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INTRODUCTION

This comprehensive study reveals the mathematical structure of discrete-time dynamical systems, where

simple recursive rules of the form xn+1 = f (xn) give rise to surprisingly rich and complex behaviors.

Our exploration begins with the fundamental bridge between continuous and discrete systems (Sec-

tion 1.1), where we develop the conceptual framework and precise terminology (Section 1.2) that un-

derpin our entire investigation. Through careful analysis of system orbits (Section 1.3), we discover

the ordered beauty of fixed points and periodic solutions (Section 1.4), while the powerful concept of

topological equivalence (also in Section 1.4) reveals hidden connections between seemingly different

systems.

We illustrate this using vivid graphical methods (Section 1.6), where one-dimensional cobweb plots

(Section 1.6.1) and two-dimensional phase portraits (Section 1.6.2) transform abstract concepts into visual

intuition.

Chapter 2: One-Dimensional Systems

Chapter 2 focuses intensively on one-dimensional systems, where we develop a complete analytical

toolkit:

• Fixed point characterization (Section 2.1)

• Graphical iteration techniques (Sections 2.2, 2.3)

• Stability criteria (Section 2.4), distinguishing:

– Hyperbolic cases (Section 2.4.1)

– Non-hyperbolic cases (Section 2.4.2)

• Periodic points and their structure (Section 2.5)
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Chapter 3: Two-Dimensional Systems

In Chapter 3, we transition to two-dimensional discrete dynamical systems, where the mathematical

framework becomes significantly more intricate and powerful. These systems exhibit rich behaviors

such as spirals, saddles, and centers, analyzed using matrix dynamics and eigenvalue techniques.

Section 3.1 explores linear systems via matrix iterations xn+1 = Axn, including:

• Linear maps vs. linear systems (Section 3.1.1)

• Computing An via diagonalization and Jordan form (Section 3.1.2)

• Characterization via eigenvalues and eigenvectors (Section 3.1.3)

• Trace-determinant classification (Section 3.1.4)

Section 3.2 introduces nonlinear systems. Then, in Section 3.3, we study stability via linearization

using Jacobian matrices. Finally, Section 3.4 introduces Liapunov functions as a global stability tool,

independent of linear approximation.

Chapter 4: Bifurcations and Chaos Onset

Chapter 4 explores bifurcations, where small parameter changes produce qualitative system changes.

In Section 4.1, we study:

• Saddle-node bifurcations (Section 4.1.1)

• Pitchfork bifurcations (Section 4.1.2)

• Emergence of periodic points (Section 4.1.3)

• Period-doubling route to chaos (Section 4.1.4)

Section 4.2 introduces Feigenbaum’s constants and their universality. Section 4.3 explores odd-

period orbits and Sharkovskii’s theorem, while Section 4.4 generalizes to higher-dimensional Neimark

bifurcations where invariant circles appear.

Chapter 5: Chaos Theory

Our journey culminates in Chapter 5 with chaos theory, where deterministic systems exhibit unpre-

dictable outcomes due to sensitive dependence on initial conditions.

Throughout this intellectual adventure, we maintain a careful balance between rigorous mathematical

foundations and practical computational tools, creating a versatile framework applicable to physics,

biology, economics, and engineering.
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CHAPTER 1

DISCRETE-TIME DYNAMICAL

SYSTEMS

Discrete-time modelling can be imposed either by the nature of the process or by the need to ’discretise’

a continuous-time model in order to process it numerically. The evolution of the system is observed by

choosing certain moments in time, which are assumed to be equidistant. In all cases, the choice of time

unit is an important part of modelling the system. In the model, time is therefore denoted by a variable

that takes the integer values n = - - - - 2, -1, 0, 1, 2, ... . Here is a basic example of a discrete-time dynamic

process.

Let us consider the one-dimensional difference equation

x(n + 1) = f (x(n)) = f [n](x0), n = 0, 1, . . . (1.1)

where f : R→ R is a given nonlinear function in x(n).

When studying the motion of difference equations, we try to determine equilibrium points and

periodic points, analyse their stability and asymptotic stability, and determine aperiodic points and

chaotic behaviour. We call equation (1.1) a scalar (or one-dimensional) dynamical system. The function

f is called the map associated with equation (2.2.1).

A solution of equation (1.1) is a sequence {xn}
∞

n=0 which satisfies the equation for all n = 0, 1, . . . . If an

initial condition x(0) = x0 is given, the problem of solving equation (1.1) so that the solution satisfies the

initial condition is called the initial value problem.

The general solution to equation (1.1) is a sequence {xn}
∞

n=0 which satisfies equation (1.1) for all n =

6



0, 1, . . . and contains a constant C which can be determined once an initial value is given. A particular

solution is a sequence {xn}
∞

n=0 which satisfies equation (1.1) for all n = 0, 1, . . . .

Example 1.0.1 Discrete-Time Rabbit Population Model

Suppose we have a rabbit population that at the start of our experiment has x(0) rabbits. We know that in one

year the population increases by 10%. Let x(n) be the number of rabbits in the n-th year.

After one year, we obtain x(1) rabbits:

x(1) = x(0) + 0.1x(0) = 1.1x(0)

In the second year:

x(2) = x(1) + 0.1x(1) = 1.1x(1)

Continuing this pattern, we find that for any given year n:

x(n + 1) = x(n) + 0.1x(n) = 1.1x(n)

Thus we can see that for each time period:

x(n + 1) = p(x(n))

where

p(x) = 1.1x

In other words, the population dynamics can be described, as in the previous example, by the iteration of a

function p(x). Knowing this function, we can reconstruct the state of the system at any moment in time. The

closed-form solution to this recurrence relation is:

x(n) = x(0) · (1.1)n

which demonstrates exponential growth of the rabbit population.

1.1 Going from Continuous Time to Discrete Time

There are several techniques for discretizing (sampling) systems. Here is a simple example, often used:

Euler’s method. Consider a first-order differential equation:

ẋ = f (x)

We want to study the trajectory of this equation only at specific, equally spaced time instants tn =
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t0+n·∆. If the sampling period ∆t is chosen to be small enough, the derivative of x(t) can be approximated

by the difference:

ẋ ≈
x(tn + 1) − x(tn)

∆t

Then, the continuous-time dynamic system can be approximated by the following discrete-time

dynamic system:

x(n + 1) = x(n) + ∆t · f (x(n))

1.2 definitions

In the general case, a discrete dynamical system is described by a system of finite difference equations,

in other words, by a recurrence. As in the continuous case, there are several types of systems.

Definition 1.2.1 First-Order Discrete Dynamical Systems (DDS) in Dimension m

Let D ∈ Rm be a set and f : D→ D a continuous and differentiable function. The following recurrence is called a

first-order discrete dynamical system in dimension m:

x(0) = x0 ∈ D, x(n + 1) = f (x(n)), n ≥ 0

We will often use the notation ( f ,D) to denote the dynamical system defined by the function f on the set D.

When the system has multiple state variables, we can represent it in vector form.

Let

~x(n) =



x1(n)

x2(n)
...

xm(n)


be the vector of the system’s states. The space formed by these states is called the phase space of the

system.

Let ~f : Rm
→ Rm be a continuous and differentiable mapping:

~f (~x) =



f1(~x)

f2(~x)
...

fm(~x)
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Then the system ( f ,D) can be written in the form:

~x(0) = ~x0 ∈ D, ~x(n + 1) = ~f (~x(n)), n ≥ 0

Non-Autonomous Discrete Dynamical Systems

If the function ~f depends on the state ~x and the time variable n, then the system is called non-

autonomous:

~x(0) = ~x0, ~x(n + 1) = ~f (n, ~x(n)), n ≥ 0

Higher-Order Discrete Dynamical Systems

These systems are described by finite difference equations of order r ≥ 2, either autonomous or

non-autonomous:

~x(n + r) = ~f (~x(n), ~x(n + 1), . . . , ~x(n + r − 1)), n ≥ 0 (1.2)

There exists a simple procedure that allows transforming any higher-order system into a first-order

system. For this, it is enough to define a new phase space formed by vectors of the form:

~y(n) =



~x(n)

~x(n + 1)
...

~x(n + r − 1)


The dimension of this space is m ·r. In this space, we define a mapping ~1 : Rm·r

→ Rm·r by the formula:

~1(~y) =



~11(~y)

~12(~y)
...

~1r−1(~y)


where for k = 1, . . . , r − 1, each ~1k(~y) is defined as:

~1k(~y) =



yk·m+1

yk·m+2

...

yk·m+m


Then, equation (1.2)becomes equivalent to the following first-order equation for ~y(n):
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~y(n + 1) = ~1(~y(n))

In certain cases (especially linear ones), this transformation allows us to apply to higher-order systems

the same analysis methods used for first-order systems.

1.3 Notion of the orbit of a system

From now on we will only study first order systems. Our aim is to describe how the states of the system

evolve from the initial conditions.

We therefore need to introduce the concept of the trajectory or orbit of the system.

Let a first-order discrete dynamical system be defined by the iteration of a function f (x):

x(0) = x0, x(n + 1) = f (x(n)), n ≥ 0 (1.3)

Definition 1.3.1 orbit

Given the starting point x0, the orbit (or trajectory) of the system (1.3) is the sequence:

O(x0) = {x(0) = x0, x(1) = f (x0), x(2) = f (x(1)), . . . , x(n + 1) = f (x(n)), . . .}

Example 1.3.1 Let a first-order discrete dynamical system of dimension 1 be defined by the function f (x) = x2 on

the interval [0,+∞). Let the initial condition be x0 = 1
2 . The corresponding orbit is

x(0) = x0 =
1
2
, x(1) = f (x(0)) =

(1
2

)2

=
1
4
, x(2) = f (x(1)) =

(1
4

)2

=
1
16

We observe that

0 1
16

x(1)

0.25

x(1)

0.5

x(0)

x(n) = f (x(n − 1)) = f (n)(x0) =
(1

2

)2n

−→ 0 as n→∞

Let us take a different starting point, x0 = 2. Then

x(0) = 2, x(1) = f (x(0)) = 4, x(2) = f (x(1)) = 16

In this case, as n→∞, we have:
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x(n) = f (x(n − 1)) = f (n)(x0) = 22n
−→ ∞

Finally, if we choose the starting point x0 = 1, we observe that:

O(x0) = {1, 1, x(n) = 12n
= 1, . . .}

0 2 4 16

x(0) x(1) x(2)

Remark 1.3.1 We thus observe three different behaviours of the same system, depending on the chosen starting

point. This allows us to speak of the properties of a system by describing all its possible orbits.

1.4 stationary point,Periodic orbits

Definition 1.4.1 stationary point

A point x∗ is called a stationary point of equation (1.1) if

x∗ = f (x∗). (1.4)

Each x∗ can be regarded either as a state of the dynamical system

x(n + 1) = f (x(n))

satisfying equation (1.4) , or as a solution to the system of equations

x = f (x).

We also call x a fixed (or stationary or equilibrium) point of f .

Example 1.4.1 Every steady state of the system

x(n + 1) = ax(n)(1 − x(n)) (1.5)

must satisfy the equation

x = ax(1 − x). (1.6)
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We see that x∗ = 0 is a stationary state regardless of the value of a. Another stationary point is given by solving

x = ax(1 − x)⇒ ax(1 − x) − x = 0⇒ x(a(1 − x) − 1) = 0.

Set the second factor to zero:

a(1 − x) − 1 = 0⇒ a(1 − x) = 1⇒ 1 − x =
1
a
⇒ x = 1 −

1
a
.

So the second fixed point is

x∗ = 1 −
1
a
. (1.7)

Definition 1.4.2 Periodic orbits

A point p ∈ R is called a periodic point of period k if

f k(p) = p.

The point p is called a periodic point of minimal period k (or a prime period k point) if

f k(p) = p,

and k is the smallest positive integer for which this holds.

If p is a periodic point, then the set O(p) is called the periodic orbit of p. Orbits that are not periodic are said to

be aperiodic.

The choice of “minimal” is motivated by the fact that the orbit cannot be decomposed into smaller

loops. A fixed point can be regarded as a periodic point of period 1. Since

f p(x0) = x0 implies f m(x0) , x0 for all 0 < m < p,

whenever p is the period of O(x0), we also have f m(x0) , x0 for every m < p.

Every point

x(t), t = 0, 1, . . . , p − 1,

of the periodic orbit O(x0) of period p is periodic of the same period. Thus, O(x0) contains exactly p

distinct periodic points of period p. Sometimes, we use Op to denote a periodic orbit of period p.

The periodic orbits of period 2 of f are given by the intersections of the graph of f ( f (x)) with the line

y = x.

In particular, any fixed point, being a periodic point of period p = 1, is a periodic point of any period

Example 1.4.2 Let us consider a one-dimensional system defined by the function (1.5) Here, a is a parameter

which we will assume lies in the interval a ∈ (0, 4).
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Let’s investigate whether this system has periodic points of fundamental period 2. These points must be

solutions of the equation:

f ( f (x)) = x (1.8)

We must exclude from the start the fixed points (i.e., points of period 1) which are solutions to the equation:

ax(1 − x) = f (x) = x

From this, we deduce that:

x , 0, x , 1 −
1
a

(1.9)

Let’s now focus on equation (1.8):

a2x(1 − x)(1 − ax(1 − x)) = x

The periodic points we’re looking for are therefore the roots of a degree 4 polynomial:

a3x4
− 2a3x3 + a2(1 + a)x2

− (a2
− 1)x = 0

We already know two of its roots: these are the two fixed points. To eliminate them and find the remaining two

roots more easily, we factor this polynomial by dividing it by the polynomial of the fixed points’ equation:

a3x4
− 2a3x3 + a2(1 + a)x2

− (a2
− 1)x = (ax2

− (a − 1)x)(a2x2
− (a2 + a)x + a + 1)

So the periodic points we are looking for are the real solutions of the equation:

a2x2
− (a2 + a)x + a + 1 = 0

The roots of this polynomial are of the form:

x1,2 =
a + 1

2a
±

1
2a

√
(a − 3)(a + 1)

Therefore, if a > 3, there are two distinct periodic points. They then belong to the same periodic orbit of period

2.

If a < 3, there are no periodic points.

Finally, if a = 3, there is only one periodic point, which coincides with one of the fixed points.

In this example, we can observe a very important phenomenon in the theory of dynamical systems: the change in

characteristics of a system depending on the choice of its parameters. We will study this phenomenon later, in the

courses to follow.
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1.5 Topological Equivalence of Dynamical Systems

In this section, we will define a notion of equivalence between two systems, which is crucial for the

study of dynamical systems, particularly for understanding complex behaviors.

Let D and E be two metric spaces, and let f : D→ D and 1 : E→ E be two maps defining dynamical

systems on D and E, respectively.

Definition 1.5.1 Two dynamical systems (D, f ) and (E, 1) are said to be topologically conjugate if there exists

a homeomorphism (a continuous and bijective map) h : D→ E such that:

h ◦ f = 1 ◦ h (1.10)

Remark 1.5.1 The condition (1.10) can be written explicitly as: for all x ∈ D,

h( f (x)) = 1(h(x))

This equivalence can be represented by the following commutative diagram:

The following theorem demonstrates the importance of this definition.

Theorem 1.5.1 Let (D, f ) and (E, 1) be two dynamical systems. Suppose they are topologically conjugate via a

homeomorphism h : D→ E. Then:

(a) The inverse map h−1 : E→ D also satisfies the definition and thus ensures topological equivalence between

(D, f ) and (E, 1).

(b) h ◦ f (n) = 1(n)
◦ h for all n ∈N.

(c) If p ∈ D is a periodic point of f with fundamental period k, then h(p) ∈ E is a periodic point of 1 with

fundamental period k.

Remark 1.5.2 The map h : D→ E simply corresponds to a change of variables that transforms f into 1. Indeed,

suppose {x(n),n = 0, 1, . . .} is an arbitrary orbit of the system (D, f ). If we set for all n = 0, 1, . . .,

y(n) = h(x(n)),
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then we easily observe that

y(n + 1) = h(x(n + 1)) = h( f (x(n))) = 1(h(x(n))) = 1(y(n)).

This means that the sequence {y(n),n = 0, 1, . . .}, the image of {x(n),n = 0, 1, . . .} under h, is an orbit of the system

(E, 1).

1.6 Graphical study of dynamic systems

In this section, we’ll look at some very simple ways of visualizing the behavior of certain systems. These

representations will help us better understand the phenomena we’re about to study.

1.6.1 1-Dimensional Discrete Dynamical Systems

Consider a 1-dimensional discrete dynamical system (DDS) defined by a function:

f : R→ R, x(0) = x0, x(n + 1) = f (x(n))

The evolution of an orbit O(x0) can be visualized in the (x, y)-plane using the graph of f and the line

y = x.

As an example, take the function:

f (x) = 4.5x − 3.5x2

We will represent the orbit starting at x0 = 0.2. First, we plot the graph of f and the line y = x (see Figure

(1.2)).

In the (x, y)-plane, the orbit begins at the point (x0, 0). We then draw:

1. A vertical line from (x(0), 0) to the graph of f , intersecting at (x(0), x(1)) where x(1) = f (x(0)).

2. A horizontal line from (x(0), x(1)) to (x(1), x(1)) on the line y = x.

From this point, we draw another vertical line to the graph of f (x) to find the next point x(2) = f (x(1))

(see Figure 1.2). By repeating this process, we can track the orbit’s evolution for as many steps as desired.

This graphical representation is particularly useful because:

• It clearly shows fixed points (intersections of f (x) and y = x).

• It reveals orbit behavior near fixed points (e.g., convergence, divergence, or cycles), as illustrated

in Figures (1.1) .

In upcoming lectures, we will use this representation to explore key concepts in 1D dynamical systems

theory.
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x

y

y = x

f (x)(x(0), 0)

(x(0), x(1))
(x(1), x(1))

(x(1), x(2))

Figure 1.1: Orbit of the system x(n + 1) = 4.5x(n) − 3.5x2(n): Second step.

x

y

y = x

f (x)(x0, 0)

(x0, x1)(x1, x1)

Figure 1.2: Visualization of the orbit O(x0) for f (x) = 4.5x − 3.5x2.

1.6.2 Two-Dimensional Discrete Dynamical:Phase portraits

A discrete dynamic system of dimension 2 is described by two equations:

x1(n + 1) = f1(x1(n), x2(n))

x2(n + 1) = f2(x1(n), x2(n))

To study these systems, phase portraits are often used. To plot the phase portrait of a dynamic system

defined by the map f : R2
→ R2, where:

f (x1, x2) =
(

f1(x1, x2), f2(x1, x2)
)

a dense grid of points (x1, x2) is chosen on the plane, and at each point, the direction of the orbit

starting from that point is plotted. This direction for an initial point x(0) = (x1, x2) is defined by the

vector:

x(1) − x(0) = f (x(0)) − x(0)
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This provides an overview of all possible orbits of the system. If we are interested in a specific orbit,

we can trace it on the phase portrait by following the direction vectors starting from the initial point of

that orbit.

Fixed points of the system can be observed on a phase portrait. These are the points where f (x) = x.

Hence, the direction vector in the phase portrait must be zero at a fixed point. The behavior of orbits

around a fixed point is important, and the phase portrait provides a first qualitative analysis of this

behavior. In the figure, some orbits starting from points close to the fixed points are shown.

One can also observe periodic orbits on the phase portrait, if the system has any. In this case, closed

curves formed by a group of direction vectors can be distinguished.

This provides an overview (see Figure 1.3) of all possible system orbits. To study a particular orbit,

we can trace it on the phase portrait by following the vector field directions starting from the orbit’s

initial point.

x1

x2

~x(0)

Fixed point

Figure 1.3: Phase portrait showing vector field (blue arrows) and a sample orbit (red curve) starting from
~x(0)

Remark 1.6.1 More details and examples will be discussed in Chapter (3).
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CHAPTER 2

DISCRETE ONE-DIMENSIONAL

DYNAMICAL SYSTEMS

The aim of dynamic systems theory is to model processes that evolve over time and to study their

behavior. This study must enable us to predict the system’s behavior and regulate it to obtain the

desired results. To develop a model, we first need to define the values that evolve over time, the system

states. Next, we need to find the mathematical equations that describe their evolution. Generally

speaking, these are differential equations (if time is considered continuous) or finite-difference equations

(if model time is discrete). The parameters of the model are the coefficients of these equations and the

initial conditions. In the courses that follow, we will focus on discrete-time dynamical systems. It’s

important to stress, however, that all the notions we’ll be discussing here are also defined in the case of

continuous-time systems, and form the basis for the appropriate studies.

A discrete one-dimensional dynamical system is a system subjected to a single equation of this type

x(n + 1) = f (x(n)) (2.1)

where x ∈ I ⊆ R and f is a function of x. The variable n is in general considered as the time, but in

discrete systems the time takes only discrete values, so that it is possible to take t ∈ Z.

A trajectory is a set {x(n)}∞n=0 of points satisfying the above equation. It is evident that the initial point

x0 = x(0) determines the entire trajectory. The behaviour of the dynamical system is therefore given by

all the trajectories {x(n) : x(0) = x0} for all initial values x0 ∈ I.

A dynamical system depending on a parameter is described by a family
{
fa
}

of functions parametrized
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by a, where a ∈ A ⊆ R.

x(n + 1) = fa(x(n)) (2.2)

2.1 Fixed points

Definition 2.1.1 Let x̄ ∈ I be a point of the dynamical system 2.1 satisfying f (x̄) = x̄. Consider a trajectory

starting at x0 = x̄. It is evident that the entire trajectory is formed by the unique point x̄, i.e. x(n) = x̄∀t ≥ 0. A

point x̄ satisfying f (x̄) = x̄ is called a fixed point or a equilibrium point of the system (2.1).

Graphically speaking, a fixed point of a map f is a point where the curve y = f (x) intersects the

diagonal line y = x. For example, the fixed points of the cubic map f (x) = x3 can be obtained by solving

the equation x3 = x or x3
− x = 0. Hence, there are three fixed points -1, 0, 1 for this map (see Fig. (2.1)).

−2 −1 1 2

−2

−1

1

2

(0, 0)

(1, 1)

(−1,−1)

x

y
f (x) = x3

y = x

Figure 2.1: Fixed Points of f (x) = x3 and their Geometric Interpretation
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0

0.2

0.4

0.6

0.8

1

f
(
x
)

Figure 2.2: The fixed points of the mapping f (x) = 3x(1 − x).
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2.2 Graphical study of one-dimensional dynamical systems

We now describe a graphical method for analyzing the trajectories of a dynamical system, known as the

Koenigs Lemeray or Cobweb method. Recall that the fixed points of an application f are the abscissas

of the points of intersection between the graph of f and the straight line y = x. Assume that the

parameter a in (2.2) is fixed. The trajectory O(x0) can be visualized in the plane by drawing a vertical

segment from the point (x0, 0) to (x0, f (x0)) = (x0, x1) on the graph of f , then a segment to the line y = x

at the point (x1, x1), and again to (x1, x2) on the graph of f . Continue this process until you have

sufficient information about the orbit behavior O(x0). The image that provides this information is called

the cobweb diagram figures (2.3,2.4,2.6, 2.5). For example, when the orbit O(x0) converges towards a

fixed point x∗, the cobweb diagram starting from the point (x0, 0) will be a sequence of vertical and

horizontal segments spiralling towards (x∗, x∗). This situation is illustrated in figure (2.3), by a cobweb

diagram of the logistics application

f (x) = 2.9x(1 − x).

The fixed point of f is x∗ =
19
29

and the initial condition is x0 = 0.1. Translated with DeepL.com (free

version) Similarly, if the orbit O(x0) converges to a periodic orbit of period p (z0, z1, ..., zp−1), the spider’s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.3: The cobweb diagram (or web plot) of the dynamical system defined by f (x) = 2.9x(1 − x).

web diagram starts from (x0, 0) and approaches the closed cycle {(z0, z0), (z0, z1), ..., (zp−1, zp−1), (zp−1, z0).

Figure (2.4) illustrates this situation using the logistic application f (x) = 3.4x(1 − x). In this case O(0.1)

converges to a 2-periodic orbit. Figure (2.5) shows that the trajectory of the dynamical system
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3
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0.7

0.8

0.9

1

Figure 2.4: The cobweb diagram (or web plot) of the dynamical system defined by f (x) = 3.4x(1 − x).

f (x) = 3.4495x(1 − x),

converges to a periodic orbit of period 4. Finally, figure (2.6) describes the chaotic behaviour of the

trajectory O(0.1) of the dynamical system f (x) = 4x(1 − x).

22



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 2.5: The cobweb diagram (or web plot) of the dynamical system defined by
f (x) = 3.4495x(1 − x).
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Figure 2.6: The cobweb diagram (or web plot) of the dynamical system defined by f (x) = 4x(1 − x).
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2.3 Graphical Iteration and Stability

One of the main objectives in the theory of dynamical systems is the study of the behaviour of orbits

near fixed points, i.e. the behaviour of solutions of a difference equation near equilibrium points. Such

a programme of investigation is called stability theory, which will be our main focus. We begin our

exposition by introducing the basic notions of stability. Let Z+ denote the set of non-negative integers.

Definition 2.3.1 The trajectory of the system (2.1) starting at x0 is the set
{
x0, f (x0) , f

(
f (x0) , . . .

}
, i.e., the

succession of points {x(n)}∞n=0 determined by the recurrence 2.1 with the initial condition x(0) = x0.

We are now interested in the trajectories starting at points which are near x̄. In order to better

understand the trajectories of the one-dimensional dynamical system we introduce the graphical

solution. Consider the graph of the function f (x). The abscissa represents x(n) and the ordinate x(t + 1).

Figure 2.7: Graphical method to obtain a trajectory

Consider now a fixed point x̄ and suppose that f (x) be smooth at x̄. Then there is a neighbourhood U of

the point x̄ where all trajectories starting at a point of U remain in U and approach x̄ or all trajectories

starting at a point of U move away from x̄ and exit from U.

In the first case the fixed point is said to be an attracting point or a stable equilibrium point and in the

second case a repelling point or an unstable equilibrium point.
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Figure 2.8: Attracting (left) and repelling (right) flxed point

Figure 2.9: Attracting (left) and repelling (right) flxed point

Problem 1. Give a graphical example where a fixed point x̄ is neither attracting nor repelling, and f is

smooth with
∣∣∣ f ′(x̄)

∣∣∣ = 1.

Problem 2. Give a graphical example where a fixed point x̄ is neither attracting nor repelling, and f is

not smooth at x̄.
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2.4 Criteria for Stability

Question. Observe Figures (2.8) and (2.9). Which property of f at the fixed point x̄ determines whether

x̄ is attracting or repelling?

In this section,answers the question above we will establish some simple but powerful criteria for local

stability of fixed points. Fixed (equilibrium) points may be divided into two types: hyperbolic and

nonhyperbolic. A fixed point x∗ of a map f is said to be hyperbolic if
∣∣∣ f ′ (x∗)∣∣∣ , 1. Otherwise, it is

nonhyperbolic. We will treat the stability of each type separately.

2.4.1 Hyperbolic Fixed Points

The following result is the main tool in detecting local stability.

Theorem 2.4.1 Let x∗ be a hyperbolic fixed point of a map f , where f is continuously differentiable at x∗. The

following statements then hold true: 1. If
∣∣∣ f ′ (x∗)∣∣∣ < 1, then x∗ is asymptotically stable. 2. If

∣∣∣ f ′ (x∗)∣∣∣ > 1, then x∗

is unstable.

Proof. Suppose that
∣∣∣ f ′ (x∗)∣∣∣ < M < 1 for some M > 0. Then, there is an open interval I = (x∗ − ε, x∗ + ε)

such that
∣∣∣ f ′(x)

∣∣∣ ≤M < 1 for

all x ∈ I (Why? Problem 10). By the mean value theorem, for any x0 ∈ I, there exists c between x0 and x∗

such that

∣∣∣ f (x0) − x∗
∣∣∣ =

∣∣∣ f (x0) − f (x∗)
∣∣∣ =

∣∣∣ f ′(c)
∣∣∣ |x0 − x∗| ≤M |x0 − x∗| . (2.3)

Since M < 1, inequality (2.3) shows that f (x0) is closer to x∗ than x0. Consequently, f (x0) ∈ I. Repeating

the above argument on f (x0) instead of x0, we can show that

∣∣∣ f 2 (x0) − x∗
∣∣∣ ≤M

∣∣∣ f (x0) − x∗
∣∣∣ ≤M2

|x0 − x∗| . (2.4)

By mathematical induction, we can show that for all n ∈ Z+,

∣∣∣ f n (x0) − x∗
∣∣∣ ≤Mn

|x0 − x∗| . (2.5)

To prove the stability of x∗, for any ε > 0, we let δ = min(ε, ε̃). Then, |x0 − x∗| < δ implies that∣∣∣ f n (x0) − x∗
∣∣∣ ≤Mn

|x0 − x∗| < ε, which establishes stability. Furthermore, from Inequality (2.5)

lim
n→∞

∣∣∣ f n (x0) − x∗
∣∣∣ = 0 and thus lim

n→∞
f n (x0) = x∗, which yields asymptotic stability. .

The following examples illustrate the applicability of the above theorem.

Example 2.4.1 Consider the map Gλ(x) = 1−λx2 defined on the interval [−1, 1], where λ ∈ (0, 2]. Find the fixed

points of Gλ(x) and determine their stability.
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SOLUTION To find the fixed points of Gλ(x) we solve the equation 1− λx2 = x or λx2 + x− 1 = 0. There

are two fixed points:

x∗1 =
−1 −

√
1 + 4λ

2λ
and x∗2 =

−1 +
√

1 + 4λ
2λ

.

Observe that G′λ(x) = −2λx. Thus,
∣∣∣∣G′λ (

x∗1
)∣∣∣∣ = 1 +

√
1 + 4λ > 1, and hence, x∗1 is unstable for all λ ∈ (0, 2] ..

Furthermore,
∣∣∣∣G′λ (

x∗2
)∣∣∣∣ =
√

1 + 4λ − 1 < 1 if and only if
√

1 + 4λ < 2.

Solving the latter inequality for λ, we obtain λ < 3
4 . This implies by Theorem (2.4.1) that the fixed point

x∗2 is asymptotically stable if 0 < λ < 3
4 and unstable if λ > 3

4 When λ = 3
4 ,G

′

λ

(
x∗2

)
= −1.

(see Fig. (2.10)).

Figure 2.10: (a) λ = 1
2 , x∗2 is asymptotically stable while (b) λ = 3

2 , x∗2 is unstable.
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2.4.2 Nonhyperbolic Fixed Points

The stability criteria for nonhyperbolic fixed points are more involved. They will be summarized in the

next two results, the first of which treats the case when f ′ (x∗) = 1 and the second for f ′ (x∗) = −1.

Theorem 2.4.2 Let x∗ be a fixed point of a map f such that f ′ (x∗) = 1. If f ′(x), f ′′(x), and f ′′′(x) are continuous

at x∗, then the following statements hold:

1. If f ′′ (x∗) , 0, then x∗ is unstable (semistable).

2. If f ′′ (x∗) = 0 and f ′′′ (x∗) > 0, then x∗ is unstable.

3. If f ′′ (x∗) = 0 and f ′′′ (x∗) < 0, then x∗ is asymptotically stable.

Proof. [10]

Example 2.4.2 Let f (x) = −x3 + x. Then x∗ = 0 is the only fixed point of f . Note that f ′(0) = 1, f ′′(0) =

0, f ′′′(0) < 0. Hence by Theorem (2.4.2) is asymptotically stable.

The preceding theorem may be used to establish stability criteria for the case when f ′ (x∗) = −1. But before doing

so, we need to introduce the notion of the Schwarzian derivative.

Definition 2.4.1 The Schwarzian derivative, S f , of a function f is defined by

S f (x) =
f ′′′(x)
f ′(x)

−
3
2

[
f ′′(x)
f ′(x)

]2

(2.6)

And if f ′ (x∗) = −1, then

S f (x∗) = − f ′′′ (x∗) −
3
2
[

f ′′ (x∗)
]2 (2.7)

Theorem 2.4.3 Let x∗ be a fixed point of a map f such that f ′ (x∗) = −1. If f ′(x), f ′′(x), and f ′′′(x) are continuous

at x∗, then the following statements hold:

1. If S f (x∗) < 0, then x∗ is asymptotically stable.

2. If S f (x∗) > 0, then x∗ is unstable.

Proof. The main idea of the proof is to create an associated function 1with the property that 1′ (x∗) = 1,

so that we can use Theorem (2.4.2). This function is indeed 1 = f ◦ f = f 2. Two important facts need to

be observed here. First, if x∗ is a fixed point of f , then it is also a fixed point of 1. Second, if x∗ is

asymptotically stable (unstable) with respect to 1, then it is also asymptotically stable (unstable) with

respect to f . By the chain rule:

1′(x) =
d
dx

f ( f (x)) = f ′( f (x)) f ′(x) (2.8)
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Hence,

1′(x) = ( f ′′ (x∗))2

and Theorem now applies. For this reason we compute 1′′ (x∗). From Equation (2.8) , we have

1′′(x) = f ′( f (x)) f ′′(x) + f ′′( f (x))( f ′(x))2 (2.9)

1′′ (x∗) = f ′ (x∗) f ′′ (x∗) + f ′′ (x∗) ( f ′ (x∗))2

= 0
(

since f ′ (x∗) = −1
)
. (2.10)

Computing 1′′′(x) from Equation (2.10), we get

1′′′ (x∗) = −2 f ′′′ (x∗) − 3( f ′′ (x∗))2 (2.11)

It follows from Equation (2.8)

1′′′ (x∗) = 2 S f (x∗) (2.12)

Statements 1 and 2 now follow immediately from Theorem (2.4.2)

Remark 2.4.1 Note that if f ′ (x∗) = −1 and 1 = f ◦ f , then from (2.10) we have

S f (x∗) =
1
2
1′′′ (x∗) ∗ (2.13)

Furthermore,

1′′ (x∗) = 0 (2.14)

We are now ready to give an example of a nonhyperbolic fixed point.

Example 2.4.3 Consider the map f (x) = x2 + 3x on the interval [−3, 3]. Find the equilibrium points and then

determine their stability.

SOLUTION The fixed points of f are obtained by solving the equation x2 + 3x = x. Thus, there are two

fixed points: x∗1 = 0 and x∗2 = −2. So for x∗1, f ′(0) = 3, which implies by Theorem (2.4.3) that x∗1 is unstable.

For x∗2, we have f ′(−2) = −1, which requires the employment of Theorem (2.4.3) We observe that

S f (−2) = − f ′′′(−2) −
3
2
[

f ′′(−2)
]2 = −6 < 0

Hence, x∗2 is asymptotically stable .
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2.5 Periodic Points and their Stability

The notion of periodicity is one of the most important notion in the field of dynamical systems. Its

importance stems from the fact that many physical phenomena have certain patterns that repeat

themselves. These patterns produce cycles (or periodic cycles), where a cycle is understood to be the

orbit of a periodic point. In this section, we address the questions of existence and stability of periodic

points.

Definition 2.5.1 Let x̄ be in the domain of a map f . Then,

1. x̄ is said to be a periodic point of f with period k if f k(x̄) = x̄ for some positive integer k. In this case x̄ may

be called k-periodic. If in addition f r(x̄) , x̄ for 0 < r < k, then k is called the minimal period of x̄. Note

that x̄ is k-periodic if it is a fixed point of the map f k.

The orbit of a k-periodic point is the set

O(x̄) =
{
x̄, f (x̄), f 2(x̄), . . . , f k−1(x̄)

}
and is often called a k-periodic cycle. Graphically, a k-periodic point is the x coordinate of a point at which the

graph of the map f k meets the diagonal line y = x.

Next we turn our attention to the question of stability of periodic points.

Definition 2.5.2 Let x̄ be a periodic point of f with minimal period k. Then,

1. x̄ is stable if it is a stable fixed point of f k.

2. x̄ is asymptotically stable if it is an asymptotically stable fixed point of f k.

3. x̄ is unstable if it is an unstable fixed point of f k.

Thus, the study of the stability of k-periodic solutions of the difference equation

x(n + 1) = f (x(n)) (2.15)

reduces to studying the stability of the equilibrium points of the associated difference equation

y(n + 1) = 1(y(n)) (2.16)

where 1 = f k.

The next theorem gives a practical criteria for the stability of periodic points based on Theorem (??) in

the preceding section.

Theorem 2.5.1 Let O(x̄) =
{
x̄, f (x̄), . . . , f k−1(x̄)

}
be the orbit of the k-periodic point x̄, where f is a continuously

differentiable function at x̄. Then the following statements hold true:
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1. x̄ is asymptotically stable if

∣∣∣∣ f ′ (x̄1) f ′
(

f (x̄2)
)
. . . f ′

(
f k−1 (x̄k)

)∣∣∣∣ < 1 (2.17)

2. x̄ is unstable if

∣∣∣∣ f ′(x̄) f ′( f (x̄)) . . . f ′
(

f k−1(x̄)
)∣∣∣∣ > 1 (2.18)

Proof. By using the chain rule, we can show that

d
dx

f k(x̄) = f ′(x̄) f ′( f (x̄)) . . . f ′
(

f k−1(x̄)
)

Conditions (2.17) and (2.18) now follow immediately by application of Theorem (??) to the composite

map 1 = f k.

Example 2.5.1 Consider the difference equation x(n + 1) = f (x(n)) where f (x) = 1− x2 is defined on the interval

[−1, 1]. Find all the 2-periodic cycles and determine their stability.

SOLUTION First, let us calculate the fixed points of f out of the way. Solving the equation

x2 + x − 1 = 0, we find that the fixed points of f are x∗1 = − 1
2 −

√
5

2 and x∗2 = − 1
2 +

√
5

2 . Only x∗2 is in the

domain of f . The fixed point x∗2 is unstable. To find the two cycles, we find f 2 and put f 2(x) = x. Now,

f 2(x) = 1 −
(
1 − x2

)2
= 2x2

− x4 and f 2(x) = x yields the equation

x
(
x3
− 2x + 1

)
= x(x − 1)

(
x2 + x − 1

)
= 0

Hence, we have the 2-periodic cycle {0, 1}; the other two roots are the fixed points of f . To check the

stability of this cycle, we compute
∣∣∣ f ′(0) f ′(1)

∣∣∣ = 0 < 1. Hence, by Theorem (2.5.1), the cycle is

asymptotically stable .

Example 2.5.2 Consider the quadratic function:

f (x) = x2
− 2.

To find the fixed points, we solve f (x) = x:

x2
− 2 = x ⇒ x2

− x − 2 = 0 ⇒ (x − 2)(x + 1) = 0.

Thus, the fixed points are x = 2 and x = −1.
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To find the period-2 points, we solve f 2(x) = x, or equivalently f 2(x) − x = 0. Since the fixed points are also

solutions to this equation, we know (x − 2)(x + 1) is a factor.

By computation:

f 2(x) = f ( f (x)) = (x2
− 2)2

− 2 = x4
− 4x2 + 2.

Then:

f 2(x) − x = x4
− 4x2 + 2 − x = x4

− 4x2
− x + 2.

We factor:

f 2(x) − x = (x − 2)(x + 1)(x2 + x − 1).

Solving the quadratic factor:

x =
−1 ±

√
5

2
.

So the 2-cycle is: {
−1 +

√
5

2
,
−1 −

√
5

2

}
.

To check the stability, we compute:∣∣∣∣∣∣ f ′
(
−1 −

√
5

2

)
· f ′

(
−1 +

√
5

2

)∣∣∣∣∣∣ =
∣∣∣∣(−1 −

√

5
)
·

(
−1 +

√

5
)∣∣∣∣ = |1 − 5| = 4.

Correction: That evaluates to:

|(−1 −
√

5)(−1 +
√

5)| = |1 − 5| = 4 > 1.

Therefore, the 2-cycle is unstable.

Example 2.5.3 Find the period of the point
1
8

(5 +
√

5) for the map

f (x) = 4x(1 − x), x ∈ [0, 1].

Also determine its stability.

Solution. Given map is f (x) = 4x(1 − x), x ∈ [0, 1]. This is a quadratic map. Now,

f
(1

8
(5 +

√

5)
)

= 4 ·
1
8

(5 +
√

5)
(
1 −

1
8

(5 +
√

5)
)

=
1

16
(5 +

√

5)(3 −
√

5) =
1
8

(5 −
√

5),

f
(1

8
(5 −

√

5)
)

= 4 ·
1
8

(5 −
√

5)
(
1 −

1
8

(5 −
√

5)
)

=
1

16
(5 −

√

5)(3 +
√

5) =
1
8

(5 +
√

5).
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Again,

f 2
(1

8
(5 +

√

5)
)

= f
(

f
(1

8
(5 +

√

5)
))

= f
(1

8
(5 −

√

5)
)

=
1
8

(5 +
√

5).

This shows that the point 1
8 (5 +

√
5) is a fixed point of the map f 2 and hence it is a periodic point of period-2 of the

given map. We shall now examine the stability of this periodic-2 point. We have

f 2(x) = f ( f (x)) = f (4x(1 − x)) = 4 · 4x(1 − x) (1 − 4x(1 − x))

= 16x − 80x2 + 128x3
− 64x4.

We shall use the derivative test for finding the stability character of the periodic point of the map. We see that

( f 2)′(x) = 16 − 160x + 384x2
− 256x3.

Since ∣∣∣∣∣( f 2)′
(1

8
(5 +

√

5)
)∣∣∣∣∣ = 16(244 + 105

√

5) > 1,

the periodic-2 point 1
8 (5 +

√
5) of f is unstable.
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CHAPTER 3

TWO DIMENSIONAL DISCRETE

DYNAMICAL SYSTEMS

This chapter presents a comprehensive study of two-dimensional discrete dynamical systems

described by difference equations of the form:

xi(t + 1) = fi(x1(t), x2(t)), i = 1, 2. (3.1)

which can be compactly represented in vector form as:

x(t + 1) = f(x(t)) (3.2)

3.1 linear Discrete Dynamical Systems

3.1.1 Linear Maps vs. Linear Systems

The characterisation of trajectories in two-dimensional first-order autonomous linear systems provides

the conceptual basis for generalising the analysis to higher-order, non-autonomous, non-linear

dynamical systems.

Consider the following discrete linear dynamical system
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 x1,n+1 = a11x1,n + a12x2,n

x2,n+1 = a21x2,n + a22x2,n

, −∞ < x1., x2. < +∞. (3.3)

with initial condition (x10, x20). Where a11, a12, a21, a22 are real constants. The system (3.3) can be written

in matrix form as x1,n+1

x2,n+1

 =

a11 a12

a21 a22


 x1,n

x2,n

 = A

 x1,n

x2,n

 . (3.4)

where A =

a11 a12

a21 a22

. The origin O is the only fixed point of the application f (if det(I − A) , 0) defined

by

f

 x1

x2

 =


f1

 x1

x2


f2

 x1

x2




=

 a11x1,n + a12x2,n

a21x2,n + a22x2,n

 .

A solution of the linear system (3.4), is a trajectory {Xn}n≥0 où Xn =

 x1,n

x2,n

 for any positive integer n. So

the value of Xn in periods 1, 2, 3, ...,n is

X1 = AX0,

X2 = AX1 = A2X0,

.

.

.

Xn = AXn−1 = AnX0.

Example 3.1.1 Consider the following two-dimensional discrete dynamic system Xn+1 = AXn où Xn =

 xn

yn


and A =

2 0

0 0.5

, with the initial condition

 x0

y0

. As the matrix A is a diagonal matrix, the evolution of each
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of the state variables xn, yn are independent of each other. In addition

 xn

yn

 =

2n 0

0 (0.5)n


 x0

y0

 ,
or

xn = 2nx0,

yn = (0.5)n y0.

The fixed point of the system is P =

 0

0

 .We have xn → +∞ at n→ +∞ and yn → 0 when n→ +∞ The origin

is called point saddle (col).

So if the matrix A is a diagonal matrix, then there is no interdependence between the different state

variables. The matrix An is also a diagonal matrix, and the evolution of each state variable can be

analysed separately using the method developed for one-dimensional dynamical systems.

If the matrix A is not a diagonal matrix and there are dependencies in the evolution of the state

variables, there are linear algebraic procedures (Jardon’s normal form) which allow to transform the

system with interdependent state variables into a system with independent or partially independent

state variables.

In the next section, we will develop the necessary machinery to compute An for any matrix of order two.

3.1.2 Computing An

Consider a matrix A =
(
ai j

)
of order 2 × 2. Then, p(λ) = det(A − λI) is called the characteristic

polynomial of A and its zeros are called the eigenvalues of A. Associated with each eigenvalue λ of A a

nonzero eigenvector V ∈ R2 with AV = λV.

Example 3.1.2 Find the eigenvalues and the eigenvectors of the matrix

A =

 2 3

1 4


SOLUTION First we find the eigenvalues of A by solving the characteristic equation det(A − λI) = 0 or∣∣∣∣∣∣∣∣ 2 − λ 3

1 4 − λ

∣∣∣∣∣∣∣∣ = 0
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which is

λ2
− 6λ + 5 = 0.

Hence, λ1 = 1 and λ2 = 5. To find the corresponding eigenvector V1, we solve the vector equation

AV1 = λV1 or (A − λ1I) V1 = 0. For λ1 = 1, we have

 1 3

1 3


(
v11

v21

)
=

(
0
0

)
.

Hence, v11 + 3v21 = 0. Thus, v11 = −3v21. So, if we let v21 = 1, then v11 = −3. It follows that the

eigenvector V1 corresponding to λ1 is given by V1 =

 −3

1

.

For λ2 = 5, the corresponding eigenvector may be found by solving the equation (A − λ2I) V2 = 0. This

yields

 −3 3

1 −1


(
v12

v22

)
=

(
0
0

)
.

Thus, −3v12 + 3v22 = 0 or v12 = v22. It is then appropriate to let v12 = v22 = 1 and hence V2 =

 1

1

.

To find the general form for An for a general matrix A is a formidable task even for a 2 × 2 matrix such

as in Example (3.1.2). Fortunately, however, we may be able to transform a matrix A to another simpler

matrix B whose nth power Bn can easily be computed. The essence of this process is captured in the

following definition.

Definition 3.1.1 The matrices A and B are said to be similar if there exists a nonsingular matrix P such that

P−1AP = B.

We note here that the relation "similarity" between matrices is an equivalence relation, i.e.,

1. A is similar to A.

2. If A is similar to B then B is similar to A.

3. If A is similar to B and B is similar to C, then A is similar to C.

The most important feature of similar matrices, however, is that they possess the same eigenvalues. that det P , 0,

where det denotes determinant.

Theorem 3.1.1 Let A and B be two similar matrices. Then A and B have the same eigenvalues.

Proof. [10].

37



Theorem 3.1.2 Let A be a 2 × 2 real matrix. Then A is similar to one of the following matrices:

1.

 λ1 0

0 λ2


2.

 λ 1

0 λ


3.

 α β

−β α


Proof. [10] Theorem (3.1.2) gives us a simple method of computing the general form of An for any

2 × 2 real matrix. In the first case, when P−1AP = D =

 λ1 0

0 λ2

, we have

An =
(
PDP−1

)n

= PDnP−1 (3.5)

= P

 λn
1 0

0 λn
2

 P−1.

In the second case, when P−1AP = J =

 λ 1

0 λ

, then

An = PJnP−1

= P

 λn nλn−1

0 λn

 P−1. (3.6)

Equation (3.6) may be easily proved by mathematical induction. In the third case, we have

P−1AP = J =

 α β

−β α

. Let ω = arctan(β/α). Then cosω = α/ |λ1| , sinω = β/ |λ1|. Now, we write the

matrix J in the form

J = |λ1|

 α/ |λ1| β/ |λ1|

−β/ |λ1| α/ |λ1|

 = |λ1|

(
cosω sinω
− sinω cosω

)
.

By mathematical induction one may show that

Jn = |λ1|
n
(

cos nω sin nω
− sin nω cos nω

)
. (3.7)
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and thus

An = |λ1|
n P

 cos nω sin nω

− sin nω cos nω

 P−1 (3.8)

Example 3.1.3 Solve the system of difference equations

X(n + 1) = AX(n) (3.9)

where

A =

 −4 9

−4 8

 ,X(0) =

 1

0


SOLUTION The eigenvalues of A are repeated: λ1 = λ2 = 2. The only eigenvector that we are able to

find is V1 =

 2

3

. To construct P we need to find a generalized eigenvector V2. This is accomplished

by solving the equation (A − 2I)V2 = V1. Then, V2 may be taken as any vector

 x

y

, with 3y − 2x = 1.

We take V2 =

 1

1

. Now if we put P =

 3 1

2 1

, then P−1AP = J =

 2 1

0 2

. Thus, the solution of

Equation (3.9) is given by

X(n) = PJnP−1x(0)

=

 3 1

2 1


 2n n2n−1

0 2n


 1 −1

−2 3


 1

0


= 2n

(
1 − 3n
−2n

)
.

Remark 3.1.1 If a map f : R2
→ R2 is given by f (X0) = AX0, then f n (X0) = AnX0 = PJnP−1X0. In particular,

if X0 =

 1

0

, then f n (X0) = 2n

 1 − 3n

−2

 for all n ∈ Z+.

3.1.3 Characterization of Solutions to a Linear Dynamical System

To characterize the solutions of the two-dimensional dynamical system

Xn+1 = AXn, (3.10)

with X ∈ R2 and A be a 2 × 2 square matrix. We are initially interested in the system:
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Yn+1 = DYn, (3.11)

With X = QY and D = Q−1AQ (where D and Q are the matrices defined in theorem (3.1.2)), we deduce

the characterization of the solutions of system (3.10) using the relation X = QY.

To simplify the notation in what follows, we set Y =

x

y

.

� Distinct real eigenvalues

Consider the dynamical system

Yn+1 = DYn, (3.12)

whit D =

λ1 0

0 λ2

 and λ1 , λ2 ∈ R. So Yn = DnY0 with Dn =

λn
1 0

0 λn
2

 i.e.

 xn = (λ1)n x0,

yn = (λ2)n y0,
(3.13)

with

x0

y0

 is an initial condition of the vector

x

y

. If λ1 > 0 and λ2 > 0, By eliminating n between the two

relations, we obtain the equation of a family of curves:

y = cxln(λ1)/ln(λ2), c = constant determined by x0, y0, (3.14)

which are invariant under the application of the transformation T defined by (3.12), i.e., the change of x

to λ1x and y to λ2y does not modify (3.14).

? If 0 < λ2 < λ1 < 1, these invariant curves have a parabolic shape with a common tangent along the

ox-axis, and a common asymptotic direction along oy, as shown in figure (3.1).
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Figure 3.1: Phase portrait of the (3.12) if |λ1| < |λ2| < 1 (a) Type 1 stable node 0 < λ2 < λ1. (b) Type 2
stable node 0 < λ1 and λ2 < 0. (c) Type 3 stable nodeλ1 < 0 et λ2 < 0.
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? If 0 < λ2 < 1 < λ1 These invariant curves have a hyperbolic shape, with asymptotes along ox and oy,

as shown in figure (3.3).

In both cases, the x-axis and the y-axis are particular invariant curves. ? If one of the multipliers λ1, λ2

is negative, or if both multipliers are negative, the curves (3.14) are then invariant under the application

of T2, which has both of its multipliers positive.

1. If |λ2| < |λ1| < 1

The curves invariant under the application of T or T2 therefore have the shape shown in figure (3.1).

Starting from an initial point M0(x0, y0), the sequence of points generated by (3.12), i.e., the discrete

trajectory originating from M0, lies on the invariant curve passing through M0 if λ1 > 0, λ2 > 0;

and on two invariant curves — the one passing through M0 and the one passing through M1 — if

one of the multipliers is negative or both multipliers are negative.

This sequence is such that:

lim
n−→+∞

xn = lim
n−→+∞

yn = 0

The point 0 is an attractive fixed point, or asymptotically stable (a stable node).

(a) If λ1 > 0, λ2 > 0, the sequence of points generated from M0(x0, y0) tends toward 0 without

oscillating around either axis OX or OY. The point 0 is called a type 1 stable node — see

figure (3.1) (a).

(b) If λ1 < 0, λ2 > 0, or λ1 > 0, λ2 < 0, the sequence of points generated from M0(x0, y0) tends

toward 0 while oscillating around OY in the first case, and around OX in the second. The

point 0 is called a type 2 stable node — see figure (3.1) (b).

(c) If λ1 < 0, λ2 < 0, the sequence of points generated from M0(x0, y0) tends toward 0 while

oscillating around both axes OX and OY. The point 0 is called a type 3 stable node — see

figure (3.1) (c).

2. If |λ2| > |λ1| > 1 , The discrete trajectories are still located on the same parabolic-shaped curves,

but the sequence of points obtained from an initial point M0(x0, y0) moves away from 0.

lim
n−→+∞

xn = ±∞, lim
n−→+∞

yn = ±∞.

0 is called a unstable node, which, depending on the signs of λ1, λ2, can be of type 1, 2, or 3.

It is also referred to as a repelling node — see figure (3.2).
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Figure 3.2: Phase portrait of the (3.12) if |λ1| > |λ2| > 1 (a) Type 1 unstable node λ1 > 0, λ2 > 0. (b) Type 2
stable node λ1 < 0, λ2 > 0. (c) Type 3 stable node λ1 < 0, λ2 < 0.
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3. If |λ2| < 1, |λ1| > 1, the discrete trajectories are located on the invariant curves with a hyperbolic

shape, as shown in figure (3.3), and the origin 0 is an unstable fixed point, which will be called a

col.

For initial conditions M0(x0 = 0, y0) on the OY-axis, the sequence of points Mn remains on OY and

tends towards 0; for M0(x0, y0 = 0), the sequence of points Mn remains on OX and moves away

from 0.

The axes OX, OY correspond to two invariant curves passing through 0; these are the only invariant

curves passing through the fixed point.

The signs of λ1, λ2 further distinguish the cols of type 1, 2, or 3 — see figure (3.3).
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Figure 3.3: Phase portrait of the (3.12) if |λ2| < 1, |λ1| > 1 (a) Col of type1λ1 > 0, λ2 > 0. (b) Col of type 2
λ1 > 0, λ2 < 0. (c) Col of type 3 λ1 < 0, λ2 < 0.
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4. If |λ1| = |λ2|, The invariant curves of the transformation T for λ1 = λ2 > 0, of the transformation T2

for λ1 = −λ2, λ1 = λ2 < 0, starting from different points M0, are straight lines passing through 0.

The discrete trajectories lie on these invariant curves, and the fixed point 0 is called a star node

of type 1 (λ1 = λ2 > 0), of type 2 (λ1 = −λ2), or of type 3 (λ1 = λ2 < 0) attractive (figure (3.4)), or

repelling (figure (3.5)), depending on whether |λ1| < 1 or |λ1| > 1.
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Figure 3.4: Phase portrait of the (3.12) if |λ1| = |λ2| < 1 (a) Stable star node of type 1 λ1 = λ2 > 0. (b) type
2 λ1 = −λ2. (c) type 3 λ1 = λ2 < 0.
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Figure 3.5: Phase portrait of the (3.12) if |λ1| = |λ2| > 1 (a) Unstable star node de type 1 λ1 = λ2 > 0. (b)
type 2 λ1 = −λ2. (c) type 3 λ1 = λ2 < 0.
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� Equal real eigenvalues

Consider the dynamical system (3.12) whit D =

λ 0

1 λ

 et λ ∈ R.

So Yn = DnY0 avec Dn =

 λn 0

nλn−1 λn

 i.e.

 xn = λnx0

yn = nλn−1x0 + λny0.
(3.15)

Whit λ > 0 et
x
x0
> 0 The trajectories are located on the invariant curves with the equation

y =
y0

x0
x +

ln(
x
x0

)

λln(λ)
x. (3.16)

1. If λ, the fixed point 0 is then called a an improper attractive node — see figure (3.6) (a).

2. If λ, the fixed point 0 is then called a an improper repelling node — see figure (3.6) (b).

� Complex eigenvalues

Consider the dynamical system (3.12) with D =

a −b

b a

, a, b ∈ R.Consider the geometric representation

of the eigenvalues, by setting r =
√

a2 + b2, a = r cosθ and b = r sinθ with 0 < θ < π so

λ1,2 = a ± ib = re±iθ (figure 3.7).

49



[1]
-0.6 -0.4 -0.2 0 0.2 0.4

x

-0.6

-0.4

-0.2

0

0.2

0.4

y

[2]

-20 -15 -10 -5 0 5 10 15 20
x

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
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Hence

D =

a −b

b a

 = r

cosθ − sinθ

sinθ cosθ

 , (3.17)

and

Dn = rn

cos nθ − sin nθ

sin nθ cos nθ

 , (3.18)

therefore the vector Yn is given by

 xn

yn

 = rn

cos nθ − sin nθ

sin nθ cos nθ


 x0

y0

 .
= rn

 x0 cos nθ − y0 sin nθ

x0 sin nθ + y0 cos nθ


= rn

√
x2

0 + y2
0


x0√
x2

0+y2
0

cos nθ − y0
√

x2
0+y2

0

sin nθ

x0√
x2

0+y2
0

sin nθ +
y0
√

x2
0+y2

0

cos nθ


Hence xn

yn

 = rnρ0

 cos(ϕ0 + nθ)

sin(ϕ0 + nθ)

 , (3.19)

where ρ0 =
√

x2
0 + y2

0, x0 = ρ0 cos(ϕ0) et y0 = ρ0 sin(ϕ0).

1. if r = 1, we have  xn

yn

 = ρ0

 cos(ϕ0 + nθ)

sin(ϕ0 + nθ)

 ,
or after eliminating n

x2
n + y2

n = ρ2
0, (3.20)

The circles centered at 0 are invariant curves for the system (3.12). The fixed point 0 is called a

center (a fixed point that is a center is stable but not asymptotically stable). If θ , 2kπ
q (where k

and q are integers with no common divisor), a trajectory starting from a point M0 = (x0, y0) consists

of a sequence of points dense on the circle of radius ρ0. If θ = 2kπ
q (where k and q are integers

with no common divisor), a trajectory starting from a point M0 = (x0, y0) consists of the q points of

a cycle of order q, located on the circle of radius ρ0. In both cases, the direction of the motion is

counterclockwise if b > 0, and clockwise if b < 0, as shown in figure (3.8).
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Figure 3.8: Center fixed point r = 1. (a) b > 0. (b) b < 0.
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2. If r , 1, by introducing polar coordinates x = ρ cosϕ, y = ρ sinϕ, so the system becomes

 ρn+1 cosϕn+1

ρn+1 sinϕn+1

 = r

cosθ − sinθ

sinθ cosθ


 ρn cosϕn

ρn sinϕn


= ρnr

 cos(θ + ϕn)

sin(θ + ϕn)

 ,
so  ρn+1 = rρn

ϕn+1 = ϕn + θ

where the solution is  ρn = rnρ0

ϕn = nθ + ϕ0

(3.21)

then

ρ = r(ϕ−ϕ0)/θρ0

or in the Cartesian coordinates

x2 + y2 = ρ0r2(ϕ−ϕ0)/θ. (3.22)

Logarithmic spirals (3.22) are invariant curves for the system (3.12). Moreover

(a) If |r| < 1, then limn→+∞ ρn = 0, and ϕn increases as n increases if b > 0, and decreases as n

increases if b < 0.

Thus, the trajectories spiral toward the origin. In this case, the origin is called a stable focus, and

the dynamics of the trajectories from a point M0(x0, y0) are in the counterclockwise direction

if b > 0, and in the clockwise direction if b < 0 — see figure (3.9).
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Figure 3.9: Stable focus. (a) b > 0. (b) b < 0.
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Figure 3.10: Stable focus. (a) b > 0. (b) b < 0.

(b) If |r| > 1, then limn→+∞ ρn = +∞, and ϕn increases as n increases if b > 0, and decreases as n

increases if b < 0.

Thus, the trajectories spiral away from the origin. In this case, the origin is called an unstable

focus, and the dynamics of the trajectories from a point M0(x0, y0) are in the counterclockwise

direction if b > 0, and in the clockwise direction if b < 0 — see figure (3.10).
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Remark 3.1.2

1. For all the fixed points considered, such that |λ1| < 1 and |λ2| < 1, the domain of stability consists of the

entire plane (y1, y2) except the points at infinity.

2. When one of the eigenvalues has modulus equal to 1, for example |λ1| = 1, then equation 3.11 shows that the

X-axis is a curve made up of an infinite number of fixed points if λ1 = 1, or an infinite number of order-2

cycles (except the fixed point 0) if λ1 = −1, attractive when |λ2| < 1, repelling when |λ2| > 1.

3.1.4 Characterization of the Solutions Based on the Trace and Determinant of A

Let us consider the two-dimensional linear dynamical system Xn+1 = AXn. The qualitative properties of

this system can be classified based on the values of tr(A) and det(A). The eigenvalues of the matrix A

are obtained as the solutions of the characteristic equation:

P(λ) = λ2
− tr(A)λ + det(A) = 0.

1. If (tr(A))2 > 4 det(A), the eigenvalues are real.

2. If (tr(A))2 < 4 det(A), the eigenvalues are complex.

Theorem 3.1.3 Figure (3.11).

Consider the two-dimensional linear dynamical system Xn+1 = AXn, and let λ1, λ2 be the eigenvalues of A.

1. If (tr(A))2 > 4 det(A), then λ1, λ2 are real (λ1 > λ2), and moreover:

(a) The origin 0 is a saddle point (i.e., λ1 > 1 and |λ2| < 1, or |λ1| < 1 and λ2 < −1) if and only if:


P(1) < 0 and P(−1) > 0

or

P(1) > 0 and P(−1) < 0

i.e., if and only if: 
− tr(A) − 1 < det(A) < tr(A) − 1

or

tr(A) − 1 < det(A) < − tr(A) − 1

(b) The origin 0 is a stable node (|λ1,2| < 1) if and only if:

P(1) > 0 and P(−1) > 0,

i.e., if and only if:

det(A) > tr(A) − 1 and det(A) > − tr(A) − 1.
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Figure 3.11: Caractérisation des solutions en fonction de tr(A) et det(A).

(c) The origin 0 is an unstable node (|λ1,2| > 1) if and only if:

P(1) < 0 and P(−1) < 0,

i.e., if and only if:

det(A) < tr(A) − 1 and det(A) < − tr(A) − 1.

2. If (tr(A))2 < 4 det(A), then λ1, λ2 are complex, and:

(a) The origin 0 is a stable focus if and only if det(A) < 1.

(b) The origin 0 is an unstable focus if and only if det(A) > 1.

Example 3.1.4 Consider the one-parameter family of linear systems X(n + 1) = AX(n), where

A =

 −1 a

−2 1


which depends on the parameter a. As a varies, the determinant of the matrix, det A, is always 2a − 1, while

the trace of the matrix, tr A, is always 0 . As we vary the parameter a from negative to positive values, the

corresponding point ( T,D ) moves vertically along the line T = 0. Now if D < −1, which occurs if 2a − 1 < −1
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or a < 0, we have a degenerate case, λ1 = 1 and λ2 = −1 with corresponding eigenvectors

 0

1

 and

 1

1

. Thus

every point on the y-axis is a fixed point and every other point in the plane is periodic of period 2. For 0 < a ≤ 1
2 ,

we have a sink, and for 1
2 < a < 1 we have a spiral sink. At exactly a = 1 we have a center, and if a > 1 we have a

spiral source .

The values of a where critical dynamical changes occur are called bifurcation values. In this example,

the bifurcation values of a are 0, 1
2 , 1

In the next chapter, we will discuss the definition and types of bifurcation..

3.2 Nonlinear Discrete Dynamical Systems

A two-dimensional discrete nonlinear system is given by:

 xn+1

yn+1

 = f

 xn

yn

 =


f1

 xn

yn


f2

 xn

yn




,

or xn+1 = f1(xn, yn),

yn+1 = f2(xn, yn),
(3.23)

f1(x, y), f2(x, y) where f and 1 are continuous, single-valued, nonlinear functions of the real variables x

and y. The properties of solutions to system (3.23) are considerably more complex than those of

recurrence (3.3). In particular, except in special cases, the solutions cannot be expressed in closed form

using known transcendental functions, and must instead be characterized through the system’s

singularities.(3.23).

3.3 Stability via Linearization

Fixed points :

The nonlinear case thus leads to the possibility of multiple fixed points. Let X∗ be a fixed point for

system (3.23). If f1(x, y) and f2(x, y) are at least once differentiable (C1 class) at the point X∗ = (x∗, y∗), a

Taylor expansion in the neighborhood of X∗ gives:
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xn+1 − x∗

yn+1 − y∗

 ≈ J(X∗)

xn − x∗

yn − y∗

 + O(‖Xn − X∗‖2)

where J(X∗) is the Jacobian matrix evaluated at X∗:

J(X∗) =

 ∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y


(x∗,y∗)

The Jacobian matrix of f at X∗. As in the linear case, in general, the multipliers (eigenvalues of J) λ1, λ2

determine the behavior of the system’s trajectories, but here only for initial conditions taken in a

(sufficiently small) neighborhood of the fixed point X∗.

The cases where one multiplier (or both) has (have) a modulus equal to one, which in the linear case

appear as boundary cases separating two different structures of discrete trajectories, no longer allow us

to determine the nature of the invariant curves based on the linear approximation of (3.23). Indeed, if

|λ1| = 1, or |λ2| = 1, or |λ1| = |λ2| = 1, this boundary characteristic - between two qualitatively different

behaviors - implies that the trajectories of the linear approximation are generally not preserved, no

matter how small the neighborhoodD of the fixed point X∗ is.

It is the nonlinear terms X̄, Ȳ that determine the shape of these trajectories withinD. In this case, we

say there is a critical case in the sense of Lyapunov.

Theorem 3.3.1 Let f : G ⊂ R2
→ R2 be a C1 map, where G is an open subset of R2,X∗ is a fixed point of f , and

A = D f (X∗). Then the following statements hold true:

1. If ρ(A) < 1, then X∗ is asymptotically stable.

2. If ρ(A) > 1, then X∗ is unstable.

3. If ρ(A) = 1, then X∗ may or may not be stable.

1. If all eigenvalues of the Jacobian matrix J have moduli strictly less than one, then the fixed point

X∗ of system (3.23) is locally asymptotically stable.

2. If the Jacobian matrix J has at least one eigenvalue with modulus strictly greater than one, then the

fixed point X∗ is unstable.

3. If some eigenvalues of matrix J lie on the unit circle while the others are inside, we cannot determine

the local stability of the fixed point X∗.

Example 3.3.1 Pielou Logistic Delay Equation

x(n + 1) =
αx(n)

1 + βx(n − 1)
. (3.24)
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We now write Equation (3.24) in system form. Let x1(n) = x(n − 1), and x2(n) = x(n). Then,

 x1(n + 1)

x2(n + 1)

 =

 x2(n)
αx2(n)

1−βx1(n)

 =

 f1(x1, x2)

f2(x1, x2)

 (3.25)

There are two fixed points

 0

0

 and

 (α − 1)/β

(α − 1)/β

.

1. The fixed point Z∗1 =

 0

0

. Here,

A = D f (0) =

 0 1

0 α


with eigenvalues 0 and α. Since α > 1, the origin is unstable by Theorem (3.3.1).

2. The fixed point Z∗2 =

 (α − 1)/β

(α − 1)/β

. In this case,

A = D f
(
z∗2

)
=

 0 1
1−α
α 1

 .
By Theorem (3.1.3) , ρ(A) < 1 if and only if

| tr A| < 1 + det A < 2

if and only if

1 < 1 +
α − 1
α

< 2

if and only if

0 <
α − 1
α

< 1

Clearly this is satisfied if α > 1. Hence, by Theorem 4.11, z∗2 is asymptotically stable .

3.4 Liapunov Functions for Nonlinear Maps

Since linearization theory is inherently local, it cannot address global stability properties. In this

section, we present an alternative approach known as Lyapunov’s second method or the direct

method. This approach is called "direct" because it does not require explicit knowledge of solutions to

the system of difference equations.

The method determines the stability characteristics of critical points by constructing an appropriate

auxiliary function, called a Lyapunov function. This framework provides a global approach for
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analyzing the asymptotic behavior of solutions.

The method generalizes two fundamental physical principles for conservative systems:

1. A rest position is stable if the potential energy represents a local minimum, and unstable otherwise;

2. The total energy remains constant throughout any motion.

The existence of a Lyapunov function demonstrates that solutions originating from an extensive region

will converge to an equilibrium point. Modern formulations extend this concept through the following

key results:

Consider the autonomous difference equation (3.23) where

f : G→ Rn, G ⊂ Rn, (3.26)

is continuous. We assume that x∗ is a fixed point of equation (3.23), that is

f (x∗) = x∗. (3.27)

Let V : Rn
→ R be a real-valued function. The variation of V relative to equation (3.23) is defined as

∆V(x) = V( f (x)) − V(x), (3.28)

and

∆V(x(t)) = V( f (x(t))) − V(x(t)) = V(x(t + 1)) − V(x(t)). (3.29)

If ∆V(x) ≤ 0, then V is nonincreasing along solutions of equation (3.23). The function V is said to be a

Lyapunov function on a subset H of Rn if:

(i) V is continuous on H, and

(ii) ∆V(x) ≤ 0, whenever x and f (x) belong to H.

Theorem 3.4.1 Suppose that V is a positive definite Liapunov function defined on an open ball G = B(X∗, γ)

around a fixed point X∗ of a continuous map f : R2
→ R2. Then:

(i) X∗ is stable.

(ii) If, in addition, ∆V(X) < 0 whenever X, f (X) ∈ G with X , X∗, then X∗ is asymptotically stable on G.

(iii) Moreover, if G = R2 and V(X)→∞ as ‖X‖ → ∞, then X∗ is globally asymptotically stable.
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Example 3.4.1 Consider the discrete-time system:

x1(t + 1) = 2x2(t) − 2x2(t)x2(t) (3.30)

x2(t + 1) = −x1(t) + x1(t)x2
2(t) (3.31)

Equilibrium points: (0, 0) and others. Using:

V(x(t)) = x2
1(t) + 4x2

2(t) (3.32)

we find:

∆V(x1(t), x2(t)) = 4x2
1(t)x2

2(t)
[
x2

1(t) + x2
2(t) − 1

]
(3.33)

When x2
1 + x2

2 < 1, ∆V < 0, so (0, 0) is stable

Theorem 3.4.2 (Instability Criterion) If ∆V(x) is positive definite in a neighborhood of the origin and there

exists a sequence {ai} with ai → 0 and V(ai) > 0 for each i, then the zero solution of equation (3.23) is unstable.

Example 3.4.2 (Unstable Nonlinear System) Consider the two-dimensional system:

x1(t + 1) = 4x2(t) − 2x2(t)x2
1(t) (3.34)

x2(t + 1) = −
1
2

x1(t) + x1(t)x2
2(t) (3.35)

Define the Lyapunov function candidate:

V(x1, x2) = x2
1 + 4x2

2 (3.36)

The variation of V along solutions is:

∆V(x1, x2) = V( f (x1, x2)) − V(x1, x2) (3.37)

= 3x2
1 + 16x2

2x2
1 + 4x2

1x2
2 > 0 when x1 , 0 (3.38)

Since:

1. ∆V is positive definite (it vanishes only at the origin)

2. V itself is positive definite

3. There exist points (ai, 0) with ai → 0 and V(ai, 0) = a2
i > 0

By Theorem 3.4.2, the equilibrium (0, 0) is unstable.
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Example 3.4.3 Consider the system:


x1(t + 1) = x1(t),

x2(t + 1) =
αx2(t)

1 + βx2
2(t)

,
where β > 0.

We choose the Lyapunov candidate:

V(x(t)) = x2
1(t) + x2

2(t).

Then,

∆V(x(t)) = V(x(t + 1)) − V(x(t)) =

[
α2

(1 + βx2
2(t))2

− 1
]

x2
2(t).

There are three equilibrium points,

(0, 0),
(
±β∗,±β∗

)
,

if α > 1, where β∗ ≡
√

α−1
β . Consider the stability of the equilibrium point (0, 0). Let

V(x(t)) = x2
1(t) + x2

2(t).

This is continuous and positive definite on R2.

∆V(x(t)) =

 α2(
1 + βx2

2(t)
)2 − 1

 x2
2(t) ≤ (α2

− 1)x2
2(t).

If α2
≤ 1, according to Theorem (3.4.1), the unique equilibrium point (0, 0) is stable.

Since

V(x)→∞ as ‖x‖ → ∞,

• Case α2 = 1:

∆V(x(t)) = 0 along the x1-axis.

Theorem (3.4.1) is inconclusive. In fact, it can be shown that the zero solution is not asymptotically

stable in this case.

• Case α2 < 1:

∆V(x(t)) < 0 for all x(t) , 0.

Hence, the origin is asymptotically stable.

• Case α2 > 1:

∆V(x(t)) > 0 in some region around the origin.

Stability of the origin is indeterminate;
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CHAPTER 4

BIFURCATION THEORY

The goal of bifurcation theory is to study the changes that dynamical systems undergo when

parameters change. In this chapter we provide some details about this concept

4.1 Bifurcations in one-dimensional discrete systems

In this chapter we will study the simplest dynamical systems. We will see, however, that even in this

case the scenario of different possible dynamics is very rich. In particular, we will consider dynamical

systems depending on a parameter. When the value of the parameter changes continuously, the

behaviour of the system may change in a discontinuous way. One says that a bifurcation occurs for an

isolate value of the parameter at which the type of dynamic changes.

Loss of stability : bifurcation

We have seen that the fixed points of the dynamical system (3.23) are the points x satisfying f (x) = x.

Let us suppose that our system is given by a function f , and that such function belongs to a family fa of

functions depending continuously on a parameter a. Let f = f0. Hence, for a = 0 there is only one

attracting fixed point and two repelling fixed points at the extremes of the interval where f is defined.

Let us suppose that all the functions of the family satisfy f (0) = 0, f (1) = 1 and f ′(1) = f ′(1) > 1.

By a continuous change of the function f0 into fa, the attracting fixed point x̄a (satisfying fa (x̄a) = x̄a

moves continuously. However, for some isolate value of the parameter a, something may happen

which changes the dynamic.

64



4.1.1 Saddle-node bifurcation

As shown in Figure (4.1), it may happen that the graph of fa, for some isolated value a∗ of a becomes

tangent to the diagonal (the graph of the function h(x) = x). At the point of tangency, say x∗, the

derivative of the function fa∗ is equal to 1 , and therefore the equilibrium point x∗ is non hyperbolic. For

a > a∗ two new fixed points exist. Observe that necessarily one is stable and the other one is unstable.

Figure 4.1: Saddle-node bifurcation in the family fa.

The bifurcation diagram is the graph of a multivalued function, showing for every value of the

parameter a in a neighbourhood of the bifurcation value a∗ the fixed points of fa in a neighbourhood of

x∗. Stable fixed points are marked by a continuous line, unstable points by a dotted line.

Figure 4.2: Bifurcation diagram of a saddle-node bifurcation.

4.1.2 Pitch-fork bifurcation

In this case the derivative of the fixed point x̄a of fa changes passing through the value 1 (or -1 ) (see

Figure (4.3)). At that point, say x∗, the graph of fa∗ is tangent to the diagonal, with an order-2 tangency.

When a increases, the point of tangency disappears, the fixed point that was stable (derivative higher

than zero and less than one) becomes unstable (derivative higher than one) and two other fixed points

exist at right and at left of the unstable fixed point. These two points are stable. Figure (4.4) shows the
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Figure 4.3: Bifurcation diagram of a saddle-node bifurcation.

bifurcation diagram. At x∗ the stable fixed point becomes unstable and about it new stable fixed points

appear.

Figure 4.4: Bifurcation diagram of a pitch-fork bifurcation..

4.1.3 Periodic points

In order to introduce another typical phenomenon of the discrete one-dimensional systems we study

the dynamics determined by the family of smooth functions:

fa = ax(1 − x)

defined on the unit interval I = [0, 1] for a ∈ (0, 4].

Evidently, x = 0 is a fixed point, and since f ′(0) = a, it is stable for all values of a less than 1 .

For a = 1 the origin is therefore a non hyperbolic fixed point and for a > 1 it is unstable. We will denote

by a0 the value a = 1.

The equation fa(x) = x has as solution, besides x = 0, the point x̄a = 1 − 1/a, which is in the interval [0, 1]

for a > 1. The derivative at such point is a (1 − 2x̄a) = 2 − a, therefore x̄a is stable for 1 < a < 3. The point

x̄a becomes unstable at a = 3. A trajectory starting near the equilibrium point x̄a is like that in Figure 3,
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Figure 4.5: The logistic map for a < 3

left, for a < 3 and like that in figure 3, right, for a > 3. We will denote the value a = 3 by a1. But the

Figure 4.6: The logistic map for a = 3

question now is: where "the trajectory is going", i.e., does the succession x(t), starting near x̄, approach

some set of points? In other words, does it exist an attracting set, which is not a fixed point?

The answer is yes. There is a value a2 > 3 such that for a1 < a < a2, all trajectories starting at points

different from 0 and non containing x̄a are attracted towards a cycle of two points (see Figure (4.7)).

In fact, for every value of a between a0 and a1 there are two points x1 and x2 such that f (x1) = x2 and

f (x2) = x1. The trajectory staring at x1 or x2 is therefore formed by {x1, x2, x1, x2, x1, x2, . . .}. Moreover,

’almost’ all other trajectories tend to such a cycle. How to prove this?

We will consider, instead of the map fa, the map f (2)
a := x→ fa

(
fa(x)

)
, the second iterate. It is evident

that x1 and x2 satisfy

xi = f (2)
a (xi) i = 1, 2

i.e., they are fixed points for this map : if they are attracting (repelling) for f (2)
a , the cycle (x1, x2) will be

attracting (repelling).
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Figure 4.7: The attracting 2-cycle for a = 3, 4

Figure 4.8: The stability of the attracting 2-cycle for a = 3, 4

In Figure 11 we see that the absolute value of the slope of f (2)
a at x1 and x2 is less than 1 .

4.1.4 Period doubling Bifurcation

As a increases, the absolute value of the slope of f (2)
a at x1 and x2 increases (see Figure (4.9)), till the

value a2 = 1 +
√

6 ≈ 3.4495 when it becomes equal to 1 . For such a value of a the 2-cycle (x1, x2) loses

stability. Observe that f (2)
a , for a > a2 has always four fixed points (0, x̄a, x1, x2) but they are all unstable.

Again, we ask: where the trajectories are going?

We observe that, locally, i.e. in a neighbourhood of x1 or of x2, the function f 2
a (x) looks like the function

fa(x) about x̄a (its graph intersects the diagonal, the slope varying about -1). Therefore, if we now

consider the iterate of f (2)
a (x), i.e. the fourth iterate f (4)

a (x) = fa
(

fa
(

fa
(

fa(x)
)))

, we expect a similar

phenomenon near the points x1 and x2. I.e., for a = a2 the function f (4)
a has contemporarily 2 pitchforks

bifurcations in correspondence of the points x1 and x2, see Figure (4.10) .

A cycle similar to that of Figure 10 continues to exist, but it is unstable and a double cycle of 4 points is

the attracting set (see Figure (4.11)).

This phenomenon repeats when a increases: for a value a3 > a2 the 4 -cycle loses stability: the map

f (4)
a

(
f (4)
a (x) = f (8)(x) has 4 pitch-fork bifurcations and 8 new fixed points appear (i.e. 8 -periodic points

68



Figure 4.9: The pitchfork bifurcation of f 2
a at a = a1

Figure 4.10: The loss of stability of x1 and x2 and birth of 4 stable 4-periodic points

for fa ).

What we observe in the behaviour of the map fa when a varies is not the pitch-fork bifurcation (which

is visible in the 2n-iterate of fa ), but a phenomenon which is called period doubling bifurcation, see

figure (4.12) .

This phenomenon occurs for a succession of values ai, (where the 2i−1-cycle loses stability and the stable

2i-cycle appears), which is converging to a value a∞ = 3.569946 . . ., and whose first values are

a1 = 3, a2 ≈ 3.49949, a3 ≈ 3.54409, a4 ≈ 3.5644, a5 ≈ 3.5687

4.2 Universality and Feigenbaum constants

This phenomenon of a succession of period adding bifurcations is not peculiar of the logistic map.

Indeed, Feigenbaum proved in 1975 that every family Fa = aF(x) of functions defined on the unit
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Figure 4.11: The stable 4-cycle and the unstable 2-cycle.

Figure 4.12: By a period doubling bifurcation a 4-cycle loses stability and appears a stable 8-cycle.

interval, such that F is at least 3 times differentiable and has a unique maximum in [0, 1], exhibits the

same behaviour. Such functions are said unimodal Moreover, he found two ’universal constants’, that

are characteristics only of the cascade of doubling periods bifurcation, and not depend on the particular

map we are using. These constants are denoted by δ and α :

δ = lim
n→∞

an − an−1

an+1 − an
= 4.66920160910299067185320382 . . .

The windows of the parameter values between successive bifurcation values decreases very rapidly.

The constant α is given by

α = lim
n→∞

dn

dn+1
= 2.502907875095892822283902873218 . . .

where dn is the distance between two branching points (coming from the preceding bifurcation) at the

value a = an.
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Figure 4.13: Scheme of the cascade of period doubling bifurcations

4.3 Chaos and other periods

At the value a∞ the ’periodic cycle’ is an infinite set of points which is called Feigenbaum attractor and

has a fractal dimension equal to 0.538. This dimension is the same for unimodal maps. For values of

a > a∞ the map fa has chaotic behaviour, but there are intervals where there are attracting stable cycles,

as shown in this bifurcation diagram, where the stable attracting set is plotted versus a. The period 3

loses stability by a doubling period cascade, so that there are all 3 · 2n periodic points, characterised by

the Feigenbaum constants.

Remark 4.3.1 The ratio between the diameters of successive circles on the real axis of the Mandelbrot set converges

to the Feigenbaum constant δ

4.4 Neimark bifurcation

The Neimark-Sacker bifurcation occurs in systems of dimension greater than 1. This bifurcation is

characterized by the emergence (when the bifurcation parameter µ crosses the critical value µ0) of a

closed invariant curve from a fixed point, as the fixed point changes stability via a pair of complex

eigenvalues crossing the unit circle. The bifurcation can be supercritical (Figure 4.14) or subcritical

(Figure ??), giving rise to a stable or unstable closed invariant curve, respectively.
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Figure 4.14: Supercritical Neimark–Sacker bifurcation. (a) Stable focus for µ < µ0. (b) Stable closed
invariant curve for µ > µ0.
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Figure 4.15: Subcritical Neimark–Sacker bifurcation. (a) Stable focus for µ < µ0. (b) Unstable closed
invariant curve for µ > µ0.
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CHAPTER 5

INTRODUCTION TO CHAOS THEORY.

The world around us often appears unpredictable, disordered, random, and chaotic. A chaotic system

is a simple or complex system that is sensitive to initial conditions and exhibits repetitive behavior with

strong recurrence. A small disturbance can lead to immense instability or imbalance that is not

predictable in the long term. Thus, simple systems can give rise to complex phenomena. A chaotic

system is the opposite of a perfectly regular system. In the following section, we attempt to give a

definition of chaos, as formulated by R.L. Devaney [6].

5.0.1 Chaotic Dynamical Systems

In the literature, several mathematical definitions of chaos can be found, but up to now, there is no

universally accepted mathematical definition of chaos. Before presenting a definition of chaos

proposed by R.L. Devaney [6], a few basic definitions are necessary.

Definition 5.0.1

A function f : J→ J is said to be topologically transitive if, for every pair of open sets U,V ⊂ J, there exists an

integer k > 0 such that

f k(U) ∩ V , ∅.

Definition 5.0.2

A function f : J → J has sensitive dependence on initial conditions if there exists a constant δ > 0 such that,

for every x ∈ J and for every neighborhood Nx of x, there exists a point y ∈ Nx and an integer n > 0 such that

| f n(x) − f n(y)| > δ.
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Intuitively, a function has sensitive dependence on initial conditions if there are points arbitrarily close

to x that eventually separate from x by at least δ under iteration by f .

We now turn to one of the central themes in dynamical systems: the notion of chaos. We present here a

particular definition given by R.L. Devaney [6], as it applies to a wide range of examples and is

generally easy to verify.

Definition 5.0.3

Let V be a set. A function f : V → V is said to be chaotic on V if:

1. f has sensitive dependence on initial conditions,

2. f is topologically transitive,

3. The set of periodic points is dense in V.

To summarize, a chaotic function possesses three essential properties: unpredictability,

indecomposability, and an element of regularity.

A chaotic system is unpredictable due to its sensitivity to initial conditions. It is indecomposable

because it cannot be split into two disjoint, non-interacting invariant open subsets—thanks to

topological transitivity. And finally, amidst this apparent randomness, there is still a regular structure:

the periodic points are dense in the space.

5.0.2 Attractors, Basins of Attraction, and Boundaries

The analysis of the long-term behavior of a dynamical system requires a definition of attractors that

applies to sets more general than just fixed points and periodic orbits.

Definition 5.0.4

Let U ⊃ Rq be an open set, and let f : U −→ U be a function. A closed and bounded set A ⊂ U is called an

attractor if f (A) = A and there exists r > 0 such that d(x0,A) < r implies

lim
n→+∞

d(xn,A) = 0.

Attractors play a fundamental role in the study of the long-term behavior of dynamical systems. Some

of these attractors have extremely complex geometry, to the point that some have been called strange

attractors [25]. Attractors can be classified into three categories [1]:

1. A fixed point (a single point),

2. A periodic orbit (a finite set of points),

3. A chaotic attractor (strange attractor), which includes all other types of attractors.
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Figure 5.1: Lozi attractor obtained for a = 1.7 and b = 0.5.

Definition 5.0.5

Given an attractor A, we call the basin of attraction of A the set of all initial conditions x0 such that

lim
n→+∞

d(xn,A) = 0.

Different basins of attraction are separated by basin boundaries. The geometry of these boundaries is

often as complex as the geometry of the attractors themselves.

Figure (5.1) presents the attractor of the Lozi map, defined by (5.1):

L

x

y

 =

1 − a|x| + by

x

 . (5.1)

where a and b are bifurcation parameters.

5.0.3 Lyapunov Exponents

In the analysis of a dynamical system, the Lyapunov exponent [30] is used to quantify the stability or

instability of its trajectories. A Lyapunov exponent is either a real (finite) number, or it equals +∞ or

−∞. An unstable motion has a positive Lyapunov exponent, while a stable motion has a negative

Lyapunov exponent. Bounded motions of a linear system have a Lyapunov exponent that is negative

or zero.

The Lyapunov exponent can be used to study the stability (or instability) of equilibrium points in

nonlinear systems.

In this subsection, we will define the notion of the Lyapunov exponent and show how it can be used to
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study chaotic systems and even detect the presence of chaos within a system.

1. Case of a one-dimensional dynamical system:

Let f be a function from R to R. We choose two very close initial conditions, x0 and x0 + ε, and

observe how the trajectories diverge over time. Suppose they diverge on average at an exponential

rate. Then, there exists a real number µ such that after n iterations:

| f n(x0 + ε) − f n(x0)| ' ε exp(nµ),

from which we get:

log
∣∣∣∣∣ f n(x0 + ε) − f n(x0)

ε

∣∣∣∣∣ ' nµ,

Letting ε tend toward zero, we find:

µ ' log
∣∣∣∣∣d f n(x0)

dx0

∣∣∣∣∣ .
Finally, letting n tend to infinity and using the chain rule:

d
dx

f n(x0) =

n−1∏
i=0

f ′(xi),

we obtain:

µ = lim
n→+∞

1
n

n−1∑
i=0

log
∣∣∣ f ′(xi)

∣∣∣ . (5.2)

µ is called the Lyapunov exponent. By its definition, the Lyapunov exponent characterizes the

stability of an orbit O(x0). If µ > 0, the orbit O(x0) is unstable. If µ < 0, it is stable.

Figure (5.2) shows the Lyapunov exponent of the logistic map (5.3) for 3 < a ≤ 4:

xn+1 = axn(1 − xn). (5.3)

2. Case of a two-dimensional dynamical system:

Let us now generalize the notion of the Lyapunov exponent to the multidimensional case. Let

f : Rm
−→ Rm and consider

xn+1 = f (xn), (5.4)

the dynamical system defined by f .
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Figure 5.2: Lyapunov exponent of the logistic map (5.3) as a function of the parameter a.

First, note that an m-dimensional system will have m Lyapunov exponents µi, for i = 1, 2, . . . ,m.

Each exponent measures the divergence rate along one of the system’s axes. For each n ≥ 1,

consider the Jacobian matrix of the function f n (denoted by Jn(x0)) evaluated at a point x0. As in

the one-dimensional case, we have:

Jn(x0) =

n∏
i=1

J(xi), (5.5)

where xi = f i(x0) are the points along the orbit O(x0), and J(x) is the Jacobian matrix of f evaluated

at the point x.

To compute the Lyapunov exponents µi, we consider:

f n(x0 + ε) − f n(x0)

Let x′0 = x0 + ε, and perform a first-order Taylor expansion of f n(x′0) around x0:

xn − x′n = Jn(x0)(x0 − x′0).

If Jn(x0) is diagonalizable, then there exists an invertible matrix Pt such that Dn(x0) = P−1
t Jn(x0)Pt,

where Dn(x0) is a diagonal matrix containing the eigenvalues of Jn(x0). Let these eigenvalues be

denoted by θi, i = 1, . . . ,m. The m Lyapunov exponents are then defined by:

µi = lim
n→+∞

1
n

ln(θn
i ), i = 1, . . . ,m.
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Figure (5.3) shows the two Lyapunov exponents of the Hénon map defined by: xn+1 = 1 − ax2
n + byn

yn+1 = xn

(5.6)

for b = 0.3 and 0.2 < a ≤ 1.5.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
a

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

L
y
a

s

Figure 5.3: Lyapunov exponents of the Hénon map for b = 0.3 and 0.2 < a ≤ 1.5.

The Lyapunov exponents of an attractive periodic orbit are also negative. If one of the exponents

is zero, it indicates a bifurcation point. If one of the exponents is positive, this implies sensitivity

to initial conditions—i.e., chaos.
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