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Abstract

This thesis constructs and analyzes mathematical models to simulate and control spe-
cific infectious diseases, with a primary emphasis on tuberculosis (TB). Both continuous
and discrete dynamical systems are utilized to study disease spread and evaluate the
effectiveness of public health measures. Some compartmental models are formulated
to represent different stages of infection, key risk factors, and control measures such as
vaccination, chemoprophylaxis, and public health policies. Real-world data from Alge-
ria, Ukraine, India, and Russia are used to evaluate the effectiveness of these strategies
in various demographic and healthcare contexts. In addition, game theory is applied
to study vaccination behavior, using Nash equilibrium concepts to account for factors
such as perceived risk, cost, and disease prevalence. By integrating mathematical mod-
eling with strategic decision-making approaches, this study enhances disease control
strategies and promotes better public health outcomes.

Keywords: Epidemiologic model, parameter estimation, stability, simulation, con-
trol
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Résumé

Cette thèse propose et analyse des modèles mathématiques pour simuler et contrôler
certaines maladies infectieuses, en mettant un accent particulier sur la tuberculose (TB).
Elle s’appuie sur des systèmes dynamiques continus et discrets afin d’examiner la trans-
mission de la maladie et d’évaluer l’effet des interventions de santé publique. Quelques
modèles compartimentaux sont élaborés pour représenter les différents stades de l’infection,
les principaux facteurs de risque ainsi que les stratégies de contrôle telles que la vacci-
nation, la chimioprophylaxie et les politiques sanitaires. Des données empiriques is-
sues de l’Algérie, de l’Ukraine, de l’Inde et de la Russie ont été utilisées afin d’analyser
l’efficacité de ces stratégies dans divers contextes démographiques et sanitaires. Par
ailleurs, la théorie des jeux est mobilisée pour étudier les comportements liés à la vac-
cination, en intégrant les concepts d’équilibre de Nash pour prendre en compte des
éléments tels que le risque perçu, le coût et la prévalence de la maladie. En combinant
la modélisation mathématique et les approches stratégiques de prise de décision, cette
recherche vise à optimiser les mesures de contrôle des maladies et à améliorer la santé
publique.

Mots-clés : Modèle épidémiologique, estimation des paramètres, stabilité, simula-
tion, contrôle
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تعط الأٍشاض  في تحنٌتتْاوه هزٓ الأطشوحح تْاء وتحييو َّارج سياظيح ىَحاماج واى

يتٌ استخذاً مو ٍِ الأّظَح   (TB).اىسواىَعذيح، ٍع اىتشميض الأساسي عيً ٍشض 

اىذيْاٍينيح اىَستَشج واىَتقطعح ىذساسح اّتشاس اىَشض وتقييٌ فعاىيح اىتذاتيش اىصحيح 

اىعاٍح. يتٌ صياغح َّىرج ٍقسٌ ىتَثيو اىَشاحو اىَختيفح ىيعذوي، وعىاٍو اىخطش 

خ اىصحيح اىشئيسيح، وإخشاءاخ اىَنافحح ٍثو اىتطعيٌ، واىىقايح اىنيَيائيح، واىسياسا

ىتقييٌ فعاىيح هزٓ  اىهْذ و سوسيا و اىعاٍح. تسُتخذً تياّاخ حقيقيح ٍِ اىدضائش وأومشاّيا

الاستشاتيدياخ في سياقاخ ديَىغشافيح وسعايح صحيح ٍتْىعح. تالإظافح إىً رىل، يتٌ 

تطثيق ّظشيح الأىعاب ىذساسح سيىك اىتطعيٌ، تاستخذاً ٍفاهيٌ تىاصُ ّاش لأخز عىاٍو 

خاطش اىَتصىسج، واىتنيفح، واّتشاس اىَشض في الاعتثاس. ٍِ خلاه دٍح اىَْزخح ٍثو اىَ

اىشياظيح ٍع أساىية اتخار اىقشاس الاستشاتيديح، تعضص هزٓ اىذساسح استشاتيدياخ ٍنافحح 

 .الأٍشاض وتعضص ّتائح اىصحح اىعاٍح

 اىنيَاخ اىَفتاحيح:

 .تحنٌوتائي، تقذيش اىَعاٍلاخ، الاستقشاس، اىَحاماج، اى َّىرج 
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1.1 | Overview
Throughout history, mathematicians have sought to equip humanity with tools that im-
prove the human experience. One such tool is mathematical modeling, a technique
that allows for reasonably accurate predictions of future events. These forecasts as-
sist in planning at both individual and societal levels. Individuals utilize mathematical
models for financial decisions, including budgeting, insurance, loan management, and
investments. On a broader scale, populations use them to address societal needs such
as food supply, housing, and disease progression. Governments and other authorities
depend on these models to strategize resource allocation, budgeting, infrastructure, and
workforce planning for various concerns.

Over the past few hundred years, populations have suffered devastating losses due
to infectious diseases. Once thought to occur randomly, these diseases were found to be
transmitted through contact with infected individuals or hosts, such as mosquitoes. This
discovery made it possible to track and predict the transmission. With this knowledge,
mathematicians were tasked with developing methods to monitor this transmission and
forecast future infections. Knowing how many people will become infected, where the
infections will take place, how long infected people will remain infectious, and who
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will need medical care is a key input for decision-makers, who are charged with pro-
viding the necessary facilities and care and with ensuring that necessary supplies are
available and that means of infection prevention, such as vaccination and quarantine,
are implemented.

There are many devastating diseases throughout history that have decimated pop-
ulations. The first recorded epidemic was the Plague of Athens in about 430 B.C.E.; the
historian Thucydides described it and its symptoms, progression, and mortality in his
History of the Peloponnesian War. The plague that would become known as the Black
Death swept through Europe from the Mediterranean. This disease is believed to have
caused the deaths of approximately 50-100 million people in the following two years
(1348-1350) (96).

In under a year, the Spanish Flu claimed the lives of 675,000 Americans - surpass-
ing the total U.S. casualties from World War I, World War II, the Korean War, and the
Vietnam War combined. On a global scale, the pandemic is estimated to have caused
between 30 and 40 million deaths. According to the U.S. Centers for Disease Control,
approximately 500 million people, or about one-third of the world’s population at that
time, were infected (14).

In 1520, smallpox devastated the Aztec population, killing nearly half—around 3.5
million people. The outbreak played a crucial role in the success of Cortez’s conquest of
Mexico, as the epidemic severely weakened the native population. Unable to mount an
effective defense or chase the invaders, the Aztecs inadvertently gave the Spanish the
opportunity to regroup, form alliances, and ultimately secure victory (16).

Daniel Defoe’s account of the 1665 London plague vividly conveys the emotional
toll of the epidemic (Defoe, 1722, as cited in Landa, 1991 (19)).

"At that time, mankind withered like grass, and life became but a fleeting shadow. The
streets were overwhelmed by contagion, and its devastating effects left churchyards unable to
accommodate the dead."

Epidemic diseases have undoubtedly inflicted significant harm on individuals and
entire populations. Controlling these outbreaks remains a crucial objective for human-
ity, and mathematicians have long contributed to this vital endeavor.

The application of mathematics to the study of infectious diseases dates back to 1760,
when Daniel Bernoulli (10) developed a method to assess the effectiveness of variola-
tion, an early form of smallpox vaccination. In 1840, William Farr (28) used a normal
curve to analyze quarterly smallpox mortality data. The early 20th century saw ma-
jor advancements in mathematical modeling, notably with Sir Ronald Ross’s research
on malaria transmission between humans and mosquitoes. In 1911 (71), he published
transmission models and introduced a threshold quantity that led to the concept of the
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reproduction number, R0. This groundwork, further developed by Kermack and McK-
endrick in the 1920s (42), provided a robust theoretical foundation for understanding
infection dynamics and forecasting future outbreaks.

In recent decades, mathematical models have been essential for analyzing the trans-
mission dynamics of tuberculosis (TB). As one of the world’s deadliest infectious dis-
eases, analyzing its dynamics is essential for effective control. Research such as that of
(84), which introduced a mathematical model to estimate long-term trends in TB inci-
dence and mortality, has significantly contributed to shaping public health strategies.
Their work highlighted the importance of factors like the latent infection period and
the efficiency of various intervention approaches, including vaccination and treatment
efforts.

A study by (26) utilized a compartmental model to examine TB transmission across
various populations, emphasizing the influence of HIV co-infection and drug resistance
on TB dynamics. The findings of this study helped inform strategies for managing TB
in high-risk populations and underscored the importance of addressing drug-resistant
strains of TB. Such mathematical models are vital for forecasting the transmission dy-
namics of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tu-
berculosis (XDR-TB), especially in settings like (17), where these strains are prevalent.

In addition to these classical epidemiological models, game theory has emerged as
an important tool in understanding the decision-making processes related to TB control.
The use of game theory allows researchers to model the interactions between individ-
uals, healthcare providers, and governments, all of whom may have differing incen-
tives and strategies when it comes to disease prevention and treatment. For instance,
a game-theoretic model can examine how individuals make decisions about TB testing
and treatment based on perceived risks, costs, and benefits, while also considering the
actions of healthcare providers and policymakers. By finding Nash equilibria in these
models, researchers can identify optimal strategies for maximizing public health out-
comes, such as increasing vaccination rates or improving treatment adherence. Game
theory has been utilized in designing intervention strategies that balance individual and
collective interests, playing a crucial role in the effective management of TB transmis-
sion (1; 35; 58; 68; 86).

Public health authorities are much more effective and efficient when they can predict
the features of an epidemic. According to Michael Y. Li (50)According to (2018, p. 2),
authorities aim to address several crucial questions:

1. What is the projected severity of the epidemic? This can be evaluated by:

a) The total number of individuals who might require medical attention.
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b) The peak number of infections occurring simultaneously.

2. What will be the duration of the epidemic? When will the peak occur, and what
will the overall timeline look like?

3. How effective are interventions such as quarantine or vaccination in controlling
the spread?

4. What is the optimal quantity of vaccines or antiviral medications that should be
stockpiled?

5. Which strategies are most effective in containing, managing, and ultimately elim-
inating an endemic disease?

Mathematical models play a vital role in addressing these questions. By accurately
forecasting disease progression and evaluating the effectiveness of containment strate-
gies, they help improve public response, minimize infections, and reduce the overall
impact on the population.

1.2 | Research goals
This study focuses on examining the dynamics of tuberculosis (TB) transmission through
both continuous and discrete dynamical systems. The main aims of this study are:

■ Develop a robust compartmental model to describe TB transmission, considering
various stages of the disease, population groups, and risk factors, in order to un-
derstand TB dynamics in different epidemiological contexts.

■ Analyze the impact of intervention strategies, including vaccination, chemopro-
phylaxis, and public health measures, on TB transmission. This includes assessing
the effectiveness, feasibility, and limitations of these strategies.

■ Apply the model to real-world case studies in countries like Algeria and Ukraine
to evaluate TB control strategies in different demographic and healthcare settings,
factoring in local conditions such as healthcare infrastructure and socio-economic
status.

■ Use game theory to investigate decision-making in TB vaccination strategies, ex-
amining how factors like perceived risk, cost, herd immunity, and disease preva-
lence affect vaccination decisions. The study aims to identify optimal vaccination
strategies for reducing TB transmission effectively.
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1.3 | Thesis outline
The structure of this thesis is as follows:

■ Chapter 1: Basics of dynamical systems This chapter introduces the fundamen-
tal concepts of dynamical systems, covering both continuous and discrete frame-
works. Topics include stability analysis, bifurcation theory, and their relevance to
understanding epidemic transitions.

■ Chapter 2: Mathematical modeling of infectious diseases Here, we explore the
historical development of mathematical epidemiology, key terminologies, and the
goals of epidemic modeling. The chapter reviews classical models, such as SIR
and SEIR, and their applications in predicting disease dynamics.

■ Chapter 3: Some methods of parameter estimation. This chapter explores the
techniques used to estimate parameters in epidemic models, including maximum
likelihood estimation and nonlinear least squares.

■ Chapter 4: A novel compartmental VSLIT model introduces a new model for
tuberculosis, based on the VSLIT framework, and applies it to data from Algeria
and Ukraine.

■ Chapter 5: Discrete-time epidemic modeling with chemoprophylaxis for con-
trolling multidrug-resistant and extensively drug-resistant Tuberculosis in Rus-
sia and India discusses a discrete-time model for controlling multidrug-resistant
tuberculosis, focusing on chemoprophylaxis strategies.

■ Chapter 6: Game theory in tuberculosis vaccination: analyzing nash equilibria
for optimal strategies in Algeria applies game theory to examine optimal vaccina-
tion strategies, focusing on Nash equilibrium solutions for vaccination decisions.

■ Conclusions and Outlook The thesis concludes by summarizing the key findings,
discussing their public health implications, and providing recommendations for
future research.

5



2

Basics of dynamical systems

Contents
2.1 What is a dynamical system? . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Continuous dynamical systems . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Principles of continuous dynamical systems . . . . . . . . . . 8

2.2.2 Analysis of equilibrium points, linearization, and stability . . 11

2.2.3 Poincaré map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 Periodic solutions in planar systems . . . . . . . . . . . . . . . 21

2.2.5 Bifurcation theory . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Discrete dynamical systems . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Principles of discrete dynamical systems . . . . . . . . . . . . 29

2.3.2 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.3 Bifurcation theory . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

This chapter explores the fundamental principles of dynamical systems. We begin by explor-
ing the meaning and significance of dynamical systems. The second section covers the definitions
and key properties of continuous dynamical systems. The third section focuses on defining and
exploring the characteristics of discrete dynamical systems. Additionally, both sections address
the concepts of stability and bifurcation theory.

2.1 | What is a dynamical system?
Dynamical systems are mathematical models used to describe the evolution of a sys-

tem over time. In essence, any system whose state changes with time can be regarded
as a dynamical system.
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More formally, a dynamical system consists of two main components: a state vector
that defines the current condition of the system, and a rule (or function) that governs
how this state changes over time (73).

A dynamical system of dimension n is typically described by a set of n first-order
differential equations in the space Rn, which determine the system’s temporal behavior.

These systems are commonly classified according to the nature of time:

■ Discrete-time systems are those in which time progresses in distinct steps (t ∈ Z

or t ∈ N). These systems are modeled using difference equations or iterative
applications.

■ Continuous-time systems are characterized by time being a continuous variable
(t ∈ R), and their behavior is governed by differential equations.

Some examples of dynamic systems are:

1. Exponential Growth Model:
This model describes population growth and is governed by the equation:

dP
dt

= kP.

where P represents the population size and k > 0 is the growth rate constant.

2. Simple Pendulum Model:
The dynamics of a simple pendulum are captured by the equation:

d2θ

dt2 +
g
L

sin(θ) = 0.

where θ denotes the angular displacement, g is the gravitational acceleration, and
L is the length of the pendulum.

2.2 | Continuous dynamical systems
A continuous-time dynamical system is mathematically expressed as (47):

dx
dt

= ẋ = f (x, t), (2.1)

where f (x, t) is a smooth function defined on a subset U ⊂ Rn ×R. In this formulation,
x = x(t) ∈ Rn denotes the state vector and t ∈ I ⊆ R generally represents time.

■ A system is considered autonomous if f (x, t) does not explicitly include t. In this
case, the system’s trajectories remain unchanged over time.
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■ A system is considered nonautonomous if f (x, t) explicitly depends on t.

To convert an n-dimensional nonautonomous system into an autonomous one, an ad-
ditional variable xn+1 is introduced, where xn+1 = t. Thus, autonomous systems are
developed by introducing such variables to remove explicit time dependence.

2.2.1 | Principles of continuous dynamical systems
Definition 2.1 (47) (Flow) The flow of a vector field describes the time evolution of a system
and is mathematically expressed as:

ϕt(x) : U → Rn,

where ϕt(x) = ϕ(x, t) is a smooth vector function that depends on x ∈ U ⊆ Rn and t ∈ I ⊆ R.
This function satisfies the following differential equation:

d
dt

ϕt(x) = f (ϕt(x)). (2.2)

An initial condition is given by:
x(0) = x0 ∈ U ,

which ensures that the solution ϕ(t, x0) satisfies:

ϕ(0, x0) = x0.

(The solution may also be represented as x(t, x0) or simply x(t).)

Figure 2.1: Flow representation

Property 2.1 The function ϕt(x), representing the system’s flow, exhibits the following prop-
erties:

1. ϕ0 = Id (the identity map),

2. ϕt+s = ϕt ◦ ϕs (composition property).

8
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Definition 2.2 (31) (Orbits and Phase Portraits) The function ϕ(t, x0) is known as the
trajectory, which corresponds to a specific initial state x0. The orbit of x0 ∈ Rn is the set
{ϕ(t, x0) | t ∈ I ⊆ R}. The phase portrait is the collection of all qualitative trajectories of the
system.

Definition 2.3 (60) (Limit Sets ( ω- and α-Limit Sets))

1. A point p ∈ Rn is classified as an ω-limit (or α-limit) point if there exists a sequence {sk}
such that sk → +∞ (or sk → −∞) and satisfies ϕ(sk, x) → p as k → ∞.

2. The collection of all ω-limit (or α-limit) points forms the ω-limit set (or α-limit set), rep-
resented as Lω(x) (or Lα(x)).

3. The union of these sets, Lω(x) ∪ Lα(x), defines the overall limit set of ϕ(t, x0).

Definition 2.4 (44) (Cycle) A cycle refers to a periodic orbit, particularly a non-equilibrium
orbit, denoted by L0. For any point x0 in L0, the system satisfies the condition ϕ(t + T0, x0) =

ϕ(t, x0) for a certain period T0 > 0 and for all t ∈ I .

Definition 2.5 (44) (Limit Cycle) A limit cycle is a closed trajectory γ that belongs to either
Lω(x) or Lα(x), where x is a point not on the cycle γ.

Definition 2.6 (25) (Attractors) Consider a compact, closed, and invariant set A in the phase
space, meaning that ϕ(t, A) = A for all t. The set A is deemed stable for the flow of (2.1) if, for
any neighborhood U surrounding A, there exists another neighborhood V of A such that every
trajectory ϕ(t, x0) remains inside U whenever x0 ∈ V.

Additionally, if
lim
t→∞

ϕ(t, V) = A,

then A is said to be attractive. If A also contains a dense orbit, it is classified as an attractor.
The basin of attraction of A, denoted as B, consists of all points whose trajectories eventually

converge to A, expressed as B = {x0 | limt→∞ ϕ(t, x0) = A}.

Attractors can be categorized into two types: regular attractors and strange (or
chaotic) attractors.

■ Regular attractors: regular attractors characterize the evolution of non-chaotic
systems and can be of three types:

– Fixed point: This is the most basic type of attractor, represented by a single
point within the phase space.
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– Limit cycle (periodic attractor): This is a closed trajectory that attracts all
nearby trajectories.

– Quasi-periodic attractor (torus): This is a trajectory that wraps around a
torus, densely filling its surface, and eventually closes on itself after an in-
finite amount of time.

0 0.5 1 1.5 2
x

1

1.5

2

2.5

3

y

Fixed Point Attractor at (1, 2)

-3 -2 -1 0 1 2 3
x1

-3

-2

-1

0

1

2

3

x2
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Figure 2.2: Regular attractors

■ Strange attractors: the strange attractor is a complex geometric form that charac-
terizes the evolution of chaotic systems. It was introduced by Ruelle and Takens
(18).

The features of a strange attractor are as follows:

– The attractor occupies zero volume within the phase space.

– The strange attractor possesses a fractal (non-integer) dimension. In a con-
tinuous autonomous system, this dimension satisfies 2 < d < n, where n
denotes the phase space’s dimension.

– It exhibits sensitivity to initial conditions (two trajectories that start close to
each other will eventually diverge over time).
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Figure 2.3: Chua Attractor Figure 2.4: Lorenz Attractor

2.2.2 | Analysis of equilibrium points, linearization, and stability
2.2.2.1 | Equilibrium points and stability
Understanding equilibrium points is fundamental to analyzing a system’s local behav-
ior. These points, also known as critical, fixed, stationary, or steady-state points, play a
crucial role in system dynamics.

Definition 2.7 (29) (Equilibrium Point) A point x̄ is considered an equilibrium of a continu-
ous system if it satisfies

f (x̄) = 0 or ϕ(x̄, t) = x̄, ∀t ∈ I ⊆ R.

If this condition is not met, the point is classified as a regular point.
An equilibrium point corresponds to a constant solution x(t) = x̄ of the system (2.1).

Geometrically, an equilibrium point represents the location where the function f (x)
intersects the x-axis, indicating a state of balance in the system.

Let x̄(t) be a solution of (2.1). Generally, x̄(t) is considered stable if nearby solutions
remain close over time. Furthermore, it is deemed asymptotically stable if these solu-
tions not only stay near but also converge to x̄(t) as t → ∞. The formal definition of
stability is given below:

Definition 2.8 (94) (Lyapunov Stability) A solution x̄(t) is said to be stable (or Lyapunov
stable) if, for every ϵ > 0, there exists δ = δ(ϵ) > 0 such that any solution y(t) of (2.1)
satisfying

|x̄(t0)− y(t0)| < δ,
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(where | · | denotes a norm in Rn), also satisfies

|x̄(t)− y(t)| < ϵ, ∀t > t0, t0 ∈ R.

If this condition is not satisfied, the solution is considered unstable.

Lyapunov stability ensures that small perturbations in initial conditions do not cause
significant deviations in system behavior over time.

Definition 2.9 (94) (Asymptotic Stability) A solution x̄(t) is considered asymptotically sta-
ble if it satisfies Lyapunov stability and, additionally, for every solution y(t) of (2.1), there exists
a constant b > 0 such that if |x̄(t0)− y(t0)| < b, then limt→∞ |x̄(t)− y(t)| = 0.

Refer to Figures 2.5, 2.6 for a visual representation of these two definitions.

ϵ

Figure 2.5: Lyapunov stability
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Figure 2.6: Asymptotic stability

2.2.2.2 | Linearization (Indirect method)
A common approach for analyzing nonlinear systems, such as the one given in equa-
tion (2.1), is to find their equilibrium points. A useful approach for examining solu-
tion behavior near a hyperbolic equilibrium is to linearize the system around that point.
This technique, known as the second Lyapunov method or the indirect stability method,
helps assess stability.

To assess the stability of the trajectory x̄(t), we analyze how solutions behave near
it. We begin by introducing a small perturbation around the solution, denoted as z,
ensuring that

x = x̄(t) + z. (2.3)

By substituting this into the system (2.1) and expanding using a Taylor series around
x̄(t), yields:

ẋ = ˙̄x(t) + ż = f (x̄(t)) + J f (x̄(t))z +O(|z|2), (2.4)

where J f represents the Jacobian matrix of f , and | · | denotes a norm in Rn. This
approximation requires f to be at least twice continuously differentiable. Given that
˙̄x(t) = f (x̄(t)), the equation simplifies to:

ż = J f (x̄(t))z +O(|z|2). (2.5)
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This expression characterizes the local dynamics around x̄(t). To facilitate stability anal-
ysis, we focus on the linearized system by neglecting higher-order terms O(|z|2):

ż = J f (x̄(t))z. (2.6)

The stability of x̄(t) depends on the properties of this linear system. The analysis follows
these steps:

1. Assess the stability of the trivial solution z = 0 in the linearized system (2.6).

2. Determine whether the stability (or instability) of the linearized system translates
to the original nonlinear system at x̄(t).

In Step 1, solving the linear system can be complex, particularly if the system’s coeffi-
cients vary with time. However, when x̄(t) corresponds to an equilibrium (i.e., x̄(t) = x̄,
point), the Jacobian matrix simplifies to J f (x̄(t)) = J f (x̄) = A, which remains constant.
In this case, the solution to (2.6) with initial condition z0 at t = 0 is:

z(t) = eAtz0. (2.7)

This solution is asymptotically stable if all eigenvalues of A have negative real parts.
The next step in the analysis follows from the subsequent theorem.

Theorem 2.1 (Lyapunov’s Stability Theorem via Linearization (7)) If all eigenvalues of the
Jacobian matrix A = J f (x̄) have negative real parts, then the equilibrium point x = x̄ in the
nonlinear system (2.1) is asymptotically stable. On the other hand, if at least one eigenvalue has
a positive real part, the equilibrium loses Lyapunov stability.

Definition 2.10 (Hyperbolic Equilibrium Point (60)) Consider a system ẋ = f (x) with
x ∈ Rn and let x = x̄ be an equilibrium point. This equilibrium is classified as hyperbolic if
none of the eigenvalues of the Jacobian matrix J f (x̄) have a real part equal to zero.

Definition 2.11 (60) Consider the system (2.1). An equilibrium point x̄ is called a sink if all
eigenvalues of the Jacobian matrix J f (x̄) have negative real parts. In contrast, it is identified as
a source when all eigenvalues have positive real parts. If the equilibrium is hyperbolic and J f (x̄)
has at least one eigenvalue with a positive real part and another with a negative real part, the
equilibrium is termed a saddle point.

Theorem 2.2 (Hartman-Grobman Theorem (31)) If the Jacobian matrix J f (x̄) at an equilib-
rium point x̄ has no eigenvalues with zero real parts or purely imaginary eigenvalues, then there
exists a local homeomorphism h in a neighborhood U of x̄ ∈ Rn. This homeomorphism maps
the trajectories of the nonlinear system φt from equation (2.1) onto those of the linearized system
etJ f (x̄), preserving their qualitative behavior and possibly their time parametrization.

14



Chapter 2. Basics of dynamical systems 2.2. Continuous dynamical systems

The Hartman-Grobman theorem plays a crucial role in studying the local and qual-
itative dynamics of a system. It asserts that near a hyperbolic equilibrium point, the
behavior of a nonlinear system closely resembles that of its linearized counterpart. Ad-
ditionally, the theorem enables the identification of local solutions for the nonlinear sys-
tem through homeomorphism.

Definition 2.12 (Stable and Unstable Manifolds (31)) Consider a hyperbolic equilibrium
point x̄ within a neighborhood U. The local stable and unstable manifolds, denoted by Ws

loc(x̄)
and Wu

loc(x̄), are defined as follows:

Ws
loc(x̄) = {x ∈ U | φ(t, x) → x̄ as t → +∞, φ(t, x) ∈ U for all t ≥ 0},

Wu
loc(x̄) = {x ∈ U | φ(t, x) → x̄ as t → −∞, φ(t, x) ∈ U for all t ≤ 0}.

The corresponding global stable and unstable manifolds are given by:

Ws(x̄) =
⋃
t≤0

φ(t, Ws
loc(x̄)),

Wu(x̄) =
⋃
t≥0

φ(t, Wu
loc(x̄)).

Theorem 2.3 (Stable Manifold Theorem for an Equilibrium Point (31)) Consider x̄ as a
hyperbolic equilibrium of system (2.1), where the stable and unstable subspaces of the linearized
system (2.6) are denoted by Es and Eu, respectively. In the original nonlinear system, the local
stable and unstable manifolds, Ws

loc(x̄) and Wu
loc(x̄), exist and have dimensions matching those

of Es and Eu. Furthermore, these manifolds are tangent to Es and Eu at x̄ and maintain the same
degree of smoothness as the function f .

When studying the stability of equilibrium points through linearization, the stability
properties are determined by the roots of the characteristic polynomial associated with
the Jacobian matrix at the equilibrium. Below are fundamental properties and results
concerning these roots.

A polynomial with real coefficients is given by:

q(λ) = b0λm + b1λm−1 + · · ·+ bm−1λ + bm, bi ∈ R, b0 ̸= 0. (2.8)

Theorem 2.4 (Fundamental Theorem of Algebra) (94) The Fundamental Theorem of Alge-
bra states that the polynomial q(λ) in (2.8) has exactly m roots, which may be real or complex.
These roots, denoted as λ1, . . . , λm, can also have multiplicities.

For polynomials with real coefficients, if λ is a root of (2.8), then its complex con-
jugate λ must also be a root. This follows from substituting λ into (2.8), taking the
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complex conjugate, and using the fact that all coefficients are real. As a result, complex
roots always appear in conjugate pairs.

The next theorem provides a method for estimating the number of positive real roots
based on the polynomial’s coefficients.

Theorem 2.5 (Descartes’ Rule of Signs) (94) Given the coefficient sequence of (2.8):

bm, bm−1, . . . , b1, b0,

let v denote the number of sign changes between consecutive terms in this sequence. The number
of positive real roots of the polynomial is either v or a smaller even integer. For example, if v = 1,
the polynomial has exactly one positive real root.

2.2.2.3 | Routh-Hurwitz criterion
To assess the asymptotic stability of an equilibrium point, one typically computes the
n eigenvalues λi of the matrix A and verifies that each eigenvalue has a negative real
part, meaning Re(λi) < 0 for all i. An algebraic method, developed by Routh and
Hurwitz, simplifies this process by using specific determinants known as the Routh-
Hurwitz determinants (94).

Consider the dynamical system:

dx
dt

= Φ(x),

where x represents the state variables. Linearizing around an equilibrium point gives
the system:

dx
dt

= Bx,

where B is the Jacobian matrix evaluated at the equilibrium.
The stability of the equilibrium depends on the eigenvalues of B, which are obtained

by solving the characteristic equation:

q(λ) = det(B − λI) = 0 ⇐⇒ λn + b1λn−1 + b2λn−2 + · · ·+ bn−1λ + bn = 0.

the Routh-Hurwitz determinants are defined as follows:

R1 = |b1| ,

R2 =

∣∣∣∣∣ b1 1
b3 b2

∣∣∣∣∣ ,

R3 =

∣∣∣∣∣∣∣
b1 1 0
b3 b2 b1

b5 b4 b3

∣∣∣∣∣∣∣ ,
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Rk =

∣∣∣∣∣∣∣∣∣∣∣∣∣

b1 1 0 · · · 0
b3 b2 b1 · · · 0
b5 b4 b3 · · · 0
...

...
...

. . .
...

b2k−1 b2k−2 b2k−3 · · · bk

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Proposition 2.1 For an n-dimensional system, the elements rjk of the Routh-Hurwitz determi-
nants satisfy:

∗ rjk = b2j−k for 0 ≤ 2j − k ≤ n,

∗ rjk = 1 when 2j = k,

∗ rjk = 0 when 2j < k or 2j > n + k.

Proposition 2.2 An equilibrium point is asymptotically stable if and only if:

∀ Re(λi) < 0 ⇐⇒ ∀ Re(Ri) > 0.

Theorem 2.6 (Routh-Hurwitz Stability Criterion) (5) For the polynomial q(λ) with b0 >

0, the system exhibits uniform asymptotic stability if and only if all leading principal minors of
the corresponding Hurwitz matrix are strictly positive.

2.2.2.4 | Lyapunov function (Direct method)
To analyze the stability of a hyperbolic equilibrium point x̄, one typically examines the
real parts of the eigenvalues of J f (x̄). However, for non-hyperbolic equilibrium points,
stability analysis is often more challenging. A common approach involves constructing
a positive definite function L : U → R, known as a Lyapunov function, as outlined in
the following theorem (94):

Theorem 2.7 Consider the system:

ẋ = f (x), x ∈ Rn. (2.9)

Let x̄ be an equilibrium point, and suppose there exists a continuously differentiable function
L : U → R defined in a neighborhood U of x̄ such that:

■ L(x̄) = 0 and L(x) > 0 for all x ̸= x̄,

■ L̇(x) ≤ 0 in U \ {x̄}.

Then, the equilibrium x̄ is stable. Additionally, if:

■ L̇(x) < 0 in U \ {x̄},

17
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then x̄ is asymptotically stable.

Example 2.1 Consider the system: {
u̇ = −u − uv2,
v̇ = −v + 3u2v.

The origin (0, 0) is an equilibrium point of this system.
We define the Lyapunov function as V(u, v) = c1u2 + c2v2, where c1, c2 > 0. Clearly,

V(0, 0) = 0 and V(u, v) > 0 for (u, v) ̸= (0, 0).
Computing the derivative along system trajectories:

grad(V(u, v)) · g(u, v) = −2c1u2 − 2c1u2v2 − 2c2v2 + 6c2u2v2.

Choosing c1 = 3 and c2 = 1 simplifies this expression to:

grad(V(u, v)) · g(u, v) = −6u2 − 2v2 < 0 for (u, v) ̸= (0, 0).

Thus, the function V(u, v) = 3u2 + v2 serves as a strict Lyapunov function in R2, proving that
(0, 0) is asymptotically stable.

2.2.2.5 | LaSalle’s invariance principle
Theorem 2.8 (46) (LaSalle’s invariance principle) Consider a subset Rn of Rn, and assume
that U ⊂ Rn is a positively invariant set. Let L : Rn → R be a continuously differentiable
function satisfying the following conditions:

1. The time derivative L̇(x) is non-positive throughout U, i.e., L̇(x) ≤ 0 for all x ∈ U.

2. Define the set E as E = {x ∈ U | L̇(x) = 0}, and let L represent the largest invariant
subset contained in E.

Then, any bounded trajectory that originates within U will asymptotically approach the set L as
time progresses.

This theorem is a fundamental tool for analyzing dynamical systems. Unlike Lya-
punov’s direct method, LaSalle’s principle does not require L to be positive definite or
L̇ to be strictly negative. However, it ensures only the attractivity of an equilibrium and
does not guarantee convergence to a single equilibrium unless L is reduced to a single
point. Moreover, it does not provide information about the stability of the equilibrium.

Corollary 2.1 Let Rn be an open, connected set containing x̄, and suppose there exists a con-
tinuously differentiable, positive definite function L : U → R that satisfies L̇(x) ≤ 0 for all
x ∈ U. Then:

18
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■ If the only positively invariant subset of E is x̄, then x̄ is asymptotically stable.

■ If L(x) → +∞ as ∥x∥ → ∞, then all trajectories of the system remain bounded and x̄ is
globally stable.

Corollary 2.2 Under the same conditions, if E is reduced to x̄, then x̄ is globally asymptotically
stable.

2.2.3 | Poincaré map
The Poincaré map serves as a key method for analyzing periodic orbits in dynamical
systems. It simplifies the analysis of an n-dimensional continuous system by transform-
ing it into an iteration of a lower-dimensional discrete map. Specifically, near a periodic
orbit, the system can be represented by a map acting on a transverse section of dimen-
sion n − 1, thereby reducing the complexity of the problem (62).

Consider a dynamical system governed by ẋ = f (x), where x0 represents a periodic
orbit. Let Σ be a hyperplane transverse to the orbit at x0. For any point x in a small
neighborhood of x0, the solution that passes through x at t = 0 will eventually return to
Σ at some later time. This leads to the definition of the Poincaré map, also known as the
first return map:

x 7→ P(x). (2.10)

Theorem 2.9 Let U be an open subset of Rn, and assume that f is a Ck function in U. Suppose
φ(t, x0) is a periodic solution of the system ẋ = f (x) with period T, and the corresponding
closed trajectory

γx0 = {x ∈ Rn | x = φ(t, x0), 0 ≤ t ≤ T}.

remains entirely within U. Let Σ be a hyperplane that intersects γx0 transversely at x0. Then, for
a sufficiently small ϵ > 0, there exists a unique function τ(x) ∈ Ck, defined in a neighborhood
Nϵ(x0) ∩ Σ, such that:

τ(x0) = T, and φ(τ(x), x) ∈ Σ for all x ∈ Nϵ(x0) ∩ Σ.

Furthermore, τ(x) represents the first return time of x to Σ, defining the Poincaré map P :
Nϵ(x0) ∩ Σ → Σ given by:

P(x) = φ(τ(x), x).

Definition 2.13 The function P defining the Poincaré map is given by:

P : Nϵ(x0) ∩ Σ → Σ, x 7→ P(x) = φ(τ(x), x).

It is a Ck smooth function and acts as a local diffeomorphism.
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The stability of a periodic orbit depends on the derivative of the Poincaré map. If
P(0) = 0 and P′(0) < 1, the orbit is stable, whereas if P′(0) > 1, the orbit is unstable.

Theorem 2.10 Consider a system defined in an open set U ⊂ R2, where f is continuously
differentiable. Let φ(t) be a periodic solution of ẋ = f (x) with period T. The derivative of the
Poincaré map P(s) along the transverse section Σ at x = 0 is expressed as:

P′(0) = exp
(∫ T

0
∇ f (φ(t)) dt

)
.

This derivative determines the local stability of the periodic orbit.

Corollary 2.3 Under the same conditions as Theorem 2.10, the periodic trajectory φ(t) forms
a stable limit cycle if:

∫ T

0
∇ f (φ(t)) dt < 0.

Conversely, the cycle is unstable if:

∫ T

0
∇ f (φ(t)) dt > 0.

Definition 2.14 A periodic orbit is termed a limit cycle of multiplicity k if:

d(s) = P(s)− s and d(k)(0) ̸= 0.

The classification depends on k as follows:

■ If k = 1, the limit cycle is said simple.

■ If k is even, the limit cycle exhibits semi-stable.

■ If k is odd, its stability is determined by the sign of d(k)(0):

– Stable if d(k)(0) < 0,

– Unstable if d(k)(0) > 0.

Theorem 2.11 A planar analytic system governed by ẋ = f (x) cannot sustain an unbounded
sequence of limit cycles converging to a single orbit.
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𝟎

Figure 2.7: Poincaré section.

2.2.4 | Periodic solutions in planar systems
This subsection explores two-dimensional autonomous systems, represented as:{

u̇ = F(u, v),
v̇ = G(u, v),

(2.11)

where F and G are continuously differentiable functions. These conditions ensure the
well-posedness of initial value problems, guaranteeing the existence and uniqueness of
solutions. The following theorem provides fundamental insights into periodic solutions
of system (2.11).

Theorem 2.12 (Poincaré-Bendixson (74)) If a compact and nonempty limit set of a planar
dynamical system contains no equilibrium points, then it must correspond to a closed trajectory.

This result follows from the uniqueness of solutions, which prevents intersections
of trajectories in the phase plane. Consequently, solutions must either be periodic or
converge to an equilibrium.
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Two well-known mathematical criteria establish conditions under which periodic
orbits cannot exist: Bendixson’s criterion and Dulac’s criterion. These are presented
below.

Theorem 2.13 (Bendixson’s Criterion (3)) Let D be a simply connected open subset of R2. If
the divergence of the vector field, given by

div(F, G) =
∂F
∂u

+
∂G
∂v

,

is nonzero and maintains a constant sign throughout D, then system (2.11) does not admit
periodic orbits in D.

Theorem 2.14 (Dulac’s Criterion (3)) Consider a simply connected open region D ⊂ R2,
and let B(u, v) be a continuously differentiable positive function in D. If the divergence of the
weighted vector field

div(BF, BG) =
∂(BF)

∂u
+

∂(BG)

∂v
,

is nonzero and maintains a constant sign in D, then system (2.11) does not exhibit periodic
orbits within D.

2.2.5 | Bifurcation theory
The dynamics of vector fields on a line are quite straightforward: solutions either stabi-

lize at equilibrium points or move towards infinity. Although one-dimensional systems
may appear simple, they are fascinating due to their dependence on parameters. As
these parameters vary, the qualitative nature of the flow can change, potentially creating
or eliminating fixed points or altering their stability. Such significant transformations in
system dynamics are known as bifurcations, with the critical parameter values where
these changes occur referred to as bifurcation points.

Bifurcations play a crucial role in scientific studies as they describe transitions and
instabilities that arise when a control parameter varies. Consider a beam subjected to
an increasing load: with a light weight, the beam remains upright and stable. How-
ever, beyond a critical threshold, the vertical position loses stability, causing the beam
to buckle. In this case, the applied weight serves as the control parameter, while the
beam’s deviation from its vertical position represents the dynamic variable x (77).
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Figure 2.8: The buckling of the beam under a heavy load (77)

Let’s explore the most fundamental types of bifurcation.

2.2.5.1 | Saddle-Node bifurcation
A saddle-node bifurcation arises in a first-order system given by:

ẋ = µ + x2, (2.12)

where µ is a control parameter that influences the system’s equilibrium states. The
nature of equilibrium points varies based on µ:

■ If µ < 0: Two equilibrium points exist at x̄ = ±√−µ, with one being stable and
the other unstable.

■ If µ = 0: The two equilibrium points merge into a single semi-stable equilibrium
at x̄ = 0.

■ If µ > 0: No equilibrium points remain, eliminating steady-state solutions.

The critical value µ = 0 acts as the bifurcation point, signaling a fundamental shift in
system behavior. This type of bifurcation is known as a saddle-node bifurcation since,
for µ < 0, two equilibrium points emerge (one stable, one unstable), but they vanish
when µ surpasses zero.
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Saddle-Node

Stable

Bifurcation point

Unstable x

Figure 2.9: Representation of a saddle-node bifurcation.

2.2.5.2 | Transcritical bifurcation
A transcritical bifurcation occurs in the system:

ẋ = µx − x2, (2.13)

where µ is a parameter that governs the equilibrium states and their stability:

■ If µ < 0: The system has two equilibrium points: x = 0 (stable) and x = µ

(unstable).

■ If µ = 0: The equilibria coincide at x = 0, leading to a change in stability.

■ If µ > 0: The equilibrium points persist, but their stability reverses: x = 0 becomes
unstable, while x = µ turns stable.

This phenomenon is known as a transcritical bifurcation because the equilibrium points
exchange their stability characteristics as µ transitions through zero.
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Transcritical

Stable

Unstable

Stable

Unstable

x

Figure 2.10: Illustration of a transcritical bifurcation.

2.2.5.3 | Pitchfork bifurcation
Supercritical Pitchfork bifurcation

The supercritical pitchfork bifurcation is described by the system:

ẋ = µx − x3, (2.14)

where µ is the bifurcation parameter. The stability and existence of equilibrium points
are as follows:

■ For µ < 0: A single stable equilibrium exists at x = 0.

■ At µ = 0: The equilibrium at x = 0 remains stable, and two additional equilibria
begin to emerge.

■ For µ > 0: The equilibrium at x = 0 becomes unstable, while two new stable
equilibria appear at x = ±√

µ.
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supercritical pitchfork
x Stable

Unstable

Stable

Stable

Figure 2.11: Supercritical pitchfork bifurcation.

Subcritical Pitchfork bifurcation
The subcritical pitchfork bifurcation follows the system:

ẋ = µx + x3, (2.15)

where µ is the bifurcation parameter. The system behaves as follows:

■ For µ < 0: There is a stable equilibrium at x = 0 and two unstable equilibria at
x = ±√−µ.

■ At µ = 0: All three equilibria merge at x = 0.

■ For µ > 0: The equilibrium at x = 0 becomes unstable, while the two unstable
equilibria disappear.
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Subcritical Pitchfork
x

Unstable

Unstable

Unstable

Stable

Figure 2.12: Subcritical pitchfork bifurcation.

2.2.5.4 | Hopf bifurcation
Consider the system governed by the control parameter α:{

Ẋ = αX − Y − X(X2 + Y2),
Ẏ = X + αY − Y(X2 + Y2).

This system always has an equilibrium point at (X, Y) = (0, 0) for any value of α. Ex-
pressing it in complex form:

ż = (α + i)z − z|z|2,

where z = X + iY, and rewriting it in polar coordinates z = ρeiϕ, yields:{
ρ̇ = ρ(α − ρ2),
ϕ̇ = 1.

(2.16)

The stability of ρ depends on α:

■ For α < 0, the equilibrium ρ = 0 remains stable.

■ At α = 0, the system exhibits neutral stability.

■ When α > 0, ρ = 0 becomes unstable, giving rise to a stable limit cycle at ρ0(α) =√
α.
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Figure 2.13: Illustration of a supercritical Hopf bifurcation.

This corresponds to a supercritical Hopf bifurcation, where a stable equilibrium trans-
forms into a stable limit cycle as α moves past zero.

2.3 | Discrete dynamical systems
Definition 2.15 (Maps and Flows (47)) A map is generally a function g : X → X , where the
system evolves step by step, and the state at step n + 1, denoted as xn+1, is given by:

xn+1 = g(xn). (2.17)

Through iteration, this function follows:

g0(x) = x, g1(x) = g(x), gk(x) = g
(

gk−1(x)
)
, ∀k ≥ 2.

Similarly, the sequence of states progresses as:

x0, x1 = g(x0), x2 = g2(x0), . . . , xk = gk(x0).

For discrete dynamical systems, a flow ϕτ(x) on X provides an alternative representation, where
g(x) = ϕτ(x). Here, x ∈ X represents the state, and τ ∈ R denotes the discrete time parameter.
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2.3.1 | Principles of discrete dynamical systems
Definition 2.16 (Orbits (47)) The forward orbit of an initial point x0 is the sequence:

O+(x0) = {gk(x0)}∞
k=0 = {x0, g(x0), g2(x0), . . . , gn(x0), . . . }.

Similarly, the backward orbit of x0 is given by:

O−(x0) = {x0, g−1(x0), g−2(x0), . . . , g−n(x0), . . . }.

Definition 2.17 (Fixed Point (47)) A point x̄ is a fixed point of the function g : R → R if it
satisfies:

g(x̄) = x̄.

Example 2.2 Consider the function g : R → R given by g(x) = 4x(1 − x). To identify its
fixed points, we solve g(x) = x, leading to:

4x(1 − x) = x.

Rearranging the terms, we find the solutions x = 0 and x = 3
4 .

A fixed point x̄ satisfies g(x̄) = x̄, applying g repeatedly gives:

g2(x̄) = g(g(x̄)) = g(x̄) = x̄.

Extending this further, we get g3(x̄) = x̄ and, more generally, gk(x̄) = x̄ for any k ∈ N.
Therefore, starting from xn = x̄, the sequence remains constant at x̄, indicating that x̄ is an
equilibrium point of the system.
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g
(x
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Map g(x) = 4x(1 - x) with Fixed Points

g(x)
y = x
Fixed Points

Figure 2.14: Fixed points of g(x) = 4x(1 − x).
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Definition 2.18 (Stable and Unstable Fixed Points (47)) A fixed point x̄ is considered stable
if, for any ϵ > 0, there exists δ > 0 such that whenever ∥x0 − x̄∥ ≤ δ, the sequence satisfies
∥xn − x̄∥ ≤ ϵ for all n ≥ 1.

If a fixed point does not satisfy this stability condition, it is classified as unstable.

Definition 2.19 (Periodic Points (53)) A point x is called periodic with period k (or a k-periodic
point) for a function f : R → R if:

f k(x) = x.

The smallest positive integer k that satisfies this equation is known as the fundamental period of
x.

Example 2.3 Let us analyze the behavior of the logistic map:

f (x) = ax(1 − x),

where 0 < a ≤ 4. To find 2-periodic points, we solve the system: f 2(x) = x,

f (x) ̸= x.

For 2 < a ≤ 4, this system has two distinct solutions:

x1 =
a + 1 +

√
a2 − 2a − 3

2a
,

and

x2 =
a + 1 −

√
a2 − 2a − 3

2a
.

These values correspond to the points in a periodic cycle of length 2. Graphically, they rep-
resent the intersections of the curve f 2(x) = f ( f (x)) with the line y = x, while ensuring
f (x) ̸= x, as illustrated in Figure 2.15.

Definition 2.20 (Periodic Cycles (53)) For a one-dimensional function g : R → R, suppose
two distinct points p and q satisfy:

g(p) = q, g(q) = p.

This implies:

g2(p) = g(g(p)) = g(q) = p, g2(q) = g(g(q)) = g(p) = q.

This demonstrates that the set {p, q} forms a cycle of period 2, also known as a 2-cycle or
2-orbit. Notably, the points within this cycle are fixed points of g2.
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Figure 2.15: Visualization of a 2-periodic cycle, where the intersections of f 2(x) with
y = x indicate periodic points.

Definition 2.21 (Stability of a Periodic Point (53)) A periodic point with period k for a function
g : R → R is classified based on its stability under gk:

■ It is termed stable if it functions as a stable fixed point of gk.

■ It is labeled unstable if it acts as an unstable fixed point of gk.

Definition 2.22 (Stability of a Periodic Cycle (53)) A periodic orbit (x0, x1, . . . , xp−1) within
a dynamical system defined by g is stable if each of its points xi (for i = 0, 1, . . . , p − 1) serves
as a stable fixed point under the function gp.

If a periodic orbit fails to meet this stability criterion, it is referred to as unstable.

Definition 2.23 (Eventually Fixed Points, Periodic Points, and Periodic Orbits (47))

■ A point p is referred to as an eventually fixed point of a function g if it is not initially
a fixed point but reaches one after a finite number of iterations. Specifically, p satisfies
gn(p) = x, where x is a fixed point of g, and for some positive integer n, it holds that
gn−1(p) ̸= x. This ensures that applying g once more yields gn+1(p) = g(gn(p)) =

g(x) = x, confirming that gn(p) remains unchanged under g.

■ A point p is called an eventually periodic point if it does not start as periodic but becomes
so after a finite number of iterations. More formally, p is eventually periodic with period k
if there exists an integer N > 0 such that for all n ≥ N, the condition gn+k(p) = gn(p)
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holds. This implies that after a certain number of iterations, gn(p) behaves as a k-periodic
point of g.

■ An orbit is referred to as an eventual periodic orbit if it initially follows a non-repeating
path but eventually settles into a periodic cycle after a finite number of steps.

Cobweb method
The cobweb method is a visual technique for analyzing trajectories in dynamical sys-
tems. Fixed points of a function f (x) are located at the intersections of its graph with the
line y = x. To depict the trajectory O(x0), the method follows these steps as described
in (53):

■ Draw a vertical segment from (xn, 0) to (xn, f (xn)).

■ Connect it with a horizontal segment from (xn, f (xn)) to ( f (xn), f (xn)) along the
line y = x.

■ Repeat the process to visualize the orbit’s trajectory and its convergence or diver-
gence.

Example 2.4 Examples with the logistic map f (x) = ax(1 − x):

1. Convergence to a fixed point: For f (x) = 2.9x(1 − x), the trajectory O(x0) spirals
towards the fixed point x∗ = 19

29 (see Figure 2.16).

2. Periodic orbits: For f (x) = 3.4x(1 − x), O(x0) converges to a 2-periodic orbit (see
Figure 2.17).

3. Higher-periodic orbits: For f (x) = 3.4495x(1 − x), O(x0) converges to a 4-periodic
orbit (see Figure 2.18).

4. Chaotic behavior: For f (x) = 4x(1 − x), O(x0) shows chaotic behavior (see Figure
2.19).
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Figure 2.16: Cobweb plot for f (x) = 2.9x(1 − x) showing convergence to a stable fixed
point.
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Figure 2.17: Cobweb plot for f (x) = 3.4x(1− x) illustrating convergence to a 2-periodic
orbit.
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Figure 2.18: Cobweb plot for f (x) = 3.4495x(1 − x) showing convergence to a 4-
periodic orbit.
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Figure 2.19: Cobweb plot for f (x) = 4x(1 − x) illustrating chaotic dynamics.

2.3.2 | Stability analysis
Studying the behavior of a discrete dynamical system requires examining the stability of
its fixed points. In this context, we focus primarily on fixed points. For periodic points
with period p, it suffices to analyze the p-th iteration of the function (59).
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Consider a discrete-time nonlinear system described by:

x(n + 1) = F(x(n)), (2.18)

where the system’s evolution follows:

x(n) = x(n, n0, x(n0)), (2.19)

subject to the initial condition:
x(n0) = x(0). (2.20)

A fixed point x̄ of the system satisfies:

x̄ = F(x̄). (2.21)

Definition 2.24 A system is considered Lyapunov stable at a fixed point x̄ if any small pertur-
bation from x̄ does not grow significantly over time, meaning the trajectory remains arbitrarily
close to x̄ for all future steps. Formally, this means:

∀ϵ > 0, ∃δ > 0 such that if ∥x (n0)− x̄∥ < δ, then ∥x (n, n0, x (n0))− x̄∥ < ϵ, ∀n ≥ n0.

Definition 2.25 A fixed point x̄ is said to be attractive if trajectories that begin close to x̄ tend
to approach it as time progresses. Formally, this is expressed as:

∀n0 ∈ N, ∃δ0(n0) such that: ∥x (n0)− x̄∥ < δ0 (n0) ⇒ lim
n→∞

x(n, n0, x(n0)) = x̄.

If δ0(n0) = +∞, the fixed point is globally attractive.

Definition 2.26 A fixed point x̄ is considered asymptotically stable if it satisfies both Lyapunov
stability and attractiveness.

2.3.2.1 | Linearization (Indirect method)
Consider a nonlinear system given by equation (2.18), which can be locally approxi-
mated near x̄ = 0 using a Taylor series expansion:

x(n + 1) = Ax(n) + r(∥x∥).

where A is a constant matrix, and the remainder term r(∥x∥) satisfies:

lim
∥x∥→0

∥r(∥x∥)∥
∥x∥ = 0.

By omitting the higher-order terms, we arrive at the linearized system:

x(n + 1) = Ax(n).

This system represents a local approximation of equation (2.18) near x̄ = 0, enabling us
to evaluate the stability of the nonlinear system at this equilibrium point.
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Theorem 2.15 Consider the eigenvalues of the matrix A:

1. If all eigenvalues have absolute values strictly less than one, then x̄ is asymptotically stable.

2. If at least one eigenvalue has an absolute value greater than one, then x̄ is unstable.

3. If some eigenvalues lie on the unit circle while others are inside it, the stability of x̄ cannot
be determined definitively.

2.3.2.2 | Lyapunov function (Direct method)
The Lyapunov direct method provides a stability analysis without requiring an explicit
solution of the system’s equations.

We introduce a function L(x(n)) : Rn → R+, known as the Lyapunov function,
which satisfies the following condition:

■ The function L(x(n)) is positive definite, meaning it satisfies L(x(n)) > 0 for all
x(n) ̸= 0, and L(0) = 0.

The key idea is to study the behavior of L(x(n)) instead of directly analyzing x(n, n0, x(n0)).
If the difference ∆L(x(n)) is negative definite for all n and for x(n) in a neighborhood
of x̄ = 0, such that:

∀x(n), ∆L(x(n)) = L(x(n + 1))−L(x(n)) = L(F(x(n)))−L(x(n)) < 0,

then the equilibrium point x̄ = 0 is considered stable.

2.3.3 | Bifurcation theory
Consider the following nonlinear dynamical system:

x(n + 1) = F(x(n), α), (2.22)

where x(n) ∈ Rn, α ∈ Rm, n ∈ N, and F : Rn × Rm × N → Rn.

Definition 2.27 We define a bifurcation as a qualitative change in the solution x̄ of system
(2.22) that arises from variations in the control parameter α. This change manifests as the emer-
gence of new solutions, the disappearance of existing ones, or an alteration in their stability
properties.

Definition 2.28 A bifurcation diagram is a graphical representation of the parameter space
that maps all bifurcation points, illustrating how the system’s qualitative behavior changes as a
parameter varies.
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Types of bifurcation
There are several types of bifurcation based on the properties of the second derivatives
of the family of functions F(x(n), α). Each type of bifurcation is characterized by a
normal form, which is the typical general equation for that type of bifurcation (31; 33).
Among the different types of bifurcations for discrete dynamical systems, we find (59):

Fold bifurcation (Pli bifurcation)
The fold bifurcation is a catastrophic bifurcation. This means that when the control pa-
rameter varies, two cycles of order k with different stabilities appear. At the bifurcation
point, the two cycles merge, and the multiplier DF(x(k), α) equals 1. To understand the
mechanism of this bifurcation, let us now look at a specific example.

Example 2.5 Consider the dynamical system defined by the function:

fc(x) = x2 + x + c,

where c is the bifurcation parameter. The graphs of the function fc(x) for c > 0, c = 0, and
c < 0 are shown in Figure 4.1.

The fixed points of the equation x2 + x + c = x are solutions of

x2 + c = 0,

For c > 0, there are no real fixed points. For c = 0, there is one fixed point at x = 0. For
c < 0, there are two fixed points given by x1, x2 = ±

√
−c. The iteration fc(x) exhibits a fold

bifurcation at c = 0, with the fixed point x = 0 having a multiplier f ′(0) = 1. For c < 0, the
multipliers of the points x1 =

√
−c and x2 = −

√
−c are:

f ′(x1) = 2
√
−c + 1 > 1 (x1 is repulsive),

f ′(x2) = −2
√
−c + 1 < 1 (x2 is attractive).

The bifurcation diagram in the (c, x) space is shown in Figure 2.20.
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Figure 2.20: Bifurcation diagram illustrating the Fold bifurcation.

Period-doubling bifurcation (Flip bifurcation)
This bifurcation occurs when a stable cycle of order k has a multiplier that passes through
DF(x(k), α) = −1. The cycle then becomes unstable and gives rise to a stable cycle of
order 2k.

Example 2.6 Consider the logistic function f defined by:

fa(x) = ax(1 − x).

where a is the bifurcation parameter. The logistic function fa(x) undergoes a period-doubling
bifurcation at a = 3 at the fixed point x1 = a−1

a with a multiplier S = −1. The bifurcation
diagram in the (a, x) space is shown in Figure 2.21.
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Figure 2.21: Bifurcation diagram illustrating the period-doubling bifurcation.

Neimark-sacker bifurcation
The Neimark-Sacker bifurcation can occur only in systems with dimensions greater than
one. It is distinguished by the emergence of a closed invariant curve from a fixed point
when the bifurcation parameter surpasses a critical threshold. This transition happens
as the fixed point undergoes a stability change due to a pair of complex eigenvalues
with a modulus of one.

Transcritical bifurcation
In a transcritical bifurcation, two fixed points of a dynamical system exchange their
stability. The stability of one fixed point becomes unstable while the other becomes
stable as the bifurcation parameter crosses a critical value.

Example 2.7 Consider the system:

fα(x) = αx(1 − x).

where α is the bifurcation parameter. For α < 0, the system has one stable and one unstable fixed
point. As α increases and passes through 0, the fixed points exchange stability, resulting in the
transcritical bifurcation.

The associated bifurcation diagram, illustrated in Figure 2.22, depicts two fixed points inter-
secting at α = 0, where the stability exchange occurs.
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Figure 2.22: Bifurcation diagram illustrating the transcritical bifurcation.

Conclusion
In this chapter, we delved into the fundamental principles of dynamical systems, covering both

continuous and discrete models. We began with a general overview, establishing the essential
foundations for analyzing system behavior. The discussion on continuous dynamical systems
focused on equilibrium points, stability analysis, and bifurcation theory, demonstrating their
role in understanding qualitative system dynamics. Likewise, discrete dynamical systems were
examined, highlighting their iterative nature, stability conditions, and bifurcation phenomena.
These concepts collectively provide a comprehensive framework for studying complex systems
and support more advanced investigations in the subsequent chapters.
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This chapter aims to explore the mechanisms behind the spread of contagious diseases by ex-
amining traditional epidemiological models, specifically the ”SI , SIS , SIR, SIRS , SEIR”
models.

In these models, the population is categorized into four distinct groups, known as ’compart-
ments’ in epidemiology:
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■ Susceptible or Healthy individuals (S): Those who have never contracted the disease
and are at risk of infection.

■ Exposed individuals (E): People who have encountered an infected person and carry the
pathogen without showing symptoms. They have minimal pathogen levels, which are not
enough to transmit the infection to others.

■ Infected individuals (I): Those who are currently ill and capable of spreading the disease
(a key assumption in these models).

■ Recovered individuals (R): Individuals who have recovered and are immune. This cat-
egory also includes deceased individuals, as they are no longer susceptible to the disease,
which is considered for practical reasons.

3.1 | A Brief history of epidemics
The history of epidemics offers a compelling narrative that highlights humanity’s strug-
gle against disease. The "Black Death" in the 14th century is perhaps one of history’s
most notorious pandemics, and it swept across Europe. The population at the time,
about 85 million, saw about a third of the population fall victim to the plague.

An early documented epidemic is the Plague of Athens, which struck Athens in
the period between 430 and 426 BCE. The historian Thucydides chronicled the event,
describing symptoms such as headaches, conjunctivitis, a rash, and fever, followed by
severe stomach pain, vomiting, and "ineffective retching." Most victims perished within
a week. The epidemic claimed tens of thousands of lives and spread swiftly across
Athens. According to a study by Paul and Holladay (1979), the disease either disap-
peared or underwent significant changes over time, with subsequent studies proposing
additional theories.

Epidemiological research, with its extensive history, has yielded numerous models
and theories to explain the origins and spread of diseases. In earlier times, epidemics
were frequently attributed to supernatural causes, such as divine punishment or malev-
olent spirits. For instance, AIDS, the dominant epidemic of the past few decades, was
often interpreted in a religious context as retribution.

In the United States, the Yellow Fever outbreak in Philadelphia in 1793 marked the
first major epidemic. Approximately 5,000 people out of a population of 50,000 died,
while an estimated 20,000 fled the city. This epidemic left a lasting impact on the nation’s
political and social landscape.
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In the 20th century, the Spanish flu pandemic of 1918–1920 emerged as one of the
deadliest outbreaks, affecting an estimated 500 million people globally and resulting in
up to 50 million deaths. The disease was caused by the H1N1 influenza virus, which
also caused the swine flu pandemic nearly a century later. Many deaths were due to
secondary bacterial lung infections, and complications included encephalitis lethargica,
a condition explored in Oliver Sacks’ book Awakenings and later dramatized in a 1990
film.

Following World War II, public health efforts emphasized eradicating disease-causing
organisms. The development of antibiotics fostered optimism, and in 1978, the United
Nations initiated the Health for All, 2000 initiative, aiming to eliminate diseases by the
year 2000. This optimism, however, was tempered by the discovery of AIDS and the
realization that microbes could evolve to resist treatments. The last case of smallpox
had been recorded in 1977, fueling hopes of controlling infectious diseases (51).

In 2003, the SARS (Severe Acute Respiratory Syndrome) outbreak, caused by a coro-
navirus, emerged in China and Hong Kong. The virus was transmitted from bats to
humans through civet cats. SARS, with symptoms resembling the flu, spread to coun-
tries including Singapore, the USA, and Canada but remained relatively contained, with
fewer than 10,000 cases. No vaccine for SARS has been developed to date (38).

Another coronavirus-related outbreak, MERS (Middle Eastern Respiratory Syndrome),
occurred in Saudi Arabia in 2012 and spread across various regions in the world, includ-
ing Europe and the United States. It caused flu-like symptoms such as fever and cough
but had a smaller global impact (24).

In late 2019, a COVID-19 pandemic in Wuhan, China, swept across the world at a
quick velocity and produced widespread lockdown and far-reaching political and finan-
cial implications. This ongoing pandemic underscores the persistent challenges posed
by emerging infectious diseases (23).

3.2 | Terminology
Epidemic: A rapid increase in the incidence of a pathology. Although often used in

the context of infectious diseases, this term can be used for general biological phe-
nomena (smallpox, avian flu, HIV, coronavirus, etc.).

Epidemic threshold: A theoretical threshold in mathematical models above which an
epidemic will (or may) occur.
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Pandemic: Caused by an emerging infectious disease that takes on continental or even
global proportions.

Endemic: The usual and stable presence of a disease in a population.

Patient zero: The first recognized case of an infectious pathology that is the source of
all other recorded cases.

Infectious agents (pathogens): Infectious agents are the pathogens responsible for in-
fectious diseases. They can be of different types: bacteria, viruses, parasites, fungi,
or prions.

Infectious diseases: Infectious diseases are transmissible diseases caused by a specific
infectious agent or its toxins. They can spread directly from person to person, as
seen with influenza, measles, or diphtheria; through vectors like mosquitoes for
chikungunya or malaria; or via the environment, such as through contaminated
food or water, as in salmonellosis or cholera.

Vertical transmission: The transmission of a disease is said to be vertical when it oc-
curs from parents to offspring. This is the case, for example, with mother-to-child
transmission.

Horizontal transmission: The transmission of a disease is said to be horizontal when
it occurs after birth through contact with another person who is infected.

Incubation period: The time span from exposure to the onset of symptoms.

Latency period: The period between primary contact and when one is infectious.

3.3 | Mathematicalmodeling in epidemiological research
Mathematical models in epidemiology have been gaining momentum in the literature
in recent years due to their numerous benefits. These models can address various chal-
lenges in epidemiology, such as predicting disease progression based on real data, ana-
lyzing epidemic dynamics to identify effective control strategies, monitoring and track-
ing the epidemic, and estimating disease-related parameters.

Epidemiological mathematical models are generally categorized into four main types:
discrete or continuous models, ODE (Ordinary Differential Equation) models, PDE (Par-
tial Differential Equation) models, and deterministic or stochastic models.

The transmission of an infectious disease occurs through several stages, commonly
known as the infection or contagion process.
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3.3.1 | The dynamic infection process
The spread of disease and surrounding environmental factors greatly influence its wide-
scale transmission. A person becomes infected with an infectious disease when exposed
to a source (also called a pathogen), which can take various forms (such as an infected
person, a mosquito, or a contaminated water source). The contagion process refers to
the event in which the infection is transferred from one pathogen to another.

The following diagram (Figure 3.1) visually represents this process:

Susceptible Exposed Infected Recovered

Time(days)

RecoveryOnset of the diseaseOnset of infection

Latency
period contagious period

Symptomatic period

Figure 3.1: The dynamic infection process

This schematic shows the various phases or states of the disease. An individual
becomes contagious only after infection. The infected person remains contagious for a
certain time: they may either become susceptible to reinfection, develop resistance to
new infections, or pass away.

3.3.2 | What are the goals of epidemic modeling?
Modeling in epidemiology is principally concerned with predicting the course or pat-
tern of the disease in question. The investigation of an epidemic is commenced based
on a sample, and depending upon findings thus obtained, a model is created in order to
represent the population as a whole.

The objectives of epidemic modeling include:

■ Enhancing the understanding of the processes through which diseases are trans-
mitted.

■ Highlighting the importance of a mathematical framework.
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■ Forecasting the future progression of the epidemic.

■ Developing strategies to control epidemic spread, such as reducing the number of
susceptible individuals through vaccination programs.

■ Selecting optimal vaccine distribution strategies to eradicate certain diseases.

■ Identifying relevant data to collect or record.

■ Predicting the extent and size of epidemics.

■ Forcing a clarification and specification of assumptions.

3.4 | The fundamental reproductive ratioR0

The fundamental reproductive ratio, R0, is the expected number of cases caused by a
single infectious person in a population in which each individual is susceptible for the
period of infectiousness.

In actuality:

■ If R0 < 1: The disease-free state is locally stable, and we can anticipate the infec-
tion to die out.

■ If R0 > 1: The disease-free state is no longer stable, and the infection is able to
persist and potentially spread widely in the population.

Calculation methods for R0

• The first method (Anderson and May (27))
The fundamental reproductive ratio is given by:

R0 = β ∗ C ∗ D

With: β: Probability of transmission per contact. C: Length of infection. D: Number of
contacts in unit time.

• Second method (Definition of Bockh 1886 (72))
Let F(a) denote the probability of a woman surviving to age a, and β(a) denote the birth
rate at age a. Then:

R0 =
∫ ∞

0
F(a)β(a)da
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• Third method (Next generation matrix (72))
In this approach, R0 is determined as the spectral radius of the "next generation op-

erator." This operator is derived by separating the population into two categories: the
infected and the uninfected compartments.

In an n-compartment epidemiological model for n homogeneous compartments,
the system state is represented by the vector y, in which yj is the concentration or num-
ber in compartment j. The compartments are labeled in a way in which the latter are
infectious (latent, infectious, etc.). The infection-free individuals are represented by the
first k compartments (Susceptible, etc.).
We notice:

■ Fi(y): emergence velocity of new infection in compartment "i" (among different
individuals) or in a vertical way (to baby from mother).

■ V+
i (y): the speed of what comes from the other compartments by all causes (dis-

placement, aging, healing).

■ V−
i (y): the speed of leaving the compartment (movement, mortality, change of

status...) in such a way:
We note Ys the state without disease Ys = {y/yp+1 = yp = ... = yn = 0} .

The following assumptions are made:

1. y ⩾ 0 et Fi(y) ⩾ 0, V+
i (y) ⩾ 0, V−

i (y) ⩾ 0.

2. if yi = 0 so V+
i (y) = 0, If there is nothing in a compartment, nothing can come

out. This is the essential property of a compartmental model.

3. if i ≥ p so Fi(y) = 0. Compartments with an index lower than "p" are "uninfected".
By definition, infected cannot appear in these compartments.

4. if y ∈ Ys or ẏi = Fi(y) + V+
i (y) − V−

i (y), so Fi = 0 and for i ⩾ p, we have
V+

i (y) = 0. If there are no carriers of germs in the population, there can be no new
infected.

The linear system is rewritten:

ẏ(t) = Fi(y) + V+
i (y)− V−

i (y),

The Jacobian matrix around the point of equilibrium without disease y0 of the linear
system is written:

J(y0) = DF(y0) + D(V+ − V−)(y0).
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Or :

DF(y0) =

g 0

0 0

 and D(V+ − V−)(y0) =

 v 0

J1 J2

 .

with: v =
dVi

dt 1<i,j<m
and g =

dFi

dt 1<i,j<m
.

Or: g ⩾ 0 is a positive matrix and v is an invertible Metzler matrix.

Definition 3.1

Metzler matrix or quasi-positive matrix or non-negative matrix, the matrix which has positive
off-diagonal elements.
M = (aij), aij ⩾ 0, i ̸= j, if M is a Metzler matrix so the following properties are equivalent:

■ M is asymptotically stable.

■ M is invertible (det(M) ̸= 0) and M−1 is positive definite.

Definition 3.2 The spectral radius of a matrix M is the largest modulus among its eigenvalues.
It is given by

ρ(M) = max
λ∈sp(M)

|λ|,

where sp(M) denotes the spectrum of M.

Definition 3.3

We have R0 := ρ(−gv−1) in the following sense: ρ is the spectral radius of the matrix −gv−1.

3.5 | Introduction to simple epidemic models

3.5.1 | SI model
In 1906, W. H. Hamer introduced the SI model, which represents the earliest and

simplest form of a dynamic infectious disease model (3).
The assumptions made in the SI model are:

1. The population size is N , a fixed value, it means: N (t) = S(t) + I(t) so Ṅ =

Ṡ + İ = 0.

2. New individuals enter the population without any pre-existing immunity.

3. Once infected, the individuals stay infected (there’s no cure or vaccine).
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The Hamer model is represented using the following system of equations:
Ṡ = −βS I

N ,

İ = βS I
N .

(3.1)

With:

■ N : The total number of individuals in the population.

■ S : The number of individuals who are susceptible to the disease.

■ I : The number of individuals who are currently infected.

■ β: The rate at which the disease is transmitted.

Figure 3.2: Diagram illustrating the dynamics of an SI model.

Since the population remains constant, S can be expressed as S = N − I . This
implies that the dynamics of the susceptible population are directly influenced by the
infected population I . The simplified system is given as:

İ = β(N − I) IN . (3.2)

The equilibrium points of this system are:

■ IDFE = 0: representing the disease-free equilibrium.

■ IEE = N : representing the endemic equilibrium.

To analyze stability, we define the function:

f (I) = β(N − I) I
N .

Taking its derivative:

f ′(I) = β − 2βI
N .
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Evaluating equilibrium stability:

■ At IDFE = 0: f ′(0) = β > 0, indicating instability.

■ At IEE = N : f ′(N ) = −β < 0, indicating asymptotic stability.

Figure 3.3 depicts the results of a numerical simulation of the SI model with a popu-
lation of 1000 individuals, starting with 999 susceptible and 1 infected individual. Given
a transmission rate of β = 0.5, the simulation demonstrates the decline of the suscep-
tible population as the number of infected individuals increases. Initially, infections
rise rapidly before leveling off as the susceptible population diminishes. This model
effectively captures disease transmission dynamics and stabilization as susceptible in-
dividuals are depleted.
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Figure 3.3: Simulation results of the SI model with a transmission rate of β = 0.5 and
initial values given by S0 = 999 and I0 = 1.

3.5.2 | SIS model
This model is applicable to diseases such as tuberculosis, influenza, measles, and chick-
enpox, which do not provide immunity after recovery. To understand the transmission
patterns of such diseases, Kermack and McKendrick (1932) introduced the SIS model.
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The model is governed by the following equations (51):
Ṡ = −βS I

N + γI ,

İ = βS I
N − γI .

(3.3)

Where

S : The number of individuals who are susceptible in the population.

I : The number of individuals who are infected in the population.

β: The rate at which the disease spreads during contact between susceptible and in-
fected individuals.

γ: The rate at which infected individuals leave the population, either through recovery
or death.

Since N = S + I , then Ṅ = Ṡ + İ = 0.

This suggests that the overall population size remains unchanged.

Figure 3.4: Flow diagram representing the dynamics of an SIS model.

The fundamental reproductive ratio, R0, is given by:

R0 =
β

γ
.

By substituting S with (N − I), system (6.4) simplifies to:

İ = β(N − I) IN − γI . (3.4)

The equilibrium points, obtained from equation (6.5), are:

■ IDFE = 0: representing the disease-free equilibrium.
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■ IEE = (β − γ)
N
β

: representing the endemic equilibrium.

The EE exists when β − γ > 0, which implies R0 > 1.

■ IDFE is asymptotically stable when R0 < 1 and unstable when R0 > 1.

■ The EE is stable when it exists.

Figure 3.5 presents a numerical simulation of the Susceptible-Infected-Susceptible
(SIS) model using predefined parameter values. The simulation runs with a transmis-
sion rate of β = 0.5 and a recovery rate of γ = 0.2, governing the spread of infection. The
initial conditions assume 990 susceptible and 10 infected individuals, cycling between
susceptibility and infection. These oscillations illustrate the ongoing transmission and
recovery within the population. Over time, the number of infected individuals varies
based on the values of β, γ, and initial conditions. The long-term behavior and equilib-
rium depend on the relationship between infection and recovery rates, influencing the
duration and magnitude of outbreaks.
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Figure 3.5: Numerical results from the SIS model with parameters β = 0.5 and γ = 0.2,
initialized with S(0) = 990 susceptible individuals and I(0) = 10 infected individuals.

52



Chapter 3. Mathematical modeling of
infectious diseases 3.5. Introduction to simple epidemic models

3.5.3 | SIR model
This model was introduced by researchers W.O. Kermack and A.G. McKendrick; we

consider the population to be constant. The main problem of the researchers was to
understand the cause of the great epidemic. In 1918 the Spanish flu did not infect the
entire population.
Assume that a population can be divided into three distinct groups:

■ S : Those who are susceptible and vulnerable to contracting the disease.

■ I : The infectious cases, who are currently infectious and can pass on the disease.

■ R: The class taken out, representing those who have recovered, developed immu-
nity, or are quarantined until they recover.

3.5.3.1 | SIR model without vital dynamic
The spread of an infectious disease in a population without births or natural deaths
is described by the classical SIR model through the following system of nonlinear
ordinary differential equations (51):

Ṡ = −βS I
N ,

İ = βS I
N − γI ,

Ṙ = γI .

(3.5)

Where the variables and parameters are defined as follows:

N : Total population size.

S : The number of individuals who are susceptible to infection.

I : The number of individuals currently infected.

R: The number of individuals who have recovered.

β: The rate at which the disease is transmitted.

γ: The rate at which infected individuals recover.

The interactions among these compartments are illustrated in the flow diagram be-
low:
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Figure 3.6: Schematic representation of the SIR model.

Since the total population remains constant, we have:

N = S + I +R.

Taking the derivative of this equation gives:

Ṅ = Ṡ + İ + Ṙ = 0, (3.6)

confirming that the total population remains unchanged over time.
With initial conditions specified as:

S(0) = S0, I(0) = I0, R(0) = R0, where S0, I0, and R0 are all positive .

We can focus on the system of equations for the susceptible and infected populations,
since the equation for R is independent of the others:

Ṡ = −βS I
N ,

İ = βS I
N − γI .

(3.7)

By eliminating time dependence, we derive:

dI
dS = −1 +

ρN
S ,

where ρ = γ
β .

The phase plane representation of this equation is given in Figure 3.7.
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Figure 3.7: Phase plane trajectories of system (3.7) for γ = 0.333333 and β = 1.

From the phase plane, we identify a threshold at S = ρ, influencing the epidemic
behavior:

■ If S(0) = S0 > ρ, the infection spreads.

■ If S(0) = S0 < ρ, the infection declines.

The fundamental threshold parameter, known as the basic reproduction number is

R0 =
β

γ
.

Its significance is as follows:

■ R0 > 1: The disease will propagate through the population.

■ R0 < 1: The disease will ultimately disappear.

To determine equilibrium points, we set Ṡ = İ = Ṙ = 0:

1. Disease-Free Equilibrium (DFE):

(S , I ,R) = (N , 0, 0).

Here, the population remains entirely susceptible, with no infection.
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2. Endemic Equilibrium (EE):

(S , I ,R) =

(
γN

β
,N − γN

β
,N −S − I

)
.

This represents a scenario where the infection persists in the population at a steady
level.

The numerical solution of the model is displayed in Figure 3.8, using the initial con-
ditions S0 = 990, I0 = 10, and I0 = 0. The parameters are assigned the values β = 0.5
and γ = 0.2. The graph demonstrates the epidemic cycle, showing an initial increase in
infections, followed by a peak and subsequent decline due to recovery.
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Figure 3.8: Numerical simulation of the SIR model without vital dynamics, illustrating
the spread and decline of an epidemic with β = 0.5 and γ = 0.2.
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3.5.3.2 | SIR model with vital dynamic
The dynamics of the SIR model, incorporating vital processes, are governed by the
following system (21): 

dS
dt

= λ − βSI
N − µ1S ,

dI
dt

=
βSI
N − µ2I − γI ,

dR
dt

= γI − µ3R.

(3.8)

To simplify, we can rewrite it as follows:

dS
dt

= −βSI
N + µ2I + µ3R,

dI
dt

=
βSI
N − µ2I − γI ,

dR
dt

= γI − µ3R.

(3.9)

By assuming that birth and mortality rates are balanced, we obtain:

λ = µ1S + µ2I + µ3R.

The structure of the model can be visualized as follows:

Figure 3.9: Schematic representation of the SIR model incorporating vital dynamics.

Since the total population remains unchanged over time, we have:

N = S + I +R, leading to Ṅ = Ṡ + İ + Ṙ = 0.
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Thus, the total population remains constant.
By eliminating the recovered class equation, we obtain the following reduced sys-

tem: 
dS
dt

= −βSI
N + µ2I + µ3(N − I − S),

dI
dt

=
βSI
N − (µ2 + γ)I .

(3.10)

Defining S/N and I/N as the proportions of susceptible and infected individuals,
the system reduces to:

dS
dt

= −µ3 + (µ2 − µ3)I + µ3S − βSI ,

dI
dt

= βSI − (µ2 + γ)I .
(3.11)

The system is constrained within the region Ω = {(S , I) : S ≥ 0, I ≥ 0,S + I ≤ 1},
which remains positively invariant and compact.

The fundamental reproductive ratio, determining the outbreak potential, is given
by:

R0 =
β

µ2 + γ
.

The disease-free equilibrium (DFE) for the system is given by:

(S , 0) = (1, 0).

If R0 ≤ 1, the DFE is globally asymptotically stable in the region Ω.
To analyze the stability of the DFE, we define a Lyapunov function V(S , I) = I .

This function helps to determine the stability properties of the equilibrium.
The time derivative of the Lyapunov function along the trajectories of the system is

given by:

V̇ = İ ,

= βSI − (µ2 + γ)I ,

= I(R0S − 1)(µ2 + γ),

≤ 0.

The time derivative V̇ is non-positive (V̇ ≤ 0), which indicates that the Lyapunov func-
tion V(S , I) is non-increasing over time. Specifically:

58



Chapter 3. Mathematical modeling of
infectious diseases 3.5. Introduction to simple epidemic models

- V̇ = 0 when either I = 0 (corresponding to the disease-free equilibrium) or S = S∗

and R0 = 1.
The largest invariant set where V̇ = 0 contains only the DFE point. Application of La

Salle’s invariance principle implies that the DFE is globally asymptotically stable within
the region Ω whenever R0 ≤ 1.

Now, we shift focus to the endemic equilibrium, which exists when R0 > 1. The EE
is characterized by the following expressions:

S̄ =
µ2 + γ

β
=

1
R0

, Ī =
µ3

µ3 + γ

(
1 − 1

R0

)
.

This equilibrium lies within the simplex Ω, defined as 0 ≤ S̄ , 0 ≤ Ī , and S̄ + Ī ≤ 1,
provided that R0 > 1. Clearly, Ī ≥ 0 holds if and only if R0 > 1. Furthermore, we can
express:

S̄ + Ī =

γ

R0
+ µ3

γ + µ3
.

When R0 = 1, the EE point coincides with the DFE point. Thus, a unique equilib-
rium exists within the interior of the simplex only if R0 > 1.

If R0 > 1, the DFE point becomes unstable, leading to the emergence of a unique
endemic equilibrium (S̄ , Ī), which is globally asymptotically stable in the region Ω \
([0, 1]× {0}).

To investigate stability, we consider the positively invariant compact set:

Ω1 = {(S , I) : S ≥ µ2 − µ3

β
, I ≥ 0,S + I ≤ 1}.

We introduce a Lyapunov function V(S , I) within Ω1:

V(S , I) = (S − S̄)− µ3 + γ

β
log

−µ2 + µ3 + βS
−µ2 + µ3 + βS̄

+ (I − Ī)− Ī log
I
Ī

.

■ V(S , I) ≥ 0 for all (S , I) ∈ Ω1, with equality holding only at (S , I) = (S̄ , Ī).

■ The function is positive definite, satisfying V(S̄ , Ī) = 0.
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The time derivative of V(S , I) along system trajectories is computed as:

V̇(S , I) = Ṡ − (µ3 + γ)
µ3 + (µ2 − µ3)I − µ3 − βSI

−µ2 + µ3 + βS +

βSI − (µ2 + γ)I − Ī(βS − (µ2 + γ))

= Ṡ − (µ3 + γ)
(µ3 − µ3S)

−µ2 + µ3 + βS + (µ3 + γ)I + βSI −

(µ2 + γ)I − Ī(βS − (µ2 + γ))

= µ3(1 − S)− (µ3 + γ)
(µ3 − µ3S)

−µ2 + µ3 + βS − Ī(βS − (µ2 + γ)))

= µ3(1 − S)
[

1 − µ3 + γ

−µ2 + µ3 + βS

]
− Ī(βS − (µ2 + γ)))

= µ3(1 − S)−
(

−βS̄ + βS
−µ2 + µ3 + βS

)
−

µ3

µ3 + γ
(1 − S̄)(βS − βS̄)

= −µ3β(S̄ − S)
[

1 − S
−µ2 + µ3 + βS − 1 − S̄

µ3 + γ

]
=

−βµ3

µ3 + γ

[
−µ2 + β + µ3

−µ2 + β + βS

]
(S − S̄)2

≤ 0.

Thus, the derivative V̇ with respect to time is negative semi-definite, verifying the global
stability of the EE according to Lyapunov’s stability theorem.

Using La Salle’s invariance principle, we establish that the EE is attractive. The
invariant set where V̇ = 0 is given by:

E = {(S , I) ∈ Ω̊1 : S = S̄}.

On this set, substituting S = S̄ into the system dynamics results in Ṡ = 0, implying
I = Ī . Consequently, the largest invariant set contained in {(S , I) ∈ Ω̊1 : V̇ = 0} is the
equilibrium state in the endemic situation (S̄ , Ī).

This confirms that the equilibrium state in the endemic situation EE is globally
asymptotically stable on Ω1. When R0 > 1, all system trajectories converge to the EE
(S̄ , Ī).

For regions outside Ω1, considering S ≤ µ2−µ3
β , the equation for Ṡ is:

Ṡ = µ3(1 − S) + (µ2 − µ3 − βS)I .

For R0 > 1, this ensures Ṡ > 0, causing trajectories to enter Ω̊1. Additionally, all
trajectories in Ω̊ \ Ω̊1 eventually enter Ω̊1, making it an absorbing set.
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On the boundaries S = 0 and S + I = 1, the vector field directs inward, ensuring
Ω remains invariant under the dynamics. Even though the S-axis is an invariant set, it
does not impact the global stability of the endemic equilibrium.

Thus, the equilibrium state in the endemic situation (S̄ , Ī) is globally asymptotically
stable in Ω for R0 > 1. All trajectories converge to this equilibrium, confirming the
system’s tendency toward this steady state under the given conditions.

Figure 3.10 illustrates the dynamics of the SIR model with birth and death rates,
using parameters β = 0.5, γ = 0.2, µ1 = 0.01, µ2 = 0.02, and µ3 = 0.015. The initial
conditions are set at S0 = 990, I0 = 10, and I0 = 0. The simulation demonstrates the
evolution of susceptible, infected, and recovered populations over time, incorporating
birth and death effects. As depicted in Figure 3.10, the model shows how the disease
propagates within the population and stabilizes at an endemic equilibrium. These re-
sults align with expectations based on the reproduction number R0.
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Figure 3.10: Numerical simulation of the SIR model with birth and death dynamics
using: β = 0.5, γ = 0.2, µ1 = 0.01, µ2 = 0.02, µ3 = 0.015, and initial conditions
S(0) = 990, I(0) = 10, R(0) = 0.

3.5.4 | SIRS model
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3.5.4.1 | SIRS model without vital dynamic
The following model is given by (21):

dS
dt

= −βSI
N + νR,

dI
dt

=
βSI
N − γI ,

dR
dt

= γI − νR.

(3.12)

Figure 3.11: Flow diagram representing the SIRS model.

Since the total population size is given by N = S + I +R, differentiating both sides
leads to:

Ṅ = Ṡ + İ + Ṙ = 0.

This indicates that the total population stays unchanged over time. The system can
thus be simplified as follows:

dS
dt

= −βSI
N − νI + ν(N − S),

dI
dt

=
βSI
N − γI ,

(3.13)

The equilibrium points of the system are:

(S1, I1) = (0,N ) and (S2, I2) =

(
γ

β
,

ν

γ

βNγ

γ

)
.

To analyze stability, we compute the Jacobian matrix at the first equilibrium point:

J(S1, I1) =

(
−ν −βN + ν

0 βN − γ

)
.
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The eigenvalues are given by: λ1 = −ν and λ2 = βN − γ.
For stability, both eigenvalues must be negative. The condition λ2 < 0 holds when

the fundamental reproductive ratio, defined as R0 =
βN
γ

, is less than 1. Thus, the

disease-free equilibrium (S1, I1) is stable if R0 < 1, ensuring disease eradication in the
population. If R0 > 1, the second equilibrium (S2, I2) emerges, leading to endemic
persistence.

Now, evaluating the Jacobian at (S2, I2):

J(S2, I2) =

(
−(βI2 + ν) −(β + ν)

βI2 0

)
.

Since the trace is negative tr(J(S2, I2)) = −(βI2 + ν) < 0 and the determinant
is positive det(J(S2, I2)) = −β(β + ν)I2 > 0, the equilibrium state in the endemic
situation (S2, I2) is locally asymptotically stable. This confirms that when R0 > 1, the
disease persists, and the disease-free equilibrium (S1, I1) becomes unstable as λ2 > 0.

The following simulation illustrates the behavior of the system:

0 20 40 60 80 100 120 140 160 180 200
Time

0

100

200

300

400

500

600

700

800

900

1000

Po
pu

lat
ion

SIRS Model Simulation (Without Vital Dynamics)

Susceptible (S)
Infectious (I)
Recovered (R)

Figure 3.12: Numerical simulation of the SIRS model without vital dynamics, using
parameter values β = 0.5, γ = 0.2, and ν = 0.1, with initial conditions S(0) = 990,
I(0) = 10, and R(0) = 0.
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3.5.4.2 | SIRS Model with Vital Dynamics
In this section, we investigate a SIRS model that incorporates birth and mortality rates.
Using the previously defined notation, the system is expressed as follows (21):

dS
dt

= λ − βSI
N − µ1S + νR,

dI
dt

=
βSI
N − µ2I − γI ,

dR
dt

= γI − (µ3 + ν)R.

(3.14)

Rearranging the system, we obtain:

dS
dt

= −βSI
N + µ2I + (µ3 + ν)R,

dI
dt

=
βSI
N − µ2I − γI ,

dR
dt

= γI − (µ3 + ν)R.

(3.15)

Notably, system (3.15) corresponds to system (3.9) with the parameter µ3 replaced
by µ3 + ν.

Figure 3.13: Flowchart representing the SIRS model with vital dynamics.

Figure 3.14 illustrates the simulation results using the parameter values β = 0.5,
γ = 0.2, ν = 0.1, µ1 = 0.01, µ2 = 0.02, and µ3 = 0.01. The initial conditions are set as
S(0) = 990, I(0) = 10, and R(0) = 0.
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Figure 3.14: Numerical simulation of the SIRS model with vital dynamics, illustrating
the evolution of the compartments over time.

3.5.5 | SEIR Model
The SEIR model is commonly used to describe infectious disease dynamics, incorpo-
rating four compartments: Susceptible (S), Exposed (E ), Infectious (I), and Recovered
(R). This model accounts for an incubation phase before individuals become infectious
(69). The governing equations are:

dS
dt

= −β
SI
N ,

dE
dt

= β
SI
N − δE ,

dI
dt

= δE − γI ,

dR
dt

= γI .

(3.16)

The model parameters are defined as follows:

β: Infection rate.

δ: Rate at which individuals progress from the exposed to the infectious state.

γ: Rate of recovery.
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Figure 3.15: Diagram illustrating the transitions in the SEIR model.

Since the total population remains unchanged, we have:

S + E + I +R = N ⇒ Ṅ = Ṡ + Ė + İ + Ṙ = 0.

The initial conditions are: S(0) = S0 = N − I0 > 0, E(0) = 0, I(0) = I0 > 0,
R(0) = 0.

Numerical simulation:
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Figure 3.16: Numerical simulation of the SEIR model without vital dynamics, using
parameters β = 0.5, γ = 0.1, δ = 0.2, and initial values N = 1000, S(0) = 985,
E(0) = 10, I(0) = 5, R(0) = 0.

3.6 | Case studies and applications of infectious disease
modeling
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3.6.1 | Dengue Fever and the SIR− SI model
Derouich et al. (20) propose an SIR− SI model that integrates the dynamics of both
human and mosquito populations to analyze the spread of dengue fever. The funda-
mental reproductive ratio (R0) is calculated to understand the epidemiological dynam-
ics of the disease.

The impact of control strategies, such as reducing mosquito populations through in-
secticides or biological methods, is assessed. The results show that reducing the lifespan
and density of infected mosquitoes significantly decreases the spread of dengue. This
model highlights the importance of integrated vector management strategies for disease
control.
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Figure 3.17: Diagram illustrating the transitions in the SIR− SI Dengue model.

The model equations are given by:
Human Population:

dSH

dt
= ΛH − CMHSHIM − µHSH,

dIH

dt
= CMHSHIM − (γH + µH)IH,

dRH

dt
= γHIH − µHRH.

Mosquito Population:

dSM

dt
= ΛM − CHMSMIH − µMSM,

dIM

dt
= CHMSMIH − µMIM.

The parameters are defined as follows:
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■ SH, IH,RH: Susceptible, infected, and recovered humans.

■ SM, IM: Susceptible and infected mosquitoes.

■ ΛH, ΛM: Recruitment rates of humans and mosquitoes.

■ CMH = pMHbi: The rate at which mosquitoes transmit the disease to humans.

■ CHM = pHMbs: The rate at which humans transmit the disease to mosquitoes.

■ γH: Recovery rate of infected humans.

■ µH, µM: Natural mortality rates of humans and mosquitoes.

■ pMH, pHM: Transmission probabilities from vector to human and vice versa.

■ bs, bi: Biting rates of susceptible and infected mosquitoes.

3.6.2 | Ebola and the SEIR control model
Grigorieva and Khailov (30) propose an SEIR model to analyze Ebola outbreaks and
determine optimal intervention strategies. The model integrates quarantine measures
and vaccination tactics to mitigate disease transmission. The fundamental reproductive
ratio (R0) is calculated to assess the epidemic’s potential and evaluate control measures.

The study focuses on optimal control strategies, including:

■ Isolation of exposed and infected individuals.

■ Vaccination campaigns to increase immunity.

■ Reducing human contact to lower transmission rates.

Susceptible (S) Exposed (E) Infected (I) Recovered (R) 
𝛽𝑆𝐼 𝜎𝐸 𝛾𝐼 

Figure 3.18: Diagram illustrating the transitions in the SEIR Ebola model with control
strategies.

The model equations are given by:
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Human Population:

dS
dt

= Λ − βSI − u1S − µS ,

dE
dt

= βSI − (σ + µ + u2)E ,

dI
dt

= σE − (γ + µ + u3)I ,

dR
dt

= γI + u1S + u2E + u3I − µR.

The parameters and are defined as follows:

■ Λ: Rate of human population recruitment.

■ β: Transmission rate of Ebola.

■ σ: Incubation rate (rate at which exposed individuals become infectious).

■ γ: Recovery rate of infected individuals.

■ µ: Natural mortality rate of humans.

■ u1: Vaccination rate of susceptible individuals.

■ u2: Quarantine rate of exposed individuals.

■ u3: Hospitalization rate of infected individuals.

This model provides insight into the effectiveness of different control measures and
helps policymakers design optimal strategies to mitigate Ebola outbreaks.

Conclusion
Mathematical models are essential in understanding and managing epidemics, providing in-

sights into disease spread and control. Models like SI , SIS , SIR, and SEIR help quantify
key parameters, such as the fundamental reproductive ratio (R0), and assess the likelihood of dis-
ease outbreaks. Each model has unique applications depending on the disease’s characteristics,
such as the SIR-SI model for dengue and the SEIR model for Ebola. Mathematical epidemiology
guides public health decisions, such as vaccination strategies and quarantine measures. Contin-
ued model refinement, incorporating factors like socioeconomic and mobility dynamics, is crucial
for addressing emerging infectious threats and ensuring effective epidemic control.
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Estimating parameters is essential for effectively applying mathematical models to predict
and control epidemics. By aligning models with observed data, parameter estimation enables
accurate predictions and effective intervention strategies. This chapter provides an overview
of commonly used techniques, including Maximum Likelihood Estimation (MLE) and Nonlin-
ear Least Squares, supported by optimization algorithms such as Gauss-Newton, Levenberg-
Marquardt, and Trust-Region. The aim is to equip readers with the knowledge needed to apply
these methods to complex epidemic systems.
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4.1 | Maximum likelihood estimation
Maximum Likelihood Estimation (MLE) is a popular statistical approach for estimating
the parameters of a probabilistic model. Its goal is to determine the parameter val-
ues that make the observed data most likely according to the model. By maximizing
the likelihood function, MLE helps us find the best-fitting model for the data, offering
an estimate of the unknown parameters based on available evidence. This method is
commonly applied in various fields such as epidemiology, econometrics, and machine
learning, where understanding the underlying parameters is essential for making pre-
dictions and inferences (15).

4.1.1 | Likelihood function
The likelihood function is a fundamental component of Maximum Likelihood Estima-
tion (MLE), representing the probability of observing the given data under unknown
parameters. Consider a set of independent random variables x0, x1, . . . , xn, each follow-
ing a probability distribution defined by a parameter θ. The joint probability density
function of these variables is denoted as p(x0, x1, . . . , xn | θ). Consequently, the likeli-
hood function is expressed as:

L(θ) = L(θ | x0, x1, . . . , xn) = p(x0, x1, . . . , xn | θ) =
n

∏
i=0

p(xi | θ). (4.1)

The objective of Maximum Likelihood Estimation is to find the parameter θ that
maximizes the likelihood function. This can be formulated as the following optimiza-
tion problem:

θ̂ = arg max
θ

L(θ) (4.2)

Maximizing the likelihood function directly can be challenging, so it is often more con-
venient to work with the logarithm of the likelihood, referred to as the log-likelihood
function. Since maximizing the log-likelihood yields the same result as maximizing the
likelihood, this approach simplifies calculations, particularly when dealing with prod-
ucts of probabilities.

Example 4.1 (Bernoulli distribution) A basic example involves each Xi being modeled as a
Bernoulli-distributed variable with parameter θ, representing the probability of success. The
corresponding probability mass function (PMF) is expressed as:

p(xi | θ) = θxi(1 − θ)1−xi .
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For a set of n independent trials, the likelihood function becomes:

L(θ) =
n

∏
i=1

θxi(1 − θ)1−xi .

By applying the natural logarithm, we obtain the log-likelihood function:

ℓ(θ) =
n

∑
i=1

(xi log(θ) + (1 − xi) log(1 − θ)) .

To estimate θ̂ using maximum likelihood, we identify the value of θ that maximizes the log-
likelihood function.

4.1.2 | Optimization
In parameter estimation, it is often preferable to work with the log-likelihood function
instead of the likelihood function, as it simplifies the optimization process, especially
for complex models or large datasets. The maximum likelihood estimator (MLE) is
determined by solving:

θ̂ = arg maxθ ℓ(θ).

Alternatively, minimizing the negative log-likelihood yields the same result as max-
imizing the log-likelihood. The exact formulation of the log-likelihood depends on
whether the system follows a discrete-time or continuous-time process.

In cases where a closed-form solution does not exist, numerical techniques such as
the gradient ascent method, the Newton-Raphson method, or the Expectation-Maximization
(EM) technique are employed. These iterative methods refine the parameter estimates
to achieve optimal likelihood.

4.1.3 | Bias and mean squared error (MSE)
The accuracy of MLE-based parameter estimates can be assessed using bias and Mean
Squared Error (MSE). The bias of an estimator θ̂ is defined as the difference between its
expected value and the true parameter:

Bias(θ̂) = E(θ̂)− θ.

An estimator is unbiased if its bias is zero. If not, it may systematically overestimate
or underestimate the true parameter. The Mean Squared Error (MSE) incorporates both
variance and bias, providing a comprehensive measure of estimation accuracy:
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MSE(θ̂) = E
(
(θ̂ − θ)2) .

A lower MSE indicates a more accurate estimator. In epidemiology, it is important
to evaluate both bias and MSE when using MLE, especially with small sample sizes or
noisy data, to ensure the reliability of parameter estimates.

4.2 | Nonlinear least squares method
Nonlinear least squares is a method used to estimate model parameters when the re-
lationship between variables is nonlinear. It generalizes the traditional least squares
approach, which reduces the sum of squared differences between observed values and
model estimates, to cases involving nonlinear dependencies (40).

In this approach, the experimental dataset consists of points (xi, y(xi), σi), where:

■ xi denotes the independent variable,

■ y(xi) represents the corresponding dependent variable, and

■ σi is the standard error of the mean (SEM) associated with y(xi).

Each index i corresponds to a specific observation from a total of N data points. The
goal is to estimate the parameters in the model function f (xi, a), where a is the vector of
unknown parameters.

4.2.1 | Model fitting
The primary objective of nonlinear least squares is to determine parameter values in a
that allow the model function f (xi, a) to best approximate the observed data y(xi). This
is accomplished by reducing the discrepancy between the predicted and actual values.

For example, in a kinetic experiment where optical density is measured over time,
xi represents time, and y(xi) is the optical density. A typical model might be an expo-
nential function like:

y(xi) ≈ f (xi, a) = amplitude × e−kxi + baseline.

where a contains parameters such as amplitude, rate constant k, and baseline.
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4.2.2 | Nonlinear least squares procedure
The nonlinear least squares method refines an initial parameter estimate, g, through it-
erative adjustments to improve the model fit. The objective is to minimize the weighted
sum of squared residuals, given by:

χ2 =
N

∑
i=1

(
ri

σi

)2

.

where ri represents the residual, calculated as the difference between observed and
predicted values: ri = y(xi) − f (xi, a), and σi denotes the standard error associated
with y(xi). The parameter vector a is updated iteratively until χ2 reaches its minimum,
signifying an optimal alignment between the model and the data.

4.2.3 | Distinction from linear least squares
Linear least squares apply to models where parameters appear linearly. A typical ex-
ample is:

y = a1 + a2x + a3x2.

where a1, a2, and a3 are linear coefficients. In contrast, nonlinear least squares deals
with models where parameters interact in a nonlinear manner, such as:

y = a · ebx + c.

where the parameters a, b, and c contribute to an exponential relationship with x.
Due to these nonlinear dependencies, the optimization process requires more sophisti-
cated numerical techniques, often involving higher-order derivatives.

4.3 | Methods for solving nonlinear least squares prob-
lems

Various numerical methods are used to solve nonlinear least squares problems, itera-
tively adjusting parameters to minimize the sum of squared residuals. Below are some
of the commonly used techniques:
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4.3.1 | Gauss-Newton method
The Gauss-Newton method is an optimization technique designed specifically for least-
squares parameter estimation. It’s known for being computationally efficient and rela-
tively simple to implement (40).

4.3.1.1 | Algorithm steps
1. Initial Parameter Selection: Begin with an estimated starting value for the param-

eters â.

2. Taylor Series Expansion: Approximate the fitting function f (xi, a) around the cur-
rent parameter estimate g using a first-order Taylor series:

f (xi, a) ≈ f (xi, g) +
∂ f (xi, g)

∂g
(a − g).

3. Linear Approximation: Compute the residual D = Y(xi)− f (xi, g), the difference
between the observed data and model output.

4. Jacobian Matrix: Calculate the Jacobian matrix A of the first-order partial deriva-
tives:

A =
∂ f (xi, g)

∂g
.

5. Normal Equation: Solve the normal equations to update the parameter estimates:

(AT A)∆a = ATD.

6. Update Parameters: Update the parameter estimates:

â = â + ∆a.

7. Convergence Check: Repeat until the changes in the least-squares norm and pa-
rameter estimates fall below a threshold.

4.3.1.2 | Advantages and disadvantages
■ Advantages:

– Efficient due to reliance on first-order derivatives.

– Exhibits quadratic convergence as parameter estimates approach true values.

– Simple to implement compared to other optimization methods.
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■ Disadvantages:

– Limited to least-squares problems, less general than methods that minimize
other norms.

– May not converge if the initial guess is far from the true parameters.

– Sensitive to poor initial guesses, which may lead to slow convergence or fail-
ure to find the optimal solution.

– Solving normal equations can be memory-intensive for large-scale problems.

4.3.2 | Levenberg-Marquardt algorithm
The Levenberg-Marquardt algorithm is an optimization method that merges elements
of gradient descent and the Gauss-Newton approach to solve nonlinear least-squares
problems. Particularly, it is effective for models with nonlinear functions (48; 55; 57).

4.3.2.1 | Algorithm steps
1. Initialization: Start with an initial estimate for the parameter vector x0 and set an

appropriate damping parameter λ.

2. Iterative Update: Update the parameters at each iteration using:

xk+1 = xk −
[(

JT J + λI
)−1

JT f (xk)

]
.

3. Jacobian Matrix: Compute the Jacobian matrix J:

Jij =
∂ fi(x)

∂xj
.

4. Adjust Damping Parameter:

■ Decrease λ if the update improves the objective function.

■ Increase λ if the update does not improve the objective function.

5. Convergence Check: Repeat until the changes in x or the objective function fall
below a threshold.
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4.3.2.2 | Advantages and disadvantages
■ Advantages:

– Combines strengths of both gradient descent and the Gauss-Newton method.

– More robust to poor initial guesses due to adaptive damping.

– Effective for nonlinear problems where the Gauss-Newton method might
struggle.

■ Disadvantages:

– More computationally expensive than gradient descent.

– The damping parameter λ can affect convergence and performance.

4.3.3 | TNC algorithm
The TNC (Truncated Newton Conjugate-Gradient) method is an optimization algorithm
that employs a truncated Newton method with gradient information for constrained op-
timization. This method employs conjugate gradient techniques to estimate the inverse
of the local Hessian matrix (34). The function is approximated using a quadratic model:

f (x) ≈ f (x0) +∇ f (x0) · (x − x0) +
1
2
(x − x0)

T H(x0)(x − x0).

where H(x0) represents the Hessian matrix.

4.3.4 | Trust Region Constrained method
The trust-region constrained method is an optimization technique that relies on a quadratic
approximation of the objective function. It addresses the following trust-region sub-
problem:

min mk(p) = fk + gT
k p +

1
2

pTBk p.

subject to ∥p∥ ≤ ∆k, where ∆k denotes the trust-region radius. This approach is es-
pecially useful for handling large-scale constrained problems, as it dynamically adjusts
the trust-region size during the optimization process.
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4.3.5 | Trust Region Reflective method
The Trust Region Reflective algorithm is used for optimization problems with bound
constraints. It enforces first-order necessary conditions for local minimization and han-
dles problems with or without constraints. It uses a diagonal matrix to simplify opti-
mization, allowing efficient handling of bound-constrained problems (34).

Conclusion
This chapter underscores the significance of robust parameter estimation techniques in mathe-

matical modeling of epidemics. By leveraging methods like MLE and Nonlinear Least Squares,
in conjunction with optimization approaches, researchers can achieve precise parameter estima-
tion, leading to models that better reflect real-world dynamics. These advancements enhance the
reliability and predictive power of epidemic models, offering valuable insights for public health
decision-making.
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In recent years, the global rate of tuberculosis (TB) has risen considerably. This chap-
ter examines how vaccinations and treatments have influenced the spread of TB in two coun-
tries—Ukraine and Algeria—which differ significantly in their demographic characteristics. To
conduct this analysis, a mathematical model referred to as VSLIT is used. The stability of
both the disease-free equilibrium and endemic equilibrium is assessed through qualitative meth-
ods. For the numerical simulations, parameter estimates are obtained using the least squares
approach, with TB data from Algeria and Ukraine spanning from 1990 to 2020.

5.1 | Background on tuberculosis
Tuberculosis (TB) remains one of the leading causes of death from infectious diseases
worldwide. According to the World Health Organization (WHO), approximately 2 bil-
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lion people carry latent TB, with 1.7 million fatalities reported in 2009. Although TB
incidence has declined in the United States, it continues to spread in many regions, and
the emergence of drug-resistant strains poses a growing threat, particularly among in-
dividuals co-infected with HIV (88).

TB is caused by Mycobacterium tuberculosis, a member of the M. tuberculosis
complex, which includes related species such as M. africanum, M. bovis, and M. mi-
croti. The disease primarily affects the lungs, accounting for nearly 85% of cases, though
extrapulmonary TB can impact other organs. Diagnostic tools for TB include the Man-
toux tuberculin skin test (PPD) and the interferon-gamma release assay (IGRA). When
TB is suspected, sputum samples are analyzed using acid-fast bacilli (AFB) smear and
culture tests. Treatment usually spans six months and involves a combination of antibi-
otics, with modifications based on drug resistance and patient-specific factors. Special
treatment protocols exist for children, pregnant women, and individuals with HIV. On-
going research aims to develop new treatment strategies and vaccines (36).

Historical overview of tuberculosis
Tuberculosis (TB) has a long history, with evidence of skeletal TB, such as Pott’s dis-
ease, found in human remains from Neolithic Europe (8000 BCE), ancient Egypt (1000
BCE), and pre-Columbian America. By 400 BCE, Hippocrates had identified TB as a
contagious illness, referring to it as phthisis, a Greek term meaning "to waste away". In
historical English texts, pulmonary TB was often called consumption. A major break-
through came in 1882 when German physician Robert Koch successfully isolated My-
cobacterium tuberculosis.

As urbanization and population density grew, TB cases increased significantly. By
the Industrial Revolution (circa 1750), the disease accounted for over 25% of adult deaths
in Europe. Tuberculosis was the primary cause of death in the United States during the
early 20th century. However, its incidence declined as public health measures, including
patient isolation, were introduced (36).

5.2 | Dynamic modeling and analysis

5.2.1 | Formulating of the VSLIT model
This section presents a mathematical model developed to study the transmission dy-
namics of tuberculosis (TB) (13). The model categorizes the population into five distinct
groups:
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Model variables

V(t): Individuals who have been vaccinated,
S(t): Individuals susceptible to TB,
L(t): Individuals in the latent (exposed) stage,
I(t): Individuals actively infected with TB,
T (t): Individuals undergoing treatment.

At any time t, the total population is given by:

N (t) = V(t) + S(t) + L(t) + I(t) + T (t). (5.1)

A flowchart illustrating the model is shown in Figure 5.1.

( + )T

T
I

SkV

L

( + )I

V

p (1-p)

Figure 5.1: Flowchart of the proposed VSLIT model

The number of vaccinated individuals, denoted as V , increases due to a small pro-
portion of newborns being immunized, represented by pΛ. However, this population
declines as some vaccinated individuals lose immunity over time and back to the sus-
ceptible group at a rate k. These individuals remain free from infection during the pe-
riod when immunity is intact, assuming the vaccine provides full immunity. The natural
mortality rate within this group is represented by µ. Thus, the dynamics of the vacci-
nated population are governed by the following equation:

V̇(t) = pΛ − (k + µ)V(t).
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The susceptible population, S , increases due to newborns who are not vaccinated
against tuberculosis, which occurs at a rate of (1 − p)Λ. Additionally, as vaccinated
individuals who lose their immunity transition into this group at rate k. The susceptible
population declines as individuals contract the infection through contact with infected
individuals at a rate β and due to natural mortality at a rate µ. The dynamics of the
susceptible population are described by:

Ṡ(t) = (1 − p)Λ + kV(t)− βS(t)I(t)− µS(t).

The latent population, L, grows when susceptible individuals are exposed to in-
fected persons. This population decreases as individuals progress to the active stage
of TB at rate ϵ or through natural mortality at rate µ. Additionally, a portion δ(1 − α)

of treated individuals re-enter the latent stage, where α represents the treatment failure
rate. When α = 0, all treated individuals transition back to latency, whereas α = 1
signifies complete treatment failure, preventing any movement to the latent group. The
equation for the latent population is:

L̇(t) = βS(t)I(t)− (ϵ + µ)L(t) + (1 − α)δT (t).

The infected population, I , grows as latent individuals develop active TB and as
some treated individuals relapse into the infectious stage at a rate αδ, which plays a
significant role in sustaining infections. This population declines when individuals re-
ceive treatment at rate γ, succumb to natural mortality at rate µ, or die from TB-related
complications at rate σ. The equation governing the infected population is:

İ(t) = ϵL(t) + αδT (t)− (γ + µ + σ)I(t).

Lastly, the treated population, T , grows as individuals undergo treatment at a rate
γ. However, it declines due to reinfection at rate δ, along with natural deaths occurring
at rate µ and TB-related fatalities at rate η. The dynamics of the treated population are
expressed as:

Ṫ (t) = γI(t)− (µ + δ + η)T (t).

The TB infection dynamics are modeled using the following system of differential equa-
tions: 

V̇(t) = pΛ − (k + µ)V(t),

Ṡ(t) = (1 − p)Λ + kV(t)− βS(t)I − µS(t),

L̇(t) = βS(t)I − (ϵ + µ)L(t) + (1 − α)δT (t),

İ(t) = ϵL(t) + αδT (t)− (γ + µ + σ)I ,

Ṫ (t) = γI(t)− (µ + δ + η)T (t).

(5.2)
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The model assumes the following initial conditions:

V(0) ≥ 0, S(0) ≥ 0, L(0) ≥ 0, I(0) ≥ 0, and T (0) ≥ 0.

Model Parameters:

Λ: Rate of new individuals entering the population,
p: Proportion of newborns receiving vaccination (p ∈ [0, 1]),
µ: Natural mortality rate,
k: Rate at which vaccinated individuals lose immunity,
β: Infection transmission rate,
γ: Rate of recovery through treatment,
ϵ: Rate at which latent TB becomes active,
α: Probability of treatment failure,
δ: Rate of transition out of the treated population,
σ: TB-induced mortality rate in infected individuals (I),
η: TB-related mortality rate among treated individuals (T ).

5.2.2 | Preservation of the feasible set
We aim to analyze the TB model presented in equation (5.2) within a biologically feasible
domain Ω ⊂ R5

+, which is defined as:

Ω =

{
(V(t),S(t),L(t), I(t), T (t)) ∈ R5

+ : N (t) ≤ Λ
µ

}
.

This set represents a biologically feasible region.

Lemma 5.1 For the TB model described in equation (5.2), the solution remains non-negative
for all t > 0, given that the initial conditions are non-negative. Moreover, if the total population
satisfies 0 ≤ N (0) ≤ Λ

µ initially, then for all t > 0, the population size N (t) adheres to the
constraint:

0 ≤ N (t) ≤ Λ
µ

.

Proof 5.1 If V(t), S(t), L(t), I(t), and T (t) remain non-negative, then the following condi-
tions hold: 

V̇ |V=0= pΛ ≥ 0,

Ṡ |S=0= (1 − p)Λ + kV ≥ 0,

L̇ |L=0= βSI + (1 − α)δT ≥ 0,

İ |I=0= ϵL+ αδT ≥ 0,

Ṫ |T =0= γI ≥ 0.

(5.3)
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Thus, if the initial conditions are non-negative, the solution remains non-negative for all t ≥ 0.
By summing the equations of system (5.2), we obtain the total population equation:

Ṅ (t) = V̇(t) + Ṡ(t) + L̇(t) + İ(t) + Ṫ (t).

This simplifies to:

Ṅ (t) = Λ − µ (V(t) + S(t) + L(t) + I(t) + T (t))− (σI(t) + ηT (t)).

Rearranging, we obtain:

Ṅ (t) = Λ − µN (t)− (σI(t) + ηT (t)) ≤ Λ − µN (t).

This implies Ṅ < 0 when N > Λ
µ , which is avoided by assuming N (0) ≤ Λ

µ . Then, by
comparison, N (t) ≤ Λ

µ for all t ≥ 0. Thus, the region Ω is invariant.

5.2.3 | Existence of equilibrium points and global stability
To determine the equilibrium points of the system in equation (5.2), we set the time
derivatives of all the model variables to zero:

V̇ = Ṡ = L̇ = İ = Ṫ = 0.

This results in the identification of two equilibrium states:
Disease-Free Equilibrium (DFE ):

E∗
DFE = (V∗

DFE ,S∗
DFE ,L∗

DFE , I∗
DFE , T ∗

DFE ) =

(
pΛ

k + µ
,
(k + µ − µp)Λ

µ(k + µ)
, 0, 0, 0

)
.

Therefore, the total population at the disease-free equilibrium is:

N ∗
DFE =

Λ
µ

.

The endemic equilibrium (EE ):

E∗
EE = (V∗

EE ,S∗
EE ,L∗

EE , I∗
EE , T ∗

EE ),

where:
V∗
EE =

pΛ
k + µ

, S∗
EE =

(k + µ − µp)Λ
(k + µ)(βI∗2 + µ)

,

L∗
EE =

(γ + µ + σ)(µ + δ + η)− αδγ

ϵ(µ + δ + η)
I∗
EE , T ∗

EE =
γ

µ + δ + η
I∗
EE .
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The infected population I∗2 is given by:

I∗
EE =

(k + µ − µp)ϵΛ(µ + δ + η)

(k + µ) ((ϵ + µ)(γ + µ + σ)(µ + δ + η)− (ϵ + µ)αδγ − (1 − α)γδϵ)
− µ

β
,

or equivalently:
I∗
EE =

µ

β
(R0 − 1).

The total population at the endemic equilibrium can be expressed as:

N ∗
EE =

Λ − (σI∗2 + ηT∗
2 )

µ
<

Λ
µ

.

The endemic equilibrium exists if R0 > 1.

5.2.3.1 | The fundamental reproduction rate R0

The fundamental reproduction rate, R0, quantifies the expected number of secondary
infections generated by a single infectious individual in a fully susceptible population
(22).

■ If R0 < 1, the disease will not persist in the population and will eventually be
eradicated.

■ If R0 > 1, the infection has the potential to spread and become endemic.

To determine R0, we use the next-generation matrix method (83), given by:

R0 = ρ(FV−1),

where F and V are the Jacobian matrices corresponding to new infections and transition
terms in the infected compartments, respectively. These are defined as:

f =

βSI
0
0

 , v =

 (ϵ + µ)L− (1 − α)δT
−ϵL− αδT + (γ + µ + σ)I

−γI + (µ + δ + η)T

 =

 c1L− (1 − α)δT
−ϵL− αδT + c2I

−γI + c3T

 .

where c1 = ϵ + µ, c2 = γ + µ + σ, and c3 = µ + δ + η.
Evaluating the Jacobian matrices at the disease-free equilibrium E∗

DFE , we obtain:

J( f ) =

0 βS 0
0 0 0
0 0 0

 , J(v) =

 c1 0 −(1 − α)δ

−ϵ c2 −αδ

0 −γ c3

 .
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At E∗
DFE , the matrices simplify to:

F =


0

(k + µ − µp)Λβ

µ(k + µ)
0

0 0 0
0 0 0

 , V =

 c1 0 −(1 − α)δ

−ϵ c2 −αδ

0 −γ c3

 .

Finally, the basic reproduction number R0 is computed as the spectral radius of
FV−1:

R0 = ρ(FV−1) =
ϵ(k + µ − µp)Λβc3

µ(k + µ)(c1c2c3 − αγδc1 − (1 − α)δγϵ)
.

5.2.3.2 | Analysis of the global stability of the DFE

Proposition 5.1 Consider the vaccinated population equation of model (5.2):

dV
dt

= νΛ − (κ + µ)V .

If the initial condition V(0) ≥ 0 is satisfied, then V(t) converges to V∗ = νΛ
κ+µ as t → ∞.

Proof 5.2 Starting with V(0) ≥ 0, solve the differential equation:

dV
dt

= νΛ − (κ + µ)V .

This represents a linear differential equation, whose general solution is given by:

V(t) = V∗ + (V(0)− V∗)e−(κ+µ)t.

Taking the limit as t → ∞:

V(t) → νΛ
κ + µ

.

Theorem 5.1 The disease-free equilibrium (E∗
DFE ) of the model (5.2) is globally asymptotically

stable when R0 < 1. However, if R0 > 1, the equilibrium becomes unstable.

Proof. For R0 < 1, the following inequality holds:

ϵ(k + µ − µp)Λβc3

µ(k + µ)(c1c2c3 − αγδc1 − (1 − α)δγϵ)
< 1.

By the Archimedean property of R, there exists γ0 > 0 such that:

ϵc3

(
Λβ(k + µ − µp)

µ(k + µ)
+ γ0

)
− (c1c2c3 − αγδc1 − (1 − α)δγϵ) < 0.
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Define the Lyapunov function:

L(t) = l1L+ l2I + l3T , (5.4)

where the coefficients l1, l2, l3 are positive constants that are yet to be determined. The
time derivative of L(t) along the system trajectories is given by:

dL
dt

= l1
dL
dt

+ l2
dI
dt

+ l3
dT
dt

,

dL
dt

= l1 [βSI − c1L+ (1 − α)δT ] + l2 [ϵL+ αδT − c2I ] + l3 [γI − c3T ] ,
(5.5)

Also, by assumption, we have Nt ≤ Λ
µ . Thus,

St ≤ Nt − Vt ≤
Λ
µ
− V∗ + γ0 ≤ Λ

µ
− pΛ

k + µ
+ γ0 ≤ (k + µ − µp)Λ

µ(k + µ)
+ γ0.

Thus, we obtain the inequality:

dL
dt

≤ l1

[
(

l1Λβ(k + µ − µp)
µ(k + µ)

+ γ0)I − c1L+ (1 − α)δT
]
+ l2 [ϵL+ αδT − c2I ] + l3 [γI − c3T ] ,

≤
[

l1Λβ(k + µ − µp)
µ(k + µ)

+ γ0 − (l2c2 − l3γ)

]
I + [l2ϵ − l1c1]L

+ [l1(1 − α)δ + l2αδ − l3c3] T .
(5.6)

By selecting the constants:

l1 = ϵc3, l2 = c1c3, l3 = ((1 − α)δ + αδc1),

we obtain:

dL
dt

≤
[

ϵc3Λβ(k + µ − µp)
µ(k + µ)

+ γ0 − (c1c2c3 − ((1 − α)δ + αδc1)γ)

]
I . (5.7)

Thus, if R0 < 1, then dL
dt is negative. We conclude that E∗

DFE is globally asymptotically
stable.

5.2.3.3 | Analysis of the global stability of the EE

In this part, we demonstrate the global asymptotic stability of the endemic equilibrium
(EE ) for the model described in (5.2). Utilizing the approach detailed in (87), we derive
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the following results from the system (5.2) at the EE :

pΛ = (k + µ)V∗
EE ,

kV∗
EE = −(1 − p)Λ + βS∗

EEI∗
EE + µS∗

EE ,
c1L∗

EE = βS∗
EEI∗

EE + (1 − α)δT ∗
EE ,

c2I∗
EE = ϵL∗

EE + αδT ∗
EE ,

γI∗
EE = c3T ∗

EE .

(5.8)

Theorem 5.2 The endemic equilibrium E∗
EE of the system (5.2) is globally asymptotically stable

when R0 > 1.

Proof 5.3 To demonstrate the theorem, we examine the following Lyapunov function:

D =k
[
V(t)− V∗

EE − V∗
EE ln

V(t)
V∗
EE

]
+ ϵ

[
S(t)− S∗

EE − S∗
EE ln

S(t)
S∗
EE

]
+ ϵ

[
L(t)−L∗

EE −L∗
EE ln

L(t)
L∗
EE

]
+ c1

[
I(t)− I∗

EE − I∗
EE ln

I(t)
I∗
EE

]
+

δT ∗
EE (c1α + ϵ(1 − α))

γI∗
EE

[
T (t)− T ∗

EE − T ∗
EE ln

T (t)
T ∗
EE

]
.

(5.9)

By computing derivative of D(t) with respect to the time along the trajectories of system (5.2),
we derive

Ḋ =k
[(

1 − V∗
EE
V

)
V̇
]
+ ϵ

[(
1 − S∗

EE
S

)
Ṡ +

(
1 − L∗

EE
L

)
L̇
]
+ c1

[(
1 − I∗

EE
I

)
İ
]

+
δT ∗

EE (c1α + ϵ(1 − α))

γI∗
EE

[(
1 − T ∗

EE
T

)
Ṫ
]

.

From a simple calculation, it follows that

k
(

1 − V∗
EE
V

)
V̇ = k

(
1 − V∗

EE
V

)
[pΛ − (k + µ)V ]

= k(k + µ)V∗
EE

(
2 − V∗

EE
V

− V
V∗
EE

)
.

ϵ

(
1 − S∗

EE
S

)
Ṡ = ϵ

(
1 − S∗

EE
S

)
[(1 − p)Λ + kV − βSI − µS ]

= ϵµS∗
EE

(
2 − S∗

EE
S − S

S∗
EE

)
+ ϵβS∗

EEI∗
EE

(
1 − S∗

EE
S +

I
I∗
EE

)
− ϵβSI .
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ϵ

(
1 − L∗

EE
L

)
L̇ = ϵ

(
1 − L∗

EE
L

)
[βSI − c1L+ (1 − α)δT ]

= ϵβSI − ϵβSI L
∗
EE
L − c1ϵL+ ϵβS∗

EEI∗
EE + (1 − α)δϵT ∗

EE + (1 − α)ϵδT

− (1 − α)δϵ
T L∗

EE
L .

c1

(
1 − I∗

EE
I

)
İ = c1

(
1 − I∗

EE
I

)
[ϵL+ αδT − c2I ]

= c1ϵL− ϵβS∗
EEI∗

EE
LI∗

EE
L∗
EEI

− (1 − α)ϵδT ∗
EE

LI∗
EE

L∗
EEI

+ c1αδT − c1αδT I∗
EE
I

+ ϵβS∗
EEI∗

EE + c1αδT ∗
EE + ϵ(1 − α)δT ∗

EE − ϵβS∗
EEI∗

EE
I
I∗
EE

− (1 − α)ϵδT ∗
EE

I
I∗
EE

− c1αδT ∗
EE

I
I∗
EE

.

δT ∗
EE (c1α + ϵ(1 − α))

γI∗
EE

(
1 − T ∗

EE
T

)
[γI − c3T ] =

δT ∗
EE (c1α + ϵ(1 − α))

I∗
EE

(
1 − T ∗

EE
T

) [
I − I∗

EE
T ∗
EE

T
]

= δαc1T ∗
EE

I
I∗
EE

+ δ(1 − α)ϵT ∗
EE

I
I∗
EE

− δαc1T ∗
EE

IT ∗
EE

I∗
EET

− δ(1 − α)ϵT ∗
EE

IT ∗
EE

I∗
EET

− δαc1T − δ(1 − α)ϵT

+ δαc1T ∗
EE + δ(1 − α)ϵT ∗

EE .

Using the previous equations we get

Ḋ =k(k + µ)V∗
EE

(
2 − V∗

EE
V − V

V∗
EE

)
+ ϵµS∗

EE

(
2 − S∗

EE
S − S

S∗
EE

)
+ ϵβS∗

EEI∗
EE

(
3 − S∗

EE
S − I

I∗
EE

− LI∗
EE

L∗
EEI

− SIL∗
EE

S∗
EEI∗

EEL

(
1 − LS∗

EE
L∗
EES

))
+ (1 − α)ϵδT ∗

EE

(
3 − I∗

EEL
IL∗

EE
− L∗

EET
LT ∗

EE
− T ∗

EEI
T I∗

EE

)
+ δαc1T ∗

EE

(
2 − I∗

EET
IT ∗

EE
− IT ∗

EE
I∗
EET

)
.

(5.10)

By employing the arithmetic-geometric mean inequality in Eq. (5.10), we derive the following
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inequalities: 

(
2 − V

V∗
EE

− V∗
EE
V

)
≤ 0(

2 − S
S∗
EE

− S∗
EE
S

)
≤ 0(

3 − S∗
EE
S − I

I∗
EE

− LI∗
EE

L∗
EEI

− SIL∗
EEN ∗

EE
S∗
EEI∗

EENL

(
1 − LS∗

EE
L∗
EES

))
≤ 0,(

3 − I∗
EEL

IL∗
EE

− L∗
EET

LT ∗
EE

− T ∗
EEI

T I∗
EE

)
≤ 0,(

2 − I∗
EET
IT ∗

EE
− IT ∗

EE
I∗
EET

)
≤ 0.

(5.11)

The parameters are all positive, so it follows that Ḋ ≤ 0 when R0 > 1. Consequently, applying
LaSalle’s Invariance Principle (refer to 2.2.2.5), (V ,S ,L, I , T ) → (V∗

EE ,S∗
EE ,L∗

EE , I∗
EE , T ∗

EE )

as t → ∞.

5.3 | Simulating numerically and estimating parameters
This section focuses on estimating six key model parameters using data extracted from
the WHO Global Tuberculosis Report (76) covering the years 1990–2020 (see Table 5.1).
The remaining parameters are obtained from statistical sources available in the litera-
ture.

The mortality rate µ is calculated as the average annual death rate from 1990 to 2020,
based on population statistics for Algeria and Ukraine (63; 64). The estimated values
are µ = 0.00498 for Algeria and µ = 0.0150875 for Ukraine. Similarly, the recruitment
rate Λ, representing the mean number of births per year during the same period, is
determined as Λ = 811, 085 for Algeria and Λ = 434, 687 for Ukraine.

The BCG vaccination rate corresponds to the proportion of infants aged 12–23 months
who have received the BCG vaccine. Figures 5.2 and 5.3 illustrate the percentage of one-
year-old children vaccinated in Algeria and Ukraine between 1990 and 2020, according
to data from the World Bank (80; 81). The mean vaccination coverage is estimated as
p = 0.977 for Algeria and p = 0.899 for Ukraine. The BCG vaccine is reported to have
an efficacy of 70%–80% in preventing severe childhood tuberculosis, such as meningitis
and miliary TB (41). Given this, the transition rate from V to S is assumed to correspond
to the immunization failure rate, calculated as k = 1 − 0.75 = 0.25.

Treatment success rates from 2000 to 2020 (78; 79) provide estimates for treatment
failure probabilities. These are determined as α = 1 − 0.8905 = 0.1095 for Algeria and
α = 1 − 0.59 = 0.4033 for Ukraine.
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Figure 5.2: Proportion of one-year-old children in Algeria who received the BCG vaccine
from 1990 to 2020.

 

Figure 5.3: Proportion of one-year-old children in Ukraine who received the BCG vac-
cine from 1990 to 2020.
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The initial conditions were selected based on demographic data and epidemiolog-
ical considerations. The total initial population, N (0), is set at 25, 518, 074 for Algeria
and 51, 589, 817 for Ukraine, reflecting their respective populations in 1990 as reported in
(63). The number of initially infected individuals, I(0), was derived from estimates pro-
vided in the WHO Global Tuberculosis Report (76). Additionally, initial values for the
latent (L(0)), treated (T (0)), and vaccinated (V(0)) populations were assumed. Given
these values, the initial number of susceptible individuals was determined using the
equation:

S(0) = N (0)−L(0)− I(0)− T (0)− V(0).

These initial conditions were chosen to ensure consistency and reliability in the numer-
ical simulations.

The parameters β, γ, ϵ, σ, α, δ, k, and η were estimated by fitting the model to real-
world TB incidence data, aiming to minimize the discrepancy between the simulated
and observed values in (5.2). The estimation process involved optimizing the following
objective function:

ψ =
n

∑
i=1

(
Iti − I∗

ti

)2 ,

where I∗
ti

denotes the recorded number of TB cases, Iti is the model’s predicted value
at time ti, and n represents the total number of data points considered. To perform
this optimization, the nonlinear regression problem was solved using the Levenberg-
Marquardt algorithm, implemented via the ’fitnlm’ function in MATLAB R2020b (3.5).
Figure 5.4 displays the incidence data alongside the model-fitted curve, generated using

Parameters Description Algerian Value References Ukrainian Value References
V(0) The initial number of vaccinated 8,109,389 Assumed 5,980,291 Assumed
S(0) The initial number of susceptible 17,368,226 Calculated 45,564,208 Calculated
L(0) The initial number of latent 8,852 Assumed 8,852 Assumed
I(0) The initial number of infected 11,607 (76) 16,465 (76)
T (0) The initial number of treated 20,000 Assumed 20,000 Assumed
Λ The recruitment rate 811,085 (63) 344214 (64)
µ The natural death rate 0.00498 (63) 0.0121 (64)
k The rate of moving from V to S 0.25 (80) 0.25 (81)
β The transmission rate 6.6752 × 10−11 Fitted 5.83 × 10−10 Fitted
γ The recovery rate 0.0043 Fitted 0.00012 Fitted
ϵ The progression rate 0.0656 Fitted 0.225 Fitted
α Treatment failure rate 0.1095 (78) 0.4033 (79)
δ The rate at which the treated 0.1325 Fitted 0.208 Fitted

population leave the class T
σ The disease death rate in I 0.0136 Fitted 0.019 Fitted
η The disease death rate in T 4.2327 × 10−6 Fitted 0.0006 Fitted
p The vaccination rate 0.977 (80) 0.899 (81)

Table 5.1: Model parameters and initial data for equation (5.2).
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the parameters listed in Table 5.1.
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Figure 5.4: Fitting the data for tuberculosis cases in Algeria.
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Figure 5.5: Fitting the data for tuberculosis cases in Ukraine.

93



Chapter 5. A novel compartmental
VSLIT model 5.4. Sensitivity analysis

5.4 | Sensitivity analysis
Understanding disease transmission dynamics necessitates evaluating the sensitivity
of each parameter. This method is widely applied to assess the robustness of model
predictions, accounting for possible inaccuracies in data collection and parameter as-
sumptions. By analyzing the influence of various parameters on model outcomes, we
can determine their relative impact on disease spread.

The partial derivatives of the basic reproduction number R0 are analyzed concern-

ing the model parameters β, γ, k, and ϵ. Given that
∂R0

∂β
> 0, it can be inferred that

reducing the transmission rate (for instance, through isolation strategies) can stabilize
the endemic-free equilibrium, thereby controlling the spread of the disease. Conversely,

since
∂R0

∂γ
< 0, we conclude that increasing the treatment rate γ can help manage tu-

berculosis infections. A higher immunization failure rate, k, leads to an increase in R0,

as shown by
∂R0

∂k
> 0, which contributes to a faster spread of the disease. Additionally,

since
∂R0

∂α
> 0, lowering the treatment failure rate, α, helps reduce the overall number

of infected individuals.
To evaluate the impact of parameter variations on a given variable, the sensitivity

index is employed.

Definition 5.1 For a parameter δ, the normalized sensitivity index of R0 is defined as:

SR0
δ =

δ

R0

∂R0

∂δ
. (5.12)

Table 5.2 presents the computed sensitivity indices for the basic reproduction num-
ber R0, based on the baseline model parameters and derived using equation (5.12).

As shown in Table 5.2, the values of SR0
β and SR0

Λ are both equal to +1. This indicates that
an increase in R0 is directly proportional to increases in both β and Λ. Moreover, the
parameters k, ϵ, α, and δ are positively correlated with R0, as indicated by the positive
sensitivity indices SR0

k > 0, SR0
ϵ > 0, SR0

α > 0, and SR0
δ > 0.

Conversely, the negative sensitivity indices SR0
µ < 0, SR0

γ < 0, SR0
σ < 0, SR0

p < 0, and
SR0

η < 0 suggest that the parameters µ, γ, σ, p, and η are inversely related to R0.

5.5 | Discussion and results of numerical simulations
Table 5.1 presents the estimated parameter values, while Figures 5.4 and 5.5 illustrate the
tuberculosis incidence data for Algeria and Ukraine, respectively, alongside the model-
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Parameter Sensitivity index For Algeria Sensitivity index For Ukraine
Λ +1 +1
µ −1.6502 −0.2053
k +0.0012 +0.0035
β +1 +1
γ −0.1671 −3.0296
ϵ +0.0005 +0.06294
α +2.1364 × 10−10 +8.7236 × 10−05

δ +1.4003 × 10−09 +8.1145 × 10−10

σ −0.4043 −0.5647
η −2.5311 × 10−11 −3.3821 × 10−11

p −0.0194 −0.0527

Table 5.2: Sensitivity index for the model (5.2) in Algeria and Ukraine.

generated curves based on these estimates. The coefficient of determination (R2) values
of 0.9016 for Algeria and 0.6036 for Ukraine indicate a satisfactory alignment between
the model and the observed data.

With these estimated parameters, the basic reproduction numbers are computed as
R0 = 0.5228 for Algeria and R0 = 0.4306 for Ukraine, both being below 1. This suggests
that sustained treatment and isolation strategies, as depicted in the model projections
for 2020–2050 in Figures 5.4 and 5.5, could help in controlling or eradicating the disease.

To explore the influence of key parameters on disease transmission, Figure 5.6 presents
the variation of R0 with respect to six different parameters. The results highlight that β,
ϵ, and α exhibit a direct correlation with R0, implying that an increase in these parame-
ters would enhance disease transmission.

Conversely, the parameters γ, p, and µ show an inverse relationship with R0, indi-
cating that their increase would contribute to reducing the spread of the infection. These
findings align with empirical observations.

The findings indicate that four key factors should be considered in any strategy
aimed at halting the spread of tuberculosis:

■ Enhancing the accuracy and comprehensiveness of TB diagnoses to ensure that
infected individuals receive appropriate care.

■ Enforcing isolation protocols for infected individuals and closely monitoring their
households to minimize exposure to contagious cases.

■ Maintaining a high vaccination coverage among children to enhance their immu-
nity and protection.
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■ Ensuring a high vaccination rate among children to provide them with adequate
protection.

■ Improving the treatment rate by training qualified healthcare professionals, procur-
ing effective medications, and establishing facilities specifically designed for the
treatment of this disease.
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Figure 5.6: Effect of the parameters α, β, γ, µ, ϵ, and p on the fundamental reproduction
rate R0.

Conclusion
To examine tuberculosis (TB) transmission dynamics in Algeria and Ukraine, we constructed a
mathematical VSLIT model incorporating key biological aspects of TB along with reasonable as-
sumptions. Model parameters were estimated using the least-squares method based on available
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infection data. The analysis underscores the significance of specific parameters in TB control.
Specifically, the focus is on the contact rate β, the treatment rate γ, and the vaccination rate p.
With the estimated parameters for both countries, we found that the basic reproduction number
R0 was below one, suggesting that TB could be eliminated with sustained efforts in vaccination,
treatment, and isolation measures. The study also highlights differences in TB management be-
tween Algeria and Ukraine. Algeria exhibited a higher vaccination rate (p) and recovery rate (γ)
along with a lower transmission rate (β) compared to Ukraine, reflecting progress in TB con-
trol. However, Algeria’s R0 was higher than Ukraine’s, indicating that Ukraine may have better
prospects for TB elimination. This is linked to Ukraine’s significantly higher reported annual
infections, which ranged from 33,000 to 41,000 between 2001 and 2013, peaking during this
period. Conversely, Algeria implemented stricter control measures that initially reduced infec-
tions but delayed the epidemic peak, which continued to rise until 2018 before declining. These
findings provide valuable insights for enhancing TB prevention and treatment strategies, aiding
efforts to mitigate the disease’s impact in Algeria, Ukraine, and other affected regions.
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Tuberculosis (TB) is a bacterial infection that mainly affects the lungs and is transmitted
through airborne particles expelled by infected individuals during coughing, sneezing, or spit-
ting. Although tuberculosis is preventable and treatable, around 25% of the global population
carries latent TB bacteria, with 5-10% of these individuals eventually developing active disease
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(89). The persistent existence of TB, particularly the multidrug-resistant (MDR-TB) and exten-
sively drug-resistant (XDR-TB) strains, poses significant challenges to global health. MDR-TB
resists two primary first-line drugs, isoniazid and rifampicin, while XDR-TB exhibits addi-
tional resistance to fluoroquinolones and injectables (90). Factors such as improper treatment
regimens, patient nonadherence, and systemic healthcare failures contribute to the rise of drug
resistance, complicating TB management and control efforts. This highlights the urgent need
for innovative and region-specific strategies. Mathematical modeling has become a critical tool
for analyzing TB dynamics and exploring intervention strategies. While differential equation
models have traditionally dominated epidemiological research, discrete-time models have gained
prominence for capturing certain dynamics more effectively (2; 95). Building on foundational
TB models, such as those by Waaler and Anderson (85), recent advancements have incorpo-
rated multidrug-resistant dynamics and interventions like chemoprophylaxis and vaccination
(32; 43). This study develops a discrete-time epidemic model using data from India and Russia
between 2000 and 2022 (76) to analyze TB dynamics, including MDR-TB and XDR-TB cases.
The model employs Euler discretization with a step size of h = 1 to examine the effects of in-
terventions such as chemoprophylaxis and BCG vaccination on susceptible, infected, MDR, and
XDR populations. Through parameter estimation and sensitivity analysis, the study identifies
critical factors influencing TB transmission and highlights region-specific recommendations for
controlling the disease. The findings emphasize the more severe TB crisis in India compared
to Russia, underscoring the need for targeted public health interventions to address TB and its
drug-resistant forms effectively.

6.1 | Formulation of discrete TB model
In this section, we present a continuous-time model for tuberculosis (TB), building on
the foundational work of Chennaf et al. (12), which incorporates both MDR-TB and
XDR-TB populations. Our goal is to develop an analytically manageable model that
enhances the understanding of TB transmission dynamics. Additionally, we investi-
gate the impact of chemoprophylaxis on controlling TB and its resistant strains, with a
particular focus on the socio-economic effects of varying intervention levels. This anal-
ysis highlights how different chemoprophylaxis rates influence TB spread and drug re-
sistance, offering valuable insights into the broader socio-economic implications of TB
control strategies.

The Bacillus Calmette-Guérin (BCG) vaccine is widely administered to infants in
regions with a high TB burden. While it provides strong protection against severe child-
hood TB, its effectiveness in preventing pulmonary TB the most common form in adults
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is considerably lower.
People are usually infected with Mycobacterium tuberculosis (MTB) through expo-

sure to those with active TB, entering an exposed phase. Some individuals then progress
to active TB and become contagious. With timely treatment, they can recover and tran-
sition to the treatment phase. Discontinuing treatment increases the risk of develop-
ing multidrug-resistant tuberculosis (MDR-TB), which leads to a classification of re-
sistance. Patients who recover from MDR-TB typically return to the treatment phase;
however, if their MDR-TB treatment is unsuccessful, they may progress to extensively
drug-resistant tuberculosis (XDR-TB). Similarly, individuals recovering from XDR-TB
also reenter the treatment phase.

The population is categorized into seven distinct groups:

V(t): Vaccinated,
S(t): Susceptible,
E(t): Exposed (latent),
I(t): Infected (active TB),
D(t): Multidrug-resistant TB,
X (t): Extensively drug-resistant TB,
T (t): Under treatment.

The dynamic behavior of the model is described by the following ordinary differen-
tial system (ODEs):

V̇(t) = νΛ − (α + µ)V(t),

Ṡ(t) = (1 − ν)Λ + αV(t)− βS(t)I − µS(t),

Ė(t) = βS(t)I − (ϵ + µ + ω)E(t),

İ(t) = ϵE(t)− (τ + ζ + γ + µ + σ)I ,

Ḋ(t) = τI(t)− (θ + µ + δ)D(t),

Ẋ (t) = ζI(t)− (ξ + µ + η)X (t),

Ṫ (t) = γI(t) + ωE(t) + θD(t) + ξX (t)− µT (t).

(6.1)

with suitable non-negative initial conditions: V(0) = V0 ≥ 0,S(0) = S0 ≥ 0, E(0) =

E0 ≥ 0, I(0) = I0 ≥ 0, D(0) = D0 ≥ 0,
X (0) = X0 ≥ 0, T (0) = T0 ≥ 0.
Model Parameters:

■ Λ : The number of births,
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■ µ: The natural mortality rate,

■ α : The moving rate from V to S,

■ β : The transmission rate,

■ γ : The rate of treatment from I,

■ ϵ : The progression rate,

■ ω : The chemoprophylaxis treatment rate,

■ τ: The rate at which resistance to the first line of treatment develops,

■ ζ: The rate at which resistance to the second line of treatment develops,

■ ξ : The Rate of treatment for XDR-TB,

■ θ : The rate of treatment for MDR-TB,

■ δ : The mortality rate from disease in D,

■ σ :The mortality rate from disease in I,

■ η : The mortality rate from disease in X,

■ ν : The vaccination rate.

Figure 6.1 illustrates the flowchart of the model.
All parameters and variables in system (6.1) are non-negative, consistent with the dis-
crete model’s portrayal of human dynamics. By applying the Euler forward difference
method (39; 56) with a step size of h = 1, system (6.1) is converted into the following set
of discrete equations:

Vt+1 = Vt + νΛ − (α + µ)Vt,
St+1 = St + (1 − ν)Λ + αVt − βStIt − µSt,
Et+1 = Et + βStIt − (ϵ + µ + ω)Et,
It+1 = It + ϵEt − (τ + ζ + γ + µ + σ)It,
Dt+1 = Dt + τIt − (θ + µ + δ)Dt,
Xt+1 = Xt + ζIt − (ξ + µ + η)Xt,
Tt+1 = Tt + γIt + ωEt + θDt + ξXt − µTt.

(6.2)

with non-negative initial conditions :
V0 ≥ 0,S0 ≥ 0, E0 ≥ 0, I0 ≥ 0,D0 ≥ 0,X0 ≥ 0, T0 ≥ 0.
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6.2 | The feasible region
Proposition 6.1 The feasible region for the discrete tuberculosis model represented by system
(6.2) is defined as:

Γ =

{
(Vt,St, Et, It,Dt,Xt, Tt) ∈ R7

+ | Nt ≤
Λ
µ

}
,

and this region remains positively invariant.

Proof. We begin by noting that:

Nt+1 = Vt+1 + St+1 + Et+1 + It+1 +Dt+1 +Xt+1 + Tt+1,

= Λ − µ[Vt + St + Et + It +Dt +Xt + Tt]

− σIt − δDt + ηXt + Vt + St + Et + It +Dt +Xt + Tt,

= Λ − µNt − σIt − δDt + ηXt +Nt,

Nt+1 −Nt = Λ − µNt − σIt − δDt + ηXt,

≤ Λ − µNt.

(6.3)

Now, note that:

Λ − µNt < 0 if and only if Nt >
Λ
µ

.

Therefore, the total population decreases whenever it exceeds Λ
µ , and remains bounded

by this value if it starts below or equal to it.
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ωE

Figure 6.1: Flow diagram of the discrete model (6.2) depicting the transitions between
various compartments in the system
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Hence, for any initial condition satisfying 0 ≤ N0 ≤ Λ
µ

, we conclude that:

0 ≤ Nt ≤
Λ
µ

, for all t ≥ 0.

Thus, the feasible region Γ is positively invariant under the dynamics of the discrete
model.

6.3 | Disease-free equilibrium
This section examines the identification and analysis of a stable solution referred to as
the Disease-Free Equilibrium (DFE) within the model.

6.3.1 | Existence of the DFE
At the DFE, the disease is entirely absent from the population. This equilibrium is typ-
ically established by equating the left-hand side of system (6.2) to Vt,St, Et, It,Dt,Xt, Tt

and setting the values of E , I , D, X , and T to zero.

Vt = Vt + νΛ − (α + µ)Vt,

St = St + (1 − ν)Λ + αVt − βStIt − µSt,

Et = Et + βStIt − (ϵ + µ + ω)Et,

It = It + ϵEt − (τ + ζ + γ + µ + σ)It,

Dt = Dt + τIt − (θ + µ + δ)Dt,

Xt = Xt + ζIt − (ξ + µ + η)Xt,

Tt = Tt + γIt + ωEt + θDt + ξXt − µTt.

(6.4)

The DFE is determined by solving the system (6.4), yielding:

DFE = (V∗,S∗, E∗, I∗,D∗,X ∗, T ∗) =

(
νΛ

α + µ
,
(α + µ − µν)Λ

µ(α + µ)
, 0, 0, 0, 0, 0

)
,

where N =
Λ
µ

.

6.3.2 | Basic reproduction number R0

The computation of the basic reproduction number, R0, for the discrete TB model is
performed using the method described in (22; 83). This approach involves constructing
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essential matrices to derive the threshold parameter, R0 (6; 37), expressed as:

R0 = ρ(FV−1),

where FV−1 is the next-generation matrix. Here, F and V are m × m matrices, with
m representing the number of infected compartments. The spectral radius of FV−1,
denoted ρ(FV−1), determines the value of R0.

The equations for the infected classes in the model (6.2) are:

Et+1 = Et + βStIt − (ϵ + µ + ω)Et,

It+1 = It + ϵEt − (τ + ζ + γ + µ + σ)It,

Dt+1 = Dt + τIt − (θ + µ + δ)Dt,

Xt+1 = Xt + ζIt − (ξ + µ + η)Xt.

(6.5)

The next-generation matrices F and V are derived as:

F =


0 βS∗ 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

V =


(ϵ + µ + ω) 0 0 0

−ϵ (τ + ζ + γ + µ + σ) 0 0
0 −τ (θ + µ + δ) 0
0 −ζ 0 (ξ + µ + η)

 .

The matrix FV−1 is computed as:

FV−1 =


ϵβ(α+µ−µν)Λ

µ(α+µ)(ϵ+µ+ω)(τ+ζ+γ+µ+σ)
−β(α+µ−µν)Λ

µ(α+µ)(τ+ζ+γ+µ+σ)
0 0

0 0 0 0
0 0 0 0
0 0 0 0

 .

The eigenvalues of FV−1 are obtained by solving
∣∣FV−1 − λI4

∣∣ = 0, yielding:

λ1 = 0, λ2 = 0, λ3 = 0, and

λ4 =
ϵβ(α + µ − µν)Λ

µ(α + µ)(ϵ + µ + ω)(τ + ζ + γ + µ + σ)
.

The dominant eigenvalue, λ4, represents the basic reproduction number:

R0 = ρ(FV−1) =
ϵβ(α + µ − µν)Λ

µ(α + µ)(ϵ + µ + ω)(τ + ζ + γ + µ + σ)
.
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6.3.3 | Global stability investigation of the DFE
Proposition 6.2 Consider the first equation of model (6.2):

Vt+1 = Vt + νΛ − (α + µ)Vt.

If the initial condition V0 ≥ 0 is satisfied, then Vt converges to V∗ = νΛ
α+µ as t → ∞.

Proof. Starting with V0 ≥ 0, substitute this into the recurrence relation to find V1:

V1 = V0 + νΛ − (α + µ)V0.

This can be rewritten as:
V1 = V0(1 − (α + µ)) + νΛ.

Let us prove that Vt converges to a unique fixed point V∗. we express the recurrence
relation as

Vt+1 = Vt(1 − (α + µ)) + νΛ.

At equilibrium, Vt+1 = Vt = V∗, substituting this into the equation results in:

V∗ = V∗(1 − (α + µ)) + νΛ.

Simplify to find:

V∗ =
νΛ

α + µ
.

Now consider the difference from the equilibrium V∗, denoted as ∆t = Vt − V∗.
Using the recurrence relation, we have:

∆t+1 = Vt+1 − V∗ = (Vt − V∗)(1 − (α + µ)).

This simplifies to:
∆t+1 = ∆t(1 − (α + µ)).

Since 1 − (α + µ) lies in the interval (0, 1), ∆t → 0 as t → ∞. Therefore:

Vt → V∗ =
νΛ

α + µ
.

Hence, Vt converges to V∗ without assuming a priori boundedness.

Theorem 6.1 The disease-free equilibrium (DFE) of the model described by system (6.2) is
globally asymptotically stable (GAS) if R0 ≤ 1.
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Proof. For R0 < 1, the following inequality holds:

ϵβ

(
(α + µ − µν)Λ

µ(α + µ)

)
− (ϵ + µ + ω)(τ + ζ + γ + µ + σ) < 0.

According to the Archimedean property of R, a positive constant γ0 > 0 can be found
such that:

ϵβ

(
(α + µ − µν)Λ

µ(α + µ)
+ γ0

)
− (ϵ + µ + ω)(τ + ζ + γ + µ + σ) < 0.

To prove the GAS of the discrete model (6.2), define the Lyapunov function:

Ft = b1Et + b2It,

where the backward difference ∆F is given by:

∆F = Ft+1 − Ft = b1(Et+1 − Et) + b2(It+1 − It).

This becomes:

∆F = b1(βStIt − (ϵ + µ + ω)Et) + b2(ϵEt − (τ + ζ + γ + µ + σ)It).

To establish an upper bound for St, we refer to Proposition 6.2, which implies the exis-
tence of t0 such that for all t > t0, the inequality |Vt − V∗| < γ0 holds.

The inequality |Vt − V∗| < γ0 implies that:

V∗ − γ0 < Vt,

which leads to:
−Vt < −V∗ + γ0.

Also, by assumption, we have Nt ≤ Λ
µ .

Thus,

St ≤ Nt − Vt ≤
Λ
µ
− V∗ + γ0 ≤ Λ

µ
− νΛ

α + µ
+ γ0 ≤ (α + µ − µν)Λ

µ(α + µ)
+ γ0.

Thus, we obtain the inequality:

∆F ≤ b1

(
β

(
(α + µ − µν)Λ

µ(α + µ)
+ γ0

)
It − (ϵ + µ + ω)Et

)
+ b2 (ϵEt − (τ + ζ + γ + µ + σ)It) .

We can then bound this expression as:

∆F ≤
(

b1β

(
(α + µ − µν)Λ

µ(α + µ)
+ γ0

)
− b2(τ + ζ + γ + µ + σ)

)
It +(b1(ϵ + µ + ω)− b2ϵ) Et.
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Choosing b1 = ϵ and b2 = (ϵ + µ + ω), we get:

∆F ≤
(

ϵβ

(
(α + µ − µν)Λ

µ(α + µ)
+ γ0

)
− (ϵ + µ + ω)(τ + ζ + γ + µ + σ)

)
It.

If R0 < 1, then ∆F < 0, with equality only when Et+1 = It+1 = 0. This implies
(E , I) → (0, 0) as t → ∞.

Substituting E = I = 0 into the first two equations of (6.2), we find:

V → νΛ
α + µ

, S → (α + µ − µν)Λ
µ(α + µ)

as t → ∞.

Thus, the DFE is the maximal invariant set in {(Vt,St, Et, It,Dt,Xt, Tt) : Ft = 0}. By
LaSalle’s Invariance Principle (see Theorem 2.2.2.5), every solution of (6.2) converges to
the DFE as t → ∞.

6.4 | Endemic equilibrium
This section examines the conditions for the existence and stability of an endemic equi-
librium (EE) for model (6.2).

6.4.1 | Existence of EE
The following lemma guarantees the existence of EE:

Lemma 6.1 Model (6.2) admits a unique EE if R0 > 1.

Proof. At steady-state, solving the equations of system (6.2) results in the following ex-
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pressions:

V∗∗ =
νΛ

α + µ
,

S∗∗ =
(ϵ + µ + ω)(τ + ζ + γ + µ + σ)

βϵ
,

E∗∗ =
(τ + ζ + γ + µ + σ)

ϵ
I∗∗,

I∗∗ =
(α + µ − µν)ϵΛ

(α + µ)(ϵ + µ + ω)(τ + ζ + γ + µ + σ)
− µ

β
,

=
µ

β
(R0 − 1),

D∗∗ =
τ

θ + µ + δ
I∗∗,

X ∗∗ =
ζ

ξ + µ + η
I∗∗,

T ∗∗ =

[
γ +

ω(τ + ζ + γ + µ + σ)

ϵ
+

θτ

θ + µ + δ
+

ξζ

ξ + µ + η

]
I∗∗.

6.4.2 | Global stability investigation of the EE
The global asymptotic stability (GAS) of the unique EE is demonstrated in the following
theorem:

Theorem 6.2 The unique EE of model (6.2) is globally asymptotically stable (GAS) if R0 ≥ 1
and µ ≤ 1.

Proof. Consider system (6.2). Define the nonlinear Lyapunov function:

Ut =
1
2
[(Vt − V∗∗) + (St − S∗∗) + (Et − E∗∗) + (It − I∗∗) + (Dt −D∗∗) + (Xt −X ∗∗) + (Tt − T ∗∗)]2 ,

=
1
2
[(Vt + St + Lt + It +Dt +Xt + Tt)− (V∗∗ + S∗∗ + L∗∗ + I∗∗ +D∗∗ +X ∗∗ + T ∗∗)]2 ,

=
1
2
(Nt −N ∗∗)2.

The backward difference of Ut is:
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∆U = Ut+1 − Ut,

=
1
2
[
(Nt+1 −N ∗∗)2 − (Nt −N ∗∗)2] ,

=
1
2
(Nt+1 −Nt)(Nt+1 +Nt − 2N ∗∗),

= −1
2
(Nt+1 −Nt)

2 + (Nt+1 −N ∗∗)(Nt+1 −Nt),

≤ (Nt+1 −N ∗∗)(Nt+1 −Nt).

Summing the equations of system (6.2) yields:

Nt+1 −Nt = Λ − (σI∗∗ + δD∗∗ + ηX ∗∗)− µNt.

At steady-state, Λ − (σI∗∗ + δD∗∗ + ηX ∗∗) = µN ∗∗, so:

∆U = (Nt − µNt + µN ∗∗ −N ∗∗)(µN ∗∗ − µNt),

≤ (µ2 − µ)(Nt −N ∗∗)2.

Hence, ∆U ≤ 0 if µ ≤ 1. Therefore, EE is GAS when R0 ≥ 1 and µ ≤ 1.

6.5 | Data fitting for discrete model
This section focuses on estimating seven model parameters using data from the WHO’s
Global Tuberculosis Report, which provides global TB incidence data from 2000 to 2022
(76) (refer to Table 6.1). Additional statistical data from the literature is used to infer the
remaining parameters.

The death rate, µ, is calculated as the average annual death rate for the period
2000–2022, based on population data for India and Russia from (65; 66). Similarly, the
annual average birth rate during the same period is used to estimate the birth rate, Λ,
as shown in Table 6.1.

For India, the total population in 2000 was N = 1 059 633 675 (65). The initial num-
ber of reported TB cases, I0 = 1 115 718, was obtained from WHO data (76), along with
the initial counts of MDR- and XDR-TB cases. The number of vaccinated individuals
was calculated using:

V0 = Number of births × Vaccination rate.
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The number of exposed individuals was assumed to be:

E0 = 8 852,

while the treated individuals were assumed to be:

T0 = 2 000.

Thus, the initial susceptible population was computed as:

S0 = N − (V0 + E0 + I0 +D0 +X0 + T0) = 851 497 070.

The initial conditions for Russia were found to be the same as those for India.
The vaccination rate, ν, was determined using data on Bacillus Calmette-Guérin

(BCG) vaccination coverage for children aged 12 to 23 months from World Bank statis-
tics (82; 93). The treatment rates for MDR-TB (θ) and XDR-TB (ξ) were derived as the
annual average treatment success rates for MDR- and XDR-TB, respectively, during
2000–2022. These rates are calculated as:

Treatment success rate for MDR-TB each year

=
Number of individuals treated successfully for MDR-TB each year

Number of individuals with MDR-TB each year
,

Treatment success rate for XDR-TB each year =

Number of individuals treated successfully for XDR-TB each year
Number of individuals with XDR-TB each year

.

Similarly, the disease-specific death rates for MDR-TB (δ) and XDR-TB (η) were cal-
culated as the annual average death rates during 2000–2022:

Death rate for MDR-TB each year =
Number of MDR-TB deaths each year

Number of individuals with MDR-TB each year
,

Death rate for XDR-TB each year =
Number of XDR-TB deaths each year

Number of individuals with XDR-TB each year
.

The remaining parameters (β, γ, ϵ, σ, ω, τ, α, ζ) were estimated by minimizing the er-
ror between the model’s predicted TB incidence and the observed data. The objective
function used was:

Φ =
n

∑
i=1

(Iti − I∗
ti
)2,
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where I∗
ti

represents the observed TB cases at time ti, Iti represents the model-predicted
cases, and n is the number of data points. This minimization was performed using the
Levenberg-Marquardt algorithm and MATLAB’s fitnlm function.

Figures 6.2 and 6.3 show the TB incidence data for Russia and India, respectively,
along with the fitted model curves based on the estimated parameters (Table 6.1).

Table 6.1: Initial conditions and model parameters for Russia and India.

Parameters Russia References India References
V(0) 13, 791, 833 (93) 180, 967, 005 (82)
S(0) 132, 653, 507 Calculated 851, 497, 070 Calculated
E(0) 8, 852 Assumed 8, 852 Assumed
I(0) 140, 677 (76) 1, 115, 718 (76)
D(0) 0 (76) 0 (76)
X (0) 0 (76) 0 (76)
T (0) 2, 000 Assumed 2, 000 Assumed
Λ 1, 720, 142.287 (66) 26, 469, 994.76 (65)
µ 0.015 (66) 0.007 (65)
ν 0.96 (93) 0.858 (82)
α 0.0012 Fitted 0.160 Fitted
β 1.45 × 10−6 Fitted 1.27 × 10−8 Fitted
γ 1 × 10−14 Fitted 0.043 Fitted
ϵ 0.0003 Fitted 0.004 Fitted
ω 0.254 Fitted 0.542 Fitted
τ 0.048 Fitted 4.17 × 10−6 Fitted
ζ 0.028 Fitted 3.02 × 10−6 Fitted
ξ 0.36 Calculated 0.356 Calculated
θ 0.49 Calculated 0.504 Calculated
δ 0.15 Calculated 0.189 Calculated
σ 2.81 × 10−6 Fitted 0.006 Fitted
η 0.21 Calculated 0.319 Calculated
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Figure 6.2: TB incidence data and model fit for Russia. The data points are shown
in green, while the fitted model is depicted in red. The basic reproduction number,
R0 = 0.22 < 1.

112



Chapter 6. Discrete-Time modeling of tuberculosis epidemics: chemoprophylaxis strategies for
combating MDR and XDR TB in Russia and India 6.6. Analyzing the sensitivity of R0

2000 2005 2010 2015 2020 2025

Time (years)

1

1.5

2

2.5

In
fe

ct
ed

 In
d

iv
id

u
al

s

106 TB Infected

Data
Discret Model

2000 2050 2100 2150

Time (years)

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

V

108

2000 2050 2100 2150

Time (years)

4

5

6

7

8

9

10

S

108

2000 2050 2100 2150

Time (years)

0

1

2

3

4

5

6

E

107

2000 2050 2100 2150

Time (years)

1

1.5

2

2.5

3

3.5

4

4.5

5

I

106

2000 2050 2100 2150

Time (years)

0

5

10

15

20

25

30

D

2000 2050 2100 2150

Time (years)

0

5

10

15

20

X

2000 2050 2100 2150

Time (years)

0

0.5

1

1.5

2

T

109

Figure 6.3: TB incidence data and model fit for India. The data points are shown in
green, while the fitted model is depicted in red. The basic reproduction number, R0 =
6.42 > 1.

6.6 | Analyzing the sensitivity ofR0

This section examines the sensitivity of the basic reproduction number R0 with respect
to the model parameters. First, the partial derivatives of R0 with respect to the parame-
ters β, γ, ϵ, ω, τ, ζ, σ, α, µ, and ν are derived. These derivatives are evaluated using the
following definition of the normalized sensitivity index:

Definition 6.1 The normalized sensitivity index of R0 with respect to a parameter ρ is defined

113



Chapter 6. Discrete-Time modeling of tuberculosis epidemics: chemoprophylaxis strategies for
combating MDR and XDR TB in Russia and India 6.6. Analyzing the sensitivity of R0

as:
SR0

ρ =
ρ

R0

∂R0

∂ρ
.

Using this definition, the partial derivatives of R0 with respect to the parameters are
calculated as follows:

SR0
β =

β

R0

∂R0

∂β
= 1 > 0,

SR0
γ =

γ

R0

∂R0

∂γ
=

−γ

(γ + µ + σ + τ + ζ)
,

SR0
ϵ =

ϵ

R0

∂R0

∂ϵ
= 1 − ϵ

(ω + ϵ + µ)
,

SR0
ω =

ω

R0

∂R0

∂ω
=

−ω

(ω + ϵ + µ)
,

SR0
τ =

τ

R0

∂R0

∂τ
=

−τ

(γ + µ + σ + τ + ζ)
,

SR0
ζ =

ζ

R0

∂R0

∂ζ
=

−ζ

(γ + µ + σ + τ + ζ)
,

SR0
p =

p
R0

∂R0

∂ν
=

−(µν)

(α + µ − µν)
,

SR0
α =

α

R0

∂R0

∂α
=

(αµν)

((α + µ)(α + µ − µν))
,

SR0
σ =

σ

R0

∂R0

∂σ
=

−σ

(γ + µ + σ + τ + ζ)
,

SR0
µ =

µ

R0

∂R0

∂µ
= −(

µ

(γ + µ + σ + τ + ζ)
+

µ

(ω + ϵ + µ)
+

µ

(α + µ)
+ 1+

µ((ν − 1))
(α + µ − µν)

).

Table 6.2: Sensitivity Index for the Basic Reproduction Number R0.

Parameter Sensitivity Index
µ −1.6712
ν −9.5533
α +0.5449
β +1.0000
γ −6.8240 × 10−14

ϵ +0.9963
ω −0.9759
τ −0.5153
ζ −0.3788
σ −1.1943 × 10−4
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6.7 | Numerical results
The results of the parameter estimation are presented in Table 6.1. The TB incidence

data, along with the model’s fitted curve, are shown in Figures 6.2 and 6.3, which were
generated using the parameter values from Table 6.1. The model provides a good fit,
demonstrated by high coefficients of determination: R2 = 0.8709 for India and R2 =

0.977 for Russia. These values suggest that the model accurately reflects the observed
data patterns.

Based on the estimated parameter values, the calculated R0 for India is 6.42 (greater
than 1), which indicates that the DFE is unstable, while the EE is asymptotically stable,
as depicted in Figure 6.3. In contrast, for Russia, the calculated R0 is 0.22 (less than 1),
suggesting that the DFE is asymptotically stable, while the EE is unstable, as shown in
Figure 6.2.

To better understand the impact of specific parameters on disease transmission,
Figures 6.4 and 6.5 provide graphical representations of R0 in relation to ten parameters.
The basic reproduction number, R0, demonstrates a strong positive correlation with β,
α, and ϵ. This suggests that an increase in these parameters results in a higher R0,
thereby promoting more rapid disease spread.

In contrast, an inverse relationship is found between R0 and the other param-
eters γ, ν, τ, ζ, ω, σ, and µ. Increased values of these parameters lead to a lower R0,
suggesting a slower rate of disease transmission. These findings align with real-world
observations. The original model presented by Gupta et al. (32) did not account
for the effects of chemoprophylaxis on individuals with latent TB infections, nor did it
consider the treatment for those with active TB. To improve this, D. B. Kitaro et al. (43)
enhanced the model by incorporating chemoprophylaxis for latent infections and treat-
ment for those with active TB. As a result, this study focused on estimating parameters
and evaluated the impact of chemoprophylaxis and vaccination on the infected, MDR,
and XDR classes. The analysis used TB incidence data from India and Russia to assess
the effectiveness of these interventions.
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Figure 6.4: Representation of R0 versus β, τ, γ, ϵ and α.
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Figure 6.5: Representation of R0 versus β, ν, ω, σ, and µ.

An analysis of Figure 6.6 reveals that the number of individuals in the infected
categories, MDR and XDR, who are not receiving chemoprophylaxis treatment exceeds
those who are receiving it among the exposed groups. Additionally, as the chemopro-
phylaxis treatment parameter ω increases, it becomes clear that providing chemopro-
phylaxis to exposed individuals substantially reduces the transmission of tuberculosis.

117



Chapter 6. Discrete-Time modeling of tuberculosis epidemics: chemoprophylaxis strategies for
combating MDR and XDR TB in Russia and India 6.7. Numerical results

2000 2005 2010 2015 2020 2025

Time (years)

1

1.5

2

2.5

3

3.5

4
V

107

=0.05
=0.15
=0.25

2000 2005 2010 2015 2020 2025

Time (years)

0

5

10

15

S

107

2000 2005 2010 2015 2020 2025

Time (years)

0

1

2

3

4

5

6

7

8

E

107

2000 2005 2010 2015 2020 2025

Time (years)

0.5

1

1.5

2

I

105

2000 2005 2010 2015 2020 2025

Time (years)

0

5000

10000

15000
D

2000 2005 2010 2015 2020 2025

Time (years)

0

2000

4000

6000

8000

10000

X

2000 2005 2010 2015 2020 2025

Time (years)

0

2

4

6

8

10

T

107

Figure 6.6: Effect of the chemoprophylaxis treatment rate on the compartments of the
discrete model (6.2).

Figure 6.7 illustrates that as the BCG vaccination rate increases, the number of
individuals in the infected, MDR, and XDR classes decreases, which can be attributed
to the protective effects of the vaccine. The BCG (Bacillus Calmette-Guérin) vaccine,
commonly used against TB, offers partial protection against specific strains of the TB-
causing bacteria.

As more individuals are vaccinated with BCG, the overall immunity within the pop-
ulation increases, making it harder for the TB bacteria, including MDR and XDR strains,
to infect those who have received the vaccine. Consequently, the spread of these drug-
resistant strains is diminished, leading to a reduction in the number of infected individ-
uals in these categories.

In conclusion, the effectiveness of BCG vaccination in lowering the prevalence of
MDR-TB and XDR-TB is reflected in the negative correlation between vaccination rate
and the size of these infected classes, as shown in Figure 6.7.
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Overall, the numerical analysis provides evidence that incorporating the chemo-
prophylaxis treatment parameter ω and the vaccination rate parameter ν into the model
significantly enhances the reduction in TB transmission, especially within the MDR and
XDR compartments. This improvement is evident when compared to the model that
does not include chemoprophylaxis treatment for Exposed individuals or consider the
vaccination rate. Figure 6.8 presents a comparison between the discrete and contin-
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Figure 6.7: Effect of the vaccination rate on the compartments of the discrete model (6.2).

uous models in terms of the number of infected cases in Russia. The discrete model
provides a strong fit, as indicated by a high coefficient of determination, R2 = 0.98.
In contrast, the continuous model has a lower coefficient of determination, R2 = 0.93,
suggesting a less accurate fit compared to the discrete model.
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Figure 6.8: Comparision of the discrete model and continuous model vs Russia’s Data.

The discrete model provides a better fit because its framework is particularly
effective at capturing the dynamics of time-stepped data, especially when the data is
recorded in discrete intervals, like daily case counts. Moreover, when real-world data
has inherent discrete characteristics or experiences abrupt changes over time, the dis-
crete model can adapt to these variations more easily. Additionally, discrete models are
more adept at representing nonlinear behaviors and sudden shifts, such as bifurcations,
resulting in a more precise reflection of the observed data.
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Conclusion
This research developed and analyzed a discrete mathematical model for tuberculosis (TB) trans-
mission, emphasizing multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-
TB) cases. The model originated from a continuous-time framework and was discretized using
the Euler forward method with a step size of h = 1. It incorporates the effects of chemoprophy-
laxis for the Exposed group and vaccination coverage. The next-generation matrix method was
utilized to determine the basic reproduction number, R0, and to assess the stability of both the
disease-free and endemic equilibrium points. Model parameters were calibrated using real TB
incidence data from India and Russia, yielding R0 values of 6.42 for India and 0.22 for Rus-
sia, indicating a significantly higher risk of TB transmission in India. The model’s projections
showed strong agreement with observed TB cases, demonstrating its reliability for predicting the
disease’s trajectory. Sensitivity analysis highlighted that increasing chemoprophylaxis for ex-
posed individuals effectively reduces progression to MDR-TB and XDR-TB, while BCG vacci-
nation enhances immunity and curtails transmission rates. Considering TB’s greater prevalence
in India compared to Russia, the study emphasizes the urgent need for enhanced interventions
in India. Recommendations include improved treatment strategies, strengthening healthcare in-
frastructure, and conducting widespread public awareness campaigns to mitigate the impact of
TB.
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This chapter analyzes tuberculosis (TB) vaccination strategies using mathematical modeling
and game theory. It covers the methods used to develop the model, explores equilibrium points,
and examines key concepts such as the fundamental reproduction rate (R0) and the threshold
for herd immunity. The Nash equilibrium vaccination strategy is also analyzed, followed by a
sensitivity analysis to assess the model’s robustness.

Introduction
Tuberculosis continues to be a significant global health issue, particularly in nations
like Algeria, where the disease burden remains high. Caused by the bacterium My-
cobacterium tuberculosis, TB primarily affects the lungs, although it can also spread to
other organs of the body (92). In Algeria, similar to many other nations, efforts to control
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TB heavily depend on vaccination programs, with the Bacillus Calmette-Guérin (BCG)
vaccine being instrumental in preventing severe TB in children (4). Despite the high
coverage of BCG vaccination, TB transmission continues to pose a significant threat,
necessitating innovative approaches to enhance control measures.

The vaccination decisions, particularly in the context of TB, often involve a complex
interplay of individual incentives, societal norms, and public health strategies. Game
theory, a mathematical framework that studies strategic interactions, has been increas-
ingly applied to understand and optimize vaccination decisions. In this context, indi-
viduals’ decisions to vaccinate or not vaccinate depend not only on their perceived risk
of infection but also on the vaccination choices of others in the population (9).

In Algeria, while the vaccination rate for BCG is relatively high, gaps in TB transmis-
sion dynamics and individual vaccination decisions remain (91). Game theory provides
a powerful tool to model the strategic decision-making process of individuals regarding
vaccination. By analyzing the Nash equilibrium in the context of TB vaccination, we can
determine the optimal vaccination rate that balances individual costs and benefits with
the public health goal of reducing TB transmission (74).

This chapter aims to develop a game-theoretic model of TB vaccination in Algeria,
where the decisions of individuals to vaccinate are influenced by the vaccination deci-
sions of others in the population. We incorporate a simple epidemiological model to de-
scribe the spread of TB and analyze the conditions under which individuals will choose
to vaccinate. By doing so, we explore the potential for achieving optimal vaccination
rates through voluntary participation and assess the role of public health interventions
in influencing these decisions. Through this model, we aim to provide insights into how
game theory can guide TB vaccination strategies in Algeria and similar contexts.

7.1 | Material and methods
Our mathematical model is based on the compartmental approach to TB dynamics pro-
posed by Chennaf et al. (12) and examined in Chapter 4. This framework categorizes
the population into five distinct compartments: vaccinated individuals (V(t)), suscepti-
ble individuals (S(t)), latent individuals (L(t)), infected individuals (I(t)), and treated
individuals (T (t)), allowing for a systematic analysis of disease transmission and pro-
gression. The evolution of each compartment is determined by a system of differential
equations, which represent the transitions of individuals between different states over
time.
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The differential equations governing the model are as follows:

dV(t)
dt

= pΛ − (k + µ)V(t),
dS(t)

dt
= (1 − p)Λ + kV(t)− βS(t)I(t)− µS(t),

dL(t)
dt

= βS(t)I(t)− (ϵ + µ)L(t) + (1 − α)δT (t),
dI(t)

dt
= ϵL(t) + αδT (t)− (γ + µ + σ)I(t),

dT (t)
dt

= γI(t)− (µ + δ + η)T (t).

(7.1)

Here, Λ is the population birth rate, k is the rate of vaccination, and µ is the natural
mortality rate. The parameters β, ϵ, α, γ, δ, and η represent various transmission, pro-
gression, and treatment rates specific to TB. p is the proportion of the population that
chooses to vaccinate.

A diagram of the model is shown in Figure 7.1, illustrating the interactions between
the compartments.

( + )T

T
I

SkV

L

( + )I

V

p (1-p)

Figure 7.1: Model diagram showing the interactions between compartments in the
VSLIT tuberculosis model
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7.2 | Equilibrium points
To assess the long-term behavior of the system 7.1, we compute its equilibrium points.
The first of these is the disease-free equilibrium (DFE), which occurs when no individu-
als are infected. The DFE is expressed as:

E1 = (V∗
1 ,S∗

1 ,L∗
1 , I∗

1 , T ∗
1 ) =

(
pΛ

k + µ
,
(k + µ − µp)Λ

µ(k + µ)
, 0, 0, 0

)
.

The second equilibrium point is the endemic equilibrium (EE), which occurs when the
disease remains in the population. The endemic equilibrium is given by:

E2 =

(
pΛ

k + µ
,
(k + µ − µp)Λ
(k + µ)(βI∗2 + µ)

,
(γ + µ + σ)(µ + δ + η)− αδγ

ϵ(µ + δ + η)
I∗

2 , I∗
2 ,

γ

µ + δ + η
I∗

2

)
.

The condition for the existence of the endemic equilibrium is R0 > 1, meaning that the
disease will spread in the population. If R0 ≤ 1, the disease will eventually die out.

7.3 | Basic reproduction number
The fundamental reproduction rate R0 serves as a key threshold parameter in epidemi-
ology, determining whether an infection will persist in a population. It quantifies the
expected number of secondary infections caused by a single infected individual in a
fully susceptible population. The expression for R0 in our model is given by:

R0 =
ϵ(k + µ − µp)Λβk3

µ(k + µ)(k1k2k3 − αγδk1 − (1 − α)δγϵ)
.

where k1 = (ϵ + µ), k2 = (γ + µ + σ), and k3 = (µ + δ + η).
When R0 exceeds 1, the disease is likely to spread within the population. Con-

versely, if R0 remains below 1, the infection will gradually decline and eventually be
eradicated.

7.4 | Herd immunity threshold vaccination rate
Achieving herd immunity requires a sufficiently high vaccination rate to reduce the
fundamental reproduction rate R0 to below 1. The vaccination rate needed to achieve
herd immunity, denoted as pHI, is the rate at which vaccination must occur to eliminate
the disease. Setting R0 = 1 yields the following expression for the herd immunity
threshold vaccination rate:

pHI = − (k + µ)(k1k2k3 − αγδk1 − (1 − α)δγϵ)

ϵΛβk3
+

k + µ

µ
.

125



Chapter 7. Game theory in tuberculosis vaccination: analyzing Nash equilibria for optimal
strategies in Algeria 7.5. Nash equilibrium vaccination strategy

0 0.1 0.2 pHI 0.4 0.5 0.6 0.7 0.8 0.9

Vaccination rate p

0.96

0.98

1

1.02

1.04

1.06

R 0(P
)

0 0.1 0.2 0.3 0.4 0.5 0.6 pHI 0.8 0.9

Vaccination rate p

0.97

0.98

0.99

1

1.01

1.02

R 0(p
)

Figure 7.2: The fundamental reproduction rate varsus the vaccination rate p. The critical
vaccination rate for achieving herd immunity is denoted by pHI.

Figure 7.2 shows the relationship between R0 and the vaccination rate p. When p > pHI,
R0 drops below 1, resulting in the eradication of the disease. If p < pHI, R0 remains
above 1, and the disease persists in the population.

7.5 | Nash equilibrium vaccination strategy
In this section, a game-theoretic approach is used to determine optimal vaccination
strategies within a tuberculosis epidemiological model. Parents must decide whether
to vaccinate their child or not. The expected payoffs for both choices are computed
based on a previously established framework (9):

Ev = −Cv − πvCi,

Env = −πnvCi,

where Ev and Env represent the payoffs for choosing vaccination and no vaccination,
respectively. Here, πv and πnv are the infection probabilities for vaccinated and non-
vaccinated individuals, Ci is the cost of infection, and Cv is the cost of vaccination.

For simplicity, the payoffs are normalized by dividing both equations by Ci, which
does not change the outcome of the game:

126



Chapter 7. Game theory in tuberculosis vaccination: analyzing Nash equilibria for optimal
strategies in Algeria 7.5. Nash equilibrium vaccination strategy

Ev = −C − πv,

Env = −πnv,

where C = Cv/Ci is the relative cost of vaccination to infection.
To calculate the probabilities of infection for vaccinated and non-vaccinated indi-

viduals, we analyze the system compartments shown in Figure 5.1. A non-vaccinated
individual starts in the S(t) compartment and can either become latently infected (move
to L(t) at a rate of βI(t)) or die from natural causes at rate µ. The probability of transi-
tioning from S(t) to L(t) is:

βI(t)
βI(t) + µ

.

Likewise, an individual in the L(t) compartment progresses to the I(t) compart-
ment with a probability of ϵ

ϵ+µ . Hence, the total infection probability for a non-vaccinated
individual is:

πnv =
βI(t)

βI(t) + µ
· ϵ

ϵ + µ
.

For vaccinated individuals, immunity can diminish over time, leading to a return to
susceptibility at a rate k. The probability of this event is k

k+µ . From this susceptible state,
the individual follows the same infection process as a non-vaccinated person. Therefore,
the infection probability for a vaccinated individual is:

πv =
k

k + µ
· βI(t)

βI(t) + µ
· ϵ

ϵ + µ
.

Thus, the infection probabilities for both groups are:

πnv =
βI∗

βI∗ + µ
· ϵ

ϵ + µ
, πv =

k
k + µ

· βI∗

βI∗ + µ
· ϵ

ϵ + µ
.

These probabilities are short-term estimates corresponding to an individual’s vacci-
nation decision within the context of a strategic game, not lifetime infection probabili-
ties.

Next, the analysis determines the conditions under which an individual should
choose vaccination and identifies the Nash equilibrium vaccination strategy for the pop-
ulation. Let ppop represent the population’s vaccination rate.

■ If ppop > pHI, then R0 < 1, leading to a disease-free equilibrium where βI∗ = 0.
In this case, the infection probability is zero, and vaccination is unnecessary, as it
incurs a cost without offering additional benefit: Ev = −C < 0 = Env.
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■ If ppop < pHI, then R0 > 1, leading to an endemic equilibrium with:

βI∗ = µ(R0 − 1).

To find the optimal strategy in endemic conditions, we calculate the difference in
payoffs between vaccination and no vaccination:

∆E = Ev − Env = −C +
µ

k + µ
· βI∗

βI∗ + µ
· ϵ

ϵ + µ
.

An individual should vaccinate if ∆E > 0, implying that the payoff from vaccination
is higher than from no vaccination. If ∆E < 0, vaccination should not be chosen. The
optimal strategy depends on the disease prevalence, which is influenced by the popula-
tion’s vaccination rate ppop, and the relative cost of vaccination to infection. Specifically,
if:

C <
µ

k + µ
· βI∗

βI∗ + µ
· ϵ

ϵ + µ
,

then the risk of infection exceeds the cost of vaccination, and the individual should
choose to vaccinate. If:

C >
µ

k + µ
· βI∗

βI∗ + µ
· ϵ

ϵ + µ
,

then the cost of vaccination is greater than the risk of infection, and the individual
should not get vaccinated.

The Nash equilibrium strategy corresponds to the population vaccination rate pNE

at which no individual can improve their payoff by deviating. In the disease-free equi-
librium (ppop > pHI), clearly pNE = 0. In the endemic state (ppop < pHI), the Nash
equilibrium vaccination rate is found by solving Ev = Env, which yields:

C =
µ

k + µ
· βI∗

βI∗ + µ
· ϵ

ϵ + µ
.

Thus, the Nash equilibrium vaccination rate, pNE, is given by:

pNE = − (k + µ) (k1k2k3 − αγδk1 − (1 − α)δγϵ)(
− (k+µ)

µ · (ϵ+µ)
ϵ C − 1

)
ϵΛβk3

+
k + µ

µ
.
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Figure 7.3: Optimal vaccination rate pNE varsus the relative vaccination cost C for dif-
ferent values of β.
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Figure 7.4: Basic reproduction number R0 Varsus the relative vaccination cost C, assum-
ing the population follows the Nash equilibrium vaccination strategy.

The graphs of the optimal vaccination rate pNE varsus the relative vaccination cost
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C for three values of β are shown in Figure 7.3. The optimal vaccination rate does not
exceed the herd immunity threshold vaccination rate pHI and is equal to it only when
vaccination cost is zero. For lower relative vaccination costs, the optimal vaccination
rate stays close to the herd immunity threshold. Furthermore, there exists a critical
relative vaccination cost, Cmax, above which vaccination will no longer be chosen.

The graphs in Figure 7.4 show the fundamental reproduction rate R0 varsus the
relative vaccination cost C under the assumption that the population adopts the Nash
equilibrium vaccination strategy. As the Nash equilibrium vaccination rate approaches
the herd immunity threshold for small relative vaccination costs, R0 remains near 1 as
long as the relative vaccination cost is sufficiently low.

7.6 | Uncertainty and sensitivity analysis
An uncertainty and sensitivity analysis (11; 54) was performed on both the epidemio-
logical and game-theoretic models to assess the impact of parameter variations on the
results. Table 7.1 presents the parameter values along with their respective ranges. The
analysis concentrated on three main response functions: (i) the fundamental reproduc-
tion rate R0 derived from the epidemiological model, (ii) the optimal vaccination rate
pNE within the game-theoretic framework, and (iii) the relative difference between the
herd immunity vaccination rate and the Nash equilibrium vaccination rate, formulated
as
(

pHI−pNE
pHI

)
.

To account for parameter uncertainty, we applied the Latin hypercube sampling
(LHS) method to generate 100 parameter sets based on the ranges specified in Table 7.1.
The LHS approach provides an efficient way to produce near-random samples from a
multidimensional parameter space, ensuring a comprehensive exploration of possible
variations. The range of each parameter was segmented into 100 equal probability in-
tervals, from which a value was randomly selected within each interval. These values
were then paired randomly across all parameters to create 100 distinct samples. The
resulting data is presented in Figures 7.5, 7.6, 7.7, 7.8, 7.9, and 7.10. Figures 7.5, 7.7, and
7.9 display the distribution of the response functions resulting from the uncertainty in
the parameters, while Figures 7.6, 7.8, and 7.10 show the partial rank correlation coef-
ficients (PRCCs), which indicate how sensitive each response function is to changes in
the model parameters. The box plot in Figure 7.5 displays the variability of R0 across
different parameter sets. R0 is most sensitive to changes in β, the transmission rate,
as evidenced by its wider interquartile range compared to other parameters. Parame-
ters such as γ and ϵ show moderate variability, while α, µ, and p exhibit less influence.
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Parameters Description Algerian Value Range
Λ The recruitment rate 811,085
µ The natural death rate 0.00498 (0.00492,0.004985)
k The rate of moving from V to S 0.25
β The transmission rate varies (1.28 × 10−10, 1.29 × 10−10)
γ The recovery rate 0.0043 (0.0007,0.004)
ϵ The progression rate 0.0656 (0.07,0.08)
α Treatment failure rate 0.1095 (0,1)
δ The rate at which the treated 0.1325

population leave the class T
σ The disease death rate in I 0.0136
η The disease death rate in T 4.2327 × 10−6

p The vaccination rate varies (0,1)

Table 7.1: Model parameters for TB model (7.1).

These findings highlight the importance of targeting β through interventions like im-
proved infection control measures to significantly reduce R0.

The PRCC analysis for R0, shown in Figure 7.6, further confirms the dominant role
of β. Positive correlations suggest that increases in β and decreases in γ or ϵ drive R0

higher. This sensitivity analysis reinforces the need for strategies that increase recovery
rates and reduce transmission rates.

The box plot in Figure 7.7 explores the distribution of pNE, the optimal vaccination
rate derived from the game-theoretic model. β again emerges as a key influencer with a
relatively wider distribution, indicating its significant impact on vaccination dynamics.
Other parameters like γ and ϵ show moderate effects, while α and µ are less impact-
ful. These results underline the need for targeted vaccination campaigns focused on
reducing β in high-transmission settings.

Figure 7.8 presents the PRCC for pNE, revealing that parameters with strong pos-
itive correlations, such as γ, enhance optimal vaccination rates. Conversely, negative
correlations with β suggest that higher transmission rates decrease the effectiveness of
vaccination, emphasizing the importance of coupling vaccination with measures that
reduce β.

The relative difference box plot, shown in Figure 7.9, illustrates the variability in
pHI−pNE

pHI
across different parameters. This metric highlights the misalignment between

the socially optimal and individually optimal vaccination rates. β, the transmission rate,
exhibits the highest variability, indicating its substantial influence on the divergence
between pHI and pNE. Parameters γ and ϵ show moderate impacts, reflecting their roles
in disease progression and recovery. Narrower spreads for α and µ suggest secondary
roles in this context. A large spread in the relative difference underscores inefficiency in
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individual decision-making, necessitating interventions like subsidies or mandates to
align behaviors with herd immunity goals.

The PRCC analysis for the relative difference, depicted in Figure 7.10, identifies β

as a dominant parameter with a strong negative correlation. This indicates that higher
transmission rates align individual vaccination incentives closer to herd immunity goals,
reducing the gap. Conversely, positive correlations with parameters like γ suggest that
increased recovery rates can widen the gap, as individuals perceive less urgency to vac-
cinate. These findings emphasize the need for targeted interventions that reduce β while
considering the interplay of other influential parameters.

The optimal vaccination rate, pNE, and the relative difference between the herd
immunity vaccination rate and the Nash equilibrium vaccination rate, expressed as
pHI−pNE

pHI
, depend on the relative cost of vaccination, C. Given that an infected individual

faces approximately a 50% risk of mortality, the cost of infection, Ci, is significantly high.
Consequently, the ratio of vaccination cost to infection cost, defined as C = Cv

Ci
, remains

relatively low. For this study, we selected a small value for the relative vaccination cost,
setting C = 0.003.
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tive disparity between the Nash equi-
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Conclusion
This study examined the impact of individual vaccination decisions through the application of

a game-theoretic model to tuberculosis (TB) transmission, based on the work of (12). Model
parameters were derived from data specific to the TB situation in Algeria. The results suggest
that the optimal level of voluntary vaccination aligns closely with the threshold required for
herd immunity. This outcome is consistent and stable, even when the model parameters are
varied. Therefore, voluntary vaccination initiatives could play a crucial role in reducing TB
prevalence and aiding in its eventual eradication in Algeria. For these programs to be effective, it
is essential that the cost of the vaccine remains affordable, and public awareness about the disease
is increased. Our sensitivity analysis showed that making vaccines both affordable and accessible
is key to reducing the financial and logistical burdens on patients, including out-of-pocket costs,
lost time, and travel expenses. National efforts are necessary for TB eradication, and rural areas
should be a focus due to the higher TB burden in these regions. These efforts should involve
improving vaccination access, providing adequate educational resources, and increasing general
awareness of TB. Educational campaigns should highlight the availability and advantages of
vaccination to encourage higher participation. Additionally, our analysis indicates that the high
cost of TB treatment contributes to the alignment between optimal voluntary vaccination levels
and those required for herd immunity. The high economic burden of TB infections makes the cost
of vaccination relatively low, even if the vaccine is not provided for free. As a result, enhancing
access to vaccines, rather than solely lowering their direct cost, is more critical to achieving
sufficient coverage. Furthermore, the lack of awareness about TB remains a major obstacle to
vaccination uptake, especially in rural parts of Algeria.

134



Conclusions and Outlook

“It is easy to miss the mark and difficult to hit it.”– Aristotle

This thesis has delved into the application of mathematical modeling to understand and address
complex epidemiological challenges, with a focus on infectious diseases like tuberculosis (TB). By
leveraging continuous and discrete dynamical systems, including bifurcation theory, stability
analysis, and game-theoretic approaches, this study has offered a significant understanding of
TB transmission dynamics and its control measures. A significant contribution of this research
is the development and analysis of the VSLIT model, which was applied to tuberculosis data from
Algeria and Ukraine. These countries were chosen for their contrasting epidemiological contexts,
allowing for a comprehensive evaluation of the model’s robustness and applicability. The analy-
sis highlighted the effectiveness of targeted interventions, such as vaccination and chemoprophy-
laxis, in reducing TB incidence and controlling the spread of multidrug-resistant and extensively
drug-resistant tuberculosis. The results underscore the critical role of region-specific strategies in
addressing unique epidemiological challenges. Additionally, discrete-time epidemic models with
chemoprophylaxis further demonstrated the importance of timely interventions in mitigating TB
transmission in high-burden regions like Russia and India. The incorporation of game-theoretic
analysis provided a framework for understanding the impact of individual decision-making on
vaccination uptake and achieving herd immunity. This approach was instrumental in identifying
Nash equilibrium strategies that optimize public health outcomes while accounting for individ-
ual incentives. The findings from this study emphasize the value of mathematical models, such as
the VSLIT model, as tools for guiding public health interventions. By tailoring strategies to spe-
cific regional contexts, such as those in Algeria and Ukraine, these models offer practical insights
into controlling TB and other infectious diseases. Future research should continue refining these
models, exploring additional datasets, and incorporating emerging challenges to enhance their
utility in global health policymaking.
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