ∀x ∈ E, |Sn(x) − S(x)| = |Rn(x)| < ε. (2.31)

Example 2.2.1. Let us study the series of functions with a general term

fn(x) =
xn

√
n + 1

, n ≥ 0 and x ∈ R. (2.32)

For x , 0, the d’Alembert criterion gives us limn→+∞

∣∣∣∣∣ fn+1(x)
fn(x)

∣∣∣∣∣ = |x| . The series

converges when |x| < 1 and diverges when |x| > 1.
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If x = −1, the series becomes alternating and verifies the convergence criterion. If

x = 1, it diverges.

Finally, the series of functions simply converges on [−1, 1[ .

2.2.2 Uniform convergence

Definition 2.2.3. A series of functions with general term fn, converges uniformly

on a subset E of R and has the sum S, when the sequence of its partial sums is

uniformly convergent on E, that is:

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0, sup
x∈E
|Sn(x) − S(x)| = sup

x∈E
|Rn(x)| < ε. (2.33)

To say that the sequence of partial sums converges uniformly on E there-

fore means that (Rn)n∈N converges uniformly to 0 on E.

Remak 2.6. We can define a norm of uniform convergence of Sn on E by:

‖Sn‖ = sup
x∈E
|Sn(x)| . (2.34)

The series of functions with a general term fn converges uniformly and with a sum

S if and only if the numerical sequence (‖Sn − S‖)n∈N converges to 0.

2.2.3 Cauchy criterion for uniform convergence

Theorem 2.2.1. For the series of functions with general term fn to be uniformly

convergent on E, it is necessary and sufficient that:

∀ε > 0, ∃n0 ∈N, ∀p, q ∈N, p > q ≥ n0 and ∀x ∈ E, sup
x∈E

∣∣∣∣∣∣∣∣
p∑

k=q+1

fk(x)

∣∣∣∣∣∣∣∣ < ε.
(2.35)

Proof. The proof of this theorem is the same as for sequences by reasoning

on the sequence of partial sums. �

Corollary 2.2.1. The use of the uniform Cauchy criterion is often by its contrapo-

sition, to show that a series of functions does not converge uniformly.
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2.2.4 A necessary condition for uniform conver-

gence

Proposition 2.2.1. For a series of functions to be uniformly convergent, it is

necessary that its general term tends to 0 uniformly.

Proof. It suffices to apply the uniform Cauchy criterion on:∥∥∥ fn
∥∥∥ = sup

x∈E

∥∥∥ fn(x)
∥∥∥ = sup

x∈E
‖Sn(x) − Sn−1‖ . (2.36)

�

2.2.5 A sufficient condition for uniform conver-

gence (Weierstass criterion)

Proposition 2.2.2. (Proposition and definition) Let
∑

n≥0 fn(x) be a series of func-

tions defined on E. If there exists a positive series
∑

n≥0 bn that converges, such

that:

∀x ∈ E,
∣∣∣ fn(x)

∣∣∣ < bn, (2.37)

then the series of functions
∑

n≥0 fn(x) is absolutely and uniformly convergent on E.

In this case, we say that the series of functions ( fn)n∈N is normally convergent on

E.

Proof. From the inequality (2.37) and the comparison theorem, we deduce

absolute convergence.

On the other hand, the numerical series
∑

n≥0 bn converges, that is:

∀ε > 0, ∃n0 ∈N, such thay if∀n ≥ n0

∑
k≥n+1

bk < ε. (2.38)

So

∀ε > 0, ∃n0 ∈N, ∀n ≥ n0

∣∣∣∣∣∣∣ ∑k≥n+1

fk(x)

∣∣∣∣∣∣∣ ≤ ∑
k≥n+1

∣∣∣ fk(x)
∣∣∣ ≤ ∑

k≥n+1

bk < ε. (2.39)

This latter quantity independent of x, the rest of the series
∑

n≥0 fn(x) con-

verges uniformly to 0, the series
∑

n≥0 fn(x) is therefore uniformly conver-

gent. �
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Example 2.2.2. The series of functions
∑

n≥0
sin(nx)
αn , α > 1 is normally convergent

on R, since
∣∣∣∣∣sin(nx)
αn

∣∣∣∣∣ ≤ ( 1
α

)n

, general term of a convergent geometric series.

2.2.6 Necessary and sufficient condition for nor-

mal convergence

Proposition 2.2.3. For the series of functions
∑

n≥0 fn to be normally convergent

on E, it is necessary and sufficient that the numerical series (an) with general term:

an = sup
x∈E

∣∣∣ fn(x)
∣∣∣ , (2.40)

be convergent.

Proof. ⇒When the series of functions
∑

n≥0 fn is normally convergent on E,

there exists a positive convergent series of term bn verifying:

∀x ∈ E,
∣∣∣ fn(x)

∣∣∣ ≤ bn, (2.41)

As result

an = sup
x∈E

∣∣∣ fn(x)
∣∣∣ ≤ bn, (2.42)

and the series
∑

n≥0 an is convergent.

⇐ Now let’s assume that
∑

n≥0 an is convergent, then we have:∣∣∣ fn(x)
∣∣∣ ≤ sup

x∈E

∣∣∣ fn(x)
∣∣∣ = an < ε, x ∈ E, (2.43)

this is the definition of a normally convergent series. �

Example 2.2.3. The series of functions
∑

n≥0 fn(x) defined on [0, 1], such that:

fn(x) =

 xn ln2 x if x ∈ ]0, 1] ,

0, if x = 0
(2.44)

We have:

˙fn(x) = ln(x) (2 + n ln(x)) xn−1 = 0, if x = exp(
−2
π

) = xn. (2.45)
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As result

an = sup
x∈[0,1]

∣∣∣ fn(x)
∣∣∣ = fn(xn) =

4
n2e2 , (2.46)

general term of a convergent series. The series of functions is normally convergent

on [0, 1] .

Proposition 2.2.4. The normal convergence of a series of functions on a subset E

of R implies the uniform convergence of this series on E, and the converse is false.

Proof. When the series of functions
∑

n≥0 fn is normally convergent on E, the

proof proceeds from the inequality:

sup
x∈E

∣∣∣∣∣∣∣∣
p∑

k=q+1

fk(x)

∣∣∣∣∣∣∣∣ ≤
p∑

k=q+1

sup
x∈E

∣∣∣ fk(x)
∣∣∣ (2.47)

and the Cauchy criterion.

The converse of this proposition is false. As an example, we take the series

of functions with a general term

fn(x) =
(−1)n

n + x
, x ∈ [0, 1] and n ≥ 1. (2.48)

This series is uniformly convergent without being normally convergent on

[0, 1].

On the other hand:

|Rn(x)| ≤
∣∣∣ fn+1(x)

∣∣∣ =
1

n + 1 + x
<

1
n + 1

< ε, for all x ∈ [0, 1] , (2.49)

which shows uniform convergence on [0, 1] .

By against:

sup
x∈[0,1]

∣∣∣ fn(x)
∣∣∣ =

1
n
, (2.50)

general term of a divergent series, the series is therefore not normally con-

vergent. �
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2.3 Properties of uniformly convergent se-

ries of functions

2.3.1 Continuity of the sum of a series of functions

Proposition 2.3.1. Let be a series of functions of general term fn, defined on the

interval [a, b], which converges uniformly and of sum S on [a, b]. If fn is continuous

on [a, b], for all n ∈ N, then S is also continuous on [a, b], and moreover, we have

the following éequality:

lim
x→x0

∑
n≥0

fn(x) =
∑
n≥0

lim
x→x0

fn(x) = S(x0), for all x0 ∈ [a, b] , (2.51)

which is a case of inversion of limit and infinite sum.

Proof. It suffices to apply Proposition 2.1.4 to the sequence (Sn) of partial

sums of the series
∑

n≥0 fn, which are continuous as finite sums of continuous

functions. �

Remak 2.7. The condition of uniform convergence of the series of functions is

sufficient but not necessary to ensure the continuity of the sums.

Remak 2.8. When the series of continuous functions of general term fn simply

converges on [a, b] and has as sum a discontinuous function S, then
∑

n≥0 fn does

not converge uniformly on this interval.

Example 2.3.1. The series of general term continuous functions:

fn(x) = sin2(x) cosn(x), x ∈
[
0,
π
2

]
, n ∈N. (2.52)

converges simply on
[
0,
π
2

]
and has the sum:

S(x) =


sin2(x)

1 − cos(x)
, if x ∈

]
0,
π
2

]
0, si x = 0.

(2.53)

Since S is discontinuous at 0,
∑

n≥0 fn does not converge uniformly on
[
0,
π
2

]
.
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2.3.2 Integration of the sum of a series of functions

Proposition 2.3.2. Let a series of functions with general term fn, defined on [a, b],

converges uniformly and with sum S on [a, b]. If fn is continuous on [a, b], for all

n ∈ N, then, the numerical series with general term
∫ b

a fn(x)dx converges and has

the sum
∫ b

a S(x)dx , and moreover, we have the following equality:∫ b

a
S(x)dx =

∑
n≥0

∫ b

a
fn(x)dx =

∫ b

a

∑
n≥0

fn(x)dx

 ,
which is a case of interversion sum and integral.

Proof. It suffices to apply Proposition 2.1.5 to the sequence of partial sums

(Sn)n∈N of the series
∑

n≥0 fn(x). �

Example 2.3.2. Let the series of functions with general term:

fn(x) =
x2n

(2n)!
, x ∈ [0, 1] .

This series converges uniformly on [0, 1] , since
∣∣∣ fn(x)

∣∣∣ ≤ 1
(2n)!

, for all x ∈ [0, 1] .

According to the previous proposition, we then have:∫ x

0

∑
n≥0

x2n

(2n)!
dx

 =
∑
n≥0

∫ x

0

x2n

(2n)!
dx

=
∑
n≥0

x2n+1

(2n + 1)!

= sinh(x), for all x ∈ [0, 1] .

2.3.3 Derivability of the sum of a series of func-

tions

Proposition 2.3.3. We consider a series of general term functions fn, derivable on

the segment [a, b] and verifying:

1. The series of functions
∑

n≥0 fn(x) simply converges on [a, b].

2. The series of derivatives of general term ˙fn converges uniformly on [a, b] and has
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as sum a function g .

Then, the series of general term fn is derivable term by term, and we have:

Ṡ(x) =
∂
∂x

∑
n≥0

fn(x)

 =
∑
n≥0

∂
∂x

fn(x) = g(x),

Proof. It suffices to apply Proposition 2.1.5 to the sequence of partial sums

(Sn)n∈N of the series of general term fn, which are derivable as finite sums of

derivable functions. �

2.4 Exercises about chapter 2

Exercise 2.4.1. Let ( fn) be a sequence of functions defined on the set Ei ∈ R.

Study the simple and uniform convergence of this sequence of functions on Ei in the

following cases:

1. fn(x) =
1 − nx2

1 + nx2 , E1 = [−a, a] , then on E2 = [a,+∞[ (a > 0).

2. fn(x) =
x

1 + nx
, E3 = [0, 1].

3. fn(x) = cos(
5 + nx

n
), E4 = R.

4. fn(x) =
sin(nx)

nx
and fn(0) = 0, E5 = R, then on E6 = [a,+∞[ (a > 0).

Exercise 2.4.2. Let the series of functions with general term:

fn(x) = sin2(x) cosn(x), for n ≥ 1 and x ∈
[
0,
π
2

]
.

1. Prove that the series of functions
∑

fn(x) converges simply on
[
0, π2

]
and calculate

its sum.

2. Is the series uniformly convergent on R?.

Exercise 2.4.3. Let

fn(x) =
x

(1 + x2)n , n ≥ 1 and x ∈ R.

1. Prove that the series of functions
∑

fn(x) converges simply on R and calculate

its sum.

2. Is the series uniformly convergent on R?.
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3. Study the normal convergence on [a, b], then on [a,+∞[ , (0 < a < b).

4. Calculate
∑

n≥1

∫ e

1 fn(x)dx.



Chapter 3

Power series

In this chapter, we will study a power series which are special forms of the

series of functions of real or complex variables. For this, x denotes a real

variable and z a complex variable.

3.1 Real (or complex) power series

Definition 3.1.1. A real (resp. complex) power series is any series of functions

whose general term:

fn(x) = anxn, (3.1)

where a0, a1, ..., an, ... are real numbers and x ∈ R (resp.

fn(x) = anzn, (3.2)

where a0, a1, ..., an, ... are complex numbers and z ∈ C.)

To unify the presentation of the following results, we consider the case

where x ∈ R.

Lemma 3.1.1. (Abel’s Lemma) If the power series
∑

anxn converges at the point

x0 , 0, then it converges absolutely for all x ∈ R, such that |x| < x0.

39
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Proof. Since the power series
∑

anxn
0 converges, its general term is bounded,

there then exists M > 0, such that:

for all n ∈N,
∣∣∣anxn

0

∣∣∣ ≤M. (3.3)

For all x ∈ R, such that |x| < x0, we thus have:

|anxn
| =

∣∣∣anxn
0

∣∣∣ × ∣∣∣∣∣ x
x0

∣∣∣∣∣n
≤ M

∣∣∣∣∣ x
x0

∣∣∣∣∣n , (3.4)

and
∣∣∣∣∣ x
x0

∣∣∣∣∣n is the general term of a convergent geometric series (
∣∣∣∣∣ x
x0

∣∣∣∣∣ < 1); we

deduce that the series
∑

anxn converges absolutely. �

3.1.1 Radius of convergence of a power series

Theorem 3.1.1. (theorem and definition) If a power series
∑

anxn converges to the

point x0 , 0, then there exists a unique element R ∈ R+ ∪ {+∞} verifying the

following two conditions:

1. For all x ∈ R, such that |x| < R, the power series
∑

anxn absolutely converges .

2. For all x ∈ R, such that |x| > R, the power series
∑

anxn diverge.

The number R is called the radius of convergence of the series, and the set ]−R,R[

is called the interval of convergence.

Proof. Suppose there exists at least one real x0 , 0, such that the series
∑

anxn
0

converges and one real x1 such that the series
∑

anxn
1 diverges.

Since absolute convergence on [0,R[ implies convergence on ]−R, 0], and

divergence on ]R,+∞[ implies divergence on ]−∞,−R[, we will study the

nature of
∑

anxn on R+.

Let us then consider the set D of positive reals defined by:

D =
{
x ∈ R+,

∑
anxn converge.

}
(3.5)

Since the series
∑

anxn
0 converges, D is therefore non-empty.

According to the relation (3.5), the set D is majorized, it therefore admits a

non-zero upper bound R = supx∈R+
D.
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1. Prove that for all x ∈ R+, such that x < R, the power seires
∑

anxn

converges absolutely.

The second property of the upper bound states that there exists r = x0

between x and R, such that
∑

anxn converges at the point x0, so according to

Abel, it is absolutely convergent for all x ∈ R+, such that x < x0.

2. Let us now show that for all x ∈ R+, such that x > R, the power series∑
anxn diverges.

Suppose by contradiction that
∑

anxn converges, and consider y =
R + x

2
.

Since 0 < y < x, Abel’s lemma states that the series
∑

anyn converges, y is

therefore a point of convergence, that is y ∈ D. Consequently y ≤ R, and

this is false, because by construction y =
R + x

2
> R, and the series

∑
anxn

diverges. �

3.1.2 Cauchy-Hadamard rule

Theorem 3.1.2. The radius of convergence of a power series
∑

anxn is given by:

R = lim
n→+∞

(√
|an|

)−1
( when this limit exists ). (3.6)

Proof. It suffices to apply the Cauchy criterion on the series of functions∑
|anxn

| �

Example 3.1.1. The power series
∑

n≥1(
n + 1

n
)n2 xn

3.1.3 D’Alembert’s rule

Theorem 3.1.3. The radius of convergence of a power series
∑

anxn is given by:

R = lim
n→+∞

(∣∣∣∣∣an+1

an

∣∣∣∣∣)−1

( when this limit exists ). (3.7)

Proof. It suffices to apply D’Alembert’s criterion on the series of functions∑
|anxn

| �

Example 3.1.2. The integer series
∑

n≥1
n!
nn xn has for the radius of convergence

R = e.
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3.1.4 Normal convergence (Weierstrass rule)

Theorem 3.1.4. Any power series
∑

anxn converges normally in any compact

contained in the domain of convergence ]−R,R[ (R > 0).

Proof. Let [−α, α] ⊂ ]−R,R[ (α > 0). In the segment [−α, α] , the series
∑

anxn

is bounded above in absolute value by the positive series
∑
|an|αn, which is

convergent, the series
∑

anxn is therefore normally convergent. �

3.2 Properties of power series

3.2.1 Continuity of the sum of a power series

Theorem 3.2.1. Let
∑

anxn be a power series with a non-zero radius of convergence

R; then the sum of the series S(x) =
∑

anxn is a continuous function on any compact

set contained in the domain of convergence ]−R,R[.

Proof. For all n ∈ N, each function fn(x) = anxn is continuous on [−α, α] of

]−R,R[ and the series
∑

anxn converges uniformly on [−α, α] .By the property

of the continuity of series of functions, the sum of the integer series
∑

anxn

is a continuous function. �

Theorem 3.2.2. (Abel’s Theorem) Let
∑

anxn be a power series with radius of

convergence R. If this series converges for x = R (resp. for x = −R), then this series

is uniformly convergent on [0,R] (resp. on [−R, 0] ) and the sum S of this series is

continuous t̀o the left of x = R (resp. t̀o the right of x = −R), that is:

lim
x→R−

∑
anxn =

∑
anRn = S(R), (3.8)

(resp.

lim
x→−R+

∑
anxn =

∑
an(−1)nRn = S(−R). (3.9)

Proof. We demonstrate this in the case where the series converges for x = R.

Consider the new power series
∑

n≥0 anRnyn of the variable y ∈ [0, 1].
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For y = 1, the series becomes
∑

n≥0 anRn, which is convergent, so it is uni-

formly convergent.

Let us now assume that y ∈ [0, 1[ . We use the Abel transformation, we can

write: ∑
n≥0

anRnyn =
∑
n≥0

(a0 + a1R + ... + anRn)
(
yn
− yn+1

)
(3.10)

We can then see the series with terms general:

gn(y) = (a0 + a1R + ... + anRn)
(
yn
− yn+1

)
.

We just need to show that this series is uniformly convergent.

Indeed: ∣∣∣gn(y)
∣∣∣ =

∣∣∣∣(a0 + a1R + ... + anRn)
(
yn
− yn+1

)∣∣∣∣
≤ M(yn

− yn+1), (3.11)

because yn
− yn+1

≥ 0 ((yn) is decreasing) and the sequence of general term∑n
k=0 akRk is bounded.

For all y ∈ [0, 1[, the sequence of general term yn converges uniformly

to 0, hence according to the telescopic property, the series
+∞∑
n≥1

(yn
− yn+1)

is uniformly convergent. The comparison theorem therefore asserts the

uniform convergence of the series
+∞∑
n≥0

gn. It follows that the initial series

+∞∑
n≥0

anRnyn is uniformly convergent on [0, 1[ .

We then deduce the uniform convergence of
+∞∑
n≥0

anRnyn on [0, 1] .

Since each function anRnyn is continuous on [0, 1] , it results in the continuity

of the sum of this series on [0, 1] , and moreover:

+∞∑
n≥0

anRnyn =

 S(yR), if y ∈ [0, 1[∑
n≥0 anRn, if y = 1.

(3.12)

Continuity on the left at y = 1, then gives us:

lim
y→1−

S(yR) = S(R) =
∑
n≥0

anRn (3.13)

�
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3.2.2 Derivability of power series

Theorem 3.2.3. Let
+∞∑
n≥0

anxn be a power series of non-zero radius of convergence R,

then its sum S is a function derivable on any compact [a, b] contained in the domain

of convergence ]−R,R[, and for any x ∈ [a, b], we have:

Ṡ(x) =
∂
∂x

 +∞∑
n≥0

anxn

 =

+∞∑
n≥0

∂
∂x

(anxn) =

+∞∑
n≥1

nanxn−1. (3.14)

Proof. It suffices to show that the power series
+∞∑
n≥0

anxn and its derivative

series
+∞∑
n≥1

nanxn have the same radius of convergence R; then the theorem

of derivation of series of functions applies since a power series converges

uniformly on any compact contained in the domain of convergence. Indeed,

let R be the radius of convergence of the series
∑

(n + 1)an+1xn.

1. If |x| < R, the series
∑

(n + 1)an+1xn is convergent.

Since: ∣∣∣an+1xn+1
∣∣∣ ≤ ∣∣∣(n + 1)an+xn+1

∣∣∣ = (n + 1) |an+xn
| |x| , (3.15)

the series
∑ ∣∣∣an+xn+1

∣∣∣ is convergent, the series
∑

an+1xn+1( or simply
∑

anxn)

is therefore convergent.

2. If |x| > R, the series
∑

(n + 1)an+1xn is divergent. Let y =
R + |x|

2
∈ ]R, |x|[,

the series
∑

(n + 1)an+1yn diverges and its general term is not bounded.

We can write: ∣∣∣an+1xn+1
∣∣∣ =

∣∣∣(n + 1)an+1yn
∣∣∣ 1

n + 1

(
|x|
y

)n

. (3.16)

Since
|x|
y
> 1, limn→+∞

1
n+1

(
|x|
y

)n

= +∞, so limn→+∞

∣∣∣an+1xn+1
∣∣∣ , 0.

The series
∑

an+1xn+1( or simply
∑

anxn) is therefore divergent. �

Corollary 3.2.1. Let
+∞∑
n≥0

anxn be a power series of non-zero radius of convergence

R, then its sum S is an infinitely derivable function on any compact contained in

the domain of convergence ]−R,R[, and for any x ∈ ]−R,R[ and k ≥ 1 we have:

S(k)(x) =

+∞∑
n≥0

(n + k)(n + k − 1)...(n + 1)an+kxn. (3.17)
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Proof. It suffices to show by recurrence that the series
+∞∑
n≥0

(n+k)(n+k−1)...(n+

1)an+kxn, k = 1, 2, .... have the same radius of convergence R. �

3.2.3 Integration of a power series

Theorem 3.2.4. Any power series
+∞∑
n≥0

anxn is term by term integrable over any

compact contained in the domain of convergence ]−R,R[ . In particular, its sum S

verifies: ∫ x

0
S(t)dx =

+∞∑
n≥0

an
xn+1

n + 1
, for all x ∈ ]−R,R[ . (3.18)

Proof. Let x ∈ ]−R,R[ . Since the power series
+∞∑
n≥0

anxn converges uniformly

on [0, x] , the sum S is then a continuous function, , and therefore integrable

on [0, x]. The Equ. (3.18) is therefore well defined. Moreover, if we derivate

the series (3.18), we find:

S(x) =

+∞∑
n≥0

anxn, for all x ∈ ]−R,R[ . (3.19)

The two integer series
+∞∑
n≥0

anxn and
+∞∑
n≥1

nanxn then have the same convergence

radius R . �

Example 3.2.1. Consider the power series of general term:

anxn =
xn

n
, n ≥ 1. (3.20)

The d’Alembert criterion shows that this series is absolutely convergent on ]−1, 1[

and has the sum S.

For all x ∈ ]−1, 1[ , the series
+∞∑
n≥1

anxn is derivable term by term. We then have:

Ṡ(x) =

+∞∑
n≥0

xn =
1

1 − x
, for all x ∈ ]−1, 1[ . (3.21)

S is continuous on [0, x], so it is integrable on this interval. We then have:

S(x) = − ln(1 − x). (3.22)
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On the other hand, if x = −1, the numerical series
+∞∑
n≥1

(−1)n

n
converges, we can then

apply Abel’s theorem 3.2.2, we deduce that:

+∞∑
n≥1

(−1)n

n
= − ln 2. (3.23)

3.3 Sums and products of power series

3.3.1 Sum of two power series

Let
∑

anxn and
∑

bnxn be two power series with radius of convergence Ra

and Rb respectively, we then have:

Proposition 3.3.1. The radius of convergence R of the power series
∑

(an + bn)xn

verifies:

R ≥ inf(Ra,Rb), if Ra = Rb. (3.24)

R = inf(Ra,Rb), if Ra , Rb

Moreover, for all |x| < inf(Ra,Rb), we have:∑
(an + bn)xn =

∑
anxn +

∑
bnxn. (3.25)

Proof. 1. When |x| < inf(Ra,Rb), the two series
∑

anxn and
∑

bnxn are conver-

gent, the series
∑

(an + bn)xn is therefore convergent, we deduce that:

R ≥ inf(Ra,Rb). (3.26)

Let Ra , Rb. Suppose for example that Ra < Rb, and let x ∈ R, such that

Ra < |x| < Rb, the series
∑

anxn is therefore divergent while the series
∑

bnxn

is convergent. The series
∑

(an + bn)xn is then divergent, and moreover:

R ≤ Ra = inf(Ra,Rb). (3.27)

From (3.26) and (3.27), we deduce that R = inf(Ra,Rb).

2. If Ra = Rb, we cannot conclude anything about the radius of convergence
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of the series
∑

(an + bn)xn.

As an example, the two power series
∑( n

n + 1

)n
xn and −

∑( n
n + 1

)n
xn have

the same radius of convergence Ra = Rb = e,while the sum series is the series

with a zero general term, and therefore R = +∞. �

3.3.2 Product of two power series

Proposition 3.3.2. The radius of convergence R of the series with general term:

cnxn =

 n∑
k=0

akbn−k

 xn (3.28)

verifies R ≥ inf(Ra,Rb). In addition, for all |x| < inf(Ra,Rb), we have:

∑
n≥0

cnxn =

∑
n≥0

anxn

 ×
∑

n≥0

bnxn

 . (3.29)

Proof. let |x| < inf(Ra,Rb). Since the two series
(∑

n≥0 anxn) and
(∑

n≥0 bnxn) are

absolutely convergent, the Cauchy product series of general term:

n∑
k=0

(
akxk

) (
bn−kxn−k

)
=

 n∑
k=0

akbn−k

 xn,

is also absolutely convergent, and for all |x| < inf(Ra,Rb), we have:

∑
n≥0

cnxn =
∑
n≥0

 n∑
k=0

(
akxk

) (
bn−kxn−k

) =

∑
n≥0

anxn

 ×
∑

n≥0

bnxn

 . (3.30)

�

3.4 Functions developable in a power se-

ries ( Taylor series )

In this section, we will study the problem in reverse.
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3.4.1 Functions developable in a power series

Definition 3.4.1. Let x0 be a given real number and let f : R → R be a function

defined in the neighborhood of x0. We say that f is developable in a power series

at the point x0, if there exists a power series
∑

n≥0 anxn with radius of convergence

R > 0, such that:

for all x ∈ R, |x − x0| < R, f (x) =
∑
n≥0

an(x − x0)n (3.31)

By performing the change of variable X = x − x0, we then speak of a function that

is developable in a power series at the origin.

Definition 3.4.2. A function f of a complex variable z is said to be developable in

a power series at the point z0, if there exists a power series
∑

n≥0 an(z − z0)n, with

radius of convergence R > 0, such that:

for all z ∈ C, |z − z0| < R, f (z) =
∑
n≥0

an(z − z0)n. (3.32)

Definition 3.4.3. If f is indefinitely differentiable, the power series with general

term
f (k)(0)

k!
xn is called Taylor series of f .

3.4.2 Necessary condition for development in power

series

Theorem 3.4.1. When a function f is developable in power series, then f is of

class C+∞ on any compact contained in the domain of convergence ]−R,R[ and f

coincides with its Taylor series. Moreover, if the power series development exists it

is unique.

Proof. Suppose that f is developable in a power series at the origin, then

there exists a power series
∑

n≥0 anxn with a non-zero radius of convergence

R, such that:

for all x ∈ R, |x| < R, we have f (x) =
∑
n≥0

anxn = S(x), (3.33)
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where S is the sum of this series.

According to the theorem of the derivation of power series, we deduce that

f is of class C+∞ on ]−R,R[ and moreover:

f (k)(x) =

+∞∑
n≥0

(n + k)(n + k − 1)...(n + 1)an+kxn. (3.34)

It follows that:

f (k)(0) = akk!, i.e. ak =
f (k)(0)

k!
, (3.35)

which ensures the uniqueness of the development. �

Remak 3.1. The converse of the previous theorem is false. Indeed, the condition that

f is of class C+∞ on any compact contained in the domain of convergence ]−R,R[,

is not sufficient to ensure that this function is developable in a power series, even if

its Taylor series converges. As an example, we consider the function f defined onR

by:

f (x) =

 exp(−
1
x2 ), si x > 0,

0, si x ≤ 0.
(3.36)

By recurrence, we can easily verify that this function is of class C+∞ onR. Moreover

for all k ∈ N, the derivative of order k of f at point 0 is zero. So, if we assume

that f is developable in a power series, its development is the zero series, which is

impossible since f (x) , 0, for all x ∈ ]−R,R[ .

3.4.3 Sufficient condition for development in power

series

Theorem 3.4.2. Let f be an indefinitely derivable function on an interval ]− r,+r[.

A sufficient condition for f to be developable in a power series is the following:

∃M > 0, ∀n ∈N,∀x ∈] − r,+r[,
∣∣∣ f (n)(x)

∣∣∣ ≤M. (3.37)

In addition, for all x ∈] − r,+r[, we have:

f (x) =

+∞∑
n≥0

f (n)(0)
n!

xn. (3.38)
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Proof. Since f is indefinitely derivable on ]−r,+r[, the formula of Mac-Laurin

gives:

f (x) =

n∑
k=0

f (k)(0)
n!

xk +
xn+1

(+1)!
f (n+1)(θx), θ ∈ ]0, 1[ . (3.39)

It is enough to show that limn→+∞
xn+1

(+1)!
f (n+1)(θx) = 0. Indeed, by hypothesis,

we can write:

0 ≤

∣∣∣∣∣∣ xn+1

(+1)!
f (n+1)(θx)

∣∣∣∣∣∣ ≤M

∣∣∣∣∣∣ xn+1

(n + 1)!

∣∣∣∣∣∣ . (3.40)

Since
xn+1

(n + 1)!
is the general term of a convergent series, we therefore have:

lim
n→+∞

xn+1

(n + 1)!
= 0. (3.41)

Consequently:

lim
n→+∞

xn+1

(+1)!
f (n+1)(θx) = 0. (3.42)

The function f is indeed the sum of its Taylor series on ] − r,+r[. �

3.5 Development in power series of usual

functions

3.5.1 The sine and cosine functions

These two functions are of class C+∞ on R. By recurrence, we can easily

verify that their n th derivatives are:

sin(n)(x) = sin(x + n
π
2

) (3.43)

cos(n)(x) = cos(x + n
π
2

), (3.44)

are indeed majored by M = 1, for all x ∈ R. They are therefore developable

in power series on R, which means that R = +∞. We therefore have:

sin(x) =
∑
n≥0

(−1)n

(2n + 1)!
x2n+1, for all x ∈ R. (3.45)

cos(x) =
∑
n≥0

(−1)n

(2n)!
x2n, for all x ∈ R. (3.46)
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3.5.2 The exponential function x 7→ exp(x)

This function is of class C+∞ on any interval ]−r, r[ . By recurrence, we can

easily verify that its n th derivative is also equal to exp(x), and is well

bounded above exp(r). It is therefore developable in a power series on any

interval ]−r, r[. Since r is arbitrary, we deduce that R = +∞. We therefore

have:

exp(x) =
∑
n≥0

xn

n!
, for all x ∈ R. (3.47)

3.5.3 The logarithm function x 7→ ln(1 − x)

The function x 7→
1

1 − x
is developable in a power series on ]−1, 1[ . Indeed,

let (xn)n∈N be a geometric sequence, we can write:

1
1 − x

=

n∑
k=0

xk +
xn+1

1 − x
, x ∈ R/ {1} . (3.48)

We deduce that:
1

1 − x
=

∑
n≥0

xn, x ∈ ]−1, 1[ . (3.49)

Integrating term to term, we obtain:

ln(1 − x) = −
∑
n≥0

xn+1

n + 1
, x ∈ [−1, 1[ (because

∑
n≥0

(−1)n+1

n + 1
converge). (3.50)

Remak 3.2. The techniques of the previous parts can be applied to obtain other

developments from these cases. These techniques are adapted to the following func-

tions:

cosh(x) =
exp(x) + exp(−x)

2
=

∑
n≥0

x2n

(2n)!
, x ∈ R. (3.51)

sinh(x) =
exp(x) − exp(−x)

2
=

∑
n≥0

x2n+1

(2n + 1)!
, x ∈ R. (3.52)

1
ax + b

=
1
b

1

1 − (−
a
b

x)
=

1
b

∑
n≥0

(−1)n(
a
b

)nxn, x ∈
]
−

∣∣∣∣∣ba
∣∣∣∣∣ , ∣∣∣∣∣ba

∣∣∣∣∣[ and a, b , 0. (3.53)

1
1 + x2 =

1
1 + (−x2)

=
∑
n≥0

(−1)nx2n, x ∈ ]−1, 1[ . (3.54)
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arctan(x) =

∫ x

0

dt
1 + t2 =

∑
n≥0

(−1)nx2n+1

2n + 1
, x ∈ [−1, 1] . (3.55)

arg th(x) =
1
2

ln(
1 + x
1 − x

) =
∑
n≥0

x2n+1

2n + 1
, x ∈ [−1, 1[ . (3.56)

3.5.4 Rational functions

The decomposition of a rational function into simple elements and the use

of the power series development of the function x 7→ f (x) =
1

1 − x
, allow us

to develop a rational function in a power series.

Example 3.5.1. We consider the rational function f (x) =
1

2 − x
.

We then have

f (x) = −
1
2
×

1
1 − x

2
= −

1
2

∑
n≥0

(x
2

)n
, x ∈ ]−2, 2[ . (3.57)

3.6 Application to the resolution of cer-

tain differential equations

We will present here an example of a differential equation, a method that

allows us to find a solution in the form of a function that can be developed

in a power series over a certain interval ]−r, r[ .

Let us then consider the differential equation:

2xẏ + y −
1

1 − x
= 0. (3.58)

Suppose there exists a power series y(x) =
∑

n≥0 anxn with radius of conver-

gence r > 0.

For all x ∈ ]−1, 1[,
1

1 − x
= 1 +

∑
n≥1

xn. (3.59)

So, we have:

2xẏ + y −
1

1 − x
= a0 +

∑
n≥0

(2n + 1)anxn
−

1 +
∑
n≥1

xn

 = 0. (3.60)
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We deduce that:

a0 = 1 and an =
1

2n + 1
. (3.61)

Therefore:

y(x) =
∑
n≥0

xn

2n + 1
, ]−1, 1[ (3.62)

3.7 Exercises about chapter 3

Exercise 3.7.1. Give the radius of convergence and calculate the sum of each of the

following power series:

1) f1(x) =

+∞∑
n=0

anxn 2) f2(x) =

+∞∑
n=0

(n + 1)xn

3) f3(x) =

+∞∑
n=0

n2xn 4) f4(x) =

+∞∑
n=0

(−1)n 2n

n + 1
xn .

Exercise 3.7.2. Let the power series
+∞∑
n=2

xn

n(n − 1)
.

1. Find the radius of convergence of this series and calculate its sum S.

2. By passing to the suitably justified limit, calculate S(1) and S(−1).

Exercise 3.7.3. Consider a power series with general term antn, radius of con-

vergence R > 0, and sum S. We assume that S is a solution of the differential

equation:

(1 + t2) f (̈t) = 2 f (t).

1) Establish a relation linking for each n ∈N the coefficients an and an+2.

2) Determine the value of a4 then of a2p , for all p > 2.

3) We now assume that S(0) = 0 and Ṡ(0) = 1. Calculate a0, a2 and the value of

a2p+1, for all p ∈N.

4) Prove that the power series with general term antn converges normally on the

interval [−1,+1]. What is its radius of convergence?

5) Let g(0) = 0 and g(t) =
Ṡ(t) − 1

t
for t , 0. Calculate the derivative ġ of g (we

will find a simple rational fraction).

6) Deduce from 5) an explicit expression of the function S.
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Exercise 3.7.4. Let f (t, x) =
x sin(t)

x2 + 1 − 2x cos(t)
.

1) Develop f into a power series according to the powers of x.

2) Calculate
π∫

0
f (t, x)dt.



Chapter 4

Fourier series

4.1 Periodic functions

Definition 4.1.1. Let f be a function defined on R. We say that f is periodic with

period T (or T−periodic), if and only if:

f (x + T) = f (x), for all x ∈ R. (4.1)

Corollary 4.1.1. Let f be a T−periodic function. We then have the following

properties:

1. The number −T is also a period of f .

2. The number nT, n ∈ Z is also a period of f .

Proof. 1. Since f is a T−periodic function, we can then write:

f (x − T) = f (x − T + T)

= f (x), for x ∈ R. (4.2)

55
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2. If n ≥ 0, by recurrence, we can write:

f (x + nT) = f (x + (n − 1)T + T) = f (x + (n − 1)T)

= ...

...

...

= f (x + T) = f (x), for all x ∈ R. (4.3)

Now, suppose that n < 0. Since −T is also a period of f , using the previous

proof gives:

f (x + nT) = f (x + (−n)(−T)) = f (x), for all x ∈ R. (4.4)

�

Proposition 4.1.1. Let f be a T-periodic function, then the function g defined on

R by g(x) = f (αx + β) (α , 0) is
T
α

- periodic.

Proof. Since f is T−periodic, we can write

g
(
x +

T
α

)
= f

[
α
(
x +

T
α

)
+ β

]
= f (αx + β + T) = f (αx + β) = g(x). (4.5)

�

Proposition 4.1.2. Let f be a T−periodic function and integrable on an interval

[λ, λ + T] (interval of length T), then we have:∫ λ+T

λ
f (x)dx =

∫ T

0
f (x)dx, for all λ ∈ R. (4.6)

Proof. Indeed:∫ λ+T

λ
f (x)dx =

∫ T

λ
f (x)dx +

∫ λ+T

T
f (x)dx

=

∫ T

λ
f (x)dx +

∫ λ+T

T
f (x − T)dx (because − T is also a period of f )

=

∫ T

λ
f (x)dx +

∫ λ

0
f (x)dx (by posing x − T = X)

=

∫ T

0
f (x)dx, for all λ ∈ R. (4.7)

�
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4.2 Trigonometric series

Definition 4.2.1. A trigonometric series is a series of functions that can be written

in the form:
a0

2
+

∑
n≥1

an cos
(nπx

l

)
+ bn sin

(nπx
l

)
, (4.8)

where (an)n and (bn)n are two sequences of scalars, real or complex, T = 2l is the

period of the series.

Definition 4.2.2. (Complex form of a trigonometric series) Since sin 0 = 0, we can

assume that b0 = 0.

cn =
an − ibn

2
and c−n =

an + ibn

2
, (4.9)

the expression (4.8) can be rewritten in the complex form:∑
n∈Z

cn exp
(
i
nπx

l

)
. (4.10)

Thus, a trigonometric series can be considered as a series of functions in C of the

form
∑

n∈Z cn exp
(
i
nπx

l

)
.

4.2.1 Rules of convergence

Proposition 4.2.1. 1) If the series
∑

n≥1 an and
∑

n≥1 bn are absolutely convergent,

then the trigonometric series (4.8) is normally (therefore uniformly) convergent on

R, and its sum is a continuous function on R.

2) If the sequences (an) and (an) are positive, decreasing and converge to 0, the

trigonometric series (4.8) simply converges on R − 2lZ and it is uniformly con-

vergent on any interval of the form [2kπ + λ, 2(k + 1)π − λ], where k ∈ Z and

0 < λ < π.

Proof. 1) We can write:∣∣∣∣∣an cos
(nπx

l

)
+ bn sin

(nπx
l

)∣∣∣∣∣ ≤ |an| + bn, for all x ∈ R. (4.11)

The trigonometric series (4.8) is therefore normally convergent on R and

therefore uniformly convergent on R by the Weierstrass criterion.
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The continuity of the sum of this series occurs because the functions x 7→

an cos
(nπx

l

)
+ bn sin

(nπx
l

)
are continuous and the series (4.8) is uniformly

convergent.

2) This is an immediate consequence of Abel’s criterion. �

4.2.2 Calculation of coefficients of a trigonometric

series

Proposition 4.2.2. Suppose that the numerical series
∑

n≥1 an and
∑

n≥1 bn are

absolutely convergent, and let S be the sum of the trigonometric series (4.8). Then

the coefficients of this series are given by:

an =
1
l

∫ l

−l
S(x) cos

(nπx
l

)
dx, n ≥ 0, (4.12)

bn =
1
l

∫ l

−l
S(x) sin

(nπx
l

)
dx, n ≥ 1, (4.13)

Proof. We multiply the general term of the trigonometric series (4.8) by

cos
(mπx

l

)
or by sin

(mπx
l

)
and under the following inequalities:∣∣∣∣∣[an cos

(nπx
l

)
+ bn sin

(nπx
l

)]
cos

(mπx
l

)∣∣∣∣∣ ≤ |an| + |bn| , x ∈ R, (4.14)∣∣∣∣∣[an cos
(nπx

l

)
+ bn sin

(nπx
l

)]
sin

(mπx
l

)∣∣∣∣∣ ≤ |an| + |bn| , x ∈ R, (4.15)

we can ensure the uniform convergence of the following series of functions:∑
n≥1

[
an cos

(nπx
l

)
+ bn sin

(nπx
l

)]
cos

(mπx
l

)
(4.16)

and ∑
n≥1

[
an cos

(nπx
l

)
+ bn sin

(nπx
l

)]
sin

(mπx
l

)
(4.17)

Therefore, we can integrate term by term.

The properties (4.12) and (4.13) are therefore consequences of the following

calculation:∫ l

−l
cos

(nπx
l

)
cos

(mπx
l

)
dx =

∫ l

−l
sin

(nπx
l

)
sin

(mπx
l

)
dx = 0, n , m, (4.18)
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∫ l

−l
cos2

(nπx
l

)
dx =

∫ l

−l
sin2

(nπx
l

)
dx = l, (4.19)∫ l

−l
cos

(nπx
l

)
sin

(mπx
l

)
dx =

∫ l

−l
cos

(mπx
l

)
sin

(nπx
l

)
dx = 0, n,m ≥ 1.

(4.20)

�

We can now define the Fourier series of a periodic function.

4.3 Fourier series

Definition 4.3.1. Let f be a function defined on R, 2l−periodic and integrable on

the interval [−l, l].We call the Fourier series of f and we denote SF( f ) the trigonomic

series:
a0

2
+

∑
n≥1

an cos
(nπx

l

)
+ bn sin

(nπx
l

)
. (4.21)

The numbers an and bn defined by:

an =
1
l

∫ l

−l
f (x) cos

(nπx
l

)
dx, n ≥ 0, (4.22)

bn =
1
l

∫ l

−l
f (x) sin

(nπx
l

)
dx, n ≥ 1, (4.23)

are called Fourier coefficients of f .

Corollary 4.3.1. To calculate the Fourier coefficients of a function, we can calculate

the integrals over any interval of the type [λ, λ+2l] instead of [−l, l], and the Fourier

coefficients become:

an =
1
l

∫ λ+2l

λ
f (x) cos

(nπx
l

)
dx, n ≥ 0, (4.24)

bn =
1
l

∫ λ+2l

λ
f (x) sin

(nπx
l

)
dx, n ≥ 1, (4.25)

Proof. This is an immediate consequence of the Proposition 4.1.2 . �
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4.3.1 Fourier series of even or odd functions

Proposition 4.3.1. 1) If f is even on R, the Fourier coefficients are given by: bn = 0, for n ≥ 1

an =
2
l

∫ l

0 f (x) cos
(nπx

l

)
dx, n ≥ 0.

(4.26)

2) If f is odd on R, the Fourier coefficients are given by: an = 0, n ≥ 0,

bn =
2
l

∫ l

0 f (x) sin
(nπx

l

)
dx, for n ≥ 1.

(4.27)

Proof. 1) Since f is even, we can then write:

an =
1
l

∫ l

−l
f (x) cos

(nπx
l

)
dx

=
1
l

[∫ 0

−l
f (x) cos

(nπx
l

)
dx +

∫ l

0
f (x) cos

(nπx
l

)
dx

]
=

1
l

[∫ 0

l
f (−x) cos

(
−

nπx
l

)
d(−x) +

∫ l

0
f (x) cos

(nπx
l

)
dx

]
=

1
l

[∫ l

0
f (x) cos

(nπx
l

)
dx +

∫ l

0
f (x) cos

(nπx
l

)
dx

]
=

2
l

∫ l

0
f (x) cos

(nπx
l

)
dx.

On the other hand, if f is even on R, the function f sin
(nπ

l
x
)

is odd for all

n ≥ 1, and therefore:

bn =
1
l

∫ l

−l
f (x) sin

(nπx
l

)
dx = −

1
l

∫
−l

l
f (x) sin

(nπx
l

)
d(−x)

= −
1
l

∫ l

−l
f (x) sin

(nπx
l

)
d(x) = −

1
l

bn,

Therefore bn = 0, for all n ≥ 1.

2) The proof is analogous for the case where f is odd. �

Example 4.3.1. Consider the f 2π -periodic function defined by:

f (x) = x, x ∈ ]−π, π[ . (4.28)
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f is odd, so for all n ≥ 0, an = 0, and

bn =
2
π

∫ π

0
x sin (nx) dx = 2

(−1)n−1

n
, n ≥ 1. (4.29)

The Fourier series of f is therefore:

SF( f (x)) = 2
∑
n≥1

(−1)n−1

n
sin (nx) . (4.30)

Example 4.3.2. Consider the f 2π -periodic function defined by:

f (x) = x2, x ∈ [−π, π] . (4.31)

f is even, so for all n ≥ 0, bn = 0, and

a0 =
2
π

∫ π

0
x2dx = 4

π2

3
, an =

2
π

∫ π

0
x2 cos (nx) dx = 4

(−1)n

n
, n ≥ 1. (4.32)

The Fourier series of f is therefore:

SF( f (x)) =
2
3
π2 + 4

∑
n≥1

(−1)n

n2 cos (nx) . (4.33)

4.3.2 Riemann-Lebesgue Lemma (Necessary Con-

vergence Condition)

Lemma 4.3.1. Let f be a function integrable on an interval [a, b], we then have:

lim
n→+∞

∫ b

a
f (x) cos

(nπx
l

)
dx = lim

n→+∞

∫ b

a
f (x) sin

(nπx
l

)
dx = 0.

Proof. It is enough to show that:

lim
n→+∞

∫ b

a
f (x) exp

(
i
nπx

l

)
dx = 0. (4.34)

Suppose that f is integrable on [a, b], that is, that there exists a subdivision

of the interval [a, b] by a finite number of points:a = x0 < x1 < < xn = b and

a staircase function ϕ defined by ϕ(x) = m j, x ∈
[
x j−1, x j

[
, j = 1, 2, ...,n, such

that: ∣∣∣ f (x) − ϕ(x)
∣∣∣ ≤ ε

2(b − a)
, for all ε > 0. (4.35)
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We can write :∫ b

a

∣∣∣∣∣[ f (x) − ϕ(x)
]

exp
(
i
nπx

l

)∣∣∣∣∣ dx ≤
∫ b

a

∣∣∣ f (x) − ϕ(x)
∣∣∣ < ε, for all ε > 0. (4.36)

Therefore:

lim
n→+∞

∫ b

a
f (x) exp

(
i
nπx

l

)
dx = lim

n→+∞

∫ b

a
ϕ(x) exp

(
i
nπx

l

)
dx

= lim
n→+∞

n∑
j=1

∫ x j

x j−1

m j exp
(
i
nπx

l

)
dx

=

n∑
j=1

lim
n→+∞

∫ b

a
m j exp

(
i
nπx

l

)
dx

=

n∑
j=1

lim
n→+∞

[
m jl
nπ

exp
(
i
nπx

l

)]b

a

= 0 (4.37)

�

Corollary 4.3.2. Let f be a function defined on R, 2l−periodic and integrable on

[−l, l], then the sequences of Fourier coefficients (an) and (an) converge to 0 when

n→ +∞.

4.3.3 Dirichlet Theorem (Sufficient Convergence

Condition)

In this section, we will study a case of convergence of Fourier series.

Definition 4.3.2. Let f be a function defined on an interval [a, b]. We say that f is

piecewise continuous on [a, b] , if there exists a subdivision
{[

x j−1, x j

[
, j = 1, 2, ...,n

}
of [a, b] such that:

1. f is continuous on each interval
[
x j−1, x j

[
, j = 1, 2, ...,n.

2. f admits discontinuities of the first kind at the points x j, j = 1, 2, ...,n.

We recall that f admits a discontinuity of the first kind at a point x0, when it admits

at this point a right limit f (x+
0 ) and a left limit f (x−0 ), such that f (x+

0 ) , f (x−0 ).
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Definition 4.3.3. We say that f is of class C1 piecewise on [a, b] , if there exists a

subdivision
{[

x j−1, x j

[
, j = 1, 2, ...,n

}
of [a, b] such that:

1. f is of class C1 on each interval
[
x j−1, x j

[
, j = 1, 2, ...,n.

2. f admits right-hand derivatives and left-hand derivatives at the points x j,

j = 1, 2, ...,n which are distinct..

Definition 4.3.4. (Dirichlet kernel) We call the Dirichlet kernel the function

Dn dédefined by:

Dn(x) =


sin

((
n +

1
2

)
πx
l

)
2 sin

(
πx
2l

) , if x , 2ml, m ∈ Z

n +
1
2
, if x = 2ml, m ∈ Z.

(4.38)

Proposition 4.3.2. The Dirichlet kernel Dn has the following properties:

1. Dn is an even and periodic function of period 2l.

2. Dn is a continuous function on R .

3. Dn can be represented by the formula:

Dn(x) =
1
2

+

n∑
k=1

cos(
kπx

l
), x ∈ R, (4.39)

and furthermore, we have:
1
l

∫ l

0
Dn(x)dx =

1
2
. (4.40)

Proof. 1. Dn is an even function (obvious).

On the other hand, for any x , 2ml, m ∈ Z, we have:

Dn(x + 2l) =
sin

[(
n +

1
2

)
πx
l

+ (2n + 1)π
]

2 sin
(
πx
2l

+ π
)

=
− sin

((
n +

1
2

)
πx
l

)
−2 sin

(
πx
2l

) =
sin

((
n +

1
2

)
πx
l

)
2 sin

(
πx
2l

)
= Dn(x). (4.41)
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The function Dn is therefore 2l -periodic.

2. It suffices to show that Dn is continuous at the point x0 = 0. Indeed,

lim
x→0

Dn(x) = lim
x→0

sin
((

n +
1
2

)
πx
l

)
2 sin

(
πx
2l

)

= lim
x→0

sin
((

n +
1
2

)
πx
l

)
(
n +

1
2

)
πx
l

×

πx
2l

sin
(
πx
2l

) ×
(
n +

1
2

)
πx
l

2 ×
πx
2l

= n +
1
2

= Dn(0).

By periodicity of the function Dn, we then deduce that Dn is continuous at

all points x = 2ml, m ∈ Z. Therefore Dn is continuous on R.
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3. For all x , 2ml, m ∈ Z, we have:

Dn(x) =
1
2

+

n∑
k=1

cos(k
πx
l

) =
1
2

+<

 n∑
k=1

exp(ik
πx
l

)


=

1
2

+<

exp(i
πx
l

)


1 − exp(in

πx
l

)

1 − exp(i
πx
l

)




=
1
2

+<

exp(i
πx
l

)


1 − cos

(nπx
l

)
− i sin

(nπx
l

)
1 − cos(

πx
l

) − i sin(
πx
l

)




=
1
2

+<

exp(i
πx
l

)


2 sin2(

nπx
2l

) − 2i cos
(nπx

2l

)
sin

(nπx
2l

)
2 sin2

(
πx
2l

)
− 2i cos

(
πx
2l

)
sin

(
πx
2l

)



=
1
2

+<

exp(i
πx
l

)


cos

(nπx
2l

)
+ i sin

(nπx
2l

)
cos

(nπx
2l

)
+ i sin

(nπx
2l

)



sin
(nπx

2l

)
sin

(nπx
2l

)



=
1
2

+<

exp
(
i
(n + 1

2

)
πx
l

) 
sin(

nπx
2l

)

sin(
nπx
2l

)




=
1
2

+ cos
((n + 1

2

)
πx
l

) 
sin

(nπx
2l

)
sin

(nπx
2l

)


=
1
2

+
1
2


sin

((2n + 1
2

)
πx
l

)
− sin

(
πx
2l

)
sin

(
πx
2l

)


=
sin

((
n +

1
2

)
πx
l

)
sin

(
πx
2l

) = Dn(x). (4.42)

If x = 2ml, m ∈ Z, we have:

Dn(x) =
1
2

+

n∑
k=1

cos(2kmπ) =
1
2

+ n. (4.43)

In addition, we have:

1
l

∫ l

0
Dn(x)dx =

1
2l

∫ l

0
dx +

1
l

n∑
k=1

∫ l

0
cos(

kπx
l

)dx =
1
2
. (4.44)
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�

Here is now the Dirichlet theorem:

Theorem 4.3.1. (Dirichlet theorem) Let f be a 2l− periodic function of class C1

piecewise on R, then the Fourier series of f converges simply at every point x of

R − 2lZ and has the sum:

S(x) =
f (x+) + f (x−)

2
. (4.45)

Moreover, if f is continuous, the Fourier series of f converges uniformly on R and

S(x) = f (x), for all x ∈ R.

Proof. Let’s consider for all n ∈N, the sequence of partial sums of the Fourier

series:

Sn(x) =
a0

2
+

n∑
k=1

an cos(
nπx

l
) + bn sin(

nπx
l

). (4.46)

Let x be any point of R. It is enough to demonstrate:

lim
n→+∞

Sn(x) =
f (x+) + f (x−)

2
. (4.47)
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Indeed:

Sn(x) =
a0

2
+

n∑
k=1

an cos
(nπx

l

)
+ bn sin

(nπx
l

)
=

1
2l

∫ l

−l
f (t)dt +

n∑
k=1

∫ l

−l
f (t)

(
cos

(nπt
l

)
cos

(nπx
l

)
+ sin

(nπx
l

)
sin

(nπx
l

))
dt

=
1
l

∫ l

−l
f (t)

1
2

+

n∑
k=1

cos
(

nπ (t − x)
l

) dt

=
1
l

∫ l

−l
f (t)Dn (t − x) dt

=
1
l

∫ l−x

−l−x
f (x + y)Dn

(
y
)

dy (using change y = t − x)

=
1
l

∫ l

−l
f (x + y)Dn

(
y
)

dy (By Proposition 4.1.2)

=
1
l

(∫ 0

−l
f (x + y)Dn

(
y
)

dy +

∫ l

0
f (x + y)Dn

(
y
)

dy
)

=
1
l

∫ l

0

(
f (x − y) + f (x + y)

)
Dn

(
y
)

dy (by making the change u 7→ −u ).

(4.48)

The use of formulas
1
l

∫ l

0 Dn(y)dy =
1
l

∫ l

0


sin

((
n +

1
2

) πy
l

)
2 sin

(πy
2l

)
 dy =

1
2

, we get:

Sn(x) −
f (x+) + f (x−)

2
=

1
l

∫ l

0

(
f (x − y) + f (x + y)

) 
sin

((
n +

1
2

) πy
l

)
2 sin

(πy
2l

)
 dy +

−

(
f (x+) + f (x−)

2l

) ∫ l

0


sin

((
n +

1
2

) πy
l

)
sin

(πy
2l

)
 dy.

=
1

2π

∫ l

0

f (x − y) − f (x−)
y

×

πy
l

sin
(πy

2l

) × sin
((

n +
1
2

) πy
l

)
dy +

+
1

2π

∫ l

0

f (x + y) − f (x+)
y

×

πy
l

sin
(πy

2l

) × sin
((

n +
1
2

) πy
l

)
dy.
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Since the function f is of class C1 piecewise and lim

πy
2l

sin
(πy

2l

) = 1, the

functions:

y 7→
f (x − y) − f (x−)

y
×

πy
l

sin
(πy

2l

) and y 7→
f (x + y) − f (x+)

y
×

πy
l

sin
(πy

2l

) ,
(4.49)

are bounded.

The result is therefore a consequence of the Riemann-Lebesgue lemma. �

4.3.4 Parseval’s formula

Theorem 4.3.2. Let f be a function defined on R, periodic of period 2l, integrable

on [−l, l] and let

f (x) =
a0

2
+

∑
n≥1

(
an cos

(nπx
l

)
+ bn sin

(nπx
l

))
, (4.50)

Then Parseval’s formula is given by:

1
l

∫ l

−l
f 2(x)dx =

a2
0

2
+

∑
n≥1

(
a2

n + b2
n

)
. (4.51)

Proof. We demonstrate this theorem when∑
n≥1

an cos
(nπx

l

)
+ bn sin

(nπx
l

)
, (4.52)

is uniformly convergent. Let us then assume that the numerical series
∑

n≥1 an

and
∑

n≥1 bn are absolutely convergent, and let (Sn) be the sequence of partial

sums of the Fourier series such that

Sn(x) =
a0

2
+

n∑
k=1

(
ak cos

(
kπx

l

)
+ bk sin

(
kπx

l

))
. (4.53)

For all x ∈ R, we have: ∣∣∣ f (x) − Sn(x)
∣∣∣ ≤ ∑

k≥n+1

|ak + bk| , (4.54)
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quantity tending towards 0, when n→ +∞. We deduce:∣∣∣ f 2(x) − S2
n(x)

∣∣∣ =
∣∣∣ f (x) − Sn(x)

∣∣∣ ∣∣∣ f (x) + Sn(x)
∣∣∣

≤

∣∣∣ f (x) − Sn(x)
∣∣∣ × 2

∣∣∣ f (x)
∣∣∣

≤ 2
∑

k≥n+1

|ak + bk|

∣∣∣∣a0

2

∣∣∣∣ +
∑
k≥1

|ak + bk|

→ 0, when n→ +∞.

(4.55)

The sequence of functions S2
n is therefore uniformly convergent towards f 2.

This uniform convergence allows us to write:

1
l

∫ l

−l
f 2(x)dx = lim

n→+∞

(
1
l

∫ l

−l
S2

n(x)dx
)
. (4.56)

Using the properties (4.18), (4.19), (4.20) and the fact that: n∑
i=1

αi


2

=

n∑
i=1

α2
i + 2

n∑
i, j=1i, j

αiα j, (4.57)

1
l

∫ l

−l

a2
0

4
dx =

a2
0

2
, (4.58)

we can clearly deduce that

1
l

∫ l

−l
S2

n(x)dx =
a2

0

2
+

n∑
k=1

(
a2

k + b2
k

)
, (4.59)

By making n tend to +∞, the expression (4.56), becomes

1
l

∫ l

−l
f 2(x)dx =

a2
0

2
+

∑
n≥1

(
a2

n + b2
n

)
. (4.60)

�

Remak 4.1. The preceding Parseval theorem remains true even if f is not the sum

of its Fourier series.

4.4 Some applications of Fourier series

The use of the continuity of the sum of the Fourier series on certain intervals

and Parseval’s theorem gives us remarkable new identities:
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Indeed, in the example 4.3.1, the Fourier series of x is given by:

SF(x) = 2
∑
n≥1

(−1)n−1

n
sin (nx) . (4.61)

x0 =
π
2

is a point of continuity, we then have
π
2

= 2
∑

n≥1
(−1)n−1

n
sin

(
n
π
2

)
,

so ∑
n≥0

(−1)n

2n + 1
=
π
4

(4.62)

On the other hand, using Parseval’s theorem gives us

1
π

∫ π

−π
x2dx =

2
3
π2 = 4

∑
n≥1

1
n2 . (4.63)

So: ∑
n≥1

1
n2 =

π2

6
. (4.64)

Similarly, in example 4.3.1, the Fourier series of x2 is given by:

SF(x2) =
2
3
π2 + 4

∑
n≥1

(−1)n

n2 cos (nx) . (4.65)

x0 = 0 is a point of continuity, we then have 0 =
2
3
π2 + 4

∑
n≥1

(−1)n

n2 , hence

∑
n≥1

(−1)n

n2 = −
π2

6
(4.66)

On the other hand, using Parseval’s theorem gives us:

1
π

∫ π

−π
x4dx =

2
5
π4 =

2
9
π4 + 16

∑
n≥1

1
n4

 , (4.67)

So: ∑
n≥1

1
n4 =

π4

90
. (4.68)

4.5 Exercises about chapter 4

Exercise 4.5.1. Consider the function 2π-periodic f defined by:

f (x) = |x| , x ∈ [−π, π] . (4.69)
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1. Represent f .

2. Prove that f is developable in Fourier series and explain its sum on [−π, π].

3. Deduce:

a)
∑
n≥0

1
(2n + 1)2 , b)

∑
n≥1

n≥1

1
n2 , c)

∑
n≥0

1
(2n + 1)4 , d)

∑
n≥1

1
n4 .

Exercise 4.5.2. Consider the 2π-periodic even function f defined by:

f (x) = x − π, x ∈ [0, π] . (4.70)

1. Represent f .

2. Prove that f is developable in a Fourier series and explain its sum on [−π, π] .

3. Deduce the sum of the series
∑

n≥0

1
(2n + 1)2 by choosing a particular value of x.

4) Calculate by applying Parseval’s formula the sum
∑

n≥0

1
(2n + 1)4 .

Exercise 4.5.3. Let α be a non-integer real number and let f be the 2π− periodic

function defined on R by:

f (x) = cos (αx) , x ∈ [−π, π] . (4.71)

1. Prove that f is developable in a Fourier series and determine this series.

2. Is the Fourier series of f uniformly convergent on R?

3. Deduce the following identities:

a)
π

sin (απ)
=

1
α

+ 2α
∑
n≥0

(−1)n

α2 − n2 .

b) π cot (α) =
1
α

+ 2α
∑
n≥0

1
α2 − n2 .

c)
π2

sin2 (απ)
=

∑
n∈Z

1

(α − n)2 .



Chapter 5

Generalized (improper)

integrals

This chapter mainly consists in generalizing the notion of Riemann inte-

grals to unbounded functions defined on intervals that are not necessarily

bounded.

5.1 Convergence of generalized integrals

Definition 5.1.1. Let f : [a, b[(or b = +∞)→ R be a locally integrable function on

[a, b[ (i.e. its restriction to each compact of [a, b[ is Riemann-integrable), and let F

be the function defined on [a, b[ by:

F(x) =

∫ x

a
f (t)dt, for all x ∈ [a, b[ . (5.1)

We say that the generalized integral
∫ b

a f (t)dt converges, if and only if limx→b− F(x)

exists. Otherwise, we say that the integral
∫ b

a f (t)dt diverges.

Remak 5.1. Let f : [a, b[(or b = +∞)→ R be a locally integrable function on [a, b[.

For all c ∈ [a, b[, we can write:∫ b

a
f (t)dt =

∫ c

a
f (t)dt +

∫ b

c
f (t)dt. (5.2)

72
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Since
∫ c

a f (t)dt always converges (Riemann integral), the generalized integrals∫ b

a f (t)dt and
∫ b

c f (t)dt are therefore of the same nature.

Definition 5.1.2. Now, let f : ]a, b](or a = −∞)→ R (or C ) be a locally integrable

function on ]a, b] and let F be the function defined on ]a, b] by:

F(x) =

∫ b

x
f (t)dt, for all x ∈ ]a, b] . (5.3)

The generalized integral
∫ b

a f (t)dt is said to be convergent if and only if limx→a+ F(x)

exists. Otherwise, the integral
∫ b

a f (t)dt is said to diverge.

Definition 5.1.3. Let f be a locally integrable function on ]a, b[où a ∈ R ∪ {−∞}

and b ∈ R ∪ {+∞} and let c ∈ ]a, b[.

The generalized integral
∫ b

a f (t)dt is said to be convergent, if and only the two gen-

eralizedl integrals
∫ c

a f (t)dt and
∫ b

c f (t)dt are convergent. Otherwise, this integral

is said to be divergent.

Example 5.1.1. Consider the generalized integral
∫ +∞

0

dt
t2 . Since:

∫ 1

x

dt
t2 = −1 +

1
x
→ +∞, when x→ 0+, (5.4)

the integral
∫ 1

0

dt
t2 diverges, however∫ x

1

dt
t2 = 1 −

1
x
→ 1, when x→ +∞. (5.5)

So the integral
∫ +∞

1

dt
t2 converges. We deduce that the integral

∫ +∞

0

dt
t2 diverges.

Proposition 5.1.1. Let f and g be two locally integrable functions on [a, b[ .

1. If the integrals
∫ b

a f (t)dt and
∫ b

a g(t)dt converge, then the integral
∫ b

a

(
f (t) + g(t)

)
dt

is also converged, and moreover:∫ b

a

(
f (t) + g(t)

)
dt =

∫ b

a
f (t)dt +

∫ b

a
g(t)dt. (5.6)

On the other hand, if one of the two integrals
∫ b

a f (t)dt or
∫ b

a g(t)dt diverges, then∫ b

a

(
f (t) + g(t)

)
dt diverges.
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2. Let α ∈ R, then the integral
∫ b

a f (t)dt converges if and only if the integral∫ b

a α f (t)dt also converges and moreover:∫ b

a
α f (t)dt = α

∫ b

a
f (t)dt. (5.7)

Proposition 5.1.2. The proof of this proposition is based on the linearity of Riemann

integrals and on the theorems on the sum and product of limits.

5.2 Integration formulas for generalized

integrals

The following two theorems are very useful in the study of generalized

integrals:

5.2.1 Integration by parts

Theorem 5.2.1. Let f and g be two functions of class C1 on ]a, b[. If the integral∫ b

a
˙f (t)g(t)dt converges and if the function f g has a limit on the right of a and a

limit on the left of b, then the integral
∫ b

a f (t)ġ(t)dt converges and we have:∫ b

a

˙f (t)g(t)dt =
(

lim
x→b−

f (x)g(x) − lim
x→a+

f (x)g(x)
)
−

∫ b

a

˙f (t)g(t)dt (5.8)

Proof. It is based on the fact that the function f g is the primitive of the

function ˙f g + f ġ on the compact interval [a, x] and on the fact that the

function f g has a limit on the right of a and a limit on the left of b, �

5.2.2 Change of variables

Theorem 5.2.2. Let f be a continuous function on ]a, b[ and let ϕ be a bijective

function of class C1 on
]
α, β

[
, verifying a = limx→α+ ϕ(x) and b = limx→β− ϕ(x).

Then the integrals
∫ b

a f (t)dt and
∫ β
α
ϕ̇(x) f (ϕ(x))dx are of the same nature, moreover,
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if they converge, we have:∫ b

a
f (t)dt =

∫ β

α
ϕ̇(x) f (ϕ(x))dx. (5.9)

Proof. It is based on the change of variable t = ϕ(x) and the fact that a =

limx→α+ ϕ(x) et b = limx→β− ϕ(x).

�

5.3 Generalized integral of functions of

constant sign

In the following, we are interested in the case where the functions f and g

are locally integrable and of constant sign on the interval [a, b[ or ]a, b] .

In particular, we will state all the results in the case where the functions f

and g are positive. If the functions f and g are negative, we will study the

integral of the functions − f and −g.

Theorem 5.3.1. Let f be a positive and locally integrable function on [a, b[. Then

the integral
∫ b

a f (t)dt converges if and only if the function

x 7→ F(x) =

∫ x

a
f (t)dt, x ∈ [a, b[ , (5.10)

is majorized [a, b[, and moreover, we have

for all x ∈ [a, b[ ; F(x) ≤
∫ b

a
f (t)dt, (5.11)

Proof. Since f is positive, the function F is therefore increasing. But for

limx→b− F(x) to exist, it is necessary and sufficient that F be majorised and we

have:

F(x) =

∫ x

a
f (t)dt ≤

∫ b

a
f (t)dt. (5.12)

�
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5.3.1 Comparison of generalized integrals of two

positive functions

Theorem 5.3.2. (comparison theorem) Let f and g be two positive and locally

integrable functions on [a, b[ or ]a, b] verifying:

0 ≤ f (t) ≤ g(t). (5.13)

1. If the integral
∫ b

a g(t)dt is convergent, then the integral
∫ b

a f (t)dt is also conver-

gent, and we have: ∫ b

a
f (t)dt ≤

∫ b

a
g(t)dt. (5.14)

2. If the integral
∫ b

a f (t)dt is divergent, then the integral
∫ b

a g(t)dt is also divergent.

Proof. To prove this theorem, suppose for example that f and g are defined

on [a, b[ .

For all x ∈ [a, b[ , we have

F(x) =

∫ x

a
f (t)dt ≤

∫ x

a
g(t)dt = G(x). (5.15)

1. If the integral
∫ b

a g(t)dt is convergent, G is majorized, F is also majorized,

hence the result.

2. If the integral
∫ b

a f (t)dt diverges, this means that limx→b− F(x) = +∞, so

limx→b− G(x) = +∞ and the integral
∫ b

a g(t)dt diverges. �

Corollary 5.3.1. Let f and g be two positive and locally integrable functions on

[a, b[ verifying:

f (t) = O(g(t)), when t→ b−. (5.16)

1. If the integral
∫ b

a g(t)dt is convergent, then the integral
∫ b

a f (t)dt is also convergent

2. If the integral
∫ b

a f (t)dt is divergent, then the integral
∫ b

a g(t)dt is also divergent.

Proof. By definition f (t) = O(g(t)), when t→ b− if and only if:

∃t0 ∈ [a, b[ , and ∃c > 0, such that ∀t ∈ [t0, b[ , we have f (t) ≤ cg(t). (5.17)

The rest of the proof follows immediately from Theorem 5.3.2. �
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Corollary 5.3.2. Let f and g be two positive and locally integrable functions on

[a, b[ verifying:

lim
t→b−

f (t)
g(t)

= 0. (5.18)

1. If the integral
∫ b

a g(t)dt is convergent, then the integral
∫ b

a f (t)dt is also convergent

2. If the integral
∫ b

a f (t)dt is divergent, then the integral
∫ b

a g(t)dt is also divergent.

Proof. By definition limt→b−
f (t)
g(t)

= 0 if and only if:

∀ε > 0,∃t0 ∈ [a, b[ , such that ∀t ∈ [t0, b[ , on a
f (t)
g(t)

< ε. (5.19)

The rest of the proof follows immediately from the theorem 5.3.2, taking

ε = 1. �

5.3.2 Generalized integral of two positive equiva-

lent functions

Definition 5.3.1. Recall that two functions f and g are equivalent in the neigh-

borhood of a point t0, if and only if:

lim
t→t0

f (t)
g(t)

= 1. (5.20)

Theorem 5.3.3. Let f and g be two positive functions equivalent to the end of the

integration interval [a, b[ or ]a, b] . Then the two integrals
∫ b

a f (t)dt and dt
∫ b

a g(t)dt

are of the same nature.

Proof. Suppose for example that f and g are defined on [a, b[ .

By definition, limt→b
f (t)
g(t)

= 1⇔ if and only if:

∀ε > 0,∃α ∈ [a, b[ , such that ∀t ∈ [α, b[ , (1−ε)g(t) ≤ f (t) ≤ (1+ε)g(t). (5.21)

For ε =
1
2

fixed, we then have:

∀t ∈ [α, b[ ,
1
2

g(t) ≤ f (t) ≤
3
2

g(t). (5.22)
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We can therefore apply the theorem 5.3.2: If
∫ b

a g(t)dt converges,
∫ b

a f (t)dt also

converges by the inequality on the right and if
∫ b

a f (t)dt converges,
∫ b

a g(t)dt

also converges by the inequality on the left.

We make an analogous demonstration to show that if one of the integrals

diverges, then the same is true for the other. �

Proposition 5.3.1. (Riemann functions)

1. Let f be a locally integrable function on [1,+∞[. Then the Riemann integral∫ +∞

1

dt
tα

converges if and only if α > 1.

2. Now, let f be a locally integrable function on ]0, 1] . Then the Riemann integral∫ 1

0

dt
tα

converges if and only if α < 1.

Proof. 1. A simple calculation, we find:

∫ x

1

dt
tα

dt =


1

1 − α

( 1
xα−1 − 1

)
, if α , 1,

ln x, if α = 1.

These functions admit finite limits in the neighborhood of infinity only in

the case where α > 1.

2. Similarly, for x ∈ ]0, 1[

∫ 1

x

dt
tα

dt =


−1

1 − α

( 1
xα−1 − 1

)
, if α , 1,

− ln x, if α = 1.
(5.23)

These functions admit finite limits in the neighborhood of zero only in the

case where α < 1. �

Remak 5.2. Using a change of variable t 7→ t − t0, allows us to also apply the

preceding arguments to the functions t 7→
1

(t − t0)α
on the half-open intervals

]t0, b] and [b,+∞[, such that b > t0.
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5.4 General convergence criteria

5.4.1 Cauchy criterion

Theorem 5.4.1. Let f a locally integrable function on [a, b[. For the integral∫ b

a f (t)dt to be convergent, it is necessary and sufficient that:

∀ε > 0,∃δ > 0, ∀x, y ∈ [a, b[, b − δ < x < y < b,
∣∣∣∣∣∫ y

x
f (t)dt

∣∣∣∣∣ < ε. (5.24)

Proof. It suffices to apply the Cauchy criterion to the function x 7→ F(x) =∫ x

a f (t)dt and the fact that F(x) − F(y) =
∫ y

x f (t)dt. �

5.4.2 Abel-Dirichlet criterion

Lemma 5.4.1. Let f be a function of class C1, positive, decreasing on [a, b[ and

tends to 0 when x tends to b, and let g be a continuous function on [a, b[ verifying

the property:

∃M > 0,∀x, y ∈ [a, b[ ,
∣∣∣∣∣∫ y

x
g(t)dt

∣∣∣∣∣ ≤M. (5.25)

Then the integral
∫ b

a f (t)g(t)dt converges, and for all x ∈ [a, b[, we have:∣∣∣∣∣∣
∫ b

x
f (t)g(t)dt

∣∣∣∣∣∣ ≤M f (x). (5.26)

Proof. By definition, we have:

lim
x→b−

f (x) = 0⇔ ∀ε > 0,∃δ > 0, ∀x ∈ [b − δ, b[ , f (x) <
ε
M
. (5.27)

Now let x be fixed in [a, b[ and let G(y) =
∫ y

x g(t)dt.

By doing an integration by parts, we obtain:∫ y

x
f (t)g(t)dt = f (y)G(y) +

∫ y

x
(− ˙f (t))G(t)dt. (5.28)
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So for all y ≥ x ≥ a, we have:∣∣∣∣∣∫ y

x
f (t)g(t)dt

∣∣∣∣∣ ≤ ∣∣∣ f (y)G(y)
∣∣∣ +

∫ y

x

∣∣∣(− ˙f (t))G(t)
∣∣∣ dt

≤ M f (y) +

∫ y

x
(− ˙f (t))Mdt

= M f (y) + M f (x) −M f (y)

= M f (x). (5.29)

Using the inequality (5.27), we find:∣∣∣∣∣∫ y

x
f (t)g(t)dt

∣∣∣∣∣ < ε. (5.30)

The Cauchy criterion then allows us to assert that the integral
∫ b

a f (t)g(t)dt

converges. Moreover, by making y tend towards b in the inequality (5.30),

we obtain the inequality (5.26). �

5.5 Absolute convergence or semi-convergence

Let f be a locally integrable function on [a, b[.

Definition 5.5.1. The integral
∫ b

a f (t)dt is said to converge absolutely if and only

if the integral
∫ b

a

∣∣∣ f (t)
∣∣∣ dt converges.

Definition 5.5.2. The integral
∫ b

a f (t)dt is said to be semi-convergent when it is

convergent without being absolutely convergent.

Theorem 5.5.1. If the integral
∫ b

a f (t)dt converges absolutely, then
∫ b

a f (t)dt con-

verges and moreover: ∣∣∣∣∣∣
∫ b

a
f (t)dt

∣∣∣∣∣∣ ≤
∫ b

a

∣∣∣ f (t)
∣∣∣ dt. (5.31)

Proof. The proof proceeds using the Cauchy criterion and the fact that:∣∣∣∣∣∫ y

x
f (t)dt

∣∣∣∣∣ ≤ ∫ y

x

∣∣∣ f (t)
∣∣∣ dt, x, y ∈ [a, b[ (5.32)

�



Smail Kaouache. Courses of Mathematical Analysis 3 (2024/2025) 81

Example 5.5.1. Consider the function f defined on
[
π
2
,+∞

[
by f (x) =

sin t
t2 .

For all t ≥
π
2

, we have: ∣∣∣∣∣∫ y

x
f (t)dt

∣∣∣∣∣ ≤ 1
t2 . (5.33)

Since the integral
∫ +∞
π
2

dt
t2 converges, we deduce that

∫ +∞
π
2

f (t)dt converges abso-

lutely, so it converges.

The following theorem is widely used in practice.

Theorem 5.5.2. Let f be a locally integrable function on the interval [a,+∞[,

where a > 0, such that there exists α > 1 verifying limt→+∞ tα
∣∣∣ f (t)

∣∣∣ = 0. Then the

integral
∫ +∞

a f (t)dt converges absolutely.

Proof. By definition:

lim
t→+∞

tα
∣∣∣ f (t)

∣∣∣ = 0⇔ ∀ε > 0,∃A > a such that ∀t ∈ [A,+∞[ ,
∣∣∣ f (t)

∣∣∣ < ε
tα
.

Since the Riemann integral
∫ +∞

a

dt
tα

converges, using the comparison theorem

5.3.2 shows the absolute convergence of the integral
∫ +∞

a f (t)dt . �

5.6 Generalized integrals and numerical

series

In this section, we will give some results specifying the link between gener-

alized integrals and numerical series.

Theorem 5.6.1. Let f be a locally integrable function on the interval [a,+∞[. Then

the following properties are equivalent:

1. The integral
∫ +∞

a f (t)dt converges.

2. The numerical sequence with general term F(xn) =
xn∫
a

f (x)dt converges, , where

(xn)n is a sequence of elements of [a,+∞[ with limit +∞, when n→ +∞.

3. The numerical series with term general un =
xn+1∫
xn

f (x)dt converges, where (xn)n

is a sequence of elements of [a,+∞[ with limit +∞, when n→ +∞.



Smail Kaouache. Courses of Mathematical Analysis 3 (2024/2025) 82

Proof. Let’s show 1⇒ 2. For all x ∈ [a,+∞[, the integral
∫ +∞

a f (t)dt converges

if and only:

∀ε > 0,∃δ > 0,∀x ≥ δ, we have

∣∣∣∣∣∣
∫ +∞

a
f (t)dt −

∫ x

a
f (t)dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ +∞

x
f (t)dt

∣∣∣∣∣∣ < ε.
(5.34)

Let now (xn)n be a sequence of élements of [a,+∞[ of limit +∞,when n→ +∞,

i.e.

∀A > 0,∃n0 ∈N,∀n ≥ n0, xn ≥ A (5.35)

Let’s take A = δ, so for all n ≥ n0, and for all xn ≥ δ, we have:∣∣∣∣∣∣
∫ +∞

a
f (t)dt − F(xn)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ +∞

a
f (t)dt −

∫ xn

a
f (t)dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ +∞

x
f (t)dt

∣∣∣∣∣∣ < ε. (5.36)

Hence the sequence F(xn) =
xn∫
a

f (n)dt converges.

Let us now show 2 ⇒ 1. Suppose that F(xn) =
xn∫
a

f (x)dt converges and that

the integral
∫ +∞

a f (t)dt does not converge, we then have:

∃ε > 0,∀δ > 0, we can find x > δ, such that

∣∣∣∣∣∣
∫ +∞

a
f (t)dt −

∫ x

a
f (t)dt

∣∣∣∣∣∣ ≥ ε.
(5.37)

As a result, we can find a sequence of elements (xn) of [a,+∞[verifying::∣∣∣∣∣∣
∫ +∞

a
f (t)dt −

∫ xn

a
f (t)dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ +∞

a
f (t)dt − F(xn)dt

∣∣∣∣∣∣ ≥ ε,
which contradicts the hypothesis that (F(xn))n converges.

Finally, let us show that 2⇔ 3. For all n ∈N :

F(xn) =

xn∫
a

f (n)dt =

x0∫
a

f (n)dt +

n−1∑
k=0

xk+1∫
xk

f (n)dt. (5.38)

Therefore the numerical sequence (F(xn))n converges if and only if the series

of general term un =
xn+1∫
xn

f (n)dt converges. �

Corollary 5.6.1. Similarly, when f is a locally integrable function on the interval

[a,+b[, we can easily demonstrate that the integral
∫ b

a f (t)dt converges if and only
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if the numerical sequence with general term F∗(xn) =
b−xn∫
a

f (x)dt converges, where

(xn)n is a sequence of elements of [a,+b[ with limit 0, when n→ +∞.

Theorem 5.6.2. (Chauchy’s theorem) Let f : ]0,+∞[ → R be a positive, contin-

uous and decreasing definite function, then the series with positive terms
∑

n≥1
f (n)

and the generalized integral
+∞∫
1

f (x)dx are of the same nature.

Proof. Let (Sn) be the sequence of partial sums of the series
∑

n≥1
f (n).

Since f is decreasing on ]0,+∞[, we can write:

for all k = 1, 2, ..., x ∈ ]0,+∞[ , such that k ≤ x ≤ k+1, we have f (k+1) ≤ f (x) ≤ f (k).

(5.39)

Integrating over [k, k + 1], we find:

f (k + 1) ≤

k+1∫
k

f (x)dx ≤ f (k), for all k = 1, 2, ... (5.40)

By adding these last equalities, we obtain:

Sn+1 − f (1) ≤

n+1∫
1

f (x)dx ≤ Sn. (5.41)

* Suppose that
+∞∫
1

f (x)dx converges, we can see then :

Sn+1 − f (1) ≤

n+1∫
1

f (x)dx ≤

+∞∫
1

f (x)dx. (5.42)

Which shows that the sequence (Sn+1) is majorized, and consequently the

series
∑

n≥1
f (n) converges.

* Suppose that
∑

n≥1
f (n) converges. We know well that

n ≤ x < n + 1, for x ≥ 1, (5.43)
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where n represents the integer part of x. We then have:

x∫
1

f (x)dx ≤

n+1∫
1

f (x)dx ≤ Sn. (5.44)

Since (Sn) is majorized, the integral
x∫

1
f (x)dx is also majorized, which ensures

the existence of the integral
+∞∫
1

f (x)dx.

It also follows by contraposition that the divergence of the series
∑

n≥1
f (n)

entails the divergence of the integral
+∞∫
1

f (x)dx.

�

5.7 Generalized integrals and numerical

sequences

Theorem 5.7.1. (Dominated convergence theorem) Let ( fn)n be a sequence of locally

integrable functions on [a, b[, which converges uniformly locally on [a, b[ to a

function f , and let g be a positive and locally integrable function on [a, b[ verifying

the following two properties:

1. The integral
∫ b

a g(t)dt converge.

2. For all n ∈N and for all x ∈ [a, b[ , we have:∣∣∣ fn(t)
∣∣∣ ≤ g(t). (5.45)

So the two integrals
∫ b

a fn(t)dt ( n ∈N) and
∫ b

a f (t)dt converge absolutely, and we

have:

lim
n→+∞

∫ b

a
fn(t)dt =

∫ b

a
f (t)dt. (5.46)

Proof. The absolute convergence of the integral
∫ b

a fn(t)dt proceeds from the

inequality (5.45) and the use of the comparison theorem. Moreover, by

making n tend to +∞ in (5.45), we obtain:

for all x ∈ [a, b[ ,
∣∣∣ f (t)

∣∣∣ ≤ g(t). (5.47)
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We then deduce the absolute convergence of the integral
∫ b

a fn(t)dt.

Let us now show that limn→+∞

∫ b

a fn(t)dt =
∫ b

a f (t)dt.

By definition, the integral
∫ b

a g(t)dt converges if and only if:

∀ε > 0,∃δ > 0, such that ∀x ∈ [b − δ, b[ , we have

∣∣∣∣∣∣
∫ b

x
g(t)dt

∣∣∣∣∣∣ < ε
3
. (5.48)

On the other hand, the sequence ( fn)n converges uniformly locally to f on

[a, b[, so it converges uniformly to f on any compact [a, x] , for any x fixed in

[b − δ, b[ i.e:

∀ε > 0,∃n0 ∈N,∀n ∈N,∀t ∈ [a, x] n ≥ n0,
∣∣∣ fn(t) − f (t)

∣∣∣ < ε
3(x − a)

. (5.49)

We then have:∣∣∣∣∣∣
∫ b

a
fn(t)dt −

∫ b

a
f (t)dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ b

a

(
fn(t)dt − f (t)

)
dt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∫ x

a

(
fn(t)dt − f (t)

)
dt +

∫ b

x

(
fn(t)dt − f (t)

)
dt

∣∣∣∣∣∣
≤

∫ x

a

∣∣∣ fn(t) − f (t)
∣∣∣ dt +

∫ b

x

∣∣∣ fn(t)
∣∣∣ dt +

∫ b

x

∣∣∣ f (t)
∣∣∣ dt

≤

∫ x

a

∣∣∣ fn(t) − f (t)
∣∣∣ dt + 2

∫ b

x
g(t)dt

≤
ε(x − a)
3(x − a)

+
2ε
3

= ε.

�

5.8 Mean value theorems for integrals

5.8.1 First formula of the mean value

Theorem 5.8.1. Let f and g be two functions verifying f integrable and with a

constant sign on [a, b] and g is continuous on the same segment, then there exists

c ∈ [a, b] verifying: ∫ b

a
f (t)g(t)dt = g(c)

∫ b

a
f (t)dt. (5.50)
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Proof. Let us place ourselves in the case where f (x) > 0, for all x ∈ [a, b] .

Let m = infx∈[a,b] g(x) and M = supx∈[a,b] g(x) , we can then write:

m
∫ b

a
f (t)dt ≤

∫ b

a
f (t)g(t)dt ≤M

∫ b

a
f (t)dt, (5.51)

Hence:

m ≤

∫ b

a f (t)g(t)dt∫ b

a f (t)dt
≤M. (5.52)

That is to say that

∫ b

a f (t)g(t)dt∫ b

a f (t)dt
∈

[
infx∈[a,b] g(x), supx∈[a,b] g(x)

]
.

Since g is continuous, we can then find c ∈ [a, b] verifying:∫ b

a f (t)g(t)dt∫ b

a f (t)dt
= g(c), (5.53)

which completes the proof of the theorem. �

5.8.2 Second formula for the mean value

Theorem 5.8.2. Let f be a function of class C1, positive and decreasing on [a, b],

and let g be a continuous function on [a, b], then there exists c ∈ [a, b] verifying:∫ b

a
f (t)g(t)dt = f (a)

∫ c

a
f (t)dt. (5.54)

Proof. Let G(x) =
∫ x

a g(t)dt.

By doing an integration by parts, we obtain:∫ b

a
f (t)g(t)dt = f (x)G(x) +

∫ b

a
(− ˙f (t))G(t)dt

= f (b)G(b) +

∫ b

a
(− ˙f (t))G(t)dt (because G(a) = 0).(5.55)

Since f is increasing (i.e ˙f (x) ≤ 0 on [a, b]) and f (b) > 0, we can then write:

f (b)×m+

∫ b

a
(− ˙f (t))×mdt ≤ f (b)G(b)+

∫ b

a
(− ˙f (t))G(t)dt ≤ f (b)×M+

∫ b

a
(− ˙f (t))×Mdt,

(5.56)
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where m = infx∈[a,b] G(x) and M = supx∈[a,b] G(x), or in an equivalent manner:

m f (a) ≤
∫ b

a
f (t)g(t)dt ≤M f (b). (5.57)

That is to say that:

∫ b

a f (t)g(t)dt

f (a)
∈

[
infx∈[a,b] G(x), supx∈[a,b] G(x)

]
.

Since G is continuous, we can then find c ∈ [a, b] verifying:∫ b

a f (t)g(t)dt

f (a)
= G(c) =

∫ c

a
g(t)dt, (5.58)

which completes the proof of the theorem. �

5.9 Cauchy principal value

Definition 5.9.1. Let f be a locally integrable function on ]−∞,+∞[ . The Cauchy

principal value (or principal value of the divergent integral
∫ +∞

−∞
f (t)dt), denoted

V.P
(∫ +∞

−∞
f (t)dt)

)
is the element of R defined by :

V.P
(∫ +∞

−∞

f (t)dt)
)

= lim
a→→+∞

∫ a

−a
f (t)dt) (when this limit exists). (5.59)

Definition 5.9.2. Now, let f be a function, wich has a singular point c ∈ ]a, b[ .

The Cauchy principal value (or principal value of the divergent integral
∫ b

a f (t)dt),

denoted V.P
(∫ b

a f (t)dt)
)

is the element of R defined by:

V.P
(∫ b

a
f (t)dt)

)
= lim
ε→→0

(∫ c−ε

a
f (t)dt) +

∫ b

c+ε
f (t)dt

)
(when this limit exists).

(5.60)

Example 5.9.1. As an example, we take the integral
∫ 2

0

dt
t − 1

. It is clear that this

integral is divergent. We then have:

V.P
(∫ 2

0

dt
t − 1

)
= lim

ε→→0

(∫ 1−ε

0

dt
t − 1

) +

∫ 2

1+ε

dt
t − 1

dt
)

= lim
ε→→0

(
ln
ε
ε

+ ln
1
1

)
= 0. (5.61)
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5.10 Exercises about chapter 5

Exercise 5.10.1. Returning to the definition, study whether the following general-

ized integrals have meaning or not and give their possible value:

I1 =

+∞∫
0

xn exp(−x)dx, n ∈N, I2 =

+∞∫
4

x sin(2x)dx.

I3 =

+∞∫
0

(ln(x))ndx, n ∈N, I4 =

2∫
0

dx√
(2x − x2)

.

Exercise 5.10.2. Study the convergence of the following generalized integrals:

I1 =

1
2∫

0

sin x
xα |ln x|β

dx, I2 =

1
2∫

0

ln(1 + x sin x)

x |ln x|δ
dx.

I3 =

1
2∫

0

sin(x2) + cos(x3)

x(ln x)
3
2

dx, I4 =

+∞∫
1

exp(− x
5 ) sin(ln(x))

(x − 1)
3
2

dx.

Exercise 5.10.3. Study the absolute convergence and semi-convergence of the fol-

lowing generalized integrals:

I1 =

+∞∫
1

sin x
xθ

dx, θ ∈ R∗+, I2 =

+∞∫
0

x2 cos(exp(x))dx.



Chapter 6

Functions defined by an

integral

This chapter consists of studying functions of the form:

F(y) =

∫ b

a
f (x, y)dx, or a ∈ R ∪ {−∞} and b ∈ R ∪ {+∞} ,

in particular, we ask ourselves the question of knowing on what conditions

on f we have the continuity, the differentiability and the integrability of

the function F . We will distinguish the cases of proper integrals where f is

defined on a compact interval of R and improper integrals.

6.1 Functions defined by a proper integral

In this section we consider a function f = f (x, y) : [a, b] × I → R (I an open

interval ofR ) Riemann-integrable with respect to the first variable x on [a, b],

for all y ∈ I.

89
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6.1.1 Properties of a function defined by a proper

integral

Continuity

In this paragraph, we are interested in the continuity of the function defined

by:

F(y) =

∫ b

a
f (x, y)dx, y ∈ I. (6.1)

Theorem 6.1.1. Let f : [a, b]× I→ R be a continuous function, then the function

F defined by the relation (6.1) is also continuous on I. In particular, for all y0 ∈ I,

we have:

lim
y→y0

F(y) = lim
y→y0

∫ b

a
f (x, y)dx =

∫ b

a
lim
y→y0

f (x, y)dx

=

∫ b

a
f (x, y0)dx = F(y0),

which is a case of interversion of limit and integral.

Proof. Since f is continuous, the function x 7→ f (x, y) is integrable on [a, b].

Let now y1, y2 be any two points of I and let V ⊂ I be a compact interval

containing y1 and y2.

Since f is continuous on [a, b]× I, it is therefore uniformly continuous on the

compact [a, b] × V, i.e;

∀ε > 0,∃δ > 0, such that ∀
(
x1, y1

)
,
(
x2, y2

)
∈ [a, b] × V, we have:∥∥∥(x1, y1

)
−

(
x2, y2

)∥∥∥ < δ⇒ ∣∣∣ f (
x1, y1

)
− f

(
x2, y2

)∣∣∣ < ε
b − a

. (6.2)

In particular, if we set x = x1 = x2, we find, for all y1, y2 ∈ V :∣∣∣y1 − y2

∣∣∣ < δ⇒ ∣∣∣ f (
x, y1

)
− f

(
x, y2

)∣∣∣ < ε
b − a

. (6.3)

Hence, for all y1, y2 ∈ V, such that
∣∣∣y1 − y2

∣∣∣ < δ, we have:∣∣∣F (
y1

)
− F(y2

∣∣∣ =

∣∣∣∣∣∣
∫ b

a

(
f
(
x, y1

)
− f

(
x, y2

))
dx

∣∣∣∣∣∣
≤

∫ b

a

∣∣∣ f (
x, y1

)
− f

(
x, y2

)∣∣∣ dx < ε. (6.4)

Consequently F is uniformly continuous on V, so it is continuous on I. �
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Derivability

Theorem 6.1.2. Let f : [a, b] × I → R be a continuous function on [a, b] × I. We

assume that the partial derivative
∂ f
∂y

exists and is continuous on [a, b]× I, then the

function F defined by the relation (6.1) is derivable on I, and we have:

Ḟ(y) =
∂
∂y

(∫ b

a
f (x, y)dx

)
=

∫ b

a

∂
∂y

f (x, y)dx, (6.5)

which is a case of inversion of derivative and integral.

Proof. Let us first note that the functions x 7→ f (x, y) and x 7→
∂
∂y

f (x, y) are

integrable on [a, b] because f and
∂
∂y

f are continuous.

As before, let y be any point of I and let V ⊂ I be a compact interval containing

y. It suffices to show that:

lim
h→0

(
F(y + h) − F(y)

h

)
−

∫ b

a

∂
∂y

f (x, y)dx = 0. (6.6)

Indeed, if the theorem of finite increments applies, we have then:

F(y + h) − F(y)
h

−

∫ b

a

∂
∂y

f (x, y)dx =

∫ b

a

(
f (x, y + h) − f (x, y)

h
−
∂
∂y

f (x, y)
)

dx (6.7)

=

∫ b

a

(
∂
∂y

f (x, y + θh) −
∂
∂y

f (x, y)
)

dx, θ ∈ ]0, 1[ .

Since
∂
∂y

f is uniformly continuous on the compact [a, b] × V, we then have,

∀ε > 0,∃δ > 0, such that ∀x ∈ [a, b] ,∀y, h ∈ V:∣∣∣(y + h
)
− y

∣∣∣ = |h| < δ⇒
∣∣∣∣∣ ∂∂y

f (x, y + θh) −
∂
∂y

f (x, y)
∣∣∣∣∣ < ε

b − a
. (6.8)

Consequently:∣∣∣∣∣∣F(y + h) − F(y)
h

−

∫ b

a

∂
∂y

f (x, y)dx

∣∣∣∣∣∣ ≤
∫ b

a

∣∣∣∣∣ ∂∂y
f (x, y + θh) −

∂
∂y

f (x, y)
∣∣∣∣∣ < ε,

(6.9)

which proves the differentiability of F at y, and since y is considered arbitrary

in I, this clearly shows the differentiability of F on I. �
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Integration

Theorem 6.1.3. Let f : [a, b] × I→ R be a continuous function on [a, b] × I, then

the function F defined by the relation (6.1) is integrable on I. In particular for all

y ∈ I, we have: ∫
I
F(y)dy =

∫
I
dy

(∫ b

a
f (x, y)dx

)
=

∫ b

a
dx

(∫
I

f (x, y)dy
)
, (6.10)

which is a case of interversion of integrals.

Proof. We are going to demonstrate a more general formula. That is, we

want to demonstrate that:

G(z) =

∫
I
dy

(∫ z

a
f (x, y)dx

)
=

∫ z

a
dx

(∫
I

f (x, y)dy
)

= H(z), for allt z ∈ [a, b] ,

(6.11)

where G,H are continuous functions on [a, b] .

On the one hand, if we set
∫ z

a f (x, y)dx = F(z, y). It is clear that F is continuous

by the theorem 6.1.1, and moreover:

∂
∂z

F(z, y) = f (z, y). (6.12)

We deduce from the theorem 6.1.2 that:

Ġ(z) =

∫
I

∂
∂z

F(z, y)dy =

∫
I

f (z, y)dy. (6.13)

On the other hand, if we set
∫ d

c f (x, y)dy = K(x), we can then write:

H(z) =

∫ z

a
K(x)dx. (6.14)

Since k is continuous, we deduce:

Ḣ(z) = K(z) =

∫ d

c
f (z, y)dy (6.15)

From (6.13) and (6.15), we find:

Ġ(z) = Ḣ(z) (6.16)

By integrating this last equality from a to t, and using the fact that G(a) =

H(a) = 0, we deduce that G(z) = H(z), for all z ∈ [a, b] . �
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6.2 Functions defined by a generalized in-

tegral

Let f : [a, b[×I → R (I an open interval of R) be a function of two variables.

b ∈ R ∪ {+∞} and that for some y ∈ I, the function f is not defined at b. We

also assume that the generalized integral
∫ b

a f (x, y)dx converges and we are

interested in the properties of the functions defined on I by the following

generalized integrals:

F(y) =

∫ +∞

a
f (x, y)dx = lim

z→+∞

∫ z

a
f (x, y)dx (6.17)

and:

F∗(y) =

∫ b

a
f (x, y)dx = lim

γ→0

∫ b−γ

a
f (x, y)dx. (6.18)

6.2.1 Uniform convergence of generalized integrals

Definition 6.2.1. We say that the generalized integral (6.17) is uniformly conver-

gent on I, if and only if:

∀ε > 0,∃δ > 0, ∀y ∈ I, ∀z ∈ [δ,+∞[,
∣∣∣∣∣F(y) −

∫ z

a
f (x, y)dx

∣∣∣∣∣ < ε. (6.19)

Definition 6.2.2. We say that the generalized integral (6.18) is uniformly conver-

gent on I, if and only if:

∀ε > 0,∃δ > 0, ∀y ∈ I, ∀γ ∈ ]0, δ[ ,

∣∣∣∣∣∣F∗(y) −
∫ b−γ

a
f (x, y)dx

∣∣∣∣∣∣ < ε. (6.20)

Theorem 6.2.1. Let f : [a,+∞[×I→ R (I be an open interval of R) an integrable

function (in the generalized sense) on the interval [a,+∞[. Then the following

properties are equivalent:

1. The integral
∫ +∞

a f (x, y)dx converges uniformly on I.

2. The sequence of functions with general term Fn(y) =
yn∫
a

f (x, y)dx converges

uniformly on I, where (yn)n is a sequence of elements of [a,+∞[ with limit +∞,

when n→ +∞.
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Proof. The proof of this theorem follows immediately from the proof of

Theorem 5.6.1 (See Chapter 5). �

Corollary 6.2.1. Similarly, if f is an integrable function (in the generalized sense

on the interval [a, b[. Then the following properties are equivalent:

1. The integral
∫ b

a f (x, y)dx converges uniformly on I.

2. The sequence of functions with general term F∗n(y) =
γn∫
a

f (x, y)dx converges uni-

formly on I , where (γn)n is a sequence of elements of [a,+b[ of limit 0,when n→ +∞.

6.2.2 Uniform convergence criteria of generalized

integrals

Cauchy criterion

Theorem 6.2.2. A necessary and sufficient condition for the generalized integral

(6.17) to be uniformly convergent on I is:

∀ε > 0,∃δ > 0, ∀y ∈ I, ∀z2 > z1 ≥ δ,

∣∣∣∣∣∣
∫ z2

z1

f (x, y)dx

∣∣∣∣∣∣ < ε. (6.21)

Proof. * Suppose that the generalized integral (6.17) is uniformly convergent

on [a,+∞[. We then have:

∀ε > 0,∃δ > 0, ∀y ∈ I, ∀z2 > z1 ≥ δ,

∣∣∣∣∣∣
∫ +∞

z1

f (x, y)dx

∣∣∣∣∣∣ < ε
2

and

∣∣∣∣∣∣
∫ +∞

z2

f (x, y)dx

∣∣∣∣∣∣ < ε
2
.

For all y ∈ I, and for all z2 > z1 ≥ δ, we can write:∣∣∣∣∣∣
∫ z2

z1

f (x, y)dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ +∞

z1

f (x, y)dx −
∫ +∞

z2

f (x, y)dx

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫ +∞

z1

f (x, y)dx

∣∣∣∣∣∣ +

∣∣∣∣∣∣
∫ +∞

z2

f (x, y)dx

∣∣∣∣∣∣ < ε. (6.22)

* Now, suppose that the generalized integral is realized (6.17) verifies the

Cauchy criterion, i.e:

∀ε > 0,∃δ > 0, ∀y ∈ I, ∀z2 > z1 ≥ δ,

∣∣∣∣∣∣
∫ z2

z1

f (x, y)dx

∣∣∣∣∣∣ < ε.
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By passing to the limit, when z2 → +∞, we obtain the requested result. �

Corollary 6.2.2. In the same way, we can demonstrate that the generalized integral

(6.18) is uniformly convergent on I, if and only if:

∀ε > 0,∃δ > 0, ∀y ∈ I, ∀γ1, γ2 ∈ ]0, δ[ , (γ1 > γ2),

∣∣∣∣∣∣
∫ b−γ2

b−γ1

f (x, y)dx

∣∣∣∣∣∣ < ε.
(6.23)

Weierstrass criterion

Theorem 6.2.3. Let f : [a, b[ × I → R be an integrable function on [a, b[ ( I an

open interval of R and b ∈ R ∪ {+∞}). Suppose that there exists a real function g

locally integrable on [a, b[ (called the upper bound function) verifying: 1.
∣∣∣ f (x, y)

∣∣∣ ≤ g(x), for all x ∈ [a, b[,

2.
∫ b

a g(x)dx converge.

Then, for all y ∈ I, the generalized integral
∫ b

a f (x, y)dx converges absolutely and

uniformly on I.

Proof. The absolute convergence of the integral
∫ b

a f (x, y)dx follows immedi-

ately from the first condition.

The uniform convergence of the integral
∫ b

a f (x, y)dx follows immediately

from the inequality:∣∣∣∣∣∣
∫ z2

z1

f (x, y)dx

∣∣∣∣∣∣ ≤
∫ z2

z1

∣∣∣ f (x, y)
∣∣∣ dx ≤

∫ z2

z1

∣∣∣g(x)
∣∣∣ dx < ε,

and the Cauchy criterion. �

Abel-Dirichlet criterion

Lemma 6.2.1. Let f : [a, b[ × I → R be an integrable, positive and decreasing

function with respect to x on [a, b[ and tending to 0 uniformly when x tends to b,

and let g : [a, b[×I→ R be an integrable function on [a, b[ and verifies the property:

∃M > 0,∀z ∈ [a, b[ ,∀y ∈ I, we have
∣∣∣∣∣∫ z

a
g(x, y)dx

∣∣∣∣∣ ≤M. (6.24)

Then the integral
∫ b

a f (x, y)g(x, y)dx converges uniformlyon I.
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Proof. For all z1, z2 ∈ [a, b[, using the second formula of the mean value, gives

us:∫ z2

z1

f (x, y)g(x, y)dx = f (z1, y)
∫ k

z1

g(x, y)dx+ f (z2, y)
∫ z2

k
g(x, y)dx, k ∈ [z1, z2] .

(6.25)

By hypothesis,

lim
x→b

f (x, y) = 0⇔ ∀ε > 0,∃δ > 0, ∀y ∈ I, ∀x ∈ [δ, b[ ,
∣∣∣ f (x, y)

∣∣∣ < ε
4M

. (6.26)

On the other hand, using the hypothesis (6.24), allows us to write:∣∣∣∣∣∣
∫ k

z1

g(x, y)dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫ k

a
g(x, y)dx −

∫ z1

a
g(x, y)dx

∣∣∣∣∣∣ ≤ 2M, for all k ∈ [z1, z2] .

(6.27)

and∣∣∣∣∣∫ z2

k
g(x, y)dx

∣∣∣∣∣ =

∣∣∣∣∣∣
∫ z2

a
g(x, y)dx −

∫ k

a
g(x, y)dx

∣∣∣∣∣∣ ≤ 2M, for all k ∈ [z1, z2] .

(6.28)

So, for all x, z1, z2 ∈ [δ, b[ and for all k ∈ [z1, z2], we can write:∣∣∣∣∣∣
∫ z2

z1

f (x, y)g(x, y)dx

∣∣∣∣∣∣ ≤ ∣∣∣ f (z1, y)
∣∣∣ ∣∣∣∣∣∣
∫ k

z1

g(x, y)dx

∣∣∣∣∣∣ +
∣∣∣ f (z2, y)

∣∣∣ ∣∣∣∣∣∫ z2

k
g(x, y)dx

∣∣∣∣∣
<

ε
4M
× 2M +

ε
4M

= ε.

�

6.3 Properties of a function defined by a

generalized integral

In this section, we are interested in properties of the function defined for

y ∈ I by:

F(y) =

∫ +∞

a
f (x, y)dx, (6.29)

The case where b is fixed in R this deals with the same way.
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6.3.1 Continuity

Theorem 6.3.1. Let f : [a,+∞[ × I → R be a continuous function and let the

integral (6.29) converge uniformly on I, then the function F defined by the relation

(6.29) is also continuous on I. In particular, for all y0 ∈ I, we have:

lim
y→y0

F(y) = lim
y→y0

∫ +∞

a
f (x, y)dx =

∫ +∞

a
lim
y→y0

f (x, y)dx

=

∫ +∞

a
f (x, y0)dx = F(y0), (6.30)

which is a case of interversion of limit and integral.

Proof. According to the theorem 6.2.1, the uniform convergence of the inte-

gral (6.29) implies the uniform convergence of the sequence of functions (Fn)

with general term

Fn(y) =

∫ yn

a
f (x, y)dx,

where (yn) is a sequence of elements of [a,+∞[ with limit +∞,when n→ +∞.

Using the theorem 6.1.1 shows that Fn is a continuous function on I, ; that is,

F(y) = limn→+∞

∫ zn

a f (x, y)dx is a continuous function on I, and moreover:

lim
y→y0

F(y) = lim
y→y0

lim
n→+∞

∫ yn

a
f (x, y)dx = lim

n→+∞
lim
y→y0

∫ yn

a
f (x, y)dx

= lim
n→+∞

∫ yn

a
lim
y→y0

f (x, y)dx =

∫ +∞

a
f (x, y0)dx = F(y0) (6.31)

�

6.3.2 Derivability

Theorem 6.3.2. Let f ,
∂ f
∂y

: [a,+∞[ × I → R be two continuous functions. We

assume that the integral (6.29) converges and that the integral
∫ +∞

a

∂ f
∂y

dx converges

uniformly on I, then the function F defined by the relation (6.29) is derivable on I ,

and we have:

Ḟ(y) =
∂
∂y

(∫ +∞

a
f (x, y)dx

)
=

∫ +∞

a

∂
∂y

f (x, y)dx, (6.32)

which is a case of inversion of derivative and integral.
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Proof. According to the theorem 6.2.1, the convergence of the integral (6.29)

leads to the convergence of the sequence of functions (Fn) of general term

Fn(y) =

∫ yn

a
f (x, y)dx, (6.33)

where (yn) is a sequence of elements of [a,+∞[ with limit +∞,when n→ +∞.

Since f ,
∂ f
∂y

: [a,+∞[ × I → R are continuous functions, using the theorem

6.1.2 shows that:

Ḟn(y) =

∫ zn

a

∂ f
∂y

(x, y)dx, (6.34)

and moreover Ḟn is continuous on I (according to the theorem 6.1.1).

On the other hand, Ḟn is uniformly convergent on I because
∫ +∞

a

∂
∂y

f (x, y)dx

is also.

Now, using the theorem of the derivability of sequences of functions ensures

the derivability of the function F on I, and moreover, we have:

Ḟ(y) = lim
n→+∞

Ḟn(y) = lim
n→+∞

∫ zn

a

∂ f
∂y

(x, y)dx =

∫ +∞

a

∂
∂y

f (x, y)dx.

�

6.3.3 Integration

Theorem 6.3.3. Lete f : [a,+∞[ × I → R be a continuous function and let the

integral (6.29) converge uniformly on I, then the function F defined by the relation

(6.29) is also integrable on I, and moreover, we have:∫
I
F(y)dy =

∫
I
dy

(∫ +∞

a
f (x, y)dx

)
=

∫ +∞

a
dx

(∫
I

f (x, y)dy
)
. (6.35)

which is a case of interversion of the two integrals.

Proof. According to the theorem 6.2.1, the uniform convergence of the inte-

gral (6.29) implies the uniform convergence of the sequence of functions (Fn)

with general term

Fn(y) =

∫ yn

a
f (x, y)dx, (6.36)
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where (yn) is a sequence of elements of [a,+∞[ with limit +∞,when n→ +∞.

Using theorem 6.1.3 shows that Fn is an integrable function on I; that is, F(y) =

limn→+∞

∫ zn

a f (x, y)dx is an integrable function on I (limit of a continuous

and uniformly convergent sequence of functions, so it is integrable), and

moreover:∫
I
F(y)dy =

∫
I
dy

(
lim

n→+∞

∫ zn

a
f (x, y)dx

)
= lim

n→+∞

∫
I
dy

(∫ zn

a
f (x, y)dx

)
lim

n→+∞

∫ zn

a
dx

(∫
I

f (x, y)dy
)
. (6.37)

We then deduce:∫
I
F(y)dy =

∫
I
dy

(∫ +∞

a
f (x, y)dx

)
=

∫ +∞

a
dx

(∫
I

f (x, y)dy
)
. (6.38)

�

6.4 Special Functions

6.4.1 Euler’s Gamma Function

Definition 6.4.1. We call Euler’s gamma function the special function Γ defined

by:

Γ(α) =

+∞∫
0

xα−1 exp(−x)dx, α > 0. (6.39)

Remak 6.1. The Euler gamma function defined by the relation (6.39) is well defined

on ]0,+∞[.

Indeed: In the neighborhood of zero, xα−1 exp(−x)
V(0)
∼ xα−1.

Since
1∫

0
xα−1dx converges if and only if α > 0, we deduce that

1∫
0

xα−1 exp(−x)dx

converges if and only if α > 0.

In the neighborhood of infinity, if we set for example g(x) = x−2, we then find:

lim
x→+∞

xα−1 exp(−x)
g(x)

= lim
x→+∞

xα+1 exp(−x) = 0, for all α ∈ R. (6.40)
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Since
+∞∫
1

x−2dx converges, we deduce that
+∞∫
1

xα−1 exp(−x)dx converges, for all

α ∈ R.

Finally
+∞∫
0

xα−1 exp(−x)dx converges if and only if α > 0.

Theorem 6.4.1. The function Γ having the following property:

Γ(α + 1) = αΓ(α), for all α > 0. (6.41)

In particular Γ(n + 1) = n!, for all n ∈N.

Proof. An integration by parts gives us:

Γ(α + 1) =

+∞∫
0

xα exp(−x)dx

= − lim
t→+∞

[
xα exp(−x)

]t
0 + α

+∞∫
0

xα−1 exp(−x)dx = αΓ(α).(6.42)

On the other hand Γ(0) =
+∞∫
0

exp(−x)dx = 1, we deduce that Γ(n + 1) = n!, for

all n ∈N. �

Remak 6.2. The function Γ can be extended to a function defined on the set of real

numbers, except for α = 0,−1,−2,−3, ....

Indeed, from the relation (6.41), we can write:

Γ(α − 1) =
Γ(α)
α − 1

− 1 < α − 1 < 0

Γ(α − 2) =
Γ(α − 1)
α − 2

− 2 < α − 2 < −1.

In this way, we can find:

Γ(α) =
Γ(α + 1)

α
− n < α < −(n − 1). (6.43)

Figure 6.1 shows the graph of Euler’s gamma function.

Theorem 6.4.2. The function Γ is infinitely derivable on R∗+ and furthermore, we

have:

Γ(n)(α) =

+∞∫
0

lnn(x)xα−1 exp(−x)dx. (6.44)
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Figure 6.1: Graph of the gamma function.

Proof. Let us set f (α, x) = xα−1 exp(−x), (α, x) ∈
(
R∗+

)2 .

For all n ∈N, f is of class Cn on
(
R∗+

)2 and furthermore, we have:

∂n f
(∂α)n (α, x) = lnn(x)xα−1 exp(−x). (6.45)

Consider any compact interval [a, b] of ]0,+∞[ . It suffices to show that the

integral
+∞∫
0

∂n f
(∂α)n (α, x)dx is uniformly convergent on any segment [a, b] . In-

deed, for all x ∈ ]0, 1] , the function α 7→ xα−1 is decreasing, so for all α ∈ [a, b],

we have 0 < f (α, x) ≤ xa−1, and for all x > 1, the function α 7→ xα−1 is increas-

ing, so for all α ∈ [a, b], we have 0 < f (α, x) ≤ xb−1 exp(−x).

In the neighborhood of 0, we then have∣∣∣∣∣ ∂n f
(∂α)n (α, x)

∣∣∣∣∣ =
∣∣∣lnn(x)

∣∣∣ f (α, x) = o

 1

x
1−

a
2

 , (6.46)

and in the neighborhood of infinity,∣∣∣∣∣ ∂n f
(∂α)n (α, x)

∣∣∣∣∣ =
∣∣∣lnn(x)

∣∣∣ f (α, x) = o
( 1

x2

)
. (6.47)

Since the two integrals
1∫

0

dx

x
1−

a
2

and
+∞∫
1

dx
x2 are convergent, the Weierstrass
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criterion shows that the integral
+∞∫
0

∂n f
(∂α)n (α, x)dx is also uniformly conver-

gent on any segment [a, b], which completes the establishment that Γ is of

class Cn on R∗+ for all n ∈N , so that Γ is of class C+∞ on R∗+. �

6.4.2 Euler’s Beta function

Definition 6.4.2. We call Euler’s beta function the special function B defined by:

B
(
α, β

)
=

1∫
0

xα−1 (1 − x)β−1 dx, for α, β > 0. (6.48)

Remak 6.3. The Euler function beta defined by the relation (6.48) is well defined

on
(
R∗+

)2.

In the neighborhood of zero, xα−1 (1 − x)β−1 V(0)
∼ xα−1.

Since

1
2∫

0
xα−1dx converges if and only if α > 0, we deduce that

1
2∫

0
xα−1 (1 − x)β−1 dx

converges if and only if α > 0 and β ∈ R.

In the neighborhood of 1, xα−1 (1 − x)β−1 V(0)
∼ xβ−1.

Since
1∫

1
2

xα−1dx converges if and only if β > 0, we deduce that
1∫

1
2

xα−1 (1 − x)β−1 dx

converges if and only if β > 0 and α ∈ R.

Finally
1∫

0
xα−1 exp(−x)dx converges if and only if α > 0 and β > 0.

Theorem 6.4.3. (Symmetry) The function B is symmetric, that is, for all α, β > 0,

on a:

B
(
α, β

)
= B

(
β, α

)
. (6.49)

Proof. Indeed, by making the change of variable x = 1 − t, we immediately

find the result. �

Theorem 6.4.4. (Another formula for the beta function) The beta function can be

represented by the following formula:

B
(
α, β

)
=

+∞∫
0

tα−1

(1 + t)α+β
dt. (6.50)
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Proof. Indeed, by performing the change of variable x =
t

1 + t
, we immedi-

ately find the result. �

6.4.3 Relationship between gamma and beta func-

tions

Theorem 6.4.5. 1) For all α, β > 0, we have:

B
(
α, β

)
=

Γ(α)Γ(β)
Γ(α + β)

. (6.51)

2) The functions B and Γ verify the following Euler reflection formula:

B (α, 1 − α) = Γ(α)Γ(1 − α) =
π

sin(απ)
, α ∈ ]0, 1[ . (6.52)

Proof. By making the change of variable x = (1 + z)y (z > 0) in the relation

(6.39), we find:

Γ(α + β)
(1 + z)α+β

=

+∞∫
0

yα+β−1 exp
(
− (1 + z) y

)
dy, α, β, z > 0. (6.53)

Multiplying both sides of the equality (6.53) by zα−1, then integrating with

respect to z from 0 to +∞, we find:

Γ(α+β)

+∞∫
0

zα−1

(1 + z)α+β
dz =

+∞∫
0

zα−1dz


+∞∫
0

yα+β−1 exp
(
− (1 + z) y

)
dy

 , for all α, β, z > 0,

(6.54)

or in an equivalent manner:

Γ(α + β) × B
(
α, β

)
=

+∞∫
0

zα−1


+∞∫
0

yα+β−1 exp
(
− (1 + z) y

)
dy

 dz

=

+∞∫
0

yα+β−1 exp
(
−y

) 
+∞∫
0

zα−1 exp
(
−zy

)
dz

 dy

=

+∞∫
0

yα+β−1 exp
(
−y

) Γ(α)
yα

dy = Γ(α)

+∞∫
0

yβ−1 exp
(
−y

)
dy

= Γ(α)Γ(β)
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2) The equality B (α, 1 − α) = Γ(α)Γ(1 − α) follows immediately from the

relation ( 6.51) by setting β = 1 − α.

Using the second formula of the beta function, we find:

B (α, 1 − α) =

+∞∫
0

tα−1

1 + t
dt (6.55)

Let us now calculate the integral (6.55) by the theorem of residues. We then

define the following path, for f (z) =
zα−1

1 + z
and 0 < ε < 1 < R :

a) Cε the half circle of radius ε on the half plane<(z) < 0.

b) The two segments S±ε,R =
{
±iε, ± iε +

√

R2 − ε2
}
.

c) The arc of a circle Γε,R =

{
R exp(iθ), θ ∈

[
arctan

ε
√

R2 − ε2
, 2π − arctan

ε
√

R2 − ε2

]}
.

Let us choose ε and R such that z0 = −1 is in the loop. Using the residue

theorem gives us:∫
Cε

f (z)dz +

∫
S−ε,R

f (z)dz +

∫
Γε,R

f (z)dz +

∫
S+
ε,R

f (z)dz = 2πi × Res
(

f ,−1
)
. (6.56)

Passing to the limit, when ε→ 0 and R→ +∞, it comes by Jordan’s lemma

that:

lim
ε→0
R→+∞

∫
Cε

f (z)dz +

∫
Γε,R

f (z)dz = 0 + 0 = 0. (6.57)

On the other hand, for all t > 0, we have:

lim
ε→0

(t + iε)1−α = t1−α et lim
ε→0

(t − iε)1−α = t1−α exp(−2πiα). (6.58)

So:

lim
ε→0

(t + iε)α−1 = tα−1 et lim
ε→0

(t − iε)α−1 = tα−1 exp(2πiα). (6.59)

From (6.56), (6.57) and (6.59), we can then write:

exp(2πiα)

0∫
+∞

zα−1

1 + z
dz +

+∞∫
0

zα−1

1 + z
dz = 2πi × Res

(
f ,−1

)
. (6.60)

We deduce:

(
1 − exp(2πiα)

) +∞∫
0

zα−1

1 + z
dz = 2πi × Res

(
f ,−1

)
= 2πi × lim

z→−1
zα−1

= 2πi × lim
z→−1

1
z1−α = − exp(iπα),
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so, after simplification, we find:

+∞∫
0

zα−1

1 + z
dz =

π
sin(απ)

, α > 0. (6.61)

�

Example 6.4.1. Consider the integral I =
+∞∫
0

t
2
3

(1 + t)3 dt

We have:

I =

+∞∫
0

t
5
3−1

(1 + t)
5
3 + 4

3

dt = B
(5

3
4
3

)
=

Γ( 5
3 )Γ( 4

3 )
Γ(3)

=
Γ( 2

3 + 1)Γ( 1
3 + 1)

2
=

2
3 × Γ( 2

3 ) × 1
3 Γ( 1

3 )
2

=
1
9

Γ(1 − 1
3 ) × Γ( 1

3 )

Γ(1 − 1
3 + 1

3 )
= B

(1
3
, 1 −

1
3

)
=

π
sin(π3 )

=
2π
√

3
. (6.62)

6.5 Exercises about chapter 6

Exercise 6.5.1. Returning to the definition, study whether the following limits

make sense or not and give their possible value:

1. lim
y→0

1∫
−1

dx
x2 + y2 + 1

, 2.lim
y→0

π
2∫

0

cos
(
x
(
y + 1

))
2 + sin

(
x
(
y + 1

))dx

Exercise 6.5.2. 1. Study whether the following integral makes sense or not and

give their possible value:

I(α, β) =

+∞∫
0

exp(−αx)
sin(βx)

x
dx, α ≥ 0.

2. Passing to the suitably justified limit, find the value of the Dirichlet integral:

D(β) =

+∞∫
0

sin(βx)
x

dx.
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3. Deduce the values of the following integrals:

I1 =

+∞∫
0

sin(αx) cos(βx)
x

dx, I2 =

+∞∫
0

sin(x2)
x

dx, I3 =

+∞∫
0

sin3(αx)
x

dx.

Exercise 6.5.3. Using the special functions, calculate the following integrals:

J1 =

1
2∫

0

x2
√

1 − 4x2dx (by posing x =
y
2

).

J2 =

+∞∫
1

ln (ln (x)) dx

x
√

ln x (1 + ln x)
(by posing y = ln x).

J3 =

+∞∫
0

exp (−3x)
(
exp (x) − 1

) 3
2 dx (by posing exp x = 1 + y).
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