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INTRODUCTION

This course covers the fundamental topics necessary for a thorough understanding of the qualitative

theory of ordinary differential equations and the concept of dynamical systems. It is specifically tailored

for first-year master’s students.

The course begins with an introduction to linear systems of ordinary differential equations, a topic that

students who have completed a basic course in differential equations are likely familiar with. Chapter 1

presents an effective method for solving any linear system of ordinary differential equations.

The core focus of the course is on nonlinear systems of ordinary differential equations and dy-

namical systems. Given that most nonlinear differential equations cannot be solved analytically, the

course prioritizes the qualitative or geometric analysis of such systems. This perspective, pioneered by

Henri Poincaré in the late 19th century, integrates modern dynamical system concepts, emphasizing the

structural and functional properties of solution sets in nonlinear differential equations.

The main objective of this course is to examine the qualitative characteristics of differential equation

solutions, including invariant sets and the asymptotic behavior of the flows or dynamical systems

defined by these equations
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CHAPTER 1

ORDINARY DIFFERENTIAL

EQUATIONS

We begin our study of nonlinear systems of differential equations

ẋ = f(x) (1.1)

where f : E→ Rn and E is an open subset of Rn. We show that under certain conditions on the function

f , the nonlinear system (1.1) has a unique solution through each point x0 ∈ E defined on a maximal

interval of existence (α, β) ⊂ R.

We shall only consider autonomous systems of ordinary differential equations (1.1) as opposed to

nonautonomous systems

ẋ = f(x, t) (1.2)

where the function f can depend on the independent variable t; however, any nonautonomous system

(1.2)with x ∈ Rn can be written as an autonomous system (1.1) with x ∈ Rn+1 simply by letting xn+1 = t

and ẋn+1 = 1. The fundamental theory for (1.1) and (1.2)does not differ significantly although

Before stating and proving the fundamental existence-uniqueness theorem for the nonlinear system

(1.1), it is first necessary to define some terminology and notation concerning the derivative Df of a

function f : Rn
→ Rn.
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Ordinary Differential Equations

Definition 1.0.1 The function f : Rn
→ Rn is differentiable at x0 ∈ Rn if there is a linear transformation

Df (x0) ∈ L (Rn) that satisfies

lim
|h|→0

|f (x0 + h) − f (x0) −Df (x0) h|
|h|

= 0

The linear transformation Df (x0) is called the derivative of f at x0.

Theorem 1.0.1 If f : Rn
→ Rn is differentiable at x0, then the partial derivatives

∂ fi
∂x j

, i, j = 1, . . . ,n, all exist at

x0 and for all x ∈ Rn,

Df (x0) x =

n∑
j=1

∂f
∂x j

(x0) x j.

Thus, if f is a differentiable function, the derivative Df is given by the n × n Jacobian matrix

Df =

[
∂ fi
∂x j

]
Definition 1.0.2 Suppose that V1 and V2 are two normed linear spaces with respective norms ‖ · ‖1 and ‖ · ‖2; i.e.,

V1 and V2 are linear spaces with norms ‖ · ‖1 and ‖ · ‖2 satisfying a-c in Section 1.3 of Chapter 1 . Then

F: V1 → V2

is continuous at x0 ∈ V1 if for all ε > 0 there exists a δ > 0 such that x ∈ V1 and ‖x − x0‖1 < δ implies that

‖F(x) − F (x0)‖2 < ε.

And F is said to be continuous on the set E ⊂ V1 if it is continuous at each point x ∈ E. If F is continuous on

E ⊂ V1, we write F ∈ C(E).

Definition 1.0.3 Suppose that f : E→ Rn is differentiable on E. Then f ∈ C1(E) if the derivative Df : E→ L (Rn)

is continuous on E.

The next theorem, gives a simple test for deciding whether or not a function f : E→ Rn belongs to C1(E).

Theorem 1.0.2 Suppose that E is an open subset of Rn and that f : E → Rn. Then f ∈ C1(E) iff the partial

derivatives
∂ fi
∂x j

, i, j = 1, . . . ,n, exist and are continuous on E.

Remark 1.0.1 For E an open subset of Rn, the higher order derivatives Dkf (x0) of a function f : E → Rn are
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Ordinary Differential Equations

defined in a similar way and it can be shown that f ∈ Ck(E) if and only if the partial derivatives

∂k fi
∂x 1 · · · ∂x jk

with i, j1, . . . , jk = 1, . . . ,n, exist and are continuous on E. Furthermore, D2f (x0) : E × E → Rn and for

(x,y) ∈ E × E we have

D2f (x0) (x,y) =

n∑
j1, j2=1

∂2f (x0)
∂x j1∂x j2

x j1 y j2 .

Similar formulas hold for Dkf (x0) : (E × · · · × E)→ Rn.

A function f : E→ Rn is said to be analytic in the open set E ⊂ Rn if each component f j(x), j = 1, . . . ,n, is

analytic in E, i.e., if for j = 1, . . . ,n and x0 ∈ E, f j(x) has a Taylor series which converges to f j(x) in some

neighborhood of x0 in E.

1.1 The Fundamental Existence-Uniqueness Theorem

In this section, we establish the fundamental existence-uniqueness theorem for a nonlinear autonomous

system of ordinary differential equations (1.1) under the hypothesis that f ∈ C1(E) where E is an open

subset of Rn. Picard’s classical method of successive approximations is used to prove this theorem.

The more modern approach based on the contraction mapping principle is relegated to the problems at

the end of this section. The method of successive approximations not only allows us to establish the

existence and uniqueness of the solution of the initial value problem associated with (1.1), but it also

allows us to establish the continuity and differentiability of the solution with respect to initial conditions

and parameters. In order to apply the method of successive approximations to establish the existence of

a solution of (1.1), we need to define the concept of a Lipschitz condition and show that C1 functions are

locally Lipschitz.

Definition 1.1.1 Let E be an open subset of Rn. A function f : E→ Rn is said to satisfy a Lipschitz condition on

E if there is a positive constant K such that for all x, y ∈ E

|f(x) − f(y)| ≤ K|x − y|.

The function f is said to be locally Lipschitz on E if for each point x0 ∈ E there is an ε-neighborhood of

x0,Nε (x0) ⊂ E and a constant K0 > 0 such that for all x,y ∈ Nε (x0)

|f(x) − f(y)| ≤ K0|x − y|.
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Ordinary Differential Equations

By an ε-neighborhood of a point x0 ∈ Rn, we mean an open ball of positive radius ε; i.e.,

Nε (x0) = {x ∈ Rn
||x − x0 |< ε} .

Lemma 1.1.1 Let E be an open subset of Rn and let f : E→ Rn. Then, if f ∈ C1(E), f is locally Lipschitz on E.

Proof. Since E is an open subset of Rn, given x0 ∈ E, there is an ε > 0 such that Nε (x0) ⊂ E. Let

K = max
|x−x0 |≤ε/2

‖Df(x)‖,

the maximum of the continuous function Df(x) on the compact set | x− x0 |≤ ε/2. Let N0 denote the

ε/2-neighborhood of x0,Nε/2 (x0). Then for x,y ∈ N0, set u = y−x. It follows that x + su ∈ N0 for 0 ≤ s ≤ 1

since N0 is a convex set. Define the function F : [0, 1]→ Rn by

F(s) = f(x + su).

Then by the chain rule,

F′(s) = Df(x + su)u

and therefore
f(y) − f(x) = F(1) − F(0)

=

∫ 1

0
F′(s)ds =

∫ 1

0
Df(x + su)uds.

It then follows from the lemma that

|f(y) − f(x)| ≤
∫ 1

0
|Df(x + su)u|ds

≤

∫ 1

0
‖Df(x + su)‖|u|ds

≤ K|u| = K|y − x|.

And this proves the lemma.

Definition 1.1.2 Let V be a normed linear space. Then a sequence {uk} ⊂ V is called a Cauchy sequence if for all

ε > 0 there is an N such that k,m ≥ N implies that

‖uk − um‖ < ε.

The space V is called complete if every Cauchy sequence in V converges to an element in V.
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Ordinary Differential Equations

The following theorem, establishes the completeness of the normed linear space C(I) with I = [−a, a].

Theorem 1.1.1 (The Fundamental Existence-Uniqueness Theorem) Let E be an open subset of Rn contain-

ing x0 and assume that f ∈ C1(E). Then there exists an a > 0 such that the initial value problem

ẋ = f(x)

x(0) = x0

(1.3)

has a unique solution x(t) on the interval [−a, a].

Proof. Since f ∈ C1(E), it follows from the lemma that there is an ε neighborhood Nε (x0) ⊂ E and a

constant K > 0 such that for all x,y ∈ Nε (x0),

|f(x) − f(y)| ≤ K|x − y|.

Let b = ε/2. Then the continuous function f(x) is bounded on the compact set

N0 = {x ∈ Rn
||x − x0 |≤ b} .

Let

M = max
x∈N0

|f(x)|.

Let the successive approximations uk(t) be defined by

u0(t) = x0 = x(0)

uk+1(t) = x0 +

∫ t

0
f (uk(s)) ds k = 0, 1, ...

(1.4)

. Then assuming that there exists an a > 0 such that uk(t) is defined and continuous on [−a, a] and satisfies

max
[−a,a]
|uk(t) − x0| ≤ b, (1.5)

it follows that f (uk(t)) is defined and continuous on [−a, a] and therefore that

uk+1(t) = x0 +

∫ t

0
f (uk(s)) ds

is defined and continuous on [−a, a] and satisfies

|uk+1(t) − x0| ≤

∫ t

0
|f (uk(s))| ds ≤Ma
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Ordinary Differential Equations

for all t ∈ [−a, a]. Thus, choosing 0 < a ≤ b/M, it follows by induction that uk(t) is defined and continuous

and satisfies (1.5) for all t ∈ [−a, a] and k = 1, 2, 3, . . ..

Next, since for all t ∈ [−a, a] and k = 0, 1, 2, 3, . . . ,uk(t) ∈ N0, it follows from the Lipschitz condition

satisfied by f that for all t ∈ [−a, a]

|u2(t) − u1(t)| ≤
∫ t

0
|f (u1(s)) − f (u0(s))| ds

≤ K
∫ t

0
|u1(s) − u0(s)| ds

≤ Ka max
[−a,a]
|u1(t) − x0|

≤ Kab.

And then assuming that

max
[−a,a]

∣∣∣u j(t) − u j−1(t)
∣∣∣ ≤ (Ka) j−1b (1.6)

for some integer j ≥ 2, it follows that for all t ∈ [−a, a]

∣∣∣u j+1(t) − u j(t)
∣∣∣ ≤ ∫ t

0

∣∣∣∣f (u j(s)
)
− f

(
u j−1(s)

)∣∣∣∣ ds

≤ K
∫ t

0

∣∣∣u j(s) − u j−1(s)
∣∣∣ ds

≤ Ka max
[−a,a|

∣∣∣u j(t) − u j−1(t)
∣∣∣

≤ (Ka) jb.

Thus, it follows by induction that (1.6) holds for j = 2, 3, . . .. Setting α = and choosing 0 < a < 1/K,

we see that for m > k ≥ N and t ∈ [−a, a

|um(t) − uk(t)| ≤
m−1∑
j=k

∣∣∣u j+1(t) − u j(t)
∣∣∣

≤

∞∑
j=N

∣∣∣u j+1(t) − u j(t)
∣∣∣

≤

∞∑
j=N

α jb =
αN

1 − α
b.

This last quantity approaches zero as N→∞. Therefore, for all ε there exists an N such that m, k ≥ N

implies that

‖um − uk‖ = max
|−a,a|
|um(t) − uk(t)| < ε;
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Ordinary Differential Equations

i.e., {uk} is a Cauchy sequence of continuous functions in C([−a, a]). I lows from the above theorem that

uk(t) converges to a continuous funs u(t) uniformly for all t ∈ [−a, a] as k→ ∞. And then taking the lim

both sides of equation (1.4)defining the successive approximations, w that the continuous function

u(t) = lim
k→∞

uk(t) (1.7)

satisfies the integral equation

u(t) = x0 +

∫ t

0
f(u(s))ds (1.8)

for all t ∈ [−a, a]. We have used the fact that the integral and the limit can be interchanged since the

limit in (1.7) is uniform for all t ∈ [−a, a]. Then since u(t) is continuous, f(u(t)) is continuous and by the

fundamental theorem of calculus, the right-hand side of the integral equation (1.8) is differentiable and

u′(t) = f(u(t))

for all t ∈ [−a, a]. Furthermore, u(0) = x0 and from (1.5) it follows that u(t) ∈ Nc (x0) ⊂ E for all t ∈ [−a, a].

Thus u(t) is a solution of the initial value problem (1.3) on [−a, a]. It remains to show that it is the only

solution.

Let u(t) and v(t) be two solutions of the initial value problem (1.3) on [−a, a]. Then the continuous

function |u(t) − v(t)| achieves its maximum at some point t1 ∈ [−a, a]. It follows that

‖u − v‖ = max
[−a,a]
|u(t) − v(t)|

=

∣∣∣∣∣∣
∫ t1

0
f(u(s)) − f(v(s))ds

∣∣∣∣∣∣
≤

∫
|t1 |

0
|f(u(s)) − f(v(s))|ds

≤ K
∫
|t1 |

0
|u(s) − v(s)|ds

≤ Ka max |u(t) − v(t)|

≤ Ka‖u − v‖

But Ka < 1 and this last inequality can only be satisfied if ‖u − v‖ = 0. Thus, u(t) = v(t) on [−a, a].

We have shown that the successive approximations (1.4) converge uniformly to a unique solution of the

initial value problem (1.3) on the interval [−a, a] where a is any number satisfying 0 < a < min
(

b
M ,

1
K

)

11



Ordinary Differential Equations

1.2 Dependence on Initial Conditions and Parameters

In this section we investigate the dependence of the solution of the initial value

ẋ = f (x, µ)

x(0) = y
(1.9)

depends on the initial conditions y and a parameters µ ∈ Rm

Lemma 1.2.1 (Gronwall) Suppose that 1(t) is a continuous real valued function that satisfies 1(t) ≥ 0 and

1(t) ≤ C + K
∫ t

0
1(s)ds

for all t ∈ [0, a] where C and K are positive constants. It then follows that for all t ∈ [0, a],

1(t) ≤ CeKt

Proof. Let G(t) = C + K
∫ t

0 1(s)ds for t ∈ [0, a]. Then G(t) ≥ 1(t) and G(t) > 0 for all t ∈ [0, a]. It follows

from the fundamental theorem of calculus that

G′(t) = K1(t)

and therefore that

G′(t)
G(t)

=
K1(t)
G(t)

≤
KG(t)
G(t)

= K

for all t ∈ [0, a]. And this is equivalent to saying that

d
dt

(log G(t)) ≤ K

or

log G(t) ≤ Kt + log G(0)

or

G(t) ≤ G(0)eKt = CeKt

for all t ∈ [0, a], which implies that 1(t) ≤ CeKt for all t ∈ [0, a].
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Ordinary Differential Equations

Theorem 1.2.1 (Dependence on Initial Conditions) Let E be an open subset of Rn containing x0 and assume

that f ∈ C1(E). Then there exists an a > 0 and aδ > 0 such that for all y ∈ Nδ (x0) the initial value problem

ẋ = f(x)

x(0) = y
(1.10)

has a unique solution u(t,y) with u ∈ C1(G) where G = [−a, a] × N6 (x0) ⊂ Rn+1; furthermore, for each

y ∈ Nδ (x0) ,u(t,y) is a twice continuously differentiable function of t for t ∈ [−a, a].

Proof. The uniqueness of the solution u(t, y) follows from the fundamental theorem in Section 1.1.

For all (t, y) ∈ G; i.e., u(t, y) is a twice continuously differentiable function of t which satisfies the initial

value problem (1.10) for all (t, y) ∈ G. It follows that

u̇(t,y) = f(u(t,y))

and that

ü(t,y) = Df(u(t,y))u̇(t,y)

We now show that u(t, y) is a continuously differentiable function of y for all (t, y) ∈ [−a, a]×Nδ/2 (x0). In

order to do this, fix y0 ∈ Nδ/2 (x0) and choose h ∈ Rn such that |h| < δ/2. Then y0 + h ∈ Nδ (x0).

Let u
(
t,y0

)
and u

(
t,y0 + h

)
be the solutions of the initial value problem (1.10) with y = y0 and with

y = y0 + h respectively. It then follows that

∣∣∣u (
t,y0 + h

)
− u

(
t,y0

)∣∣∣ ≤ |h| + ∫ t

0

∣∣∣f (u (
s,y0 + h

))
− f

(
u
(
s,y0

))∣∣∣ ds

≤ |h| + K
∫ t

0

∣∣∣u (
s,y0 + h

)
− u

(
s,y0

)∣∣∣ ds

for all t ∈ [−a, a]. Thus, it follows from Gronwall’s Lemma that

∣∣∣u (
t,y0 + h

)
− u

(
t,y0

)∣∣∣ ≤ |h|eK|t| (1.11)

for all t ∈ [−a, a]. We next define Φ
(
t, y0

)
to be the fundamental matrix solution of the initial value

problem

Φ̇ = A
(
t,y0

)
Φ

Φ
(
0,y0

)
= I

(1.12)

with A
(
t, y0

)
= Df

(
u
(
t,y0

))
and I the n × n identity matrix. The existence and continuity of Φ

(
t, y0

)
on

some interval [−a, a] follow from the method of successive approximations as in problem (1.11).
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Ordinary Differential Equations

It then follows from the initial value problems for u
(
t, y0

)
, u

(
t,y0 + h

)
and Φ

(
t,y0

)
and Taylor’s Theorem,

f(u) − f (u0) = Df (u0) (u − u0) + R (u,u0)

where |R (u,u0)| / |u − u0| → 0 as |u − u0| → 0, that

∣∣∣u (
t,y0

)
− u

(
t,y0 + h

)
+ Φ

(
t,y0

)
h
∣∣∣ ≤ ∫ t

0
f
(
u
(
s,y0

))
− f

(
u
(
s,y0 + h

))
+ Df

(
u
(
s,y0

))
Φ

(
s,y0

)
h | ds

≤

∫ t

0

∥∥∥Df
(
u
(
s,y0

))∥∥∥ ∣∣∣u (
s,y0

)
− u

(
s,y0 + h

)
+ Φ

(
s,y0

)
h
∣∣∣ ds

+

∫ t

0

∣∣∣R (
u
(
s,y0 + h

)
,u

(
s,y0

))∣∣∣ ds

(1.13)

Since |R (u,u0)| / |u − u0| → 0 as |u − u0| → 0 and since u(s,y) is continuous on G, it follows that given

any ε0 > 0, there exists a δ0 > 0 such that if |h| < δ0 then
∣∣∣R (

u
(
s,y0

)
,u

(
s,y0 + h

))∣∣∣ < ε0

∣∣∣u (
s,y0

)
− u

(
s,y0 + h

)∣∣∣
for all s ∈ [−a, a]. Thus, if we let

1(t) =
∣∣∣u (

t,y0
)
− u

(
t,y0 + h

)
+ Φ

(
t,y0

)
h
∣∣∣

it then follows from (1.11) and (1.13) that for all t ∈ [−a, a], y0 ∈ Nδ/2 (x0) and |h| < min (δ0, δ/2) we have

1(t) ≤M1

∫ t

0
1(s)ds + ε0|h|aeKa.

Hence, it follows from Gronwall’s Lemma that for any given ε0 > 0

1(t) ≤ ε0|h|aeKaeM1a

for all t ∈ [−a, a] provided |h| < min (δ0, δ/2). Thus,

lim
|h|→0

∣∣∣u (
t,y0

)
− u

(
t,y0 + h

)
+ Φ

(
t,y0

)
h
∣∣∣

|h|
= 0

uniformly for all t ∈ [−a, a]. Therefore, according to Definition 1 in Section 2.1,

∂u
∂y

(
t,y0

)
= Φ

(
t,y0

)
for all t ∈ [−a, a] where Φ

(
t, y0

)
is the fundamental matrix solution of the initial value problem (5) which

is continuous in t and in y0 for all t ∈ [−a, a] and y0 ∈ Nδ/2 (x0). This completes the proof of the theorem.
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Ordinary Differential Equations

Corollary 1.2.1 . Under the hypothesis of the above theorem,

Φ(t,y) =
∂u
∂y

(t,y)

for t ∈ [−a, a] and y ∈ Nδ (x0) if and only if Φ(t, y) is the fundamental matrix solution of

Φ = Df[u(t,y)]Φ

Φ(0,y) = I

for t ∈ [−a, a] and y ∈ Nδ (x0).

Remark 1.2.1 A similar proof shows that if f ∈ Cr(E) then the solution u(t,y) of the initial value problem (1.9) is

in Cr(G) where G is defined as in the above theorem. And if f(x) is a (real) analytic function for x ∈ E then u(t,y)

is analytic in the interior of G.

Remark 1.2.2 If x0 is an equilibrium point of (1.9), i.e., if f (x0) = 0 so that u (t, x0) = x0 for all t ∈ R, then

Φ (t, x0) =
∂u
∂x0

(t, x0)

satisfies

Φ̇ = Df (x0) Φ

Φ (0, x0) = I.

And according to the Fundamental Theorem for Linear Systems

Φ (t, x0) = eDf(x0)t.

Theorem 1.2.2 (Dependence on Parameters) Let E be an open subset of Rn+m containing the point
(
x0, µ0

)
where x0 ∈ Rn and µ0 ∈ Rm and assume that f ∈ C1(E). It then follows that there exists an a > 0 and a δ > 0 such

that for all y ∈ Nδ (x0) and µ ∈ Nδ
(
µ0

)
, the initial value problem

ẋ = f(x, µ)

x(0) = y
(1.14)

has a unique solution u(t,y,µ) with u ∈ C1(G) where G = [−a, a]× Nδ (x0) ×Nδ
(
µ0

)
.

This theorem follows immediately from the previous theorem by replacing the vectors x0, x, ẋ and y by

the vectors
(
x0, µ0

)
, (x, µ), (ẋ, 0) and (y,µ) or it can be proved directly using Gronwall’s Lemma and the

method of successive approximations.
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1.3 The Fundamental Theorem for Linear Systems

Let A be an n × n matrix. In this section we establish the fundamental fact that for x0 ∈ Rn the initial

value problem

ẋ = Ax

x(0) = x0.
(1.15)

has a unique solution for all t ∈ Rn which is given by

x(t) = exp(At)x0. (1.16)

Lemma 1.3.1 Let A be a square matrix, then

d
dt

eAt = AeAt.

Proof.
d
dt

eAt = lim
h→0

eA(t+h)
− eAt

h

= lim
h→0

eAt

(
eAh
− I

)
h

= eAt lim
h→0

lim
k→∞

(
A +

A2h
2!

+ · · · +
Akhk−1

k!

)
= AeAt.

Theorem 1.3.1 ( The Fundamental Theorem for Linear Systems) Let A be an n × n matrix. Then for a

given x0 ∈ Rn, the initial value problem

ẋ = Ax

x(0) = x0

(1.17)

has a unique solution given by

x(t) = eAtx0. (2)

Proof. By the preceding lemma, if x(t) = eAtx0, then

x′(t) =
d
dt

eAtx0 = AeAtx0 = Ax(t)

16
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for all t ∈ R. Also, x(0) = Ix0 = x0. Thus x(t) = eAtx0 is a solution.

To see that this is the only solution, let x(t) be any solution of the initial value problem (1.17) and set

y(t) = e−Atx(t).

Then from the above lemma and the fact that x(t) is a solution of (1.17)

y′(t) = −Ae−Atx(t) + e−Atx′(t)

= −Ae−Atx(t) + e−AtAx(t)

= 0

for all t ∈ R since e−At and A commute. Thus, y(t) is a constant.

Setting t = 0 shows that y(t) = x0 and therefore any solution of the initial value problem (1.17) is given

by x(t) = eAty(t) = eAtx0. This completes the proof of the theorem.

Example 1.3.1 Solve the initial value problem

ẋ = Ax

x(0) =

 1

0


for

A =

 −2 0

0 −2


and sketch the solution curve in the phase plane R2.

By the above theorem and Corollary 3 of the last section, the solution is given by

x(t) = eAtx0 = e−2t

 1 0

0 1


 1

0

 = e−2t

 1

0

 .
1.3.1 Nonhomogeneous Linear Systems

In this section we solve the nonhomogeneous linear system

ẋ = Ax + b(t) (1.18)

where A is an n × n matrix and b(t) is a continuous vector valued function.

17
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Definition 1.3.1 A fundamental matrix solution of

ẋ = Ax (1.19)

is any nonsingular n × n matrix function Φ(t) that seatisfies

Φ′(t) = AΦ(t) for all t ∈ R.

Φ(t) = eAt is a fundamental matrix solution which satisfies Φ(0) = I, the n × n identity matrix.

Once we have found a fundamental matrix solution to equation (1.19), solving the nonhomogeneous

system (1.18) becomes straightforward. The result is provided in the following theorem.

Theorem 1.3.2 If Φ(t) is a fundamental matrix solution of equation (1.19), then the solution to the nonhomoge-

neous linear system (1.18) with the initial condition x(0) = x0 is unique and is given by:

x(t) = Φ(t)Φ−1(0)x0 +

∫ t

0
Φ(t)Φ−1(τ)b(τ)dτ. (1.20)

Proof. For the function x(t) described above, defined above,

x′(t) =Φ′(t)Φ−1(0)x0 + Φ(t)Φ−1(t)b(t)

+

∫ t

0
Φ′(t)Φ−1(τ)b(τ)dτ

And since Φ(t) is a fundamental matrix solution of (1.19), it follows that

x′(t) = A
[
Φ(t)Φ−1(0)x0 +

∫ t

0
Φ(t)Φ−1(τ)b(τ)dτ

]
+ b(t)

= Ax(t) + b(t)

for all t ∈ R. And this completes the proof of the theorem.

Remark 1.3.1 With Φ(t) = eAt, the solution of the nonhomogeneous linear system (1.18), as given in the above

theorem, has the form

x(t) = eAtx0 + eAt
∫ t

0
e−Aτb(τ)dτ.

Example 1.3.2 Find the solution of the nonhomogeneous system ẋ = x + y + t, ẏ = −y + 1 with the initial

conditions x(0) = 1, y(0) = 0.

Solution

In matrix notation, the system takes the form ẋ
∼
(t) = x

∼
(t) + b

∼
(t), where A =

 1 1

0 −1

 and b
∼
(t) =

(t
1
)
.
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The initial conditions become x
∼
(0) = x

∼
0, where x

∼
0 =

(1
0
)
. Matrix A has eigenvalues λ1 = 1, λ2 = −1 with

corresponding eigenvectors
(1

0
)

and
( 1
−2

)
. Therefore

Φ(t) =

 et e−t

0 −2e−t


This gives

Φ−1(t) =
1
2

 2e−t e−t

0 −et

 ,Φ(0) =

 1 1

0 −2

 and Φ−1(0) =
1
2

 2 1

0 −1

 .
Therefore the required solution is

x
∼
(t) = Φ(t)Φ−1(0)x

∼
0 + Φ(t)

∫ t

0
Φ−1(α)b

∼
(α)dα

=
1
2

Φ(t)


 2 1

0 −1


(
1
0

)
+

∫ t

0

 2e−α e−α

0 −ex


(
α
1

)
dα


=

1
2

Φ(t)
{(

2
0

)
+

(
3 − (2t + 3)e−t

1 − et

)}

=
1
2

 et e−t

0 −2e−t


(
5 − (2t + 3)e−t

1 − et

)
=

1
2

(
5et
− 2t − 4 + e−t

2 − 2e−2t

)
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CHAPTER 2

CONCEPTS OF DYNAMICAL SYSTEMS

The second section aims to introduce the basic mathematical tools for analysing ordinary differential

equations (ODEs) from a dynamical systems perspective. Unlike traditional approaches that seek exact

analytical solutions, which are often unattainable for complex systems, this framework emphasises

qualitative methods to extract meaningful insights. Emphasis is placed on long-term behaviour (e.g.

attractors, stability) and local dynamics near critical points such as equilibria.

A dynamical system is defined as a set of n first-order ODEs governing time evolution inRn. Systems

are classified according to properties such as determinism (future/past uniquely determined by present

state), dimensionality (finite/infinite), and time dependence (continuous/discrete). Continuous time

systems are described by ẋ = f (x, t), while discrete time systems follow xn+1 = 1(xn).

A critical distinction is autonomy: systems without explicit time dependence (ẋ = f (x)) exhibit

time-invariant trajectories, while non-autonomous systems (ẋ = f (x, t)) can be converted to autonomous

form by introducing time as an additional variable. Examples include linear oscillators (e.g. damped

harmonic ẍ + αẋ + βx = 0), nonlinear models (e.g. pendulum ẍ + ω2 sin x = 0) and ecological systems

(Lotka-Volterra model). Non-autonomous cases include forced oscillators such as the Duffing equation

(ẍ + αẋ + ω2
0x + βx3 = f sinωt), where external periodic forcing enriches the dynamics.

This approach prioritises the understanding of structural behaviour such as stability and bifurcation

over exact solutions, enabling the analysis of inherently non-linear phenomena in physics, biology and

engineering.
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2.1 Flows and Evolution

The time-evolutionary process can be understood as the flow of a vector field. In general, the term flow

is used to describe the overall dynamics of a system rather than its evolution at a specific point. For a

system represented by

ẋ = f (x),

the solution x(t), which satisfies x(t0) = x0, provides both the past (t < t0) and future (t > t0) behavior of

the system.

Mathematically, the flow is defined as ϕt(x) : U → Rn, where ϕt(x) = ϕ(t, x) is a smooth vector

function of x ∈ U ⊆ Rn and t ∈ I ⊆ R. The flow satisfies the differential equation:

d
dt
ϕt(x) = f (ϕt(x)),

for all t where the solution exists, with the initial condition ϕ(0, x) = x. The flow ϕt(x) satisfies the

following properties:

• ϕ0 = Id (identity mapping),

• ϕt+s = ϕt ◦ ϕs (composition property).

In some cases, the flow also satisfies:

ϕ(t + s, x) = ϕ(t, ϕ(s, x)) = ϕ(s, ϕ(t, x)) = ϕ(s + t, x).

Flows in R

Consider a one-dimensional autonomous system described by

ẋ = f (x),

where x ∈ R. Imagine a hypothetical fluid flowing along the real line, with its local velocity determined

by f (x). This hypothetical fluid is referred to as the phase fluid, and the real line is called the phase line.

To solve the system ẋ = f (x) starting from an initial position x0, we can imagine placing a hypothetical

particle, called a phase point, at x0 and observing how it moves along the phase line over time t. As time

progresses, the phase point (x, t) in the one-dimensional system ẋ = f (x) with x(0) = x0 moves along the

x-axis according to a function ϕ(t, x0). This function is called the trajectory for the given initial state x0.

The set

{ϕ(t, x0) | t ∈ I ⊆ R}
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is known as the orbit of x0 ∈ R. The complete set of qualitative trajectories of the system is referred to

as the phase portrait.

Flows in R2

Consider a two-dimensional system of differential equations:

ẋ = f (x, y), ẏ = 1(x, y), (x, y) ∈ R2.

In this system, an imaginary particle moves within the planeR2, known as the phase plane. As the system

evolves, the variables x and y trace a parametric curve over time, x = x(t) and y = y(t). This curve, which

passes through an initial point P(x(t0), y(t0)), is called a phase path.

The set of points:

{ϕ(t, x0) | t ∈ I ⊂ R}

represents the orbit of the initial state x0 in R2. While the phase plane can contain infinitely many

trajectories, the overall behavior of the system can often be understood by plotting a few trajectories

with different initial conditions.

The phase portrait visually illustrates the systems behavior, showing how x and y change with time. If

a trajectory satisfies x(t + p) = x(t) for all t, it is called periodic, and the smallest positive value p satisfying

this condition is the prime period of the orbit. It is worth noting that in R1, flows cannot form oscillatory

or closed paths.

Flows in Rn

A system of n autonomous ordinary differential equations can be expressed as:

ẋ1 = f1(x1, x2, . . . , xn),

ẋ2 = f2(x1, x2, . . . , xn),

...

ẋn = fn(x1, x2, . . . , xn),

or more compactly as:

ẋ = f(x),

where x = (x1, x2, . . . , xn) represents the state vector, and f = ( f1, f2, . . . , fn) is the vector field.

The solution of this system, starting from the initial condition x(0) = x0, describes a continuous

trajectory in the phase space Rn, parameterized by time t ∈ I ⊂ R. The set of all possible states of the

system is represented as an n-dimensional vector field in Rn.
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The trajectories originating from different initial conditions form a family of curves in the phase

space, collectively known as the phase portrait of the system. At every point in the phase space, the

vector field f(x) is tangent to these trajectories, with its orientation indicating the direction of the system

evolution over time.

Evolution

Consider the system

ẋ = f(x), x ∈ Rn,

with initial condition

x(t0) = x0.

Let E ⊆ Rn be an open set and f ∈ C1(E). For x0 ∈ E, the solution ϕ(t, x0) of the system over its maximal

interval of existence I(x0) ⊆ R is referred to as the evolution operator of the system.

The operator ϕt : Rn
→ Rn is defined by

ϕt(x0) = ϕ(t, x0).

For a linear system ẋ = Ax with initial condition x(t0) = x0, the flow is expressed as:

ϕt = eAt,

where eAt represents the matrix exponential.

The evolution operators ϕt for both linear and nonlinear systems satisfy the following properties:

1. ϕ0(x) = x (Identity property).

2. ϕs(ϕt(x)) = ϕs+t(x) for all s, t ∈ R.

3. ϕt(ϕ−t(x)) = ϕ−t(ϕt(x)) = x for all t ∈ R.

In general, a dynamical system can be viewed as a family of linear or nonlinear operators evolving

as:

{ϕt(x) | t ∈ R, x ∈ Rn
}.

The following group properties of dynamical systems hold:

1. Closure: ϕt ◦ ϕs ∈ {ϕt(x) | t ∈ R, x ∈ Rn
}.

2. Associativity: (ϕt ◦ ϕs) ◦ ϕr = ϕt ◦ (ϕs ◦ ϕr).

3. Identity: ϕ0(x) = x, where ϕ0 is the identity operator.
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4. Inverse: ϕt ◦ ϕ−t = ϕ−t ◦ ϕt = ϕ0.

In some cases, the flow also satisfies the commutative property:

ϕt ◦ ϕs = ϕs ◦ ϕt.

2.1.1 Fixed Points of a System

The concept of fixed points is crucial for understanding the local behavior of a system. A fixed point is a

constant solution, also referred to as an equilibrium or invariant solution. A point x is a fixed point of

the flow generated by an autonomous system

ẋ = f(x), x ∈ Rn,

if and only if:

ϕ(t, x) = x, ∀t ∈ R.

For continuous systems, this implies:

ẋ = 0 =⇒ f(x) = 0.

In non-autonomous systems, fixed points can be defined over a specific time interval.

Fixed points are also known as critical points, equilibrium points, or stationary points. With respect to

the flow ϕt in Rn, a fixed point is sometimes called a stagnation point.

For flows on the real line, the number of fixed points can vary:

• No fixed points: ẋ = 5.

• One fixed point: ẋ = x.

• Finite fixed points: ẋ = x2
− 1 (two fixed points).

• Infinite fixed points: ẋ = sin(x) (an infinite number of fixed points).

2.2 Phase Portraits and Dynamics

In applications, the differential equation ẋ = X(x) models the time dependence of a property, x, of some

physical system. We say that the state of the system is specified by x. For example, the equation:

ṗ = ap, p, a > 0 (2.1)
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models the growth of the population, p, of an isolated species. Within this model, the state of the species

at time t is given by the number of individuals, p(t), living at that time.

Another example is Newton’s law of cooling, where the temperature, T, of a body cooling in a draught

with temperature t is given by:

Ṫ = −a(T − t), a > 0. (2.2)

Here, the state of the body is determined by its temperature.

We can represent the state x(t0) of a model at any time t0 by a point on the phase line of ẋ = X(x). As

time increases, the state changes, and the phase point representing it moves along the line with velocity

ẋ = X(x). Thus, the dynamics of the physical system are represented by the motion of a phase point on

the phase line.

The phase portrait records only the direction of the velocity of the phase point and therefore represents

the dynamics in a qualitative way. Such qualitative information can be helpful when constructing models.

For example, consider the model (2.1) of an isolated population. Observe that for p > 0, the phase

portrait in Fig(2.1)(a) shows that the population increases indefinitely. This feature is clearly unrealistic;

the environment in which the species live must have limits and could not support an ever-increasing

population.

Figure 2.1: The phase portraits for the differential equations ṗ = ap and ṗ = p(a − bp), Pc = a
b , are

shown in Figures (a) and (b), respectively. In both cases, we are interested only in the behavior for
non-negative populations (p ≥ 0).

Let us suppose that the environment can support a population Pc. Then how could (2.1) be modified

to take this into account? Obviously, the indefinite increase of p should be interrupted. One possibility

is to introduce an attractor at Pc, as shown in Fig.(2.1)(b). This means that populations greater than Pc

decline, while populations less than Pc increase. Finally, equilibrium is reached at P = Pc. The fixed

points at P = Pc as well as P = 0 require a nonlinear X(P) in (2.1). The form:

ṗ = p(a − bp) (2.3)

has the advantage of reducing to (2.1) when b = 0; otherwise, Pc = a
b . The population Pc is known as the

carrying capacity of the environment.

Of course, models of physical systems frequently involve more than a single state variable. If we

are to be able to use qualitative ideas in modeling these systems, then we must examine autonomous
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equations involving more than one variable.

2.2.1 Autonomous Systems in the Plane

Consider the differential equation:

ẋ =
dx
dt

= X(x), (1.19)

where x = (x1, x2) is a vector in R2. This equation is equivalent to the system of two coupled equations:

ẋ1 = X1(x1, x2),

ẋ2 = X2(x1, x2),

where X(x) = (X1(x1, x2),X2(x1, x2)), because x = (x1, x2).

A solution to (1.19) consists of a pair of functions (x1(t), x2(t)), t ∈ R, which satisfy (1.20). In general,

both x1(t) and x2(t) involve an arbitrary constant, so there is a two-parameter family of solutions.

The qualitative behavior of dynamical systems in the plane is characterized by the evolution of state

variables (x1, x2) as the time parameter t increases. This two-dimensional phase plane representation

provides significantly more information than the one-dimensional phase line analysis, capturing the

complete system dynamics through a family of oriented solution curves. These curves, known as

trajectories or orbits, represent possible evolutions of the system from different initial conditions, with

arrows indicating the direction of motion as time progresses.

The phase portrait serves as a powerful visual tool that reveals key dynamical features: equilibrium

points (where ẋ1 = ẋ2 = 0), stability properties through the convergence or divergence of nearby

trajectories, and the overall flow structure of the vector field ( f1(x1, x2), f2(x1, x2)). For any autonomous

planar system of the form:

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

the phase portrait consists of the integral curves of this vector field, providing immediate insight into

the system’s long-term behavior without requiring explicit solutions.

To examine qualitative behavior in the plane, we begin by looking at fixed points of the system ẋ = X(x).

These are constant solutions of the form x(t) = C = (C1,C2) that occur when:

X1(C1,C2) = 0 and X2(C1,C2) = 0. (1.21)

The corresponding trajectory in the phase plane is simply the point (C1,C2). As in one-dimensional

systems, the nature of these fixed points determines the phase portrait.

26



Ordinary Differential Equations

2.2.2 Phase portraits of various planar systems

Let us consider examples of isolated fixed points in the plane. Figures 2.2 – 2.7 illustrate some possible

configurations. Consider 2.2 , showing the system:

ẋ1 = −x1, ẋ2 = −x2 (1.22)

which has a fixed point at (0, 0). The solutions are:

x1(t) = C1e−t, x2(t) = C2e−t (1.23)

where C1,C2 ∈ R. All solutions satisfy:

x2(t) = Kx1(t), K = C2/C1 (1.24)

for all t, meaning each trajectory lies on a radial line in the x1x2-plane. As t increases, both |x1(t)| and

|x2(t)| decrease monotonically to zero, indicated by arrows pointing toward the origin.

Figure 1.24 shows a variation where x2 = Kx2
1, changing the trajectory shapes while maintaining their

inward direction. In contrast, Figure 2.4 presents a different case with solutions:

x1(t) = C1e−t, x2(t) = C2et (1.25)

Here |x1(t)| decreases while |x2(t)| increases as t grows.

C1, C2 real; so that x2 = Kx−1
1 , (1.26)

with K = C1C2. In this case, only two special trajectories approach the fixed point at (0,0), the

remainder all turn away sooner or later and |x2| → ∞ as |x1| → 0. This qualitative behaviour is obviously

quite different from that in Figs 2.2 and 2.3.

In Fig. 2.5 the trajectories close on themselves so that the same set of points in the phase plane recur

time and time again as t increases. , we show that the system

ẋ1 = x2, ẋ2 = −x1 (1.27)

has solutions

x1(t) = C1 cos(−t + C2), x2(t) = C1 sin(−t + C2). (1.28)

It follows that

x2
1 + x2

2 = C2
1 (1.29)
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Figure 2.2: ẋ1 = −x1, ẋ2 = −x2.

and the trajectories are a family of concentric circles centred on the fixed point at (0, 0). This obviously

corresponds to yet another kind of qualitative behaviour. The fact that x1(t) and x2(t) are periodic with

the same period is reflected in the closed trajectories.

These examples show that qualitatively different solutions, (x1(t), x2(t)), lead to trajectories with

different geometrical properties. The problem of recognizing different types of fixed points becomes one

of recognizing ‘distinct’ geometrical configurations of trajectories, we must decide

What we mean by ‘distinct’ and is there an element of choice in the criteria that we set.

For example, in Figs 2.2 and 2.3 all the trajectories are directed towards the origin. It would be

reasonable to argue that this is the dominant qualitative feature and that the differences in shape of the

trajectories are unimportant. We would then say that the nature of the fixed point at (0, 0) was the same

in both cases. Of course, its nature would be completely changed if we replaced x1 by −x1 and x2 by

−x2. Under these circumstances all trajectories would be directed away from the origin corresponding

to quite different qualitative behaviour of the solutions.

Let us compare Figs 2.4 and 2.6. Are the fixed points of the same nature? In both cases |x1(t)| tends

to zero while |x2(t)| becomes infinite and only two special trajectories approach the fixed point itself.

Yes, we would argue, they are the same. If the orientation of the trajectories is reversed in these

examples is the nature of the fixed point changed as in our previous example? Orientation reversal

would mean that the roles x1 and x2 were interchanged. However, the features which distinguish 2.4

and 2.6 from the remaining ten diagrams still persist and we conclude that the nature of the fixed point

does not change. Similarly, we would say that Figs 2.5 , 2.7 and their counterparts with orientation

reversed all had the same kind of fixed point at the origin.
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Figure 2.3: ẋ1 = −x1, ẋ2 = −2x2.

Figure 2.4: ẋ1 = −x1, ẋ2 = x2.

Figure 2.5: ẋ1 = x2, ẋ2 = −x1.
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Figure 2.6: ẋ1 = −x1, ẋ2 = −x1 + x2.

Figure 2.7: ẋ1 = 3x1 + 4x2, ẋ2 = −3x1 − 3x2.
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Examples

1. The Simple Pendulum:
d2θ

dt2 +
1

L
sin(θ) = 0,

Phase diagrams are graphical representations used to study the behavior of dynamical systems.

They plot the state variables of the system against each other, showing how the system evolves

over time. In this document, we will explore the phase diagram of a simple pendulum.

The motion of a simple pendulum is governed by the following second-order differential equation:

d2θ

dt2 +
1

L
sin(θ) = 0,

where:

• θ is the angle of the pendulum from the vertical,

• 1 is the acceleration due to gravity,

• L is the length of the pendulum.

To analyze this system, we convert it into a system of first-order differential equations by introduc-

ing the angular velocity ω = dθ
dt :

dθ
dt

= ω,

dω
dt

= −
1

L
sin(θ).

Phase Diagram

The phase space for the simple pendulum is the (θ,ω) plane. The phase diagram plots θ on the

horizontal axis and ω on the vertical axis.

Fixed Points

The fixed points occur where dθ
dt = 0 and dω

dt = 0. This gives:

ω = 0 and sin(θ) = 0.

The solutions are θ = nπ, where n is an integer. Thus, the fixed points are at (θ,ω) = (nπ, 0).

Stability Analysis

• For even n (e.g., θ = 0, 2π, . . .), the fixed points are stable (centers). Small perturbations result

in oscillations around these points.

• For odd n (e.g., θ = π, 3π, . . .), the fixed points are unstable (saddles). Small perturbations

cause the pendulum to move away from these points.
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Phase diagrams provide a powerful tool for analyzing the behavior of dynamical systems. The

simple pendulum example illustrates how fixed points, stability, and trajectories can be visualized

to understand the system’s long-term behavior. By studying phase diagrams, one can gain deeper

insights into the fundamental behaviors of dynamical systems and predict their responses under

various conditions.

2. Consider the following two-dimensional dynamical system:

ẋ = x − y, ẏ = x + y

where ẋ and ẏ represent the time derivatives of x and y, respectively.

Step 1: Find Fixed Points

Fixed points occur where ẋ = 0 and ẏ = 0. Solve the system:


x − y = 0

x + y = 0

From the first equation, x = y. Substituting into the second equation:

x + x = 0 =⇒ 2x = 0 =⇒ x = 0

Thus, y = 0. The only fixed point is (x∗, y∗) = (0, 0).

Step 2: Linear Stability Analysis

The Jacobian matrix of the system is:

J =

 ∂ẋ
∂x

∂ẋ
∂y

∂ẏ
∂x

∂ẏ
∂y

 =

1 −1

1 1


The eigenvalues λ of J satisfy the characteristic equation:

det(J − λI) = 0

det

1 − λ −1

1 1 − λ

 = (1 − λ)2 + 1 = 0

(1 − λ)2 + 1 = 0 =⇒ λ2
− 2λ + 2 = 0

Solving the quadratic equation:

λ =
2 ±

√
(−4)

2
= 1 ± i
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The eigenvalues are λ = 1 + i and λ = 1 − i.

Step 3: Interpret Eigenvalues

The eigenvalues are complex conjugates with a positive real part (Re(λ) = 1 > 0). This indicates that the

fixed point (0, 0) is an unstable spiral (trajectories spiral away from the fixed point).

Step 4: Phase Diagram

The phase diagram for this system can be sketched as follows:

• The fixed point (0, 0) is an unstable spiral.

• Trajectories spiral outward from the origin.

• The direction of the spiral is counterclockwise (determined by the imaginary part of the eigenval-

ues).

The phase diagram reveals that the fixed point (0, 0) is an unstable spiral. Trajectories starting near the

origin spiral outward, indicating that the system diverges away from the fixed point over time.
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Figure 2.8: Phase Diagram for Simple Pendulum.

Figure 2.9: Phase diagram for the system ẋ = x− y, ẏ = x + y. Trajectories spiral outward from the origin.
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CHAPTER 3

STABILITY THEORY

Stability of solutions is a fundamental qualitative property in both linear and nonlinear systems. This

chapter aims to introduce various methods for analysing the stability of a system, emphasising its

importance in the dynamics of the system. Stability plays a crucial role in determining the behaviour of

solutions, especially in the context of differential equations. However, rigorous mathematical

definitions often prove too restrictive when analysing the stability of solutions. Over time, various

methods for assessing stability have been developed in the theory of differential equations. We begin

by looking at the stability analysis of linear systems.

The concept of stability theory originated in classical mechanics, where it was first used to understand

the behaviour of physical systems over time. In the context of differential equations, the stability of

solutions remains a cornerstone of both theoretical and applied mathematics, particularly in areas such

as control theory, dynamical systems and engineering.

Methods for analysing stability can differ significantly depending on whether the system is linear or

non-linear. These methods usually combine both qualitative and quantitative approaches. Below we

provide a structured overview of the main concepts and techniques used for stability analysis of

differential equations.
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Chapter 3. Stability Theory

3.1 Stability of Linear Systems

3.1.1 Stability of Linear Systems in R2

In this section, we analyze the phase portraits of linear systems in R2 of the form:

ẋ = Ax (3.1)

where x ∈ R2 and A is a 2 × 2 matrix. The phase portrait describes the behavior of the system’s

trajectories in the plane, and it depends on the eigenvalues and eigenvectors of A. To simplify the

analysis, we first consider the system:

ẋ = Bx (3.2)

where B = P−1AP is in one of the canonical forms . The phase portrait for the original system (3.1) can

then be obtained by applying the linear transformation x = Py to the phase portrait of (3.2).

Canonical Forms of B

The matrix B can take one of the following forms, depending on the eigenvalues and structure of A:

1. Diagonal Form:

B =

λ 0

0 µ


This occurs when A has two distinct real eigenvalues λ and µ.

2. Jordan Form:

B =

λ 1

0 λ


This occurs when A has a repeated real eigenvalueλ but only one linearly independent eigenvector.

3. Complex Form:

B =

a −b

b a


This occurs when A has complex conjugate eigenvalues λ = a ± ib.

The solution to the initial value problem ẋ = Bx with x(0) = x0 is given by:

1. Diagonal Form:

x(t) =

eλt 0

0 eµt

 x0
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The solution consists of exponential growth or decay along the eigenvectors, depending on the

signs of λ and µ.

2. Jordan Form:

x(t) = eλt

1 t

0 1

 x0

The solution includes a linear term t due to the defective eigenvalue.

3. Complex Form:

x(t) = eat

cos bt − sin bt

sin bt cos bt

 x0

The solution involves oscillatory terms due to the complex eigenvalues.

3.1.2 Phase Portraits for Linear Systems

Diagonal Form Systems

Consider the linear system ẋ = Ax where A is a diagonal matrix:

A =

λ 0

0 µ


Case 1: Both Eigenvalues Positive (λ > 0, µ > 0)

The equilibrium at x = 0 is an unstable node. All trajectories move away from the origin exponentially

in the directions of the eigenvectors v1 and v2. The phase portrait shows curves diverging from the

origin, with the rate of divergence determined by the eigenvalue magnitudes. The general solution

takes the form x(t) = c1eλtv1 + c2eµtv2.

Case 2: Both Eigenvalues Negative (λ < 0, µ < 0)

Here the origin becomes a stable node, with all trajectories converging exponentially toward 0 along

the eigenvector directions. The phase portrait consists of curves approaching the origin, where the

convergence rate depends on how negative the eigenvalues are.

Case 3: Eigenvalues with Opposite Signs (λµ < 0)

This configuration produces a saddle point at the origin. Trajectories approach the origin along the

stable eigenvector (negative eigenvalue) while diverging along the unstable eigenvector (positive

eigenvalue). The phase portrait shows hyperbolic curves, characteristic of saddle points.
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Figure 3.1: Phase diagrams for nonzero real, distinct eigenvalues of same sign, a unstable node, b stable
node.

Case 4: One Eigenvalue Zero (λ = 0, µ , 0)

When one eigenvalue is zero (λ = 0) while the other is non-zero (µ , 0), the system exhibits degenerate

behavior. The equilibrium points form an entire line along the eigenvector v1 corresponding to λ = 0.

Trajectories behave uniformly along the direction of the non-zero eigenvalue’s eigenvector v2: they

diverge from the origin if µ > 0 or converge toward it if µ < 0. The resulting phase portrait shows

parallel lines of trajectories moving along the v2 direction, with each point on the v1 axis being a fixed

point. Mathematically, the solution takes the form x(t) = c1v1 + c2eµtv2, clearly showing the static

behavior in the v1 direction and exponential behavior in the v2 direction.

Case 5: Both Eigenvalues Zero (λ = µ = 0)

In the completely degenerate case where both eigenvalues vanish, every point in the phase plane

becomes an equilibrium point. The system is completely static with ẋ = 0 for all initial conditions,

resulting in a phase portrait where no trajectories move - every point is fixed. This corresponds to the

trivial case where the matrix A is the zero matrix. The general solution is simply x(t) = x0, reflecting

that all solutions remain at their initial conditions indefinitely. While mathematically simple, this case

serves as an important limiting scenario in the classification of linear systems.

Summary of Phase Portraits for Diagonal Form

The phase portraits for the diagonal form ẋ = Ax with A =

λ 0

0 µ

 are summarized as follows:
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Figure 3.2: Phase diagram for nonzero real, distinct eigenvalues of opposite signs.

Figure 3.3: Phase portraits when only one eigenvalue is zero.
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Figure 3.4: a Phase portrait when both eigenvalues are zero. b A typical phase portrait when all
eigenvalues are zero.
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Eigenvalues Equilibrium Type Phase Portrait

λ > 0, µ > 0 Unstable node Diverging trajectories

λ < 0, µ < 0 Stable node Converging trajectories

λ > 0, µ < 0 Saddle point Hyperbolic trajectories

λ = 0, µ , 0 Line of equilibria Parallel trajectories

λ = 0, µ = 0 Plane of equilibria Static system

Example: Unstable Node Dynamics

The linear system ẋ = Ax with diagonal matrix A =

2 0

0 3

 demonstrates a classic unstable node at the

origin. With distinct positive eigenvalues λ1 = 2 and λ2 = 3, the system exhibits exponential growth

along both principal axes. The general solution takes the form:

x(t) = c1e2t

10
 + c2e3t

01


where the eigenvectors v1 = [1, 0]> and v2 = [0, 1]> define the directions of fastest (λ2 = 3) and slower

(λ1 = 2) expansion. In the phase portrait, all trajectories radiate outward from the origin, with the

y-direction dominating as t→∞ due to the larger eigenvalue. The absence of off-diagonal elements

makes this a particularly simple case of an unstable node, with no rotational components in the flow.

Example: Saddle Point Dynamics

The system ẋ = Ax with A =

1 0

0 −2

 presents a fundamental saddle point configuration. Its

eigenvalues λ1 = 1 (unstable) and λ2 = −2 (stable) produce the solution:

x(t) = c1et

10
 + c2e−2t

01


This solution reveals exponential growth along the x-axis (unstable manifold) and exponential decay

along the y-axis (stable manifold). The phase portrait shows characteristic hyperbolic trajectories:

solutions approach the origin along the vertical axis while simultaneously diverging along the

horizontal axis. The saddle point’s distinctive feature is this simultaneous attraction and repulsion

along different eigendirections, with the stable manifold (y-axis) acting as a separatrix between

different classes of trajectories.
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Jordan Form Systems

For systems with defective eigenvalues (geometric multiplicity less than algebraic multiplicity), the

Jordan form reveals important behavior. When the matrix A cannot be diagonalized and takes the

Jordan block form A =

λ 1

0 λ

, the equilibrium at x = 0 becomes an improper node. The solution to

ẋ = Ax involves the matrix exponential eAt = eλt

1 t

0 1

, yielding the general solution x(t) = eλt

1 t

0 1

 x0.

This solution structure produces characteristic twisted trajectories due to the linear t term in the matrix

exponential.

Stable Improper Node (λ < 0)

For λ < 0 in the Jordan block A =

λ 1

0 λ

, the system exhibits a stable improper node. All trajectories

spiral into the origin as t→∞, but unlike a stable spiral, they approach along a preferred direction

determined by the generalized eigenvectors. The phase portrait shows curves that initially align with

the eigenvector direction but exhibit a characteristic "twist" as they converge, resulting from the

nilpotent part of the Jordan decomposition.

Unstable Improper Node (λ > 0)

When λ > 0 in the Jordan form, the equilibrium becomes an unstable improper node. The solution

x(t) = eλt

1 t

0 1

 x0 shows that trajectories grow exponentially while simultaneously twisting away from

the eigenvector direction. The phase portrait features curves that diverge from the origin with

increasing separation, maintaining a dominant direction of expansion but with a characteristic

curvature introduced by the off-diagonal term.

Degenerate Case (λ = 0)

The special case A =

0 1

0 0

 produces a line of equilibria along the x-axis. The solution simplifies to

x(t) =

1 t

0 1

 x0, showing linear rather than exponential growth in the x-direction. The phase portrait

consists of horizontal trajectories (parallel to the line of equilibria) with constant vertical spacing,

representing a shear flow in the phase plane. Each point on the x-axis is an equilibrium, while all other

points move horizontally with velocity proportional to their y-coordinate.
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Summary of Phase Portraits for Jordan Form

The phase portraits for the Jordan form ẋ = Ax with A =

λ 1

0 λ

 are summarized as follows:

Eigenvalue Equilibrium Type Phase Portrait

λ < 0 Stable improper node Spiraling into the origin

λ > 0 Unstable improper node Spiraling away from the origin

λ = 0 Line of equilibria Horizontal lines

Example: Stable Improper Node

Consider the system ẋ = Ax with A =

−2 1

0 −2

. This system has a repeated eigenvalue λ = −2, making

the origin a stable improper node. The solution takes the form x(t) = e−2t

1 t

0 1

 x0, revealing both

exponential decay and a characteristic linear twist due to the defective eigenvalue. In the phase

portrait, trajectories spiral into the origin while maintaining a dominant direction determined by the

single eigenvector. The t-term in the solution matrix causes the characteristic "twisting" behavior as

trajectories approach the origin, distinguishing it from a standard stable node.

Example: Unstable Improper Node

The system ẋ = Ax with A =

2 1

0 2

 demonstrates an unstable improper node, with repeated

eigenvalue λ = 2. Its solution x(t) = e2t

1 t

0 1

 x0 shows exponential growth combined with linear

divergence from the eigenvector direction. The phase portrait features trajectories that spiral outward

from the origin, with the off-diagonal term causing trajectories to curve away from the principal

direction as they diverge. This creates a characteristic "twisted" divergence pattern unique to improper

nodes.

Example: Zero Eigenvalue

For the system ẋ = Ax where A =

0 1

0 0

, the repeated zero eigenvalue produces a line of equilibria

along the entire x-axis. The solution simplifies to x(t) =

1 t

0 1

 x0, showing linear rather than

exponential time dependence. In the phase portrait, all points on the x-axis are equilibrium points,

while other trajectories form horizontal lines moving with constant vertical velocity. This creates a
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shear flow where points above the x-axis move rightward and points below move leftward, with

velocity proportional to their y-coordinate.

Example: Diagonal Form (Saddle Point)

The diagonal system ẋ = Ax with A =

2 0

0 −1

 has eigenvalues λ1 = 2 and λ2 = −1, with corresponding

eigenvectors v1 =

10
 and v2 =

01
. The general solution x(t) = c1e2tv1 + c2e−tv2 reveals exponential

growth along the x-axis and exponential decay along the y-axis, characteristic of a saddle point

equilibrium. The phase portrait shows hyperbolic trajectories that approach the origin along the stable

manifold (y-axis) while diverging along the unstable manifold (x-axis), with the eigenvalues’

magnitudes determining the relative rates of convergence and divergence.

Complex Eigenvalue Systems

Linear systems in R2 with complex eigenvalues exhibit particularly interesting dynamics. When the

matrix A takes the form A =

a −b

b a

 where a, b ∈ R, the eigenvalues become λ = a ± ib. The system’s

behavior is fundamentally determined by the real part a of these complex eigenvalues, leading to three

distinct cases:

Center Dynamics (a = 0)

For purely imaginary eigenvalues (a = 0), the system matrix reduces to A =

0 −b

b 0

. This configuration

produces a center at the origin, where trajectories form concentric closed orbits (perfect circles when

properly normalized) around the equilibrium point. The solutions are purely oscillatory, taking the

form x(t) = c1

cos(bt)

sin(bt)

 + c2

− sin(bt)

cos(bt)

, representing continuous rotation with constant angular velocity

b. The phase portrait shows these nested periodic orbits, with no tendency to approach or diverge from

the origin.

Stable Spiral (a < 0)

When the real part is negative (a < 0), the system exhibits a stable spiral. The matrix maintains its

general form A =

a −b

b a

 but now includes exponential decay. Solutions combine rotation with decay:

x(t) = eat

c1

cos(bt)

sin(bt)

 + c2

− sin(bt)

cos(bt)


. In the phase portrait, trajectories spiral inward toward the origin
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Figure 3.5: Phase portraits for purely imaginary eigenvalues.

while maintaining their angular frequency b, with the decay rate determined by |a|. The negative real

part ensures all trajectories asymptotically approach the equilibrium.

Unstable Spiral (a > 0)

The case of positive real part (a > 0) creates an unstable spiral, where trajectories spiral outward from

the origin. While maintaining the same rotational component as the stable case, the solution now

includes exponential growth: x(t) = eat

c1

cos(bt)

sin(bt)

 + c2

− sin(bt)

cos(bt)


. The phase portrait shows

trajectories unwinding from the origin with increasing amplitude, where the growth rate is governed

by a and the rotation rate by b. This represents systems where small perturbations lead to oscillatory

divergence from equilibrium.

Summary of Phase Portraits for Complex Form

The phase portraits for the complex form ẋ = Ax with A =

a −b

b a

 are summarized as follows:
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Figure 3.6: Phase portraits for complex eigenvalues with negative real part.

Figure 3.7: Phase portraits for complex eigenvalues with positive real part.
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Real Part (a) Equilibrium Type Phase Portrait

a = 0 Center Closed orbits (circles or ellipses)

a < 0 Stable spiral Spirals converging to the origin

a > 0 Unstable spiral Spirals diverging from the origin

Example: Center Dynamics

The canonical center system ẋ = Ax with A =

0 −1

1 0

 exhibits purely imaginary eigenvalues λ = ±i,

resulting in a center equilibrium at the origin. The solution takes the rotational form

x(t) =

cos t − sin t

sin t cos t

 x0, representing perfect periodic motion with period 2π. In the phase plane,

trajectories trace concentric circles about the origin, each corresponding to a different initial condition

x0. The angular velocity is constant (1 radian per unit time), and the system conserves energy, with all

solutions remaining at fixed distances from the origin for all time.

Example: Stable Spiral Dynamics

For the dissipative system A =

−1 −2

2 −1

, the complex eigenvalues λ = −1 ± 2i (negative real part)

create a stable spiral. The solution combines exponential decay with oscillation:

x(t) = e−t

cos(2t) − sin(2t)

sin(2t) cos(2t)

 x0. Here, the real part −1 governs the decay rate while the imaginary part 2

determines the oscillation frequency. Phase portrait trajectories spiral inward toward the origin,

making increasingly tight rotations as they approach equilibrium. The negative real part ensures all

solutions asymptotically stabilize to the origin.

Example: Unstable Spiral Dynamics

The system A =

1 −2

2 1

 with eigenvalues λ = 1 ± 2i (positive real part) demonstrates an unstable

spiral. Its solution x(t) = et

cos(2t) − sin(2t)

sin(2t) cos(2t)

 x0 shows exponential growth modulated by rotational

motion. The positive real part causes amplitude growth, while the imaginary part produces oscillations

at frequency 2. In the phase plane, trajectories spiral outward from the origin with ever-increasing

radius. This represents systems where small perturbations lead to growing oscillations, with the

divergence rate controlled by the real part of the eigenvalues.
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3.1.3 Multiple Eigenvalues

The solution to the linear system ẋ = Ax with initial condition x(0) = x0 is x(t) = eAtx0. When A has

distinct eigenvalues, eAt can be computed directly. For matrices with multiple eigenvalues, generalized

eigenvectors and nilpotent matrices are used.

Definition 1. Let λ be an eigenvalue of A with multiplicity m ≤ n. A nonzero vector v satisfying

(A − λI)kv = 0 for some k ≤ m is called a generalized eigenvector of A.

Definition 2. An n × n matrix N is nilpotent of order k if Nk−1 , 0 and Nk = 0.

Theorem 1. Let A be a real n × n matrix with eigenvalues λ1, . . . , λn (repeated by multiplicity). Then:

1. There exists a basis of generalized eigenvectors for Rn.

2. If {v1, . . . ,vn} is such a basis, the matrix P = [v1 · · · vn] is invertible, and A = S + N, where:

• P−1SP = diag[λ j],

• N = A − S is nilpotent of order k ≤ n,

• S and N commute (SN = NS).

Corollary 1. The solution to ẋ = Ax with x(0) = x0 is:

x(t) = P · diag
[
eλ jt

]
· P−1

·

[
I + Nt + · · · +

Nk−1tk−1

(k − 1)!

]
x0.

If λ is an eigenvalue of multiplicity n, then S = diag[λ] and N = A − S, simplifying the solution to:

x(t) = eλt
[
I + Nt + · · · +

Nktk

k!

]
x0.

Theorem 2. Let A be a real 2n × 2n matrix with complex eigenvalues λ j = a j + ib j and λ j = a j − ib j for

j = 1, . . . ,n. Then:

1. There exist generalized complex eigenvectors w j = u j+iv j and w j = u j−iv j, such that {u1,v1, . . . ,un,vn}

is a basis for R2n.

2. For such a basis, P = [v1 u1 · · · vn un] is invertible, and A = S + N, where:

• P−1SP = diag

 a j −b j

b j a j

,
• N = A − S is nilpotent of order k ≤ 2n,

• S and N commute.

Corollary 2. The solution to ẋ = Ax with x(0) = x0 is:

x(t) = P · diag

ea jt

cos b jt − sin b jt

sin b jt cos b jt


 · P−1

·

[
I + · · · +

Nktk

k!

]
x0.
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3.2 Stability Theory

In this section, we define the stable subspace Es, the unstable subspace Eu, and the center subspace Ec

for a linear system of the form (3.1).

Let w j = u j + iv j be a generalized eigenvector of the real matrix A, corresponding to an eigenvalue

λ j = a j + ib j. Note that if b j = 0 (i.e., the eigenvalue is real), then v j = 0. Consider the basis

B = {u1, . . . ,uk,uk+1,vk+1, . . . ,um,vm}

for Rn (where n = 2m − k).

Definition 1. Let λ j = a j + ib j, w j = u j + iv j, and B be as defined above. Then:

Es = Span
{
u j,v j | a j < 0

}
,

Ec = Span
{
u j,v j | a j = 0

}
,

Eu = Span
{
u j,v j | a j > 0

}
.

Definition 2. If all eigenvalues of the n×n matrix A have nonzero real parts, then the flow eAt : Rn
→ Rn

is called a hyperbolic flow, and the linear system (1.1) is referred to as a hyperbolic linear system.

Definition 3. A subspace E ⊂ Rn is said to be invariant under the flow eAt : Rn
→ Rn if, for all t ∈ R, the

flow maps E into itself; that is, eAtE ⊂ E.

Example: Find the Linear Subspaces

Consider the system of differential equations:

dx
dt

= Ax, x(0) = x0,

where the matrix A is given by:

A =


−3 0 0

0 3 −2

0 1 1

 .
Solution:

The eigenvalues λ are found by solving det(A − λI) = 0:

det


−3 − λ 0 0

0 3 − λ −2

0 1 1 − λ

 = 0.
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This simplifies to:

(−3 − λ)(λ2
− 4λ + 5) = 0.

The eigenvalues are:

λ1 = −3, λ2 = 2 + i, λ3 = 2 − i.

Eigenvector for λ1 = −3 Solve (A − λ1I)v1 = 0:


0 0 0

0 6 −2

0 1 4



v11

v12

v13

 = 0.

This gives:

v1 =


1

0

0

 .
Eigenvectors for λ2 = 2 + i and λ3 = 2 − i Solve (A − λ2I)v2 = 0:


−5 − i 0 0

0 1 − i −2

0 1 −1 − i



v21

v22

v23

 = 0.

From the first row, v21 = 0. Solving the remaining system:

v2 =


0

1 + i

1

 , v3 =


0

1 − i

1

 .
So

• Stable Subspace (Es):

Es = Span



1

0

0


 .
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• Unstable Subspace (Eu):

Eu = Span



0

1

1

 ,

0

1

0


 .

• Center Subspace (Ec):

Ec = {0}.

Lemma 3.2.1 Let E be the generalized eigenspace of A corresponding to an eigenvalue λ. Then AE ⊂ E.

Proof. To show that AE ⊂ E, we need to prove that for any vector v ∈ E, the vector Av is also in E.

The generalized eigenspace E corresponding to an eigenvalue λ is defined as:

E = {v ∈ V | (A − λI)kv = 0 for some integer k ≥ 1}.

Here, V is the vector space on which A acts, and I is the identity operator.

Let v ∈ E. By definition, there exists an integer k ≥ 1 such that:

(A − λI)kv = 0.

Consider Av. We want to show that Av ∈ E, i.e., there exists an integer m ≥ 1 such that:

(A − λI)m(Av) = 0.

Notice that A and (A − λI) commute:

A(A − λI) = (A − λI)A.

This implies that:

(A − λI)kA = A(A − λI)k.

Using the commutativity, we have:

(A − λI)k(Av) = A(A − λI)kv.

Since v ∈ E, (A − λI)kv = 0, so:

(A − λI)k(Av) = A · 0 = 0.
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This shows that Av satisfies (A − λI)k(Av) = 0, which means Av ∈ E. Therefore, AE ⊂ E.

Theorem 3.2.1 Consider a system ẋ = Ax, where A is a n × n matrix with real entries. Then phase space Rn can

be decomposed as

Rn = Eu
⊕ Es

⊕ Ec,

where Eu, Es, and Ec are the unstable, stable, and center subspaces of the system, respectively. Furthermore, these

subspaces are invariant with respect to the flow.

Definition 3.2.1 Consider the linear system:

ẋ = Ax (3.3)

If all of the eigenvalues of A have negative (positive) real parts, the origin is called a sink (source) for the linear

system (3.3).

Example 3.2.1 Consider the linear system:

ẋ = Ax,

where A is a 2 × 2 matrix given by:

A =

−2 0

0 −3

 .
The eigenvalues of A are the solutions to the characteristic equation:

det(A − λI) = 0.

For the given matrix A, this becomes:

det

−2 − λ 0

0 −3 − λ

 = (−2 − λ)(−3 − λ) = 0.

The eigenvalues are:

λ1 = −2, λ2 = −3.

Since both eigenvalues (λ1 = −2 and λ2 = −3) have negative real parts, the origin is a sink for this system.

Trajectories will converge to the origin as t→∞.

Example 3.2.2 If we change the matrix A to:

A =

1 0

0 2

 ,
the eigenvalues become λ1 = 1 and λ2 = 2. Since both eigenvalues have positive real parts, the origin is a source

for this system. Trajectories will diverge from the origin as t→∞.
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Theorem 3.2.2 Let A be a real n × n matrix, and consider the linear system of differential equations:

ẋ = Ax.

The following statements are equivalent:

(a) For all initial conditions x0 ∈ Rn, the solution x(t) = eAtx0 satisfies:

lim
t→∞

x(t) = 0,

and for x0 , 0, the solution grows unbounded as t→ −∞:

lim
t→−∞

|x(t)| = ∞.

(b) All eigenvalues of A have negative real parts. That is, if λ is an eigenvalue of A, then Re(λ) < 0.

(c) There exist positive constants a, c,m, and M such that for all x0 ∈ Rn, the solution x(t) = eAtx0 satisfies:

|x(t)| ≤Me−ct
|x0| for t ≥ 0,

and

|x(t)| ≥ me−at
|x0| for t ≤ 0.

Proof. We prove the equivalence of the three statements by showing (a) =⇒ (b), (b) =⇒ (c), and

(c) =⇒ (a).

(a) =⇒ (b) Assume statement (a) holds. That is, for all x0 ∈ Rn, limt→∞ eAtx0 = 0, and for x0 , 0,

limt→−∞ |eAtx0| = ∞.

- If A had an eigenvalue λ with Re(λ) ≥ 0, then there would exist a solution x(t) = eAtx0 that either does

not decay to zero as t→∞ (if Re(λ) > 0) or remains bounded but does not grow as t→ −∞ (if

Re(λ) = 0). This contradicts statement (a). - Therefore, all eigenvalues of A must have negative real

parts. This proves (b).

(b) =⇒ (c) Assume all eigenvalues of A have negative real parts. We show that there exist positive

constants a, c,m, and M such that the exponential decay and growth estimates hold.

- By the Jordan canonical form, we can write A = PJP−1, where J is a block-diagonal matrix consisting of

Jordan blocks corresponding to the eigenvalues of A. - For each Jordan block, the exponential eJt can be

computed explicitly. Since all eigenvalues have negative real parts, each block contributes terms of the

form tkeλt, where Re(λ) < 0 and k is a nonnegative integer. - These terms decay exponentially as t→∞
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and grow exponentially as t→ −∞. Thus, there exist constants a, c,m, and M such that:

|eAtx0| ≤Me−ct
|x0| for t ≥ 0,

and

|eAtx0| ≥ me−at
|x0| for t ≤ 0.

This proves (c).

(c) =⇒ (a) Assume statement (c) holds. That is, there exist positive constants a, c,m, and M such that:

|x(t)| ≤Me−ct
|x0| for t ≥ 0,

and

|x(t)| ≥ me−at
|x0| for t ≤ 0.

- For t ≥ 0, the inequality |x(t)| ≤Me−ct
|x0| implies that limt→∞ x(t) = 0. - For t ≤ 0, the inequality

|x(t)| ≥ me−at
|x0| implies that limt→−∞ |x(t)| = ∞ for x0 , 0. - Thus, statement (a) holds.

We have shown that (a) =⇒ (b), (b) =⇒ (c), and (c) =⇒ (a). Therefore, the three statements are

equivalent.

Theorem 3.2.3 Let A be a real n × n matrix, and consider the linear system of differential equations:

ẋ = Ax.

The following statements are equivalent:

(a) For all initial conditions x0 ∈ Rn, the solution x(t) = eAtx0 satisfies:

lim
t→−∞

x(t) = 0,

and for x0 , 0, the solution grows unbounded as t→∞:

lim
t→∞
|x(t)| = ∞.

(b) All eigenvalues of A have positive real parts. That is, if λ is an eigenvalue of A, then Re(λ) > 0.

(c) There exist positive constants a, c,m, and M such that for all x0 ∈ Rn, the solution x(t) = eAtx0 satisfies:

|x(t)| ≤Mect
|x0| for t ≤ 0,
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and

|x(t)| ≥ meat
|x0| for t ≥ 0.

Proof. We prove the equivalence of the three statements by showing (a) =⇒ (b), (b) =⇒ (c), and

(c) =⇒ (a).

(a) =⇒ (b) Assume statement (a) holds. That is, for all x0 ∈ Rn, limt→−∞ eAtx0 = 0, and for x0 , 0,

limt→∞ |eAtx0| = ∞.

- If A had an eigenvalue λ with Re(λ) ≤ 0, then there would exist a solution x(t) = eAtx0 that either does

not decay to zero as t→ −∞ (if Re(λ) < 0) or remains bounded but does not grow as t→∞ (if

Re(λ) = 0). This contradicts statement (a). - Therefore, all eigenvalues of A must have positive real

parts. This proves (b).

(b) =⇒ (c) Assume all eigenvalues of A have positive real parts. We show that there exist positive

constants a, c,m, and M such that the exponential decay and growth estimates hold.

- By the Jordan canonical form, we can write A = PJP−1, where J is a block-diagonal matrix consisting of

Jordan blocks corresponding to the eigenvalues of A. - For each Jordan block, the exponential eJt can be

computed explicitly. Since all eigenvalues have positive real parts, each block contributes terms of the

form tkeλt, where Re(λ) > 0 and k is a nonnegative integer. - These terms decay exponentially as

t→ −∞ and grow exponentially as t→∞. Thus, there exist constants a, c,m, and M such that:

|eAtx0| ≤Mect
|x0| for t ≤ 0,

and

|eAtx0| ≥ meat
|x0| for t ≥ 0.

This proves (c).

(c) =⇒ (a) Assume statement (c) holds. That is, there exist positive constants a, c,m, and M such that:

|x(t)| ≤Mect
|x0| for t ≤ 0,

and

|x(t)| ≥ meat
|x0| for t ≥ 0.

- For t ≤ 0, the inequality |x(t)| ≤Mect
|x0| implies that limt→−∞ x(t) = 0. - For t ≥ 0, the inequality

|x(t)| ≥ meat
|x0| implies that limt→∞ |x(t)| = ∞ for x0 , 0. - Thus, statement (a) holds.

We have shown that (a) =⇒ (b), (b) =⇒ (c), and (c) =⇒ (a). Therefore, the three statements are

equivalent.
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CHAPTER 4

NONLINEAR SYSTEMS: LOCAL

THEORY

When a system is disturbed from its equilibrium or steady-state position, does it naturally return to that

state over time, or does the disturbance grow, leading to a significant deviation from the original state?

In other words: Stable System if the system returns to its equilibrium or steady state after a small

perturbation, it is considered stable. The effects of the disturbance diminish over time. Unstable

System if the system does not return to equilibrium and the disturbance grows over time, leading to

larger deviations, the system is considered unstable. Even a small perturbation can have significant

and potentially catastrophic consequences, this concept is fundamental in understanding the behavior

of physical, engineering, and dynamical systems, as it determines whether a system can maintain its

desired state or if it is prone to divergence and failure.
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Figure 4.1: A) Unstable B) Locally stable C) Asymptotically stable.

Consider the following autonomous system:

ẋ = f (x) (4.1)

where f ∈ C1(E) and E is an open subset of Rn. A point a in E such that f (a) = 0 is called an equilibrium

point or a critical point of the system (4.1). Critical points correspond to constant solutions of the

differential system. We use the notation φ(t, x0) to denote the unique solution x(t) of (4.1) that satisfies

x(0) = x0. The parametrized map φt = φ(t, ·) : Rn
→ Rn is called the flow of the system (4.1).

An important property of orbits is given in the following theorem.

Theorem 4.0.4 (Property of semi-groups) Let x0 ∈ Rn and (α,ω) be the maximal interval of existence of φ(t, x0).

Then

φ(t + τ, x0) = φ(t, φ(τ, x0)),

for t, τ, t + τ ∈ (α,ω).

Proof. Let x0 ∈ Rn and let (α,ω) be the maximal interval of existence of φ(t, x0). Suppose

t, τ, t + τ ∈ (α,ω). The function ψ(t) = φ(t + τ, x0) is a solution of equation (4.1) on the interval

(α − τ, ω − τ) (see Theorem 3.4 in [2]W. G. Kelley and A. C. Peterson, The theory of differential

equatioe001 Classical and qualitaive, Springer, New York. 2010).

On the other hand, φ(t, φ(τ, x0)) is also a solution of equation (4.1) and satisfies the same initial

condition at t = 0. Since solutions to (4.1) are unique, it follows that

ψ(t) = φ(t + τ, x0) = φ(t, φ(τ, x0)).
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Definition 4.0.2 (Local Stability)

- An equilibrium point a of equation (4.1) is stable in the see001e of Lyapunov if, for every ε > 0, there exists η > 0

such that for all x ∈ E satisfying ‖x − a‖ ≤ η, it follows that ‖φ(t, x) − a‖ ≤ ε for all t ≥ 0.

- An equilibrium point a of equation (4.1) is asymptotically stable in the sense of Lyapunov if it is stable in the

Lyapunov sense and, moreover, for all x sufficiently close to a, we have

lim
t→+∞

φ(t, x) = a.

We now present two methods to study the stability of a nonlinear system:

- Indirect method, based on linearization.

- Direct method, which involves using a function known as a Lyapunov function.

4.1 Indirect Method (Linearization)

To study the stability of an equilibrium point of equation (4.1), we first translate the equilibrium point

to the origin by defining a new variable x = x − a, where a is the equilibrium point. The Taylor

expansion of the function f (x) around x = 0 is given by:

f (x) = D f (0)x +
1
2!

D2 f (0)(x, x) + . . .

For x sufficiently close to the origin, the higher-order nonlinear terms become negligible compared to

the linear term. Lyapunov’s indirect method for studying stability around the equilibrium point 0

involves analyzing the corresponding linear system:

ẋ = Ax (4.2)

where A = D f (0) is the Jacobian matrix of f evaluated at 0, given by:

A = D f (0) =



∂ f1
∂x1

(0) ∂ f1
∂x2

(0) . . .
∂ f1
∂xn

(0)
∂ f2
∂x1

(0) ∂ f2
∂x2

(0) . . .
∂ f2
∂xn

(0)
...

...
. . .

...
∂ fn
∂x1

(0) ∂ fn
∂x2

(0) . . .
∂ fn
∂xn

(0)
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The system (4.2) is referred to as the linearized system of the original nonlinear system (4.1) at the

equilibrium point 0.

Definition 4.1.1 An equilibrium point a of equation (4.1) is called a hyperbolic point if none of the eigenvalues

of the Jacobian matrix A = D f (a) have a real part equal to zero.

Definition 4.1.2 The following definition establishes a foundation for the subsequent discussions:

An equilibrium point a of equation (4.1) is classified as one of the following types, based on the eigenvalues of the

Jacobian matrix A = D f (a):

Sink if all the eigenvalues of the matrix A = D f (a) have negative real parts.

Source if all the eigenvalues of the matrix A = D f (a) have positive real parts.

Saddle Point: if at least one eigenvalue of the matrix A = D f (a) has a positive real part, and at least one has a

negative real part.

Definition 4.1.3 Two autonomous systems are said to be topologically equivalent in a neighborhood of the

origin (or to have the same structure) if there exists a homeomorphism H that maps an open set U containing the

origin to an open set V containing the origin. This homeomorphism must transform the trajectories of the first

system in U into the trajectories of the second system in V, while preserving the orientation of the trajectories with

respect to time.

Example 4.1.1 Consider the following two linear systems:

ẋ = Ax (4.3)

and

ẏ = By (4.4)

where A =

−1 −3

−3 −1

 and B =

2 0

0 −4

.

Let H(x) = Rx, where

R =
1
√

2

1 −1

1 1

 and R−1 =
1
√

2

 1 1

−1 1

 .
It follows that

B = RAR−1.

Now, let y = H(x) = Rx, or equivalently x = R−1y. Then, the time derivative of y is related to the time derivative
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of x as follows:

ẏ = Rẋ

= RAx

= RAR−1y

= By.

Thus, if x(t) = eAtx0 is the solution of the first system with initial condition x0, then the solution y(t) = H(x(t)) =

Rx(t) = ReAtx0 = eBtRx0 is the solution of the second system with initial condition y0 = Rx0.

Therefore, the transformation H(x) = Rx is a simple 45◦ rotation, which is clearly a homeomorphism.

Theorem 4.1.1 (Hartman-Grobman)

Let U,V be two open sets ofRn containing the origin, let f ∈ C1(U), and let φt be the flow of the nonlinear system

(4.1). Suppose that the origin is a hyperbolic equilibrium point. Then, there exists a homeomorphism H from the

open set U to the open set V such that for each x0 ∈ U, there is an open interval I0 ⊂ R containing 0, and for all

t ∈ I0,

H ◦ φt(x0) = eAtH(x0),

i.e., H maps the trajectories of the nonlinear system (4.1) to the trajectories of its linearized system (4.2) and

preserves the direction of time.

The theorem asserts that, under certain conditions, in the neighborhood of a point a where f (a) = 0, the

nonlinear system

ẋ = f (x)

is topologically equivalent to its linearized system

ẋ = Ax,

where A = D f (a) is the Jacobian matrix at the equilibrium point a. Although the original statement of

the theorem is typically given for a = 0, we can always shift the system to this case by defining a new

function

1(x) = f (x + a) − f (a),
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which moves the equilibrium point to the origin. In this new system, the origin becomes the

equilibrium point, and the analysis can proceed as described in the theorem.

Thus, near an equilibrium point, the nonlinear system behaves in a manner similar to the linearized

system, and the topological structure of the trajectories is preserved. This result shows that locally (in

the neighborhood of a hyperbolic equilibrium point), the nonlinear dynamics are qualitatively the same

as the linear dynamics. Proof. See [6].

It is evident that a corollary exists.

Corollary 4.1.1 Consider the system (4.1) and its linearized version (4.2). If all the eigenvalues of A have negative

real parts, then a is locally asymptotically stable.

If there is at least one eigenvalue of A with a positive real part, then a is unstable.

Example 4.1.2 Consider the system of a pendulum with friction ẋ = y

ẏ = −ry − 1L sin(x)
(4.5)

with equilibrium points at (nπ, 0) for any integer n. The Jacobian matrix at the point (nπ, 0) is

 0 1
1

L (−1)n+1
−r


with the eigenvalues

λ1,2 =
−r ±

√
r2 + (−1)n+141/L

2
.

If n is even, then both eigenvalues have negative real parts, and the equilibrium point is locally asymptotically

stable.

If n is odd, then the two eigenvalues are real with opposite signs

λ1 =
−r −

√
r2 + 41/L
2

< 0 < λ2 =
−r +

√
r2 + 41/L
2

which means the equilibrium point is a saddle point (unstable). Figure (4.2) illustrates the corresponding phase

portrait.

4.2 Direct Method (Lyapunov Function)

The local stability of a hyperbolic equilibrium point a of (4.1) is clearly determined by the signs of the

real parts of the eigenvalues of the Jacobian matrix D f (a).

The stability of a non-hyperbolic equilibrium point is typically more difficult to determine.
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Figure 4.2: Phase portrait of the pendulum with friction

In this section, we present the second Lyapunov method, which is very useful for determining the

stability of an equilibrium point.

Definition 4.2.1 If V : Rn
→ R has partial derivatives with respect to each component of x, then we define the

gradient of V as the vector function

grad(V(x)) =

[
∂V
∂x1

(x)
∂V
∂x2

(x) . . .
∂V
∂xn

(x)
]
.

Definition 4.2.2 Let a be an equilibrium point of (4.1). A continuously differentiable function V defined on an

open set U ⊂ Rn containing a is called a Lyapunov function for the system (4.1) on U if

• V(a) = 0,

• V(x) > 0 for x ∈ U \ {a}, and

•

1rad(V(x)). f (x) ≤ 0 (4.6)

If the inequality (4.6) is strict for x ∈ U \ {a}, then V is called a strict Lyapunov function for the system (4.1) on U.

Note that (4.6) implies that if x ∈ U, then

d
dt

V(φ(t, x)) = grad(V(φ(t, x))) · f (φ(t, x)) ≤ 0

along the trajectory φ(t, x) in U, This signifies that V decreases along the orbits residing in U.

Theorem 4.2.1 If V is a Lyapunov function for the system (4.1) in the open set U containing the equilibrium

point a, then a is stable.

If V is a strict Lyapunov function, then a is asymptotically stable.
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Proof. [4]

. Suppose V is a Lyapunov function for the system (4.1) in the open set U containing the equilibrium

point a.

Fix r > 0 sufficiently small such that B(a, r) ⊂ U, and define

m = min {V(x) : |x − a| = r} > 0

Then,

W =
{
x : V(x) <

m
2

}
∩ B(a, r)

is an open set containing a.Choose s > 0 such that B(a, s) ⊂W.

For x ∈ B(a, s), we have

V(φ(t, x)) <
m
2
,

so that φ(t, x) stays within W because V(φ(t, x)) is decreasing.

Thus, φ(t, x) cannot cross the boundary of B(a, r) for t ≥ 0, meaning φ(t, x) remains within B(a, r) for

t ≥ 0, and a is stable.

Now suppose V is a strict Lyapunov function for the system (4.1) in the open set U containing the

equilibrium point a, but a is not asymptotically stable.

Then there exists x ∈ B(a, s) such that φ(t, x) does not approach a as t→∞.

Since the orbit is bounded, there exists x1 , a and a sequence tk →∞ such that φ(tk, x)→ x1 as k→∞.

By the property of semigroups (Theorem 4.0.4), we have

φ(tk + 1, x) = φ(1, φ(tk, x))

and since φ(t, x) is continuous with respect to x (Theorem ??), we have

V(φ(tk + 1, x)) = V(φ(1, φ(tk, x)))→ V(φ(1, x1)) < V(x1),

so there exists an integer N such that

V(φ(tN + 1, x)) < V(x1).

Choose k such that tk > tN + 1. Thus,

V(x1) ≤ V(φ(tk, x)) < V(φ(tN + 1, x)),
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which is a contradiction. Therefore, a is asymptotically stable.

Example 4.2.1 Consider the following system: ẋ = −x − xy2

ẏ = −y + 3x2y
(4.7)

The origin is an equilibrium point for this system.

We propose the simple function V(x, y) = ax2 + by2, where a and b are two positive real numbers to be determined.

We have V(0, 0) = 0 and V(x, y) > 0 if (x, y) , (0, 0).

Also, ∇V(x) · f (x) = −2ax2
− 2ax2y2

− 2by2 + 6bx2y2.

Lets choose a = 3 and b = 1 to eliminate two terms. In this case,

∇V(x) · f (x) = −6x2
− 2y2 < 0, if (x, y) , (0, 0).

Thus, V(x, y) = 3x2 + y2 is a strict Lyapunov function for the system (4.7) in R2, and the equilibrium point (0, 0)

is asymptotically stable.

4.3 Hyperbolicity and Structural Stability

Flows near hyperbolic fixed points exhibit distinctive dynamical properties collectively referred to as

hyperbolicity. This behavior is encapsulated by two key theorems. First, the Hartman-Grobman

theorem (4.1.1) establishes a topological conjugacy between nonlinear flows and their linearizations

near hyperbolic points, ensuring the preservation of time orientation through a continuous invertible

mapping. Second, the stable manifold theorem guarantees that nonlinear flows retain the same local

manifold structure as their linear counterparts, with well-defined stable (Ws
loc) and unstable (Wu

loc)

manifolds intersecting transversally at the fixed point. These manifolds are formally defined as the sets

of points whose trajectories asymptotically approach the fixed point under forward (stable) or

backward (unstable) time evolution within some neighborhood. Together, these theorems demonstrate

how hyperbolic structure persists under nonlinear perturbations, providing a robust foundation for

understanding the local dynamics near such points.

4.3.1 Stable Manifold

Definition 4.3.1 (Local Stable Manifold):

Let U be a neighborhood of a hyperbolic fixed point x∗. The local stable manifold, denoted by Ws
loc(x

∗), is defined as:

Ws
loc(x

∗) =
{
x ∈ U

∣∣∣φt(x)→ x∗ as t→∞, φt(x) ∈ U ∀t ≥ 0
}
.
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Definition 4.3.2 (Local Unstable Manifold):

The local unstable manifold, denoted by Wu
loc(x

∗), is defined as:

Wu
loc(x

∗) =
{
x ∈ U

∣∣∣φt(x)→ x∗ as t→ −∞, φt(x) ∈ U ∀t ≤ 0
}
.

Definition 4.3.3 (Stable Manifold Theorem):

The stable manifold theorem states that the local stable and unstable manifolds exist and have the same dimension

as the stable and unstable manifolds of the corresponding linearized system:

ẋ = Ax,

where x∗ is a hyperbolic equilibrium point. Furthermore, these manifolds are tangent to the stable and unstable

manifolds*

Definition 4.3.4 Hyperbolic Flow

If all the eigenvalues of an n × n matrix A are nonzero, the flow eAt : Rn
→ Rn is called a hyperbolic flow, and

the linear system ẋ = Ax is referred to as a hyperbolic linear system.

Definition 4.3.5 Invariant Manifold

A subset D ⊆ Rn is called a Cr (for r ≥ 1) invariant manifold if D has the structure of a Cr differentiable

manifold. Positively and negatively invariant manifolds are defined similarly. More formally, a subspace D ⊆ Rn

is invariant if any flow starting in this subspace remains in it for all future time.

The linear subspaces Es, Eu, and Ec are invariant subspaces of the linear system ẋ = Ax under the flow eAt.

Definition 4.3.6 Let E be an open subset of Rn, and let f ∈ C1(E). Let Φt : E → E represent the flow of the

system ẋ = f (x). A set S ⊆ E is called invariant with respect to Φt if Φt(S) ⊆ S for all t ∈ R. Furthermore, S is

positively invariant if Φt(S) ⊆ S for t ≥ 0 and negatively invariant if Φt(S) ⊆ S for t ≤ 0. If S is invariant with

respect to Φt, it is both positively and negatively invariant.

Theorem 4.3.1 (Stable Manifold Theorem) Let x∗ = 0 be a hyperbolic equilibrium point of the system

ẋ = f (x), where f ∈ C1. Let Es and Eu be the stable and unstable manifolds of the corresponding linear system

ẋ = Ax. Then there exist local stable and unstable manifolds, denoted by Ws
loc(0) and Wu

loc(0), of the nonlinear

system. These manifolds have the same dimension as Es and Eu, respectively. Moreover, these manifolds are

tangential to Es and Eu at the origin and are as smooth as the function f .

Let x0 be a hyperbolic fixed point of a nonlinear system. The classification of x0 is based on the

eigenvalues of the corresponding linearized system:

• x0 is called a sink if all eigenvalues have strictly negative real parts.

• x0 is called a source if all eigenvalues have strictly positive real parts.
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• If the eigenvalues have real parts of mixed signs (some positive, some negative), x0 is classified as

a saddle point.

Example 4.3.1 Local Stable and Unstable Manifolds

Find the local stable and unstable manifolds of the system:

ẋ = x − y2, ẏ = −y.

Solution The fixed point (x0, y0) satisfies: ẋ = 0 and ẏ = 0. From ẏ = −y, we get y = 0. Substituting y = 0

into ẋ = x − y2, we get x = 0. Thus, the fixed point is (x0, y0) = (0, 0).

The system has a unique equilibrium point at the origin, (0, 0). The origin is a saddle equilibrium point of the

corresponding linearized system:

ẋ = x, ẏ = −y,

with the invariant linear stable and unstable subspaces:

Es(0, 0) = {(x, y) : x = 0}, Eu(0, 0) = {(x, y) : y = 0}.

By the Stable Manifold Theorem, the system has local stable and unstable manifolds:

Ws
loc(0, 0) = {(x, y) : x = S(y),

∂S
∂y

(0) = 0},

Wu
loc(0, 0) = {(x, y) : y = U(x),

∂U
∂x

(0) = 0}.

We now find these manifolds explicitly.

Stable Manifold For the local stable manifold, we expand S(y) as a power series in the neighborhood of the origin:

S(y) =
∑
i≥0

siyi = s0 + s1y + s2y2 + s3y3 + · · · .

Since S(0) = 0 and ∂S
∂y (0) = 0, we have s0 = s1 = 0. Thus,

x = S(y) =
∑
i≥2

siyi = s2y2 + s3y3 + s4y4 + · · · .

Now, substituting x = S(y) into ẋ = x − y2, we get:

ẋ = s2y2 + s3y3 + s4y4 + · · · − y2 = (s2 − 1)y2 + s3y3 + s4y4 + · · · .
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On the other hand, from x = S(y), we have:

ẋ =
∂S
∂y

ẏ =
(
2s2y + 3s3y2 + 4s4y3 + · · ·

)
(−y).

Expanding this gives:

ẋ = −
(
2s2y2 + 3s3y3 + 4s4y4 + · · ·

)
.

Equating terms of like powers of y, we get:

(s2 − 1)y2 + s3y3 + s4y4 + · · · = −
(
2s2y2 + 3s3y3 + 4s4y4 + · · ·

)
.

From the coefficients, we find:

s2 =
1
3
, s3 = s4 = · · · = 0.

Thus:

x = S(y) =
1
3

y2.

Therefore, the local stable manifold of the nonlinear system in the neighborhood of the equilibrium point is:

Ws
loc(0, 0) = {(x, y) : x =

1
3

y2
}.

Unstable Manifold For the local unstable manifold, we expand U(x) as a power series in the neighborhood of the

origin:

U(x) =
∑
i≥0

uixi = u0 + u1x + u2x2 + u3x3 + · · · .

Since U(0) = 0 and ∂U
∂x (0) = 0, we have u0 = u1 = 0. Thus,

y = U(x) =
∑
i≥2

uixi = u2x2 + u3x3 + u4x4 + · · · .

Now, substituting y = U(x) into ẏ = −y, we get:

ẏ = −
(
u2x2 + u3x3 + u4x4 + · · ·

)
.

On the other hand, from y = U(x), we have:

ẏ =
∂U
∂x

ẋ =
(
2u2x + 3u3x2 + 4u4x3 + · · ·

)
(x − y2).

Expanding this and equating coefficients of like powers of x, we find:

u2 = u3 = u4 = · · · = 0.
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Thus:

y = U(x) = 0.

Therefore, the local unstable manifold of the nonlinear system in the neighborhood of the origin is:

Wu
loc(0, 0) = {(x, y) : y = 0}.

4.3.2 Center Manifold

In the previous section, we have seen that near a hyperbolic fixed point, the nonlinear system and its

corresponding linear system have the same qualitative features locally. Another important feature is

that hyperbolic equilibrium points retain their character under sufficiently small perturbations.

Let the origin be a hyperbolic fixed point of the linear system:

ẋ = f (x), x ∈ Rn.

Consider the perturbed system:

ẋ = f (x) + ε1(x), (4.11)

where 1(x) is a smooth vector field defined in Rn, and ε is a sufficiently small perturbation parameter.

The fixed points of (4.11) are given by:

f (x) + ε1(x) = 0.

Expanding f (x) and 1(x) in Taylor series about x = 0, and using f (0) = 0, we have:

D f (0)x + ε1(0) + εD1(0)x + O(|x|2) = 0.

Simplifying:

[
D f (0) + εD1(0)

]
x + ε1(0) + O(|x|2) = 0.

Since the origin is hyperbolic, the eigenvalues of D f (0) are nonzero. Thus, for sufficiently small ε, the

eigenvalues of D f (0) + εD1(0) are also nonzero, ensuring that:

det
[
D f (0) + εD1(0)

]
, 0.
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Therefore,
[
D f (0) + εD1(0)

]−1 exists, and the fixed points of (4.11) are given by:

x = −ε
[
D f (0) + εD1(0)

]−1
1(0) + O(|x|2).

Since ε is small, the eigenvalues of D f (x) + εD1(x) have nonzero real parts for sufficiently small x. Thus,

for sufficiently small ε, the eigenvalues of the perturbed system do not change, and the equilibrium

points retain their hyperbolic nature. This proves that the character of a hyperbolic fixed point remains

unchanged under small perturbations.

Theorem 4.3.2 (Center Manifold Theorem) Consider a nonlinear system:

ẋ = f (x),

where f ∈ Cr(E), r ≥ 1, and E is an open subset ofRn containing a non-hyperbolic fixed point x = 0. Suppose that

the Jacobian matrix J = D f (0) at the origin has:

• j eigenvalues with positive real parts,

• k eigenvalues with negative real parts,

• m = n − j − k eigenvalues with zero real parts.

Then, there exist:

• a j-dimensional Cr-class unstable manifold Wu(0),

• a k-dimensional Cr-class stable manifold Ws(0),

• an m-dimensional Cr-class center manifold Wc(0),

tangent to the subspaces Eu, Es, and Ec of the corresponding linear system ẋ = Ax at the origin, respectively. These

manifolds are invariant under the flow φt of the nonlinear system. The stable and unstable manifolds are unique,

but the local center manifold Wc(0) is not unique.

Example 4.3.2 Find the manifolds of the system ẋ = x, ẏ = y2

Solution

The system has a non-hyperbolic fixed point at the origin. The unstable subspace Eu(0, 0) of the linearized system

at the origin is the x-axis, and the center subspace Ec(0, 0) is the y-axis. No stable subspace exists for this system.

Using the power series expansion technique discussed in Example 4.13, we find that the unstable manifold at the

origin is the x-axis, and the center manifold is the y-axis, i.e., the line x = 0. However, other center manifolds also

exist.

From the equations, we have:
dy
dx

=
y2

x
.
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The solution to this equation is:

x = ke−1/y, for y , 0.

Thus, the center manifold at the origin is:

Wc
loc(0, 0) = {(x, y) ∈ R2 : x = ke−1/y, y > 0 or x = 0, y ≤ 0}.

This represents a one-parameter family (k) of center manifolds at the origin. Note that if we use the power series

expansion technique for the center manifold, we only obtain x = 0 as the center manifold. This example shows that

the center manifold is not unique.

Example 4.3.3 Consider the system

ẋ = x, ẏ = −x2y.

We aim to prove that the set

S := {(x, y) ∈ R2
| y = −

x2

3
}

is invariant with respect to the flow of this system, assuming initial conditions x(0) = c1 and y(0) = c2.

Solution

To solve the system, we first find x(t) by solving ẋ = x, which leads to ln x = t + C, and thus x(t) = c1et. For y(t),

substituting x(t) = c1et into ẏ = −x2y, we get ẏ = −(c1et)2y. Dividing and integrating yields

ln |y| = −
c2

1

2
e2t + K,

so

y(t) = K(t)e−c2
1e2t
.

Using the initial condition y(0) = c2, we find K = c2ec2
1/3, which gives

y(t) = c2e−c2
1e2t+c2

1/3.

Now, we verify the invariance of S. The set S is defined as y = − x2

3 . Substituting x(t) = c1et into S, we find

y = −
(c1et)2

3
= −

c2
1

3
e2t,

which matches the condition for y(t). Thus, the set S remains invariant under the flow of the system.

In conclusion, the set

S := {(x, y) ∈ R2
| y = −

x2

3
}
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is invariant under the flow of the system, and the flow is represented as

Φt(c1, c2) =

 c1et

−
c2

1
3 e2t

 .
Example 4.3.4 Show that the differential equation

ẋ = x2, ÿ = −y (4.8)

has infinitely many smooth centre manifolds.

The linearisation of (4.8) at the origin is

ẋ = DX(0)x =

0 0

0 −1


x

y

 . (4.9)

The eigenvalues of DX(0) are 0 and −1, with eigenvectors along the x- and y-axes, respectively. The Centre

Manifold Theorem predicts the existence of a curve invariant under the flow and tangent to the x-axis at x = 0.

The x-axis itself is clearly such a centre manifold because y ≡ 0 implies ẏ = 0.

Some examples of the eigenspaces Eu, Es and Ec for flows on R3:

(a) ẋ = −x, ẏ = 0, ż = z : at x = 0,Eu = z-axis,Es = x-axis,Ec = y-axis;

(b) ẋ = −y, ẏ = x, ż = −z : Eu = {0},Es = z-axis,Ec = xy-plane;

(c) ẋ = y, ẏ = −x, ż = −z : at x = 0,Eu = {0},Es = z-axis,Ec = xy-plane.

4.4 alysis and classification of fixed points in nonlinear dynamical

systems: The Linear vs. Nonlinear Relationship

Fixed points, where a system’s dynamics remain constant, are crucial to understanding the stability

and long-term behaviour of both linear and nonlinear systems. While linearisation provides valuable

insights, nonlinear systems can exhibit richer dynamics, including centres, foci and limit cycles, which

require deeper analysis. This discussion explores how to classify fixed points, when linear

approximations suffice, and where nonlinear methods become essential to bridge theory with practical

stability analysis.

Definition 4.4.1 The origin is called a center for the nonlinear system (4.1) if there exists a δ > 0 such that every

solution curve of (2) in the deleted neighborhood Nδ(0) \ {0} is a closed curve with 0 in its interior.
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Definition 4.4.2 The origin is called a center-focus for (2) if there exists a sequence of closed solution curves Γn,

with Γn+1 in the interior of Γn, such that Γn → 0 as n → ∞ and such that every trajectory between Γn and Γn+1

spirals toward Γn or Γn+1 as t→ ±∞.

Definition 4.4.3 The origin is called a stable focus for (2) if there exists a δ > 0 such that for 0 < r0 < δ and

θ0 ∈ R, r(t, r0, θ0) → 0 and |θ(t, r0, θ0)| → ∞ as t → ∞. It is called an unstable focus if r(t, r0, θ0) → 0 and

|θ(t, r0, θ0)| → ∞ as t→ −∞. Any trajectory of (2) which satisfies r(t)→ 0 and |θ(t)| → ∞ as t→ ±∞ is said to

spiral toward the origin as t→ ±∞.

Definition 4.4.4 The origin is called a stable node for (2) if there exists a δ > 0 such that for 0 < r0 < δ and

θ0 ∈ R, r(t, r0, θ0)→ 0 as t→∞ and

lim
t→∞

θ(t, r0, θ0) exists; i.e., each trajectory in a deleted neighborhood of the origin approaches the origin along a well-defined tangent line as t→∞.

The origin is called an unstable node if r(t, r0, θ0)→ 0 as t→ −∞ and

lim
t→−∞

θ(t, r0, θ0) exists for all r0 ∈ (0, δ) and θ0 ∈ R.

The origin is called a proper node for (2) if it is a node and if every ray through the origin is tangent to some

trajectory of (2).

Definition 4.4.5 The origin is a (topological) saddle for (2) if there exist two trajectories Γ1 and Γ2 which approach

0 as t → ∞ and two trajectories Γ3 and Γ4 which approach 0 as t → −∞ and if there exists a δ > 0 such that all

other trajectories which start in the deleted neighborhood of the origin Nδ(0) \ {0} leave Nδ(0) as t → ±∞. The

special trajectories Γ1, . . . ,Γ4 are called separatrices.

Definition 4.4.6 The origin is a saddle point for the nonlinear system ẋ = f (x) if there exist two trajectories Γ1

and Γ2 that approach the origin as t → +∞, and two trajectories Γ3 and Γ4 that approach the origin as t → −∞.

These trajectories Γ1,Γ2,Γ3,Γ4 are called separatrices.

Remark 4.4.1 For a saddle point:

• The stable manifold is S = Γ1 ∪ Γ2 ∪ {0}.

• The unstable manifold is U = Γ3 ∪ Γ4 ∪ {0}.

Theorem 4.4.1 Suppose that E is an open subset of R2 containing the origin and that f ∈ C1(E). If the origin is

a hyperbolic equilibrium point of the nonlinear system

ẋ = f (x),
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then the origin is a (topological) saddle for the nonlinear system if and only if the origin is a saddle for the linear

system

ẋ = Ax,

where A = D f (0).

Theorem 4.4.2 Let E be an open subset of R2 containing the origin, and let f ∈ C2(E). Suppose that the origin

is a hyperbolic critical point of the nonlinear system

ẋ = f (x).

Then:

• The origin is a stable (or unstable) node for the nonlinear system if and only if it is a stable (or unstable)

node for the linear system

ẋ = Ax,

where A = D f (0).

• The origin is a stable (or unstable) focus for the nonlinear system if and only if it is a stable (or unstable)

focus for the linear system

ẋ = Ax,

where A = D f (0).

Theorem 4.4.3 Let E be an open subset of R2 containing the origin, and let f ∈ C1(E) with f (0) = 0. Suppose

that the origin is a center for the linear system

ẋ = Ax,

where A = D f (0). Then the origin is either:

• a center,

• a center-focus, or

• a focus

for the nonlinear system

ẋ = f (x).

Proof. [6]

Corollary 4.4.1 Let E be an open subset of R2 containing the origin and let f be analytic in E with f (0) = 0.

Suppose that the origin is a center for the linear system

ẋ = Ax,
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where A = D f (0). Then the origin is either a center or a focus for the nonlinear system

ẋ = f (x).

Definitions 4.4.1 The system

ẋ = f (x)

is said to be symmetric with respect to the x-axis if it is invariant under the transformation (t, y) 7→ (−t,−y). It is

said to be symmetric with respect to the y-axis if it is invariant under the transformation (t, x) 7→ (−t,−x).

Example 4.4.1

ẋ = y + xy, ẏ = P(x, y)

ẏ = x + y2, ẏ = Q(x, y)

Substitute:

x′(t) = y(t) + x(t)y(t), y′(t) = x(t) + y2(t)

For the transformation (t, y)→ (−t,−y):

1. Substitute into the system:

−−̇x(t) = −y(−t) + x(−t)y(−t)

−̇y(t) = x(−t) + y(−t)2

With the substitution, we get:

x′(−t) = y(−t) − x(−t)y(−t)

y′(−t) = x(−t) + y(−t)2

Finally, the system becomes symmetric with respect to the x-axis.

Theorem 4.4.4 Let E be an open subset of R2 containing the origin and let f ∈ C1(E) with f (0) = 0. If the

nonlinear system

ẋ = f (x)

is symmetric with respect to the x-axis or the y-axis, and if the origin is a center for the linear system

ẋ = Ax,

where A = D f (0), then the origin is a center for the nonlinear system.

Example 4.4.2 Showing that (0, 0) is a Center for the Nonlinear System
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We analyze the system: 
x′ = −y − x2y,

y′ = x + xy3.

Step 1: Linearization at (0, 0)

The Jacobian matrix at (0, 0) is:

J(0, 0) =

 ∂x′
∂x

∂x′
∂y

∂y′

∂x
∂y′

∂y

 =

0 −1

1 0

 ,
since:

The eigenvalues of J(0, 0) are λ = ±i, so the linearized system has a center at (0, 0).

To confirm that (0, 0) remains a center for the nonlinear system, we check for reversibility:

1. Symmetry with respect to the x-axis:

(t, y) 7→ (−t,−y)
x′ = y + x2y,

y′ = x − xy3.

This is not identical to the original system.

2. Symmetry with respect to the y-axis:

(t, x) 7→ (−t,−x)
x′ = −y − x2y,

y′ = x + xy3.

This is Since:

1. The linearized system has a center,

2. the nonlinear system has a center at (0, 0).

4.5 Blowing-up Techniques on R2

Blowing-up techniques are a mathematical approach that involves introducing changes of coordinates

to expand, or ‘blow up,’ a non-hyperbolic fixed point (commonly assumed to be at x = 0) into a curve

along which a number of singularities are distributed. These techniques are particularly useful in

analyzing and understanding the behavior of dynamical systems near such fixed points. The
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topological structure of each singularity on this curve is then investigated, typically using tools like the

Hartman-Grobman Theorem.

The coordinate transformations employed in blowing-up are inherently singular at the fixed point

because they collapse the curve into a single point. Away from the fixed point, however, these

transformations are smooth and can be regarded as diffeomorphisms. A well-known and

straightforward example of such a transformation is the use of plane polar coordinates, which offers an

intuitive way to analyze the behavior of systems in a radial-angular framework.

Polar Blowing-up (Dumortier, 1978; Guckenheimer & Holmes, 1983)

Consider a differential equation of the form ẋ = X(x), x ∈ R2. This equation can be elegantly expressed

in terms of polar coordinates (r, θ), where x = (r cosθ, r sinθ). Transforming to polar coordinates serves

to desingularize the system by isolating radial and angular components, enabling a clearer study of the

dynamics near the fixed point.

In polar coordinates, the system takes the form:

ṙ = f (r, θ), θ̇ = 1(r, θ),

where f and 1 are smooth functions that describe the radial and angular dynamics, respectively. This

formulation not only simplifies the local analysis near the fixed point but also provides a powerful

framework for classifying and understanding the nature of singularities that arise in the system.

Let x = (x, y)T, f1(x) = P(x, y), and f2(x) = Q(x, y). The nonlinear system can be expressed as:

ẋ = P(x, y),

ẏ = Q(x, y).

By setting r2 = x2 + y2 and θ = tan−1(y/x), the system can be reformulated in polar coordinates as:

rṙ = xẋ + yẏ,

and

r2θ̇ = xẏ − yẋ.

For r > 0, the nonlinear system becomes:

ṙ = P(r cosθ, r sinθ) cosθ + Q(r cosθ, r sinθ) sinθ,

rθ̇ = Q(r cosθ, r sinθ) cosθ − P(r cosθ, r sinθ) sinθ,
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or equivalently:

dr
dθ

=
r[P(r cosθ, r sinθ) cosθ + Q(r cosθ, r sinθ) sinθ]

Q(r cosθ, r sinθ) cosθ − P(r cosθ, r sinθ) sinθ
.

The polar blowing-up technique is particularly effective when applied to systems where linearization

fails to provide sufficient insight. By converting the system into a polar framework, the method reveals

geometric structures and invariant manifolds that are otherwise obscured in Cartesian coordinates.

Rewriting the system in polar coordinates often clarifies the nature of equilibrium points, as

demonstrated in the following example.

Example 4.5.1 Use polar blowing-up to find the topological type of the singularity at the origin of the system

ẋ = x2
− 2xy, ẏ = y2

− 2xy.

Solution. In polar coordinates, (4.5.1) becomes

ṙ = r2(cos3 θ − 2 cos2 θ sinθ − 2 cos sin2 θ + sin3 θ) = r2R(r, θ), (2.8.9)

θ̇ = 3r cosθ sinθ(sinθ − cosθ) = rΘ(r, θ).

In order to examine the r = 0 circle, observe that (2.8.9) is topologically equivalent to

ṙ = rR(r, θ), θ̇ = Θ(r, θ).

Setting r = 0 in (2.8.10) gives the flow on the r = 0 circle shown in Figure(4.3). Singularities occur at θ = 0, π,

π/2, 3π/2, π/4, and 5π/4, and Hartman s Theorem, applied at each of these points in turn, gives the topological

types shown. For example, for θ = 0 we have

 ṙ

θ̇

 =

−1 0

0 −3


r

θ

 .
Thus (r, θ) = (0, 0) is a saddle point with unstable manifold tangent to the outward radial direction, and so on. In

this case, these linearizations are easily done, but they can be rather tedious in some examples.

Finally, we can contract the r = 0 circle in Figure(4.3) onto the origin to obtain the local phase portrait shown in

Figure (4.4).

Example 4.5.2 Write the system:

ẋ = −y − xy,

ẏ = x + x2,
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Figure 4.3: The flow on, and near, the r = 0-circle for (4.5.1). The topological types of the fixed points are
obtained by using HartmanâĂŹs Theorem. Since ṙ and θ̇ change sign when θ→ θ− π, it is sufficient to
consider only the singularities indicated.

Figure 4.4: Local phase portrait for (4.5.1) at the origin obtained by allowing the radius of the r = 0 circle
in (4.3) to shrink to zero.

in polar coordinates. For r > 0, we have:

ṙ =
xẋ + yẏ

r
=
−xy − x2y + xy + x2y

r
= 0,

and

θ̇ =
xẏ − yẋ

r2 =
x2 + x3 + y2 + xy2

r2 = 1 + x > 0,

for x > −1.

Thus, along any trajectory of this system in the half-plane x > −1, r(t) is constant and θ(t) increases without

bound as t→∞. That is, the origin is called a center for this nonlinear system.

Example 4.5.3 Solution

We are given the system:

ẋ = −y − x(x2 + y2),

ẏ = x − y(x2 + y2).
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In polar coordinates, we define:

x = r cosθ, y = r sinθ, r2 = x2 + y2, θ = tan−1
( y

x

)
.

The derivatives transform as:

rṙ = xẋ + yẏ, r2θ̇ = xẏ − yẋ.

Substitute x = r cosθ and y = r sinθ into the system:

rṙ = xẋ + yẏ = (−y − xr2)x + (x − yr2)y.

Simplify:

rṙ = −xy − x2r2 + xy − y2r2 = −r2(x2 + y2).

Since r2 = x2 + y2, we get:

ṙ = −r3.

r2θ̇ = xẏ − yẋ = x(x − yr2) − y(−y − xr2).

Simplify:

r2θ̇ = x2
− xyr2 + y2 + xyr2 = r2.

Thus:

θ̇ = 1.

The system in polar coordinates becomes:

ṙ = −r3,

θ̇ = 1.

This indicates that r decreases over time due to the negative cubic term, while θ increases linearly, meaning

trajectories spiral inward toward the origin.

From θ̇ = 1:

θ = t + θ0.

For r:

ṙ = −r3 =⇒
−dr
r3 = dt =⇒

1
2r2 = t + C.

Rearranging for r2:

r2 =
1

2t + K
.
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Applying the initial condition r(0) = r0:

r2
0 =

1
K

=⇒ K =
1
r2

0

.

Substituting K back:

r2 =
1

2t + 1
r2

0

=
r2

0

2tr2
0 + 1

.

Solving for r:

r = r0

√
1

2tr2
0 + 1

.

Condition for r to exist:

2tr2
0 + 1 > 0 =⇒ t > −

1
2r2

0

.

Hence:

r exists if t ∈

− 1
2r2

0

,+∞

 .
As t→ +∞:

|θ(t, r0, θ0)| → +∞, r(t, r0, θ0)→ 0.

(0, 0) is a stable focus for the system.

Example 4.5.4 We are given the system:

ẋ = −y + x(x2 + y2),

ẏ = x + y(x2 + y2).

In polar coordinates, we define:

x = r cosθ, y = r sinθ, r2 = x2 + y2, θ = tan−1
( y

x

)
.

The derivatives transform as:

rṙ = xẋ + yẏ, r2θ̇ = xẏ − yẋ.

Substitute x = r cosθ and y = r sinθ into the system:

rṙ = xẋ + yẏ = (−y + xr2)x + (x + yr2)y.

Simplify:

rṙ = −xy + x2r2 + xy + y2r2 = r2(x2 + y2).

Since r2 = x2 + y2, we get:

ṙ = r3.
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r2θ̇ = xẏ − yẋ = x(x + yr2) − y(−y + xr2).

Simplify:

r2θ̇ = x2 + xyr2 + y2 + xyr2 = r2 + 2xyr2.

Thus:

θ̇ = 1 + 2xy.

The system in polar coordinates becomes:

ṙ = r3,

θ̇ = 1.

From ṙ = r3:
dr
r3 = dt =⇒ −

1
2r2 = t + C.

Rearranging for r2:

r2 =
1

−2t + K
.

Applying the initial condition r(0) = r0:

r2
0 =

1
K

=⇒ K =
1
r2

0

.

Substituting K back:

r2 =
1

−2t + 1
r2

0

=
r2

0

−2tr2
0 + 1

.

Solving for r:

r = r0

√
1

−2tr2
0 + 1

.

Condition for r to exist:

−2tr2
0 + 1 > 0 =⇒ t <

1
2r2

0

.

Hence:

r exists if t ∈

−∞, 1
2r2

0

 .
θ(t) = t + θ0,

dr
r3 = −dt =⇒ −

1
2r2 = t + C =⇒ r2 =

1
2t + K

.
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From the initial condition r(0) = r0:

r2
0 =

1
K

=⇒ K =
1
r2

0

=⇒ r2 =
1

2t + 1
r2

0

=
r2

0

1 + 2tr2
0

.

Thus:

r =
r0√

1 − 2tr2
0

.

r exists if:

t ∈

−∞, 1
2r2

0

 .
If t→ 1

2r2
0
:

|θ(t, r0, θ0)| → +∞, r(t, r0, θ0)→ 0.

Therefore, (0, 0) is an unstable focus for the system.

4.6 Examples of applications

Consider the following ecological model, which represents the interaction between two species: a

predator and a prey. Let x(t) be the population of prey at time t, and y(t) be the population of predators

at time t.

The system of equations governing the interaction between these two species is given by:


ẋ = αx − βxy

ẏ = δxy − γy
(4.10)

where: - α is the growth rate of the prey, - β is the rate at which predators capture prey, - δ is the rate at

which predators reproduce based on the availability of prey, - γ is the natural death rate of the

predators.

The system describes how the population of prey and predators change over time due to their

interactions. The prey population increases exponentially when predators are absent, while the

predator population grows as it consumes prey. However, both populations are limited by their

interaction rates.

To study the stability of the system, we can examine the equilibrium points by setting ẋ = 0 and ẏ = 0.

This gives us the following system:
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αx − βxy = 0

δxy − γy = 0

The nontrivial equilibrium points are found by solving this system, and analyzing the stability of these

points can provide insight into the long-term behavior of the ecosystem.

Ecological Model: Predator-Prey System

We are given the following system of differential equations representing a predator-prey model:


ẋ = αx − βxy

ẏ = δxy − γy

Where:

• x(t) is the prey population at time t,

• y(t) is the predator population at time t,

• α is the growth rate of the prey,

• β is the rate at which predators capture prey,

• δ is the rate at which predators reproduce based on prey availability,

• γ is the natural death rate of the predators.

This system represents a typical predator-prey model (Lotka-Volterra equations).

To find the equilibrium points, we set both ẋ = 0 and ẏ = 0. This corresponds to situations where both

the prey and predator populations stop changing, i.e., their populations are constant over time.


αx − βxy = 0

δxy − γy = 0

Equation 1: αx − βxy = 0

This equation can be factored as:

x(α − βy) = 0
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So, either: 1. x = 0 (no prey), or 2. α − βy = 0, which simplifies to y = α
β .

Equation 2: δxy − γy = 0

This equation can be factored as:

y(δx − γ) = 0

So, either: 1. y = 0 (no predators), or 2. δx = γ, which simplifies to x =
γ
δ .

Now we combine the results from both equations:

1. Case 1: x = 0 and y = 0 - The first equilibrium point is (x, y) = (0, 0), which corresponds to the

scenario where both the prey and predator populations are extinct.

2. Case 2: x =
γ
δ and y = α

β - The second equilibrium point is
(
γ
δ ,

α
β

)
, which corresponds to a stable

population of both prey and predators, where the prey population is γ
δ and the predator population is α

β .

Thus, the equilibrium points are: - (0, 0) âĂŤ both species extinct, -
(
γ
δ ,

α
β

)
âĂŤ a non-zero equilibrium

where both species coexist.

To determine the stability of the equilibrium points, we can linearize the system around each

equilibrium point and examine the eigenvalues of the Jacobian matrix.

The Jacobian matrix for the system is given by:

J(x, y) =

 ∂
∂x (αx − βxy) ∂

∂y (αx − βxy)
∂
∂x (δxy − γy) ∂

∂y (δxy − γy)


Let’s compute the partial derivatives: - ∂

∂x (αx − βxy) = α − βy - ∂
∂y (αx − βxy) = −βx - ∂

∂x (δxy − γy) = δy -
∂
∂y (δxy − γy) = δx − γ

So, the Jacobian matrix is:

J(x, y) =

α − βy −βx

δy δx − γ


Case 1: At (0, 0)

Substitute x = 0 and y = 0 into the Jacobian matrix:

J(0, 0) =

α 0

0 −γ


The eigenvalues of this matrix are α and −γ. Since α > 0 (prey grow) and γ > 0 (predators die), we have

85



Chapter 3. Stability Theory

one positive eigenvalue and one negative eigenvalue. This indicates that the equilibrium point (0, 0) is

a saddle point and is unstable.

Case 2: At
(
γ
δ ,

α
β

)
Substitute x =

γ
δ and y = α

β into the Jacobian matrix:

J
(
γ

δ
,
α
β

)
=

α − β · αβ −β ·
γ
δ

δ · αβ δ ·
γ
δ − γ


Simplifying:

J
(
γ

δ
,
α
β

)
=

 0 −
βγ
δ

αδ
β 0


The eigenvalues of this matrix are the solutions to the characteristic equation:

λ2 +

(
αγ

βδ

)
= 0

This gives purely imaginary eigenvalues λ = ±i
√

αγ
βδ . Therefore, the equilibrium point

(
γ
δ ,

α
β

)
is a center

and the population oscillates around this point, indicating neutral stability.
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