People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

Abdelhafid Boussouf University Center Mila

Institute of Mathematics and Computer Science
Department of Computer Science

Memory submitted in partial fulfillment of the requirements for the Master’s degree
Field: Computer Science

Specialty: Information and Communication Science and Technology (STIC)

Petri Nets and Deep Petri Net for Simulation, Modeling and Analysis of Complex
Systems

Prepared by:
Djazi Qamar
Defended before the jury:

Bekhouche Maamar MAB Abdelhafid Boussouf Univ. Center, Mila President
Hedjaz Sabrine MAA Abdelhafid Boussouf Univ. Center, Mila Examiner
Aouag Mouna MCB Abdelhafid Boussouf Univ. Center, Mila Rapporteur

Academic Year: 2024/2025

République Algérienne Démocratique et Populaire
Ministere de I’Enseignement Supérieur et de la Recherche Scientifique

Centre Universitaire Abdelhafid Boussouf Mila

Institut de Mathématiques et d’Informatique
Département d’Informatique

Mémoire préparé en vue de I’obtention du diplome de Master
En : Informatique

Spécialité : Sciences et Technologies de I’Information et de la Communication (STIC)

Petri Nets and Deep Petri Net for Simulation, Modeling and Analysis of Complex
Systems

Préparé par :
Djazi Qamar
Soutenue devant le jury :

Bekhouche Maamar MAB C. U. Abdelhafid Boussouf, Mila Président
Hedjaz Sabrine MAA C. U. Abdelhafid Boussouf, Mila Examinateur
Aouag Mouna MCB C. U. Abdelhafid Boussouf, Mila Rapporteur

Année universitaire : 2024/2025

ACKNOWLEDGEMENTS

Above all, we thank Allah for granting us the strength, patience, and perseverance
over the past five years, which enabled us to overcome challenges and bring this
work to completion. Without His guidance and blessings, none of this would have
been possible.

I would like to express my sincere gratitude to all those who have contributed to the
successful completion of this work.

I am deeply grateful to my supervisor, Mrs.Aouag Mouna, for their invaluable
guidance, continuous support, and constructive feedback throughout this research
journey. Their insight, encouragement, and availability have been instrumental to
the progress and completion of this work.

I also extend my warm thanks to the members of the jury for generously devoting
their time to evaluating this memory and for offering valuable comments and
suggestions that enriched its quality.

Special thanks are due to all the professors and administrative staff of the
Department of Computer Science at the University of Abdelhafid Boussouf.

I am particularly thankful to my friends Manar and Chahra for their constant
support, fruitful exchanges, and the motivating discussions that made this journey
more enriching and enjoyable.

Finally, I would like to express my deepest appreciation to my family for their
unconditional love, unwavering patience, and constant encouragement throughout
these years. Their support has been a pillar of strength in both my academic and
personal life.

Qamar

f-‘.\b}“

B o Sror G s s o 0fs

§ xSy Oy (39) e L OIS LT 5 3

&_)L..o-v\aucdlﬂm)thoy‘jv\;-‘w&}b&‘)v\x}cu\jr‘ofu\:)u\lu‘u‘)ww}:u\w

v

E"T vor olaw

Gl e @33y G5 st B e3p0 S 3 o ol ol o o g 4
Bl e cosin e Gl e 3 U 18T or el il LGl G paasms hes il gy oo U
L2l e (o 22035 Gy Sl V) Sl b s)
e (Gl g Sl Wyl Slady eV 18 b sttty LoV 8l Slae)
"l el e Glday G glte Slas, cmalb o A e ol)
ey Bt e Gy Sl olpte G eI s QU Caed GBS e ¢ & e)
" s Gl a3kl e Jodll ln plEY 15l Lnmti 5 Ll 67 e)

M&gwé;y,,\k;u%;m&w

‘ot

Abstract

The growing complexity of modern systems in fields such as artificial intelligence
and large-scale simulations demands modeling approaches that are both expressive and
formally analyzable. While Petri nets offer a solid foundation for modeling distributed
systems, they fall short in representing adaptive behaviors typical of intelligent systems.

This work introduces two complementary approaches to bridge this gap. The first ex-
tends classical Petri nets into a new formalism called Deep Petri Nets, integrating learning
mechanisms inspired by neural networks. Three metamodels are defined using Eclipse
Modeling Framework (EMF): the first for Petri nets, the second for neural networks, and
the third for Deep Petri Nets, combining structural features of both.

The second approach proposes a unified metamodel, NNPN (Neural Network of Petri
Net), which merges Petri net and neural network elements into a cohesive model, later
transformed into a Deep Petri Net.

Model transformations are achieved using Triple Graph Grammar (TGG) and Atlas
Transformation Language (ATL) rules, ensuring consistency, traceability, and analytical
capability. This dual-method framework supports the modeling of complex systems with
both formal structure and adaptive behavior.

Keywords: Petri Nets, Neural Networks, Deep Petri Nets, Neural Network of Petri Net,
Models Transformation, TGG, EMF and ATL.

Résumé

La complexité croissante des systemes modernes dans des domaines tels que
I’intelligence artificielle et les simulations a grande échelle exige des approches de mod-
élisation a la fois expressives et formellement analysables. Bien que les réseaux de Petri
offrent une base solide pour la modélisation des systemes distribués, ils ne permettent pas
de représenter les comportements adaptatifs typiques des systemes intelligents.

Ce travail introduit deux approches complémentaires pour combler cette lacune. La
premiere étend les réseaux de Petri classiques a un nouveau formalisme appelé réseaux
de Petri profonds, intégrant des mécanismes d’apprentissage inspirés des réseaux neu-
ronaux. Trois métamodeles sont définis a I’aide du Eclipse Modeling Framework (EMF):
le premier pour les réseaux de Petri, le deuxieme pour les réseaux neuronaux et le
troisieme pour les réseaux de Petri profonds, combinant les caractéristiques structurelles
des deux.

La deuxieme approche propose un métamodele unifié, NNPN (Réseau de Neurones
de Réseau de Petri), qui fusionne les éléments des réseaux de Petri et des réseaux neu-
ronaux en un modele cohésif, transformé ensuite en réseau de Petri profond.

Les transformations du modele sont réalisées a I’aide des regles de la Triple Graph
Grammar (TGG) et de I’Atlas Transformation Language (ATL), ce qui garantit la co-
hérence, la tracabilité et la capacité d’analyse. Ce cadre a double méthode soutient la
modélisation de systemes complexes avec une structure formelle et un comportement
adaptatif.

Mots clés: Réseaux de Petri, Réseaux de Neurones, Réseaux de Petri Profonds, Réseau
de Neuron de Réseaux de Petri, Transformation des Modeles, TGG, EMF et ATL.

ol

i dé Il el Bl e S Pl VI KT Je OV G Aol 2D Sl Sladad) e
G b e des b 2tV %08 U UL i 2 Lty)1 ol a5 3w 050
AT Ll 13,81 2,859 L)
et Bl oo (3] RSN B) S ey 5V) s el (S (ot Jodl L gtk
] plasil sl 3L B30 G ¢) S o il s Jedl) ST (o ciianll 3) L)
£ el (5o 2] LI o) Sl U1 e 2) V) < (EMF) Eclipse 2 |
Lo A Sl o

Tl i B ol 2oy oy ¢ (6 T2 s B2) NNPN e Uyl 2358 = GBI)
GF oSt J Y A 2 & elolaze 2352 3 T

o & (ATL) bl 2 3y (TGG) S5 gL o) el plasnal 23,8 oM GAZ &
Sy) A 13 suaal) AVl G 1 b Sl LY s oo kel 5, 5 w31, GLIY)

apAC]

LCSL&" bsZ Cegjg@ daae b (Aies) SR L, sl O (SR O raslall ol
ATL s EMF TGG«¢

Contents

IL.1.2 Categoriesof Petri Nety
[I.L1.3 Petr1 Nets Propertieg
II.L1.4 Thelypesof PetriNetg,
[.2 Neural Networks (NNS) e e e e e

IL.2.4 lhe lTypes of Neural Networkg
.o DeepPetr1 Nets (DPINS) oo 000 oo

1.5.2 Formal Dennition of A Deep Petri Net§
II.5.5 ‘lransition Firing Mechanism and Dynamic behaviorp
II.3.4 Deep Petr1 Nets Architecture
L4~ Model-Driven Architecture (MDAY,
L4l Dennifion e e e e e e e e e e e e e e e e e
.42 Basic Conceptsot MDAl
435 Architecture of MDAl o o Lo s e
L.4.4 Typesot MDAl

IL.3.1 lypes of Model lranstormation
IL.5.2 Classification of Model Transtormation Approacheg
[[.6 Graph Transtormation e
II.6.1 Basic Conceptsot Graph]
1.6.2 Graph lranstormation 1ool§
L./ 1rniple Graph Grammar (1GG) oo o L.
IL./.1 Echpse Modeling Framework (EMF)

W NN N =

0 N N O\

2.1

Petr1 Nets 1in dystem Modeling s

2.2

Neural Networks and Learning-based Modely

2.3

Hybrid Models: Integration of Petr1 Nets and Neural Networky

2.53.1 Fuzzy Petri Net§ e
a2 NeuralPefr1i Nefd o o e e e e e e e e e e

£.5.50 DeepPetriNety e

2.4

Comparative Analysis of Hybrid Petr1 Net Approaches

25

Conclusion

p.l

lhe First Approachy e e e

pb.1.1 Meta Model The Petrit Net (PN)
p.1.2 Meta Model The Neural Network (NN)

B.2

lhe decond Approach] Lo

B.2.1 Meta Model The Neural Network of Petr1 Net (NNPN)
p.2.2 Meta Model The Deep Petr1t Net (DPN)

g1

FirstCase Study L e e e e e e e e e

d.1.1 kst Approach s
g.1.2 Second Approachl e e e e e e e e

&2

Second Case DIUAY] Lo Lo e e e e e e e e e e e e e e

g.2.1 First Approach L e
A.2.2 Second Approachl e e

II

32
33
33
33
34
34
34
34
35
36

38
39
39
40
42
44
45
47
48
49
50
51
52

53
54
54
54
56
58
58
60
61

List of Figures

[T Components of Petri INEl v it e e e e e e e e e 6
T2 Pefi Nefl e 7
s Marked Petri Nefl L e e e e e e e e 8
4 State Graphl 8
5 EventGrapH e e 8
[[Z6 Comparison of Petri Nets: With and Without Conflic] 9
[[77Comparison of Petri Nets: With and Without Free Choicd 9
[[.8 Comparison of Petr1 Nets: Simple and NotSimpld 10
[[.9 Comparison of Petri Nets: Pureand NotPurd 10
10 Generalized Petri Nefl e 11
[CIT Capacity Petri Nl o e e e e e e e e e 11
[TZ Priority Petri Nel o o o e e e e e e e e e e e 11
[[.T3 Toop-free Petri Netl e e e e e 12
14 bounded Petri Nefl e e e e e e e e 12
LIS (a)Liveness Petr1 Net (b) Quasi-Liveness Petri Net 13
[CI6 BIocKing Petri INET v v o o e e e e e e e e e e e e e e 13
CI7 TmedPetriNel e e e e e 14
IL1s Stochastic Petrrt Nefl 0 L e e e e e e e e e e e e 14
1Y Colored Petri Nefl e e e e e e e e e e e e 15
20 Nenral Nefworkl o o e e e e e e e e e e e e 16
21 Neural Nefwork ArchiteCturel v v v v vt e e e e e e e e e e 16
L2272 KRel Ul Activation Functionl L e e e e e e 17
[[.23 Sigmoid Activation Function e 17
24 lanh Activation FUNCIION 0 vttt et e e e e e e e e e 18
5 Feedforward Nenral Nefworkd o i i i i 18
26 Convolutional Nenral Networkd« v .. 19
27 Recurrenf Nenral Nefwarkd o v v s e e e e e e e e 19
8 Generafive Adversarial Nefworkd 19
[.2Z9 Graph Neural Networkd o e e 20
[[.30 Deep Petri Net Architecturd s 22
L3l Model-Driven Architecturdo e e e 23
32 Relafionship between system, model and mefa-mode] 24
L35 Architecture of MDAI L L e e e e e e e 24
I1.o4 Types of MDA e e e e e e e e e e 25
L3> Model Transtormation L e e e e e e e e e e e 26
IL1.56 'lypes of model transformation e e e e e e e 27
[37 (a) undirected graph (b) directed graph 28

I

IL3Y Presentation of the All. tool oo 31
BT Architecture of First Approach e 39
B MefaModelof PNI. e e 40
B3 PetnNefecore Flemenfd, 40
B4 __Meta Model of NN 0 . L L e e e e e e e e e e 42
B35 NeuralNefworkecore Elemenfd 42
B.6 ATL Projec o e e 44
B7ATT fransformafion rules from Pefri Nef fo Nenral Nefworkl 44
Ba Meta Model of DPN L e e e e e e e 45
B9 DeepPetriNet.ecore Elements 46
p.10 AlL transtormation rules rrom lhe resulting to Deep Petri Net 47
B.IT Architecture of Second Approach e 48
BT Mefa Model of NNPN e e e s e s e e e e 49
BET3 NNPNecore Elemenfd ittt 49
p.14 AlL transtormation rules rrom NNPN to Deep Petri Ne¢ 51
BT Smart Traffic Management System modeledasa Pefri Nef 54
A7 Execufion of ATT fransformafion from Pefri Nef fo Neural Nefwork 55
A3 Generafed Nenral Nefworkmaodel 55
B4 Generated Deep Petri Netmodel 56
B.> OSmart lratic Management System modeledas a NNPN 57
A6 Generated Deep Pefri Netmodel 57
@77 Aufomated Production Workshop modeledasaPefriNel 58
A X Generafed Nenral Nefworkmadel 59
#.9 Generated Deep Petri Netmodel 59
#.TO Smart Traffic Management System modeledasaNNPN 60
BTT Generated Deep Pefri Netmodel 60

vV

List of Tables

.1 Comparative Analysis of Our Approachey

General
Introduction

Introduction

Petri nets are a powerful and widely used mathematical formalism for modeling, simulating,
and analyzing systems in which concurrency, synchronization, and sequencing are fundamental.
Introduced by Carl Adam Petri in 1962, they are valued for both their graphical clarity and rigor-
ous theoretical foundation. Their applications span diverse domains, including computer science,
telecommunications, industrial systems, and real-time control [[I,2]. Petri nets remain relevant in
modern contexts such as cyber-physical systems, intelligent manufacturing, and business process
management. [3-5]

In parallel, artificial neural networks (ANNs) have become a cornerstone of artificial intelli-
gence, particularly through advances in deep learning. They excel in pattern recognition, predic-
tion, and classification tasks. However, their internal mechanisms are often opaque, making them
difficult to interpret and analyze formally. [6, (7]

In this work, we propose two hybrid modeling approaches that combine classical Petri nets,
neural networks, and a novel formalism known as Deep Petri Nets (DPNs). This framework lever-
ages the interpretability and formal rigor of Petri nets alongside the adaptive learning capabilities
of neural networks. Deep Petri Nets aim to provide a unified model capable of both learning and
adaptation, while preserving formal structure and analytical strength. [64] Model transformations
are automated using the Triple Graph Grammar (TGG) approach where appropriate, and refined
with ATL rules to ensure consistency, traceability, and flexibility of the hybrid models throughout
the development lifecycle.

Problematic

Despite the widespread use of Petri nets for formally modeling and analyzing concurrent sys-
tems, and the success of neural networks in learning complex patterns and behaviors, a fundamental
disconnect still exists between symbolic modeling techniques and data-driven learning approaches.
Petri nets offer structure, traceability, and formal verification, but lack the ability to learn from data.
Neural networks, while highly adaptive, are opaque and difficult to interpret or analyze formally.
Bridging this gap is essential for designing intelligent systems that are both adaptive and explain-
able. This raises the following challenge: how can we develop a unified modeling approach that
combines the analytical strengths of Petri nets with the learning capabilities of neural networks,
while ensuring traceability, adaptability, and semantic consistency?

Contributions

To realize the proposed framework, we contribute two model-driven transformation approaches:
Approach 1: We define three distinct metamodels using the Eclipse Modeling Framework (EMF):
the first for classical Petri nets, the second for neural networks, and the third for Deep Petri Nets
(DPNSs). The DPN metamodel integrates both the structural semantics of Petri nets and the learning
capabilities of neural networks. Transformation rules are implemented to enable the systematic
mapping of model elements between these metamodels, thereby facilitating the automated con-
struction of Deep Petri Nets from heterogeneous models.

Approach 2: We design a unified intermediate metamodel called the Neural Network of Petri
Net (NNPN), which embeds Petri net semantics directly into neural components. This hybrid
representation serves as a bridge model that is subsequently transformed into a Deep Petri Net.
This approach enables a tighter integration of learning dynamics within a structure that remains
formally analyzable.

Memory Organization

We have organized this memory as follows: We begin with a general introduction that summa-
rizes the content of our work.

e Chapter 1: This chapter introduces the foundational paradigms of our work: Petri Nets
(PNs) for formal system modeling and Neural Networks (NNs) for adaptive learning. Their
integration in Deep Petri Nets (DPNs) combines structural clarity with learning capabili-
ties, enabling intelligent systems that are both explainable and dynamic.We also present key
concepts of model transformation within the Model-Driven Architecture (MDA) framework,
focusing on graph-based techniques such as Triple Graph Grammars (TGGs). These enable
automated and bidirectional synchronization between models, forming the backbone of our
hybrid modeling approach.

* Chapter 2: This chapter provides a comprehensive review of related works, including foun-
dational research and recent developments in the use of Petri Nets, neural networks, and
hybrid models. We analyze various integration strategies such as fuzzy Petri Nets, neural
Petri Nets, and deep Petri Nets. A comparative analysis highlights the strengths and limi-
tations of existing approaches and positions our contribution within the current state of the
art.

* Chapter 3: This chapter presents two complementary transformation-based approaches for
generating Deep Petri Nets (DPNs) from classical Petri Nets. Both methods are implemented
using the Atlas Transformation Language (ATL) and rely on metamodels defined in the
Eclipse Modeling Framework (EMF). The first method involves a two-step transformation
via an intermediate Neural Network model, while the second integrates Petri Net and Neural
Network elements into a unified intermediate metamodel (NNPN). Detailed transformation
rules, metamodels, and implementation processes are discussed.

* Chapter 4: In this chapter, we apply the proposed transformation approaches to two real-
world intelligent systems: a Smart Traffic Management System and an Automated Produc-
tion Workshop. These case studies demonstrate the practical benefits of our methodology for
modeling and simulating complex and dynamic systems.

We end with a general conclusion that highlights its main achievements and outlines possible
future works.

State of Art

Chapterl

Basic Concepts

(Petri Net, Neural Network,
Deep Petri Net,
Model Transformaion)

Introduction

As intelligent systems grow in complexity, combining symbolic modeling with data-driven
learning becomes essential. This chapter introduces Petri Nets (PNs) for formal system model-
ing, Neural Networks (NNs) for adaptive learning, and their integration in Deep Petri Nets (DPNs)
to support both structure and learning.

To enable this integration, we present core principles of model transformation within the Model-
Driven Architecture (MDA) framework. We highlight graph-based techniques, especially Triple
Graph Grammars (TGGs), which offer formal, bidirectional synchronization between source and
target models. This transformation layer is key to generating hybrid models in an automated and
consistent way.

1.1 Petri Nets (PNs)

1.1.1 Definition

A Petri Net is a graphical and mathematical modeling tool used to describe and analyze the
flow of information, resources, or control in concurrent, distributed, asynchronous, or stochastic
systems. Originally introduced by Carl Adam Petri in 1962, it provides a formal framework for
modeling discrete-event dynamic systems. [9].

Formally, a PN is defined as a 4-tuple (P, T, F, W), where:

* P is a finite set of places.
* T'is a finite set of transitions.
o FC(PxT)U(T x P)is the flow relation.

e W : F — N7 is a weight function.

Arc
‘/ Place

Transition

Token

Figure 1.1: Components of Petri Net

Places and transitions are linked via directed arcs, subject to the following constraints:

* Each arc must connect a place to a transition, or a transition to a place. Connections
between two places or between two transitions are not allowed.

* Every arc carries a positive integer weight. A weight of k indicates k parallel arcs, while an
unlabeled arc is implicitly assigned a weight of 1.

P2

P4
P1 T1 . T2 o

Figure 1.2: Petri Net

Basic Concepts of Petri Nets

In the context of Petri Nets, three core elements define the structure and behavior of a sys-
tem [[I0]:

* Place: Represents a condition or a state in the modeled system. A place may contain tokens,
and the distribution of tokens over places (called marking) describes the current state of the
system.

* Transition: Represents an event or action that may change the state of the system. A transi-
tion can fire when certain conditions (such as token availability in input places) are met.

* Pre-conditions and Post-conditions (Input and Output Arcs): The arcs connecting places
and transitions define the pre-conditions (input arcs) and post-conditions (output arcs) of
transitions. When a transition fires, it consumes tokens from its input places and produces
tokens in its output places, reflecting a change in the system state.

Marking in Petri Nets

In Petri nets, the marking represents the dynamic state of the system by describing how tokens
are distributed across the places. Formally, a marking is defined as a function M : P — N, where
each place p € P is mapped to a non-negative integer M (p), indicating the number of tokens in
that place [[[]. The evolution of the marking over time, caused by the firing of transitions, models
the behavior of the system.

The marking plays a central role in analysis techniques such as reachability, boundedness,
liveness, and invariants, as it determines which transitions are enabled and how the state can evolve
over time [[[T].

T M, = 3 Ty
3 0
0
0 ¢
i Exécution
e T .

Figure 1.3: Marked Petri Net

1.1.2 Categories of Petri Nets

Petri nets can be categorized based on their structural properties and behavioral characteristics.
Below are some common categories:

» State graph : A Petri net unmarked graph is an state graph if in which each transition has
exactly one input place and one output place. [1]

T P2

Figure 1.4: State Graph

* Event Graph: A Petri net where each place has exactly one incoming arc and one outgoing
arc. [12]

P1 T1 p2

Figure 1.5: Event Graph

* Conflict:
— With Conflict: Two or more transitions share the same input place, meaning that the

firing of one transition disables the others.
— Without Conflict: each place is connected to at most one outgoing transition. [I]

P1
P2 P1
O o 0O
.'ll I".
I|I IIlII ‘\\h.h y ,"
| | -.H"'*- ~ -____-'"'---.
T1 T2 T1
(a) With Conflict (b) Without Conflict

Figure 1.6: Comparison of Petri Nets: With and Without Conflict

* Free Choice Net: A Petri net where, whenever two or more transitions share an input place,

that place is their only input. [I3]

(b) Without Free Choice

(a) Free Choice
With and Without Free Choice

Figure 1.7: Comparison of Petri Nets:

» Simple Petri Net: A simple Petri net is a net in which each transition can be involved in at
most one conflict. [4]

e e

T1 12 T1 T2 T3

(a) Simple (b) Not Simple

Figure 1.8: Comparison of Petri Nets: Simple and Not Simple

* Pure Petri Net: A pure Petri net is a net in which there is no transition that has an input
place which is also its output place. [1]

f |II .II'| ."Ill
f | ! | { |
| b !
|' | / i * [RE
| . _|_2 ||.Ill. .II.'I

— ﬁf’f Ne~

P3

(a) Not Pure (b) Pure

Figure 1.9: Comparison of Petri Nets: Pure and Not Pure

* Generalized Petri Net: A Petri net where strictly positive integer weights are associated
with arcs. If an arc (P, T;) has weight K, the transition 7 can fire only if place P contains
at least K tokens; firing 7 then removes K tokens from F;. Similarly, if an arc (T], P;) has
weight K, firing 7 adds K tokens to ;. When no weight is indicated, it is assumed to be
equal to 1 by default. [T4]

10

3 e
I ., 3 // \\
O)
P2 P3 @
P2 P3

Before crossing After crossing

Figure 1.10: Generalized Petri Net

* Capacity Petri Net: A net where each place has an associated maximum number of tokens
it can hold, known as its capacity. [I]

Pl /@@ P1/® P12 2\
®® o9 / o9
T1 T1 T1
_/"- \]I (.-'
P2 cap(P2)=2 P2 @ cap{P2)=2 PH®® |cap(P2)=2
ol e

Figure 1.11: Capacity Petri Net

* Priority Petri Net: A net where transitions are assigned priorities. When multiple transitions
are enabled simultaneously, only those with the highest priority are allowed to fire. [15]

O O & O

Before crossing After crossing

Figure 1.12: Priority Petri Net

11

* loop-free Petri Net: A net with no cycles in its underlying graph, meaning it is impossible
to return to the same node (place or transition) by following a directed sequence of arcs. [9]

P2

Figure 1.13: loop-free Petri Net

1.1.3 Petri Nets Properties

There are three fundamental properties of Petri nets.
* Bounded :

— A place P; is considered bounded for an initial marking M, if, for every marking
reachable from M, the number of tokens in P; remains finite.

— A Petri Net is bounded for an initial marking M, if all places are bounded for M.
Specifically, if for every marking M in the set of markings reachable from M, (de-
noted as M), we have M(P;) < K, where K is a natural number, then P; is said
to be K-bounded. If this condition holds for every place, the Petri Net is termed K-
bounded. [12]

T1

1l P2

T2

Figure 1.14: Bounded Petri Net

12

¢ Liveness:

A Petri net is said to be live if, regardless of the marking reached during its execution,
it is always possible to eventually fire any transition, possibly after a finite number of other
transitions have occurred. [[[6]

— Quasi-Liveness : Each transition can occur at least once in some firing sequence start-
ing from the initial marking.

T
P - (e
T2 T1

P1

2k T2
P3 P1
(a) (b)

Figure 1.15: (a)Liveness Petri Net (b) Quasi-Liveness Petri Net

* Blocking :

There exists at least one reachable marking from which no transition is enabled, meaning
the system reaches a deadlock. [1'7]

® ®
: .
T *
/N

-2 SN
Fd ha
P2 P3

Figure 1.16: Blocking Petri Net

13

1.1.4 The Types of Petri Nets

Various types of Petri nets have been developed to model different kinds of systems and behav-
iors.

* Timed Petri Net (TPN) : is a type of Petri net where each transition is associated with a
time delay, specifying the amount of time that must pass before the transition can fire. The
timing aspect can be either deterministic or stochastic, and it allows the model to represent
real-time behavior, such as the waiting time for events, synchronization, and delays in the
system. [[IX].

P2 T2 P5

Figure 1.17: Timed Petri Net

¢ Stochastic Petri Net (SPN) :

is a Petri net in which the firing times of transitions are governed by probabilistic distribu-
tions, typically exponentially distributed. This allows the net to model systems with random
delays between events, such as those found in communication networks, manufacturing sys-
tems, or biological processes. [19].

ON

Figure 1.18: Stochastic Petri Net

14

¢ Colored Petri Net (CPN) :

is a type of Petri net in which tokens have data values (known as colors), and transitions
can operate on tokens according to the data they carry. In CPN, places can contain tokens
of different types, and transitions can modify these tokens by changing their data values
(colors). [20].

{=a=,<b=)

Figure 1.19: Colored Petri Net

1.2 Neural Networks (NNs)

1.2.1 Definition

A Neural Network is a computational system inspired by the brain’s neural architecture. It
consists of multiple layers of connected artificial neurons, each transforming input data through
weighted combinations and non-linear activation functions. By iteratively adjusting these weights
during training, the network learns to capture complex patterns in data, enabling it to perform tasks
such as classification, regression, and pattern recognition. [T]

1.2.2 Mathematical Representation

Given inputs x1, o, . .., T,, corresponding weights wy, ws, ..., w,, and a bias b, the neuron
computes a weighted sum:

D
y = f(x) =wo+) wyrq (1.1)
d=1

wy represents the intercept term, which corresponds to the weight of a hypothetical input
o = +1. [22]

15

O O O - O

x0=1 X1 2 xd

Figure 1.20: Neural Network

The Output Error:
The output error produced by a training example (x;,y;),7 € {1,..., N} is defined as follows:
[22]

EZ(W) = *(?Jz‘ - f(l‘z‘))2 (1.2)

1.2.3 Neural Networks Architecture

A Neural Network Architecture refers to the structure or design of a neural network, describing
the number of layers, the types of layers, and how the neurons (or nodes) in these layers are con-
nected. The architecture determines the overall functionality and capacity of the network to learn
and generalize from the data. [[7]

Input layer Hidden layers ¢ Qutput layer

Input 1 qA.M“‘WA

Input 2 “" "\‘("."i‘l". V .
o ooy
: '6' ' “' & Output n

h, 0

Output 1

"0

Figure 1.21: Neural Network Architecture

16

Input Layer : the layer that receives the input features.

Hidden Layer : These are intermediate layers where data is processed using various activa-
tion functions.

Output Layer : The final layer that produces the network’s predictions or classifications.

Connections (Weights) : Each connection between neurons has a weight that is learned
during training.

Activation Functions : Nonlinear functions applied to the weighted sum of inputs at each
neuron, introducing nonlinearity to the model Common activation functions include:

— ReLU (Rectified Linear Unit): The ReLLU function is defined as :

x, ifz>0

r) = max(0,z
/() (0,) 0, otherwise

RelLU Activation Function

Y Axis

max(0,x)

-100 -75 -50 -25 00 25 50 75 10.0
X Axis

Figure 1.22: ReLU Activation Function
— Sigmoid: The Sigmoid function is defined as :

1
0 =17

Sigmoid Function

1.0

0.8 4

0.6 4

fix)

0.4 4

0.2

0.0

Figure 1.23: Sigmoid Activation Function

17

— Tanh (Hyperbolic Tangent):
e¥ — g%

fx) =

Hyperbolic Tangent (tanh) Activation Function

0.00 —— Tanh Function

tanh(x)

-0.25

—0.50

-0.75

-1.00

-10.0 =75 =5.0 =25 0.0 25 5.0 7.5 10.0
X

Figure 1.24: Tanh Activation Function

1.2.4 The Types of Neural Networks
Neural networks come in various architectures, each tailored to specific types of data and learn-

ing tasks. Below are some of the most common types:

* Feedforward Neural Networks (FNNs) The simplest form of neural networks where
data flows in one direction from input to output without any cycles or loops. [23]

Hidden

laver

Ingt
layer

Crutput
layer

Inputs
Chutputs

Figure 1.25: Feedforward Neural Networks

¢ Convolutional Neural Networks (CNNs) CNNs are specialized neural networks de-
signed to process data with a grid like topology, such as images. They use convolutional
layers to detect patterns and spatial hierarchies. [?4]

18

Fully

: Connected
Convolution
Input Pooling ___.--- o i Output
ol-... Fﬂ
\)
Feature Extraction Classification

Figure 1.26: Convolutional Neural Networks

¢ Recurrent Neural Networks (RNNs) RNNs are neural networks that include loops,
allowing information to persist across steps of input sequences. They are particularly suited
for time-series data and natural language processing. [25]

Hidden layer 1 Hidden layer 2

Input layer - .%— —

Output layer

'O
iO

Figure 1.27: Recurrent Neural Networks

* Generative Adversarial Networks (GANs) GANSs consist of two competing networks:
a generator that creates data and a discriminator that evaluates it. Together, they produce
increasingly realistic synthetic data. [26]

High
Dimensional
Sample
Space

Generative
Network

G

Rea

Real
Images
Generated
Fake Images

Discriminative
Network

D

Low
Dimensional
Latent
Space

Fake

Figure 1.28: Generative Adversarial Networks

19

* Graph Neural Networks (GNNs)

GNNs are designed to work with graph-structured

data, capturing relationships between nodes and their neighbors. They are used in chemistry,

social networks, and recommendation systems. [277]

Hidden layer Hidden layer

¥ o

Input

< LT RelU S

RelU

Output

Figure 1.29: Graph Neural Networks

Remark. In our work, we employ the use of Feedforward Neural Networks (FNNs) as the under-
lying neural architecture due to their simplicity and effectiveness in modeling static input-output
relationships.

1.3 Deep Petri Nets (DPNs)

1.3.1 Definition

Deep Petri Nets (DPNs) are an advanced extension of classical Petri nets that integrate learning
mechanisms inspired by neural networks, while maintaining the formal structure and analytical
power of traditional Petri nets. Introduced and formalized in recent works such as Lin et al. [28],
DPNs aim to bridge the gap between symbolic modeling and data-driven machine learning by
embedding layers of processing (akin to deep learning layers) into the Petri net structure.

According to Lin et al. [28], a Deep Petri Net is built on the foundation of High-Level Fuzzy
Petri Nets (HLFPNs) and is designed to perform both supervised and unsupervised learning.

One of the defining features of DPNs is the presence of a supervisory node at the outermost
layer. This node monitors parameter changes, helping track and control the learning process. This
structural transparency enhances explainability, offering a clear advantage over traditional deep
neural networks [29].

1.3.2 Formal Definition of A Deep Petri Nets
A Deep Petri Net (DPN) is defined as a 7-tuple:

DPN = (P, T, F,W, M,, N, ®)

20

Where:
P: A finite set of places.
T A finite set of transitions, such that P N7T = ().
F: A set of directed arcs (flow relation), where F' C (P x T') U (T' x P).
W: A weight function W : F — N assigning a positive integer weight to each arc.

My: The initial marking M, : P — R>o, which may be real-valued (enabling fuzzy or
continuous token semantics).

N: A set of neural networks N = {V, | t € T'}, each NV, associated with a transition .
®: A function ® : 7" — R that assigns a firing threshold or condition to each transition
. [3T1]
1.3.3 Transition Firing Mechanism and Dynamic Behavior

The firing of a transition in a Deep Petri Net (DPN) involves two key computations: the activa-
tion output and the marking update. [30]

* Activation Output ¢(t): The activation output controls how strongly a transition fires.

¢®=&<ZWWMJWM+W0

pEet
Where:

A;(+): The activation function applied to transition ¢, such as ReLU, sigmoid, or tanh.

ot: The set of all input places of transition ¢ .

W (p,t): The weight of the arc from place p to transition t.
— M (p): The current marking of place p.

— o(t): The bias term associated with transition ¢.

* Marking Update)M'(p) : Once a transition ¢ fires with activation output ¢(t), the new
marking M’ (p) for each place p is updated as follows:

M'(p) = M(p) + W(t,p) - (t) — W(p,1)
Where:

M’ (p): The updated marking of place p after transition ¢ fires.
- M (
W (t,p): The weight of the arc from transition ¢ to place p .

p): The current marking in place p before the transition fires.

¢(t): The activation output of transition ?..

W (p,t): The weight of the arc from place p to transition ¢ .

21

1.3.4 Deep Petri Nets Architecture

'\‘"'J Eﬁi

Figure 1.30: Deep Petri Net Architecture

Components of Deep Petri Net
* Places: Represent input variables or observed features.
* Transition: Embed neural networks to compute activation/decisions.
* Rings:

— Outer Ring: Contains initial Places with tokens. These places have no incoming arcs.

— Intermediate Ring: Contains Transitions that process tokens. Represents activation
functions.

— Core Ring: Contains final Places (those with no outgoing arcs). Represents the final
results of the DPN execution.

* Supervisor: An external place with an arrow coming from the Core it may represent a global
output, a controller, or a supervisory function. [3T]

22

1.4 Model-Driven Architecture (MDA)

1.4.1 Definition

Model-Driven Architecture (MDA) is a software design approach defined by the Object Man-
agement Group (OMG) that promotes the use of models as the primary artifacts in the software
development process. MDA separates the specification of system functionality from the specifica-
tion of the implementation on a specific platform. [37]

Finance
A
Manufacturing ‘ E-Commerce

Transportation ‘ HealthCare

Maore...

Figure 1.31: Model-Driven Architecture

1.4.2 Basic Concepts of MDA

* System: A system is a set of interrelated components working together toward a common
goal. [33]

* Model: A model is a simplified representation of a system built to understand, analyze, or
predict its behavior. [34]

* Metamodel: A metamodel defines the abstract syntax and semantic rules of a modeling
language. It describes what elements can appear in a model and how they relate. [35]

* Meta-metamodel: A meta-metamodel defines the language used to build metamodels. It for-
malizes the most abstract modeling constructs and enables the definition of domain-specific
modeling languages. [36]

23

Meta-Model

in accordance with

Model

represents a

k J

System

Figure 1.32: Relationship between system, model and meta-model

1.4.3 Architecture of MDA

Model-Driven Architecture (MDA) relies on a four-layer meta-modeling architecture, which
provides a formal foundation for defining and managing models and their relationships.

M3
metametamodel
(MOF)

M2

metamaodel
(UML, SPEM, ...)

M1
madel
(UML models, ...)

MO
“real” world

Figure 1.33: Architecture of MDA

24

The four layers are as follows [37]:

* MO Layer (Instance Layer): This Layer corresponds to the real world. It includes the actual
user data and real-world entities, which are instances of the models defined at the M1 Layer.

* M1 Layer (Model Layer): This Layer consists of information models that describe the
data and behavior of real-world systems represented in MO. These models are instances of
metamodels defined at the M2 Layer.

* M2 Layer (Metamodel Layer): This Layer defines the modeling languages and the gram-
mar used to construct M1 models. Metamodels are instances of the meta-metamodel defined
at M3.

* M3 Layer (Meta-metamodel Layer): This Layer consists of a single entity: the Meta-
Object Facility (MOF). MOF defines the structure of metamodels, and provides mechanisms
to extend or modify them. It is self-descriptive, meaning it can define its own structure.

1.4.4 Types of MDA

e CIM: The Computation Independent Model (CIM) corresponds to domain or business mod-
els that are entirely independent of any technical implementation. It captures the users’ re-
quirements using the terminology and concepts familiar to domain experts and practitioners.

* PIM: The Platform Independent Model (PIM) corresponds to the specification of the busi-
ness logic of an application. It results from a software analysis aimed at satisfying business
requirements without considering any specific implementation technology.

e PSM: The Platform Specific Model (PSM) corresponds to the specification of an application
after it has been mapped onto a specific technological platform. It incorporates platform-
specific details required for implementation. [38]

CIm

Computing Independant Model
7

l Transformation

PIM
Platform Independant Model

7

l Transformation
1

1
PSM
N Platform Specific Model

- T .
(% 1! Code generating

N e 1
“‘-_‘,:]
‘ | Code J

Figure 1.34: Types of MDA

25

1.5 Model Transformation

Model transformation is a fundamental aspect of Model-Driven Engineering (MDE). It consists
of systematically converting a source model (Ma) into a target model (Mb) to make models exe-
cutable or usable in downstream processes. This transformation can be endogenous or exogenous.
Such transformations are essential for achieving objectives like code generation, model refactoring,
and technology migration. [3Y9]

Model
Transformation
Language

Language
Source used Target
Metamodd 8 |anguage |anguage e Metamcdd
A < g B

Model

Language Transformation Language
used used

Madeli1 |~ Source Target™~al Mrodel 2
model model

Figure 1.35: Model Transformation

1.5.1 Types of Model Transformation

* Endogenous Transformation: Both the source and target models conform to the same meta-
model. [A0]

* Exogenous Transformation: The source and target models conform to different metamod-
els. [40]

* Horizontal Transformation: The transformation occurs between models at the same level
of abstraction. [&1]

* Vertical Transformation: The transformation occurs between models at different levels of
abstraction, typically refining a high-level model into a more detailed one. [41]

26

"M (" Pm) ((PM)
"o, /’ s _r/ l\'-_ -~

C pe) e Vertical
—) g
I\n.? EM_/ \--f EM_: ¥ Transformation
:) Pt BT
Horizontal Transformation (_PSM)
~WNia
—?‘\ b _J/"c. 3
& g Y Restructuring
. =Conform To= v
: |]
AL ME e Normalization Refinement
(_Ma) ? Mb)

Endogenous Transformation Pattern intergation

 MMa) C MM)
- -_T_- Software migration Generation
<Cornform To= <Conform To=
et L g
.f " Ma) — h?‘ Mb '“:. Model fusion Reverse engineering
. e o S

Exogenous Transformation

Figure 1.36: Types of model transformation

1.5.2 Classification of Model Transformation Approaches

Based on the classification, model transformations are typically divided into two main cate-
gories:
¢ Model-to-Model Transformation (M2M):

Refers to the process of automatically converting a source model into a target model, both of
which conform to metamodels. It enables abstraction changes, model refinement, or transi-
tions between design phases.

The techniques for transformations of this type can be classified into five categories [43]:

Direct manipulation approaches.

Relational approaches.

Hybrid approaches.

Graph transformation-based approaches.

Structure-driven approaches.

¢ Model-to-Code Transformation (M2C):

Refers to the automatic generation of executable source code or configuration files from
high-level models. This step bridges the gap between abstract design and implementation.

In the model-to-code category, we distinguish between: [47]

— Visitor-Based Approaches:

These approaches traverse the model structure programmatically using the visitor
design pattern. Custom code is written to visit each element in the model and generate
the corresponding textual representation. Although flexible and powerful, visitor-based
transformations require more effort and are typically harder to maintain.

27

— Template-Based Approaches:

These approaches use predefined templates that define how model elements should
be rendered into code. Tools like Xpand, Acceleo, and Xtend follow this paradigm.
Template-based transformations are more readable, easier to maintain, and better suited
for non-programmers or domain experts who wish to define generation rules declara-
tively.

Remark. In our work, we adopt a Model-to-Model (M2M) transformation approach to systemati-
cally convert models defined in one metamodel into corresponding models in another metamodel.

1.6 Graph Transformation
To understand graph transformation, we’ll first go over the basics of graphs.

1.6.1 Basic Concepts of Graph:

A graph is a fundamental mathematical structure used to represent relationships between ob-
jects.

It is defined as a pair : [44]
G=(N,A)

where:

* N is a finite set of nodes representing the objects.

* Ais a set of arcs representing the relationships between pairs of nodes.

There are two types of graphs: undirected graphs (where nodes are connected by edges) , and
directed graphs (where nodes are connected by arcs, which are edges with a direction).

(a) (b)

Figure 1.37: (a) undirected graph (b) directed graph

28

1.6.2 Graph Transformation Tools

There are several graph transformation tools such as: the Attributed Graph Grammar System
(AGG), Triple Graph Grammar (TGG), A Tool for Multi-formalism and Meta-Modelling (AToMs),
A Tool for Multi-Paradigm Modeling (AToMPM), and Henshin. [44]

In our work, we use " TGG " for its distinctive advantages: [45]

* Bidirectional Transformations: TGGs support both forward and backward transformations,
enabling synchronization in both directions between source and target models.

* Declarative and Rule-Based: Transformations are specified through rules that declaratively
define correspondences between models, making them easier to manage and maintain.

* Automatic Generation of Synchronization Code: From TGG rules, it is possible to auto-
matically generate transformation engines that ensure consistency and support model syn-
chronization.

1.7 Triple Graph Grammar (TGG)

Triple Graph Grammar (TGG) is a formal framework used in model-driven engineering to spec-
ify and manage bidirectional model transformations. It defines a set of correspondence rules that
relate elements of a source model, a target model, and an intermediate correspondence model.
TGGs enable the automatic synchronization and consistency maintenance between models, ensur-
ing that changes in one model are reflected in the other. This makes TGG particularly suitable for
round-trip engineering and model integration tasks. [46]

In our work, we use Eclipse Modeling Framework (EMF) to define th metamodels ,and Atlas
Transformation Language (ATL) for the model to model transformation.

1.7.1 Eclipse Modeling Framework (EMF)

The EMF is a modeling framework and code generation facility provided by the Eclipse Foun-
dation. It enables developers to define, manipulate, and generate structured data models in a model-
driven engineering (MDE) context.

At its core, EMF allows users to define metamodels using a modeling language called Ecore,
which is a subset of the OMG’s Meta Object Facility (MOF) standard. These metamodels specify
the structure of data in terms of: classes , attributes, references and inheritance. [47]

Once a metamodel is defined, EMF can automatically generate Java code that includes:

* Java interfaces and implementation classes for the model elements
* A factory class to instantiate the model

¢ A resource and serialization infrastructure (based on XML/XMI).

29

= Select a wizard m] x

Select a wizard —< s 759 fMemuoire
Create a new Modeling project to specify a domain model using the Ecore F : a
Lenguage. = Project Dependencies
Wizards: '.E SFC
type filter text
& oo = B\ JRE System Library [JavaSE-21]
(= Eclipse 4 . y
w (= Eclipse Medeling Framework E.; FI I Ll g =1 D EF' En d ENCIES
@7 Ecore Model
h"’! Ecore Modeling Project '.. =7 META'INF
[t EMF Generator Model "__
L'Ei EMPF Project LY I:L—f;l mI:IIjEI
1 Empty EMF Project o
(== Mapping o 3 d
e L| memoire.aird
(= Example EMF Model Creation Wizards i 1
& 6o i W dj MEemaolre.ecore

w @ memoire
&, Mmemaoire

©) < Back Finish Cancel & memoire.genmodel
| L ol

(a) EMF Project (b) Structure of the EMF
S Memoire - pl i L jre - Eclipse IDE - *
File Edit Diagram Navigate Search Project Run Window Help
o~ XL iBi%-0-Qin AR -l -2 Q (B[¢LHE
& B Model Explorer X 2% 8§ =0 =
B [ypefinertert x] o8 - B clm| A B E-| @ afwn | m =

£ META-INF

v (= model

2 Petrilet.edit

vgi PetriNet.editor

(c) EMF Editor

Figure 1.38: Presentation of the EMF Tool

1.7.2 Atlas Transformation Language (ATL)

Developed by the Atlas group at INRIA, ATL is specifically designed for Model-Driven Engi-
neering (MDE) and enables model-to-model (M2M) transformations. ATL provides a way to define
how elements from a source model are mapped and transformed into elements of a target model,
both of which are typically defined using Ecore metamodels in the Eclipse Modeling Framework
(EMF).

ATL supports both declarative and imperative paradigms:

* Declarative rules: Describe what elements should be matched and how they should be trans-
formed.

* Imperative sections: Called helpers and called rules, they allow more control for complex
logic that cannot be expressed purely declaratively. [49]

30

w | platform:/resource/PetriMet/model/petribet.ecore
v # petribet
w [PetriMet
= PN : EString
5 node: Node
= anc: Arc
E Transition -> Mode
w B Place-» Node

PetriNet
= tokens: Elnt et 0.4 arc
o PN : EString -
v B Arc
= weight: Elnt
= 3 Node 1.*] source =
2 source: Mode B] [1.] outgoing B Arc
i ; = name : EString = weight: Eint
5 target : Node
v H Node T (1.7 target [1."] incoming
. |
o ot .
- Transition
- : e
= incoming : Arc

(a) Ecore File (b) PN Metamodel

1 module PetriToNeural;

2 create OUT: rDN from IN: petriNet;
3

4= rule PetriNetToNeuralNetwork {
from

'. pn: petriNet!PetriNet
7 to
8 nn: rDN!NeuralNetwork (
g name <- pn.PH
n
:E* rule PlaceToNeuron {
3 A st : . 13 from
v @ platform:/resource/Transformation/model/petrinetxmi 14 p : petriliet!Place
o 15 to
W '¢' Petri Met 16 n : rDN!Neuron (
17 name <- p.name,
< Place Fﬂ 18 content <- p.tokens.toString()
19 i
¢ Place p2 2@ 1 : rDN!Layer(
4 Transition t1 21 name <- if p.incoming->isEmpty() then 'Inputiayer’
22 else if p.incoming-»notEmpty()
'Q Arc1 23 and p.outgoing->notEmpty()
24 then 'HiddenLayer'
"C" Arc2 25 else 'Outputlayer’
= T r 2 26 endif
=| http://www.example.org/petriet = it
28 1}
2a
(c) XMI File (d) ATL File

Figure 1.39: Presentation of the ATL tool

Conclusion

This chapter presented the integration of Petri Nets and neural networks through Deep Petri Nets
(DPNs), combining formal modeling with adaptive learning. We also introduced key model trans-
formation concepts within the Model-Driven Architecture (MDA), highlighting the use of Triple
Graph Grammars (TGGs), EMF, and ATL to automate and synchronize hybrid model generation.
These foundations enable the development of intelligent systems that are both structured and adap-
tive.

31

Chapter2

Related Works

Introduction

In this chapter, we review existing works related to the modeling and simulation of complex
systems using Petri Nets, neural networks, and hybrid models. We also discuss model transforma-
tion approaches that are relevant to our methodology. This review allows us to identify research
gaps and position our contribution within the state of the art.

2.1 Petri Nets in System Modeling

Petri Nets are a well-established formalism for modeling and analyzing discrete event systems,
especially those characterized by concurrency, synchronization, and resource sharing. [57]

Over the decades, Petri Nets have been widely applied in various domains such as workflow
management systems, distributed computing, manufacturing systems, communication protocols,
and biological systems modeling [?,T]]. Their ability to capture both control flow and data flow
makes them particularly suitable for systems that involve parallelism and synchronization.

Many extensions have been developed to enhance their expressiveness, including Colored Petri
Nets (CPNs) [58], which allow tokens to carry data; Timed Petri Nets, which model temporal
behavior; and Stochastic Petri Nets [59], which incorporate probabilistic aspects. These variants
further broaden the applicability of Petri Nets in real-world systems that require richer semantic
modeling.

The strength of Petri Nets lies in their formal analysis capabilities, including reachability, dead-
lock detection, liveness, and boundedness [I]. These properties make them valuable not only for
system design but also for formal verification and validation.

Despite their robustness in structure and behavior representation, classical Petri Nets face lim-
itations when applied to systems that require learning, adaptation, or handling uncertain and fuzzy
information. These challenges have led to research efforts focused on combining Petri Nets with
artificial intelligence techniques, especially neural networks, to create hybrid intelligent modelsan
area discussed in the following sections.

2.2 Neural Networks and Learning-based Models

With the rise of computational power and large datasets, deep learning has emerged as a pow-
erful subfield of machine learning. Deep Neural Networks (DNNs), particularly architectures like
Convolutional Neural Networks (CNNs) [b0] and Recurrent Neural Networks (RNNs) [61], have
achieved remarkable success in fields such as image recognition, natural language processing, and
autonomous systems.

Deep learning models are able to automatically extract hierarchical representations from data,
which makes them highly effective in handling unstructured and high-dimensional information.
However, these models are often seen as "black-box" systems due to their lack of transparency and
interpretability [62].

Despite their impressive performance, neural networks face challenges when used in applica-
tions that require formal guarantees, logical reasoning, or interpretability. This has led to increasing
interest in combining neural networks with symbolic models such as Petri Nets, aiming to leverage
the strengths of both paradigms.

33

2.3 Hybrid Models: Integration of Petri Nets and Neural Net-
works

Given the limitations of both classical Petri Nets in learning and adaptation, and neural networks
in explainability and formal verification, hybrid models have emerged to leverage the strengths of
both paradigms. These models aim to combine the structured, formal nature of Petri Nets with the
data-driven, adaptive capabilities of neural networks, forming a new class of intelligent systems
suitable for modeling complex and dynamic behaviors.

2.3.1 Fuzzy Petri Nets

Fuzzy Petri Nets (FPNs) extend classical Petri Nets by integrating fuzzy logic to deal with
imprecision and uncertainty. In these models, transitions are associated with fuzzy rules, and tokens
can carry fuzzy values, allowing for approximate reasoning [63]. FPNs have been widely used in
expert systems, risk analysis, and decision support systems.

More recently, researchers have proposed combining fuzzy logic with neural networks within
the Petri Net framework. For example, Liu et al. [64] introduced the Deep Fuzzy Petri Net (DFPN),
a hybrid framework that enables explainable decision-making by integrating fuzzy rule bases with
deep learning mechanisms.

2.3.2 Neural Petri Nets

Neural Petri Nets (NPNs) are models in which the structure of the Petri Net is embedded with
neural components, such as weights and activation functions. The flow of tokens can be influ-
enced by neural computations, enabling the Petri Net to adapt its behavior based on learning pro-
cesses [65]. These models are particularly suited for applications in dynamic environments and
real-time decision systems.

2.3.3 Deep Petri Nets

Deep Petri Nets (DPNs) represent a more recent and advanced form of integration, where deep
learning models are embedded into Petri Net structures.

DPNs have been applied to various domains including industrial automation, intelligent moni-

toring systems, and autonomous decision-making. Their dual nature offers a promising path toward
building systems that are both formally verifiable and capable of adaptive learning.

34

2.4 Comparative Analysis of Hybrid Petri Net Approaches

To highlight the effectiveness of our proposed approaches, we present a comparative analysis
with recent hybrid models that integrate Petri nets and learning-based techniques. The table below
summarizes various methods in terms of their integration strategies, main features, and limitations.
This comparison underlines how our work offers a more structured, automated, and traceable solu-

tion.

Approach Integration Main Features Limitations / Remarks
Method
Liu et al. (Deep | Fuzzy Logic + | Captures un- | Requires expert-defined
Fuzzy Petri | Deep Learning certainty and | rules and parameters
Nets) [50] non-linear behav-
ior; interpretable
Zhao et al. | Fuzzy weights | Better = handles | Limited automation and
(Fuzzy Petri | + Probabilistic | imprecision in | traceability
Nets) [BT] transitions dynamic environ-

ments

Wang and Zhao | Fuzzy Petri Net | Supports dy- | Focused on expert sys-
(Expert Sys- | with adaptive | namic rule | tems; lacks structural au-
tems) [62] learning evaluation and | tomation

real-time deci-

sions
Kordon et al. | Metamodeling + | Formal structure | Integration complexity;
(MDE with Petri | MDE integration | using MDE; | limited to structure
+ ML) [53] structural model-

ing with Al

Zhang et al
(Deep Reinforce-
ment PN) [54]

RL agents within
Petri transitions

Combines learn-
ing and Petri for
autonomous Sys-
tems

Less focus on formal
traceability and reuse

Yin et al. (PN-
based NN inter-
pretation) [55]

PN
mimic
activations

transitions
neuron

Improves ex-
plainability in
deep models

Targets interpretation, not
transformation

Zhao et al. (DRL | DRL within PN | Real-time op- | Domain-specific, limited
for schedul- | structure timization in | reusability
ing) [56] manufacturing
systems
Our Approaches | Metamodeling + | Automatic trans- | More complex setup; re-
ATL + TGG (two | formation; clear | quires metamodel exper-
approaches) modular struc- | tise
ture; traceability;
formal verifica-

tion support

Table 2.1: Comparative Analysis of Our Approaches

35

As shown in Table 2T, several hybrid approaches have explored the integration of Petri nets
with fuzzy logic, machine learning, or deep reinforcement learning. For instance, works like Liu
et al. [50] and Zhao et al. [51] emphasize handling uncertainty and non-linear behaviors through
fuzzy rules and probabilistic transitions. However, these models often depend on manually defined
parameters and lack formal traceability.

Other approaches such as those by Kordon et al. [53] and Zhang et al. [54] attempt to integrate
learning mechanisms within Petri Net structures using MDE or reinforcement learning techniques.
While they offer more automation and adaptive behavior, they are often limited in reusability or
lack a standardized transformation process.

Our approach distinguishes itself by adopting a model-driven engineering (MDE) strategy, us-
ing ATL and TGG to ensure a formal and automated transformation from classical Petri Nets to
Deep Petri Nets. It ensures structural clarity, traceability, and formal verification supportadvantages
not fully addressed in the compared models. Although our setup requires expertise in metamodel-
ing, it provides a reusable and extensible framework applicable across domains.

2.5 Conclusion

This chapter reviewed foundational and recent works on Petri Nets, neural networks, and their
hybridization. We discussed the strengths and limitations of symbolic and subsymbolic models,
as well as attempts to integrate them using fuzzy logic, neural components, and deep learning
techniques.

While previous studies provide valuable insights and technical contributions, they often lack
generality, traceability, or formal integration methodologies. In response to these limitations, our
work proposes a model-driven transformation approach based on ATL and EMF to bridge the gap
between symbolic Petri Nets and adaptive neural architectures.

The next chapter presents our proposed framework and transformation strategies in detail.

36

Contributions

Chapter3

Proposed Approaches

Introduction

This chapter introduces two model transformation approaches for converting a classical Petri
Net into a Deep Petri Net (DPN). The main objective is to combine the formal semantics of Petri
Nets with the adaptive learning capabilities of neural networks, enabling more advanced modeling
and simulation of complex systems. These transformations are implemented using the Atlas Trans-
formation Language (ATL) and are based on well-defined metamodels within the Eclipse Modeling
Framework (EMF).

The first approach follows a two-step process: initially, the Petri Net is transformed into a
Neural Network model, which serves as an intermediate representation. This intermediate model
is then further transformed into a Deep Petri Net. The second approach involves integrating ele-
ments of the Petri Net and the Neural Network directly into a unified model, which is subsequently
transformed into a Deep Petri Net.

This chapter also details the metamodels used, the transformation rules, and the ATL imple-
mentation of each step, demonstrating the feasibility and effectiveness of transitioning from formal
models to intelligent, learning-capable systems.

3.1 The First Approach:

In this approach, we first transform the Petri Net model into a Neural Network model. This
initial transformation aims to reinterpret the structural and behavioral elements of the Petri Net in
terms of neural components. Once the resulting is obtained, it is then transformed into a Deep Petri
Net model.

1st Transformation

T~

(Petri Net .Ecore] [Neurai Net .EcoreJ [Deep Petri Net .Ecore]

2nd Transformation

Meta-Model of PN Meta-Model of NN Meta-Model of DPN

Figure 3.1: Architecture of First Approach

39

3.1.1 Meta Model The Petri Net (PN)

H PetriNet)
= PN : EString - il
0.%] node '
H Node 1.7] SOUMCE 14 -1 outgoing B Arc |
= name : EString = weight : Eint J
T [1.7] target [1.."] incoming
| |

= tokens : Elnt

[B Transition] [B Prace]‘

| |

Figure 3.2: Meta Model of PN

The metamodel is manually created using the EMF graphical editor. Saving the model auto-
matically generates the .ecore file.

v #| platform:/resource/PetriNet/model/petriNet.ecore
v 8 petribet
v [PetriMet
= PMN: EString
=t node: Node
= arc: Arc
H Transition -> Mode
w [Place -> MNode
= tokens: Elnt
v B Arc
= weight: EInt
= source: Node
;5 target: Node
v H Node
= name : EString
;= outgoing : Arc
;= Incoming : Arc

Figure 3.3: PetriNet.ecore Elements

40

The provided metamodel defines the structure of a Petri Net. It outlines the main components
and the relationships between them

* Class PetriNet:
This is the main container class representing an entire Petri Net model. It includes:

— A name attribute (PN).
— A collection of Node elements.

— A collection of Arc elements.

* Abstract Class Node:
This is a general superclass for all elements that can appear in a Petri Net. It has:

— A name attribute of type EString.

— Two concrete subclasses: Place and Transition.

¢ Class Place (subclass of Node):
Represents a location capable of holding tokens. It contains:

— A tokens attribute of type EInt.

e Class Transition (subclass of Node):
Represents an event or activity that may occur, changing the state of the Petri Net by
moving tokens between places.

* Class Arc:
Represents a directed connection between nodes, describing the flow of tokens. Each Arc
includes:

— A weight attribute (type EInt) to define the number of tokens transferred.
— An association with a source node.

— An association with a target node.

Relationships:
* An Arc always has a source and a target node.

* A Node can have one or more outgoing and incoming Arcs.

41

3.1.2 Meta Model The Neural Network (NN)

MeuralMetwork \
‘ E ; [0..*] layers ‘ H Layer
= name Eig i { = name : EString [0..*] neurons
[]
[0..¥] connection r
E Connection 1[1..*] outgoing [1.-*] source] H Meuron]
o name : EString

= o weight: Elnt
1..] incoming [1..*] target | & content : EString

Figure 3.4: Meta Model of NN

v #| platform:/resource/RDMN/model/rDMN.ecore
v @ neuralnetwork
v [MeuralMNetwork
= name: E5tring
= layers : Layer
=+ connection : Connection
v H Layer
= name: EString
=t neurcns : Neuron
v [Meuron
= name: E5tring
.5 outgeoing : Connection
;5 incoming : Connecticn
= content : EString
v [Connection
= weight : Elnt
5 source: Neuron
5 target : Neuron

Figure 3.5: NeuralNetwork.ecore Elements

42

This metamodel represents the structural definition of a Neural Network .

Class NeuralNetwork:
This is the main container class that represents an entire neural network model. It includes:
— A name attribute of type ESt ring, used to identify the network.
— A collection of Layer elements.
— A collection of Arc elements.
Class Layer:
Represents a level in the neural network (input layer, hidden layers, output layer). Each
Layer contains:
— A name attribute of type ESt ring.
— A collection of Neuron elements
Class Neuron:
Each Neuron has:
— A name attribute of type EString.
— A content attribute of type ESt ring, which may represent internal data such as

the activation function.

Class Connection:
Represents a directed link between neurons that facilitates the flow of information. Each
Connection includes:

— A weight attribute of type EInt, representing the strength of the connection.

— A source neuron.

— A target neuron.

Relationships:

* Each Neuron can have one or more incoming and outgoing Connections.

* Connections link neurons across layers or within the same layer, depending on the net-
work topology.

43

3.1.3 First Transformation

Once the metamodels are defined, we create the ATL files to specify the transformation rules .

v 25 PNZNN
w [~ metamodels
@ exemplexmi
#| petriNet.ecore
#| rDM.ecore

EEEaEs

| rules.asm

€] rules.atl

L

Figure 3.6: ATL Project

The ATL (Atlas Transformation Language) code shown in Figure B71 defines the transfor-
mation rules for converting a Petri Net model into a Neural Network model.

26 else 'OutputLayer’

1 module PetriToMeural; 27 endif
2 create OUT: rDN from IN: petrilet; 28 endif
3 29 1}
4= rule PetriNetToNeuralletwork { 3@
5 from 31= rule TransitionToNeuron {
6 pn: petriNet!PetriNet 32 from
7 to 33 t: petriNet!Transition
3 nan: rDM!NeuralNetwork (34 ta
e name <- pn.PN 35 n: rDN!Neuron (
2 bl 36 name <- t.name,
i 37 content<- 'Function’
122 rule PlaceToNeuron { 38)
as = ;
s drom PRl 39 1: rDN!Layer (
2 v e e e 48 name <- 'HiddenLayer'
16 n : rDNINeuron (j:)}
e L
17 name <- p.name, N !
18 content <- p.tokens.toString() iy ritle AteToConnection |
19 3 44 from
G 1 FDN!Layer(45 a : petrinetlarc
21 name <- if p.incoming->isEmpty() _f L :
22 then 'InputLayer' 47 c : rDN!Connection (
23 else if p.incoming->notEmpty() 48 weight <- a.weight,
24 and p.outgoing->notEmpty() 43 source <- a.source,
25 then 'HiddenLayer' 58 target <- a.target
26 else 'Outputlayer' 51 i)

(a) (b)

Figure 3.7: ATL transformation rules from Petri Net to Neural Network

Description of the ATL Rules:
¢ Rule 1: PetrinetToNeuralnetwork

This rule transforms the entire Petri Net into a Neural Network . It simply copies the name
attribute from the source model to the target model.

44

¢ Rule 2: PlaceToNeuron
This rule converts each P1ace in the Petri Net into a Neuron. The neuron’s name is set to
the name of the place, and its content is initialized with the token count. The neuron is then
assigned to a specific type of layer based on its arc connections:

— No incoming arcs — assigned to the InputLayer
— Both incoming and outgoing arcs — assigned to the HiddenLayer

— Only incoming arcs — assigned to the OutputLayer

* Rule 3: TransitionToNeuron
This rule transforms a Transition into a Neuron. The neuron’s content is fixed as
"Function" torepresent processing logic, and it is always assigned to the HiddenLayer.

* Rule 4: ArcToConnection
This rule transforms each Arc in the Petri Net into a Connection in the neural network.
It preserves the weight of the arc and maps the source and target elements directly to the
corresponding neurons.

Remark. The outcome of the transformation from the Petri net to the neural network model pro-
vides strong support for the validity of the metamodel used in ["The Second Approach’, known as
the Neural Network of Petri Net (NNPN). This intermediate metamodel effectively captures and
unifies the structural and behavioral characteristics of both classical Petri nets and neural networks.
By analyzing the transformation results, we observe clear alignment between elements of the two
original formalisms, which demonstrates that NNPN can serve as a coherent and consistent foun-
dation for integrating learning capabilities within a formal Petri net framework.

3.1.4 Meta Model The Deep Petri Net (DPN)

DespPN
| El _ [0..*] arc

[

{ = name : EString

[]
0..*]ring

A
g Ring

= name @ EString

L)

[0..*] node

L'

H Nede g arc }
1..%] src [1..%] ouw
= name : EString o poids : Elnt ‘

7 f1..*] dest [1..5] in
B

‘ B Transition | | H Piace |

Figure 3.8: Meta Model of DPN

= token : Elnt ‘

45

v & platform:/resource/DPN/model/dPM.ecore
w g dPN
w [DeepPN
= name: EString
=t ring: Ring
=t oarc: Arc
w [Place-> Node
= token: Elnt
v H Mode
= name: EString
5 out: Arc
2 in: Arc
v H Arc
= poids: Elnt
5 src: Node
;5 dest: Node
H Transition -> Node
v H Ring
= name: EString
&t node: Node

Figure 3.9: DeepPetriNet.ecore Elements

This metamodel defines the structure of a Deep Petri Net, an advanced formalism that integrates

Petri Nets with layered

* Class DeepPN:
The central class representing a Deep Petri Net. It includes:

— A name attribute of type ESt ring.
— A collection of Ring elements.

— A collection of Arc elements.

* Class Ring:

Each Ring represents a structural layer in the DeepPN. It contains:

— A name attribute of type EString.

— A collection of Node elements (Place or Transition).

46

¢ Class Node (abstract):
An abstract superclass representing elements of the net. Each Node has:

— A name attribute of type ESt ring.
— One or more outgoing arcs (out).

— One or more incoming arcs (in).

* Class Place (inherits from Node):
Represents a state or condition within the system. It includes:

— A token attribute of type EInt.

* Class Transition (inherits from Node):
Represents an event or action.

¢ Class Arc:
Models the connection between two Nodes. It includes:

— A weight attribute of type EInt, indicating the number of tokens involved.

— A src (source node) and dest (target node) reference.

3.1.5 Second Transformation

Following the initial transformation -from a Petri Net to a Neural Network- , the resulting model
is then used as input for a subsequent transformation into a Deep Petri Net.
else 'Intermediate’

endif
endif

(=]
B

1= module rulesi;
create OUT : dPN from IN : neuralnetwork;

P
T

=1 oo

)}

i

rule NeuralNetwork2DeepPN {

from nn : neuralnetwork!NeuralNetwork
6 to dpn : dPN!DeepPN (
name <- nn.name

(% I R ST]

9= rule Neuron2Transition {
from n : neuralnetwork!Neuron (
not n.incoming->isEmpty()
and not n.ocutgoing->isEmpty()
and n.content ='"Function'

E

18= rule Meuron2Place {
11 from n : neuralnetwork!Neuron (
12 not (n.content ='Function')

13)

15 to
p : dPN!Place {
name <- n.name,
token <- n.content.toInteger()

Wl L R ka
Bl R = ® W0

to
t : dPN!Transition (
name <- n.name
)s
ring : dPN!Ring (
name <- 'Intermediate’
3

= rule Connection2arc {
from ¢ : neuralnetwork!Connection
to a : dPN!Arc (
poids <- c.weight,

[l
T e R s (W -

O 0 =~

'-r'-
=t

s
ring : dPN!Ring (
name <-
if n.incoming->isEmpty() then 'External’

o |.-.|4:n [FY R FY R VTR WY Ry)
ko - : I

@ L
wn

3 R ORI ORI ORI}

2 45 src - C.s50Urce,
3 else if n.outgoing->isEmpty() then 'Core’ 47 dest <- c.target
24 else 'Intermediate’ 48 1}

(a) (b)

Figure 3.10: ATL transformation rules from The resulting to Deep Petri Net

Description of the ATL Rules:

* Rule 1: NeuralNetwork2DeepPN
This rule transforms the entire NeuralNetwork into a DeepPN. The name attribute is
directly copied from the source model.

47

* Rule 2: Neuron2Place
This rule converts a Neuron into a P1ace only if the neuron is not a function . It transfers:
— the neuron’s name and content to the Place,
— classifies the resulting P1ace into an Ring:

* No incoming connections — assigned to External,
+ No outgoing connections — assigned to Core,
* Both input and output connections — assigned to Intermediate.

* Rule 3: Neuron2Transition
This rule transforms a Neuron into a Transition and placed in the Intermediate if
the following conditions are met:
— It has both incoming and outgoing connections,
— It represents a function,
* Rule 4: Connection2Arc
This rule converts a Connection from the neural network into an Arc in the Deep Petri
Net. The transformation includes:
— copying the weight as poids,

— and mapping the source and target neurons to their corresponding nodes in the
DPN.

3.2 The Second Approach:

This approach involves integrating the Petri Net and Neural Network into a single model, which
is then transformed into a Deep Petri Net.

Transformation

e

NNPN.Ecore DPN.Ecore
X %
Meta Model of NNPMN Meta Model of DPN

Figure 3.11: Architecture of Second Approach

48

3.2.1 Meta Model The Neural Network of Petri Net (NNPN)

This metamodel defines a unified structure that integrates elements of both Petri nets and neu-ral
networks to support the modeling of systems with adaptive and analytical capabilities.

B nNnen

[0..*] connexion o name : EString

]

=

] layer

H Layers
= name : EString

]

H connexion [0..] neuron

[1.."] incoming

reight @ E1
o weight : Eint E Neurcn

-
[1..*] farget = name @ EString

[1..*] outgoing

[1..*] source

B Transition H Place

= teken : Elnt

Figure 3.12: Meta Model of NNPN

v 4| platform:/resource/NNPNZ/model/nNPN.ecore
w @ nMNPM
v H NNPN
=# layer: Layers
o name: E5tring
=t connexion : connexion
v B Layers
=t neurcn : Meuron
o name: EString
E Transition -> Neuron
~w [Meuron
= outgoing @ connexicn
5 incoming @ connexion
o name: E5tring
w [connexion
.=t source: Meuron
[t target : Meuron
= weight : Elnt
~w [Place -> Neuron
o token: Elnt

Figure 3.13: NNPN.ecore Elements

49

It is composed of the following core components:

* Class NNPN:
The root element of the model. It includes:
— A name attribute of type ESt ring.
— A collection of Layers elements.
— A collection of Connexion elements.
* Class Layers:
Represents a layer in the neural network structure. It includes:
— A name attribute of type EString.
— A collection of Neuron elements.
¢ Class Neuron (abstract):
A generic unit within a layer that can represent either a Place or a Transition. It
includes:
— A name attribute of type ESt ring.
— One or more incoming arcs.
— One or more outgoing arcs.

* Class P1lace (inherits from Neuron):
Represents a state or condition within the system. It includes:

— A token attribute of type EInt.

e Class Transition (inherits from Neuron):
Represents an event or action.

* Class Connexion:
Represents a weighted link between two neurons (analogous to arcs in Petri nets or synapses
in neural networks). It includes:

— A weight attribute of type EInt.

— References to source and target Neuron.

3.2.2 Meta Model The Deep Petri Net (DPN)

Remark. As for the Deep Petri net model, it corresponds to the one previously described under the
referenced section. € Meta Model The Deep Petri

50

3.2.3 Transformation

The ATL code shown in Figure B-T4 defines the transformation rules for converting the Neural
Network of Petri Net (NNPN) model into a Deep Petri Net model.

[T R R Y RN O

TS

22 endif
23
1= module rules; =y)t
create OUT : dPN from IN : nNPN; T _——
25 rule MeuronT2Transition {
rule NNPN2DPN { 26 from tr : nNPN!Transition
from nn : nNPN!NNPN 27 to
to dpn : dPN!DeepPN (28 t : dPN!Transition (
name <- nn.name -
29 name <-tr.name
)}
38 Iy
= rule NeurcnP2Place { 31 ring : dPN!Ring (
from n : nNPN!Place 32 name ¢<- ‘"intermediate’
to 33 :I}"

p : dPNIPlace (
name <- n.name,
token <- n.token},
ring : dPN!Ring (
name <-
if n.incoming->isEmpty() then 'External '
else if n.outgoing->isEmpty() then 'Core’
else 'Intermediate’
endif
endif

(=N}
|

= rule Connection2Arc {
from ¢ : nNPN!connexion
to a : dPN!Arc (
poids <- c.weight,
Src £- C.sSo0uUrce,
dest ¢- c.target

1
(a) (b)

o L
Lo B U o R I RW 5 |

Figure 3.14: ATL transformation rules from NNPN to Deep Petri Net

Description of the ATL Rules:

¢ Rule 1: NNPN2DPN
This rule transforms the root element of the source NNPN model (Neural Network of Petri
Net) into the root element of the target DPN model (Deep Petri Net).

— The name attribute is directly copied from the source model.

* Rule 2: Neuron2Place
This rule converts a neuron of type P1ace from the NNPN model into a P1ace in the DPN
model.
— The name and t oken attributes are transferred.
— A Ringis created and assigned based on the neuron’s connections:

No incoming connections — External
* No outgoing connections — Core
* Both incoming and outgoing connections — Intermediate

* Rule 3: NeuronT2Transition
This rule transforms a neuron of type Transitionintoa Transition inthe DPN model.

— The name attribute is copied directly.

— The transition is placed into a Ring named "Intermediate".

51

¢ Rule 4: Connection2Arc

This rule converts a connexion element from the NNPN model into an Arc in the DPN
model.

— The weight is copied as poids.

— The source and target references are transferred to the arc.

Conclusion

In this chapter, we have explored two distinct model transformation approaches aimed at bridg-
ing classical Petri Nets with Deep Petri Nets through Model-Driven Engineering techniques. By
utilizing the ATL language and EMF-based metamodels, we demonstrated how formal structures
can be progressively enriched with neural-inspired capabilities. These transformations enable the
transition from static, rule-based models to more dynamic and adaptive systems. Ultimately, this
work highlights the potential of combining formal modeling with machine learning concepts to
support the simulation, analysis, and design of complex systems in a structured and automated
way.

52

Chapter4

Case Studies

Introduction

In this chapter, we illustrate the practical application of our model transformation approaches
by conducting two case studies on intelligent systems. These case studies aim to demonstrate how
our methodology enhances the modeling, simulation, and analysis of complex and dynamic behav-
iors. The selected systems a Smart Traffic Management System and an Automated Production
Workshop represent real-world scenarios where intelligent coordination and decision-making are
crucial. Through visual representations, transformation steps, and resulting models, we provide
evidence of the effectiveness and adaptability of our proposed methodology.

4.1 First Case Study

To demonstrate how our transformation process improves the modeling, simulation, and analysis
of complex and dynamic behaviors in intelligent systems, we applied our approaches to a real-world
example: Smart Traffic Management System (STMS) is an intelligent infrastructure designed to
monitor and regulate traffic flow in urban environments.

4.1.1 First Approach

¢ Transformation From Petri net into Neural Network

In this transformation, We generate an XMI file that encodes the Petri net representation
of the Smart Traffic Management System " Figures &1 ".

< Transition SwitchToMS

w ':.;g platform:/resource/Transformation/model/exemplexmi 4 Arc
w e Petri Met 4 Arc
4 Place NothQueue & Arc
< Place SouthCueue 4 Arc?
4 Place EastQueue 4 Arcl
4 Place WestQueue 4 Arcl
4 Place GreenM5 4 Arcl
4+ Place GreenEW 4 Arcl
4= Place PassedCarsMs 4 Arcl
4 Place PassedCarsEW 4 Arcl
4 Place ControllUnit 4 Arcl
4 Transition PassM5 4 Arcl
<= Transition PassEW 4 Arcl
< Transition SwitchToEW < Arc
4 Transition SwitchToNS =| http://www.example.org/petriNet
(a) (b)

Figure 4.1: Smart Traffic Management System modeled as a Petri Net

54

Then we apply ATL rules to transform this representation into a neural network model.The
execution of the transformation process is shown in Figure B2,

= Run Configurations [m] b

Create, and run ig i ;7;
EECE R | =R Name: ‘ Mew_configuration (1) ‘

|t;-pEﬁ|tEr text ‘ || 1€ ATL Configuration | (Advanced a Common| i
B Acceleo Application ATL Module 2

(& ATL EMFTVM Transformation
~ @ ATL Transformation

€ New_configuration Meétamodels

€ New_configuration (1)

€ Mew_configuration (2)

~ & Eclipse Application [ls metametamaodel Workspace...| | File system... | | EMF Registry...

& Eclipse Application

[/Transtormation/rules.atl Workspace...

petriNet: [/PetriNet/model/petriNet.ecore |

= Eclipse Application (1) DN: [/RDMN/model/iDN.ecore |
=] Java Applet [ls metametamodel Workspace... | File system... | EMF Registry...
~ [T lava Application
[T AwtScresnshot Source Models
o At IN: [Transformation/model/exemplexmi
55 JUnit Plug-in Test
. Launch Group conforms to petriMet Workspace... | File system...
[F Mwe2 Launch
[B] MWE Workflow origet Mudels
& 05Gi Framewark OuT: [Transfarmation/metamadel/resultlxmi
J¥j Task Context Plug-in Test
e canfarms to N Worlspace...| | File system...|
Juy :
Revert Appl
Filter matched 21 of 23 items L
(?) Run Close

Figure 4.2: Execution of ATL transformation from Petri Net to Neural Network

The resulting Neural Network model is saved in XMI file. Figures show the generated

model.

v @ platform:/resource/Transformation/metamodel/resultex 1.xmi < Layer HiddenLayer
4 Meural Network 4 Meuron PassEW
<4 Meuron NorthQueue < Layer HiddenLayer
<+ Layer Inputlayer 4 Neuron SwitchToEW
< Meuron SouthQueue 4 Layer HiddenLayer
< Layer Inputlayer 4 Neuron SwitchToMNS
<+ Meuron EastQueue < Layer HiddenLayer
< Layer InputLayer <+ Connection 1
4 Meuron WestQueue 4 Connection 1
< Layer InputLayer <+ Connection 1
4 Meuron GreenMNS <4 Connection 2
<+ Layer HiddenLayer <= Connection 1
<4 Meuron GreenEW < Connection 1
<+ Layer HiddenLayer < Connection 1
< Meurcn PassedCarshs 4 Connection 2
< Layer OutputLayer < Connection 1
< Meuron PassedCarsEW < Connection 1

4 Layer OutputLayer 4+ Connection 1

4 Meurcn ControlUnit <+ Connection 1

4 Layer InputLayer <+ Connection 1
4 Connection 1

4 Meuron PasshS
4 Layer HiddenLayer =] http://example.org/neuralnetwork

(a) (b)

Figure 4.3: Generated Neural Network model

55

* Transformation From The Resulting into Deep petri net In this transformation, the
model generated by the initial transformation is used as input, and ATL rules are applied to
produce the final Deep Petri Net model

v @ platform:/resource/Transformation/metamodel/result2ex1.xmi

4 Transition PasshS
< Ring Intermediate
4 Transition PassEW

<= Deep PM

s

+ Y eee

Place NorthCueue
Ring External

Place SouthCueue
Ring External

Place EastCueue
Ring External

Place WestQueue
Ring External

Place GreenM5
Ring Intermediate
Place GreenEW
Ring Intermediate
Place PassedCarsMs
Ring Core

Place PassedCarsEW
Ring Care

Place ControlUnit
Ring External

4 Transition Passh5

4 Ring Intermediate

4 Transition SwitchToEW
< Ring Intermediate

4 Transition SwitchToMS
4 Ring Intermediate

4 Arcl

< Arcl

4 Arcl

& Arcl2

4 Arcl

4 Arcl

4 Arcl

4 Arc?

4 Arcl

< Arcl

4 Arcl

% Arcl

4 Arcl

4 Arcl

= http:/Swww.example.org/dPM

(@) (b)
Figure 4.4: Generated Deep Petri Net model

4.1.2 Second Approach

In this approach, We generate an XMI file that encodes the Neural Network of Petri Net(NNPN)
representation of the Smart Traffic Management System.

56

v fsh' platform:/resource/TransformationZ/metamodel/exemple.xmi
sy BNMNPN
w 4 Layers input
4 Place MorthCueue
4 Place SouthCueue
4 Place EasthQueue
4 Place WestOueue
4 Place ControlUnit
w 4 Layers hidden
4 Place GreenMS
4 Place GreenEW
4 Transition PassM%
< Transition PassEW
< Transition SwitchToEW
< Transition SwitchToMS
w 4 Layers output
4 Place PassedCarsM5
4 Place PassedCarsEW
< Connexion 1

(a)

uilP

=

=4
=]

++ 4+ e e

Connexion 1
Connexion 1
Connexion 2
Connexion 1
Connexion 1
Connexion 1
Connexion 2
Connexion 1
Connexion 1
Connexion 1
Connexion 1
Connexion 1
Connexion 1
. example.org/nMPN

(b)

Figure 4.5: Smart Traffic Management System modeled as a NNPN

Then we apply ATL transformation rules to generate the final Deep Petri Net model.

w s platforme/resource/Transformationd/metamodel/resultex 1.xmi
< Deep PM
4 Place MorthQueue
<+ Ring External
4 Place ScuthCueue
< Ring External
4 Place EasthCueue
< Ring External
4 Place WestQueue
< Ring External
< Place ControlUnit
<+ Ring External
4 Place GreenN5S
< Ring Intermediate
4 Place GreenEW
<+ Ring Intermediate
4 Place PassedCarsM5
4 Ring Core
4+ Place PassedCarsEW
< Ring Core
4 Transition PassMNS
< Ring Intermediate
< Transition PassEW
<+ Ring Intermediate

(a)

[

< Transition PassMS

< Ring Intermediate

< Transition PassEW

4 Ring Intermediate

4 Transition SwitchToEW
<+ Ring Intermediate

< Transition SwitchToMS
< Ring Intermediate

4 Arcl

4 Arc

4 Arci

& Arc?

4 Arcl

4 Arc

4 Arci

% Arc2

4 Arcl

% Arc

4 Arci

4 Arcl

4 Arcl

4 Arcl
http:/fwww.example.org/dPN

(b)

Figure 4.6: Generated Deep Petri Net model

57

4.2 Second Case Study

To demonstrate how our transformation process improves the modeling, simulation, and analysis
of complex and dynamic behaviors in intelligent systems, we applied our approaches to: Automated
Production Workshop ,is a manufacturing scenario that involves coordination between machines,
robots, and a production line.

4.2.1 First Approach

Transformation From Petri Net into Neural Network

For this transformation we generate an XMI file "Figures B7" , that encodes the Petri net
representation of the Automated Production Workshop.
Then we apply ATL rules to transform this representation into a neural network model

< Transition TransferbA2-5ortie

4 Arc

4 Arcl

v 5“'«,._. platform:/resource/Transformation/model/exemple.xmi *]
v 4 Petri Net + Al
4 Place Entrée i toe

¢+ Place RobotlLibre + Arcl

4 Place MiLibre * il

4 Place M2Libre P}

4 Place Entraiterenti1 S

4= Place EntraitementM2 + Arcl

4= Place Sortie 4+ Arcl

4= Transition Chargeri1 * A |

4 Transition TraiternenthA1 + Arcl

4 Transition TransferbA1-M2 + Arcl

4 Arcl

4 Transition Traiternenth2
< Transition TransferbA2-Sortie

= http://www.example.org/ petrilet

(a) (b)

Figure 4.7: Automated Production Workshop modeled as a Petri Net

The resulting is saved in the XMI file. Figures B8 show the generated model.

58

~ L&l platform:/resource/Transformation/metarnodel/resultex2 xmi
4 Neural Network
< MNeuron Entrée
<= Layer InputLayer
4 MNeuron RobotLibre
< Layer InputLayer
< MNeuron MiLibre
<= Layer HiddenLayer
4 MNeuron M2Libre
<= Layer HiddenLayer
4 MNeuron Entraiternenth1
< Layer HiddenLayer
4 MNeuron Entraitermenthl2
<= Layer HiddenLayer
4 MNeuron Sortie
< Layer Outputlayer
< MNeuron Chargeri1
<= Layer HiddenLayer
4 MNeuron TraiternenthA1
<= Layer HiddenLayer
< MNeuron Transferb1-M2

(a)

< MNeuron TransferM1-M2
<+ Layer HiddenLayer
4 Meuron Traiternenthi2
<+ Layer HiddenLayer
4 Meuron TransferM2-5ortie
<+ Layer HiddenLayer
< Connection 1
< Connection 1
< Connection 1
<4 Connection 1
4 Connection 1
< Connection 1
< Connection 1
< Connection 1
< Connection 1
< Connection 1
< Connection 1
<4 Connection 1
< Connection 1
< Connection 1
< Connection 1
=l http://example.org/neuralnetwaork

(b)

Figure 4.8: Generated Neural Network model

Transformation From The Resulting into Deep petri net

In this transformation, the model generated by the initial transformation is used as input, and

ATL rules are applied to produce the final Deep Petri Net model.

~ L&l platform:/resource/Transformation/metamodel/result2ex2 xmi
4 Deep PN

Place Entree

Ring External

Place Robotlibre

Ring External

Place M1Libre

Ring Intermediate

Place M2Libre

Ring Intermediate

Place EntraiternentM1

Ring Intermediate

Place Entraitermenti2

Ring Intermediate

Place Sortie

Ring Core

Transition Chargerh1

Ring Intermediate

Transition Traiternenth1

Ring Intermediate

Transition Transferf1-M2

Ring Intermediate

g o o PP PP PP PP PP PP S P

(a)

< Ring Intermediate
< Transition Traiternenthd2
<+ Ring Intermediate
< Transition Transferb2-5ortie
< Ring Intermediate
4 Arc
<4 Arc
4 Arcl
<4 Arc
4 Arcl
4 Arc
4 Arcl
4 Arc
4 Arci
4 Arcl
<4 Arc
4 Arc
<4 Arc
4 Arcl
< Arc
= http:/fwww.example.org/dPM

(b)

Figure 4.9: Generated Deep Petri Net model

59

4.2.2 Second Approach

In this approach, We generate an XMI file that encodes the Neural Network of Petri Net (NNPN)
representation of the Automated Production Workshop.

w < Layers Qutput
4 Place Sortie
Connexion 1

v lal platform:/resource/Transformation2/metamedel/exemple2xmi
w @ MNPN
w~ 4= Layers Input
<+ Place Entrée
4 Place RobotLibre
w 4 Layers Hidden
<+ Place M1Libre
4 Place M2Libre
4 Place EntraitementM1
4+ Place Entraiternenti2
4 Transition Chargerl1
4 Transition Traiterenti1
< Transition Transferf1-M2
4 Transition Traiternenti2
4 Transition TransferM2-Sortie
w 4 Layers Qutput
4 Place Sortie

Connexion 1
Connexion 1
Connexion 1
Connexion 1
Connexion 1
Connexion 1
Connexion 1
Connexion 1
Connexion 1
Connexion 1
Connexion 1
Connexion 1
Connexion 1

FOF OGO SO G O SO G S

Connexion 1

http:/fwww.example.org/nMPN

(a) (b)
Figure 4.10: Smart Traffic Management System modeled as a NNPN

Then we apply ATL transformation rules to generate the final Deep Petri Net model.

< Ring Intermediate
< Transition Traiternenth2
< Ring Intermediate

v & platform:/resource/Transformation2/metamodel/resultex2 xmi
R < Transition TransferM2-Sortie

4 Deep PN

& Place Eities < Ring Intermediate
4 Ring Bxternal % Arcl
4+ Place RobotLibre % Arc
4 Ring External 4 Arc
4 F‘!ace M1L|brel & Arcl
4 Ring Intermediate

4 Place M2Libre A fe
4 Ring Intermediate 4 Arcl
4 Place EntraitementM1 4 Arcl
4 Ring Intermediate 4 Arcl
< Place EntraiternentiM2 & Arcl
4 Ring Inten-“nediate 4 Arcl
<% F‘!ace Sortie 4 Arcl
4 Ring Core

4 Transition Chargerl1 < Arcl
4 Ring Intermediate 4 Arcl
<4 Transition Traitementh1 4 Arc
4 Ring Intermediate & Arc
4 Transition TransferM1-M2 B http:_-'_fmﬂnm.example.arg_-'dPN
4 Ring Intermediate

(a) (b)
Figure 4.11: Generated Deep Petri Net model

60

Conclusion

This chapter has demonstrated the feasibility and utility of our approaches through two repre-
sentative case studies Smart Traffic Management System and an Automated Production Workshop
, we validated the capacity of our methodology to bridge Petri nets and neural-based architectures,
resulting in formal, analyzable Deep Petri Nets.

61

General
Conclusion

Conclusion

In this memory, we presented a novel approaches that bridges the gap between symbolic model-
ing and subsymbolic learning by integrating the formal rigor of Petri Nets with the adaptive capabil-
ities of neural networks. This integration led to the formulation of the Deep Petri Net (DPN) model
a hybrid framework capable of representing both structural logic and dynamic learning processes.

Our methodology was structured around two main transformation approaches. The first ap-
proach defines three metamodels: the first for classical Petri Nets, the second for artificial neural
networks, and the third for Deep Petri Nets. These metamodels were developed using the Eclipse
Modeling Framework (EMF), and transformations between them were implemented using the At-
las Transformation Language (ATL). This enabled a step-by-step conversion from symbolic models
to hybrid intelligent systems.

The second approach introduces a unified intermediate metamodel, the Neural Network Petri
Net (NNPN), which directly integrates neural components into the Petri Net structure. This unified
model is subsequently transformed into a Deep Petri Net using ATL rules. The direct embedding
approach simplifies the transformation chain while maintaining consistency and cohesion.

Future Works

Looking ahead, several promising directions can be explored to improve and extend the proposed
framework.

First, enhancing the scalability and performance of the DPN framework is essential. This can
be achieved by optimizing transformation rules and exploring modularization strategies to partition
complex models into smaller, manageable components.

Second, the framework could be extended to support additional learning paradigms such as re-
inforcement learning and unsupervised learning. These capabilities would increase the adaptability
of the system in diverse scenarios.

Finally, improving the explainability of the decision-making processes within Deep Petri Nets
will be crucial, particularly for applications in safety-critical domains such as healthcare, au-
tonomous vehicles, or industrial automation.

In conclusion, the Deep Petri Net framework provides a strong foundation for unifying sym-
bolic reasoning with adaptive learning. Through its dual transformation approaches it opens new
possibilities for the design of intelligent, explainable, and traceable systems. We believe this ap-
proach represents a valuable contribution to the field of neuro-symbolic artificial intelligence and
hybrid system modeling.

63

Bibliography

[1] T. Murata (1989), ‘Petri Nets: Properties, Analysis and Applications,” IEEE Transactions on
Communications, vol. 77, no. 4, pp. 541-580.

[2] J. Desel and W. Reisig (2001), Lectures on Petri Nets I: Basic Models.
[3] W. M. P. van der Aalst (2020), Process Mining: Data Science in Action (2nd ed.).

[4] X.Xu,Y.Lu, B. Vogel-Heuser, and L. Wang (2021), ‘Industrial Al and Digital Transformation
for Smart Manufacturing: A Review,” Engineering, vol. 7, no. 6, pp. 738-752.

[5] D. Fahland and M. Weidlich (2023), ‘Conformance Checking and Process Enhancement Us-
ing Petri Nets,” Foundations of Computing and Decision Sciences, vol. 48, no. 1, pp. 1-27.

[6] Y. LeCun, Y. Bengio, and G. Hinton (2015), ‘Deep learning,” Nature, vol. 521, pp. 436-444.
[7] L. Goodfellow, Y. Bengio, and A. Courville (2016), Deep Learning, MIT Press.

[8] Y. Liu, H. Zhang, and L. Wang (2020), ‘Deep Fuzzy Petri Nets: A Transparent Neural Rea-
soning Framework,” Knowledge-Based Systems, vol. 192, p. 105-354.

[9] W. Reisig (2013), Understanding Petri Nets: Modeling Techniques, Analysis Methods, Case
Studies.

[10] R. David and H. Alla (2010), Discrete, Continuous, and Hybrid Petri Nets.
[11] W. M. P. van der Aalst (2016), Process Mining: Data Science in Action (2nd ed.).

[12] M. Aouag (2023), Chapter 02: Petri Nets (PN). Available at: https://elearning.
centre—univ-mila.dz/a2024/pluginfile.php/6997/8/mod resource/
content/0/Chapitres2002 %20Les%20R%C35A9seauxs20des20P5C3%
A9tri%20 RDP.pdf [Consulted on May 10, 2025]

[13] J. Desel and J. Esparza (1995), Free Choice Petri Nets, Cambridge University Press.

[14] R. Zhu, Q. Ban, and X. Cong (2019), ‘Modules of Petri Nets and New Petri Net Structure:
Arcs with a Weighted Function Set,” Journal of Intelligent & Fuzzy Systems, vol. 36, no. 5,
pp- 4567-4578.

[15] E. Popova (2024), ‘Controlling Petri Net Behavior Using Priorities for Transitions,”.

[16] P.Janar, J. Leroux, and J. Valek (2025), Structural Liveness of Conservative Petri Nets, arXiv
preprint arXiv:2503.11590.

64

https://elearning.centre-univ-mila.dz/a2024/pluginfile.php/69978/mod_resource/content/0/Chapitre%2002_%20Les%20R%C3%A9seaux%20de%20P%C3%A9tri%20_RDP.pdf
https://elearning.centre-univ-mila.dz/a2024/pluginfile.php/69978/mod_resource/content/0/Chapitre%2002_%20Les%20R%C3%A9seaux%20de%20P%C3%A9tri%20_RDP.pdf
https://elearning.centre-univ-mila.dz/a2024/pluginfile.php/69978/mod_resource/content/0/Chapitre%2002_%20Les%20R%C3%A9seaux%20de%20P%C3%A9tri%20_RDP.pdf
https://elearning.centre-univ-mila.dz/a2024/pluginfile.php/69978/mod_resource/content/0/Chapitre%2002_%20Les%20R%C3%A9seaux%20de%20P%C3%A9tri%20_RDP.pdf

[17] Y. Zhang and M. Zhou (2021), ‘Time-Based Deadlock Prevention for Petri Nets,” Automatica,
vol. 130, p. 109-716.

[18] K. Barkaoui and G. Balbo (2021), Timed Petri Nets: Modeling, Performance Evaluation, and
Applications.

[19] Q. He and H. Gharavi (2022), Stochastic Petri Nets and Their Applications in Computer
Systems and Networks, Wiley-1EEE Press.

[20] M. A. Ribeiro and A. R. Silva (2021), Colored Petri Nets in Business Process Modeling and
Performance Evaluation.

[21] M. M. Hammad (2024), Artificial Neural Network and Deep Learning: Fundamentals and
Theory.

[22] A. Boulmerka (2022), Chapitre 07 : Les réseaux de neurones (RN). Consulté¢ a : https:
//elearning.centre-univ-mila.dz/a2024/pluginfile.php/3300/

mod resource/content/6/chapl6.reseaux neurones.pdf[Consulted on
May 11, 2025]

[23] I. Goodfellow, Y. Bengio, and A. Courville (2016), Deep Learning, MIT Press. [Chapter 6]

[24] F. Chollet (2021), Deep Learning with Python (2nd ed.), Manning Publications. [Chapter 5]
[25] I. Goodfellow, Y. Bengio, and A. Courville (2016), Deep Learning, MIT Press. [Chapter 10]
[26] I. Goodfellow, Y. Bengio, and A. Courville (2016), Deep Learning, MIT Press. [Chapter 20]

[27] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu (2021), ‘A Comprehensive Survey
on Graph Neural Networks,” IEEE Transactions on Neural Networks and Learning Systems.

[28] Y.-N. Lin, T.-Y. Hsieh, C.-Y. Yang, V. R. L. Shen, T. T.-Y. Juang, and W.-H. Chen (2020),
‘Deep Petri Nets of Unsupervised and Supervised Learning,” Measurement and Control, vol.
53, no. 78, pp. 1061-1072.

[29] H. Qi, M. Guang, J. Wang, and C. Jiang (2023), ‘A Perspective on Petri Net Learning.”

[30] W.He, W. Chen, Y. Wang, and P. Liu (2021), ‘Deep Petri Nets: A Neural-symbolic Integration
for Modeling and Learning Complex Systems,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 32, no. 12, pp. 5564-5578.

[31] Y. Zhang, Y. Zhang, and X. Liu (2020), ‘Deep Petri Nets: A Novel Framework for Modeling
and Learning Dynamic Systems,” Neurocomputing, vol. 417, pp. 347-359.

[32] Object Management Group (2003), MDA Guide Version 1.0.1, OMG Document omg/2003-
06-01.

[33] I. Sommerville (2016), Software Engineering (10th ed.).
[34] M. Brambilla, J. Cabot, and M. Wimmer (2012), Model-Driven Software Engineering in Prac-
tice, Morgan & Claypool Publishers.

65

https://elearning.centre-univ-mila.dz/a2024/pluginfile.php/3300/mod_resource/content/6/chap06.reseaux_neurones.pdf
https://elearning.centre-univ-mila.dz/a2024/pluginfile.php/3300/mod_resource/content/6/chap06.reseaux_neurones.pdf
https://elearning.centre-univ-mila.dz/a2024/pluginfile.php/3300/mod_resource/content/6/chap06.reseaux_neurones.pdf

[35] C. Atkinson and T. Kiihne (2003), ‘Modeling concepts for information systems engineering,”
In Conceptual Modeling, pp. 513-524.

[36] T. Kiihne (2006), ‘Matters of (meta-) modeling,” Software & Systems Modeling, vol. 5, no. 4,
pp- 369-385.

[37] Université Badji Mokhtar Annaba (2021), Introduction a lIngénierie Dirigée par les Modéles,
Chapitre 1.
https://elearning—facsci.univ—-annaba.dz/pluginfile.php/44809/
mod resource/content/1/chapitre%201.pdfl [Consulted on May 16, 2025]

[38] A. Hettab (2009), De M-UML vers les réseaux de Pétri "Nested Nets" : une approche basée
sur la transformation de graphes, These de doctorat, Université de Mentouri Constantine, pp.
58-74.

[39] T. Mens and P. Van Gorp (2006), ‘A taxonomy of model transformation,” Software & Systems
Modeling, vol. 5, no. 1, pp. 35-51.

[40] K. Czarnecki and S. Helsen (2006), ‘Classification of model transformation approaches,” In
OOPSLA Workshop on Generative Techniques in the Context of MDA.

[41] M. Amroune (2014), Vers une approche orientée aspect dingénierie des besoins dans les
organisations multi-entreprises, These de doctorat, Université de Toulouse, p. 50.

[42] M. Wimmer, G. Kappel, et al. (2017), Model-Driven Software Engineering in Practice (2nd
ed.), Morgan & Claypool Publishers.

[43] M. Bendiaf (2018), Spécification et vérification des systemes embarqués temps réel en util-
isant la logique de réécriture, These de doctorat, Université Mohamed Khider Biskra, pp.
78-79.

[44] S. Meghzili (2021), ‘Transformation de Graphes Chapitre 03, Cours Ingénierie des Logi-
ciels, Ministere de 1IEnseignement Supérieur et de la Recherche Scientifique, Centre Univer-
sitaire de Mila, Laboratoire MISC, Université Constantine 2 Abdelhamid Mehri.

[45] L. Fritsche, J. Kosiol, A. Schiirr, and G. Taentzer (2020), ‘Avoiding Unnecessary Information
Loss: Correct and Efficient Model Synchronization Based on Triple Graph Grammars,” arXiv
preprint arXiv:2005.14510.

[46] H. Giese and R. Wagner (2009), ‘From model transformation to incremental bidirectional
model synchronization,” Software & Systems Modeling, vol. 8, no. 1, pp. 21-43.

[47] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro (2008), EMF: Eclipse Modeling
Framework (2nd ed.), Addison-Wesley.

[48] I. Ben Hmida and I. Bouassida Rodriguez (2021), ‘Comparative Study of Model Transforma-
tion Approaches: ATL and TGG,” International Journal of Advanced Computer Science and
Applications, vol. 12, no. 1, pp. 520-528.

66

https://elearning-facsci.univ-annaba.dz/pluginfile.php/44809/mod_resource/content/1/chapitre%201.pdf
https://elearning-facsci.univ-annaba.dz/pluginfile.php/44809/mod_resource/content/1/chapitre%201.pdf

[49] F. Jouault and 1. Kurtev (2006), ‘Transforming Models with ATL,” In Satellite Events at the
MoDELS 2005 Conference, pp. 128-138.

[50] Y. Liu et al. (2021), ‘Deep Fuzzy Petri Nets: A Hybrid Framework for Explainable Al,”
Neural Computing and Applications, vol. 33, pp. 10521-10535.

[51] Q. Zhao et al. (2020), ‘An Improved Fuzzy Petri Net for Uncertain Knowledge Representa-
tion,” Applied Intelligence, vol. 50, pp. 4123-4135.

[52] H. Wang and Y. Zhao (2019), ‘A Fuzzy Petri Net-Based Intelligent Framework for Real-Time
Decision Support,” Expert Systems with Applications, vol. 127, pp. 143-154.

[53] F. Kordon, H. Garavel, and J. Thierry-Mieg (2021), ‘Formalization of Al Systems with Petri
Nets and MDE,” Journal of Systems Architecture, vol. 121, p. 102-688.

[54] L. Zhang et al. (2022), ‘Deep Reinforcement Petri Nets for Autonomous Decision-Making,”
IEEE Access, vol. 10, pp. 21890-21904.

[55] H. Yinetal. (2023), ‘Petri Net-Based Interpretability for Deep Learning Models,” Information
Sciences, vol. 636, pp. 230-245.

[56] Y. Zhao, H. Liu, M. Chen, and X. Wang (2024), ‘Petri-net-based deep reinforcement learning
for real-time scheduling of automated manufacturing systems,” Journal of Manufacturing
Systems, vol. 74, pp. 995-1008.

[57] C. A. Petri (1962), Communication with Automata, Technical Report No. RADC-TR-65-377,
Institut fiir Instrumentelle Mathematik, Bonn.

[58] K.Jensen (1997), Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical Use.

[59] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis (1995), Modeling
with Generalized Stochastic Petri Nets, Wiley.

[60] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner (1998), “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324.

[61] S. Hochreiter and J. Schmidhuber (1997), “Long short-term memory,” Neural Computation,
vol. 9, no. 8, pp. 1735-1780.

[62] Z. C. Lipton (2016), “The Mythos of Model Interpretability,” arXiv preprint
arXiv:1606.03490.

[63] W. Zhang (2000), “Fuzzy Petri Nets and Their Applications in Intelligent Systems,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 30, no. 1, pp. 31-43.

[64] Y.Liu, H. Zhang, L. Wang, and J. Chen (2020), “Deep Fuzzy Petri Nets: A Hybrid Framework
for Explainable Decision Making,” IEEE Access, vol. 8, pp. 137855-137866.

[65] T. H. Tuan, C. Y. Yang, V. R. L. Shen, and W.-H. Chen (2020), “Neural Petri Nets for Mod-
eling and Simulation of Adaptive Systems,” Journal of Intelligent & Fuzzy Systems, vol. 38,
no. 5, pp. 5631-5642.

67

	General Introduction
	Introduction
	Problematic
	Contributions
	Memory Organization

	 Basic Concepts
	Introduction
	Petri Nets (PNs)
	Definition
	Categories of Petri Nets
	 Petri Nets Properties
	The Types of Petri Nets

	Neural Networks (NNs)
	Definition
	Mathematical Representation
	Neural Networks Architecture
	The Types of Neural Networks

	Deep Petri Nets (DPNs)
	Definition
	Formal Definition of A Deep Petri Nets
	Transition Firing Mechanism and Dynamic Behavior
	Deep Petri Nets Architecture

	Model-Driven Architecture (MDA)
	Definition
	Basic Concepts of MDA
	Architecture of MDA
	Types of MDA

	Model Transformation
	Types of Model Transformation
	Classification of Model Transformation Approaches

	Graph Transformation
	 Basic Concepts of Graph:
	Graph Transformation Tools

	Triple Graph Grammar (TGG)
	Eclipse Modeling Framework (EMF)
	Atlas Transformation Language (ATL)

	Conclusion

	 Related Works
	Introduction
	Petri Nets in System Modeling
	Neural Networks and Learning-based Models
	Hybrid Models: Integration of Petri Nets and Neural Networks
	Fuzzy Petri Nets
	Neural Petri Nets
	Deep Petri Nets

	Comparative Analysis of Hybrid Petri Net Approaches
	Conclusion

	Proposed Approaches
	Introduction
	The First Approach:
	Meta Model The Petri Net (PN)
	Meta Model The Neural Network (NN)
	First Transformation
	Meta Model The Deep Petri Net (DPN)
	Second Transformation

	The Second Approach:
	Meta Model The Neural Network of Petri Net (NNPN)
	Meta Model The Deep Petri Net (DPN)
	Transformation

	Conclusion

	Case Studies
	Introduction
	First Case Study
	First Approach
	Second Approach

	Second Case Study
	First Approach
	Second Approach

	Conclusion

	General Conclusion
	Conclusion
	Future Works

