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Abstract
This thesis comprehensively addresses theoretical and numerical aspects

of a specific class of fractional differential equations. Initially, we discuss
results related to the uniqueness, existence and stability in the Hyers-Ulam
sense for a category of initial value problems concerning nonlinear implicit
fractional differential equations with non-instantaneous impulses including
the Caputo-Fabrizio fractional derivative. Furthermore, our focus extends to
exploring existence and uniqueness results for a class of fractional integro-
differential equations (FIDEs) with non-instantaneous impulses under the
Caputo fractional derivative. To achieve the existence and uniqueness results,
we employed the fixed point theorems of Krasnoselskii, Darbo combined with
the Kuratowski’s measure of noncompactness as well as the Banach contrac-
tion principle. Adding a numerical dimension, we delve into the resolution of
linear Fredholm fractional integro-differential equations, where the fractional
derivative is considered in the Caputo sense. To establish this, we utilize the
least squares method (LSM) alongside spectral approximation, employing a
compact combination of shifted Chebyshev polynomials (SCP) of the first
kind. Throughout the thesis, various examples are provided to validate and
elucidate both theoretical and numerical results discussed in each chapter.

Key words: Fractional differential equation, fractional integro-differential
equations, Caputo fractional derivative, Caputo-Fabrizio fractional integral,
Caputo-Fabrizio fractional derivative, non-instantaneous impulse, fixed point
theorems, measure of noncompactness, Hyers-Ulam stability, least squares
approximation, Chebyshev polynomials, Chebyshev spectral method.
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Résumé
Cette thèse aborde de manière exhaustive les aspects théoriques et numé-

riques d’une classe spécifique d’équations différentielles fractionnaires. Tout
d’abord, on examine les résultats liés à l’existence, l’unicité et la stabilité de
type Hyers-Ulam de solutions pour une catégorie de problèmes de valeurs
initiales des équations différentielles fractionnaires non linéaires avec des im-
pulsions non instantanées, incorporant la dérivée fractionnaire de Caputo-
Fabrizio. De plus, notre exploration se porte sur les résultats d’existence et
d’unicité de solutions pour une classe d’équations intégro-différentielles frac-
tionnaires avec des impulsions non instantanées sous la dérivée fractionnaire
de Caputo. Pour parvenir aux résultats concernant l’existence et d’unicité
des solutions, on applique le théorème de point fixe de Krasnoselskii et le
théorème de point fixe de Darbo combiné avec la mesure de non compacité
de Kuratowski, ainsi que le principe de contraction de Banach. En ajoutant
une dimension numérique, la résolution des équations intégro-différentielles
fractionnaires linéaires de Fredholm est présentée où la dérivée fractionnaire
est considérée au sens de Caputo. Pour réaliser cela, on introduit la méthode
des moindres carrés en employant une combinaison compacte des polynômes
de Chebyshev décalés de première espèce. Tout au long de la thèse, divers
exemples sont présentés pour valider et élucider les résultats théoriques et
numériques discutés dans chaque chapitre.

Mots clés : Équation différentielle fractionnaire, équations intégro-différentie-
lles fractionnaires, dérivée fractionnaire de Caputo, intégrale de Caputo-
Fabrizio d’ordre fractionnaire, dérivée fractionnaire de Caputo-Fabrizio, im-
pulsion non instantanée, mesure de non compacité, théorèmes de point fixe,
stabilité de Hyers-Ulam, polynômes de Tchebychev, méthode spectrale de
Tchebychev, approximation au sens des moindres carrés.
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General introduction

The fractional calculus, known as FC, is a branch of mathematics that deals with gen-
eralizing the concepts of differentiation and integration to non-integer orders. It finds its
origins in a correspondence that unfolded over several months in 1695 between Leibniz and
L’Hospital. During that year, Leibniz penned a letter to L’Hospital, which marked the in-
ception of FC, posing the following inquiry [80] :
"Can the meaning of derivatives with integer order be generalized to derivatives with non-
integer orders?" L’Hopital was somewhat curious about the above question and replied by
another simple one to Leibniz: "What if the order will be 1/2?". Leibniz in a letter dated
September 30, 1695, replied: "It will lead to a paradox, from which one day useful conse-
quences will be drawn."

The question Leibniz posed regarding a fractional derivative (specifically, a semi-derivative)
continued to captivate attention in the subsequent decades [80, 35]. Subsequent to L’Hopital’s
and Leibniz’s initial exploration, fractional calculus emerged as an exclusive domain of inquiry
for Europe’s most adept mathematical thinkers. Euler, in 1730, expressed in his writings [35]:
"When n is a positive integer and p is a function of υ, p = p(υ) , the ratio of dnp to dυn can
always be expressed algebraically. But what kind of ratio can then be made if n be a fraction?"

Across the expanse of time, numerous esteemed mathematicians have lent their expertise
to shape the theory of fractional calculus. Remarkably, the precise birth of FC is attributed to
September 30, 1695. Its foundational roots delve into the seminal works of Bernoulli (1697),
Euler (1730), and Lagrange (1772). Subsequent to these pioneers, a succession of luminaries
including Laplace in 1812, Lacroix in 1819, Fourier in 1822, Abel in 1823, and Liouville
in 1832, Riemann in 1847, Green in 1859, Grunwald in 1867, Letnikov in 1868, Nekrasov
(1888), Laurent (1884), Hadamard (1892), Weyl (1917), Riesz (1922), Kober (1940), Kuttner
(1953), M. Caputo (1967), K.S. Miller, B.Ross (1993), and numerous others have advanced
the foundational principle of fractional calculus [70, 64, 53].

1



General introduction

The derivative, a cornerstone of applied mathematics, quantifies the rate of change in
functions, essential for constructing models addressing real-world issues. Over the last three
decades, fractional derivatives ascended in significance because of their superior suitability
in tackling diverse practical problems in numerous fields including acoustics, control theory,
chaos, signal processing, economics, bioengineering, and more [81, 88, 73].
The convergence of preceding contributions has given rise to various forms of fractional order
derivatives featuring different kernels, whether singular or nonsingular [17]. The famous
and most commonly used in theory of fractional calculus are Riemann-Liouville fractional
derivative (FD) [59] and Caputo FD [26]. There are also other types, among them, Caputo-
Fabrizio FD [25], generalized FD [45], Hadamard and Hilfer FD [46], Atangana-Baleanu FD
[14], conformable FD [66], and more.

Especially noteworthy is Michele Caputo’s groundbreaking concept the Caputo deriva-
tive which emerged in the 1967s and played a transformative role in reshaping FC. Unlike
traditional derivatives, this innovation broadened differentiation to non-integer orders, revo-
lutionizing our comprehension of intricate systems. It excels in capturing dynamics marked
by memory, non-locality, and unconventional behaviors. By encompassing a function’s entire
history rather than just its immediate state, the Caputo derivative becomes indispensable
across physics, engineering, biology, and finance. Its applications range from modeling vis-
coelastic materials and neuronal dynamics to refining option pricing models in finance. This
unique attribute of accommodating fractional orders empowers scientists, engineers, and
mathematicians, unlocking previously inaccessible phenomena. [43, 71, 9, 10, 11, 74].

Building on this foundation, the Caputo-Fabrizio fractional derivative (CFfd) emerged as
a groundbreaking solution to overcome limitations in classical constitutive equations, partic-
ularly in describing the intricate behavior of modern materials used in advanced technolo-
gies. Caputo and Fabrizio presented a novel fractional derivative in 2015, incorporating an
exponential function as its kernel. This innovation was a response to address the limita-
tions imposed by singular kernels found in traditional Caputo derivatives. By replacing the
problematic kernel with exp(−s(υ − y)/(1 − s)) and 1√

2π(1−s2)
, they effectively eliminated

singularities at υ = y, enhancing the derivative’s applicability. This alteration was imple-
mented to address the challenge posed by singular kernels inherent in the traditional Caputo
FD. In this modification, the original kernel (υ − y)−s was substituted with the function
exp

(
− s(υ−y)

1−s

)
, and 1

Γ(1−s) was replaced by 1√
2π(1−s2)

. The crucial distinction between the
former and updated definitions lies in the ability of the new kernel to eliminate the singu-
larity at υ = y [25]. The CFfd finds broad applications in biology, infectious disease studies,

2



General introduction

and has been particularly effective in modeling the evolution of the COVID-19 pandemic, as
evidenced by various research sources [27, 14, 15, 8, 48].

FC has surged in prominence across diverse domains, unlocking new possibilities and
refining approaches in various applications. In electromagnetic theory has seen significant
growth. Engheta’s introduction of fractional curl operators in 1998 [34], further expanded by
Naqvi and Abbas [68], created the foundation for "Fractional Paradigms in Electromagnetic
Theory". This pioneering work has led to widespread acceptance and extensive utilization of
FC in contemporary electromagnetic research. Notably, Faryad and Naqvi’s investigation of
a rectangular Waveguide showcased innovative applications of FC [36].

Moreover, in control engineering, the increasing demand for precise and efficient task
execution by robots emphasizes the need for resilient control systems to reduce production
time. Flexible robots operating within expansive workspaces are affected by nonlinear and
fractional-order dynamic effects [79, 103, 98, 89].

Outside the realm of engineering, the challenges associated with the diffusion of biologi-
cal populations manifest nonlinearly, leading to an increasing prevalence of fractional-order
differential equations in various research domains [33, 90, 91, 75].

FC, especially in fractional reaction-diffusion equations, outperforms traditional mathe-
matical models by offering more accurate descriptions of real-world phenomena. These equa-
tions excel in capturing intricate behaviors present in complex systems. Specialized analytical
and numerical methods, including finite element, finite difference, Adomian decomposition,
and spectral methods [101, 28, 78, 57] have emerged to handle fractional equations effectively.

In specific circumstances, a system undergoes external impulses that can impact it briefly
or over prolonged periods during its motion. Modeling such systems often involves impulsive
differential equations, incorporating an additional condition to define applied impulses, these
equations have been extensively explored in [56, 21]. Impulsive differential equations gen-
erally fall into two categories: "instantaneous", where impulses occur momentarily and are
modeled through abrupt changes at a singular time point, and "non-instantaneous", where
impulses extend over periods, modeled by specific conditions on a quantity during defined
time intervals. Non-instantaneous equations offer a more realistic portrayal of reality, as
nothing in practical situations occurs instantaneously. However, they emerged relatively re-
cently, making their appearance in 2013 [42]. The initial exploration of non-instantaneous
impulses (NIIs) fractional differential equations (FDEs) seems to have occurred around 2013
[72]. Research in this area has persisted in recent years, evident from the research publications
[100, 16, 31], and the wealth of related literature.

3



General introduction

A commonly studied mathematical model that incorporates non-instantaneous impulses
is the Fractional integro-differential equations (FIDEs). They involve fractional derivatives
and integrals which capture the memory effects and long-range interactions present in the
system. They have found extensive utility in modeling diverse processes across applied sci-
ences, encompassing domains like biology, engineering, finance, physics, and more. These
equations enable the modeling of systems characterized by memory effects, long-range in-
teractions, and abrupt changes that endure for a finite duration [18, 63, 55, 12]. These
equations enable the representation of systems characterized by memory effects, long-range
interactions, and abrupt changes that endure for a finite duration. Several studies, including
Kataria et al. [50], Khan et al. [51], Abbass [2], and Benkhettou et al. [24], investigate
non-instantaneous impulsive functional integro-differential equations within Banach spaces.
These investigations employ tools such as operator semigroup theory, Banach contraction
principles, Leray-Schauder nonlinear alternative and Krasnoselskii’s fixed point theorem.

Fixed point theory, originating from the iterative method of Picard for solving differential
equations, has evolved into a significant mathematical concept. Banach’s fixed point theorem
emerged from this framework and has since developed into a standalone subject. Lately,
there has been a notable resurgence in the application of fixed point theorems, specifically,
the Banach and Krasnoselskii fixed point theorems, as vital instruments in resolving FDEs.
These theorems stand as pivotal theories, extensively utilized by numerous scientists, as
evidenced by their applications in various studies. Notable book references such as [3, 4, 104]
and articles [22, 32, 41, 5, 55] highlight this prevalent approach, showcasing the application
of fixed point theorems in solving these FDEs, indicating their relevance and effectiveness in
addressing complex phenomena in diverse fields.

The renaissance of fixed point theorems in solving FDEs has spurred innovative unions
with noncompactness measures. These theorems fuse the principles of fixed point theory with
quantitative measures of noncompactness, notably Kuratowski’s measure η(F), which evalu-
ates the spread within a bounded set F . These measures, exemplified in recent propositions
like Darbo’s theorem, have attracted attention in Banach spaces and associated properties.
Noteworthy literature, including references such as [85, 23, 1, 19, 7, 13], not only demon-
strates the application of fixed point theorems in proving existence and uniqueness solutions
for FDEs but also showcases the integration of noncompactness measures within these theo-
rems, underscoring their collaborative power in addressing intricate problems across diverse
scientific disciplines.

Concurrently, stability analysis, which finds its roots in Ulam’s seminal investigation in

4



General introduction

1940 [94, 93], has undergone significant evolution and advancement. Ulam’s pioneering work
laid the groundwork for subsequent developments in the field, serving as a catalyst for further
exploration into the stability of mathematical systems. One notable outcome of this explo-
ration is the concept of Hyers-Ulam stability, introduced by Donald H. Hyers in 1941 [44].
This stability notion offers a straightforward and practical method for obtaining approximate
solutions to differential equations, proving instrumental in both theoretical inquiries and
real-world applications. Moreover, the scope of Hyers-Ulam stability has expanded beyond
traditional differential equations to encompass the study of stability for fractional differential
equations. In the recent past, a significant cohort of mathematicians has devoted their efforts
to scrutinizing the Hyers-Ulam stability of FDEs, yielding a considerable number of findings
[49, 95, 96, 85, 86, 87] and the books [76, 29] and references therein.

The intricate challenges posed by solving FDEs, particularly FIDES, analytically have
driven the widespread adoption of numerical methods. Notably, spectral methods such as
the Legendre collocation method [83], Chebyshev pseudo spectral method [52], and Legendre
spectral element method [30], and others in [77, 60, 97]. Complementing these techniques,
the versatile and precise least squares method has emerged as a valuable tool for tackling
FIDEs, well-documented in the studies by Mohammed et al. [65], Nanware et al. [67],
Sabeg et al. [84], and Jia et al. [47]. In this method, the selection of appropriate basis
functions is crucial. Spectral analysis aids in identifying these functions, often comprising
compact combinations of orthogonal polynomials. Using this selection of basis function, the
dimension of the approximation space will be diminished. Integrating these methods allows
the least squares approach to efficiently tackle these complex equations by leveraging the
streamlined basis provided by spectral analysis, showcasing their collaborative synergy in
numerical problem-solving.

Below, we present an overview of the organization of the thesis, comprising four chapters
that delineate the contributions made in this work.

Chapter 1: The chapter begins with an exploration of basic notions pertinent to func-
tional spaces and basic definitions and theorems employed within this thesis. Following this,
it proceeds to delve into Kuratowski’s measure of noncompactness, shedding light on prop-
erties related to this measure. The subsequent sections were dedicated to more advanced
topics, such as the Gamma and Beta functions, as well as the theory of fractional calculus,
including definitions and fundamental lemmas, theorems, and properties. Additionally, fixed
point theorems were extensively discussed. Moving forward, The chapter concludes with
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the final section, wherein we elaborate on properties of Chebyshev polynomials that will be
employed in this thesis.

Chapter 2:
Within this chapter, we introduce two primary findings. Firstly, we explore the examina-

tion of the existence and uniqueness outcomes. Subsequently, we derive Hyers-Ulam stability
results for the following class of Caputo-Fabrizio FDEs with non-instantaneous impulses

For υ ∈ θm, m = 0, 1, . . . , n, µ ∈]0, 1[, λ > 0,
CFDµ

sm,υφ(υ) = −λφ(υ) + g(υ, φ(υ)),

For υ ∈ Jm, m = 1, 2, . . . , n, σ ∈]0, 1[, σ ̸= µ,

φ(υ) = p+ CFIσ
υm,υhm(υ, φ(υ)) − CFIµ

0,sm
g (sm, φ (sm)) ,

φ(0) = φ0.

(1)

Where θ0 = (0, υ1], Jm = (υm, sm], for all m = 1, 2, . . . , n, θm = (sm, υm+1], for all m = 0, 1, . . . , n.
CFDµ

sm,υ is the CFfd of order µ ∈]0, 1[, with the lower limit sm, 0 = s0 < υ1 ≤ s1 ≤ υ2 < · · · <
υn ≤ sn ≤ υn+1 = T are prefixed numbers, g : [0, T ] × R → R and hm : [υm, sm] × R → R,
m = 1, 2, . . . , n are continuous, λ >0 and p is a real number.
Iσ

υm,υhm and Iµ
0,sm

g are presented by the following expressions:

CFIγ
υm,υhm(υ, φ(υ)) = 2(1 − γ)

M(γ)(2 − γ)hm(υ, φ(υ)) + 2γ
M(γ)(2 − γ)

∫ υ

υm

hm(θ, u(θ))dθ,

CFIµ
0,sm

g (sm, φ (sm)) = 2(1 − µ)
M(µ)(2 − µ)g(sm, φ(sm)) + 2µ

M(µ)(2 − µ)

∫ sm

0
g(θ, φ(θ))dθ.

The existence and uniqueness results are established through the application of both the
Banach contraction principle and Darbo’s fixed point theorem (FPT) combined with the
Kuratowski’s measure of noncompactness (KMNC). Following this, we demonstrate that the
above problem is Hyers-Ulam stable. To confirm the validity of our findings, we present two
illustrative examples.

Chapter 3: In this chapter, we investigate the existence of at least one solution for the
following non-instantaneous impulsive fractional integro-differential equations

CDµφ(υ) = ξ(υ, φ(υ)) +
∫ υ

0
Ψ(υ, r, φ(r))dr, υ ∈ (δm, υm+1], m = 0, . . . n,

φ(υ) = 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm(r, φ(r−
m ))dr, υ ∈ (υm, δm], m = 1, . . . n,

α1φ(0) + α2φ(υ) = η(0).

(2)

6
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Where CDµ is Caputo’s differential operator of order µ ∈ (0, 1], θ = [0, T ], T > 0, α1, α2 ∈ R.
θ0 = [0, υ1], θm = (δm, υm+1]; m = 0, . . . , n, Jm = (υm, δm]; m = 1, . . . n, ξ : θ × R → R,Ψ :
θ × θ × R → R, Gm : Jm × R → R are continuous functions with ξ(υ, φ(υ))υ=0 = 0. We
consider the split of the interval θ with respect to υm, δm such that 0 < υm < δm < T for
m = 1, 2, 3, . . . , n and assume υn+1 = T .

The results are founded upon the application of both Krasnoselskii FPT and Darbo’s
FPT combined with the KMNC. Finally, two concrete examples are provided to substantiate
the significant findings of the study.

Chapter 4: This chapter is devoted to presenting an approximation to the solution for
the following linear FIDE, considering two distinct cases for the initial conditions.

CDµφ(υ) = f(υ) +
∫ 1

0
K(υ, τ)φ(τ)dτ, 0 ≤ υ ≤ 1, (3)

with two cases of the initial conditions. For the first initial condition where 0 < µ ≤ 1,
we impose φ(0) = 0. Meanwhile, in the second initial conditions where 1 < µ ≤ 2, we
impose φ(0) = φ′(0) = 0. Functions f(υ) and K(υ, τ) are predefined, while φ(υ) denotes the
unknown function to be determined.

To solve this class of FIDEs numerically, we will apply the LSM using a compact combi-
nation of SCP of the first Kind.

In conclusion, we wrap up our thesis by summarizing key findings and suggesting potential
directions for future research.
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Chapter 1
Preliminaries

This chapter serves as a foundation, introducing the requisite mathematical tools, no-
tations, and concepts that form the cornerstone of the subsequent chapters. Within this
context, we delve into the vital attributes of fractional differential operators, scrutinizing
their essential properties. Additionally, we undertake a comprehensive review of the fun-
damental characteristics inherent to measures of noncompactness and fixed point theorems.
Alongside these discussions, we also present notable properties of Chebyshev polynomials.
These aspects hold pivotal importance in the context of our forthcoming discussions concern-
ing fractional differential equations.

1.1 Basic notions

Let C(θ,R) denote the Banach space consisting of all continuous functions from θ = [0, T ],
T > 0, to R equipped with the norm

∥g∥∞ = sup
υ∈θ

|g(υ)|,

and denote L1(θ) as the Banach space of measurable functions g : θ → R that are Lebesgue
integrable, equipped with the norm

∥g∥L1 =
∫ T

0
|g(υ)|dυ.

Definition 1.1 ([54]). We say that g is Caratheodory if

• g(., t) is measurable for each t ∈ R.

• g(υ, .) is continuous for each υ ∈ θ.

8
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Definition 1.2. Let f be a function defined on R∗
+, m ∈ R and n ∈ N. We define:

• f ∈ Cm if there exists a real b > m, such that f(υ) = υbf1(υ), where f1(υ) ∈ C[0,∞).

• f ∈ Cn
m if and only if f (n) ∈ Cm.

Definition 1.3. [61] Let X and Y be Banach spaces. A linear operator T from X into Y is
bounded if T(B) is a bounded subset of Y whenever B is a bounded subset of X .

Definition 1.4. [61] Let E be a subset of a Banach space Y. E is considered relatively
compact if its closure E is compact, where the closure E of E is the union of E and its limit
points.

Definition 1.5. [61] Assume X and Y are Banach spaces. A linear operator T from X to Y
is deemed compact if for any bounded subset B of X , the image T(B) is a relatively compact
subset of Y.

Theorem 1.1 (Lebesgue dominated convergence theorem [6]). Suppose g is Lebesgue inte-
grable on E. The sequence {fn} of measurable functions satisfies:

1. |fn| ≤ g almost everywhere on E for n ∈ N;

2. lim
n→∞

fn = f almost everywhere on E.

Then, f ∈ L(E) and
lim

n→∞

∫
E
fn =

∫
E
f. (1.1)

Theorem 1.2 (Arzelà-Ascoli theorem [6]). Consider the subset G of C(θ,X). Then, G is
considered relatively compact in C(θ,X) if and only if the subsequent conditions hold:

i) The set G is uniformly bounded, i.e., there exists a constant K > 0 in which

∥g(υ)∥ ≤ K, for all υ ∈ θ, and all g ∈ G.

ii) The set G is equicontinuous, which means for all ε > 0, there exists a > 0 so that

|υ1 − υ2| < a ⇒ |g (υ1) − g (υ2)| < ϵ, ∀υ1, υ2 ∈ θ, ∀g ∈ G.

9



Preliminaries

1.2 Kuratowski’s measure of noncompactness

In this section, we introduce Kuratowski’s measure of noncompactness (referred to as
KMNC) and outline its fundamental properties.
Let Y be a metric space and FY represent the family of all bounded subsets of this space.

Definition 1.6 ([19]). A map η : FY → [0,∞) is called a measure of noncompactness on Y
if it satisfies the following properties for all B, B1, B2 ∈ FY .

• η(B) = 0 if and only if B is precompact (regularity).

• η(B) = η(B̄) (invariance under closure).

• η (B1 ∪B2) = max {η (B1) , η (B2)} (semi-additivity).

Definition 1.7 ([19]). Consider Y as a Banach space, and let WY be the family of bounded
subsets of Y. The KMNC is the map η : WY → [0,∞) defined by

η(S) = inf
{
ϵ > 0 : S ⊂ Um

j=1Sj, diam (Sj) ≤ ϵ
}
,

where S ∈ WY .

The measure η satisfies the following properties

• η(S) = 0 ⇔ S is compact ( S is relatively compact).

• η(S) = η(S).

• S1 ⊂ S2 ⇒ η (S1) ≤ η (S2).

• η (S1 + S2) ≤ η (S1) + η (S2).

• η(bS) = |b|η(S), b ∈ R.

• η(conv S) = η(S).

Lemma 1.1 ([40]). Suppose W ⊆ C(θ,R) is a equicontinuous and bounded set, hence

• Function υ → η(W (υ)) is continuous on θ, with

η(W ) = sup
0≤υ≤T

η(W (υ)). (1.2)

• η

(∫ T

0
g(r)dr : g ∈ W

)
≤
∫ T

0
η(W (r))dr, where

W (r) = {g(r) : g ∈ W}, r ∈ θ. (1.3)
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1.3 Gamma and Beta functions

1.3.1 Gamma function

The Gamma function, symbolized by Γ(µ), plays a crucial role in fractional calculus, extend-
ing the notion of the factorial s! to encompass real and complex values of s.

Definition 1.8. ([73]) We define the Gamma function as follows:

Γ(µ) =
∫ +∞

0
υµ−1e−υdυ,

converge in only one the right half of the complex plane when Re(µ) > 0.
It has the following property:

Γ(µ+ 1) = µΓ(µ),

hence, for positive integer values of s, we find that Γ(s) = (s− 1)!.

Example 1.1. A notable specific value of the function is Γ
(

1
2

)
=

√
π, indeed

Γ
(1

2

)
=
∫ ∞

0

e−υ

√
υ
dυ

Let e =
√
υ, then υ = e2 and dυ = 2e de,

thus:
Γ
(1

2

)
=
∫ ∞

0
e−e2

de

knowing that
∫ ∞

0
e−e2

de =
√
π

2 , (Gauss integral :
∫ +∞

−∞
E−µυ2

dυ =
√
π

µ
µ ∈ R∗

+),

it comes that
Γ
(1

2

)
=

√
π.

Lemma 1.2. For any µ ∈ C such that Re(µ) > 0, we have:

• Γ(µ+ 1) = µΓ(µ).

• Γ(s) = (s− 1)!, ∀s ∈ N∗.

• Γ
(
s+ 1

2

)
= (2s!)

√
π

22ss! , ∀s ∈ N.
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1.3.2 Beta function

In some cases, using the Beta function is convenient.

Definition 1.9. ([73]) The Beta function is expressed as follows:

B(r, s) =
∫ 1

0
υr−1(1 − υ)s−1dυ, r, s > 0.

The subsequent formula establishes the connection between both Beta and Gamma functions:

B(r, s) = Γ(r)Γ(s)
Γ(r + s) , r, s > 0.

1.4 Fundamental fractional order calculus

In this part, we introduce definitions related to fractional order calculus, accompanied by
a collection of properties, propositions and lemmas that hold significance in the context of
this thesis.

1.4.1 Integrals of fractional order

Definition 1.10 ([53]). Consider a function g ∈ Cν with ν ≥ −1 and let µ > 0. The
Riemann-Liouville integral operator of order µ is given by:

Iµg(υ) = 1
Γ(µ)

∫ υ

0
(υ − s)µ−1g(s)ds, µ > 0, υ > 0,

I0g(υ) = g(υ).

Considering a, b ≥ 0, c ≥ −1, ν ≥ −1 and g ∈ Cν , the Riemann-Liouville fractional
integration verifies the following properties:

• IaIbg(υ) = Ia+bg(υ),

• IaIbg(υ) = IbIag(υ),

• Iaυc = Γ(c+1)
Γ(a+c+1)υ

c+a.

Definition 1.11 ([58]). Let 0 < µ < 1 and g ∈ L1(θ) , The Caputo-Fabrizio fractional
integral of order µ is defined by:

CFIµg(υ) = 2(1 − µ)
M(µ)(2 − µ)g(υ) + 2µ

M(µ)(2 − µ)

∫ υ

0
g(s)ds, υ ≥ 0,

here, M(µ) > 0 denotes the normalization constant which is dependent on µ, and fulfills to
the conditions: M(0) = M(1) = 1.
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Below are the fundamental characteristics of the operator CFIµ.

• CFIµg(υ) = g(υ),where µ = 0,

• CFIµ(g(υ) + h(υ)) = CFIµg(υ) + CFIµh(υ),

• CFIµ[CFDµg(υ)] = g(υ) − g(0).

1.4.2 Derivatives of fractional order

Definition 1.12. For µ > 0, let l ∈ N be the smallest integer greater than µ, and let g ∈ Cl
−1

be a function. We define the Caputo FD of order µ as

CDµg(υ) = Il−µDlg(υ) =


1

Γ(l − µ)

∫ υ

0
(υ − s)l−µ−1g(r)(s)ds, υ > 0, l − 1 < µ < l,

dlg(υ)
dυl

, µ = l.

Here are some Caputo FD properties:

• CDµc = 0, c is a constant.

• Let [µ] denote the integer part of µ, then we have:

CDµυl =


0, l ∈ N0 = {0, 1, 2, . . . } , l < [µ],

Γ(l + 1)
Γ(l + 1 − µ) υ

l−µ, l ∈ N0 , l ≥ [µ].

• The linearity of Caputo fractional differentiation is expressed as follows:

CDµ(ag + bh)(υ) = aCDµg(υ) + bCDµh(υ), ∀a, b ∈ R.

Definition 1.13 ([25, 58]). For a function g ∈ C1(θ) and 0 < µ < 1, the Caputo-Fabrizio
FD of order µ is defined as:

CFDµg(υ) = (2 − µ)M(µ)
2(1 − µ)

∫ υ

0
exp

(
− µ

1 − µ
(υ − s)

)
g′(s)ds, υ ∈ θ.

Here are the fundamental characteristics of the operator CFDµ.

• CFDµg(υ) = g(υ),where µ = 0,

• CFDµ(ag(υ) + bh(υ)) = aCFDµg(υ) + bCFDµh(υ), where a, b ∈ R,

• CFDµc = 0, where c is constant.
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1.4.3 Necessary lemmas, theorems and propositions

Lemma 1.3. [102] Let µ > 0 and g ∈ C(θ) ∩ L(θ). Then the FDE CDµg(υ) = 0 admits
solutions

g(υ) = a0 + a1υ + a2υ
2 + · · · + am−1υ

m−1, ai ∈ R, i = 0, 1, 2, . . . ,m− 1, m = [µ] + 1.

Lemma 1.4. [102] Let µ > 0, then

Iµ CDµg(υ) = g(υ) + a0 + a1υ + a2υ
2 + · · · + am−1υ

m−1,

for m = [µ] + 1, and ai ∈ R, i = 0,m− 1.

Lemma 1.5. [58] Let 0 < µ < 1. The solution of the subsequent FDE

CFDµg(υ) = f(υ), υ ≥ 0, (1.4)

is given by:
g(υ) = aµ[f(υ) − f(0)] + bµ

∫ υ

0
f(s)ds+ g(0), υ ≥ 0, (1.5)

where
aµ = 2(1 − µ)

(2 − µ)M(µ) , bµ = 2µ
(2 − µ)M(µ) .

Proof. Using Laplace formula transformation, we get

L
[

CFDµg(υ)
]

(s) = L [f(υ)](s), s > 0.

In other words, utilizing

L
[

CFDµg(υ)
]

(s) = (2 − µ)M(µ)
2(s+ µ(1 − s))(sL [g(υ)](s) − g(0)), s > 0, (1.6)

where L [g(υ)] denotes the Laplace transformation of the function g, we have that

(2 − µ)M(µ)
2(s+ µ(1 − s))(sL [g(υ)](s) − g(0)) = L [f(υ)](s), s > 0,

or equivalently,

L [g(υ)](s) = 1
s
g(0) + 2µ

s(2 − µ)M(µ)L [f(υ)](s) + 2(1 − µ)
(2 − µ)M(µ)L [f(υ)](s), s > 0.

Therefore, leveraging the recognized properties of the inverse Laplace transformation, one
can conclude:

g(υ) = 2(1 − µ)
(2 − µ)M(µ)f(υ) + 2µ

(2 − µ)M(µ)

∫ υ

0
f(s)ds+ g(0), υ ≥ 0. (1.7)
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To put it another way, the function defined as

g(υ) = 2(1 − µ)
(2 − µ)M(µ)f(υ) + 2µ

(2 − µ)M(µ)

∫ υ

0
f(s)ds+ c, υ ≥ 0,

is also a solution of (1.4) where c ∈ R is a constant.
We can alternatively express FDE (1.4) as

(2 − µ)M(µ)
2(1 − µ)

∫ υ

0
exp

(
− µ

1 − µ
(υ − s)

)
g′(s)ds = f(υ), υ ≥ 0,

or equivalently,∫ υ

0
exp

(
µ

1 − µ
s

)
g′(s)ds = 2(1 − µ)

(2 − µ)M(µ) exp
(

µ

1 − µ
υ

)
f(υ), υ ≥ 0.

Upon differentiating both sides of the latter equation, we derive that

g′(υ) = 2(1 − µ)
(2 − µ)M(µ)

(
f ′(υ) + µ

1 − µ
f(υ)

)
, υ ≥ 0.

Therefore, integrating now from 0 to υ, we conclude as shown in (1.7), that

g(υ) = 2(1 − µ)
(2 − µ)M(µ) [f(υ) − f(0)] + 2µ

(2 − µ)M(µ)

∫ υ

0
f(s)ds+ g(0), υ ≥ 0.

Lemma 1.6. [58] Consider 0 < µ < 1 and g denote a solution of the following FDE:

CFDµg(υ) = 0, υ ≥ 0, (1.8)

subsequently, g is a constant function and then the converse is also true.

Proof. Using the property CFIµ[CFDµg(υ)] = g(υ) − g(0), we deduce that any solution to
equation (1.8) must fulfill the condition g(υ) = g(0) for all υ ≥ 0. Consequently, it becomes
evident that g is bound to be constant function.

Proposition 1.1. [58] The unique solution of the following IVP with 0 < µ < 1,

CFDµg(υ) = f(υ), υ ≥ 0, (1.9)

g(0) = g0 ∈ R, (1.10)

is
g(υ) = g0 + aµ(f(υ) − f(0)) + bµI

1f(υ), υ ≥ 0, (1.11)

where I1 denotes a primitive of g.
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Proof. Suppose that the IVP (1.9)-(1.10) has two solutions, g1 and g2. In that case, we have
that

CFDµg1(υ) − CFDµg2(υ) = [CFDµg1 − g2](υ) = 0 and (g1 − g2)(0) = 0.

So, by Lemma 1.6, we have that g1 − g2 = 0. That is g1(υ) = g2(υ) for all υ ≥ 0.
From equation (1.7), it’s evident that the function given by the equation (1.11) is a solution
of the fractional differential equation (1.9). Additionally, substituting υ with 0 in equation
(1.11), we obtain g0.
Thus, the function given by (1.11) is the unique solution of the IVP (1.9)-(1.10).

Remark 1.1. When µ equals 1, the solution of equation (1.9) corresponds to usual primitive
of f .

Proposition 1.2. [58] For any real number λ and µ ∈]0, 1[. Therefore, the IVP represented
by 

CFDµg(υ) = λg(υ) +W (υ), υ ≥ 0,
g(0) = g0 ∈ R,

(1.12)

admits a unique solution.

Lemma 1.7. Let W ∈ L1(θ). Then the IVP
CFDµ

0,υg(υ) = −λg(υ) +W (υ), υ ∈ θ,

g(0) = g0 ∈ R,
(1.13)

has the following unique solution

g(υ) = g0 − Aλ
µW (0) + Aλ

µW (υ) +Bλ
µ

∫ υ

0
[−λg +W ](θ)dΘ, (1.14)

in which
Aλ

µ = aµ

1 + λaµ

, Bλ
µ = bµ

1 + λaµ

.

Proof. Suppose that g satisfies (1.13). Using Proposition 1.1 and Proposition 1.2, we get
CFDµ

0,υg(υ) = −λg(υ) +W (υ),

which implies

g(υ) − g(0) = aµ (λ(g0 − g(υ)) +W (υ) −W (0)) + bµ

∫ υ

0
[−λg +W ](Θ)dΘ,

or
g(υ) = g(0) + aµ

1 + λaµ

W (υ) − aµ

1 + λaµ

W (0) + bµ

1 + λaµ

∫ υ

0
[−λg +W ](Θ)dΘ.

From the initial condition g(0) = g0, we obtain

g(υ) = g0 − Aλ
µW (0) + Aλ

µW (υ) +Bλ
µ

∫ υ

0
[−λg +W ](Θ)dΘ,

which satisfies (1.14).
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1.5 Fixed point theorems

This part introduces the fixed point theorems utilized in our study.

Theorem 1.3 (Banach’s FPT [39]). Given a closed and non-empty subset D of a Banach
space Y, any contraction mapping T from D to itself admits a unique fixed point.

Theorem 1.4 (Darbo’s FPT [38]). Consider a closed, nonempty, bounded, and convex
subset D of a Banach space Y. Let N be a continuous mapping of D into itself, , satisfying
the condition of being a γ-contraction, i.e., for any nonempty subset h of D, we have

η(N(h)) ≤ γη(h), 0 ≤ γ < 1,

where η denotes the KMNC on Y. Therefore, N admits a fixed point in D.

Theorem 1.5. ( Krasnoselskii’s FPT [39]) Consider a nonempty, convex and closed subset
D of a Banach space Y and B and G denote the operators as

1. Bυ + Gx ∈ D, ∀υ, x ∈ D,

2. B is continuous and compact,

3. G is a contraction mapping.

Hence there exists υ∗ ∈ D where υ∗ = Bυ∗ + Gυ∗.

1.6 Fundamental properties of Chebyshev polynomials

Chebyshev polynomials are a family of orthogonal polynomials named after the Russian
mathematician Pafnuty Chebyshev in the 1850s as part of his research into number theory
and the theory of differential equations. These polynomials are defined on a specific interval,
usually [-1, 1], although variations on this interval are also possible. Chebyshev polynomi-
als possess numerous advantageous properties, such as being easily computable, numerically
stable, and featuring rapid convergence rates. Due to these characteristics, they find sig-
nificant utility across various domains like numerical analysis, approximation theory, signal
processing, and other fields within mathematics and physics. The definition of Chebyshev
polynomial of the first kind and some of its properties are presented in this section. For more
details see [92, 69, 62].

17



Preliminaries

Definition 1.14. The Chebyshev polynomial Tm(υ) of the first kind, defined by the relation

Tm(υ) = cos(m arccos υ), with m ∈ N, (1.15)

is a polynomial in υ of degree m.

If the variable υ ranges over the interval [-1, 1], then the corresponding variable β can be
considered to range over [0, π]. These ranges are traversed in opposite directions, given that
υ = −1 corresponds to β = π and υ = 1 corresponds to β = 0.
As a consequence of De Moivre’s theorem, it is well known that cos(mβ) is a polynomial of
degree m in cos(β). Indeed, we are familiar with the elementary formulas

cos(0β) = 1, cos(1β) = cos(β), cos(2β) = 2 cos2(β − 1),

cos(3β) = 4 cos3(β − 3 cos β), cos(4β) = 8 cos4(β − 8 cos2 β + 1), . . .

Chebyshev polynomial of the first kind satisfies the following properties:

Property 1.1. The polynomial Tm of degree m in υ with leading coefficient am = 2m−1, follows
the subsequent recurrence relation

Tm+1 = 2υTm − Tm−1, m = 1, 2, 3 . . . ,T0 = 1,T1 = υ, (1.16)

Proof. Equation (1.16) is derived through direct computation:

T0(υ) = cos(0) = 1,T1(υ) = cos β = υ,

and

Tm+1(υ) + Tm−1(υ) = cos(m + 1)β + cos(m − 1)β = 2 cos(β) cos(mβ) = 2υTm(υ),

utilizing the formula cos(c+ d) = cos c cos d− sin c sin d.
Subsequently, we proceed to demonstrate by induction that Tm represents a polynomial of
degree m in the variable υ, with 2m − 1 serving as the leading coefficient, i.e.,

Tm(υ) = 2m−1υm + lower degree terms, m ≥ 1. (1.17)

For m = 1, equation (1.17) holds true since T1(υ) = υ = 21−1υ, and its degree is 1.
Given that equation (1.17) holds for a fixed integer m ≥ 1, we are able to express Tm as

Tm(υ) = 2m−1υm + Am−1(υ),

18
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where Am−1 is a polynomial of degree at most m − 1 in the variable υ.
To conclude the demonstration, we utilize relation (1.16) to derive that

Tm+1(υ) = 2υTm(υ)Tm−1(υ) = 2υ(2m−1υm + Am−1(υ)) − Tm−1(υ) = 2mυm+1 + Ãm(υ),

where Ãm is a polynomial of degree at most m in υ. Thus, Tm(υ) is a polynomial of degree m

in the variable υ with 2m−1 as leading coefficient.
Using the three-term recurrence relation (1.16), any Tm(υ) can be generated. Specifically, the
first 5 Chebyshev polynomials are as follows:

T0(υ) = 1,

T1(υ) = υ,

T2(υ) = 2υ2 − 1,

T3(υ) = 4υ3 − 3υ,

T4(υ) = 8υ4 − 8υ2 + 1,

T5(υ) = 16υ5 − 20υ3 + 5υ.

Property 1.2. Tm satisfies the following orthogonality relation∫ π

0
cos(mβ) cos(nβ)dβ = kmδm,n =

∫ 1

−1
Tm(υ)Tn(υ) dυ√

1 − υ2
, (1.18)

with k0 = π, km = π
2 , m ≥ 1 and δm,n denotes the Kronecker delta.

Proof. Relation (1.18) is established through direct computation, employing one more time
the addition formula

2 cos(mβ) cos(mβ) = cos(m +m)β + cos(m −m)β,

and as υ = cos β, 0 < β < π ⇒ dυ = − sin βdβ = −
√

1 − cos2βdβ.

Property 1.3. The polynomial Tm satisfies the second-order holonomic differential equation

(1 − υ2)T′′
m(υ) − υT′

m(υ) + m2Tm(υ) = 0, m ≥ 0. (1.19)

Proof. Relation (1.19) is also demonstrated by direct computation. Indeed

T′
m(υ) = d

dυ
Tm(υ),

19
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= dβ

dυ

d

dβ
Tm(υ),

= −1
sin β

d

dβ
cos(mβ),

= m sin(mβ)
sin β , m ≥ 1.

T′′
m(υ) = d

dυ

d

dυ
Tm(υ),

= dβ

dυ

d

dβ

(
dβ

dυ

d

dβ
Tm(υ)

)
,

= −1
sin β

d

dβ

(
−1

sin β
d

dβ
cos(mβ)

)
,

= m cos β sin(mβ)
sin β sin2 β

+ −m2 cos(mβ)
sin2 β

,

= υT′
m(υ)

1 − υ2 + −m2Tm(υ)
1 − υ2 , m ≥ 1.

Property 1.4. For any m ≥ 1, Tm has exactly m zeros, all within the interval of orthogonality
(−1, 1). These zeros, arranged in ascending order, are determined by

υm,ℓ = cos
(

2(m − ℓ) + 1
2m

π

)
, 1 ≤ ℓ ≤ m, m ≥ 1. (1.20)

Property 1.5. The zeros υm,ℓ of Tm satisfy

υm,ℓ ̸= υm+1,ℓ,∀m ≥ 1, 1 ≤ ℓ ≤ m, 1 ≤ j ≤ m + 1, (1.21)

υm+1,ℓ < υm,ℓ, 1 ≤ ℓ ≤ m. (1.22)
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Chapter 2
Study of Fractional Differential Equations with
Non Instantaneous Impulses under
Caputo-Fabrizio Derivative

2.1 Introduction

This chapter focuses on investigating the existence, uniqueness and stability in the Ulam-
Hyers sense of solutions to a specific type of mathematical problem called nonlinear implicit
fractional differential equations (FDEs) with non-instantaneous impulses (NIIs). These equa-
tions involve a fractional derivative (FD) known as the Caputo-Fabrizio FD, which captures
non-local and memory-dependent effects in the behavior of the system under study. The in-
tricacy of the problem stems from its implicit nature, where the relation among variables are
not explicitly defined. This complexity is significantly heightened by the existence of NIIs,
sudden and intermittent changes that occur at specific points within the system, causing
abrupt transitions. At its essence, the initial value problem involves deciphering a system’s
behavior from its initial conditions, requiring a solution that complies to the given equation
while takes into account the presence of NIIs. In deriving the existence outcomes, we apply
well-known mathematical techniques, notably the Banach’s standard fixed point theorem
(FPT) and the Darbo’s FPT combined with the Kuratowski’s measure of noncompactness
(KMNC). Additionally, we discuss the Hyers-Ulam (HU) stability of the given problem, which
further enhances the practical usefulness and dependability of these solutions. To showcase
the versatility of the uncovered findings across different values of µ, we provide several exam-
ples towards the conclusion. These results carry practical significance across diverse domains,
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facilitating enhanced modeling and comprehension of intricate systems.
Inspired by the works of [99, 20, 58], we delve into the examination of the subsequent Caputo-
Fabrizio FDEs with NIIs

For υ ∈ θm, m = 0, 1, . . . , n, µ ∈]0, 1[, λ > 0,
CFDµ

sm,υφ(υ) = −λφ(υ) + g(υ, φ(υ)),

For υ ∈ Jm, m = 1, 2, . . . , n, σ ∈]0, 1[, σ ̸= µ,

φ(υ) = p+ CFIσ
υm,υhm(υ, φ(υ)) − CFIµ

0,sm
g (sm, φ (sm)) ,

φ(0) = φ0.

(2.1)

Where θ0 = (0, υ1], Jm = (υm, sm], for all m = 1, 2, . . . , n, θm = (sm, υm+1], for all m = 0, 1, . . . , n.
CFDµ

sm,υ is the CFfd of order µ ∈]0, 1[, with the lower limit sm, 0 = s0 < υ1 ≤ s1 ≤ υ2 < · · · <
υn ≤ sn ≤ υn+1 = T are prefixed numbers, g : [0, T ] × R → R and hm : [υm, sm] × R → R,
m = 1, 2, . . . , n are continuous, λ >0 and p is a real number.
Iσ

υm,υhm and Iµ
0,sm

g are presented by the following expressions:

CFIσ
υm,υhm(υ, φ(υ)) = 2(1 − σ)

M(σ)(2 − σ)hm(υ, φ(υ)) + 2σ
M(σ)(2 − σ)

∫ υ

υm

hm(Θ, u(Θ))dΘ,

CFIµ
0,sm

g (sm, φ (sm)) = 2(1 − µ)
M(µ)(2 − µ)g(sm, φ(sm)) + 2µ

M(µ)(2 − µ)

∫ sm

0
g(Θ, φ(Θ))dΘ.

2.2 Existence and uniqueness outcomes

In this section, we address both the existence and uniqueness of solutions for the problem
(2.1). Let

PC1 =
{
φ : θ → R : φ|Jm

; m = 1, 2, . . . , n, φ|θm
; m = 0, 1, . . . , n are continuous and there exist

φ
(
s−

m

)
, φ
(
s+

m

)
, φ
(
υ−

m

)
and φ

(
υ+

m

)}
,

a Banach space equipped with the norm

∥φ∥PC1 = sup
υ∈θ

|φ(υ)|.
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Lemma 2.1. Let W : θ → R be a continuous function, φ ∈ PC1(θ,R) is a solution of the
FDEs

φ(0) = φ0,

φ(υ) = φm − Aλ
µg(sm) + Aλ

µW (υ) +Bλ
µ

∫ υ

sm

[−λφ+W ](Θ)dΘ, υ ∈ θm, m = 0, n,

φ(υ) = p+ CFIσ
υm,υhm(υ) − CFIµ

0,sm
W (sm), υ ∈ Jm, m = 1, n,

(2.2)

if and only if φ is a solution of the problem
CFDµ

sm,υφ(υ) = −λφ(υ) +W (υ), υ ∈ θm, m = 0, n, µ ∈]0, 1[,
φ(υ) = p+ CFIσ

υm,υhm(υ) − CFIµ
0,sm
W (sm) , υ ∈ Jm, m = 1, n, σ ∈]0, 1[,

φ(0) = φ0 ∈ R.
(2.3)

Proof. Assuming that φ fulfills equation (2.3), for υ ∈ θ0 = (0, υ1],
CFDµ

0,υφ(υ) = −λφ(υ) +W (υ).

Through integration of the final equation over the interval [0, υ], and utilizing Definition 1.11
and Lemma 1.7, we derive

φ(υ) = φ0 − Aλ
µW (0) + Aλ

µW (υ) +Bλ
µ

∫ υ

0
[−λφ+W ](Θ)dΘ.

For υ ∈ (υ1, s1], φ(υ) = p+ CFIσ
υ1,υh1(υ) − CFIµ

0,s1W (s1) .
For υ ∈ θ1 = (s1, υ2], CFDµ

s1,υφ(υ) = −λφ(υ) +W (υ).
When integrating the final equation from s1 to υ, and subsequently applying Definition 1.11
and Lemma 1.7, we get

φ(υ) = φ(s1) − Aλ
µW (s1) + Aλ

µW (υ) +Bλ
µ

∫ υ

s1
[−λφ+W ](Θ)dΘ,

= φ1 − Aλ
µW (s1) + Aλ

µW (υ) +Bλ
µ

∫ υ

s1
[−λφ+W ](Θ)dΘ.

Ultimately, for any υ ∈ θm and υ ∈ Jm, utilizing Definition 1.11 and Lemma 1.7, we derive
(2.2). The converse portion of the demonstration can be established through standard steps.

Lemma 2.2. We say that φ is a solution to the problem described by equation (2.1) if and
only if φ satisfies the following integral equation

φ(0) = φ0,

For υ ∈ θm, m = 0, 1, . . . , n,
φ(υ) = Cµ,λ

m + Aλ
µg(υ, φ(υ)) − λBλ

µ

∫ υ

sm

φ(Θ)dΘ +Bλ
µ

∫ υ

sm

g(Θ, φ(Θ))dΘ,

For υ ∈ Jm, m = 1, 2, . . . , n,
φ(υ) = Hµ

m + aσhm(υ, φ(υ)) + bσ

∫ υ

υm

hm(Θ, φ(Θ))dΘ − bµ

∫ sm

0
g(Θ, φ(Θ))dΘ,

(2.4)
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where
Cµ,λ

m = φm − Aλ
µg(sm, φ(sm)), Hµ

m = p− aµg(sm, φ(sm)),

aσ = 2(1 − σ)
(2 − σ)M(σ) , bσ = 2σ

(2 − σ)M(σ) .

The following assumptions will be utilized subsequently.

(A1) g : θ × R → R fulfills the Caratheodory conditions.

(A2) There exists a positive constant Lg in such a way that

|g(υ, φ1) − g(υ, φ2)| ≤ Lg|φ1 − φ2|, for each υ ∈ θ and all φ1, φ2 ∈ R.

(A3) Let hm ∈ C (Jm × R → R) , m = 1, 2, . . . , n, and there are positive constants Lhm , m =
1, 2, . . . , n, such that

|hm(υ, φ1) − hm(υ, φ2)| ≤ Lhm |φ1 − φ2|, for each υ ∈ Jm and all φ1, φ2 ∈ R.

(H1) There exist two functions ϱ ∈ Lq (θm,R+) (q > 1
µ
, m = 0, 1, . . . , n) and ψ : (0,∞] →

(0,∞], continuous and nondecreasing continuous, respectively, where

|g(υ, φ)| ≤ ϱ(υ)ψ(∥φ∥), υ ∈ θ, φ ∈ R.

(H2) Let hm ∈ C (Jm × R → R) , m = 0, 1, . . . , n, and there exists a continuous function
Hm ∈ C(Jm,R+), with

|hm(υ, φ)| ≤ Hm(υ), υ ∈ Jm, φ ∈ R.

(H3) There exists a continuous function Φ ∈ Lq (θm,R+) , q > 1
µ
, m = 0, 1, . . . , n, such that

for each bounded set G ⊂ R, we put

η(g(υ,G)) ≤ Φ(υ)η(G), υ ∈ θm.

(H4) For each bounded set G ⊂ R, we have

η(hm(υ,G)) ≤ Hm(υ)η(G), υ ∈ Jm.

Ultimately, we pose
ϱ∗ = sup

υ∈θ
ϱ(υ),

H∗ = max
m=0,...,n

(sup
υ∈Jm

Hm(υ)),

Φ∗ = sup
υ∈θ

Φ(υ).
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Theorem 2.1. Assume that (A1) − (A3) are satisfied. If the inequality

χ = max
{(

(Aλ
µ +Bλ

µT )Lg + λBλ
µT
)
, ((aσ + bσT )Lhm + (aµ + bµT )Lg))

}
< 1 (2.5)

is satisfied, thus the problem (2.1) admits a unique solution.

Proof. Consider the operator N : PC1 → PC1 defined by

(Nφ)(υ) =



For υ ∈ θm, and m = 0, 1, . . . , n,
Cµ,λ

m + Aλ
µg(υ, φ(υ)) − λBλ

µ

∫ υ

sm

φ(Θ)dΘ +Bλ
µ

∫ υ

sm

g(Θ, φ(Θ))dΘ,

For υ ∈ Jm, and m = 0, 1, . . . , n,
Hµ

m + aσhm(υ, φ(υ)) + bσ

∫ υ

υm

hm(Θ, φ(Θ))dΘ − bµ

∫ sm

0
g(Θ, φ(Θ))dΘ.

(2.6)

Since the functions g and hm are continuous and by the properties of fractional integrals,
the operator N : PC1 → PC1 defined in (2.6) is clearly well-defined. Consequently, we prove
that N is a contraction mapping.

Case 1 Let φ1, φ2 ∈ PC1(θ,R) and υ ∈ θm, m = 0, 1, . . . , n, we observe

|(Nφ1)(υ) − (Nφ2)(υ)| = |Cµ,λ
m + Aλ

µg(υ, φ1(υ)) − λBλ
µ

∫ υ

sm

φ1(Θ)dΘ +Bλ
µ

∫ υ

sm

g(Θ, φ1(Θ))dΘ

− Cµ,λ
m − Aλ

µg(υ, φ2(υ)) − λBλ
µ

∫ υ

sm

φ2(Θ)dΘ −Bλ
µ

∫ υ

sm

g(Θ, φ2(Θ))dΘ,

≤ Aλ
µ|g(υ, φ1(υ)) − g(υ, φ2(υ))| + λBλ

µ

∫ υ

sm

|φ1(Θ) − φ2(Θ)dΘ|

+Bλ
µ

∫ υ

sm

|g(Θ, φ1(Θ)) − g(Θ, φ2(Θ))dΘ|,

≤ Aλ
µLg∥φ1 − φ2∥PC1 + λBλ

µT ∥φ1 − φ2∥PC1 +Bλ
µT Lg∥φ1 − φ2∥PC1,

≤
(
(Aλ

µ +Bλ
µT )Lg + λBλ

µT
)

∥φ1 − φ2∥PC1,

which implies that

∥Nφ1 − Nφ2∥PC1 ≤ χ1∥φ1 − φ2∥PC1, with χ1 = (Aλ
µ +Bλ

µT )Lg + λBλ
µT .

Case 2 Let φ1, φ2 ∈ PC1(θ,R), for υ ∈ Jm, m = 0, 1, . . . , n, we get

|(Nφ1)(υ) − (Nφ2)(υ)| =
∣∣∣∣∣Hµ

m + aσhm(υ, φ1(υ)) + bσ

∫ υ

υm

hm(Θ, φ1(Θ))dΘ − bµ

∫ sm

0
g(Θ, φ1(Θ))dΘ

− Hµ
m − aσhm(υ, φ2(υ)) − bσ

∫ υ

υm

hm(Θ, φ2(Θ))dΘ + bµ

∫ sm

0
g(Θ, φ2(Θ))dΘ

∣∣∣∣∣,
≤ aσ|hm(υ, φ1(υ)) − hm(υ, φ2(υ))|
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+ bσ

∫ υ

υm

|hm(Θ, φ1(Θ)) − hm(Θ, φ2(Θ))|dΘ

+ bµ

∫ sm

0
|g(Θ, φ1(Θ)) − g(Θ, φ2(Θ))|dΘ,

≤ aσLhm∥φ1 − φ2∥PC1 + bσT Lhm∥φ1 − φ2∥PC1 + bµT Lg∥φ1 − φ2∥PC1,

≤ ((aσ + bσT )Lhm + bµT Lg) ∥φ1 − φ2∥PC1,

≤ ((aσ + bσT )Lhm + (aµ + bµT )Lg)) ∥φ1 − φ2∥PC1,

which implies that

∥Nφ1 − Nφ2∥PC1 ≤ χ2∥φ1 − φ2∥PC1, where χ2 = (aσ + bσT )Lhm + (aµ + bµT )Lg.

From the above cases, we obtain

∥Nφ1 − Nφ2∥PC1 ≤ χ∥φ1 − φ2∥PC1, where χ = max{χ1, χ2}.

In conclusion, given the condition (2.5), we conclude that N is a contraction mapping.
Consequently, N has a fixed point, implying that problem (2.1) has a unique solution.

Now, we will demonstrate the existence of at least one solution for problem (2.1) by applying
the Darbo’s FPT.

Theorem 2.2. Suppose that hypotheses (H1) − (H4) and (A1) are fulfilled. If the inequality

γ = max
{(

(Aλ
µ +Bλ

µT )Φ∗ + λBλ
µT
)
, ((aσ + bσT )H∗ + bµT Φ∗)

}
< 1 (2.7)

holds, then the problem (2.1) has at least one solution defined on θ.

Proof. Let’s consider the operator N : PC1 → PC1 as defined by equation (2.6). Now, let
R > 0 with the condition

R ≥ max
{

|Cµ,λ
m | + (Aλ

µ +Bλ
µT )ϱ∗ψ(R)

1 − λBλ
µT

, |Hµ
m | + (aσ + bσT )H∗ + bµT ϱ∗ψ(R)

}
,

we define
BR := B(0,R) = {υ ∈ PC1 : ∥υ∥PC1 ≤ R}.

Obviously, BR is nonempty, convex, bounded and closed, as evident from the context.
Proceeding, to demonstrate that N fulfills the conditions of Theorem 1.4, the proof will be
presented in 4 steps.
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Step 1. For N(BR) ⊆ BR, for each υ ∈ θm, m = 0, 1, . . . , n, and φ ∈ PC1, we get

|(Nφ)(υ)| = |Cµ,λ
m + Aλ

µg(υ, φ(υ)) − λBλ
µ

∫ υ

sm

φ(Θ)dΘ +Bλ
µ

∫ υ

sm

g(Θ, φ(Θ))dΘ|,

≤ |Cµ,λ
m | + Aλ

µ|g(υ, φ(υ))| + λBλ
µ

∫ υ

sm

|φ(Θ)|dΘ +Bλ
µ

∫ υ

sm

|g(Θ, φ(Θ))|dΘ,

≤ |Cµ,λ
m | + Aλ

µϱ(υ)ψ(∥φ∥) + λBλ
µT ∥φ∥PC1 +Bλ

µT ϱ(υ)ψ(∥φ∥),

≤ |Cµ,λ
i | + Aλ

µϱ
∗ψ(∥φ∥) + λBλ

µT ∥φ∥PC1 +Bλ
µ T ϱ∗ψ(∥φ∥),

≤ |Cµ,λ
i | + Aλ

µϱ
∗ψ(R) + λBλ

µT (R) +Bλ
µ T ϱ∗ψ(R),

≤ |Cµ,λ
m | + (Aλ

µ +Bλ
µT )ϱ∗ψ(R) + λBλ

µT R,

≤ R.

Moreover, for each υ ∈ Jm, m = 0, 1, . . . , n, and φ ∈ PC1, we obtain

|(Nφ)(υ)| = |Hµ
m + aσhm(υ, φ(υ)) + bσ

∫ υ

υm

hm(Θ, φ(Θ))dΘ − bµ

∫ sm

0
g(Θ, φ(Θ))dΘ|,

≤ |Hµ
m | + aσ|hm(υ, φ(υ))| + bσ

∫ υ

υm

|hm(Θ, φ(Θ))|dΘ + bµ

∫ sm

0
|g(Θ, φ(Θ))|dΘ,

≤ |Hµ
m | + aσHm(υ) + bσ

∫ υ

υm

Hm(Θ)dΘ + bµ

∫ sm

0
ϱ(Θ)ψ(∥φ∥)dΘ,

≤ |Hµ
m | + aσH∗ + bσT H∗ + +bµT ϱ∗ψ(R),

≤ |Hµ
m | + (aσ + bσT )H∗ + bµT ϱ∗ψ(R),

≤ R.

Thus, for υ ∈ θ and φ ∈ PC1, we get

∥N(φ)∥PC1 ≤ R.

This demonstrates that N transforms the ball BR into itself.

Step 2. Consider a sequence {φk}k∈N φk → φ ∈ BR and N : BR → BR, for each υ ∈ θm, we
derive

|(Nφk)(υ) − (Nφ)(υ)| = |Cµ,λ
m + Aλ

µg(υ, φk(υ)) − λBλ
µ

∫ υ

sm

φk(Θ)dΘ +Bλ
µ

∫ υ

sm

g(Θ, φk(Θ))dΘ

− Cµ,λ
m − Aλ

µg(υ, φ(υ)) + λBλ
µ

∫ υ

sm

φ(Θ)dΘ −Bλ
µ

∫ υ

sm

g(Θ, φ(Θ))dΘ|,

≤ Aλ
µ|g(υ, φk(υ)) − g(υ, φ(υ))| + λBλ

µ

∫ υ

sm

|φk(Θ) − φ(Θ)|dΘ

+Bλ
µ

∫ υ

sm

|g(Θ, φk(Θ)) − g(Θ, φ(Θ))|dΘ.
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Now, for each υ ∈ Jm,

|(Nφk)(υ) − (Nφ)(υ)| = |Hµ
m + aσhm(υ, φk(υ)) + bσ

∫ υ

υm

hm(Θ, φk(Θ))dΘ − bµ

∫ sm

0
g(Θ, φk(Θ))dΘ

− Hµ
m − aσhm(υ, φ(υ)) − bσ

∫ υ

υm

hm(Θ, φ(Θ))dΘ + bµ

∫ sm

0
g(Θ, φ(Θ))dΘ|,

≤ aσ|hm(υ, φk(υ)) − hm(υ, φ(υ))|

+ bσ

∫ υ

υm

|hm(Θ, φk(Θ)) − hm(Θ, φ(Θ))|dΘ

+ bµ

∫ sm

0
|g(Θ, φk(Θ)) − g(Θ, φ(Θ))|dΘ.

Since φk → φ as n → ∞, g and hm are continuous, hence Utilizing the Lebesgue
dominated convergence theorem, one can obtain

∥(Nφk)(υ) − N(φ)(υ)∥PC1 → 0 as n → ∞.

Therefore, N is a continuous operator.

Step 3. Proving that N (BR) is bounded and equicontinuous.
Due to Step 1, N (BR) is bounded, since N (BR) ⊂ BR.
Now, let ν1, ν2 ∈ θm, m = 0, · · · , n : ν1 < ν2 and φ ∈ BR. Then

|(Nφ)(ν2) − (Nφ)(ν1)| = |Cµ,λ
m + Aλ

µg(ν2, φ(ν2)) − λBλ
µ

∫ ν2

sm

φ(Θ)dΘ +Bλ
µ

∫ ν2

sm

g(Θ, φ(Θ))dΘ

− Cµ,λ
m − Aλ

µg(ν1, φ(ν1)) + λBλ
µ

∫ ν1

sm

φ(Θ)dΘ −Bλ
µ

∫ ν1

sm

g(Θ, φ(Θ))dΘ|,

≤ Aλ
µ|g(ν2, φ(ν2)) − g(ν1, φ(ν1))| + λBλ

µ

∫ ν2

ν1
|φ(Θ)|dΘ

+Bλ
µ

∫ ν2

ν1
|g(Θ, φ(Θ))|dΘ,

≤ Aλ
µ|g(ν2, φ(ν2)) − g(ν1, φ(ν1))| + λBλ

µR(ν2 − ν1)

+Bλ
µϱ

∗ψ(R)(ν2 − ν1).

Since g is continuous, the expression on the right side of the preceding inequality
approaches zero as ν1 → ν2.
Also, for each υ ∈ Jm, m = 0, 1, . . . , n, ν1, ν2 ∈ Jm, m = 0, 1, . . . , n with ν1 < ν2 and
φ ∈ BR, we have

|(Nφ)(ν2) − (Nφ)(ν1)| ≤ aσ|hm(ν2, φ(ν2)) − hm(ν1, φ(ν1))| + bσ

∫ ν2

ν1
|hm(Θ, φ(Θ))|dΘ,

≤ aσ|hm(ν2, φ(ν2)) − hm(ν1, φ(ν1))| + bσH∗(ν2 − ν1).
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Due to the continuity of hm, the right side of the above inequality approaches zero as
ν1 → ν2. As a result, N(BR) is equicontinuous and bounded.

Step 4. Proving that N is a γ-contraction.
From Step 2 and Step 3, we have N : BR → BR is bounded, continuous and N(BR) is
equicontinuous. We must now demonstrate that the operator N is a γ-contraction.
Let D ⊂ BR and υ ∈ θm, m = 0, 1, . . . , n. Then

η(N(D)(υ) ≤ Aλ
µη(g(υ, φ(υ)), φ ∈ D) + λBλ

µη
(∫ υ

sm

φ(Θ)dΘ, φ ∈ D
)

+Bλ
µη
(∫ υ

sm

g (Θ, φ(Θ)) dΘ, φ ∈ D
)
,

≤ Aλ
µΦ(υ)η(D) + λBλ

µ

∫ υ

sm

η(D(Θ))dΘ +Bλ
µ

∫ υ

sm

η(g (Θ,D))dΘ,

≤
(
(Aλ

µ +Bλ
µT )Φ∗ + λBλ

µT
)
η(D),

≤ γ1η(D).

For each υ ∈ Jm, m = 0, 1, . . . , n, we get

η(N(D)(υ) ≤ η (aσhm(υ, φ(υ)), φ ∈ D) + η
(
bσ

∫ υ

xm

hm(Θ, φ(Θ))dΘ, φ ∈ D
)

+ η
(
bµ

∫ sm

0
g(Θ, φ(Θ))dΘ, φ ∈ D

)
,

≤ aση(hm(υ,D)) + bσ

∫ υ

xm

η(hm(Θ,D)dΘ + bµ

∫ sm

0
η(g(Θ,D))dΘ,

≤ ((aσ + bσT )H∗ + bµT Φ∗) η(D),

≤ γ2η(D).

Therefore, for each υ ∈ θ, we have

η(N(D)(υ) ≤ γ η(D), such as γ = max{γ1, γ2}.

In accordance with condition (2.7), the operator N is a γ-contraction. Following the
application of Theorem 1.4, we deduce that N admits a fixed point, which is a solution to
the problem (2.1).
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2.3 Hyers-Ulam stability results

Definition 2.1 ([82]). It is stated that the equation (2.1) is stable in the HU sense if there
exists cg,µ,σ,hm ∈ R+

∗ where for any ε > 0 and for every solution z ∈ PC1(θ,R) of the inequal-
ities ∣∣∣CFDµ

sm,υz(υ) + λz(υ) − g(υ, z(υ))
∣∣∣ ≤ ε, υ ∈ (sm, υm+1] , m = 0, 1, . . . , n, (2.8)

and
∣∣∣z(υ) − p− CFIσ

υm,υhm(υ, z(υ)) + CFIµ
0,sm

g (sm, z (sm))
∣∣∣ ≤ ε, υ ∈ (υm, sm] , m = 1, 2, . . . n, (2.9)

there exists a solution φ ∈ PC1(θ,R) of (2.1) with

|z(υ) − φ(υ)| ≤ cg,µ,σ,hmε, υ ∈ θ.

Theorem 2.3. Suppose hypotheses (A1)−(A3) and condition (2.5) are fulfilled. In that case,
problem (2.1) is stable in the Hyers-Ulam sense.

Proof. Consider ε > 0 and z ∈ PC1(θ,R) be a function satisfying the inequalities (2.8) and
(2.9). Let φ represent the unique solution to the subsequent problem

CFDµ
sm,υφ(υ) = −λφ(υ) + g(υ, φ(υ)), υ ∈ (sm, υm+1] , m = 0, 1, . . . , n, µ ∈]0, 1[,

φ(υ) = p+ CFIσ
υm,υhm(υ, φ(υ)) − CFIµ

0,sm
g (sm, φ (sm)) , υ ∈ (υm, sm] , m = 1, 2, . . . , n,

φ(0) = φ(0).
(2.10)

Then, it follows that

φ(υ) =


Cµ,λ

m + Aλ
µg(υ, φ(υ)) − λBλ

µ

∫ υ

sm

φ(Θ)dΘ +Bλ
µ

∫ υ

sm

g(Θ, φ(Θ))dΘ, υ ∈ θm, m = 0, 1, . . . , n,

p+ CFIσ
υm,υhm(υ, φ(υ)) − CFIµ

0,sm
g (sm, φ (sm)) , υ ∈ Jm, m = 1, 2, . . . , n.

By integrating the inequality (2.8), we can derive

|z(υ) − Cµ,λ
m − Aλ

µg(υ, z(υ)) + λBλ
µ

∫ υ

sm

z(Θ)dΘ −Bλ
µ

∫ υ

sm

g(Θ, z(Θ))dΘ| ≤ (aµ + bµT )ε.

For υ ∈ θm, m = 0, 1, . . . , n, we obtain

|z(υ) − φ(υ)| =
∣∣∣∣∣z(υ) − Cµ,λ

m − Aλ
µg(υ, φ(υ)) + λBλ

µ

∫ υ

sm

φ(Θ)dΘ −Bλ
µ

∫ υ

sm

g(Θ, φ(Θ))dΘ
∣∣∣∣∣,

≤
∣∣∣∣z(υ) − Cµ,λ

m − Aλ
µg(υ, z(υ)) + λBλ

µ

∫ υ

sm

z(Θ)dΘ −Bλ
µ

∫ υ

sm

g(Θ, z(Θ))dΘ
∣∣∣∣

+
∣∣∣Aλ

µg(υ, z(υ)) − Aλ
µg(υ, φ(υ))

∣∣∣
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+
∣∣∣∣−λBλ

µ

∫ υ

sm

z(Θ)dΘ + λBλ
µ

∫ υ

sm

φ(Θ)dΘ
∣∣∣∣

+
∣∣∣∣Bλ

µ

∫ υ

sm

g(Θ, z(Θ))dΘ −Bλ
µ

∫ υ

sm

g(Θ, φ(Θ))dΘ
∣∣∣∣ ,

≤ (aµ + bµT )ε+ Aλ
µ|g(υ, z(υ)) − g(υ, φ(υ))| + λBλ

µ

∫ υ

sm

|z(Θ) − φ(Θ)|dΘ

+Bλ
µ

∫ υ

sm

|g(Θ, z(Θ)) − g(Θ, φ(Θ))|dΘ,

≤ (aµ + bµT )ε+ ((Aλ
µ +Bλ

µT )Lg + λBλ
µT )∥z − φ∥PC1,

this implying that

∥z − φ∥PC1 ≤
{

(aµ + bµT )
1 − ((Aλ

µ +Bλ
µT )Lg + λBλ

µT )

}
ε.

Thus,

|z(υ) − φ(υ)| ≤ cg,µ,σ,hmε, where cg,µ,σ,hm = (aµ + bµT )
1 − ((Aλ

µ +Bλ
µT )Lg + λBλ

µT ) . (2.11)

Now, for υ ∈ Jm, m = 1, 2, . . . , n, we get

|z(υ) − φ(υ)| =
∣∣∣z(υ) − p− CFIσ

υm,υhm(υ, φ(υ)) + CFIµ
0,sm

g (sm, φ (sm))
∣∣∣ ,

≤
∣∣∣z(υ) − p− CFIσ

υm,υhm(υ, z(υ)) + CFIµ
0,sm

g (sm, z (sm))
∣∣∣

+
∣∣∣CFIσ

υm,υhm(υ, z(υ)) − CFIσ
υm,υhm(υ, φ(υ))

∣∣∣
+
∣∣∣CFIµ

0,sm
g (sm, z (sm)) − CFIµ

0,sm
g (sm, φ (sm))

∣∣∣ ,
≤ ε+ aσ|hm(υ, z(υ)) − hm(υ, φ(υ))| + bσ

∫ υ

υm

|hm(Θ, z(Θ)) − hm(Θ, φ(Θ))|

+ aµ|g(sm, z(sm)) − g(sm, φ(sm))| + bµ

∫ υ

υm

|g(Θ, z(Θ)) − g(Θ, φ(Θ))|dΘ,

≤ ε+ ((aσ + bσT )Lhm + (aµ + bµT )Lg)) ∥z − φ∥PC1,

this implies that

∥z − φ∥PC1 ≤
{

1
1 − ((aσ + bσT )Lhm + (aµ + bµT )Lg))

}
ε.

Thus,

|z(υ) − φ(υ)| ≤ cg,µ,σ,hmε, where cg,µ,σ,hm =
{

1
1 − ((aσ + bσT )Lhm + (aµ + bµT )Lg))

}
. (2.12)

Therefore, the relations (2.11) and (2.12) demonstrate that the problem (2.1) is stable in
the Hyers-Ulam sense with respect to ε.
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2.4 Examples

This section showcases 2 examples to illustrate all obtained outcomes. In the initial
example shows that problem (2.13) admits at least one solution defined on θ, and the second
one illustrate that the (2.14) is HU stable.

Example 2.1. Let consider the subsequent problem

For υ ∈ θm, m = 0, 1, 2, µ ∈]0, 1[, λ > 0,
CFDµ

sm,υφ(υ) = −λφ(υ) + g(υ, φ(υ)),

For υ ∈ Jm, m = 1, 2, σ ∈]0, 1[, σ ̸= µ,

φ(υ) = p+ CFIσ
xm,υhm(υ, φ(υ)) − CFIµ

0,sm
g (sm, φ (sm)) ,

φ(0) = φ0.

(2.13)

We pose θ = [0, 1], θ0 = [0, 1
5 ], J1 = (1

5 ,
2
5 ], θ1 = (2

5 ,
3
5 ], J2 = (3

5 ,
4
5 ], θ2 = (4

5 , 1],

g(υ, φ(υ)) = 1
(Aλ

µ +Bλ
µT )eυ+6

(
1 + φ(υ)
2 + |φ(υ)|

)
,

where υ ∈ θ0 ∪ θ1 ∪ θ2 and

hm(υ, φ(υ)) = 1 + φ(υ)
3eυ+6(aσ + bσT ) , m = 1, 2.

Next, we establish that the problem (2.1) admits at least one solution on θ. To achieve
this, we will utilize Theorem 2.2. Specifically, we demonstrate the satisfaction of hypotheses
(H1) − (H4) and (A1), and furthermore confirm that condition (2.7) is satisfied, i.e.,

γ = max
{(

(Aλ
µ +Bλ

µT )Φ∗ + λBλ
µT
)
, ((aσ + bσT )H∗ + bµT Φ∗)

}
< 1.

It is evident that the functions hm and g are continuous. So, for each υ ∈ θm, m = 0, 1, 2,
we obtain

|g(υ, φ(υ))| ≤ e−(υ+6)

(Aλ
µ +Bλ

µT )(1 + |φ(υ)|),with ϱ(υ) = e−(υ+6)

(Aλ
µ +Bλ

µT ) ,

and for each υ ∈ Jm, m = 1, 2, we get

|hm(υ, φ(υ))| ≤ e−(υ+6)

3(aσ + bσT )(1 + |φ(υ)|),with Hm(υ) = e−(υ+6)

3(aσ + bσT ) .
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Thus, the hypotheses (A1), (H1) and (H2) are fulfilled, given that

Φ∗ = e−6

Aλ
µ +Bλ

µT
, and H∗ = e−6

3(aσ + bσT ) .

Now, we will examine the condition (2.7). Certainly, when λ = (1 − e−6)M(µ)(2 − µ)
(4 − 2e−6)) .

We get

γ = max{γ1, γ2},
= max

{(
(Aλ

µ +Bλ
µT )µ∗ + λBλ

µT
)
, ((aσ + bσT )H∗ + bµTµ

∗)
}
,

= max
{

(e−6 + λBλ
µ), e−6

(
1
3 + bµ

Aλ
µ +Bλ

µ

)}
,

= max
{(

e−6 + 2µλ
2(1 − µ)λ+M(µ)(2 − µ)

)
,

(
e−6

3 + e−6µ

(
1 + 2(1 − µ)λ

(2 − µ)M(µ)

)}
.

Therefore, it is evident that γ is contingent on µ, leading to variations in its value as µ
ranges from 0 to 1.

Table 2.1 systematically outlines the γ1 and γ2 values for µ ∈ (0, 1) and M(µ) = µ2−µ+1.
This table gives a comprehensive preview of the changes in γ1 and γ2 as µ undergoes vari-
ations. Remarkably, throughout all instances presented in this table, a consistent pattern
emerges where γ1 consistently exceeds γ2, and γ1 remains beneath 1. Table 2.2 comple-
ments our investigation, examining the progression of γ1 and γ2 while maintaining a constant
M(µ) = 1, as µ varies from 0 to 1. As a result,

γ = γ1 = e−6 + 2µλ
2λ(1 − µ) +M(µ(2 − µ)) < 1.

Table 2.1: γ-values for various µ within the interval ]0, 1[ and M(µ) = µ2 − µ+ 1.

µ λ M(µ) γ1 γ2 γ

0.1 4.317 0.910 0.093 0.002 γ1

0.2 1.887 0.840 0.169 0.002 γ1

0.3 1.117 0.790 0.233 0.002 γ1

0.4 0.759 0.760 0.288 0.002 γ1

0.5 0.561 0.750 0.335 0.002 γ1

0.6 0.442 0.760 0.377 0.002 γ1

0.7 0.366 0.790 0.413 0.002 γ1

0.8 0.314 0.840 0.446 0.003 γ1

0.9 0.277 0.910 0.475 0.003 γ1
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Table 2.2: γ-values for M(µ) = 1, µ ∈]0, 1[.

µ λ γ1 γ2 γ

0.1 4.744 0.093 0.002 γ1

0.2 2.247 0.169 0.002 γ1

0.3 1.414 0.233 0.002 γ1

0.4 0.998 0.288 0.002 γ1

0.5 0.749 0.335 0.002 γ1

0.6 0.582 0.377 0.002 γ1

0.7 0.463 0.413 0.002 γ1

0.8 0.374 0.446 0.003 γ1

0.9 0.305 0.475 0.003 γ1

Figure 2.1 visually depicts the fluctuations in γ1 and γ2 for µ ∈]0, 1[, considering M(µ) =
µ2 − µ + 1. The graph offers a enhanced comprehension regarding the manner in which
γ1 and γ2 change with varying µ. As depicted in Figure 2.1, γ1 persistently exceeds γ2, γ1

varies between 0.093 and 0.475, whereas γ2 stays notably lower, not surpassing 3 × 10−3.
The visual evidence provided strongly reinforces our assertion that condition (2.7) is hold,
thereby confirming the existence of at least one solution to problem (2.13) over θ.
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Figure 2.1: γ1 and γ2 variations for M(µ) = µ2 − µ+ 1 with µ ∈]0, 1[.

Remark 2.1. It is evident from both Table 2.1 and Table 2.2 that identical values of γ were
obtained when using either M(µ) = µ2 − µ+ 1 or M(µ) = 1.
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Example 2.2. Let’s consider the following problem

For υ ∈ θm, m = 0, 1, 2, µ ∈]0, 1[, λ > 0,
CFDµ

sm,υφ(υ) = −λφ(υ) + g(υ, φ(υ)),

For υ ∈ Jm, m = 1, 2, σ ∈]0, 1[, σ ̸= µ,

φ(υ) = p+ CFIσ
υm,υhm(υ, φ(υ)) − CFIµ

0,sm
g (sm, φ (sm)) ,

φ(0) = φ0.

(2.14)

And 

For υ ∈ θm, m = 0, 1, 2, µ ∈]0, 1[, λ > 0,∣∣∣CFDµ
sm,υz(υ) + λz(υ) − g(υ, z(υ))

∣∣∣ ≤ ε,

For υ ∈ Jm, m = 1, 2, σ ∈]0, 1[, σ ̸= µ,∣∣∣z(υ) − p− CFIσ
υm,υhm(υ, z(υ)) + CFIµ

0,sm
g (sm, z (sm))

∣∣∣ ≤ ε.

(2.15)

Consider θ = [0, 2], θ0 = [0, 2
5 ], J1 = (2

5 ,
4
5 ], θ1 = (4

5 ,
6
5 ], J2 = (6

5 ,
8
5 ], θ2 = (8

5 , 2],

g(υ, φ(υ)) = υ2

10 + 1
(Aλ

µ +Bλ
µT )

(
sin |φ(υ)|
60 + υ2

)
,

with υ ∈ θ0 ∪ θ1 ∪ θ2 and

hm(υ, φ(υ)) = 1
(aσ + bσT )

e−υ

(1 + eυ)
|φ(υ)|

(1 + |φ(υ)|) , m = 1, 2.

This example explores the stability in the HU sence, hence, we will employ the Theorem
2.3. Specifically, we will verify that hypotheses (A1), (A2), and (A3) holds. Additionally, we
will demonstrate that condition (2.5) is satisfied, i.e.,

χ = max
{(

(Aλ
µ +Bλ

µT )Lg + λBλ
µT
)
, ((aσ + bσT )Lhm + (aµ + bµT )Lg))

}
< 1.

It’s evident that the functions hm and g are continuous. So for any υ ∈ θ and φ1, φ2 ∈ R

|g(υ, φ1) − g(υ, φ2))| =
∣∣∣∣∣ 1
(Aλ

µ +Bλ
µT )

sin |φ1| − sin |φ2|
60 + x2

∣∣∣∣∣,
= 2

(Aλ
µ +Bλ

µT )(60 + x2)

∣∣∣∣∣sin
(

|φ1| − |φ2|
2

)
cos

(
|φ1| − |φ2|

2

)∣∣∣∣∣ ,
≤ 1

60(Aλ
µ +Bλ

µT ) ||φ1| − |φ2|| ,

≤ Lg|φ1 − φ2|, where Lg = 1
60(Aλ

µ +Bλ
µT ) .
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For each υ ∈ Jm, m = 1, 2, and all φ1, φ2 ∈ R.

|hm(υ, φ1) − hm(υ, φ2))| ≤ e−υ|φ1 − φ2|
(aσ + bσT )(1 + eυ)(1 + |φ1|)(1 + |φ2|)

,

≤ e−υ

(aσ + bσT )(1 + eυ) |φ1 − φ2|,

≤ Lhm |φ1 − φ2|, where Lhm = 1
2(aσ + bσT ) .

Thus, the hypotheses (A1) − (A3) are satisfied.
Next, we will verify the condition (2.5). For M(µ) = µ2 −µ+1, T = 2 and λ = (2−µ)M(µ)

15µ
,

we have

χ = max {χ1, χ2} ,

= max
{(

(Aλ
µ +Bλ

µT )Lg + λBλ
µT
)
, ((aσ + bσT )Lhm + (aµ + bµT )Lg)

}
,

= max
{(

1
60 + 4λµ

M(µ)(2 − µ) + 2λ(1 − µ)

)
,

(
1
2 + 2(1 − µ)λ+M(µ)(2 − µ)

M(µ)(120 − 60µ)

)}
.

It is worth noting that χ is dependent on µ, leading to variations in its value as µ ranges
from 0 to 1.

Table 2.3 illustrates the variations of χ1 and χ2 for select values of µ ∈]0, 1[, let M(µ) =
µ2 −µ+ 1 and λ = (2−µ)M(µ)

15µ
. This table presents a concise summary of how the values of χ1

and χ2 change with varying µ. Remarkably, in all instances depicted in this table, a consistent
pattern emerges where χ1 consistently exceeds χ2, and χ1 remains below 1. Consequently,

χ = χ2 = 1
2 + (2 − µ)M(µ) + 2λ(1 − µ)

60(2 − µ)M(µ) < 1.

Table 2.3: χ-values with distinct values of µ ∈]0, 1[.

µ λ M(µ) χ1 χ2 χ

0.1 1.272 0.910 0.143 0.536 χ2

0.2 0.610 0.840 0.212 0.525 χ2

0.3 0.391 0.790 0.265 0.521 χ2

0.4 0.282 0.760 0.307 0.520 χ2

0.5 0.216 0.750 0.339 0.518 χ2

0.6 0.171 0.760 0.359 0.518 χ2

0.7 0.137 0.790 0.364 0.517 χ2

0.8 0.110 0.840 0.353 0.517 χ2

0.9 0.087 0.910 0.325 0.516 χ2
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Figure 2.2 depicts the variations in χ1 and χ2 for µ ∈]0, 1[, considering M(µ) = µ2 −µ+1 and
λ = (2−µ)M(µ)

15µ
. The graph gives a enhanced comprehension regarding the manner in which

χ1 and χ2 vary in response to changes in µ. As depicted in the Figure 2.2, χ2 persistently
exceeds χ1, with χ2 not surpassing 0.516 and χ1 not overtaking 0.325, both of which are below
1. Therefore, condition (2.5) holds. As per Theorem 2.1, the problem (2.14) has a unique
solution. Based on Theorem 2.3, the problem (2.14) is stable in the HU sense. Next, we
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Figure 2.2: χ1 and χ2 -variations with distinct values of µ ∈]0, 1[.

compute the values of the constant cg,µ,σ,hm . Let z ∈ PC1(θ,R) be a solution of the inequality
(2.15), and φ the solution of the problem (2.14).
Let υ ∈ θm, m = 0, 1, 2, we obtain

|z(υ) − φ(υ)| ≤ cg,µ,σ,hmε,

≤ (aµ + bµT )
1 − ((Aλ

µ +Bλ
µT )Lg + λBλ

µT )ε,

≤ aµ + bµT
59
60 − λBλ

µT
ε.

Considering υ ∈ Jm, m = 1, 2, we get

|z(υ) − φ(υ)| ≤ cg,µ,σ,hmε,

≤ 1
1 − ((aσ + bσT )Lhm + (aµ + bµT )Lg))ε ≤ 1

1
2 − aµ+bµT

60(Aλ
µ+Bλ

µT )

ε.
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Tables 2.4 and 2.5 detail the variation of the parameter cg,µ,σ,hm for distinct values of
µ ∈]0, 1[. These tables provide an exhaustive view on the variation of these parameters under
diverse conditions. Figure 2.3 supplements the tabular information by graphically illustrating
the changes in cg,µ,σ,hm across varying µ values within the similar interval. Notably, both the
tables and the figure highlight that all cg,µ,σ,hm>0, Thus, there exists a positive constant
cg,µ,σ,hm > 0, such that for any ε and for every solution z ∈ PC1(θ,R) of the inequalities
(2.15), there exists a solution φ ∈ PC1(θ,R) of problem (2.14) satisfying

|z(υ) − φ(υ)| ≤ cg,µ,σ,hmε, υ ∈ θ,

demonstrating the HU stability of problem (2.14).

Table 2.4: Values of cg,µ,σ,hm for distinct values of µ ∈]0, 1[, υ ∈ θm, m = 0, 1, 2.

µ 0.1 0.2 0.3 0,4 0.5 0.6 0.7 0.8 0.9

cg,µ,σ,hm 0.0102 0.0375 0.0832 0.1511 0.2448 0.3684 0.5275 0.7334 1.0118

Table 2.5: Values of cg,µ,σ,hm for distinct values of µ ∈]0, 1[, υ ∈ Jm, m = 1, 2.

µ 0.1 0.2 0.3 0,4 0.5 0.6 0.7 0.8 0.9

cg,µ,σ,hm 2.1510 2.0949 2.0742 2.0631 2.0566 2.0532 2.0525 2.0543 2.0592

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

σ

0

0.5

1

1.5

2

2.5

c
g,µ, σ,h

m

 (Table 2.4)

c
g,µ, σ,h

m

 (Table 2.5)

Figure 2.3: Variations of cg,µ,σ,hm from Table 2.4 and Table 2.5 with distinct values of µ ∈]0, 1[.
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2.5 Conclusion

In this Chapter, we delved into a formerly unexplored category of FDEs that encompass
non-instantaneous impulses (NIIs) under CFfd. Utilizing the Banach FPT and Darbo’s FPT
combined with the KMN, we rigorously established the existence and uniqueness results.
Additionally, our exploration offered significant insights into the stability of solutions in the
HU sense, emphasizing the the dependability of systems controlled by these FDEs. Aside
from our theoretical advancements, we showcased two illustrative examples that demonstrate
the diversity and the importance of our findings. The examples provided did not focus solely
on a particular value of µ instead, they encompassed a broad spectrum from 0.1 to 0.9. This
practical examples highlights how widely applicable and adaptable our findings are. Moving
ahead, our subsequent research will be devoted to find a numerical solution for these FDEs
with NIIs. This marks a promising avenue for future research, permitting for an in-depth
exploration of the tangible effects of our findings and their practical implications.
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Chapter 3
Novel Existence Results for a Class of
Fractional Integro-Differential Equations with
Non-Instantaneous Impulses

3.1 Introduction

The purpose of this chapter is to undertake a exhaustive study into the existence of
solutions concerning fractional integro-differential equations (FIDEs) characterized by non-
instantaneous impulses under the Caputo fractional derivative. This investigation relies sig-
nificantly on the application of two fundamental fixed point theorems credited to Krasnosel-
skii and Darbo associated with the Kuratowski’s measure of noncompactness (KMNC). In
order to substantiate and concretely demonstrate the practical implications of our theoreti-
cal findings, we offer the elucidation of two illustrative examples. Through these illustrative
instances, we aim not only to highlight the validity and significance of our derived results
but also to offer a practical lens through which to comprehend the behavior of solutions in
both theoretical and applied contexts.

Inspired by the paper [51], we investigate the existence of at least one solution for the
following non-instantaneous impulsive FIDEs:



CDµφ(υ) = U(υ, φ(υ)) +
∫ υ

0
Ψ(υ, r, φ(r))dr, υ ∈ (δm, υm+1], m = 0, . . . n,

φ(υ) = 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm(r, φ(r−
m ))dr, υ ∈ (υm, δm], m = 1, . . . n,

α1φ(0) + α2φ(υ) = η(0).

(3.1)
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Where CDµ is Caputo’s differential operator of order µ ∈ (0, 1], θ = [0, T ], T > 0, α1, α2 ∈ R.
θ0 = [0, υ1], θm = (δm, υm+1]; m = 0, . . . , n, Jm = (υm, δm]; m = 1, . . . n, U : θ × R → R,Ψ :
θ × θ × R → R, Gm : Jm × R → R are continuous functions with U(υ, φ(υ))υ=0 = 0. We
consider the split of the interval θ with respect to υm, δm such that 0 < υm < δm < T for
m = 1, 2, 3, . . . , n and assume υn+1 = T .

3.2 Main results

In this section, we discuss several results related to the existence of solutions for the
problem (3.1). The initial outcome relies on the Krasnoselskii FPT, while the subsequent
result is grounded in the Darbo FPT.
Let’s consider the Banach space

PC =
{
φ : θ → R : φ|Jm

; m = 1, . . . ,m, φ|θm
; m = 0, . . . , n are continuous and there exist

φ (δ−
m ) , φ (δ+

m ) , φ (υ−
m ) and φ (υ+

m ) with φ(υ−
m ) = φ(υm)

}
,

equipped with
∥φ∥PC = sup

υ∈θ
|φ(υ)|.

Lemma 3.1. [51] Let µ ∈ (0, 1] and H(υ, φ(υ)) ∈ C(θ,R). Then φ ∈ PC(θ,R) is a solution
of 

CDµφ(υ) = H(υ, φ(υ)), υ ∈ θm, m = 0, . . . n,

φ(υ) = 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm(r, φ(r−
m ))dr, υ ∈ Jm, m = 1, . . . n,

α1φ(0) + α2φ(υ) = η(0),

(3.2)

if and only if φ verifies the following integral equation

φ(υ) =



C − b

Γ(µ)

[∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr +

∫ T

υm

(T − r)µ−1H(r, φ(r))dr
]

+ 1
Γ(µ)

∫ υ

0
(υ − r)µ−1(H(r, φ(r))dr, if υ ∈ θ0,

1
Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm(r, φ(r−
m ))dr, if υ ∈ Jm, m = 1, . . . n,

1
Γ(µ)

∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr + 1

Γ(µ)

∫ υ

υm

(υ − r)µ−1H(r, φ(r))dr, if, υ ∈ θm, m = 0, . . . n.

(3.3)
with C = η(0)

α1
and b = α2

α1
.

Proof. We split the proof into the subsequent cases.
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Case 1: For υ ∈ θ0 = [0, υ1], upon applying the integral operator Iµ to equation (3.2), we
obtain

φ(υ) = φ(0) + 1
Γ(µ)

∫ υ

0
(υ − s)µ−1H(r, φ(r))dr. (3.4)

Case 2: For υ ∈ θm = (δm, υm+1] , m = 0, . . . n, applying the integral operator Iµ on (3.2), we
obtain

φ(υ) = φ (δm) + 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1H(r, φ(r))dr. (3.5)

Using the impulsive relation:

φ(υ) = 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm

(
r, φ

(
r−

m

))
dr,

we get
φ (δm) = 1

Γ(µ)

∫ δm

υm

(δm − r)µ−1 Gm

(
r, φ

(
r−

m

))
dr.

Thus,(3.5) implies

φ(υ) = 1
Γ(µ)

∫ δm

υm

(δm − r)µ−1 Gm

(
r, φ

(
r−

m

))
dr + 1

Γ(µ)

∫ υ

υm

(υ − r)µ−1H(r, φ(r))dr,

now, using the condition α1φ(0) + α2φ(υ) = η(0), we obtain

φ(0) = η(0)
α1

− α2

α1Γ(µ)

[∫ δm

υm

(δm − r)µ−1 Gm

(
r, φ

(
r−

m

))
dr +

∫ T

υm

(T − r)µ−1H(r, φ(r))dr
]
,

(3.6)
thus, by the help of (3.4) and (3.6), for υ ∈ θ0, we get

φ(υ) =η(0)
α1

− α2

α1Γ(µ)

[∫ δm

υm

(δm − r)µ−1 Gm

(
r, φ

(
r−

m

))
dr +

∫ T

υm

(T − r)µ−1H(r, φ(r))dr
]

+ 1
Γ(µ)

∫ υ

0
(t− r)µ−1H(r, φ(r))dr,

= C − b

Γ(µ)

[∫ δm

υm

(δm − r)µ−1 Gm

(
r, φ

(
r−

m

))
dr +

∫ T

υm

(T − r)µ−1H(r, φ(r))dr
]

+ 1
Γ(µ)

∫ υ

0
(t− r)µ−1H(r, φ(r))dr.

Case 3: For υ ∈ Jm = (υm, δm] , m = 1, . . . n, we obtain

φ(υ) = 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm

(
r, φ

(
r−

m

))
dr.

This concludes the demonstration.
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Corollary 3.1. By replacing H(υ, φ(υ)) in the system (3.3) by U(υ, φ(υ))+
∫ υ

0 Ψ(υ, r, φ(r))dr
we obtain the following integral equation for FIDEs (3.1):

φ(υ) =



C − b

Γ(µ)

[∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr +

∫ T

υm

(T − r)µ−1(U(r, φ(r))

+
∫ s

0
Ψ(r, e, φ(e))de)dr

]
+ 1

Γ(µ)

∫ υ

0
(υ − r)µ−1(U(r, φ(r))

+
∫ s

0
Ψ(r, e, φ(e))de)dr, if υ ∈ θ0,

1
Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm(r, φ(r−
m ))dr, if υ ∈ Jm, m = 1, . . . n,

1
Γ(µ)

∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr + 1

Γ(µ)

∫ υ

υm

(υ − r)µ−1U(r, φ(r))

+
∫ s

0
Ψ(r, e, φ(e))de)dr, if υ ∈ θm, m = 0, . . . n.

The following assumptions will be utilized subsequently.
(H1) Gm : Jm × R → R, m = 1, 2, . . . , n are continuous functions. There exist positive

constant Kg where
|Gm(υ, φ(υ)) − Gm(υ, u(υ))| ≤ Kg|υ − u|,

for any υ, u ∈ R and υ ∈ Jm; m = 1, 2, . . . , n.
(H2) The function U is continuous, there exist function p(υ) ∈ Lp (θ,R+) (p > 1

µ
) and a

nondecreasing continuous function Ω1 : (0,∞] → (0,∞], where

|U(υ, φ(υ))| ≤ p(υ)Ω1(∥υ∥), υ ∈ θ, φ ∈ R.

(H3)Ψ : θ×θ×R → R a continuous function and there exist function q(υ) ∈ Lp (θ,R+) (p >
1
µ
) and a nondecreasing continuous function Ω2 : (0,∞] → (0,∞], where

|Ψ(υ, r, φ(r))| ≤ q(r)Ω2(∥υ∥), υ, r ∈ θ, φ ∈ R.

Ultimately, we place
p∗ = sup

υ∈θ
p(υ), q∗ = sup

υ∈θ
q(υ).

The initial outcome regarding the existence of a solution to problem (3.1) is provided
through the utilization of Krasnoselskii’s FPT.

Theorem 3.1. Assume that the hypotheses (H1)-(H3)are satisfied, If the inequality

γ = max
{

bKgT
µ

Γ(µ+ 1) ,
KgT

µ

Γ(µ+ 1)

}
< 1 (3.7)

holds, hence there exists at least one solution defined on θ for the problem (3.1).
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Proof. Let transform problem (3.1) into a fixed point problem by introducing the operator
F : PC → PC with

Fφ(υ) =



C − b

Γ(µ)

[∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr +

∫ T

υm

(T − r)µ−1(U(r, φ(r))

+
∫ s

0
Ψ(r, e, φ(e))de)dr

]
+ 1

Γ(µ)

∫ υ

0
(υ − r)µ−1(U(r, φ(r))

+
∫ s

0
Ψ(r, e, φ(e))de)dr, if υ ∈ θ0,

1
Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm(r, φ(r−
m ))dr, if υ ∈ Jm, m = 1, . . . n,

1
Γ(µ)

∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr + 1

Γ(µ)

∫ υ

υm

(υ − r)µ−1U(r, φ(r))

+
∫ s

0
Ψ(r, e, φ(e))de)dr, if υ ∈ θm, m = 0, . . . n.

(3.8)

Clearly, the fixed points of the operator F are solutions of the problem (3.1).
Consider the set

Q = {υ ∈ PC(θ,R) : ∥υ∥Q={υ∈PC ≤ N }, (3.9)

with N = max
{
C Γ(µ+ 1) + T µ(bLg + (p∗Ω1(N ) + Tq∗Ω2(N ))(b + 1))

Γ(µ+ 1)

,
T µ(Lg + (p∗Ω1(N ) + Tq∗Ω2(N )))

Γ(µ+ 1)

}
.

(3.10)

For υ ∈ Q and d = sup
υ∈Jm

|Gm(υ, 0)|, υ ∈ Jm; m = 1, 2, . . . , n, we consider

|Gm(υ, φ(υ))| = |Gm(υ, φ(υ)) − Gm(υ, 0) + Gm(υ, 0)|,

≤ |Gm(υ, φ(υ)) − Gm(υ, 0)| + |Gm(υ, 0)|,

≤ Kg∥υ∥PC + d,

≤ KgN + d = L∗
g.

Let define the operators A and B on Q in the following manner

Aφ(υ) =



C − b

Γ(µ)

∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr, if υ ∈ θ0,

1
Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm(r, φ(r−
m ))dr, if υ ∈ Jm, m = 1, . . . n,

1
Γ(µ)

∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr, if υ ∈ θm, m = 0, . . . n.

(3.11)
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and

Bφ(υ) =



b

Γ(µ)

∫ T

υm

(T − r)µ−1(U(r, φ(r)) +
∫ s

0
Ψ(r, e, φ(e))de)dr

+ 1
Γ(µ)

∫ υ

0
(υ − r)µ−1(U(r, φ(r)) +

∫ s

0
Ψ(r, e, φ(e))de)dr, if υ ∈ θ0,

0, if υ ∈ Jm, m = 1, . . . n,
1

Γ(µ)

∫ υ

υm

(υ − r)µ−1U(r, φ(r)) +
∫ s

0
Ψ(r, e, φ(e))de)dr, if υ ∈ θm, m = 0, . . . n.

(3.12)

So, we can write the following operator equation

Fφ(υ) = Aφ(υ) +Bφ(υ) = φ(υ), υ ∈ PC(θ,R).

Step 1. We prove that Aφ(υ) +By(υ) ∈ Q for any φ, y ∈ Q.
In consideration of each υ ∈ θ0, we get

|Aφ(υ) +By(υ)| =
∣∣∣∣∣C − b

Γ(µ)

∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr + b

Γ(µ)

∫ T

υm

(T − r)µ−1(U(r, y(r))

+
∫ s

0
Ψ(r, e, y(e))de)dr + 1

Γ(µ)

∫ υ

0
(υ − r)µ−1(U(r, y(r)) +

∫ s

0
Ψ(r, e, y(e))de)dr

∣∣∣∣∣,
≤ C + b

[
1

Γ(µ)

∫ δm

υm

∣∣∣(δm − r)µ−1
∣∣∣|Gm(r, φ(r−

m ))|dr

+ 1
Γ(µ)

∫ T

υm

∣∣∣(T − r)µ−1
∣∣∣(|U(r, y(r))| +

∫ s

0
|Ψ(r, e, y(e))|de

)
dr

]

+ 1
Γ(µ)

∫ υ

0
(υ − r)µ−1(|U(r, y(r))| +

∫ s

0
|Ψ(r, e, y(e))|de)dr,

≤ C + b

[
L∗

g

Γ(µ)

∫ δm

υm

(δm − r)µ−1dr

+ 1
Γ(µ)

∫ T

υm

(T − r)µ−1p(r)Ω1(∥υ∥)dr + 1
Γ(µ)

∫ T

υm

(T − r)µ−1
∫ s

0
(q(e)Ω2(∥υ∥)dedr

]

+ 1
Γ(µ)

∫ υ

0
(υ − r)µ−1p(r)Ω1(∥υ∥)dr + 1

Γ(µ)

∫ υ

0
(υ − r)µ−1

∫ s

0
(q(e)Ω2(∥υ∥)dedr,

≤ C +
bL∗

gT µ

Γ(µ+ 1) + T µ(p∗Ω1(N ) + Tq∗Ω2(N ))(b + 1)
Γ(µ+ 1) ,

≤ N .
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For υ ∈ Jm, m = 1, . . . , n, we possess

|Aφ(υ) +By(υ)| =
∣∣∣∣∣ 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm(r, φ(r−
m ))dr + 0

∣∣∣∣∣,
≤

L∗
g

Γ(µ)

∫ υ

υm

(υ − r)µ−1|Gm(r, φ(r−
m ))|dr,

≤
L∗

gT
µ

Γ(µ+ 1) ,

≤ N .

Also, in consideration of every υ ∈ θm, m = 0, . . . , n, we obtain

|Aφ(υ) +By(υ)| =
∣∣∣∣∣ 1
Γ(µ)

∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr + 1

Γ(µ)

∫ υ

υm

(υ − r)µ−1U(r, y(r))

+
∫ s

0
Ψ(r, e, y(e))de)dr

∣∣∣∣∣,
≤ 1

Γ(µ)

∫ δm

υm

∣∣∣(δm − r)µ−1
∣∣∣|Gm(r, φ(r−

m ))|dr

+ 1
Γ(µ)

∫ υ

υm

∣∣∣(υ − r)µ−1
∣∣∣(|U(r, y(r))| +

∫ s

0
|Ψ(r, e, y(e))|de

)
dr,

≤
L∗

g

Γ(µ)

∫ δm

υm

(δm − r)µ−1dr + 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1p(r)Ω1(∥υ∥)dr

+ 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1
∫ s

0
(q(e)Ω2(∥υ∥))dedr,

≤
L∗

gT
µ

Γ(µ+ 1) + T µ(p∗Ω1(N ) + Tq∗Ω2(N ))
Γ(µ+ 1) ,

≤ N .

Hence, for υ ∈ θ, we get
∥Aφ+By∥PC ≤ N ,

thus Aφ+By ∈ Q.
Step 2. A is a contraction.
Given φ, x ∈ Q, when υ ∈ θ0, we achieve

|Aφ(υ) − Ax(υ)| =
∣∣∣∣∣C − b

Γ(µ)

∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr

−
(
C − b

Γ(µ)

∫ δm

υm

(δm − r)µ−1Gm(r, x(r−
m ))dr

)∣∣∣∣∣,
≤ b

Γ(µ)

∫ δm

υm

∣∣∣(δm − r)µ−1
∣∣∣|Gm(r, φ(r−

m )) − Gm(r, x(r−
m ))|dr,
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≤ bKgT
µ

Γ(µ+ 1) |φ− x|,

≤ γ1|φ− x|.

For υ ∈ Jm, m = 1, . . . , n, we obtain

|Aφ(υ) − Ax(υ)| =
∣∣∣∣∣ 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm(r, φ(r−
m ))dr

−
(

1
Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm(r, x(r−
m ))dr

)∣∣∣∣∣,
≤ 1

Γ(µ)

∫ υ

υm

∣∣∣(υ − r)µ−1
∣∣∣|Gm(r, φ(r−

m )) − Gm(r, x(r−
m ))|dr,

≤ KgT
µ

Γ(µ+ 1) |φ− x|,

≤ γ2|φ− x|.

In consideration of every υ ∈ θm, m = 0, . . . , n, we obtain

|Aφ(υ) − Ax(υ)| =
∣∣∣∣∣ 1
Γ(µ)

∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr

−
(

1
Γ(µ)

∫ δm

υm

(δm − r)µ−1Gm(r, x(r−
m ))dr

)∣∣∣∣∣,
≤ 1

Γ(µ)

∫ δm

υm

∣∣∣(δm − r)µ−1
∣∣∣|Gm(r, φ(r−

m )) − Gm(r, x(r−
m ))|dr,

≤ KgT
µ

Γ(µ+ 1) |φ− x|,

≤ γ2|φ− x|.

Then, for each υ ∈ θ, we have

∥Aφ− Ay∥PC ≤ γ∥φ− x∥PC, with γ = max{γ1, γ2}.

Then by (H1), the operator A is a contraction.
Step 3. We establish the continuity of B.
Let {φn}n∈N be a sequence satisfying φn → φ in PC(θ,R).
For υ ∈ θ0, we get

|Bφn(υ) −Bφ(υ)| =
∣∣∣∣∣ b

Γ(µ)

∫ T

υm

(T − r)µ−1(U(r, φn(r)) +
∫ s

0
Ψ(r, e, φn(e))de)dr

+ 1
Γ(µ)

∫ υ

0
(υ − r)µ−1(U(r, φn(r)) +

∫ s

0
Ψ(r, e, φn(e))de)dr
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−
(

b

Γ(µ)

∫ T

υm

(T − r)µ−1(U(r, φ(r)) +
∫ s

0
Ψ(r, e, φ(e))de)dr

+ 1
Γ(µ)

∫ υ

0
(υ − r)µ−1(U(r, φ(r)) +

∫ s

0
Ψ(r, e, φ(e))de)dr

)∣∣∣∣∣,
≤ b

Γ(µ)

∫ υ

υm

∣∣∣(T − r)µ−1
∣∣∣(|U(r, φn(r)) − U(r, φ(r))|

+
∫ s

0
|Ψ(r, e, φn(e)) − Ψ(r, e, φ(e))|de

)
dr

+ 1
Γ(µ)

∫ υ

0

∣∣∣(υ − r)µ−1
∣∣∣(|U(r, φn(r)) − U(r, φ(r))|

+
∫ s

0
|Ψ(r, e, φn(e)) − Ψ(r, e, φ(e))|de

)
dr.

For υ ∈ Jm, m = 1, . . . , n, the null operator is continuous.
For υ ∈ θm, m = 0, . . . , n, we obtain

|Bφn(υ) −Bφ(υ)| =
∣∣∣∣∣ 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1U(r, φn(r)) +
∫ s

0
Ψ(r, e, φn(e))de)dr

−
(

1
Γ(µ)

∫ υ

υm

(υ − r)µ−1U(r, φ(r)) +
∫ s

0
Ψ(r, e, φ(e))de)dr

)∣∣∣∣∣,
≤ 1

Γ(µ)

∫ υ

υm

∣∣∣(υ − r)µ−1
∣∣∣(|U(r, φn(r)) − U(r, φ(r))|

+
∫ s

0
|Ψ(r, e, φn(e)) − Ψ(r, e, φ(e))|de

)
dr.

Since φn → φ and since U(υ, φ(υ)), Ψ(υ, r, φ(υ)) are continuous, then we obtain

∥Bφn −Bφ∥PC → 0 as n → ∞.

Therefore, the operator B is continuous.
Step 4. We prove the compactness of B.
We first verify that B is uniformly bounded on Q. By (3.10),(3.12) and Step1, we have

∥Bυ∥PC ≤ max
{

T µ(p∗Ω1(N ) + Tq∗Ω2(N ))(b + 1)
Γ(µ+ 1) ,

T µ(p∗Ω1(N ) + Tq∗Ω2(N ))
Γ(µ+ 1)

}
≤ N .

Thus, B is uniformly bounded on Q. Subsequently, we establish that B maps bounded
sets into equicontinuous sets in Q. We take υ ∈ Q and 0 < τ1 < τ2 < T .
Then for τ1, τ2 ∈ θ0,

|Bφ(τ1) −Bφ(τ2)| =
∣∣∣∣∣ b

Γ(µ)

∫ T

υm

(T − r)µ−1(U(r, φ(r)) +
∫ s

0
Ψ(r, e, φ(e))de)dr
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+ 1
Γ(µ)

∫ τ1

0
(τ1 − r)µ−1(U(r, φ(r)) +

∫ s

0
Ψ(r, e, φ(e))de)dr

−
(

b

Γ(µ)

∫ T

υm

(T − r)µ−1(U(r, φ(r)) +
∫ s

0
Ψ(r, e, φ(e))de)dr

+ 1
Γ(µ)

∫ τ2

0
(τ2 − r)µ−1(U(r, φ(r)) +

∫ s

0
Ψ(r, e, φ(e))de)dr

)∣∣∣∣∣,
≤ 1

Γ(µ)

[ ∫ τ1

0

∣∣∣(τ1 − r)µ−1
∣∣∣(|U(r, φ(r))| +

∫ s

0
|Ψ(r, e, φ(e))|de

)
dr

+
∫ τ2

0

∣∣∣(τ2 − r)µ−1
∣∣∣(|U(r, φ(r))| +

∫ s

0
|Ψ(r, e, φ(e))|de

)
dr

]
,

≤ 1
Γ(µ)

[ ∫ τ1

0

∣∣∣(τ1 − r)µ−1
∣∣∣(p(r)Ω1(∥υ∥) +

∫ s

0

(
q(e)Ω2(∥υ∥)

)
de

)
dr

+
∫ τ2

0

∣∣∣(τ2 − r)µ−1
∣∣∣(p(r)Ω2(∥υ∥) +

∫ s

0

(
q(e)Ω2(∥υ∥)

)
de

)
dr

]
,

≤ (p∗Ω1(N ) + Tq∗Ω2(N ))
Γ(µ)

[∫ τ1

0
(τ1 − r)µ−1 − (τ2 − r)µ−1dr +

∫ τ2

τ1
(τ2 − r)µ−1dr

]
.

For τ1, τ2 ∈ Jm, m = 1, . . . , n, the null operator is equicontinuous.
For τ1, τ2 ∈ θm, m = 0, . . . , n, we obtain

|Bφ(τ1) −Bφ(τ2)| =
∣∣∣∣∣ 1
Γ(µ)

∫ τ1

υm

(τ1 − r)µ−1U(r, φ(r)) +
∫ s

0
Ψ(r, e, φ(e))de)dr

− 1
Γ(µ)

∫ τ2

υm

(τ2 − r)µ−1U(r, φ(r)) +
∫ s

0
Ψ(r, e, φ(e))de)dr

∣∣∣∣∣,
≤ 1

Γ(µ)

[ ∫ τ1

υm

∣∣∣(τ1 − r)µ−1
∣∣∣(|U(r, φ(r))| +

∫ s

0
|Ψ(r, e, φ(e))|de

)
dr

+
∫ τ2

υm

∣∣∣(τ2 − r)µ−1
∣∣∣(|U(r, φ(r))| +

∫ s

0
|Ψ(r, e, φ(e))|de

)
dr

]
,

≤ 1
Γ(µ)

[ ∫ τ1

υm

∣∣∣(τ1 − r)µ−1
∣∣∣(p(r)Ω1(∥υ∥) +

∫ s

0

(
q(e)Ω2(∥υ∥)

)
de

)
dr

+
∫ τ2

υm

∣∣∣(τ2 − r)µ−1
∣∣∣(p(r)Ω1(∥υ∥) +

∫ s

0

(
q(e)|Ω2(∥υ∥)

)
de

)
dr,

≤ (p∗Ω1(N ) + Tq∗Ω2(N ))
Γ(µ)

[∫ τ1

υm

(τ1 − r)µ−1 − (τ2 − r)µ−1dr +
∫ τ2

τ1
(τ2 − r)µ−1dr

]
.

note that
|Bφ(τ1) −Bφ(τ2)| → 0 as τ1 → τ2.

As a result, BQ is equicontinuous on θ, thereby indicating its relative compactness.
According to the Arzelà-Ascoli theorem, B is compact. Applying Krasnoselskii’s FPT, we
deduce that F has a fixed point, which is the solution of problem (3.1).
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The next outcome concerning existence of solution for problem (3.1) is dependent on the
Darbo’s FPT.
Consider the subsequent hypotheses:
(A1) Let Gm : Jm × R → R, m = 1, 2, . . . , n, are continuous functions. There exist a constant
Lg > 0 where

|Gm(υ, φ(υ))| ≤ Lg, υ ∈ Jm; m = 1, 2, . . . , n, υ ∈ R.

(A2) For each bounded set G ⊂ R, we have

η(Gm(υ,G)) ≤ Lgη(G), for each υ ∈ Jm, m = 1, . . . , n,

η(U(υ,G)) ≤ p(υ)η(G), for each υ ∈ θ,

and
η(Ψ(υ, r,G)) ≤ q(r)η(G), for each υ, r ∈ θ.

Theorem 3.2. Assume that the hypotheses (A1), (A2),(H2) and (H3) hold. If

Υ = max
{

T µ(bLg + (b + 1)(p∗ + Tq∗))
Γ(µ+ 1) ,

T µ(Lg + (p∗ + Tq∗))
Γ(µ+ 1)

}
< 1 (3.13)

then the problem (3.1) has at least one solution on θ.

Proof. Let F : PC(θ,R) → PC(θ,R) be the operator defined by (3.8).
Step 1. We prove that F is continuous.
Consider a sequence {φn}n∈N that fulfills φn → φ in PC(θ,R).
In consideration of every υ ∈ θ0, we have

|Fφn(υ) − Fφ(υ)| =
∣∣∣∣∣C − b

Γ(µ)

[∫ δm

υm

(δm − r)µ−1Gm(r, φn(r−
m ))dr +

∫ T

υm

(T − r)µ−1(U(r, φn(r))

+
∫ s

0
Ψ(r, e, φn(e))de)dr

]
+ 1

Γ(µ)

∫ υ

0
(υ − r)µ−1(U(r, φn(r))

+
∫ s

0
Ψ(r, e, φn(e))de)dr −

(
C − b

Γ(µ)

[∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr

+
∫ T

υm

(T − r)µ−1(U(r, φ(r)) +
∫ s

0
Ψ(r, e, φ(e))de)dr

]

+ 1
Γ(µ)

∫ υ

0
(υ − r)µ−1(U(r, φ(r)) +

∫ s

0
Ψ(r, e, φ(e))de)dr

)∣∣∣∣∣,
≤ b

Γ(µ)

[ ∫ δm

υm

∣∣∣(δm − r)µ−1
∣∣∣|Gm(r, φn(r−

m )) − Gm(r, φ(r−
m ))|dr

+
∫ T

υm

∣∣∣(T − r)µ−1
∣∣∣(|U(r, φn(r)) − U(r, φ(r))|
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+
∫ s

0
|Ψ(r, e, φn(e)) − Ψ(r, e, φ(e))|de

)
dr

]

+ 1
Γ(µ)

∫ υ

0

∣∣∣(υ − r)µ−1
∣∣∣(|U(r, φn(r)) − U(r, φ(r))|

+
∫ s

0
|Ψ(r, e, φn(e)) − Ψ(r, e, φ(e))|de

)
dr.

For υ ∈ Jm, m = 1, . . . , n, we obtain

|Fφn(υ) − Fφ(υ)| =
∣∣∣∣∣ 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm(r, φn(r−
m ))dr − 1

Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm(r, φ(r−
m ))dr

∣∣∣∣∣,
≤ 1

Γ(µ)

∫ υ

υm

∣∣∣(υ − r)µ−1
∣∣∣|Gm(r, φn(r−

m )) − Gm(r, φ(r−
m ))|dr.

For υ ∈ θm, m = 0, . . . , n, we obtain

|Fφn(υ) − Fφ(υ)| =
∣∣∣∣∣ 1
Γ(µ)

∫ δm

υm

(δm − r)µ−1Gm(r, φn(r−
m ))dr + 1

Γ(µ)

∫ υ

υm

(υ − r)µ−1U(r, φn(r))

+
∫ s

0
Ψ(r, e, φn(e))de)dr −

(
1

Γ(µ)

∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr

+ 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1U(r, φ(r)) +
∫ s

0
Ψ(r, e, φ(e))de)dr

)∣∣∣∣∣,
≤ 1

Γ(µ)

∫ δm

υm

∣∣∣(δm − r)µ−1
∣∣∣|Gm(r, φn(r−

m ))) − Gm(r, φ(r−
m ))|dr

+ 1
Γ(µ)

∫ υ

υm

∣∣∣(υ − r)µ−1
∣∣∣(|U(r, φn(r)) − U(r, φ(r))|

+
∫ s

0
|Ψ(r, e, φn(e)) − Ψ(r, e, φ(e))|de

)
dr.

As U, Ψ, and Gm are continuous, we apply the Lebesgue Dominated Convergence Theorem
whene n → ∞, yielding

∥Fφn − Fφ∥PC → 0.

Thus, F is a continuous operator.
Step 2. The operator F transforms bounded sets into bounded sets in PC(θ,R).
In consideration of every υ ∈ θ0, we can obtain

|Fφ(υ)| =
∣∣∣∣∣C − b

Γ(µ)

[∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr +

∫ T

υm

(T − r)µ−1(U(r, φ(r))

+
∫ s

0
Ψ(r, e, φ(e))de)dr

]
+ 1

Γ(µ)

∫ υ

0
(υ − r)µ−1(U(r, φ(r)) +

∫ s

0
Ψ(r, e, φ(e))de)dr

∣∣∣∣∣,
≤ C + b

[
1

Γ(µ)

∫ δm

υm

(δm − r)µ−1|Gm(r, φ(r−
m ))|dr + 1

Γ(µ)

∫ T

υm

(T − r)µ−1
(

|U(r, φ(r))|
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+
∫ s

0
|Ψ(r, e, φ(e))|de

)
dr

]
+ 1

Γ(µ)

∫ υ

0
(υ − r)µ−1

(
|U(r, φ(r))| +

∫ s

0
|Ψ(r, e, φ(e))|de

)
dr,

≤ C + b

[
LgT

µ

Γ(µ+ 1) + T µ

Γ(µ+ 1)

(
p∗Ω1(N ) + Tq∗Ω2(N )

)]

+ T µ

Γ(µ+ 1)

(
p∗Ω1(N ) + Tq∗Ω2(N )

)
,

≤ C +
T µ

(
bLg + (b + 1)(p∗Ω1(N ) + Tq∗Ω2(N ))

)
Γ(µ+ 1) = η1.

For υ ∈ Jm, m = 1, . . . , n, we obtain

|Fφ(υ)| =
∣∣∣∣∣ 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm(r, φ(r−
m ))dr

∣∣∣∣∣,
≤ 1

Γ(µ)

∫ υ

υm

(υ − r)µ−1|Gm(r, φ(r−
m ))|dr,

≤ Lg

Γ(µ)

∫ υ

υm

(υ − r)µ−1dr,

≤ LgT
µ

Γ(µ+ 1) = η2.

For υ ∈ θm, m = 0, . . . , n, we have

|Fφ(υ)| =
∣∣∣∣∣ 1
Γ(µ)

∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr + 1

Γ(µ)

∫ υ

υm

(υ − r)µ−1U(r, φ(r)) +
∫ s

0
Ψ(r, e, φ(e))de)dr

∣∣∣∣∣,
≤ 1

Γ(µ)

∫ δm

υm

(δm − r)µ−1|Gm(r, φ(r−
m ))|dr + 1

Γ(µ)

∫ υ

υm

(υ − r)µ−1|U(r, φ(r))|

+
∫ s

0
|Ψ(r, e, φ(e))|de)dr,

≤ 1
Γ(µ)

∫ δm

υm

(δm − r)µ−1Lgdr + 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1
(
p∗Ω1(N ) +

∫ s

0
q∗Ω2(N )de

)
dr,

≤ (Lg + (p∗Ω1(N ) + Tq∗Ω2(N )))T µ

Γ(µ+ 1) = η3.

Therefore, for each υ ∈ θ,

∥F∥PC ≤ η = max{η1, η3},

hence F is bounded.
Step 3. F maps bounded sets into equicontinuous sets of PC(θ,R).
Let υ ∈ Q such that Q be bounded set defined by (3.9), and let 0 < τ1 < τ2 < T .
For τ1, τ2 ∈ I0, we get

|Fφ(τ1) − Fφ(τ2)| =
∣∣∣∣∣C − b

Γ(µ)

[∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr +

∫ T

υm

(T − r)µ−1(U(r, φ(r))
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+
∫ s

0
Ψ(r, e, φ(e))de)dr

]
+ 1

Γ(µ)

∫ τ1

0
(τ1 − r)µ−1(U(r, φ(r)) +

∫ s

0
Ψ(r, e, φ(e))de)dr

−
(
C − b

Γ(µ)

[∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr +

∫ T

υm

(T − r)µ−1(U(r, φ(r))

+
∫ s

0
Ψ(r, e, φ(e))de)dr

]
+ 1

Γ(µ)

∫ τ2

0
(τ2 − r)µ−1(U(r, φ(r)) +

∫ s

0
Ψ(r, e, φ(e))de)dr

)∣∣∣∣∣,
≤ 1

Γ(µ)

[ ∫ τ1

0

∣∣∣(τ1 − r)µ−1
∣∣∣(|U(r, φ(r))| +

∫ s

0
|Ψ(r, e, φ(e))|de

)
dr

+
∫ τ2

0

∣∣∣(τ2 − r)µ−1
∣∣∣(|U(r, φ(r))| +

∫ s

0
|Ψ(r, e, φ(e))|de

)
dr

]
,

≤ 1
Γ(µ)

[ ∫ τ1

0

∣∣∣(τ1 − r)µ−1
∣∣∣(|p(r)||φ(r)| +

∫ s

0
|q(r)||φ(e)|de

)
dr

)

+
∫ τ2

0

∣∣∣(τ2 − r)µ−1
∣∣∣(|p(r)||φ(r)| +

∫ s

0
|q(r)||φ(e)|de

)
dr

]
,

≤ (p∗ + q∗T )N
Γ(µ)

[∫ τ1

0
(τ1 − r)µ−1 − (τ2 − r)µ−1dr +

∫ τ2

τ1
(τ2 − r)µ−1dr

]
.

(3.14)

For τ1, τ2 ∈ Jm, m = 1, . . . , n, we have

|Fφ(τ1) − Fφ(τ2)| =
∣∣∣∣∣ 1
Γ(µ)

∫ τ1

υm

(τ1 − r)µ−1Gm(r, φ(r−
m ))dr −

(
1

Γ(µ)

∫ τ2

υm

(τ2 − r)µ−1Gm(r, φ(r−
m ))dr

)∣∣∣∣∣,
≤ 1

Γ(µ)

[ ∫ τ1

υm

∣∣∣(τ1 − r)µ−1
∣∣∣|Gm(r, φ(r−

m ))|dr +
∫ τ2

υm

∣∣∣(τ2 − r)µ−1
∣∣∣|Gm(r, φ(r−

m ))|dr
]
,

≤ Lg

Γ(µ)

[∫ τ1

υm

(τ1 − r)µ−1 − (τ2 − r)µ−1dr +
∫ τ2

τ1
(τ2 − r)µ−1dr

]
. (3.15)

For τ1, τ2 ∈ Im, m = 0, . . . , n, we obtain

|Fφ(τ1) − Fφ(τ2)| =
∣∣∣∣∣ 1
Γ(µ)

∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr + 1

Γ(µ)

∫ τ1

υm

(τ1 − r)µ−1U(r, φ(r))

+
∫ s

0
Ψ(r, e, φ(e))de)dr −

(
1

Γ(µ)

∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr

+ 1
Γ(µ)

∫ τ2

υm

(τ2 − r)µ−1U(r, φ(r)) +
∫ s

0
Ψ(r, e, φ(e))de)dr

)∣∣∣∣∣,
≤ 1

Γ(µ)

[ ∫ τ1

υm

∣∣∣(τ1 − r)µ−1
∣∣∣(|U(r, φ(r))| +

∫ s

0
|Ψ(r, e, φ(e))|de

)
dr

+
∫ τ2

υm

∣∣∣(τ2 − r)µ−1
∣∣∣(|U(r, φ(r))| +

∫ s

0
|Ψ(r, e, φ(e))|de

)
dr

]
,

≤ 1
Γ(µ)

[ ∫ τ1

υm

∣∣∣(τ1 − r)µ−1
∣∣∣(|p(r)||φ(r)| +

∫ s

0
|q(r)||φ(e)|de

)
dr
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+
∫ τ2

υm

∣∣∣(τ2 − r)µ−1
∣∣∣(|p(r)||φ(r)| +

∫ s

0
|q(r)||φ(e)|de

)
dr

]
,

≤ (p∗ + q∗T )N
Γ(µ)

[∫ τ1

υm

(τ1 − r)µ−1 − (τ2 − r)µ−1dr +
∫ τ2

τ1
(τ2 − r)µ−1dr

]
.

(3.16)

The right side of the inequality (3.14),(3.15) and (3.16) tends to zero as τ1 → τ2. Therefore,
F(Q) is equicontinuous.
Step 4. F is a Υ-contraction.

From the above steps, we have F : Q → Q is continuous, bounded and N(BR) is equicon-
tinuous. Next, we aim to establish that the operator F is a Υ-contraction.
Suppose G ⊂ Q and υ ∈ θ0. In this case,

η(F(G)(υ) = η((Fφ)(υ), φ ∈ G),

= η

(
C − b

Γ(µ)

[∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr +

∫ T

υm

(T − r)µ−1(U(r, φ(r))

+
∫ s

0
Ψ(r, e, φ(e))de)dr

]
+ 1

Γ(µ)

∫ υ

0
(υ − r)µ−1(U(r, φ(r)) +

∫ s

0
Ψ(r, e, φ(e))de)dr, φ ∈ G

)
,

≤ b

Γ(µ)η
(∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr, φ ∈ G

)
+ b

Γ(µ)η
(∫ T

υm

(T − r)µ−1
(
U(r, φ(r))

+
∫ s

0
Ψ(r, e, φ(e))de

)
dr, φ ∈ G

)
+ 1

Γ(µ)η
(∫ υ

0
(υ − r)µ−1

(
U(r, φ(r))

+
∫ s

0
Ψ(r, e, φ(e))de

)
dr, φ ∈ G

)
,

≤ b

Γ(µ)

∫ δm

υm

(δm − r)µ−1η(Gm(r,G))dr + b

Γ(µ)

∫ T

υm

(T − r)µ−1
(
η(U(r,G))

+
∫ s

0
η(Ψ(r, e, G))de

)
dr + 1

Γ(µ)

∫ υ

0
(υ − r)µ−1

(
η(U(r,G)) +

∫ s

0
η(Ψ(r, e, G))de

)
dr,

≤ T µ(bLg + (b + 1)(p∗ + Tq∗))
Γ(µ+ 1) η(D),

≤ Υ1η(D).

For each υ ∈ Jm, m = 1, . . . , n, we obtain

η(F(G)(υ) = η((Fφ)(υ), φ ∈ G),

= η

(
1

Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm(r, φ(r−
m ))dr, φ ∈ G

)
,

≤ 1
Γ(µ)η

(∫ υ

υm

(υ − r)µ−1Gm(r, φ(r−
m ))dr, φ ∈ G

)
,
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≤ 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1η(Gm(r,G))dr,

≤ T µLg

Γ(µ+ 1)η(D),

≤ Υ2η(D).

In consideration of every υ ∈ θm, m = 0, . . . , n, we get

η(F(G)(υ) = η((Fφ)(υ), φ ∈ G),

= η

(
1

Γ(µ)

∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr + 1

Γ(µ)

∫ υ

υm

(υ − r)µ−1U(r, φ(r))

+
∫ s

0
Ψ(r, e, φ(e))de)dr, φ ∈ G

)
,

≤ 1
Γ(µ)η

(∫ δm

υm

(δm − r)µ−1Gm(r, φ(r−
m ))dr, φ ∈ G

)
+ 1

Γ(µ)η
(∫ υ

υm

(υ − r)µ−1
(
U(r, φ(r))

+
∫ s

0
Ψ(r, e, φ(e))de

)
dr, φ ∈ G

)
,

≤ 1
Γ(µ)

∫ δm

υm

(δm − r)µ−1η(Gm(r,G))dr + 1
Γ(µ)

∫ T

υm

(T − r)µ−1
(
η(U(r,G))

+
∫ s

0
η(Ψ(r, e, G))de

)
dr,

≤ T µ(Lg + (p∗ + Tq∗))
Γ(µ+ 1) η(D),

≤ Υ3η(D).

Therefore, for every υ ∈ θ, we get

η(F(G)(υ) ≤ Υη(G), such as Υ = max{Υ1,Υ3}.

Based on the condition expressed in (3.13), it can be inferred that the operator F is a
Υ-contraction. By applying Theorem 1.4, we can deduce that F has a fixed point which is a
solution to the problem (3.1).

3.3 Examples

In this section, we address the FIDEs as presented in(3.1) by providing two numerical ex-
amples. These examples are used to demonstrate the two results formulated in the preceding
section.
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Example 3.1. Consider the following FIDEs

cDµφ(υ) = U(υ, φ(υ)) +
∫ υ

0
Ψ(υ, r, φ(r))dr, υ ∈ (δm, υm + 1], m = 0, 1, 2,

φ(υ) = 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm(r, φ(r−
m ))dr, υ ∈ (υm, δm], m = 1, 2,

α1φ(0) + α2φ(1) = η(0),

(3.17)

with α2 = 1 , α1 = 4 and T = 1.
Set θ = [0, 1], θ0 = [0, 1

5 ], J1 = (1
5 ,

2
5 ], θ1 = (2

5 ,
3
5 ], J2 = (3

5 ,
4
5 ], θ2 = (4

5 , 1].
Let

U(υ, φ(υ)) = 1
10eυ+3

(
|φ(υ)|

2 + |φ(υ)|

)
, υ ∈ (0, 1],

Ψ(υ, r, φ(r)) = υr2

5er2+2 sin(φ(r)),

and
Gm(υ, φ(υ)) = 1 + υ sin(φ(υ))

60 , m = 1, 2.

We will apply Theorem 3.1 to demonstrate that assumptions (H1) − (H3) met. Addition-
ally, we will prove that condition (3.7) holds.
Clearly, the functions U , Gm and Ψ are continuous.
In consideration of every υ ∈ θm, m = 0, 1, 2, we get

|U(υ, φ(υ))| ≤ 1
10eυ+3 |φ(r)|,

where p(υ) = 1
10eυ+3 and p∗ = 1

10e3 .

And
|Ψ(υ, r, φ(r))| ≤ r2

5er2+2 |φ(r)|,

where q(r) = r2

5er2+2 and q∗ = 1
5e3 .

In consideration of every υ ∈ Jm, m = 1, 2, and υ ∈ R, we get

|Gm(υ, φ(υ))| ≤ 1
60(1 + |υ||sin(φ(υ))|),

≤ 1
30 , where Lg = 1

30 .

And for υ,x ∈ R, we get

|Gm(υ, φ(υ)) − Gm(υ,x(υ))| ≤ υ|υ − x|
60 ,

≤ 1
60 |υ − x|, where Kg = 1

60 .
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Thus, the hypotheses (H1) − (H3) hold.
Now, we will verify the condition (3.7).

γ = max{γ1, γ2},

= max
{

bKgT
µ

Γ(µ+ 1) ,
KgT

µ

Γ(µ+ 1)

}
,

= max
{ 1

4 × 1
60

Γ(µ+ 1) ,
1
60

Γ(µ+ 1)

}
,

=
1
60

Γ(µ+ 1) ,

= γ2 < 1.

µ γ1 γ2 γ

0.1 0.0044 0.0175 γ2

0.2 0.0045 0.0182 γ2

0.3 0.0046 0.0186 γ2

0.4 0.0047 0.0188 γ2

0.5 0.0047 0.0188 γ2

0.6 0.0047 0.0187 γ2

0.7 0.0046 0.0183 γ2

0.8 0.0045 0.0179 γ2

0.9 0.0043 0.0173 γ2

1 0.0042 0.0167 γ2

Table 3.1: Calculation of γ for different values of µ.

As we note in Figure 3.1 and Table 3.1, for 0 < µ ≤ 1, the values of γ2 are greater than γ1

and both are less than 1 . We conclude that all assumptions of the Theorem 3.1 are fulfilled,
implying that problem (3.17) admits at least one solution on θ = [0, 1].

Remark 3.1. If we take α2 > α1 we get γ1 > γ2, so γ = max{γ1, γ2} = γ1.

57



Chapter 3
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0.006

0.008
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0.012
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0.018
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γ
1

γ
2

Figure 3.1: Variations of γ1 and γ2 for different values of µ.

Example 3.2. Consider the FIDEs as follows:

cDµφ(υ) = U(υ, φ(υ)) +
∫ υ

0
Ψ(υ, r, φ(r))dr, υ ∈ (δm, υm + 1], m = 0, 1, 2,

φ(υ) = 1
Γ(µ)

∫ υ

υm

(υ − r)µ−1Gm(r, φ(r−
m ))dr, υ ∈ (υm, δm], m = 1, 2,

α1φ(0) + α2φ(1) = η(0),

(3.18)

with α1 = 2.5 , α2 = 3 and T = 2.
Set θ = [0, 2], θ0 = [0, 2

5 ], J1 = (2
5 ,

4
5 ], θ1 = (4

5 ,
6
5 ], J2 = (6

5 ,
8
5 ], θ2 = (8

5 , 2].
Let

U(υ, φ(υ)) = υ sin(φ(υ))
8eυ

(
2 + φ(υ)
1 + |φ(υ)|

)
, υ ∈ (0, 2],

Ψ(υ, r, φ(r)) = r ln(φ(r))
20eυ+r+2 ,

and
Gm(υ, φ(υ)) = cos(φ(υ))

14eυ+1 , m = 1, 2.

Now, we will check that the hypotheses of the Theorem 3.2 are satisfied and also the
condition (3.13).
It is evident that the functions U , Gm and Ψ are continuous.
For each υ ∈ θm, m = 0, 1, 2, we have

|U(υ, φ(υ))| ≤ υ

8eυ
(2 + |φ(r)|),
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where p(υ) = υ

8eυ
and p∗ = 1

8e .
And

|Ψ(υ, r, φ(r))| ≤ r

20eυ+r+2 |φ(r)|,

≤ 1
20er+2 |φ(r)|,

where q(r) = r

20er+2 and q∗ = 1
20e3 .

For each υ ∈ Jm, m = 1, 2,, we get

|Gm(υ, φ(υ))| ≤ | cos(φ(υ))|
14eυ+1 ,

≤ 1
14e1.4 , where Lg = 1

14e1.4 .

Consequently, the hypotheses (A1), (A2),(H2) and (H3) are satisfied.
Next, we will verify the condition (3.13).

Υ = max{Υ1,Υ3},

Υ = max
{

T µ(bLg+(b+1)(p∗+T q∗))
Γ(µ+1) , T µ(Lg+(p∗+T q∗))

Γ(µ+1)

}
,

= max
{

2µ( 3
2.5

1
14e1.4 +( 3

2.5 +1)( 1
8e + 2

20e3 ))
Γ(µ+1) ,

2µ( 1
14e1.4 +( 1

8e + 2
20e3 ))

Γ(µ+1)

}
,

=
2µ( 3

2.5
1

14e1.4 + ( 3
2.5 + 1)( 1

8e + 2
20e3 ))

Γ(µ+ 1) ,

= Υ1 < 1.

µ Υ1 Υ3 Υ
0.1 0.1625 0.0829 Υ1

0.2 0.1804 0.0920 Υ1

0.3 0.1978 0.1009 Υ1

0.4 0.2145 0.1094 Υ1

0.5 0.2301 0.1174 Υ1

0.6 0.2446 0.1248 Υ1

0.7 0.2578 0.1315 Υ1

0.8 0.2696 0.1375 Υ1

0.9 0.2798 0.1427 Υ1

1 0.2884 0.1471 Υ1

Table 3.2: Calculation of Υ for different values of µ.
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1 2 3 4 5 6 7 8 9 10

µ
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0.15

0.2

0.25
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Υ
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Υ
3

Figure 3.2: Variations of Υ1 and Υ3 for different values of µ.

As observed in Table 3.2 and Figure 3.2, for 0 < µ ≤ 1, the values of Υ1 surpass those of
Υ3, and both are below 1. Based on this, we can deduce that all the assumptions of Theorem
3.2 are checked. Consequently, the problem (3.18) have at least one solution defined on the
interval θ = [0, 2].

3.4 Conclusion

This chapter explores a category of fractional integro-differential equations (FIDEs)
incorporating non-instantaneous impulses (NIIs) under the Caputo fractional derivative. The
main focus is on obtaining existence results for this class of equations involving NIIs. To
achieve this, Krasnoselskii’s and Darbo’s fixed point theorems are applied. One of the novel
aspects of this work is the presentation of two examples that goes beyond exploring a single
specific value of µ. Instead, we consider multiple values of µ within the interval (0, 1].
This broader scope allows us to explore the behavior and solutions of the equations for
various fractional orders, providing a more comprehensive understanding of the problem and
its implications. By considering different µ values, we gain valuable insights into how the
dynamics of the system change with respect to the fractional order, leading to a richer and
more generalized analysis of the FIDEs with NIIs.
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Chapter 4
Numerical Solution of Fredholm Fractional
Integro-Differential Equations through Least
Squares Approximation and Compact
Combination of Shifted Chebyshev Polynomials

4.1 Introduction

This chapter delves into solving linear Fredholm fractional integro-differential equations
(FIDEs) numerically under the Caputo FD. The chosen methodology involves applying the
least squares method to numerically solve a category of FIDEs employing a compact combi-
nation of Shifted Chebyshev polynomials (SCP) of the first kind. The primary objective is
to express the unknown function as a series of a linear combination of SCP. Subsequently,
the problem is reduced to a system of linear algebraic equations, which are solved for the
unknown constants associated with the approximate solution using MATLAB R2020a. The
chapter concludes with the presentation of numerical examples to validate the effectiveness
and suitability of this approach. Multiple numerical illustrations (Tables and Figures) are
provided to demonstrate the method’s efficacy comprehensively. Additionally, various com-
parisons are included to further elucidate the advantages and potential applications of the
proposed methodology.
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The purpose of our research is solving numerically the linear FIDE described by

CDµφ(υ) = f(υ) +
∫ 1

0
K(υ, τ)φ(τ)dτ, 0 ≤ υ ≤ 1. (4.1)

with two cases of the initial conditions. For the first initial condition where 0 < µ ≤ 1,
we impose φ(0) = 0. Meanwhile, in the second initial conditions where 1 < µ ≤ 2, we
impose φ(0) = φ′(0) = 0. Functions f(υ) and K(υ, τ) are predefined, while φ(υ) denotes the
unknown function to be determined.

4.2 Spectral approximation by shifted Chebyshev poly-
nomials

4.2.1 Shifted Chebyshev polynomials

Shifted Chebyshev polynomials (SCP) represent a modified version of the Chebyshev
polynomials, characterized by a shift in the interval of definition from [-1, 1] to [0, 1]. Similar
to Chebyshev polynomials, shifted Chebyshev polynomials exhibit key properties such as or-
thogonality and a recursive definition. Their applications extend to fields like approximation
theory, numerical analysis, and the solution of systems involving linear and nonlinear FIDEs.
Noted as T̃m(υ), these polynomials are defined by the following transformation

T̃m(υ) = Tm(2υ − 1), (4.2)

here, Tm(υ) represents the Chebyshev polynomials of the first kind. Thus we have the poly-
nomials:

T̃0(υ) = 1.

T̃1(υ) = 2υ − 1.

T̃2(υ) = 8υ2 − 8υ + 1.

T̃3(υ) = 32υ3 − 48υ2 + 18υ − 1. . . .

Using (4.2) and (1.16), we derive the recurrence relation for T̃m with the subsequent manner:

T̃m+1(υ) = 2(2υ − 1)T̃m(υ) − T̃m−1(υ), m = 1, 2, . . . , (4.3)

where T̃0(υ) = 1, T̃1(υ) = 2υ − 1.
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4.2.2 Basic shifted Chebyshev polynomials properties

In this part, we embark on an exploration properties of the SCP of the first kind.

Property 4.1. The SCP denoted as T̃m(υ) of the first kind, fulfill:

1.
T̃m(0) = (−1)m, m ≥ 0. (4.4)

2.
(T̃m)′(0) = 2(−1)m+1m2. m ≥ 0. (4.5)

Proof. 1. Let P (m) be the statement: T̃m(0) = (−1)m, m ≥ 0. We shall demonstrate using
mathematical induction that P (m) holds for all m ≥ 0.
- Base case: we prove that P (0) is true. For m = 0, we get

T̃0(0) = (−1)0 = 1.

this result is true.
- Induction hypothesis: Assume that the statement P (m) is true for any positive integer
m = k.
- Induction step: We will now show that P (m + 1) is true for any positive integer
m = k + 1, or T̃k+1(0) = (−1)k+1 is true.
From the recurrence relation (1.16), we have

T̃k+1(0) = −T̃k(0),

substituting now our statement, we obtain

T̃k+1 = −(−1)k.

Now, we will use the property that (−1) × (−1)k = (−1)k+1, we get

T̃k+1 = (−1) × (−1)k = (−1)k+1.

So P (k + 1) is true. Hence by mathematical induction P (m) is true for all m ≥ 0.

2. Let Q(m) be the statement: (T̃m)′(0) = 2(−1)m+1m2. m ≥ 0. We shall demonstrate using
mathematical induction that Q(m) holds for all m ≥ 0.
- Base case: we prove that Q(0) is true. For m = 0, we get (T̃0)′(0) = 2(−1)0+1 ×02 = 0.
So Q(0) is true since (T̃0)′(υ) = 0.
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- Induction hypothesis: Assume that the statement Q(m) is true for any positive integer
m = k.
- Induction step: We will now show that Q(m + 1) is true for any positive integer
m = k + 1, or (T̃k+1)′(0) = 2(−1)k+2(k + 1)2 is true.
From the recurrence relation (4.3) and (4.4), we get

(T̃k+1)′(0) = 4T̃k(0) − 2T̃′
k(0) − T̃′

k−1(0),

= 4(−1)k − 4(−1)k+1k2 − 2(−1)k(k − 1)2,

= 2(−1)k[2 + 2k2 − k2 − 1 + 2k],

= 2(−1)k[k2 + 1 + 2k],

= 2(−1)k+2(k + 1)2.

So Q(k + 1) is true. Hence by mathematical induction Q(m) is true for all m ≥ 0.

Property 4.2. SCP of the first kind are orthogonal over the interval [0, 1] with respect to
the weight function ω(υ) = 1√

υ−υ2 , i.e.,

∫ 1

0
T̃m1(υ)T̃m2(υ)ω(υ)dυ =


0. if m1 ̸= m2,

π
2 , if m1 = m2 ̸= 0,
π, if m1 = m2 = 0.

Proof. To prove the orthogonality of the SCP of the first kind with respect to the weight
function ω(υ) = 1√

υ(1−υ)
on the interval [0, 1], we shall utilize the properties of these poly-

nomials and properties of orthogonality.
First, we rewrite the integral in terms of the Chebyshev polynomials:

∫ 1

0
T̃m1(υ)T̃m2(υ)ω(υ) dυ =

∫ 1

0
Tm1(2υ − 1)Tm2(2υ − 1) 1√

υ(1 − υ)
dυ.

Let u = 2υ − 1, then dx = 1
2du and when υ = 0, u = −1 and when υ = 1, u = 1. The

integral becomes ∫ 1

−1
Tm1(u)Tm2(u) 1√

u+1
2 · 1−u

2

· 1
2 du.

Simplify and use the orthogonality relation of the Chebyshev polynomials (1.18), we get∫ 1

−1
Tm1(u)Tm2(u) 1√

1 − u2
du = km1δm1m2 .
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This means that if m1 ̸= m2, the integral is zero. If m1 = m2 ̸= 0, the integral is π
2 , and if

m1 = m2 = 0, the integral is π.
Therefore, using the relationship between T̃m(x) and Tm(x), we have shown that the SCP of
the first kind are indeed orthogonal with respect to the given weight function on the interval
[0, 1].

4.2.3 Spectral approximation by shifted Chebyshev polynomials

Spectral approximation by orthogonal polynomials is a numerical method utilized to ap-
proximate functions or solutions to fractional differential equations by expressing them as
linear combinations of these orthogonal polynomials. In our case, to determine the approxi-
mated solution for problem (4.1), we will utilize a compact combination of shifted Chebyshev
Polynomials (SCP) of the first kind. This involves substituting the unknown function φ(υ)
with its corresponding approximation, as given by the chosen compact combination of SCP.

φN(υ) =
N−n∑
j=0

βj Φj(υ), 0 ≤ υ ≤ 1, (4.6)

In this context, n ∈ {1, 2} denotes the number of initial conditions, βj (j = 0, . . . , N −n)
represents the the unknown coefficients to be determined, Φj(υ) signifies a set of compact
shifted Chebyshev basis functions that we will chose later. In light of this, we set

SN = span{T̃0(υ), T̃1(υ), . . . , T̃N(υ)},

here, {T̃m(υ), m = 0, . . . , N} are the shifted Chebyshev polynomials.
Define VN ⊂ SN as the subspace where the initial conditions of problem (4.1) are hold

VN = {w ∈ SN : w(ι)(0) = 0. ι = 0, 1, . . . , n− 1}.

In this instance, opting for compact combinations of orthogonal polynomials, particularly
compact combinations of SCP, not only enables us to exploit the properties inherent in
these orthogonal polynomials but also facilitates a reduction in the the approximation space
dimension from (N+1) to (N−n+1). Therefore, we will opt the compact shifted Chebyshev
basis functions provided below

Φm(υ) = T̃m(υ) +
n∑

i=1
cm

i T̃m+i(υ), m = 0, 1, 2, . . . ,

where the constants cm
i will be selected to ensure that Φm satisfies the initial conditions of the

respective.
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The set {Φm} is linearly independent since it constitutes a linear combination of orthogonal
SCP. Due to the dimension argument, we consequently have

VN = span{Φm(υ) : m = 0, 1, 2, . . . ,N − n}.

In the lemma that follows, we determine cm
i values where φ(0) = 0 and then where φ(0) =

φ′(0) = 0.

Lemma 4.1. For n ∈ {1.2} and m ≥ 0,

1. When n = 1, with the condition φ(0) = 0, we consider the following:

Φm(υ) = T̃m(υ) + cm
1 T̃m+1(υ),

to ensure Φm(0) = 0, it suffices to set cm
1 = 1.

2. When n = 2, with initial conditions φ(0) = φ′(0) = 0, we proceed as follows:

Φm(υ) = T̃m(υ) + cm
1 T̃m+1(υ) + cm

2 T̃m+2(υ),

the conditions Φm(0) = Φ′
m(0) = 0 entail the following:

cm
1 = 4m + 4

2m + 3 , and cm
2 = 2m + 1

2m + 3 .

Proof. Since T̃m(0) = (−1)m and (T̃m)′(0) = 2(−1)m+1m2, we have

1. From the boundary conditions Φm(0) = 0, then we find that cm
1, must satisfy

Φm(0) = T̃m(0) + cm
1 T̃m+1(0) = 0,

which is equivalent to
(−1)m + cm

1(−1)m+1 = 0,

thus, we find
cm

1 = 1.

So
Φm(υ) = T̃m(υ) + T̃m+1(υ).

2. From the boundary conditions Φm(0) = Φ′
m(0) = 0, then we find that cm

1, c
m
2 must satisfy

the system 
Φm(0) = T̃m(0) + cm

1T̃m+1(0) + cm
2T̃m+2(0) = 0,

(Φm)′(0) = (T̃m)′(0) + cm
1(T̃m+1)

′(0) + cm
2(T̃m+2)′(0) = 0,
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which can be rewritten as
(−1)m + cm

1(−1)m+2 + cm
2(−1)m+3 = 0,

(2(−1)m+1m2) + cm
1(2(−1)m+2(m + 1)2) + cm

2(2(−1)m+3(m + 2)2) = 0,

leading to 
cm

1 = 1 + cm
2,

cm
1 = m2

(m+1)2 + (m+2)2

(m+1)2 c
m
2,

then 
cm

1 = 4m+4
2m+3 ,

cm
2 = 2m+1

2m+3 .

Or
Φm(υ) = T̃m(υ) + 4m + 4

2m + 3 T̃m+1(υ) + 2m + 1
2m + 3 T̃m+2(υ).

4.3 Least squares method and compact shifted Cheby-
shev basis functions

4.3.1 Approximation by the LSM: principle and advantages

The LSM is a mathematical technique used to find the best-fitting curve or line for a
set of data points by minimizing the sum of the squares of the offsets of the points from the
curve. In the context of function approximation, the method applies the principle of least
squares to find the best approximation of a function by means of a weighted sum of other
functions. In other words, within the interval a < t < b, the objective of the LSM is to
identify a readily computable function φn(t) that offers a reasonably precise estimation of a
more complex function φ(t). This approximation is described by

φn(t) = c0ϕ0 + c1ϕ1 + · · · + cnϕn, (4.7)

here, ϕ0, . . . , ϕn represent independent elements of a linear vector space with a finite dimen-
sion of N + 1 of functions defined on the point set t = t0, t1, . . . , tN.
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Typically, we seek an approximating function φn(t) that includes a set of parameters cr

(where r = 0, 1, . . . , n, and n < N). The conditions for achieving a minimum,

∂N
∂cr

= 0, r = 0, 1, . . . , n,

provide a system of algebraic equations for determining these parameters. Here, the function
N is defined as

Nn =
∫ b

a
w(υ){φ(υ) − φn(υ)}2dυ,

where in a < t < b, the weight function w(t) is positive.
The FIDEs within the range of 0 ≤ t ≤ 1 could be effectively solved using the LSM,

a two-step process. In the initial phase, a linear combination of basis functions, including
as orthogonal polynomials, is utilized to approximate the solution. Minimizing the residual
error between the solution and the FIDEs via the LSM determines the coefficients of the
basis functions. In the subsequent stage, numerical techniques, like iterative methods or
matrix inversion, are applied to solve the resulting system of linear equations and get the
basis functions coefficients. Subsequently, the solution of the FIDEs is derived by substitut-
ing the coefficients into the approximation formula. Preferably, this method is chosen over
numerical approaches due to its versatility, minimal computational and memory demands,
precision, adaptability and better approximation error. Due to the favorable properties of
this method, we intend to employ it in addressing fractional integro-differential equations.
Specifically, we will utilize compact combinations of orthogonal polynomials as our chosen
basis functions, selected through the spectral method. Selecting an optimal basis is crucial in
spectral approaches to ensure a streamlined system. To accomplish this, we will select a con-
densed compact combination of SCP of the first kind as basis functions. Utilizing these basis
functions allows us to effectively reduce the approximation space dimension from (N + 1) to
(N + 1 − n), with N denoting the degree of SCP.

4.3.2 The application of the LSM

In this part, we shall introduce the LSM to numerically solving the FIDE (4.1) by using
a compact shifted Chebyshev basis function developed in Section 4.2. By substituting (4.6)
into (4.1), we derive

CDµ

N−n∑
j=0

βj Φj(υ)
 ≃ f(υ) +

∫ 1

0
K(υ, τ)

N−n∑
j=0

βj Φj(τ) dτ.
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As a result, the following residual equation is obtained

R(β0, β1, . . . , βN−n, υ) =
N−n∑
j=0

βj
CDµΦj(υ) − f(υ) −

∫ 1

0
K(υ, τ)

N−n∑
j=0

βj Φj(τ) dτ. (4.8)

Let
N (β0, β1, . . . , βN−n) =

∫ 1

0
(R(β0, β1, . . . , βN−n, υ))2 dυ. (4.9)

So

N (β0, β1, . . . , βN−n) =
∫ 1

0

N−n∑
j=0

βj
CDµΦj(υ) − f(υ) −

∫ 1

0
K(υ, τ)

N−n∑
j=0

βjΦj(τ) dτ
2

dυ.

(4.10)
Finding the optimal approximated solution of the FIDE (4.1) by applying LSM is analo-

gous to obtain the values of {βj}, j = 0, 1, . . . , N − n which realize the minimum of N . To
attain this minimum, we set forth

∂N
∂βi

= 0, i = 0, 1, . . . , N − n, (4.11)

by applying (4.11) to (4.10), we find

∫ 1

0

(N−n∑
j=0

βj
CDµΦj(υ) − f(υ) −

∫ 1

0
K(υ, τ)

N−n∑
j=0

βjΦj(τ)dτ
)

×
(

CDµΦi(υ) −
∫ 1

0
K(υ, τ)Φi(τ)dτ

)
dυ = 0.

or
∫ 1

0

N−n∑
j=0

βj
CDµΦj(υ) −

∫ 1

0
K(υ, τ)

N−n∑
j=0

βjΦj(τ)dτ
×

(
CDµΦi(υ) −

∫ 1

0
K(υ, τ)Φi(τ)dτ

)
dυ

=∫ 1

0
f(υ)

(
CDµΦi(υ) −

∫ 1

0
K(υ, τ)Φi(τ)dτ

)
dυ,∀i = 0, . . . , N − n.

(4.12)
By solving the above equation for i = 0, 1, . . . , N − n, we create a system of (N + 1 − n)

linear equations with (N + 1 − n) unknown coefficients βj. This system is subsequently
reformulated in matrix form:

Aβ = B,

here, A represents a square matrix of order (N + 1 − n), while β and B are column vectors
of order (N + 1 − n).
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For all 0 ≤ i, j ≤ N − n, we put

Aji =
∫ 1

0

(
CDµΦj(υ) −

∫ 1

0
K(υ, τ)Φj(τ)dτ

)(
CDµΦi(υ) −

∫ 1

0
K(υ, τ)Φi(τ)dτ

)
dυ,

β = (β0, β1, . . . , βN−n)T ,

Bi =
∫ 1

0
f(υ)

(
CDµΦi(υ) −

∫ 1

0
K(υ, τ)Φi(τ)dτ

)
dυ.

Hence, the approximate solution of (4.1) is obtained by solving the derived system by
determining the unknown coefficients βj.

4.4 Examples

In this section, we demonstrate the aforementioned findings through multiple numerical
examples of linear FIDE, implemented using MATLAB R2020a.

Error estimation is provided to highlight precision and effectiveness of our method (OM).
We define the following utilized absolute error (AE):

AE(υ) = |φ(υ) − φN(υ)|, 0 ≤ υ ≤ 1.

Example 4.1. Consider the following FIDE

CDµφ(υ) = 1√
π

(
8
3υ

3/2 − 2υ1/2
)

+ 1
12υ +

∫ 1

0
υτ φ(τ) dτ, 0 ≤ υ ≤ 1.

φ(0) = 0.
(4.13)

For µ = 1
2 , the analytical solution is given by φ(υ) = υ2 − υ.

By employing OM with µ = 1
2 for N = 3 and N = 4, we derived the AE as presented

in Table 4.1 and compared them with the errors for the analogous problem outlined in [37].
It is clear from the comparison that OM consistently provides superior outcomes. Figure
4.1 visually illustrates the convergence of the approximated solution towards the analytical
solution for µ values ranging from 1

8 to 1
2 on the left side, and from 1

2 to 7
8 on the right side,

all for N = 3. Figure 4.1 visually depicts the convergence of the approximated solution to
the analytical solution when µ takes respectively the values 1

8 , 1
4 , 3

8 , 1
2 on the left, and 1

2 , 5
8 ,

3
4 , 7

8 on the right, all for N = 3.
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υ N = 3, [37] N = 3, (OM) N = 4, [37] N = 4, (OM)
0.1 1.734723 ×10−17 0.000000 5.925164×10−16 0.000000
0.2 5.551115×10−17 0.000000 7.112366×10−16 0.000000
0.3 8.326672×10−17 0.000000 5.724587×10−16 0.000000
0.4 1.110223×10−16 0.000000 3.053113×10−16 0.000000
0.5 1.387778×10−16 0.000000 8.326672×10−17 0.000000
0.6 1.665334×10−16 0.000000 6.938893×10−17 0.000000
0.7 1.665334×10−16 0.000000 9.714451×10−17 2.77555×10−17

0.8 1.110223×10−16 0.000000 6.938893×10−17 2.77555×10−17

0.9 6.938893×10−17 0.000000 2.775557×10−17 2.77555×10−17

1.0 2.225073×10−308 0.000000 0.0000000 2.98990×10−17

Table 4.1: Absolute error with µ = 1
2 for Example 4.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

υ

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Exact

µ=1/8

µ=1/4

µ=3/8

µ=1/2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

υ

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

Exact

µ=1/2

µ=5/8

µ=3/4

µ=7/8

Figure 4.1: Approximated solution and analytical solution for Example 4.1 with different µ
values for N = 3.

Example 4.2. Let’s consider the linear FIDE below

CDµφ(υ) = − 3
91π
υ1/6 Γ(5/6)(−91 + 216υ2) + (5 − 2e)υ +

∫ 1

0
υeτ φ(τ) dτ, 0 ≤ υ ≤ 1,

φ(0) = 0.
(4.14)

For µ = 5
6 , the analytical solution is given by φ(υ) = υ − υ3.

We calculated the AE in Table 4.2 using our method for µ = 5
6 with N = 3 and N =

4, and compared them to a similar problem in [37]. Our results demonstrate significant

71



Chapter 4

improvement. Figure 4.2 illustrates the convergence of the approximated solution to the
analytical solution for various values of µ, including 1

7 , 1
3 , 1

2 , and 5
6 on the left, and 1

2 , 5
6 , 9

10 ,
and 99

100 on the right, all for N = 3.

υ N = 3, [37] N = 3, (OM) N = 4, [37] N = 4, (OM)
0.1 4.510281×10−17 0.000000 1.105886×10−16 1.38777×10−17

0.2 8.326672×10−17 0.000000 1.301042×10−16 2.77555×10−17

0.3 1.110223×10−16 0.000000 1.110223×10−16 0.000000
0.4 1.110223×10−16 0.000000 6.938893×10−17 0.000000
0.5 5.551115×10−17 0.000000 0.0000000 0.000000
0.6 5.551115×10−17 0.000000 2.775557×10−17 0.000000
0.7 5.551115×10−17 0.000000 8.326672×10−17 0.000000
0.8 1.665334×10−16 0.000000 8.326672×10−17 1.66533×10−16

0.9 1.387778×10−16 0.000000 2.775557×10−17 2.77555×10−17

1.0 2.220446×10−17 0.000000 0.0000000 7.67540×10−17

Table 4.2: Comparison between the AE of OM and the approach in [37] for the Example
4.2 with N = 3 and N = 4 where µ = 5

6 .
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Exact

µ=5/6

µ=9/10

µ=99/100

Figure 4.2: Approximated solution and analytical solution with various µ values and N = 3
for Example 4.2.

Example 4.3. Let’s consider the following linear FIDE

CDµφ(υ) = 3
√

3 Γ(2/3)
π

υ1/3 − 1
5υ

2 − 1
4υ +

∫ 1

0
(υτ + υ2τ 2)φ(τ) dτ, 0 ≤ υ ≤ 1.

φ(0) = φ
′(0) = 0.

(4.15)
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For µ = 5
3 , the analytical solution is given by φ(υ) = υ2.

Applynig our method, we calculated the AE for µ = 5
3 with N = 3 and N = 4, as

presented in Table 4.3. Comparing these errors with those from a similar problem in [37], we
achieved exceptional results with errors nearly approaching zero. Figure 4.3 demonstrates
the convergence of the approximated solution to the analytical solution for various values of
µ; specifically, 6

5 , 4
3 , 3

2 , and 5
3 on the left, and 5

3 , 18
10 , and 19

10 on the right, all for N = 3.

υ N = 3, [37] N = 3, (OM) N = 4, [37] N = 4, (OM)
0.1 5.486062×10−17 0.000000 1.775516×10−17 1.73472×10−18

0.2 8.500145×10−17 0.000000 1.693523×10−16 6.93889×10−18

0.3 9.714451×10−17 0.000000 7.285838×10−17 0.000000
0.4 9.714451×10−17 0.000000 3.816391×10−17 0.000000
0.5 1.249000×10−16 0.000000 1.110223×10−16 0.000000
0.6 8.326672×10−17 0.000000 1.110223×10−16 0.000000
0.7 1.110223×10−16 0.000000 2.775557×10−17 0.000000
0.8 1.110223×10−16 0.000000 0.000000 0.000000
0.9 2.220446×10−16 0.000000 1.110223×10−16 0.000000
1.0 1.110223×10−16 0.000000 0.000000 0.000000

Table 4.3: Absolute error with µ = 5
3 for Example 4.3.
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Figure 4.3: Analytical and approximated solutions with various values of µ and N = 3 for
Example 4.3 .
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Example 4.4. Let’s examine the following Fredholm integro-differential equation

CDµφ(υ) = 2υ − 3υ2 + 1
30 −

∫ 1

0
φ(τ) dτ, 0 ≤ υ ≤ 1.

φ(0) = φ
′(0) = 0.

(4.16)

For µ = 2, the analytical solution is given by φ(υ) = 1
3υ

3 − 1
4υ

4.

When applying our method with µ = 2 and N = 4, we obtained an AE equal to 0,
representing the optimal outcomes. Figure 4.4 illustrates the convergence of the approximated
solution to the analytical solution for µ values of 5

4 , 3
2 , 7

4 , and 2.
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0.14

0.16
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Exact

µ=5/4

µ=3/2

µ=7/4

µ=2

Figure 4.4: Analytical and approximated solutions for Example 4.4 with different values of
µ and N = 4.

Example 4.5. Let’s consider the following linear FIDE

CDµφ(υ) = 3 + 6υ +
∫ 1

0
υτ φ(τ) dτ, 0 ≤ υ ≤ 1,

φ(0) = 0.
(4.17)

For µ = 1, the analytical solution is given by φ(υ) = 3υ + 4υ2.

Applying our method with µ = 1 for both N = 3 and N = 4, we achieved an AE equal
to 0, indicating a highly accurate approximation. The Figure 4.5 illustrates the convergence
of the approximated solution towards the analytical solution as µ takes the values 1

4 , 1
2 , 3

4 , 1,
for N = 3.
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Figure 4.5: Approximated and analytical solutions with various µ values and N = 3 for
Example 4.5.

4.5 Conclusion

In this chapter, we introduced a numerical approach to solve a linear Fredholm fractional
integro-differential equations (FIDEs) with the objective of achieving higher solution accu-
racy. Our novel approach involves combining the LSM with spectral approximation using
a compact combination of SCP of the first kind, rather than relying solely on SCP. This
methodology transformed FIDEs into a system of linear algebraic equations resulting in an
outstanding approximation with zero AE and optimal outcomes. To confirm the credibil-
ity of the theoretical finding, we showcased pertinent examples and manipulated the order
of the FD, observing the solution’s behavior utilizing MATLAB R2020a. Additionally, we
compared the majority of examples with prior works, specifically referencing [37], for com-
prehensive evaluation. Importantly, this method extends not solely to the similar category
of linear FIDEs but also to other FDEs involving various fractional derivatives, including
Atangana-Baleanu FD and the Caputo-Fabrizio FD etc. In conclusion, our method not only
provides enhanced accuracy in solving linear Fredholm FIDEs but also demonstrates applica-
bility to a broader range of fractional differential equations. Future research could explore its
implementation in more complex problem domains or investigate its performance with non-
linear equations. Overall, our approach presents a promising avenue for advancing numerical
techniques in fractional calculus.
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In the course of this thesis, our investigation has delved into uncharted territories within
the field of FDEs, specifically focusing on the existence, uniqueness and stability of solutions
as well as numerical resolution. Initially, we discussed the existence and uniqueness of solu-
tions for a novel category of FDEs that encompass NIIs under CFfd employing the Banach
fixed point theorem (FPT) and Darbo’s FPT combined with the Kuratowski’s measure of
noncompactness and also we examined the HU stability of solutions.

Simultaneously, another chapter of thesis focused on exploring the existence and unique-
ness outcomes for a category of FIDEs with NIIs under the Caputo fractional derivative
employing both of Krasnoselskii’s FPT and Darbo’s FPT combined with the KMNC.

Beyond theoretical contributions, our focus shifts in the last chapter to numerically solving
a linear Fredholm FIDEs under the Caputo derivative. Our innovative approach integrates
the LSM with spectral approximation, employing a compact combination of SCP of the first
kind.

In summary, we expect that the results outlined in this thesis will contribute significantly
to advancing the field of fractional differential equations, paving the way for new avenues
of scientific inquiry. Our future endeavors will focus on extending the implications of this
thesis by delving into fractional differential inclusions and equations. This exploration will
encompass NIIs and various types of fractional derivatives, addressing both theoretical and
numerical aspects, incorporating different numerical methods, diverse fixed point theorems
and stability types, seeking conditions that yield optimal results. Furthermore, our investi-
gations may encompass the introduction of infinite delay and state-dependent delay within
the frameworks of Banach or Frechet spaces.
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