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ا٢ॆू׿اء

﴾ ܽݦُىَ ۰َܙفَْ ُ ۰َ֔מَْٝ Ԑّن ᓋَوأ (39)୒َক۰َ ոَڲ े Ԑّू Ԕإ ոَਫ਼ْ੊نِ Ԕ୸ْቤِቘ َۥ ْ ༉َڤ نْ ᓋَوأ ﴿
ۊ٭ٴ؇ت وًأڎ ،ሒᇿ؇٭ይዧا وዝངݠ وا৖৑ۏዛው؇د اࠍ੊ڎ ݆݁ ᄭᄥل ޗި ᄭᄥ༡ر وًأڎ وأب، أم وࢻࣖ؜ިة ඔ൹ৎ৊؇اܳأ رب ݆݁ ّިڣ٭ݑ ًأڎ

ا৵৤ৠݴ ඔ൹اܳފٷ ّأص ۋݱڎت ڢڎ ؇۱ ... มᘟውྡྷོ ৖৑ وො੼؇و৖৑ت

ނଲ୍اً:
আॻ༟ มฆوراۋ ሒᇆݿأ؇د ڢڎ݁ب ݆݁ ሌᇿإ ،ሒᇀدر رڣ٭گ۰ ؇ዛኤد؜ިا ೑಻Ⴄ၍ ݆݁ ሌᇿإ وا๤ཛྷ৕৑ار، اܳأ޺޾ ۋص ม฀ܹڢ ሒᇭ ਵؗݿب ݆݁ ሌᇿإ

ሒᇧأ ... ؇ዛኤݿأ؇د

ሒᇀأ ... وఈః݁ذي ሒᇆިوڢ ݿٷڎي ሌᇿإ ༡ڎود، ఈఃً มฃᆇᅦد ݆݁ ا৙৑ܳگ؇ب، ً؊ᆇᅹܭ اᆙᆊ޶ દઊز اᄳᄟي ሌᇿإ

"Մ៰Ղ؇ً ଩ଐ݁أ "لأگިب، ... ሒᇆިإۊ ،มฆܹ༡ر ሒᇭ ً ؜ިَ؇ Ⴄ၍َިا ݆݁ ،ඔ൹ٺৎ৊ا اܳأگڎ ሌᇿإ ،ሒᇆ؇ۋ٭ ሒᇭ وۏިد۱ܾ َأ۰݄ Մ៰Ղا มฃو۱ٴ ݆݁ ሌᇿإ

راނ؇ ... ม฀ܹڢ وڣݠاނ۰ ሒᇖرو ّިأ݁بَْ ا৙৑ل؇م، ॷख़ळأ۱ڎ ؇݁ ଫଃ༠ ሌᇿإ

༠ߺࠊد" ،ሒᇃ؇݁أ" ... ሒᇀدر وأ྘ཹފ؇ت ᄭᄟިاܳޚڰ رڣ٭گ؇ت اଫଃ༠৙৑ة، ڢٴܭ ؇݁ واࠍ੅ޚިة ሌᇿو৙৑ا اࠍ੅ޚިة ݬڎلگ؇ت ሌᇿإ

ዛኡ؇د" "إ๤ངاء، ... ሒᇆ؇૭૙و݁ޝ ሒᇆ؇ᆇᅦدا ݁ލިاري، رڣ٭گ؇ت اࠍ੊؇݁أ۰، ܾዛኞ มฃڢ؇ًܹٺ ݆݁ أᆇᅹܭ ሌᇿإ

݁ٷ؇ر" , "ዝཇݠة ... ሒᇖرو رڣ٭گ؇ت , ݁ލިاري ሒᇭ ا৙৑ل؇م وأᆇᅹܭ ሒᇿ؇٭ይዧا أݬأص ሒᇃ؇঺঒ނ؇ر ݆݁ ا৵৩ৠ٭ܭ، Մ៰Ղا ؜ިض ሌᇿإ

" ปฃ݁ ؜ިاق ا৙৑ݿٺ؇ذة " มฆڣ๤དྷ݁ اܳأ݄ܭ ۱ڍا ஓ஄৕৑؇م ༡؇ڣݞا ૰૜۠٭أ۳؇ و ؇۳ොຩ؇َݱ ೑಻Ⴄ၍ ݆݁ ሌᇿإ

ᄩᄥًڰݯ ৖৑إ ௧ਤݿ ۊُࡤࡲِ ৖৑و ۏ۳ڎ ቕቆ ؇݁ اᄳᄟي Մ៰Ղ ا৵৥ৠڎ

ჸმۑ



Abstract

The growing complexity of modern systems in fields such as artificial intelligence
and large-scale simulations demands modeling approaches that are both expressive and
formally analyzable. While Petri nets offer a solid foundation for modeling distributed
systems, they fall short in representing adaptive behaviors typical of intelligent systems.

This work introduces two complementary approaches to bridge this gap. The first ex-
tends classical Petri nets into a new formalism called Deep Petri Nets, integrating learning
mechanisms inspired by neural networks. Three metamodels are defined using Eclipse
Modeling Framework (EMF): the first for Petri nets, the second for neural networks, and
the third for Deep Petri Nets, combining structural features of both.

The second approach proposes a unified metamodel, NNPN (Neural Network of Petri
Net), which merges Petri net and neural network elements into a cohesive model, later
transformed into a Deep Petri Net.

Model transformations are achieved using Triple Graph Grammar (TGG) and Atlas
Transformation Language (ATL) rules, ensuring consistency, traceability, and analytical
capability. This dual-method framework supports the modeling of complex systems with
both formal structure and adaptive behavior.

Keywords: Petri Nets, Neural Networks, Deep Petri Nets, Neural Network of Petri Net,
Models Transformation, TGG, EMF and ATL.



Résumé

La complexité croissante des systèmes modernes dans des domaines tels que
l’intelligence artificielle et les simulations à grande échelle exige des approches de mod-
élisation à la fois expressives et formellement analysables. Bien que les réseaux de Petri
offrent une base solide pour la modélisation des systèmes distribués, ils ne permettent pas
de représenter les comportements adaptatifs typiques des systèmes intelligents.

Ce travail introduit deux approches complémentaires pour combler cette lacune. La
première étend les réseaux de Petri classiques à un nouveau formalisme appelé réseaux
de Petri profonds, intégrant des mécanismes d’apprentissage inspirés des réseaux neu-
ronaux. Trois métamodèles sont définis à l’aide du Eclipse Modeling Framework (EMF):
le premier pour les réseaux de Petri, le deuxième pour les réseaux neuronaux et le
troisième pour les réseaux de Petri profonds, combinant les caractéristiques structurelles
des deux.

La deuxième approche propose un métamodèle unifié, NNPN (Réseau de Neurones
de Réseau de Petri), qui fusionne les éléments des réseaux de Petri et des réseaux neu-
ronaux en un modèle cohésif, transformé ensuite en réseau de Petri profond.

Les transformations du modèle sont réalisées à l’aide des règles de la Triple Graph
Grammar (TGG) et de l’Atlas Transformation Language (ATL), ce qui garantit la co-
hérence, la traçabilité et la capacité d’analyse. Ce cadre à double méthode soutient la
modélisation de systèmes complexes avec une structure formelle et un comportement
adaptatif.

Mots clés: Réseaux de Petri, Réseaux de Neurones, Réseaux de Petri Profonds, Réseau
de Neuron de Réseaux de Petri, Transformation des Modèles, TGG, EMF et ATL.



اिऻڪٌۘ

۰༥ڍஓ஁ أݿ؇ܳ٭ص واݿؕ َޚ؇ق আॻ༟ واႤ၍؇௱௯௫ة ሒᇼ؇ݬޚٷ৖৑ا اႤ၍ᄳᄟء ݁ټܭ ৖৑؇෠੼ت ሒᇭ ۰਒ಱڎ੆اࠍ ఋዳዧَޙ۰݄ ا଩ଐৎ৊اࢴࣖة اܳٺأگ٭ڎات ਐಾޚܹص
ஓ஄ټ٭ܭ ሒᇭ ๤ཡّگ ؇ዛኡ؆ڣ ،۰༟ިزৎ৊ا ا৙৑َޙ۰݄ ۰༥ࡺ࢕ࢦڍ ؇ً࿌ިڢ أݿ؇ݿً؇ ଫଐًي ނٴႤၽت ّިڣݠ ྘ྲྀٷ݄؇ اᆙᆊීෂ޶. ይዧٺ༲ܹ٭ܭ ᄭᄥً؇وڢ ل۰ ଫଃّأٴ ّܝިن

اᄳᄟ܋٭۰. ఋዳዧَޙ۰݄ اࡺ࢕ࢦިذۏ٭۰ اܳٺܝ٭ڰ٭۰ اܳފߺࠊভ঒؇ت

ް݄૭ُ૜ ༥ڎࢴࣖة ݬ٭؞۰ ሌᇿإ اఈ႙ၽܳݿ٭ܝ٭۰ ل۰ ଫଐاܳٴ اܳލٴႤၽت لިݿؕ ا৙৑ول اܳڰ۠ިة. ۱ڍه ܳފڎ ඔ൹٭ܹ٭ᆇᅀّ ඔ൹༶ዛኡ اܳأ݄ܭ ۱ڍا لگڎم
إޗ؇ر ً؇ݿٺ༱ڎام أوܳ٭۰ ஓ஁؇ذج ۰ٔఈఃٔ لژ ّأݠ ቕቆ اܳأݱྟ٭۰. اܳލٴႤၽت ݆݁ ݁ފٺ༡ި؇ة اܳٺأ޺޾ آܳ٭؇ت ؇ً෠੼݁ڎ اܳأ݄٭گ۰، ل۰ ଫଐاܳٴ اܳލٴႤၽت
ؕᆇ໶໕ اܳأ݄٭گ۰، ଫଐًي ܳލٴႤၽت واܳټ؇ܳت اܳأݱྟ٭۰، ይዧލٴႤၽت ሒᇃ؇اܳټ ଫଐًي، ܳލٴႤၽت ا৙৑ول :(EMF) Eclipse ۰༥ڍஓ஁ ᆇᅦܭ

.؇݄ዛዀၯၽܳ ا୒ୖ٭ၯၽ٭۰ ا଩ଃৎ৊ات ඔ൹ً

ᄎჼواܳލٴ ଫଐًي ᄎჼނٴ ๤ཛྷ؇؜ٷ ༇ံࣖࢴ واᄳᄟي ଫଐًي)، ᄎჼܳލٴ ؜ݱྟ٭۰ ᄎჼނٴ) NNPN ༡ި݁ڎ، ሒᇿأو ஓ஁ިذج لگଫଐح ሒᇃ؇اܳټ اዛዊܳھ
ᆇᅦ٭گ۰ ଫଐًي ᄎჼނٴ ሌᇿإ ৖৑ۋگً؇ ᄩᄥل ިොູ لࡤࡲ ݁ٺ݄؇ݿ۹, ஓ஁ިذج ሒᇭ اܳأݱྟ٭۰

لݯ݄݆ ؇ᆙᆘ ,(ATL) أޗܹݴ لܭ ިොູ وܳ؞۰ (TGG) ሒᇉఈఃاܳټ ሒᇃ؇اܳٴ٭ ྾ངීෂا ڢިا༟ڎ ً؇ݿٺ༱ڎام اࡺ࢕ࢦިذج لఈఃت ިොູ ොູگ٭ݑ لࡤࡲ
واܳފߺࠊك اᆙᆊීෂ޶ ႟ၽୖ٭୒ا ذات اৎ৊أگڎة ا৙৑َޙ۰݄ ۰༥ڍஓ஁ لگ۰ ޗݠ ሒᆶ؇اܳټٷ ا৕৑ޗ؇ر ۱ڍا ࢴࣖ؜ܾ اܳٺ༲ܹ٭ܹ٭۰. اܳگڎرة و واܳٺྥٴؕ ا૭૜৖৑؇ق

اܳٺܝ٭ࠕࠫ.

اࡺ࢕ࢦ؇ذج، لܭ ިොູ ଫଐًي، ᄎჼܳލٴ ؜ݱྟ٭۰ ᄎჼނٴ اܳأ݄٭گ۰، ଫଐًي ނٴႤၽت , اܳأݱྟ٭۰ اܳލٴႤၽت ଫଐًي، ނٴႤၽت اिऻء׫ոؼמ١: اڤոஈ࿦࿮ت
.ATL و EMF TGG،
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Introduction
Petri nets are a powerful and widely used mathematical formalism for modeling, simulating,

and analyzing systems in which concurrency, synchronization, and sequencing are fundamental.
Introduced by Carl Adam Petri in 1962, they are valued for both their graphical clarity and rigor-
ous theoretical foundation. Their applications span diverse domains, including computer science,
telecommunications, industrial systems, and real-time control [1, 2]. Petri nets remain relevant in
modern contexts such as cyber-physical systems, intelligent manufacturing, and business process
management. [3–5]

In parallel, artificial neural networks (ANNs) have become a cornerstone of artificial intelli-
gence, particularly through advances in deep learning. They excel in pattern recognition, predic-
tion, and classification tasks. However, their internal mechanisms are often opaque, making them
difficult to interpret and analyze formally. [6, 7]

In this work, we propose two hybrid modeling approaches that combine classical Petri nets,
neural networks, and a novel formalism known as Deep Petri Nets (DPNs). This framework lever-
ages the interpretability and formal rigor of Petri nets alongside the adaptive learning capabilities
of neural networks. Deep Petri Nets aim to provide a unified model capable of both learning and
adaptation, while preserving formal structure and analytical strength. [64] Model transformations
are automated using the Triple Graph Grammar (TGG) approach where appropriate, and refined
with ATL rules to ensure consistency, traceability, and flexibility of the hybrid models throughout
the development lifecycle.

Problematic
Despite the widespread use of Petri nets for formally modeling and analyzing concurrent sys-

tems, and the success of neural networks in learning complex patterns and behaviors, a fundamental
disconnect still exists between symbolic modeling techniques and data-driven learning approaches.
Petri nets offer structure, traceability, and formal verification, but lack the ability to learn from data.
Neural networks, while highly adaptive, are opaque and difficult to interpret or analyze formally.
Bridging this gap is essential for designing intelligent systems that are both adaptive and explain-
able. This raises the following challenge: how can we develop a unified modeling approach that
combines the analytical strengths of Petri nets with the learning capabilities of neural networks,
while ensuring traceability, adaptability, and semantic consistency?

Contributions
To realize the proposed framework, we contribute two model-driven transformation approaches:

Approach 1: We define three distinct metamodels using the Eclipse Modeling Framework (EMF):
the first for classical Petri nets, the second for neural networks, and the third for Deep Petri Nets
(DPNs). The DPN metamodel integrates both the structural semantics of Petri nets and the learning
capabilities of neural networks. Transformation rules are implemented to enable the systematic
mapping of model elements between these metamodels, thereby facilitating the automated con-
struction of Deep Petri Nets from heterogeneous models.
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Approach 2: We design a unified intermediate metamodel called the Neural Network of Petri
Net (NNPN), which embeds Petri net semantics directly into neural components. This hybrid
representation serves as a bridge model that is subsequently transformed into a Deep Petri Net.
This approach enables a tighter integration of learning dynamics within a structure that remains
formally analyzable.

Memory Organization
We have organized this memory as follows: We begin with a general introduction that summa-

rizes the content of our work.

• Chapter 1: This chapter introduces the foundational paradigms of our work: Petri Nets
(PNs) for formal system modeling and Neural Networks (NNs) for adaptive learning. Their
integration in Deep Petri Nets (DPNs) combines structural clarity with learning capabili-
ties, enabling intelligent systems that are both explainable and dynamic.We also present key
concepts of model transformation within the Model-Driven Architecture (MDA) framework,
focusing on graph-based techniques such as Triple Graph Grammars (TGGs). These enable
automated and bidirectional synchronization between models, forming the backbone of our
hybrid modeling approach.

• Chapter 2: This chapter provides a comprehensive review of related works, including foun-
dational research and recent developments in the use of Petri Nets, neural networks, and
hybrid models. We analyze various integration strategies such as fuzzy Petri Nets, neural
Petri Nets, and deep Petri Nets. A comparative analysis highlights the strengths and limi-
tations of existing approaches and positions our contribution within the current state of the
art.

• Chapter 3: This chapter presents two complementary transformation-based approaches for
generating Deep Petri Nets (DPNs) from classical Petri Nets. Both methods are implemented
using the Atlas Transformation Language (ATL) and rely on metamodels defined in the
Eclipse Modeling Framework (EMF). The first method involves a two-step transformation
via an intermediate Neural Network model, while the second integrates Petri Net and Neural
Network elements into a unified intermediate metamodel (NNPN). Detailed transformation
rules, metamodels, and implementation processes are discussed.

• Chapter 4: In this chapter, we apply the proposed transformation approaches to two real-
world intelligent systems: a Smart Traffic Management System and an Automated Produc-
tion Workshop. These case studies demonstrate the practical benefits of our methodology for
modeling and simulating complex and dynamic systems.

We end with a general conclusion that highlights its main achievements and outlines possible
future works.
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Introduction
As intelligent systems grow in complexity, combining symbolic modeling with data-driven

learning becomes essential. This chapter introduces Petri Nets (PNs) for formal system model-
ing, Neural Networks (NNs) for adaptive learning, and their integration in Deep Petri Nets (DPNs)
to support both structure and learning.

To enable this integration, we present core principles of model transformation within the Model-
Driven Architecture (MDA) framework. We highlight graph-based techniques, especially Triple
Graph Grammars (TGGs), which offer formal, bidirectional synchronization between source and
target models. This transformation layer is key to generating hybrid models in an automated and
consistent way.

1.1 Petri Nets (PNs)

1.1.1 Definition
A Petri Net is a graphical and mathematical modeling tool used to describe and analyze the

flow of information, resources, or control in concurrent, distributed, asynchronous, or stochastic
systems. Originally introduced by Carl Adam Petri in 1962, it provides a formal framework for
modeling discrete-event dynamic systems. [9].

Formally, a PN is defined as a 4-tuple (P, T, F, W ), where:

• P is a finite set of places.

• T is a finite set of transitions.

• F ⊆ (P × T ) ∪ (T × P ) is the flow relation.

• W : F → N+ is a weight function.

Figure 1.1: Components of Petri Net
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Places and transitions are linked via directed arcs, subject to the following constraints:

• Each arc must connect a place to a transition, or a transition to a place. Connections
between two places or between two transitions are not allowed.

• Every arc carries a positive integer weight. A weight of k indicates k parallel arcs, while an
unlabeled arc is implicitly assigned a weight of 1.

Figure 1.2: Petri Net

Basic Concepts of Petri Nets

In the context of Petri Nets, three core elements define the structure and behavior of a sys-
tem [10]:

• Place: Represents a condition or a state in the modeled system. A place may contain tokens,
and the distribution of tokens over places (called marking) describes the current state of the
system.

• Transition: Represents an event or action that may change the state of the system. A transi-
tion can fire when certain conditions (such as token availability in input places) are met.

• Pre-conditions and Post-conditions (Input and Output Arcs): The arcs connecting places
and transitions define the pre-conditions (input arcs) and post-conditions (output arcs) of
transitions. When a transition fires, it consumes tokens from its input places and produces
tokens in its output places, reflecting a change in the system state.

Marking in Petri Nets

In Petri nets, the marking represents the dynamic state of the system by describing how tokens
are distributed across the places. Formally, a marking is defined as a function M : P → N, where
each place p ∈ P is mapped to a non-negative integer M(p), indicating the number of tokens in
that place [10]. The evolution of the marking over time, caused by the firing of transitions, models
the behavior of the system.

The marking plays a central role in analysis techniques such as reachability, boundedness,
liveness, and invariants, as it determines which transitions are enabled and how the state can evolve
over time [11].

7



Figure 1.3: Marked Petri Net

1.1.2 Categories of Petri Nets
Petri nets can be categorized based on their structural properties and behavioral characteristics.

Below are some common categories:

• State graph : A Petri net unmarked graph is an state graph if in which each transition has
exactly one input place and one output place. [12]

Figure 1.4: State Graph

• Event Graph: A Petri net where each place has exactly one incoming arc and one outgoing
arc. [12]

Figure 1.5: Event Graph
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• Conflict:

– With Conflict: Two or more transitions share the same input place, meaning that the
firing of one transition disables the others.

– Without Conflict: each place is connected to at most one outgoing transition. [1]

(a) With Conflict (b) Without Conflict

Figure 1.6: Comparison of Petri Nets: With and Without Conflict

• Free Choice Net: A Petri net where, whenever two or more transitions share an input place,
that place is their only input. [13]

(a) Free Choice (b) Without Free Choice

Figure 1.7: Comparison of Petri Nets: With and Without Free Choice
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• Simple Petri Net: A simple Petri net is a net in which each transition can be involved in at
most one conflict. [9]

(a) Simple (b) Not Simple

Figure 1.8: Comparison of Petri Nets: Simple and Not Simple

• Pure Petri Net: A pure Petri net is a net in which there is no transition that has an input
place which is also its output place. [1]

(a) Not Pure (b) Pure

Figure 1.9: Comparison of Petri Nets: Pure and Not Pure

• Generalized Petri Net: A Petri net where strictly positive integer weights are associated
with arcs. If an arc (Pi, Tj) has weight K, the transition Tj can fire only if place Pi contains
at least K tokens; firing Tj then removes K tokens from Pi. Similarly, if an arc (Tj, Pi) has
weight K, firing Tj adds K tokens to Pi. When no weight is indicated, it is assumed to be
equal to 1 by default. [14]

10



Figure 1.10: Generalized Petri Net

• Capacity Petri Net: A net where each place has an associated maximum number of tokens
it can hold, known as its capacity. [1]

Figure 1.11: Capacity Petri Net

• Priority Petri Net: A net where transitions are assigned priorities. When multiple transitions
are enabled simultaneously, only those with the highest priority are allowed to fire. [15]

Figure 1.12: Priority Petri Net
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• loop-free Petri Net: A net with no cycles in its underlying graph, meaning it is impossible
to return to the same node (place or transition) by following a directed sequence of arcs. [9]

Figure 1.13: loop-free Petri Net

1.1.3 Petri Nets Properties
There are three fundamental properties of Petri nets.

• Bounded :

– A place Pi is considered bounded for an initial marking M0 if, for every marking
reachable from M0, the number of tokens in Pi remains finite.

– A Petri Net is bounded for an initial marking M0 if all places are bounded for M0.
Specifically, if for every marking M in the set of markings reachable from M0 (de-
noted as M∗

0 ), we have M(Pi) ≤ K, where K is a natural number, then Pi is said
to be K-bounded. If this condition holds for every place, the Petri Net is termed K-
bounded. [12]

Figure 1.14: Bounded Petri Net
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• Liveness:
A Petri net is said to be live if, regardless of the marking reached during its execution,

it is always possible to eventually fire any transition, possibly after a finite number of other
transitions have occurred. [16]

– Quasi-Liveness : Each transition can occur at least once in some firing sequence start-
ing from the initial marking.

(a) (b)

Figure 1.15: (a)Liveness Petri Net (b) Quasi-Liveness Petri Net

• Blocking :
There exists at least one reachable marking from which no transition is enabled, meaning

the system reaches a deadlock. [17]

Figure 1.16: Blocking Petri Net
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1.1.4 The Types of Petri Nets
Various types of Petri nets have been developed to model different kinds of systems and behav-

iors.

• Timed Petri Net (TPN) : is a type of Petri net where each transition is associated with a
time delay, specifying the amount of time that must pass before the transition can fire. The
timing aspect can be either deterministic or stochastic, and it allows the model to represent
real-time behavior, such as the waiting time for events, synchronization, and delays in the
system. [18].

Figure 1.17: Timed Petri Net

• Stochastic Petri Net (SPN) :
is a Petri net in which the firing times of transitions are governed by probabilistic distribu-

tions, typically exponentially distributed. This allows the net to model systems with random
delays between events, such as those found in communication networks, manufacturing sys-
tems, or biological processes. [19].

Figure 1.18: Stochastic Petri Net
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• Colored Petri Net (CPN) :
is a type of Petri net in which tokens have data values (known as colors), and transitions

can operate on tokens according to the data they carry. In CPN, places can contain tokens
of different types, and transitions can modify these tokens by changing their data values
(colors). [20].

Figure 1.19: Colored Petri Net

1.2 Neural Networks (NNs)

1.2.1 Definition
A Neural Network is a computational system inspired by the brain’s neural architecture. It

consists of multiple layers of connected artificial neurons, each transforming input data through
weighted combinations and non-linear activation functions. By iteratively adjusting these weights
during training, the network learns to capture complex patterns in data, enabling it to perform tasks
such as classification, regression, and pattern recognition. [21]

1.2.2 Mathematical Representation
Given inputs x1, x2, . . . , xn, corresponding weights w1, w2, . . . , wn, and a bias b, the neuron

computes a weighted sum:

y = f(x) = w0 +
D∑

d=1
wdxd (1.1)

w0 represents the intercept term, which corresponds to the weight of a hypothetical input
x0 = +1. [22]
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Figure 1.20: Neural Network

The Output Error:

The output error produced by a training example (xi, yi), i ∈ {1, . . . , N} is defined as follows:
[22]

Ei(w) = 1
2

(yi − f(xi))2 (1.2)

1.2.3 Neural Networks Architecture
A Neural Network Architecture refers to the structure or design of a neural network, describing

the number of layers, the types of layers, and how the neurons (or nodes) in these layers are con-
nected. The architecture determines the overall functionality and capacity of the network to learn
and generalize from the data. [7]

Figure 1.21: Neural Network Architecture
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• Input Layer : the layer that receives the input features.

• Hidden Layer : These are intermediate layers where data is processed using various activa-
tion functions.

• Output Layer : The final layer that produces the network’s predictions or classifications.

• Connections (Weights) : Each connection between neurons has a weight that is learned
during training.

• Activation Functions : Nonlinear functions applied to the weighted sum of inputs at each
neuron, introducing nonlinearity to the model Common activation functions include:

– ReLU (Rectified Linear Unit ): The ReLU function is defined as :

f(x) = max(0, x)

x, if x > 0
0, otherwise

Figure 1.22: ReLU Activation Function

– Sigmoid: The Sigmoid function is defined as :

f(x) = 1
1 + e−x

Figure 1.23: Sigmoid Activation Function
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– Tanh (Hyperbolic Tangent):

f(x) = ex − e−x

ex + e−x

Figure 1.24: Tanh Activation Function

1.2.4 The Types of Neural Networks
Neural networks come in various architectures, each tailored to specific types of data and learn-

ing tasks. Below are some of the most common types:

• Feedforward Neural Networks (FNNs) The simplest form of neural networks where
data flows in one direction from input to output without any cycles or loops. [23]

Figure 1.25: Feedforward Neural Networks

• Convolutional Neural Networks (CNNs) CNNs are specialized neural networks de-
signed to process data with a grid like topology, such as images. They use convolutional
layers to detect patterns and spatial hierarchies. [24]

18



Figure 1.26: Convolutional Neural Networks

• Recurrent Neural Networks (RNNs) RNNs are neural networks that include loops,
allowing information to persist across steps of input sequences. They are particularly suited
for time-series data and natural language processing. [25]

Figure 1.27: Recurrent Neural Networks

• Generative Adversarial Networks (GANs) GANs consist of two competing networks:
a generator that creates data and a discriminator that evaluates it. Together, they produce
increasingly realistic synthetic data. [26]

Figure 1.28: Generative Adversarial Networks
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• Graph Neural Networks (GNNs) GNNs are designed to work with graph-structured
data, capturing relationships between nodes and their neighbors. They are used in chemistry,
social networks, and recommendation systems. [27]

Figure 1.29: Graph Neural Networks

Remark. In our work, we employ the use of Feedforward Neural Networks (FNNs) as the under-
lying neural architecture due to their simplicity and effectiveness in modeling static input-output
relationships.

1.3 Deep Petri Nets (DPNs)

1.3.1 Definition
Deep Petri Nets (DPNs) are an advanced extension of classical Petri nets that integrate learning

mechanisms inspired by neural networks, while maintaining the formal structure and analytical
power of traditional Petri nets. Introduced and formalized in recent works such as Lin et al. [28],
DPNs aim to bridge the gap between symbolic modeling and data-driven machine learning by
embedding layers of processing (akin to deep learning layers) into the Petri net structure.

According to Lin et al. [28], a Deep Petri Net is built on the foundation of High-Level Fuzzy
Petri Nets (HLFPNs) and is designed to perform both supervised and unsupervised learning.

One of the defining features of DPNs is the presence of a supervisory node at the outermost
layer. This node monitors parameter changes, helping track and control the learning process. This
structural transparency enhances explainability, offering a clear advantage over traditional deep
neural networks [29].

1.3.2 Formal Definition of A Deep Petri Nets
A Deep Petri Net (DPN) is defined as a 7-tuple:

DPN = (P, T, F, W, M0, N, Φ)
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Where:

P : A finite set of places.

T : A finite set of transitions, such that P ∩ T = ∅.

F : A set of directed arcs (flow relation), where F ⊆ (P × T ) ∪ (T × P ).

W : A weight function W : F → N+ assigning a positive integer weight to each arc.

M0: The initial marking M0 : P → R≥0, which may be real-valued (enabling fuzzy or
continuous token semantics).

N : A set of neural networks N = {Nt | t ∈ T}, each Nt associated with a transition t.

Φ: A function Φ : T → R that assigns a firing threshold or condition to each transition
. [31]

1.3.3 Transition Firing Mechanism and Dynamic Behavior
The firing of a transition in a Deep Petri Net (DPN) involves two key computations: the activa-

tion output and the marking update. [30]

• Activation Output ϕ(t): The activation output controls how strongly a transition fires.

ϕ(t) = At

 ∑
p∈•t

W (p, t) · M(p) + σ(t)


Where:

– At(·): The activation function applied to transition t, such as ReLU, sigmoid, or tanh.

– •t: The set of all input places of transition t .

– W (p, t): The weight of the arc from place p to transition t.

– M(p): The current marking of place p.

– σ(t): The bias term associated with transition t.

• Marking Update M ′(p) : Once a transition t fires with activation output ϕ(t), the new
marking M ′(p) for each place p is updated as follows:

M ′(p) = M(p) + W (t, p) · ϕ(t) − W (p, t)

Where:

– M ′(p): The updated marking of place p after transition t fires.

– M(p): The current marking in place p before the transition fires.

– W (t, p): The weight of the arc from transition t to place p .

– ϕ(t): The activation output of transition t..

– W (p, t): The weight of the arc from place p to transition t .
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1.3.4 Deep Petri Nets Architecture

Figure 1.30: Deep Petri Net Architecture

Components of Deep Petri Net

• Places: Represent input variables or observed features.

• Transition: Embed neural networks to compute activation/decisions.

• Rings:

– Outer Ring: Contains initial Places with tokens. These places have no incoming arcs.

– Intermediate Ring: Contains Transitions that process tokens. Represents activation
functions.

– Core Ring: Contains final Places (those with no outgoing arcs). Represents the final
results of the DPN execution.

• Supervisor: An external place with an arrow coming from the Core it may represent a global
output, a controller, or a supervisory function. [31]
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1.4 Model-Driven Architecture (MDA)

1.4.1 Definition
Model-Driven Architecture (MDA) is a software design approach defined by the Object Man-

agement Group (OMG) that promotes the use of models as the primary artifacts in the software
development process. MDA separates the specification of system functionality from the specifica-
tion of the implementation on a specific platform. [32]

Figure 1.31: Model-Driven Architecture

1.4.2 Basic Concepts of MDA
• System: A system is a set of interrelated components working together toward a common

goal. [33]

• Model: A model is a simplified representation of a system built to understand, analyze, or
predict its behavior. [34]

• Metamodel: A metamodel defines the abstract syntax and semantic rules of a modeling
language. It describes what elements can appear in a model and how they relate. [35]

• Meta-metamodel: A meta-metamodel defines the language used to build metamodels. It for-
malizes the most abstract modeling constructs and enables the definition of domain-specific
modeling languages. [36]
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Figure 1.32: Relationship between system, model and meta-model

1.4.3 Architecture of MDA
Model-Driven Architecture (MDA) relies on a four-layer meta-modeling architecture, which

provides a formal foundation for defining and managing models and their relationships.

Figure 1.33: Architecture of MDA
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The four layers are as follows [37]:

• M0 Layer (Instance Layer): This Layer corresponds to the real world. It includes the actual
user data and real-world entities, which are instances of the models defined at the M1 Layer.

• M1 Layer (Model Layer): This Layer consists of information models that describe the
data and behavior of real-world systems represented in M0. These models are instances of
metamodels defined at the M2 Layer.

• M2 Layer (Metamodel Layer): This Layer defines the modeling languages and the gram-
mar used to construct M1 models. Metamodels are instances of the meta-metamodel defined
at M3.

• M3 Layer (Meta-metamodel Layer): This Layer consists of a single entity: the Meta-
Object Facility (MOF). MOF defines the structure of metamodels, and provides mechanisms
to extend or modify them. It is self-descriptive, meaning it can define its own structure.

1.4.4 Types of MDA
• CIM: The Computation Independent Model (CIM) corresponds to domain or business mod-

els that are entirely independent of any technical implementation. It captures the users’ re-
quirements using the terminology and concepts familiar to domain experts and practitioners.

• PIM: The Platform Independent Model (PIM) corresponds to the specification of the busi-
ness logic of an application. It results from a software analysis aimed at satisfying business
requirements without considering any specific implementation technology.

• PSM: The Platform Specific Model (PSM) corresponds to the specification of an application
after it has been mapped onto a specific technological platform. It incorporates platform-
specific details required for implementation. [38]

Figure 1.34: Types of MDA
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1.5 Model Transformation
Model transformation is a fundamental aspect of Model-Driven Engineering (MDE). It consists

of systematically converting a source model (Ma) into a target model (Mb) to make models exe-
cutable or usable in downstream processes. This transformation can be endogenous or exogenous.
Such transformations are essential for achieving objectives like code generation, model refactoring,
and technology migration. [39]

Figure 1.35: Model Transformation

1.5.1 Types of Model Transformation
• Endogenous Transformation: Both the source and target models conform to the same meta-

model. [40]

• Exogenous Transformation: The source and target models conform to different metamod-
els. [40]

• Horizontal Transformation: The transformation occurs between models at the same level
of abstraction. [41]

• Vertical Transformation: The transformation occurs between models at different levels of
abstraction, typically refining a high-level model into a more detailed one. [41]
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Figure 1.36: Types of model transformation

1.5.2 Classification of Model Transformation Approaches
Based on the classification, model transformations are typically divided into two main cate-

gories:

• Model-to-Model Transformation (M2M):
Refers to the process of automatically converting a source model into a target model, both of
which conform to metamodels. It enables abstraction changes, model refinement, or transi-
tions between design phases.

The techniques for transformations of this type can be classified into five categories [43]:

– Direct manipulation approaches.

– Relational approaches.

– Hybrid approaches.

– Graph transformation-based approaches.

– Structure-driven approaches.

• Model-to-Code Transformation (M2C):
Refers to the automatic generation of executable source code or configuration files from

high-level models. This step bridges the gap between abstract design and implementation.

In the model-to-code category, we distinguish between: [42]

– Visitor-Based Approaches:
These approaches traverse the model structure programmatically using the visitor

design pattern. Custom code is written to visit each element in the model and generate
the corresponding textual representation. Although flexible and powerful, visitor-based
transformations require more effort and are typically harder to maintain.
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– Template-Based Approaches:
These approaches use predefined templates that define how model elements should

be rendered into code. Tools like Xpand, Acceleo, and Xtend follow this paradigm.
Template-based transformations are more readable, easier to maintain, and better suited
for non-programmers or domain experts who wish to define generation rules declara-
tively.

Remark. In our work, we adopt a Model-to-Model (M2M) transformation approach to systemati-
cally convert models defined in one metamodel into corresponding models in another metamodel.

1.6 Graph Transformation
To understand graph transformation, we’ll first go over the basics of graphs.

1.6.1 Basic Concepts of Graph:
A graph is a fundamental mathematical structure used to represent relationships between ob-

jects.
It is defined as a pair : [44]

G = (N, A)

where:

• N is a finite set of nodes representing the objects.

• A is a set of arcs representing the relationships between pairs of nodes.

There are two types of graphs: undirected graphs (where nodes are connected by edges) , and
directed graphs (where nodes are connected by arcs, which are edges with a direction).

Figure 1.37: (a) undirected graph (b) directed graph
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1.6.2 Graph Transformation Tools
There are several graph transformation tools such as: the Attributed Graph Grammar System

(AGG), Triple Graph Grammar (TGG), A Tool for Multi-formalism and Meta-Modelling (AToMş),
A Tool for Multi-Paradigm Modeling (AToMPM), and Henshin. [44]

In our work, we use " TGG " for its distinctive advantages: [45]

• Bidirectional Transformations: TGGs support both forward and backward transformations,
enabling synchronization in both directions between source and target models.

• Declarative and Rule-Based: Transformations are specified through rules that declaratively
define correspondences between models, making them easier to manage and maintain.

• Automatic Generation of Synchronization Code: From TGG rules, it is possible to auto-
matically generate transformation engines that ensure consistency and support model syn-
chronization.

1.7 Triple Graph Grammar (TGG)
Triple Graph Grammar (TGG) is a formal framework used in model-driven engineering to spec-

ify and manage bidirectional model transformations. It defines a set of correspondence rules that
relate elements of a source model, a target model, and an intermediate correspondence model.
TGGs enable the automatic synchronization and consistency maintenance between models, ensur-
ing that changes in one model are reflected in the other. This makes TGG particularly suitable for
round-trip engineering and model integration tasks. [46]

In our work, we use Eclipse Modeling Framework (EMF) to define th metamodels ,and Atlas
Transformation Language (ATL) for the model to model transformation.

1.7.1 Eclipse Modeling Framework (EMF)
The EMF is a modeling framework and code generation facility provided by the Eclipse Foun-

dation. It enables developers to define, manipulate, and generate structured data models in a model-
driven engineering (MDE) context.

At its core, EMF allows users to define metamodels using a modeling language called Ecore,
which is a subset of the OMG’s Meta Object Facility (MOF) standard. These metamodels specify
the structure of data in terms of: classes , attributes, references and inheritance. [47]

Once a metamodel is defined, EMF can automatically generate Java code that includes:

• Java interfaces and implementation classes for the model elements

• A factory class to instantiate the model

• A resource and serialization infrastructure (based on XML/XMI).
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(a) EMF Project (b) Structure of the EMF

(c) EMF Editor

Figure 1.38: Presentation of the EMF Tool

1.7.2 Atlas Transformation Language (ATL)
Developed by the Atlas group at INRIA, ATL is specifically designed for Model-Driven Engi-

neering (MDE) and enables model-to-model (M2M) transformations. ATL provides a way to define
how elements from a source model are mapped and transformed into elements of a target model,
both of which are typically defined using Ecore metamodels in the Eclipse Modeling Framework
(EMF).

ATL supports both declarative and imperative paradigms:

• Declarative rules: Describe what elements should be matched and how they should be trans-
formed.

• Imperative sections: Called helpers and called rules, they allow more control for complex
logic that cannot be expressed purely declaratively. [49]
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(a) Ecore File (b) PN Metamodel

(c) XMI File (d) ATL File

Figure 1.39: Presentation of the ATL tool

Conclusion
This chapter presented the integration of Petri Nets and neural networks through Deep Petri Nets

(DPNs), combining formal modeling with adaptive learning. We also introduced key model trans-
formation concepts within the Model-Driven Architecture (MDA), highlighting the use of Triple
Graph Grammars (TGGs), EMF, and ATL to automate and synchronize hybrid model generation.
These foundations enable the development of intelligent systems that are both structured and adap-
tive.
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Chapter2
Related Works



Introduction
In this chapter, we review existing works related to the modeling and simulation of complex

systems using Petri Nets, neural networks, and hybrid models. We also discuss model transforma-
tion approaches that are relevant to our methodology. This review allows us to identify research
gaps and position our contribution within the state of the art.

2.1 Petri Nets in System Modeling
Petri Nets are a well-established formalism for modeling and analyzing discrete event systems,

especially those characterized by concurrency, synchronization, and resource sharing. [57]
Over the decades, Petri Nets have been widely applied in various domains such as workflow

management systems, distributed computing, manufacturing systems, communication protocols,
and biological systems modeling [?, 1]. Their ability to capture both control flow and data flow
makes them particularly suitable for systems that involve parallelism and synchronization.

Many extensions have been developed to enhance their expressiveness, including Colored Petri
Nets (CPNs) [58], which allow tokens to carry data; Timed Petri Nets, which model temporal
behavior; and Stochastic Petri Nets [59], which incorporate probabilistic aspects. These variants
further broaden the applicability of Petri Nets in real-world systems that require richer semantic
modeling.

The strength of Petri Nets lies in their formal analysis capabilities, including reachability, dead-
lock detection, liveness, and boundedness [1]. These properties make them valuable not only for
system design but also for formal verification and validation.

Despite their robustness in structure and behavior representation, classical Petri Nets face lim-
itations when applied to systems that require learning, adaptation, or handling uncertain and fuzzy
information. These challenges have led to research efforts focused on combining Petri Nets with
artificial intelligence techniques, especially neural networks, to create hybrid intelligent modelsan
area discussed in the following sections.

2.2 Neural Networks and Learning-based Models
With the rise of computational power and large datasets, deep learning has emerged as a pow-

erful subfield of machine learning. Deep Neural Networks (DNNs), particularly architectures like
Convolutional Neural Networks (CNNs) [60] and Recurrent Neural Networks (RNNs) [61], have
achieved remarkable success in fields such as image recognition, natural language processing, and
autonomous systems.

Deep learning models are able to automatically extract hierarchical representations from data,
which makes them highly effective in handling unstructured and high-dimensional information.
However, these models are often seen as "black-box" systems due to their lack of transparency and
interpretability [62].

Despite their impressive performance, neural networks face challenges when used in applica-
tions that require formal guarantees, logical reasoning, or interpretability. This has led to increasing
interest in combining neural networks with symbolic models such as Petri Nets, aiming to leverage
the strengths of both paradigms.
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2.3 Hybrid Models: Integration of Petri Nets and Neural Net-
works

Given the limitations of both classical Petri Nets in learning and adaptation, and neural networks
in explainability and formal verification, hybrid models have emerged to leverage the strengths of
both paradigms. These models aim to combine the structured, formal nature of Petri Nets with the
data-driven, adaptive capabilities of neural networks, forming a new class of intelligent systems
suitable for modeling complex and dynamic behaviors.

2.3.1 Fuzzy Petri Nets
Fuzzy Petri Nets (FPNs) extend classical Petri Nets by integrating fuzzy logic to deal with

imprecision and uncertainty. In these models, transitions are associated with fuzzy rules, and tokens
can carry fuzzy values, allowing for approximate reasoning [63]. FPNs have been widely used in
expert systems, risk analysis, and decision support systems.

More recently, researchers have proposed combining fuzzy logic with neural networks within
the Petri Net framework. For example, Liu et al. [64] introduced the Deep Fuzzy Petri Net (DFPN),
a hybrid framework that enables explainable decision-making by integrating fuzzy rule bases with
deep learning mechanisms.

2.3.2 Neural Petri Nets
Neural Petri Nets (NPNs) are models in which the structure of the Petri Net is embedded with

neural components, such as weights and activation functions. The flow of tokens can be influ-
enced by neural computations, enabling the Petri Net to adapt its behavior based on learning pro-
cesses [65]. These models are particularly suited for applications in dynamic environments and
real-time decision systems.

2.3.3 Deep Petri Nets
Deep Petri Nets (DPNs) represent a more recent and advanced form of integration, where deep

learning models are embedded into Petri Net structures.

DPNs have been applied to various domains including industrial automation, intelligent moni-
toring systems, and autonomous decision-making. Their dual nature offers a promising path toward
building systems that are both formally verifiable and capable of adaptive learning.
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2.4 Comparative Analysis of Hybrid Petri Net Approaches
To highlight the effectiveness of our proposed approaches, we present a comparative analysis

with recent hybrid models that integrate Petri nets and learning-based techniques. The table below
summarizes various methods in terms of their integration strategies, main features, and limitations.
This comparison underlines how our work offers a more structured, automated, and traceable solu-
tion.

Approach Integration
Method

Main Features Limitations / Remarks

Liu et al. (Deep
Fuzzy Petri
Nets) [50]

Fuzzy Logic +
Deep Learning

Captures un-
certainty and
non-linear behav-
ior; interpretable

Requires expert-defined
rules and parameters

Zhao et al.
(Fuzzy Petri
Nets) [51]

Fuzzy weights
+ Probabilistic
transitions

Better handles
imprecision in
dynamic environ-
ments

Limited automation and
traceability

Wang and Zhao
(Expert Sys-
tems) [52]

Fuzzy Petri Net
with adaptive
learning

Supports dy-
namic rule
evaluation and
real-time deci-
sions

Focused on expert sys-
tems; lacks structural au-
tomation

Kordon et al.
(MDE with Petri
+ ML) [53]

Metamodeling +
MDE integration

Formal structure
using MDE;
structural model-
ing with AI

Integration complexity;
limited to structure

Zhang et al.
(Deep Reinforce-
ment PN) [54]

RL agents within
Petri transitions

Combines learn-
ing and Petri for
autonomous sys-
tems

Less focus on formal
traceability and reuse

Yin et al. (PN-
based NN inter-
pretation) [55]

PN transitions
mimic neuron
activations

Improves ex-
plainability in
deep models

Targets interpretation, not
transformation

Zhao et al. (DRL
for schedul-
ing) [56]

DRL within PN
structure

Real-time op-
timization in
manufacturing
systems

Domain-specific, limited
reusability

Our Approaches Metamodeling +
ATL + TGG (two
approaches)

Automatic trans-
formation; clear
modular struc-
ture; traceability;
formal verifica-
tion support

More complex setup; re-
quires metamodel exper-
tise

Table 2.1: Comparative Analysis of Our Approaches
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As shown in Table 2.1, several hybrid approaches have explored the integration of Petri nets
with fuzzy logic, machine learning, or deep reinforcement learning. For instance, works like Liu
et al. [50] and Zhao et al. [51] emphasize handling uncertainty and non-linear behaviors through
fuzzy rules and probabilistic transitions. However, these models often depend on manually defined
parameters and lack formal traceability.

Other approaches such as those by Kordon et al. [53] and Zhang et al. [54] attempt to integrate
learning mechanisms within Petri Net structures using MDE or reinforcement learning techniques.
While they offer more automation and adaptive behavior, they are often limited in reusability or
lack a standardized transformation process.

Our approach distinguishes itself by adopting a model-driven engineering (MDE) strategy, us-
ing ATL and TGG to ensure a formal and automated transformation from classical Petri Nets to
Deep Petri Nets. It ensures structural clarity, traceability, and formal verification supportadvantages
not fully addressed in the compared models. Although our setup requires expertise in metamodel-
ing, it provides a reusable and extensible framework applicable across domains.

2.5 Conclusion
This chapter reviewed foundational and recent works on Petri Nets, neural networks, and their

hybridization. We discussed the strengths and limitations of symbolic and subsymbolic models,
as well as attempts to integrate them using fuzzy logic, neural components, and deep learning
techniques.

While previous studies provide valuable insights and technical contributions, they often lack
generality, traceability, or formal integration methodologies. In response to these limitations, our
work proposes a model-driven transformation approach based on ATL and EMF to bridge the gap
between symbolic Petri Nets and adaptive neural architectures.

The next chapter presents our proposed framework and transformation strategies in detail.
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Introduction
This chapter introduces two model transformation approaches for converting a classical Petri

Net into a Deep Petri Net (DPN). The main objective is to combine the formal semantics of Petri
Nets with the adaptive learning capabilities of neural networks, enabling more advanced modeling
and simulation of complex systems. These transformations are implemented using the Atlas Trans-
formation Language (ATL) and are based on well-defined metamodels within the Eclipse Modeling
Framework (EMF).

The first approach follows a two-step process: initially, the Petri Net is transformed into a
Neural Network model, which serves as an intermediate representation. This intermediate model
is then further transformed into a Deep Petri Net. The second approach involves integrating ele-
ments of the Petri Net and the Neural Network directly into a unified model, which is subsequently
transformed into a Deep Petri Net.

This chapter also details the metamodels used, the transformation rules, and the ATL imple-
mentation of each step, demonstrating the feasibility and effectiveness of transitioning from formal
models to intelligent, learning-capable systems.

3.1 The First Approach:
In this approach, we first transform the Petri Net model into a Neural Network model. This

initial transformation aims to reinterpret the structural and behavioral elements of the Petri Net in
terms of neural components. Once the resulting is obtained, it is then transformed into a Deep Petri
Net model.

Figure 3.1: Architecture of First Approach
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3.1.1 Meta Model The Petri Net (PN)

Figure 3.2: Meta Model of PN

The metamodel is manually created using the EMF graphical editor. Saving the model auto-
matically generates the .ecore file.

Figure 3.3: PetriNet.ecore Elements
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The provided metamodel defines the structure of a Petri Net. It outlines the main components
and the relationships between them

• Class PetriNet:
This is the main container class representing an entire Petri Net model. It includes:

– A name attribute ( PN).

– A collection of Node elements.

– A collection of Arc elements.

• Abstract Class Node:
This is a general superclass for all elements that can appear in a Petri Net. It has:

– A name attribute of type EString.

– Two concrete subclasses: Place and Transition.

• Class Place (subclass of Node):
Represents a location capable of holding tokens. It contains:

– A tokens attribute of type EInt.

• Class Transition (subclass of Node):
Represents an event or activity that may occur, changing the state of the Petri Net by
moving tokens between places.

• Class Arc:
Represents a directed connection between nodes, describing the flow of tokens. Each Arc
includes:

– A weight attribute (type EInt) to define the number of tokens transferred.

– An association with a source node.

– An association with a target node.

Relationships:

• An Arc always has a source and a target node.

• A Node can have one or more outgoing and incoming Arcs.
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3.1.2 Meta Model The Neural Network (NN)

Figure 3.4: Meta Model of NN

Figure 3.5: NeuralNetwork.ecore Elements
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This metamodel represents the structural definition of a Neural Network .

• Class NeuralNetwork:
This is the main container class that represents an entire neural network model. It includes:

– A name attribute of type EString, used to identify the network.

– A collection of Layer elements.

– A collection of Arc elements.

• Class Layer:
Represents a level in the neural network ( input layer, hidden layers, output layer). Each
Layer contains:

– A name attribute of type EString.

– A collection of Neuron elements

• Class Neuron:
Each Neuron has:

– A name attribute of type EString.

– A content attribute of type EString, which may represent internal data such as
the activation function.

• Class Connection:
Represents a directed link between neurons that facilitates the flow of information. Each
Connection includes:

– A weight attribute of type EInt, representing the strength of the connection.

– A source neuron.

– A target neuron .

Relationships:

• Each Neuron can have one or more incoming and outgoing Connections.

• Connections link neurons across layers or within the same layer, depending on the net-
work topology.
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3.1.3 First Transformation
Once the metamodels are defined, we create the ATL files to specify the transformation rules .

Figure 3.6: ATL Project

The ATL (Atlas Transformation Language) code shown in Figure 3.7 defines the transfor-
mation rules for converting a Petri Net model into a Neural Network model.

(a) (b)

Figure 3.7: ATL transformation rules from Petri Net to Neural Network

Description of the ATL Rules:

• Rule 1: PetrinetToNeuralnetwork
This rule transforms the entire Petri Net into a Neural Network . It simply copies the name
attribute from the source model to the target model.
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• Rule 2: PlaceToNeuron
This rule converts each Place in the Petri Net into a Neuron. The neuron’s name is set to
the name of the place, and its content is initialized with the token count. The neuron is then
assigned to a specific type of layer based on its arc connections:

– No incoming arcs → assigned to the InputLayer
– Both incoming and outgoing arcs → assigned to the HiddenLayer
– Only incoming arcs → assigned to the OutputLayer

• Rule 3: TransitionToNeuron
This rule transforms a Transition into a Neuron. The neuron’s content is fixed as
"Function" to represent processing logic, and it is always assigned to the HiddenLayer.

• Rule 4: ArcToConnection
This rule transforms each Arc in the Petri Net into a Connection in the neural network.
It preserves the weight of the arc and maps the source and target elements directly to the
corresponding neurons.

Remark. The outcome of the transformation from the Petri net to the neural network model pro-
vides strong support for the validity of the metamodel used in "The Second Approach", known as
the Neural Network of Petri Net (NNPN). This intermediate metamodel effectively captures and
unifies the structural and behavioral characteristics of both classical Petri nets and neural networks.
By analyzing the transformation results, we observe clear alignment between elements of the two
original formalisms, which demonstrates that NNPN can serve as a coherent and consistent foun-
dation for integrating learning capabilities within a formal Petri net framework.

3.1.4 Meta Model The Deep Petri Net (DPN)

Figure 3.8: Meta Model of DPN
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Figure 3.9: DeepPetriNet.ecore Elements

This metamodel defines the structure of a Deep Petri Net, an advanced formalism that integrates
Petri Nets with layered

• Class DeepPN:
The central class representing a Deep Petri Net. It includes:

– A name attribute of type EString.

– A collection of Ring elements.

– A collection of Arc elements.

• Class Ring:
Each Ring represents a structural layer in the DeepPN. It contains:

– A name attribute of type EString.

– A collection of Node elements ( Place or Transition).
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• Class Node (abstract):
An abstract superclass representing elements of the net. Each Node has:

– A name attribute of type EString.
– One or more outgoing arcs (out).
– One or more incoming arcs (in).

• Class Place (inherits from Node):
Represents a state or condition within the system. It includes:

– A token attribute of type EInt.

• Class Transition (inherits from Node):
Represents an event or action.

• Class Arc:
Models the connection between two Nodes. It includes:

– A weight attribute of type EInt, indicating the number of tokens involved.
– A src (source node) and dest (target node) reference.

3.1.5 Second Transformation
Following the initial transformation -from a Petri Net to a Neural Network- , the resulting model

is then used as input for a subsequent transformation into a Deep Petri Net.

(a) (b)

Figure 3.10: ATL transformation rules from The resulting to Deep Petri Net

Description of the ATL Rules:

• Rule 1: NeuralNetwork2DeepPN
This rule transforms the entire NeuralNetwork into a DeepPN. The name attribute is
directly copied from the source model.
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• Rule 2: Neuron2Place
This rule converts a Neuron into a Place only if the neuron is not a function . It transfers:

– the neuron’s name and content to the Place,

– classifies the resulting Place into an Ring:

* No incoming connections → assigned to External,

* No outgoing connections → assigned to Core,

* Both input and output connections → assigned to Intermediate.

• Rule 3: Neuron2Transition
This rule transforms a Neuron into a Transition and placed in the Intermediate if
the following conditions are met:

– It has both incoming and outgoing connections,

– It represents a function,

• Rule 4: Connection2Arc
This rule converts a Connection from the neural network into an Arc in the Deep Petri
Net. The transformation includes:

– copying the weight as poids,

– and mapping the source and target neurons to their corresponding nodes in the
DPN.

3.2 The Second Approach:
This approach involves integrating the Petri Net and Neural Network into a single model, which

is then transformed into a Deep Petri Net.

Figure 3.11: Architecture of Second Approach
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3.2.1 Meta Model The Neural Network of Petri Net (NNPN)
This metamodel defines a unified structure that integrates elements of both Petri nets and neu-ral

networks to support the modeling of systems with adaptive and analytical capabilities.

Figure 3.12: Meta Model of NNPN

Figure 3.13: NNPN.ecore Elements
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It is composed of the following core components:

• Class NNPN:
The root element of the model. It includes:

– A name attribute of type EString.

– A collection of Layers elements.

– A collection of Connexion elements.

• Class Layers:
Represents a layer in the neural network structure. It includes:

– A name attribute of type EString.

– A collection of Neuron elements.

• Class Neuron (abstract):
A generic unit within a layer that can represent either a Place or a Transition. It
includes:

– A name attribute of type EString.

– One or more incoming arcs.

– One or more outgoing arcs.

• Class Place (inherits from Neuron):
Represents a state or condition within the system. It includes:

– A token attribute of type EInt.

• Class Transition (inherits from Neuron):
Represents an event or action.

• Class Connexion:
Represents a weighted link between two neurons (analogous to arcs in Petri nets or synapses
in neural networks). It includes:

– A weight attribute of type EInt.

– References to source and target Neuron.

3.2.2 Meta Model The Deep Petri Net (DPN)
Remark. As for the Deep Petri net model, it corresponds to the one previously described under the
referenced section. "The Meta Model The Deep Petri Net (DPN)".
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3.2.3 Transformation
The ATL code shown in Figure 3.14 defines the transformation rules for converting the Neural

Network of Petri Net (NNPN) model into a Deep Petri Net model.

(a) (b)

Figure 3.14: ATL transformation rules from NNPN to Deep Petri Net

Description of the ATL Rules:

• Rule 1: NNPN2DPN
This rule transforms the root element of the source NNPN model (Neural Network of Petri
Net) into the root element of the target DPN model (Deep Petri Net).

– The name attribute is directly copied from the source model.

• Rule 2: Neuron2Place
This rule converts a neuron of type Place from the NNPN model into a Place in the DPN
model.

– The name and token attributes are transferred.

– A Ring is created and assigned based on the neuron’s connections:

* No incoming connections → External

* No outgoing connections → Core

* Both incoming and outgoing connections → Intermediate

• Rule 3: NeuronT2Transition
This rule transforms a neuron of type Transition into a Transition in the DPN model.

– The name attribute is copied directly.

– The transition is placed into a Ring named "Intermediate".
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• Rule 4: Connection2Arc
This rule converts a connexion element from the NNPN model into an Arc in the DPN
model.

– The weight is copied as poids.

– The source and target references are transferred to the arc.

Conclusion
In this chapter, we have explored two distinct model transformation approaches aimed at bridg-

ing classical Petri Nets with Deep Petri Nets through Model-Driven Engineering techniques. By
utilizing the ATL language and EMF-based metamodels, we demonstrated how formal structures
can be progressively enriched with neural-inspired capabilities. These transformations enable the
transition from static, rule-based models to more dynamic and adaptive systems. Ultimately, this
work highlights the potential of combining formal modeling with machine learning concepts to
support the simulation, analysis, and design of complex systems in a structured and automated
way.
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Case Studies



Introduction
In this chapter, we illustrate the practical application of our model transformation approaches

by conducting two case studies on intelligent systems. These case studies aim to demonstrate how
our methodology enhances the modeling, simulation, and analysis of complex and dynamic behav-
iors. The selected systems a Smart Traffic Management System and an Automated Production
Workshop represent real-world scenarios where intelligent coordination and decision-making are
crucial. Through visual representations, transformation steps, and resulting models, we provide
evidence of the effectiveness and adaptability of our proposed methodology.

4.1 First Case Study
To demonstrate how our transformation process improves the modeling, simulation, and analysis

of complex and dynamic behaviors in intelligent systems, we applied our approaches to a real-world
example: Smart Traffic Management System (STMS) is an intelligent infrastructure designed to
monitor and regulate traffic flow in urban environments.

4.1.1 First Approach
• Transformation From Petri net into Neural Network

In this transformation, We generate an XMI file that encodes the Petri net representation
of the Smart Traffic Management System " Figures 4.1 ".

(a) (b)

Figure 4.1: Smart Traffic Management System modeled as a Petri Net
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Then we apply ATL rules to transform this representation into a neural network model.The
execution of the transformation process is shown in Figure 4.2.

Figure 4.2: Execution of ATL transformation from Petri Net to Neural Network

The resulting Neural Network model is saved in XMI file. Figures 4.3 show the generated
model.

(a) (b)

Figure 4.3: Generated Neural Network model
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• Transformation From The Resulting into Deep petri net In this transformation, the
model generated by the initial transformation is used as input, and ATL rules are applied to
produce the final Deep Petri Net model

(a) (b)

Figure 4.4: Generated Deep Petri Net model

4.1.2 Second Approach
In this approach, We generate an XMI file that encodes the Neural Network of Petri Net(NNPN)

representation of the Smart Traffic Management System.
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(a) (b)

Figure 4.5: Smart Traffic Management System modeled as a NNPN

Then we apply ATL transformation rules to generate the final Deep Petri Net model.

(a) (b)

Figure 4.6: Generated Deep Petri Net model
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4.2 Second Case Study
To demonstrate how our transformation process improves the modeling, simulation, and analysis

of complex and dynamic behaviors in intelligent systems, we applied our approaches to: Automated
Production Workshop ,is a manufacturing scenario that involves coordination between machines,
robots, and a production line.

4.2.1 First Approach

Transformation From Petri Net into Neural Network

For this transformation we generate an XMI file "Figures 4.7" , that encodes the Petri net
representation of the Automated Production Workshop.

Then we apply ATL rules to transform this representation into a neural network model

(a) (b)

Figure 4.7: Automated Production Workshop modeled as a Petri Net

The resulting is saved in the XMI file. Figures 4.8 show the generated model.
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(a) (b)

Figure 4.8: Generated Neural Network model

Transformation From The Resulting into Deep petri net

In this transformation, the model generated by the initial transformation is used as input, and
ATL rules are applied to produce the final Deep Petri Net model.

(a) (b)

Figure 4.9: Generated Deep Petri Net model
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4.2.2 Second Approach
In this approach, We generate an XMI file that encodes the Neural Network of Petri Net (NNPN)

representation of the Automated Production Workshop.

(a) (b)

Figure 4.10: Smart Traffic Management System modeled as a NNPN

Then we apply ATL transformation rules to generate the final Deep Petri Net model.

(a) (b)

Figure 4.11: Generated Deep Petri Net model
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Conclusion
This chapter has demonstrated the feasibility and utility of our approaches through two repre-

sentative case studies Smart Traffic Management System and an Automated Production Workshop
, we validated the capacity of our methodology to bridge Petri nets and neural-based architectures,
resulting in formal, analyzable Deep Petri Nets.
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Conclusion
In this memory, we presented a novel approaches that bridges the gap between symbolic model-

ing and subsymbolic learning by integrating the formal rigor of Petri Nets with the adaptive capabil-
ities of neural networks. This integration led to the formulation of the Deep Petri Net (DPN) model
a hybrid framework capable of representing both structural logic and dynamic learning processes.

Our methodology was structured around two main transformation approaches. The first ap-
proach defines three metamodels: the first for classical Petri Nets, the second for artificial neural
networks, and the third for Deep Petri Nets. These metamodels were developed using the Eclipse
Modeling Framework (EMF), and transformations between them were implemented using the At-
las Transformation Language (ATL). This enabled a step-by-step conversion from symbolic models
to hybrid intelligent systems.

The second approach introduces a unified intermediate metamodel, the Neural Network Petri
Net (NNPN), which directly integrates neural components into the Petri Net structure. This unified
model is subsequently transformed into a Deep Petri Net using ATL rules. The direct embedding
approach simplifies the transformation chain while maintaining consistency and cohesion.

Future Works
Looking ahead, several promising directions can be explored to improve and extend the proposed

framework.
First, enhancing the scalability and performance of the DPN framework is essential. This can

be achieved by optimizing transformation rules and exploring modularization strategies to partition
complex models into smaller, manageable components.

Second, the framework could be extended to support additional learning paradigms such as re-
inforcement learning and unsupervised learning. These capabilities would increase the adaptability
of the system in diverse scenarios.

Finally, improving the explainability of the decision-making processes within Deep Petri Nets
will be crucial, particularly for applications in safety-critical domains such as healthcare, au-
tonomous vehicles, or industrial automation.

In conclusion, the Deep Petri Net framework provides a strong foundation for unifying sym-
bolic reasoning with adaptive learning. Through its dual transformation approaches it opens new
possibilities for the design of intelligent, explainable, and traceable systems. We believe this ap-
proach represents a valuable contribution to the field of neuro-symbolic artificial intelligence and
hybrid system modeling.
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