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Abstract

Abstract

In this thesis, we propose three algorithms to solve the Hub Location Routing
Problem: Simple Local Search, Tabu Search and Neighborhood search with Random
Selection. In this problem, the goal is to select a subset of hubs from a set of candidate
ones, to construct local routes that start and end at the same hub to serve not-hub nodes
and to create an inter-hub route. The objective is to minimize the total transportation
cost, including transportation cost of the local routes and the transportation cost of the
inter-hubs route. Mainly, the proposed algorithms start with an initial random solution
and keep improve it by exploring neighborhood solutions until the stopping criterion is
met. The experiments showed that the three proposed methods obtained promising and
competitive results comparing to the literature.

Key words: Hub Location Routing Problem, Local Search, Tabu Search, Neighborhood

Search, metaheuristic, Hub location problem.
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General introduction

General introduction

Location and routing problems occupy a central place in the field of combinatorial
optimization due to their significant practical relevance in various sectors, including: logistics,
telecommunication, and transportation systems, etc. The optimal selection of facility location
(such as hubs, distribution centres, or logistics platforms) and the design of efficient routing
plans have a direct impact on the operational and economic performance of the considered
networks. Poor hub placement or suboptimal routing may result in high transportation costs,

low customer satisfaction, and inefficient use of resources, etc.

The Hub Location Routing Problem (HLRP) is one of the most complex variants of the Hub
location problem. It involves partitioning the nodes of a graph into local routes, where each
route is associated with a single hub. Each local route starts and ends at its associated hub, while
a separate circular route connects all the selected hubs. This problem requires two levels of
decision-making: (1) selecting the most appropriate set of hubs, which serve as consolidation
and redistribution points for flows between customers, and (2) organizing efficient local routes
around each hub to serve the assigned non-hub nodes. The objective is to minimize the overall

cost of the system, including inter-hub transportation costs, and local routing costs.

This thesis focuses on the study of HLRP and we will propose new efficient methods to solve
it. The approaches we propose include Simple Local Search (SLS), Tabu Search (TS), and
Neighborhood Search with Random Selection (NSRS).

The following of the thesis is structured as: In the first chapter, we present an overview on
the literature of the Hub location problems and the Hub location routing problems. In the second
chapter, we will present famous and most relevant methods and algorithms that are widely used
to solve combinatorial optimization problems. In the third chapter, we will present the
algorithms we propose to solve the HLRP. In the fourth chapter, we will present and analyse
the results obtained by applying our algorithms on a benchmark instances from the literature,
and we will compare the obtained results to the literature ones. Finally, we terminate with a

general conclusion.
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Chapter 01: Hub location problems and Hub

location routing problem

1.1 Introduction

Hub location problems are NP-hard combinatorial optimization problems [1] which have
several applications notably in transportation and logistics. Mainly, the objective in these
problems is to reduce costs of transportation of product(s) from one site to another and
consequently improve the efficiency of the developed system. These problems involve the
strategic placement of hubs, which act as intermediate points for consolidating and routing

flows between origins and destinations.

Hub location problems aim to determine the optimal location of hub facilities and assign non-
hub nodes to them, in order to consolidate flows and minimize overall transportation costs.
They involve key decisions such as the number of hubs to open, their placement in the network,
and how to allocate demand nodes. Different variant exist depending on allocation rules,

capacity constraints, or cost structures.

This chapter presents the hub location problem and its variants, their applications, and their
integration with the routing problems, leading to the Hub Location Routing Problem (HLRP)

and its variants.

1.2 Basic Hub Location Problems (HLP)

The Hub Location Problems (HLP) are considered as variants of the facility location problems
[1]. In HLP, the Hubs serve as intermediate facilities to transport products, providing indirect
connections between the origins and the destinations of requests. In hub systems, products are
transported from the origin to the hub, and then from the hub to the destination either directly
or via another hub. The transportation cost between hubs is discounted with a factor a%, which

reduces the total transportation cost and improves the efficiently of the transportation networks
[11 [2] [3] [22].
Furthermore, hub location problems are classified regarding several characteristics, such as:

the number of hubs, hub capacity, hub location costs, and other factors [1]. In following, we

2
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will present formal and mathematical definitions of basic variants of HLP. Therefore, first, we

define the variables used in these definitions:

P: number of hubs.

hij: the amount of products to be transported from node i to node j

Cij: the unit cost of transferring one unit of product from node i to node j.

a. discount factor for transportation between hubs, with (0 <a < 1).

Z{‘j’” : the flow of products transported from the origin node i to the destination node j via hub

facilities located at nodes k and m.
Ci’j-m . the unit transportation cost between the origin node i, the destination node j, and hub
nodes k and m (in this order i— k — m — j).

Xk: adecision variable that equals 1 if k is hub and 0 otherwise.

1.2.1 Single-Allocation Hub Location Problem (SAHLP)

The Single Allocation Hub Location Problem (SAHLP) is considered as the basic variant in
the Hub Location Problems. In the SAHLP, each non-hub node can be assigned to only one
hub. In addition, the number of hubs to be installed is not fixed and the fixed location cost of a

hub is included in the overall cost of the solution.
Key decisions in SAHLP involves:

e Determining the number of hubs to be used. (P is not fixed).
e Location of hubs: Deciding where in the network the hubs should be located.

e Allocation of non-hub node to hubs: Assigning each non-hub node to a single hub.

The objective of SAHLP is to minimize the total cost including location cost of hubs and
transportation cost [23].

In figure 1, we show an example of the Single-Allocation Hub Location Problem.
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hub
h3

. non_hub
Inter_hubs route

Figure 1:Single-Allocation Hub Location Problem

1.2.2Multiple Allocation p-Hub Median Location problem (MAp-HMLP)

The Multiple Allocation p-Hub Median Location Problem (MAp-HMLP) is an NP-hard
optimization problem where the goal is to determine the best locations to install p hubs in a
given network in order to minimize total transportation costs. Hubs serve as intermediate points
to transfer products from the origins to the destinations. Each non-hub node can be assigned to

one or more hubs.[1]

The mathematical formulation of the MAp-HMLP is as follows [1]:

min >3 N clmhy zkm (1a)
i j k m

s.t
Cl™ = Ci + aCym + Cpyj (1b)
ZXk —p (1)
k
ZZZ{;’" = 1Vi, (1d)
k m
ZM <Xy Vijkm (1e)
ZfM <X,  Vijkm (1)
ZEm =0 Vijkm (19)
X, € {0,1} Vk (1h)
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In this model, the objective function (1a) minimizes the total transportation cost. The
constraints (1b) is the unit transportation cost between start node i, end node j, and hub nodes
k and m (note that this is in order i = k = m — ). The constraints (1c) ensures that exactly p
hubs are selected. The constraints (1d) ensures that each origin—destination pair (i, j) is allocated
to one pair of hub nodes (k, m). Note that the origin—destination pair (i, j) could be allocated to
a single hub facility as indices k and m could be the same. The constraints (1e) and (1f) ensure
that demand from origin node i to destination node j cannot be allocated to a hub pair (k, m)
unless both nodes (k, m) are selected as hub facilities. Finally, the constraints (1g) and (1h)

define the decision variable types.

1.2.3 p-Hub Center Location Problem (p-HCLP)

The p-Hub Center Location Problem consists in determining the optimal locations for p hubs
in a given network and allocating the non-hub nodes to these hubs to minimize the maximum
travel time (or distance) between any origin-destination (o-d) pair. This problem is particularly
important for cases where minimizing travel time is essential, such as express mail services and

emergency services [24] [25]. In figure 2, we show an example of the p-Hub Center Problem.

‘ Ordinal nodes number array: [1,2,3,4,5,6,7,8,9,10

Assign array: [3,3,3,6,6,6,9,6,9,9]
Hub array: [0,0,1,0,0,1,0,0,1,0]

Figure 2:p-Hub Center Problem

1.2.4 Hub Location Problem with Fixed Costs (HLP-FC)

The Hub Location Problem with Fixed Costs is a variant of HLP where a fixed cost is
imposed for assigning non-hub node to a hub. That means, when we assign a non-hub node i to

a hub k, a fixed cost g;, will be considered in addition to the transportation costs [1].

5
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1.2.5 Hub Covering Location Problem (HCLP)

The Hub Covering Location Problem (HCLP) is an extension of well-known Set Covering
Location Problem. The goal in HCLP is to install a set of hubs so that each origin-destination
pair of non-hub nodes is covered by a pair of hubs. A hub can cover a non-hub node if the
distance between them is less than or equals a given maximal distance. For this coverage to be
valid, the transportation cost between nodes - when routed through the selected hubs - must not

exceed a maximum allowable value.[1]

1.3 Applications of hub location problems

Airlines and Airport Industries: The Hub Location Problem is one of the most important
problems applied in the design of the airline networks. For the airlines companies, the goal is
to reduce the number of direct flights and consequently reduce their operating costs. To do, they
try to find the best intermediate points (hubs) for their passengers coming from different sites
(origins). Then, the passengers are transported directly to their destinations (destination)
together [9].

Emergency Services: The Hub Location Problem is effectively applied in the design of
emergency service networks. Service facilities are established as central hubs, connected to
nearby points (spokes) within a hub-and- spoke networks. This structure consolidates
emergency resources optimizes their distribution, and enhances service coverage. Origin-
Destination (O-D) flows converge at central hubs, reducing response times and costs while

improving across network [10].

Telecommunication Networks: In telecommunication network design, the Hub Location
Problem is applied to optimize data routing and infrastructure costs. The goal is to strategically
place hubs (e.g. data centres) to efficiently route traffic-such as data or calls-from access points
(origins) to end users (destinations). By minimizing direct connections between non-hub nodes
and consolidating traffic while ensuring network reliability, scalability, and compliance with
bandwidth or latency constraints [11][12].

Transportation Systems: Transportation systems utilize the Hub Location Problem to
optimize costs and routing across multiple sectors. In freight transport, hubs streamline logistics

operations and delivery routes. Public transport benefits from improved urban traffic planning
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through the efficient placement of hubs. In air transport, capacitated network designs enhance
flight routing, while maritime transport hubs improve port management and container
distribution. Overall, this network model boosts efficiency in logistics, aviation, and shipping
systems [13].

1.4 Routing Problems

Routing Problems are NP-hard combinatorial optimization problems where the goal is to find
the best routes for a fleet of vehicles to serve a set of customers (e.g., while respecting related
constraints such as : (1) vehicle capacity, (2) time windows of the visits, (3)route durations, etc.
These problems are widely used to model and solve real-life problems, such as : a school bus
routing system (SBRP) involves identifying optimal routes to pick up and drop off students,
while minimizing the total travel time and number of buses, taking into account constraints (1),
(2) and (3) (e.g. A study applied by Hong Kong researchers to kindergartens in Hong Kong that
reduced the total travel time of students by 29% compared to current practices) [35][36].
Another example of this problem is waste collection, where municipalities optimize garbage
collection routes to reduce fuel costs and working hours, while respecting truck capacity and
zone access restrictions (e.g. the application of this method in some regions of Eastern Finland
demonstrated significant cost reductions could be achieved compared to existing practices)
[37].

In the following, we will present basic variants of the routing problems: the Traveling
Salesman Problem (TSP) and the Vehicle Routing Problem (VRP). Also, we will present some
variants of the VRP, and their real-world variants.

1.4.1 The Traveling Salesman Problem (TSP)

The Traveling Salesman Problem (TSP) is a well-known and widely studied optimization
problem.[27]. It consists in finding the shortest path that visits all nodes of a given complete
graph exactly once, and this path must begin and end in the same node. In figure 3, we show an

example of the TSP.
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The Shortest Path
Covering All The Nodes

Figure 3 :The Traveling Salesman Problem

Mathematically, TSP can be modelled as [34]:

N N
Min Z Z Cij Xij (Za)
i=0 Jj#i,j=0

Subject to:
N
Z xl-j=1 j=0,....,n (Zb)
i=0,i#j
N
z xl]=1 i=0,...,n (ZC)
j=0,j#i
injs|U|—1 YUcV, 2<|Ul <|V|-2 2d)
ijeUu
x;; € {0,1} ,j=0,...,n (2e)
Here:

N: total number of cities.

V: set of cities, labelled from 0 to n.
Cij: distance from city i to city j
Xjj: is a binary decision variable that indicates whether a path exists from city i to city j. Itis

equal to 1 if the path goes from city i to city j, O otherwise.
8
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Objective function (2a) aims to minimize the total travel cost or distance. The first constraint
(2b) ensures requires that each city i be arrived at from exactly one other city j . Constraint (2c)
ensures that from each city i, exactly one departure is made to another city. Constraint (2d)
(subtour elimination constraints) enforce that there is only a single tour covering all cities, and

not two or more disjointed tours that only collectively cover all cities.

1.4.2 The Vehicle Routing Problem (VRP)

In the Vehicle Routing Problem (VRP), the goal is to construct a set of routes for a fleet of
vehicles to visit and serve a set of sites or customers while minimizing an objective function
mostly represents the operating cost(s) and satisfying the constraints related to the problem. In
the following, we present some variants of the VRP, which are studied in the literature. In figure
4, we show an example of the VRP.

.
-
-
T VRP
-
y . . _‘
£ ]
s =g P Yot
(=) ok
-
L e
-
- 4 .
.
.

Figure 4 :The Vehicle Routing Problem

1.4.3 Variants of Vehicle Routing Problem (VRP)

In the literature, several constraints and assumptions are considered when solving the VRP,
which creates numerous variants of it. In the following, we show the variant of the VRP and

the specific assumptions and/or constraints considered in it.
1. Capacitated VRP (CVRP)
e Each vehicle has a specific maximum capacity.
2. VRP with Time Windows (VRPTW)
e Each customer must be a served in a given time window.
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. VRP with Pickup and Delivery (VRPPD)

e The vehicles picks up goods/products from some locations and deliver them to
other ones. The delivery visits must be planified after picking up the

corresponding products.

Multi-Depot VRP (MDVRP)

e Several depots are available and we can serve a customer by any vehicle that
starts its route from any depot.

Periodic VRP (PVRP)

e The horizon time of the service is decomposed to set of periods, where each

customer might be visited one or several times.

. VRP with Backhauls (VRPB)

e Similar to The VRPPD described above, however in the VRPB the pickup sites

must be visited before the delivery ones.

Dynamic VRP (DVRP)

e Inthe DVRP, one or more element in the problem can be changed, such as : the
requests of customer, the availability of vehicles, etc.

More details on variants of VRP can found in [16] [17] [18] [29] [30] [31].

1.5 Hub location routing problem (HLRP)

1.5.1 Definition of HLRP

The Hub Location Routing Problem (HLRP) is an NP-hard combinatorial optimization

problem, which combines the Hub Location and the Vehicle Routing Problems. It consists in

selecting p hubs from n nodes candidates, and assigning each non-hub node to exactly one hub.

Then a local route is created for each hub, which starts and ends at this hub. Finally, we need

to create another route (hub route) that visits all hubs. The number of hubs is represented by p,

and the maximum capacity of each local route is represented by C and it refers to the maximal

number of nodes that can be inserted in a local route including the hub. The objective is to

minimize the total transportation costs including transportation cost of the local routes and the

10
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cost of the hub route. [19] [20]. In figure 5, we show an example of the solution of Hub location

routing problem.

L huh

h2 . non_hub

__. Inter_hubsroute
Local route

Figure 5:A solution of Hub location routing problem

1.5.2 Variants of HLRP
In the following, we cite three variant of the HLRP:

e Capacitated Single-Allocation Hub Location Routing Problem (CSA-
HLRP)

The Capacitated Single-Allocation Hub Location Routing Problem (CSA-HLRP) is a
variant of the Hub Location Routing Problem (HLRP) where: (1)each non-hub node is
allocated to exactly one selected hub, and (2) the capacity constraint is imposed on both the
hubs and the vehicles[32][33].

e Capacitated Multi-Allocation Hub Location Routing Problem (CMA-
HLRP)

The Capacitated Multi-Allocation Hub Location Routing Problem (CMA-HLRP) is a
variant of the Hub Location Routing Problem (HLRP) where: (1) each non-hub node can
be connected to multiple hubs, allowing flexibility in service allocation, (2) both hubs and
vehicles are subject to capacity constraints, ensuring resource limitations are respected, and

(3) route length constraints are imposed to maintain service quality and efficiency [32].

11
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e Stochastic Single-Allocation Hub Location Routing Problem
(CSAHLRPSD)

The Stochastic Single-Allocation Hub Location Routing Problem (CSAHLRPSD)
extends the HLRP to account for uncertainty in customer demand. In this problem: (1) each
non-hub node is allocated to a single hub and the objective is to determine the hub locations
and vehicle routes under demand variability. (2) Both hub and vehicle capacities are
considered, with the goal of minimizing total operational costs while ensuring service
reliability. This variant is particularly relevant for logistics and express delivery services

operating in dynamic and uncertain environments [21].

1.6 Conclusion

In this chapter, we first highlighted the hub location problem and we showed various of its
basic variants including: Single-Allocation Hub Location Problem, p-hub median Location
Problem, p-hub Center Location Problem, Hub location Problem with Fixed Costs and Hub
Covering Location Problem. After that, we explored some routing problems, including the
Traveling Salesman Problem (TSP), the Vehicle Routing Problem (VRP), and seven variants
of the VRP. Finally, we presented and defined the Hub Location Routing Problem (HLRP) and
three of its variants. In the next chapter, we will present the methods and the algorithms used

to solve NP-hard optimization problems including the problems discussed in this chapter.
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Chapter 2: Methods and algorithms to solve

optimization problems

2.1 Introduction:

Combinatorial optimization problems aim to find the best solution from a finite set of
solutions while satisfying the defined constraints. To do, two main categories of methods are
used: exact methods, which guarantee an optimal solution but they are useful only for small
problems due to their computational time, and approximation methods, which provide high-
quality solutions in a reasonable CPU time, making them suitable for large-scale problems.

In this chapter, first, we present a general define of a combinatorial optimization problem and,
then we will present a various algorithms and methods that can be used to deal with the

optimization problems.

2.2 Combinatorial optimization problems

The goal in a combinatorial optimization problem is to search for the best solution which
minimizes or maximizes a given objective function from the set of possible solutions S. The
challenge is that the S contains a huge number of solutions and examine all of them is not an

easy task. Here is a simple formulation of an optimization problem [82]: P =(S, f, Q)
o P :represents the optimization problem.
e S:symbolizes the search space of the problem domain.
« f :represents the objective function .

e Q: corresponds to the set of problem’s constraints.

2.3 Exact Methods

The objective of the exact methods is to search for the optimal solution to any problem within
the entire search space, which encompasses all possible solutions. These methods use
techniques to exclude solution subsets that cannot be optimal or don’t have promising solutions,

thereby reducing the search time. However, they are used for small-sized instances, for large-
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sized instances these methods are impractical due to the excessive computational time required
to find the optimal solution [48]. Among the methods, we can cite: (1) Backtracking method,
(2) dynamic programming, (3) column generation, (4) the A* algorithm, (5) branch & bound,
(6) (6) branch & cut, (7) branch & price, etc. [48].

2.3.1 Backtracking algorithm

The backtracking algorithm is a classical recursive method used for combinatorial and
constraint satisfaction problems. It works by trying out different paths, and if one doesn’t lead

a solution, it backtracks and tries another until it finds the correct one.

The algorithm explores the search space in a depth-first manner attempting to construct a
complete solution by extending partial solutions step by step. If at any step a constraint is
violated, the algorithm revert to a previous state and tries a different option. This pruning
reduces the number of configurations to explore, which is important for solving NP-complete
problems efficiently. Backtracking guarantees finding an optimal or feasible solution if one
exists. However, its worst-case time complexity remains exponential which making it more

suitable for small sized instances [39,40,41].

2.3.2 Branch and bound

The branch and bound algorithm (B&B) first appeared in in the 60s [42] and is used to solve
NP-hard problems. This algorithm is based on intelligently exploring all possible solutions by
constructing a search tree using a partitioning technique. More, it prunes branches that do not

lead to the optimal solution, thereby reducing computational time [43].
To create a branch and bound (B&B) method, we have to develop the following techniques:

The separation technique (branching): this involves dividing the search space into several

parts such that their union covers all possible solutions.

The evaluation technique (bounding): this requires calculating the upper and lower bounds

for each branch to determine if there might be better solutions than those already explored.

The exploration technique: used to determine the order in which branch are visited. There

are several way to explore branches such as: depth-first, breadth-first, best-first, etc.
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Algorithm 1: Branch and Bound for minimization

1! T, « Create the root of the search tree according to the separation technique ;
2 quund — +oo; L« Troor;
4: while (L+#0)

5: Sc « Explorer(L);
6: If (Evaluation (Sc¢) < Ubound)
7 L’ « All partial solutions S’ that can be obtained from Sc;
8: For (each S'in L' do)
9: If (S' is a complete solution)
10: | update Ubound; update Sbest;
12: Else
13: | addS'to L;
14: End
15: End
16: Else
17: | delete S¢ from L ;
18: End
19: End

20: Return Shest;

2.4 Approximation Methods:

Approximate methods are commonly used to solve combinatorial optimization problems.
especially when the problem involves complex constraints or a large solution space. In contrast
to exact methods, which can take an impractically long time sometimes even years to find the
optimal solution, approximate methods focus on finding good quality solutions within a

reasonable computational time.

Approximate methods are be divided into several classes including: heuristics and

metaheuristics.

2.4.1 Heuristics

Several definitions of a heuristic have been proposed by various researchers in the literature.

Here, we present some of the most notable ones:

Definition 1.1 «A heuristic (heuristic rule, heuristic method) is a rule of thumb, strategy,
trick, simplification, or any other kind of device which drastically limits search for solutions in
large problem spaces. Heuristics do not guarantee optimal solutions; in fact, they do not
guarantee any solution at all; all that can be said for a useful heuristic is that it offers solutions

which are good enough most of the time. » Feigenbaum and Feldman (1963) [44]
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Definition 1.2 «A heuristic method (or simply a heuristic) is a method which helps in
discovering a problem's solution by making plausible but fallible guesses as to what is the best
thing to do next. » Feigenbaum and Feldman (1963) [44]

Definition 1.3 «A heuristic is a rule of thumb, strategy, method, or trick used to improve the
efficiency of a system which tries to discover the solutions of complex problems. » Slagle (1971)
[45]

Definition 1.4 «Heuristics are criteria, methods, or principles for deciding which among
several alternative courses of action promises to be the most effective in order to achieve some
goal. » Pearl (1984) [46]

Moreover, in the field of combinatorial optimization, a heuristic is an approximate method
designed to solve specific problem by relying on a deep understanding of it. Its primary goal is
to provide high-quality solutions, although they may not necessarily be optimal, while ensuring

a reduced computation time [47].

1) Greedy constructive heuristics
The greedy heuristic [48] is an algorithmic model that builds the solution gradually element
by element. It starts with an empty solution .S and at each stage of the construction process,
selects the next element e using the local optimal choice strategy (greedy choice rule), which

measures the increase or decrease in the objective function when adding each element.

Algorithm 2:Greedy algorithm for minimization

1. S « o
2: C<{eyez...... ,en };
3: Evaluate the incremental cost c(e) for all e € C;
4:  While (C # 9)
5: ep < select e € C with the smallest incremental cost c(e);
6: S « S U {ev};
7 C « C—{en};
8: Revaluate the incremental cost c(e) foralle € C;
9: End
10: returnS;
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2) Randomization and Greedy Randomized heuristics
Randomization plays an important role in the optimization algorithms [48]. It is used to
enhance the exploration of the search space, improve solution diversity and avoid local optima,

as is the case with greedy algorithms.

The difference between the greedy randomized heuristic (GRH), and the traditional greedy
heuristic (GH) is, in the GRH we select the next element to be added to the solution randomly
from a restricted list containing several locally optimal elements, where the GH selects the best
[48] [49]. This algorithm is widely employed when solving hard optimization problems.

Algorithm 3:Greedy randomized algorithm for minimization

1. S«<¢
2: C<{e1ez... ,en };
3. Evaluate the incremental cost c(e) for all e € C;
4: While (C # 9)
5: Build the restricted candidate list with the candidate elements having the
smallest incremental costs;
6: ep « Select random e € the restricted candidate list;
7 S « S U {en};
8: C « C—{en}
9: Revaluate the incremental cost c(e) foralle € C;
10: End
11: returnS;

3) Local Search algorithms

Local search algorithm (LS) starts from a complete initial solution and try to find a better
solution in an appropriately defined neighborhood structure. The algorithm systematically
neighbouring solutions to find one that improves the quality of the current solution. When a
better solution is found, it replaces the current solution, and the search process continues. This
cycle is repeated until no further improvements can be found, leading the algorithm to converge

to a local optimum [50].

17




Chapter 2: Methods and algorithms to solve optimization problems

Algorithm 4:Local Search

S « start solution;
While (S is not a local optimal)
Sn < select the best solution S € N(S);
If (f (S») is better than f (S))
‘ S « Sy
End
End
Return S;

2.4.2 Meta-Heuristic

According to Osman and Laporte (1996): “A metaheuristic is formally defined as an iterative
generation process which guides a subordinate heuristic by combining intelligently different
concepts for exploring and exploiting the search space, learning strategies are used to structure

information in order to find efficiently near-optimal solutions.” [51]
The main components of any Metaheuristic algorithm are intensification and diversification

, also called exploitation and exploration. The combination of these two mechanisms helps

guide the search process and find best solutions. [52]

e Diversification: consists in exploring the search space on a global scale by moving

solution to other regions of the space search.

@ Solution before Diversification
Solution after Diversification

= Diversification movement{Mutation ...)
Figure 6:Diversification Process of a solution.

e Intensification: consists in focusing on the search in a local region by exploiting the

information that a current good solution is found in this region.
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Figure 7:Intensification Process of several solutions

a) Single-solution based metaheuristics

Single-solution-based metaheuristics work with a single solution. They start the search with
an initial solution and gradually improve its quality by exploring its neighborhood structure.
This improvement relies on a series of local modifications applied to the current solution to
efficiently exploit the search space. Several methods of this type have been developed in the
literature, including: Hill Climbing (HC), Simulated Annealing (SA), Tabu Search (TS),
Variable Neighborhood Search (VNS), Iterated Local Search (ILS), Guided Local Search
(GLS), and Greedy Randomized Adaptive Search Procedure (GRASP), etc.

1) Simulated Annealing

The simulated annealing algorithm (SA) is a method proposed by Kirkpatrick, Gelatt, and
Vecchi [53], inspired by the annealing process used in metallurgy. This thermal procedure
slowly and in a controlled manner to allow the atoms to gradually reorganize. This
rearrangement promotes the formation of a more stable and homogeneous structure by reducing

defects that may occur during the transition from the liquid to the solid state.

The SA algorithm starts the search with an initial solution S and initial temperature T. Then,
at each iteration, SA randomly selects a neighboring solution S» of current solution. if S is
better than S, then S is replaced by Sa. otherwise, S» is accepted with a probability equal to
e~ /T (where A = f(S,) — f(S) in minimization problems and A = £(S) — f(S»)
in maximisation problems). Then, the temperature and the best solution found are updated.

The algorithm terminates when the stopping criterion is met.
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Algorithm 5:Simulated annealing

S « initial solution;
T « initial temperature;
while (the stop criterion is not met) do

randomly choose S» € N(S)

calculate A;

If (Sn is better than S Or r < e=~(4/T)
S« Sy

if (S is better than S»)

10: ‘ Sp«—S;

11: End

12: End

13: update T;

14: End

1
2
3
4
5: r «— a random number between 0 and 1.
6
7
8
9

15:  return Sp;

2) Tabu Search

Tabu search (TS) was proposed in 1986 by Glover [54]. It is an optimization algorithm
that extends local neighbourhood search. In addition, it uses mechanism to prevent getting
trapped in local optima and to explore search space more efficiently. This mechanism is the
tabu list, which is used to record the solutions discovered after each iteration to prevent them
from being accepted in the future [55].

The first step in the tabu search algorithm is to create an initial solution S with empty list tabu
L. after that, the algorithm enters a loop in which the neighborhood structure N(S) of the current
solution S is created. The best solution S» from N(S)that is not present in L is then selected.
Next, S replaced by S». S is then added to L and the oldest solution is removed (if L is full). If
S is better than Sb it replaces it. The loop continues until the stopping condition is satisfied.

Finally, the algorithm returns Spest.
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Algorithm 6:Tabu Search

1. S « initial solution;
L < @;
while the stop criterion is not met do
Generate N(S);
find the best solution S»,{ S» € N(s) and Sn» €& L};
Update L;
S« Sn ;
If (S is better than S») Then
| Sp « S;
End
End
return Sh;

N

3) Greedy Randomized Adaptive Search Procedures
Greedy Randomized Adaptive Search Procedures (GRASP) is a multi-start metaheuristic
developed in the 1980s by Feo and Resende [56] [57] to solve combinatorial optimization
problems. Each iteration consists of two phases [57] [58]:

Construction phase: in this phase, a feasible solution is iteratively constructed using a greedy

randomized function, encouraging diversity and exploration.

Local search phase: in this phase, the neighborhood of the constructed solution is explored to

improve it until a local optimum is reached.

GRASP works by independently sampling the solution spaces at each iteration, retaining only

the best solution found as the final result.

Algorithm 7:Greedy Randomized Adaptive Search Procedures for Minimization

1. fie oo
2:  While (the stop criterion is not met)
3 S « Greedy Randomized Algorithm ();
4: if (Sisnot feasible)
5: \ S « Repair Solution(S) ;
6: End
7 S « Local Search(S) ;
8: if (f(S) < fi)
9: Sp< §;
10: fi<f(S);
11: End
12: End

13: return Sp;
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4) Variable Neighborhood Search
Variable Neighborhood Search (VNS) was proposed in1997 by Hansen and Mladenovi¢
[59]. VNS is an optimisation algorithm that explores different neighborhood structures to
improve a given solution systematically. It relies on three iterative phases. First ,the shaking
phase helps escape from local optima .Second, an improvement phase applies local search to
enhance the solution. Finally, the neighborhood changes phase guides the algorithm while

exploring the search space [60] [61].

The algorithm starts with an initial solution S, and a set of neighborhood structures N is

defined where L =1, 2,..., Lmax . At each iteration, the initial value of L is set to 1.

Subsequently, the algorithm iteratively explores the neighborhoods until the maximum

neighborhood index is reached i.e. L= Lmax .

During each iteration, a random solution Sx (shaken solution) is generated from the L*
neighborhood N (S) of current solution S. A local search procedure applied to Sx to generate
an improved solution Sy. If Sy is better than the best-known solution S», both Sy and S are
updated with Sy, and the search continues in the first neighborhood N, .if no improvement is

found, the search moves to the next neighborhood structure N1 .

These operations are repeated until a termination criterion is satisfied. Finally, the algorithm

returns the best solution found.

Algorithm 8:Variable Neighborhood Search

1: S « initial solution;
2: NL,L =12 Lmax ;
3:  While the stop criterion is not met do
4. L« 1;
5: While (L < Lmax)
6: Sx « Shaking(S,Ny) ;
7 Sy « Local Search(Sx);
8: if (f(Sy) < f(Sp)
9: S« Sy;

10: L« 1;

11: Sp < S;

12: End

13: | LeL+1;

14: End

15: End

16: End

17: return Spest ;
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5) Iterated Local Search

Iterated Local Search (ILS) is a multi-start metaheuristic designed to overcome limitation of
Random Restart approaches by incorporating advanced procedures [63]. Its main goal is to
escape local optima by systematically modifying solutions and exploring different regions of
the search space. This is achieved through strategic perturbations that guide the algorithm from

one local optimum to another [62]. It operates in four phases [63]:

» First, an initial solution is constructed (Generate an Initial Solution).

> Next, a Local Search method is applied to improve the solution and find a local
optimum.

» Then, arandom Perturbation phase is applied to modify the current solution by altering
some of its components.

> Afterthat, the Local Search method is reapplied to the perturbed solution. If the resulting
solution passes the Acceptance Criterion, it becomes the new current solution;

otherwise, the algorithm reverts to the previous solution.

Algorithm 9:lterated Local Search

1: S, < Generate Initial Solution ;

2: S" « Local Search (S,) ;

3. Repeat

4 S « Perturbation (S*, history );

5: S" « LocalSearch (S);

6 S® « AcceptanceCriterion (S*, S”, history);
.

8

: Until termination condition is met;
return S*:

b) Population-based metaheuristics
Population-based optimization methods are techniques that work on a population of solutions
and are generally inspired by nature. They start with an initial population and, at each iteration,
attempt to construct a new better population based on the previous one to converge toward good
solution(s).
As examples of these methods, we can cite genetic algorithms, particle swarm optimization,
ant colony algorithm, artificial bee colony algorithm, etc.
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1) Genetic algorithm
Genetic algorithm (GA) is a method proposed by Holland in 1975[64]. The GA is stochastic

algorithm inspired by the biological evolution theory, founded on genetics and natural selection
(diversity, adaptation, inheritance). Each solution is represented as a chromosome composed of
genes (solution elements). The algorithm uses selection to choose the solutions that will survive
to the next generation, crossover to combine solutions to create Childs (new solutions) and
mutation to introduce diversity. Over successive generations, these operations/processes work

together to improve the overall quality of the solutions [65] [66].

The first step in GA is to Create an initial population P, typically consisting in randomly
generated chromosomes .At each iteration, a set of | P | solutions is selected and saved in a new
population Pn, called parents. The Crossover process is then applied to Pn to produce the set
of solutions E (called Childs), which is then modified using mutation operator to introduce
small random changes. Finally, the population P is updated by choosing the best solutions from

both E and P for use in the following iteration.

Algorithm 10:Genetic algorithm

P <« Create an initial population ();
While (the stopping criterion is met)

Pn < Selection(P);
E « Crossover(Pr);

1
2
3
4
S: E < Mutation(E);
6 P < Replacement (E, P);
7: End
8: return the best solution found

i. Selection:

The Selection is the process of choosing parents solutions from current population P. each
solution is selected based on its quality and can be chosen zero, one or multiple times. Here we

present some well-known selection techniques:
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* Roulette selection:

This method consists in randomly selecting a solution based on a probability proportional to

the value of its objectives function, the selection probability P,.(s) for a solution S is

|£|(S) ,s"€P
X1 f(sn)

calculated as follows: P.(S) =

If we are dealing with a minimization problem, then the selection probabilities must be

transformed using the following equation:  P,.(S) = %ﬁf)

Solution has
smallest share of
the roulette wheel

Selection
point

Solution has
largest share of the
roulette wheel

Figure 8:Roulette selection.

¢ Rank selection:

Rank selection is the modified form of Roulette wheel selection. It utilizes the ranks instead
of fitness value. It is used when the value of solutions converges to similar values ,making it

difficult to differentiate between them.

The first step is to rank the solutions based on their fitness, assigning (rank = 1) to the worst

solution until (rank = |P]) to the best solution in the population. Then, the selection probability

rank(S)
lepl rank(sr) ’

of each solution is calculated using the following formula: P.(S) = s eP

Tournament selection:

This method consists in randomly selecting k solutions from population P where (K< |P]).
Then, the best of these solutions is selected.
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« Uniform selection:

This method involves randomly selecting, giving all solutions an equal probability of being
selected, whichis:1/|P].

ii. Crossover:

The Crossover is a process applied to each pair of parents, and it consists in combining their
original genes to produces new solutions, called children or offspring. It is applied on the parent
population with a random probability P. between 0.65 (65%) and 0.90 (90%). Here we present
some of the well-known crossovers used in the literature :

« Single-point crossover: A random point is chosen to split each parent into two parts.

The parts of the parents are swapped to produce two children as shown in the example.

One Point Crossover

parent-one

parent-two

child-one

child-two

Figure 9:Single point crossover.

« Two-point and K-point crossover: randomly choose two or more crossover points to
split the parents and then the parts of parents to produce children.

Multi Point Crossover

parent-one

parent-two

child-one

child-two

Figure 10:Three-point crossover.
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« Uniform crossover: in this method, the parent is not split into parts. Instead, each gene
is considered individually. We randomly decide if each gene is swapped with the
corresponding gene in the other parent or not.

Parent one child one

child two

selected

Figure 11:Uniform crossover.

iili. mutation:

The Mutation is a component of the genetic algorithm that introduces very small random
changes to a solution. It ensures effective exploration of the search space and is applied to the

population E with a probabilityP,, between 1% and 5%.

solution

solution after
mutation

Figure 12:Simple mutation.

In the literature [66], several operators of mutation are used, such as :

« Displacement mutation: displaces a substring (part of the solution) of a solution to
another random position within same solution. there are two variants of this mutation:

- Exchange mutation: swap two randomly selected substring of the solution.

solution

solution after
mutation

Figure 13:Exchange mutation.
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- Insertion mutation: selected a random substring in the chromosome,
remove it and re-insert it into a different position.

solution Imln 2 I 3 Ellﬂ

solution after
mutation 0 1 3 4 5 2 (5] 7 8 9

Figure 14:Insertion mutation.

Iv.  Replacement:

Replacement is the process of selecting the new population of the new iteration from the old
population and the created children. Several methods can be used, in the following we cite three
methods:

« Complete replacement: In this method, the children E is selected as the new
population.

« Combination with selection: In this method the old population and the children (E
and P) are combined. Then one of the selection methods is used to choose the new
population.

+ Elitist method: in this method the best solutions from E and P are selected.

2) Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a metaheuristic based on swarm intelligence, proposed
in 1995 by Kennedy and Eberhart [67]. It is inspired by the collective behaviour of birds when
moving in groups.

The algorithm starts with a population of solutions, called particles, where each solution is
defined by a position and velocity in the search space. During the search process, each particle
adjusts its position according to its current speed, its current position the best solution found in
the previous iteration, and the best position identified by the set of particles. This update, carried
out at each iteration, enables the particles to explore the search space and progress towards an
optimal solution [68].
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Algorithm 11:Particle Swarm Optimization

1
2
3
4
5!
6
7
8
9

10:
11:

Initialize_Speed (particles);

Initialize_Position (particles);

Whil

End

e (the stop criterion is not met)

For (each particle p) do
evaluate_fitness (p);
update_Speed (p);
update_Position (p);
update_best (p);

End

update_best (particles);

12: Return the best solution found ;

3) Ant Colony Optimization

The Ant Colony Optimization (ACO) algorithm is a metaheuristic inspired by the cooperative

behaviour of ants, introduced in the 1990s by Colorni, Dorigo, and Maniezzo. It is based on the

ability of ants to explore their environment and communicate indirectly through pheromones to

find the shortest path to a food source [69].

In ACO, first, a population of agents (the ants) explore the search space randomly. Then,

when a promising solution is found, a quantity of pheromones is deposited on the corresponding

path, reinforcing its attractiveness to other agents. The shorter and more efficient path is, the

faster it accumulates pheromones, which accelerates convergence towards an optimal solution.

In contrast, less efficient paths are gradually abandoned due to pheromone evaporation [68].
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Algorithm 12:Ant Colony Optimization

randomly initialize pheromone values;
While (the stopping criterion is met)
or (each Ant)

construct a solution;

End

End

1
2
3
4
5: update local pheromone values;
6
7
8: Return the best solution found ;

4) Artificial Bee Colony

The Atrtificial Bee Colony (ABC) algorithm is a metaheuristic introduced by Karaboga in
2005 [70], inspired by the foraging behaviour of honeybees. It simulates the bee’s efficient
process of finding food through cooperative communication, using a " waggle dance” to share

information about the direction, distance, and quality of food sources [68].

The algorithm models food sources as a potential solution and the bee colony as three types
of agents [68] [71]:

Employed bees: Exploit known food sources and search for better alternatives nearby.

Onlooker bees: Observe employed bees’ information and select food sources based on their

quality.
Scout bees: Perform random searches for new food sources when the current ones are depleted.
The algorithm operates through an iterative cycle with three main phases:

Exploitation (Employed Bees Phase): Employed bees assess the fitness of their assigned food
sources and share their findings.

Selection & Local Search (Onlooker Bees Phase): Onlookers probabilistically choose food

sources based on shared nectar quality and refine existing solutions.

Exploration (Scout Bees Phase): Scouts randomly explore the search space for new solutions,

replacing exhausted or poor-quality ones.

By balancing exploitation (improving known solutions) and exploration (discovering new

ones), the ABC algorithm efficiently solves complex optimization problems.
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Algorithm 13:Artificial Bee Colony

Initialize the bees;

Memorize the current best solution;

While (the stopping criterion is not met) do
Employed bees phase;

Onlooker Bees Phase;

Scout Bees Phase;

S}, < the best solution found so far;

End

Return S, ;

5) Cuckoo Search
Cuckoo Search (CS) is a metaheuristic, developed in 2009 by Yang and Deb, inspired by the
parasitic reproductive behaviour of cuckoos. These birds lay their eggs in the nests of other

species, entrusting the incubation and rearing of their chicks to host birds [72].

In the CS algorithm, a solution is represented by an egg in a nest, while a cuckoo egg
symbolizes a new potential solution. The goal is to replace lower-quality solutions (eggs) with
better alternatives (cuckoo eggs). This principle can be extended to more complex cases where

each nest contains multiple eggs representing a set of solutions.
Standard Cuckoo Search follows three based rules:

» Each cuckoo lays one egg at a time and places it in a randomly chosen nest.

» The best nests, containing high-quality eggs, are preserved for future generations.

» The number of available host nests is fixed, and a cuckoo’s egg is discovered by the
host bird with a probability p, € (0,1). if detected, the host bird either discards the egg

or abandons the nest to build a new one.

To enhance the search efficiency, the algorithm incorporates Lévy flight (described below),
which optimally explores the search space by combining large random jumps and small local
variations. This ensures a balance between exploration and exploitation, making Cuckoo Search

a good tool for solving complex optimization problems.

Lévy flight are a type of random walk which the step lengths follow a heavy-tailed

probability distribution, typically a power law. They combine frequent short steps with rare but
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extremely long jumps. This behaviour allows for efficient exploration of large or complex
search spaces. The structure of Lévy flight helps balance local exploitation and global

exploitation, which is essential when navigating sparse or uncertain environments [73][74]

Algorithm 14:Cuckoo Search

1. Define the objective function f (x);

2: Generate initial population of n host nests x; (i = 1 ....n);

3:  While (the stopping criterion is not met) do

4 Generate a new solution (a cuckoo) using Lévy flight;

5: Evaluate its fitness f; ;

6 Randomly select a nest j from the population;

7 If (f; > f})then

8 Replace j with the new solution;

9 End

10: Abandon a fraction (p,) of the worset nests and generate new ones;
11: Retain the best solutions (nests with high-quality solutions);
12: Rank the solutions and identify the current best;

13: End

14: Report the best solution found;

2.4.3 Hybridization

Hybridization involves combining multiple optimization methods to develop more efficient
approaches. Hybrid metaheuristics are particularly suited for complex and real-world problems
[75]. This subsection explores hybridization strategies, including the combination of
metaheuristics with exact methods and the combination of between metaheuristics to enhance

the performance of the developed algorithm.

1) Coupling metaheuristics with exact methods
Originally, the hybridization focuses on the collaboration between the metaheuristics [76].
However, several studied have shown that exact methods and metaheuristics can complement
each other effectively [83]. Exact methods are well suited for solving small-scale problems and
find optimal solutions to them, but they become impractical for large-scale ones due to their
high computational cost. Therefore, hybrid approaches leverage the strengths of both: an exact
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method can be used to solve a sub-problem within a heuristic framework, while a heuristic can

provide lower and upper bounds to guide an exact method [38].

2) Coupling metaheuristics with other metaheuristics
Combining metaheuristics is the most common form of hybridization in the literature [76].
Such synergy enhances the overall performance in solving optimization problems.
Metaheuristics can be integrated in various ways, including the following widely used strategies

[78], [79], [80]:

a) Parallel hybrids

Parallel hybrids involve multiple metaheuristics operating simultaneously. Each
metaheuristic independently explores the search space and generates solutions, which are later
compared to select the best. Parallelization improves search speed and solution quality for large-
scale problems [78].

The authors in [77] highlight that parallelization strategies differ based on whether
metaheuristics rely on single solutions or populations. For single solution based metaheuristics,
three models are commonly used: «Parallel Moves Model » [79], «Parallel Multi start
Model» [80], «Move Acceleration Model » [81].

Additionally, [83] categorizes parallel hybrids into two types:

e Synchronous Parallel Hybrids: one algorithm replaces a specific operator (e.g.,
substituting tabu search for mutation in a genetic algorithm).

e Asynchronous Parallel Hybrids: multiple algorithms exchange information
dynamically during execution.

b) Sequential hybrids:

In Sequential hybrids, two methods execute consecutively, where the results of the first
method serve as initial solutions for the second. This approach leverages the strengths of each

method at different optimization stages.

2.5 Conclusion:

In this chapter, we explored various combinatorial optimization methods and algorithms. We
began with exact methods, highlighting approaches such as branch and bound and branch and

cut, which guarantee optimal solutions but remain computationally expensive for large-scale
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problems. Then, we introduced heuristic methods, including greedy algorithms and local search

methods, which provide efficient solutions within reasonable time constraints.

In addition, we examined the metaheuristics, which offer powerful optimization frameworks
for complex problems. Among the widely used metaheuristics, we presented simulated
annealing (SA), tabu search (TS), variable neighborhood search (VNS), GRASP, genetic
algorithms (GA), particle swarm optimization (PSO), ant colony optimization (ACO), etc.
Finally, we discussed hybridization, which integrates different approaches enhance the
performance and the adaptability of the developed algorithms to solve optimization problems.
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Chapter 03: Heuristic algorithms for the Hub

Location Routing Problem

3.1 Introduction

In this chapter, we present our proposed algorithms to solve hub location routing problem.
The algorithms we propose are: (1) Simple Local Search, Tabu Search and Neighborhood
Search with Random Selection (NSRS). First, we will present the definition of the HLRP as
shown in [19]. Then, we will provide a review of the most related works that have addressed
the HLRP. After that, we will present the solution methodologies we proposed to solve the

problem, and we finish with a conclusion.

3.2 Problem definition

In our project, we deal with the variant of HLRP as defined by Lopes et Al. (2016).

 The hub location routing problem is an NP-hard problem that can be defined on an undirected
complete simple graph G= (V, A), where V is the set of nodes V = {1, 2..., n} with |V|=n, and
A is aset of edges such A={(i,j)/i,j € V,i1#]}. Each e € A has a cost C, € R+.

« The objective is to select a subset of p nodes from V to be the hubs and we create local
routes R={r1, r2, r3..., rp} for these hubs. Each local route rk (for k = {1,2, 3..., P}) starts
and ends at the hub k and visits a subset of nodes (all not-hub nodes must be visited by a local
route of a hub). In addition, an Inter-hubs route is established to connect the hubs where each

hub is visited one time.

« The length of a local route (including the non-hub) cannot exceed capacity C. More, a

discount factor o is applied to the cost of arcs of the Inter-hubs route, where o € [0,1].

« Afeasible solution s is represented as a table of P vectors. Each vector of the table represents
a local rout r;, where the first element is a hub. The total cost of the solution s is calculated

using this formulation:

P-1
f&)=a Kz Crk(1>.rk+1(1>> + Crpn)

k=1

p=1[/Irkl-1
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3.3 Most related works

In this subsection, we provide a review on the methods proposed in [19] [20] to deal with

the HLRP:

In 2016 Lopes et Al. [19], several heuristic methods were introduced to address the

problem:

1)

2)

3)

In 2022,

Multi-start Variable Neighborhood Descent (VND): This approach iteratively
applies a Variable Neighborhood Descent on a randomly generated initial solution.
Two versions of VND are proposed, both used similar neighborhood structures, such
as transferring non-hub nodes between local routes, swapping two non-hub nodes,
and change hub node by non-hub nodes in same local route. Both variants employ
the Lin-Kernighan heuristic for tour optimization and use random improvement
moves rather than first or best improvement strategies. The difference between two

approach is in the organization of neighborhood exploration:
o M-VND: utilizes a nested Variable Neighborhood Descent.
o M-CNS: Employs Consecutive Nested Neighborhood Search

Biased Random-key Genetic Algorithm (BRKGA): A genetic algorithm where
solutions are encoded as chromosomes using random keys in [0,1]. It uses a decoder
to extract a solution from the chromosomes and attempts to improve the solution
using a local search procedure. It implements a local search based on the Lin-
Kernighan heuristic for TSP. This is a well-defined evolutionary process that uses
parameterized uniform crossover and replaces the mutation operator applied to

existing chromosomes with newly introduced mutants for exploration.

Commercial Solver (Local Solver version 6.0): consists of a collection of
techniques using a hybrid neighborhood search approach. Local Solver combines
local search techniques, constraint propagation and inference methods, linear and
mixed-integer programming techniques, as well as nonlinear programming

techniques.

Ratli et Al. [20], the authors used the General Variable Neighborhood Search

(GVNS) algorithm, an advanced variant of the Variable Neighborhood Search (VNS), to deal

with HLRP. The GVNS utilized seven neighborhood structures including: swapping non-hub

36




Chapter 03: Heuristic algorithms for the Hub Location Routing Problem

nodes between local routes, swapping two non-hub nodes from two different local routes,
replacing a hub node with non-hub node in the same local route, reversing a part of route,
reversing a part of route consisting of two consecutive nodes (a simplified case of reversing a

part of route), and inserting a node in either a forward or backward position in the same route .
The GVNS systematically alternates between two complementary phases:

e An intensification phase, which focuses on improving the current solution using the
variable Neighborhood Descent (VND).

e Adiversification phase, which introduces a shaking procedure to explore new regions

of the search space.

These two phases are iteratively executed until the predefined stopping condition (Tmax) IS met.
Differences between the VNS algorithms used in [19] and [20]:
The main differences between GVNS, M-VND, M-CNS are as follows:

e Number and organization of neighborhood structures: GVNS explores seven
neighborhood structures sequentially, while M-VND and M-CNS use only three
neighborhoods.

e Shaking phase: GVNS employs a shaking procedure to escape from the local optima,
while the M-VND generate a new random initial solution at the beginning of each
iteration.

e Improvement phase: GVNS uses the Basic sequential Variable Neighborhood descent
(VND). In contrast, M-VND employs a nested VND, which incorporates the Lin-

Kernighan heuristic while M-CNS also applies the Lin-Kernighan heuristic.

3.4 Proposed heuristic algorithms

In this subsection, we present the three heuristic algorithms we propose to solve the HLRP.
First, we present the components of these methods, and then we present how these components

are employed in the three algorithms.

3.4.1 Components of solution Methodology

1) Initial solution procedure
The initial solution procedure starts with an empty solution s (table of p vectors) and creates

a complete feasible solution at random. First, it selects randomly from p hubs the set of nodes
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V, and creates a local route for each one. Then, it keeps randomly selects one node from V and
add it in a random position into a random local route until all nodes in V are assigned. The
initial solution procedure respects the local routes capacity constraint, therefore it doesn’t

assigns a new node to a local route only if its capacity allows that.

Algorithm 15:initial_random_solution (p, C, V)

1: Create empty solution: table S [] of p vectors

2: fori=1topdo

3 select randomly nodeveV ;

4 S[i].v(1) « v;/*insertv asa hub in the first position of the local route S [i].7 */
5: V « V — {v}; /*remove v from V*/

6: End

7: While (V is not empty)

8 select randomly a nodev €V ;

9: i « random(1, P);

10: If (]S [i].7| <C) then

11: S[i].r(|S[i].r] +1) <« v;/*add the non-hub v to local routeS [i].7 */
12: V « V — {v}; /*remove v from V*/

13: nd

14: End

15: Return S;

2) Neighborhood structures
In our methods, we consider eight neighborhood structures where each neighborhood
structure contains a distinct set of neighboring solutions generated based on a specific move.
The neighborhood structures are named N1, N2, ... N8 and they are created based on the moves
intra-route Swap two non-hub, swap two hubs, intra-route Swap hub by non-hub, remove
and add (shift) node, extra-route Swap two non-hub, extra-route Swap hub by non-hub,
swap two local routes and remove and add (shift) local route respectively. In the following,

we will describe these moves:

i. Intra-route Swap two non-hub (N1): This movement consists of exchanging two
nodes non-hubs in the same local route. This move is applied on all local routes of the
solution. In algorithm 16, we depict, as an example, how the neighbors solutions related

to this move are generated.
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Algorithm 16: N1(S)

1. N1« 0@;

2: fori=1topdo

3 forj=2to |S|i].7| do

4: for k=j+1to |S[i].7| do

5! S « swap(S ,STil.r(), S [i].r(k));
6: N1« N1u {S'};

7 End

8 End

9: End

10: Return N1 ;
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Figure 15:Swap two non-hubs (intra-route) of N1 (n1, n5).

ii.  Swap two hubs (N2): This movement consists of exchanging two hubs in the solution.
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Figure 16:Swap two hubs of N2 (h2, h3).
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iii.  Intra-route Swap hub by non-hub (N3): This movement consists of exchanging the
hub node with a non-hub node in the same local route. This move is applied on all local
routes of the solution.
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Figure 17:Swap hub by non-hub (intra-route) of N3 (h1 ,n2).

iv.  Remove and add (shift) node (N4): this movement consists of removing a node (hub
or non-hub) from its position and re-inserting it in other position in solution. This move

is applied on all local routes of the solution.
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Figure 18:Remove and add (shift) node of N4 (n2).
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V. Extra-route Swap two non-hub (N5): This movement consists of exchanging two
node non-hub in the different local route. This move is applied on all combinations of

two local routes in the solution.
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Figure 19:Swap two non-hub (extra-route) of N5 (n1, n2).

vi.  Extra-route Swap hub by non-hub (N6): This movement consists of exchanging hub
node by non-hub node in the different local route. This move is applied on all

combinations of two local routes in the solution.
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Figure 20:Swap hub by non-hub (extra-route) of N6 (h3, n6).
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vii.  Swap two local routes (N7): This movement consists of exchanging two local routes

in solution. This move is applied on all combinations of two local routes in the solution.

edges
_______ added
—-—- deleted
Figure 21:Swap two local routes of N7.
viii.  Remove and add (shift) local route (N8): this movement consists of removing a local

route from its position and inserting in other position. This move is applied on all local
routes of the solution.

edges
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Figure 22:Remove and add (shift) local route of N8 .

3.4.2 Proposed heuristic algorithms

1) Simple Local Search
The first method we propose is a Simple Local Search (SLS) method. The SLS starts with an
initial solution S generated at random wusing the procedure described above

“initial_random_solution”. Then, it iteratively improves this solution until reaching a local
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optimum. In each iteration, it creates the neighborhood structure N(S) of the solution S, where
N(S) = NI1(S) U N2(S) ...N8(S). After that, the SLS selects the best solution S’ In N(S). If S’
is better than S, then it replaces it otherwise, the procedure terminates (this case is when the best
solution in the current neighborhood is the current solution, that means S = S, ). The SLS is

presented in Algorithm 17.

Algorithm 17:Simple Local Search (S)

1: stop « false;
2:  While (not stop) do
3 N —{ Nz (S)U Nz (S)U N3(S)U Ns(S) U N5(5) U Ns(S)U N7(S)UNs(S) }
4: S’ « choose the best solution in set N(S);
5: If (f (S) < T (Spese)) then
6: Shest < S';
7 End
8 T (Spest =S ) then
9: JE Stop « true;
10: nd
11: S« §S;
12: End

13:  Return Spest;

2) Tabu Search
The tabu search algorithm starts with an initial solution S generated at random using the
procedure described above “initial_random_solution” and an empty tabu list L. at each
iteration, it generates a set of neighbors solution N (S). After that, the TS selects the best solution
S’ in N(s) where §” must be not-tabu solution, that means must not be in L. Then, S’ becomes
the new current solution and we add it to the tabu list L. if §" is better than Seest it replaces it.

The algorithm terminates after a fixed number of iterations.

43




Chapter 03: Heuristic algorithms for the Hub Location Routing Problem

Algorithm 18: Tabu Search(S)

1. L <@ Spest < S;

2:  While (iteration_number> 0)do

3: N —{ Nz (S)U Nz (S)U N3(S)U N+(S) U N5(5) U Ns(S)U N7(S) UNs(S) }
4: S" « choose the best solution in set N, { S € Nand S’ ¢ L};
5: Update tabu list L;/*add S" into tabu list L*/

6: f(f(S) < f(Spest)) then

7 i Sbest < S;

8: nd

9: S « §;

10: iteration_number « iteration_number - 1;

11: End

12: Return Sbest;

3) Neighborhood Search with Random Selection

The Neighborhood Search with Random Selection (NSRS) iteratively improves the initial
solution S , (generated at random wusing the procedure described above
“initial_random_solution” ) by exploring neighborhood structures through the
“Apply_All_Neighborhood” function below. The Apply_All_Neighborhood function, at
each iteration, randomly selects a neighborhood structure k from the set of all neighborhood
structures L . Then, it generates the set of possible solutions for the selected Nx(S)chooses the
best solution from this set and replaces the current solution S found by this best solution. This
process continues until all eight neighborhood structures have been explored and, at the end, it
returns the best solution found. Finally, the NSRS terminates after a fixed number of iterations.

Algorithm 19:Neighborhood Search with Random Selection (S)

11 Spest < S;

2:  While (iteration_number > 0) do

3: S <« Apply_All_Neighborhood (S);

4. IF(f(S) < f(Spest)) then

5: Shest < S;

6: End

7 iteration_number « iteration_number - 1;
8. End

9:

Return Shest;
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Algorithm 20:Apply_All_Neighborhood (S)

L <« { Nz, Nz, N3, Nz, N5, Ns, N7, Ns}; N «—Q ;
While (L # @) do

Choose randomly Nkfrom list L;

N «— Nk (S);

S <« choose the best solution in set N(S);

L « L-{MN}

nd

8: Return S;

NOOTR®NE

3.5 Conclusion

In this chapter, we have presented the heuristic algorithms we proposed to solve the Hub
Location Routing Problem (HLRP). The proposed methods include Simple Local Search, Tabu
Search, and Neighborhood Search with random Selection. Starting with the definition of the
HLRP, we provided a detailed overview of the problem’s formulation including the objective
function, the constraints and the decision variables. After that, we reviewed the most relevant
works and existing methodologies addressing the HLRP. Then, we introduced the proposed
heuristic approaches, starting by the presentation of their components such as the initial solution
procedure, neighborhood structures. After the presentation of the components, we presented
each method and how it employed these components. In the next chapter, the proposed
algorithms will be tested using benchmark data set from the literature and the obtained results

will be compared with those of the most related works.
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Chapter 04: Tests and Comparison with the

literature

4.1 Introduction

In this chapter, we will evaluate the effectiveness of the algorithms we proposed through a
series of experiments. We will begin with a detailed description of the dataset provided by [19],
along with the method used for its generation. Next, we will present an example from the set of
instances. Finally, we will report the results obtained by our developed algorithms and compare
them with those achieved by state-of-the-art methods from the literature.

4.2 Description of benchmark

In [19], the authors derived a dataset of instances for HLRP using a set of 77 instances from
TSPLIB as follows:

First, let define the following parameters:

n: Total number of nodes in the network.

p: Number of hubs.

C: Maximum capacity of each local route.

a: Discount factor applied to inter-hub transportation costs.

To diversify the experimental conditions, three scenarios were used to define p and C:

e Scenario ST: p=[0.2n]| and C = E]: this scenario enforces tight local routes, ensuring
that every hub at least one associated local route.
e ScenarioSL:pasinSTandC = [1 .8 E” this scenario allows large local routes, meaning

some hubs may not have an associated local route.
e ScenarioSQ:p=C= [\/H ]: this scenario allows large local routes and hubs may have

no local route associated with them.

Then, for each scenario, we set a equals to {0.2, 0.4, 0.6, 0.8}.

Based on the number of nodes n in each instance, they classified the dataset into two
categories: small instances consist of 28 instances with less than 100 nodes, and large instances
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consists of 49 instances containing between 100 and 1000 nodes. All instances are available at
the following address: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/.

The following figures show examples of instances with varying distances and formats:

NAME : a2806 sniNAME: ali53s
COMMENT : drilling problem (Ludwig) TYPE: TSP
TYPE : TSP COMMENT: 535 Airports around the globe (Padberg/Rinaldi)
DIMENSION: 280
EDGE_WEIGHT_TYPE : EUC_2D DINENSION: 535
NODE_COORD_SECTION EDGE_WEIGHT_TYPE: GEO
1 288 149 DISPLAY DATA TYPE: COORD_DISPLAY
2 288 129 NODE_COORD_SECTION
i ;Zg iii 1 36.49 7.49
S 256 157 2 57.06 9.51
6 246 157 3 30.20 48.14
7 236 169 4 5.15 -3.56
8 228 169 5 34,59 -106.37
12 ;;g 12; 6 57.12 -2.12
11 212 169 7 16.45 -99.45
12 204 169 8 5.36 -0.10
13 196 169 9 28.56 -13.36
14 188 169 10 8.59 38.48
15 196 161 11 12.50 45.02
i? igg ij’é 12 -34.48 138.38
18 164 145 13 30.23 -9.33
10 156 145 14 56.18 12.51
20 148 145 15 36.40 -4.30
21 140 145 16 40.38 8.17
Figure 23:Example of an instance using Figure 24:Example of an instance using
Euclidean distance. Geographical distance.
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NAME : att48 ?ﬁggf $2§329
COMMENT : 48 Capltals of the US (Padberg/Rlnaldl) COMMENT: 29 Cities in Bavaria, geographical
TYPE : TSP DIMENSION: 29
EDGE_WEIGHT_TYPE: EXPLICIT
DIMENSION : 48 EDGE_WEIGHT_FORMAT: UPPER_ROW
EDGE_WEIGHT_TYPE : ATT DISPLAY_DATA_TYPE: TWOD_DISPLAY
EDGE_WEIGHT_SECTION
NODE_COORD_SECTION 97 205 139 86 6@ 22@ 65 111 115 227 95
1 6734 1453 129 1@3 71 185 258 154 112 65 204 15@ 87
2 2233 19 219 125 175 386 269 134 184 313 2081 215 267
167 182 186 162 208 39 102 227 66 86 34
3 5530 1424 51 2906 150 42 131 268 88 131 245 201 175
4 401 841 279 114 56 150 278 46 133 266 214 162 302
178 328 2086 147 308 172 283 165 121 251 216
5 3682 1644 169 151 227 133 104 242 182 84 290 230 146
6 7608 4458 172 309 68 169 286 242 288 315 259 240 160
7 7573 3716 14@ 195 51 117 72 1e4 153 93 88 25 85
320 146 64 68 143 106 88 81 159 219 63
8 7265 1268 174 311 258 196 347 288 243 192 113 345 222
9 6398 1885 144 86 57 189 128 71 71 82 176 15@ 56
61 165 51 32 15 127 201 36 254 196 136
10 1112 2049 106 11@ 56 49 91 153 91 197 136 94 225
215 159 64 126 128 19@ 98 53 78 218 48
11 5468 2606 61 155 157 235 47 305 243 186 282 261 300
12 5989 2873 105 108 176 66 253 183 146 231 203 239 204
13 4786 2674 113 152 127 15 186 52 235 112 179 221
79 163 220 119 164 135 152 153 114
14 4612 2035 236 201 96 195 98 127 84 o1
15 6347 2683 115 136 286 va 108 se1
16 6107 669 130 178 38 75 180

Figure 25:Example of an instance using ATT Figure 26:Example of an instance with UPPER ROW

distance. format.

NAME: gri7
TYPE: TSP
COMMENT: 17-city problem (Groetschel)
DIMENSION: 17
EDGE_WEIGHT_TYPE: EXPLICIT
EDGE_WEIGHT_FORMAT: LOWER_DIAG_ROW
EDGE_WEIGHT_SECTION
@ 633 @ 257 390 @ 91 661 228 @ 412 227
169 383 @ 150 488 112 120 267 @ 8@ 572 196
77 351 63 © 134 538 154 105 309 34 29 @
259 555 372 175 338 264 232 249 0 505 289 262
476 196 360 444 402 495 @ 353 282 110 324 61
208 292 250 352 154 © 324 638 437 240 421 329
297 314 95 578 435 @ 7@ 567 191 27 346 83
47 68 189 439 287 254 @ 211 466 74 182 243
105 150 108 326 336 184 391 145 @ 268 420 53
239 199 123 207 165 383 240 140 448 202 57 @
246 745 472 237 528 364 332 349 202 685 542 157
289 426 483 0 121 518 142 84 297 35 29 36
236 390 238 301 55 96 153 336 @

Figure 27:Example of an instance with LOWER DIAG ROW format.
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4.3 Generated solution structure

The generated solution contains the ids of the selected hubs, along with the ids of the non-hubs

assigned to each hub. In the next table we present the structure of generated solution.

Fitness
Scenario
alpha
Capacity local route

1 2 e C
Nbr hub | hub Id Assigned non-hub id
1 5 8 55 19 25 | ... 30
2 6 77 60 3 18 /
3 20 4 88 65 67 | ... 45
p 70 / / / / / /

Table 1:Generated solution structure

We present the complete solution obtained by the Tabu Search algorithm for the a280 instance

under scenario SQ with a = 0.4 in the following figure:

- | L
1 5494401
5Q
0.4
Hub fd Assigned non-hub id

268 136 135 133 18 25 2 20 131 178 181 182 147 148 139 266 267
264 263 276 [ 5 4 2 278 252 208 206 144 200 199 145 148 142
254 255 248 243 242 241 244 247 249 256 258 259 261 262 257
226 225 224 223 215 214 230 5 240 239 237 232 233 236 235 234

| 216 213 212 206 204 203 202 20 186 185 220 2M 222 219 218 217
198 193 186 187 185 164 168 167 166 165 168 189 190 1" 192 194 197
163 162 153 155 154 130 19 T 1 2 280 3 278 285 140 1684
17 170 102 103 1] 92 93 94 95 96 97 98 99 100 101 169 172
11 115 1T 118 62 63 72 73 74 75 78 77 78 80 80 109
114 113 87 88 112 110 107 174 161 175 160
58 U] 12 1M 0 L] 8 275 a2 2 i7 3 48 48 47 45 a4
57 64 54 B3 104 106 108 173 177 15 157 119 120 12 Ll 55 58
43 125 126 127 129 137 138 149 179 180 176 159 116 65 66 67 58
42 68 L] 70 ™ B5 86 &1 122 123 30 33 34 35 39 40 41
124 253 209 229 228 227 21 14 150 152 54 53 52 5 50 EH 36
134 270 16 15 13 14 24 23 28 27 28 32 k1 29 128 21 132
289 273 274 260 250 248 238 2 210 207 143 183 108 a9 81 82 158

Figure 28:example of check by hand of a generated solution
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4.4 Experiments results

In this section, we present the results obtained by running three algorithms (Simple Local
Search, Tabu search and Neighborhood Search with Random Selection) on a selected subset of
instances with different topologies. This subset consists of the following eight instances:
burmal4, grl4, berlin52, pr76, kroB100, ch130, a280, u574. Each instance is evaluated under
three scenarios (ST, SL, and SQ) and with four values of «: {0.2, 0.4, 0.6, 0.8}.

4.4.1 Parameters and implementation details

All algorithms were implemented in java, using the java SE-17 (JDK 17) compiler. Our
algorithms was executed on a computer equipped with an Intel(R) Core (TM) i5-8365U
running at 1.60 GHz (with a maximum turbo frequency of 1.90 GHz) and with 16 GB of RAM.

In Tabu Search algorithm, we used the following parameters: we set the maximal number of
iterations equals to 1000 iterations and the tabu list size equals to 20, whereas in Neighborhood

Search with Random Selection we set the maximal number of iterations equals to 1000.

4.4.2 The obtained results

To evaluate the proposed algorithms, we run each one 10 times on each instance and we report:
the value of the best solution found (Best), the average value (AVG) of the obtained solutions
and the average of the running time (Time), aver all the 10 runs.
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Simple Local Search Tabu Search NSRS
Instance Best AVG Time Best AVG Time Best AVG Time
burmald4 | 3737.54 3778.76 0.03 3737.54 3772.61 0.03 3737.54 3772.61 1.22
gr24 1482.8 1614.44 0.07 1469.6 1541.76 2.82 1469.6 1475.28 2.38
;%: berlin52 | 8907.91 9418.30 0.71 8836.67 9370.44 10.19 8570.24 8915.55 9.77
= pr76 138209.35 14431534 | 2.11 138209.35 | 144093.12 | 21.55 123226.15 | 128342.53 | 21.14
kroB100 | 32869.23 34137.14 4.26 32866.73 34109.90 26.96 28620.32 31278.00 26.69
ch130 8618.74 9106.94 10.60 8702.55 9069.97 47.85 7796.88 8377.33 47.20
g a280 4058.1 4373.72 84.28 4058.1 4372.08 203.97 3665.51 3918.07 199.99
<
i us74 58173.4 62927.48 884.01 58310.76 | 63135.07 | 914.95 56908.06 61149.25 | 898.17
Average 32007.13 33709.02 123.26 32023.91 | 33683.12 153.54 29249.28 | 30903.58 150.82
Table 2:Obtained results for the ST scenario and o = 0.2.
Simple Local Search Tabu Search NSRS
Instance Best AVG Time Best AVG Time Best AVG Time
burmald | 3943.82 4001.09 0.03 3943.82 3975.28 1.18 3943.82 3943.82 1.22
gr24 1542.2 1666.86 0.07 1542.2 1637.26 2.48 1542.2 1556.82 2.49
§ berlin52 9562.55 9737.12 0.63 9475.29 9710.73 9.99 9174.38 9534.81 10.12
= pr76 141780.8 | 154209.37 | 1.98 141780.83 153748.41 | 21.20 131225.87 | 137088.06 | 20.54
kroB100 | 34918.94 | 36746.54 3.90 34440.65 36627.55 26.54 30944.71 34045.28 26.03
ch130 9328.29 10065.93 | 8.70 9328.29 10065.79 | 43.71 8463.7 9493.31 43.59
g a280 4467.77 4888.99 88.40 4467.77 4876.80 663.90 3986.63 4312.86 212.51
® us74 63157.42 | 66939.28 | 951.93 63409.82 67033.13 | 931.53 62237.14 66330.58 | 821.48
Average 33587.72 | 36031.90 131.96 33548.58 35959.37 212.57 31439.80 33288.19 141.12

Table 3:Obtained results for the ST scenario and a. = 0.4.
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Simple Local Search Tabu Search NSRS
Instance Best AVG Time Best AVG Time Best AVG Time
burmal4 [ 4150.10 4191.1 0.042 4150.10 4150.63 155 4150.10 4150.10 1.420
gr24 1665.6 1755.86 0.08 1635.6 1681.86 3.92 1614.8 1627.17 3.88
5": berlin52 | 10238.33 | 1070656 | 0.98 9935.26 10567.04 | 15.14 9889.63 10152.87 | 16.048
- pr76 154708.87 | 173030.49 | 2.70 154708.87 | 171481.92 | 29.00 141620.29 | 14846657 | 29.30
kroB100 | 35088.31 | 3831833 | 5.14 34805.87 3785346 | 35.09 3241004 | 35399.54 | 33.62
ch130 | 9695.53 10908.81 | 13.80 9695.53 10834.75 | 68.67 9626.22 1031334 | 6249
fg a280 4393.77 5081.30 193.75 | 4388.06 5072.86 275.38 431254 4653.69 264.97
” us74 68456.06 | 73517.76 | 1302.86 | 68966.37 7401343 | 1354.50 64743.83 | 7052035 | 1481.84
Average 3604957 | 39688.77 | 189.91 | 3603570 | 39456.99 | 222.90 33545.93 | 35660.45 | 236.69
Table 4:Obtained results for the ST scenario and a. = 0.6.
Simple Local Search Tabu Search NSRS
Instance Best AVG Time Best AVG Time Best AVG Time
burmal4 | 4290.65 4399.46 0.038 4290.65 4295.79 1.95 4290.65 4290.65 1.85
gr24 1702.2 1796.52 0.110 1676.6 1718.08 4.803 1676.6 1676.6 4.76
93": berlin52 | 1060621 | 1146254 | 0.90 10606.21 11259.09 | 15.02 10328.04 | 1071130 | 15.00
- pr76 168243.67 | 180005.78 | 2.24 167528.74 | 179488.18 | 25.00 148849.26 | 156477.86 | 25.84
kroB100 | 3784456 | 4122556 | 5.49 37844.56 4111376 | 35.01 35510.81 | 38935.05 | 34.05
ch130 | 1062066 | 1112396 [ 10.90 10535.32 1107655 | 56.62 9650.92 1085751 | 55.47
(g a280 5127.74 5317.27 17540 | 5033.11 5252.16 270.59 4554.66 4803.08 261.69
® us74 | 7421814 | 79964.76 | 1305.38 | 74218.14 79964.66 | 1310.25 6868843 | 75998.76 | 1448.79
Average | sg08175 | 41011.98 | 18755 | 3896666 | 41771.03 | 214.90 3544367 | 37968.85 | 230.93

Table 5:Obtained results for the ST scenario and a. = 0.8.

52




Chapter 04: Tests and Comparison with the literature

Simple Local Search Tabu Search NSRS
Instance Best AVG Time Best AVG Time Best AVG Time
burmal4 | 2917.46 3215.3 0.03 2917.46 32153 1.63 2917.46 2917.46 1.35
gr24 1321.2 1415.96 0.11 1223.2 1355.58 3.28 1192 1209.4 3.44
;%: berlin52 | 7430.3 8451.91 1.12 741751 8396.11 15.23 6823.71 7615.89 16.02
= pr76 114354.58 | 129496.82 3.55 114338.97 129092.52 3243 105505.15 | 115073.53 | 32.38
kroB100 | 25714.14 28984.00 3250.44 | 25656.22 28905.97 54.25 22864.09 25494.91 57.33
ch130 7539.99 8125.27 19.20 7386.75 8080.77 91.05 6479.99 7066.76 104.40
&'T a280 3385.18 3925.86 229.76 3365.14 3915.04 429.49 3505.92 3889.82 399.60
=)
i us74 50680.81 57806.73 2304.04 | 51202.02 59285.39 2173.12 | 50305.99 | 59253.18 1846.08
Average 26667.95 | 30177.73 726.03 26688.40 30280.83 350.06 24949.28 27815.12 | 307.57
Table 6:0btained results for the SL scenario and o. = 0.2.
Simple Local Search Tabu Search NSRS
Instance Best AVG Time Best AVG Time Best AVG Time
burmal4d 3240.65 | 3586.59 0.03 3199.23 3403 1.33 3199.23 3199.23 1.32
gr24 1385.2 1483.64 0.11 1348.8 14415 3.42 1287 1308.56 3.49
93(':) berlin52 | 3199.23 9074.19 111 8163.66 8869.50 16.02 7596.96 8124.41 15.80
= pr7é 128209.56 | 141807.62 | 3.55 128209.56 140887.07 32.47 118403.42 129977.49 | 31.95
kroB100 | 28427.45 30834.64 8.32 28413.75 30692.12 54.25 25117.7 27947.15 54.98
ch130 7887.88 8591.53 19.83 7887.69 8586.79 104.48 6966.53 7753.95 97.31
g a280 4031.26 4396.67 230.86 4031.26 4391.00 443.05 3586.95 3390.95 427.27
%)
® us74 55569.24 | 62359.33 | 2352.87 | 56557.6 64729.32 2151.35 | 55569.24 62956.00 1837.54
Average 28993.80 | 32766.77 | 327.08 29726.44 32875.04 350.79 27715.87 30582.22 | 308.71

Table 7:Obtained results for the SL scenario and a. = 0.4.
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Simple Local Search Tabu Search NSRS
Instance Best AVG Time Best AVG Time Best AVG Time
burmal4d | 3422.18 3706.68 0.034 3422.18 3583.39 1.98 3422.18 3422.73 1.89
gr24 1526.4 1598.08 0.63 1429.6 1512.80 5.77 1375.0 1394.0 7.15
S%) berlin52 8997.58 10279.99 173 8703.78 10136.31 22.76 8153.27 8727.42 23.96
= pr76 135880.57 | 154672.92 | 4.53 134555.88 | 150206.56 | 44.42 128004.44 135461.46 | 44.76
kroB100 | 30006.92 34377.05 14.42 29912.70 33480.32 91.68 27124.35 31273.28 81.89
ch130 | 8606.98 9255.82 25.81 8606.98 9258.11 131.37 8255.19 9152.87 123.15
g a280 3992.80 4460.77 359.16 3990.00 4414.92 634.10 3907.38 444241 567.91
® us74 61703.38 66467.76 2459.69 | 64334.75 69023.15 9101.52 63666.32 68857.05 1902.89
Average 31767.10 35602.38 358.25 31869.48 35201.94 1254.2 30488.51 32841.40 | 344.2
Table 8: Obtained results for the SL scenario and a. = 0.6.
Simple Local Search Tabu Search NSRS
Instance Best AVG Time Best AVG Time Best AVG Time
burmal4d | 352245 3819.53 0.031 3522.45 3590.30 1.92 3522.45 3522.45 184
gr24 1516.8 1614.69 0.18 1464.2 1525.46 7.16 1452.4 1462.84 7.46
93(/: berlin52 9685.86 10538.14 1.40 9658.85 10315.08 19.87 8828.43 9642.35 21.09
= pr7é 147901.68 | 166813.99 | 451 147901.68 | 164017.24 | 40.53 13531250 | 146436.27 | 41.16
kroB100 | 31403.37 34123.11 11.97 31108.09 33867.94 85.82 29894.98 34033.76 82.88
ch130 9013.38 10333.39 25.82 9013.38 10223.45 124.05 8462.70 9923.82 119.07
g a280 4301.46 4734.76 322.59 4232.38 4674.60 620.89 4365.87 4655.54 556.34
® us74 69125.64 | 73793.59 2522.82 | 73106.82 77905.92 2225.65 69042.3 75923.32 1855.22
Average 34558.83 38221.40 361.16 35000.98 38264.99 390.73 32610.20 35700.04 | 335.63

Table 9:Obtained results for the SL scenario and a. = 0.8.
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Simple Local Search Tabu Search NSRS
Instance Best AVG Time Best AVG Time Best AVG Time
burmal4 3527.47 3625.07 0.02 3527.47 3607.38 1.15 3527.47 3527.47 1.09
gr24 1505.8 1593.98 0.07 1469.6 1563.8 2.36 1469.6 1472.1 2.3267
s%: berlin52 | 8914.31 9847.79 0.86 8914.31 9760.20 12.06 8265.47 8419.37 12.7749
= pr76 139511.24 | 165427.28 | 2.4368 139452.73 | 164367.95 | 20.31 127465.15 | 132961.69 21.42
kroB100 | 33366.75 42722.15 4.403 33366.75 42281.59 26.48 30790.97 35638.47 25.87
ch130 9534.59 13242.91 1213.33 9534.59 11206.32 58.80 7243.15 9120.03 59.53
5 a280 5245.01 6051.29 129.80 5209.87 5938.97 244.64 4342.99 5183.33 235.53
%)
® us74 79208.72 98980.19 1225.02 102933.65 | 99334.24 | 863.73 83330.89 90340.10 824.24
Average 35101.73 42686.33 321.99 38051.12 | 42257.56 153.69 33304.46 35832.82 147.85
Table 10:Obtained results for the SQ scenario and o = 0.2.
Simple Local Search Tabu Search NSRS
Instance Best AVG Time Best AVG Time Best AVG Time
burmal4 3573.87 3851.72 0.02 3573.87 3851.72 1.12 3527.47 3727.18 111
gr24 1561 1649.76 0.07 1542.2 1618.6 2.40 1542.2 1557.04 2.43
;%: berlin52 | 9418.44 10598.49 0.83 9334.81 10354.40 11.01 8621.69 9153.18 12.57
= pr76 151865.95 | 174004.59 221 144409.6 165058.88 | 20.11 128385.64 | 137694.95 | 21.06
kroB100 | 36376.67 43551.21 3.97 34127.29 41431.53 25.75 29568.58 35312.46 25.71
ch130 9618.51 10787.56 12.69 9590.7 10762.68 58.60 T747.34 9843.57 59.58
E a280 5156.04 6193.513 123.03 5150.89 6115.86 238.32 4463.39 5369.33 231.68
«Q
i us74 90602.73 101973.23 1214.41 106121.1 113622.03 | 888.40 84512.8 88741.23 843.76
Average 38521.65 | 44076.26 169.65 39231.30 | 44101.96 155.71 33546.03 36424.87 149.74

Table 11:Obtained results for the SQ scenario and o. = 0.4.
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Simple Local Search Tabu Search NSRS
Instance Best AVG Time Best AVG Time Best AVG Time
burmal4 | 397129 | 4102.08 0.019 3971.29 4094.06 152 3971.29 3971.29 152
gr24 1636.2 1732.84 0.078 1614.8 1665.14 3.12 1614.8 1626.43 3.01
5": berlin52 | 941757 | 1057345 1.08 9321.80 1027855 16.62 8843.88 9317.89 16.81
= pr76 15259451 | 17771326 | 2.60 15250451 | 173164.98 | 26.18 138038.27 | 150099.70 | 29.38
kroB100 | 40282.16 | 47467.99 5.72 39917.69 46866.45 37.48 3247220 | 4460640 | 36.47
ch130 | 1005642 | 11646.47 18.11 9134.04 11042.01 90.94 7522.39 9273.20 93.88
(g a280 | 476632 | 6151.76 171.06 4725.97 6019.96 338.34 4112.49 594861 | 30157
i us74 103085.74 | 112848.79 1365.88 | 10308574 | 112848.79 1336.46 | 94888.29 100004.43 | 1317,50
Average 40726.27 | 4652058 | 19556 | 4054573 | 45747.49 | 231.33 | 36432.95 | 40605.99 | 225.01
Table 12:Obtained results for the SQ scenario and a = 0.6.
Simple Local Search Tabu Search NSRS
Instance Best AVG Time Best AVG Time Best AVG Time
burmal4d | 419319 4339.30 0.026 4193.19 4232.11 1.96 419319 | 4193.19 1.83
gr24 1676.6 1783.1 047 167858 1730.41 4.02 1676.6 1676.6 4.10
93”: berlin52 | 10139.75 10798.92 1.06 10079.23 10580.86 15.20 9267.26 1012398 | 17.22
- pr76 17121355 | 18651457 | 2.95 158178.48 | 18269514 | 28.80 14110389 | 15613045 | 30.93
kroB100 | 4266531 | 49545.13 5.69 4247431 | 48431.94 4213 3981315 | 4720163 | 39.96
ch130 | 1004012 | 1172295 17.65 9736.86 11347.85 88.26 8664.12 | 1063260 | 77.65
g a280 5217.23 6419.08 181.96 | 5098.16 6316.01 32720 | 472219 | 565111 | 326.25
’ us74 10743878 | 11445041 | 132162 | 10743878 | 114459041 | 132944 | 88147.05 | 99217.15 | 1322.83
Average 4407306 | 48197.80 | 10142 | 4235972 | 4747421 | 22062 | 37198.43 | 41853.33 | 227.59

Table 13:Obtained results for the SQ scenario and o. = 0.8.

Tables from 02 to 13 present the results obtained from executing our algorithms on the

selected set of benchmark instances. When applying the Simple Local Search algorithm to

instances such as burmal4, grl4, berlin52, and pr76, we observe promising results. In contract,

in the instances kroB100, ch130, a280, and u574, the SLS produces lower-quality solutions

compared to TS and NSRS. The Tabu Search algorithm obtained results that were generally
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comparable to, or slightly better than, those obtained with SLS. For Neighborhood Search with
Random Selection, we observe that it consistently produces better results than both SLS and
TS on most instances, with the exception of burmal4, where all three algorithms obtain the

same solution.

Regarding the running time, the SLS proved to be the fastest in scenarios ST and SL, and SQ
for all tested instances whereas TS and NSRS required more time to converge. However, for
the u574 instance, both TS and NSRS were faster than Local Search in specific cases-namely
scenario ST with o= 0.6, scenario SL with a.=0.2, 0.4, 0.8, and scenario SQ with a = 0.4, 0.6.

To sum up, in general, from the obtained results we can see that the SLS was the faster method
and it returns good quality solutions. In addition, we can see that the TS and the NSRS obtain
better results than the SLS however they need more running times. Comparing NSRS to TS,
we can see that NSRS obtains better results than TS without a considerable difference in the
running times. From the obtained results, we can assume that the results of NSRS are better
than those obtained by TS and SLS, and therefore we will use its results in our comparison with

the literature.

4.4.3 Comparison with literature

In this subsection, we compare the results obtained by the NSRS algorithm against several
state-of-the-art heuristics presented in [19], namely: BRKGA, M-VND, M-CNS, and Local
Solver. It worth mentioning that we compare our results to only methods from [19], because
unfortunately the detailed results of the methods proposed in [20] were not available. In tables

from 14 to 25, the columns are defined as follows:

e Best-known: reports the value of the best known solution found in the literature for each

instance.

e %: indicates the percentage gap between the solution obtained by the algorithm and the
Best-known value.

e Time: represent the average computational time (in seconds) requires to reach the
reported solution(s).

e AVG: shows the average value of the solutions obtained over multiple runs.

e Best: provides the best solution found by the NSRS for each instance.

In addition, the star symbol (*) indicates that the algorithm successfully found the Best-known

solution. Also, For each method, the percentage gap is calculated using the following formula:
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value of solution — value of Best_known

Gap (%) = x = value of Best_known * 100
Best- BRKGA M-VND M-CNS LS NSRS

Instance known % Time % Time [ % Time | % | Time Best AVG % Time
burmal4 3680.20 * 0 * 0 * 0 * 11 3737.54 3772.61 1.55 1.22
gr24 1469.60 * 1 * 13 * 9 * 11 1469.6 1475.28 * 2.38

g berlin52 8564.80 11.26 1014 * 114 * 334 * 11 8570.24 8915.55 4.09 9.77
= pr7é 121663.80 23.04 2438 2.09 51 4.18 148 * 1735 123226.15 128342.53 1.28 21.14
kroB100 | 27320.00 22.60 3016 5.09 103 6.67 367 * 3932 28620.32 31278 4.75 26.69
ch130 7592.80 152.58 2 5.95 919 * 1758 * 1758 7796.88 8377.33 2.68 47.2
g a280 3456.60 212.09 4 14.85 306 * 3662 * 3662 3665.51 3918.07 6.04 199.99

<
® us74 51889.80 323.94 11 17.73 42 * 3797 * 3797 56908.06 61149.25 9.67 898.17
Average 28204.7 93.18 810.75 5.71 1935 | 1.35 | 1259.37 0 | 1864.6 29249.28 30905.57 3.75 150.82
Table 14:Comparison Obtained results for the ST scenario and o = 0.2,
Best- BRKGA M-VND M-CNS LS NSRS

Instance known % Time % Time | % | Time % [ Time Best AVG % Time

burmal4 3891.40 * 0 * 0 * 0 * 11 3943.82 3943.82 1.34 1.22

gr24 1542.20 * 24 * 75 * 14 * 11 1542.2 1556.82 * 2.49

g berlin52 9154.60 4.99 513 * 88 0.08 197 * 236 9174.38 9534.812 | 0.21 10.12
- pr76 130948.00 18.38 3139 0.11 476 2.27 298 * 1600 131225.87 | 137088.06 | 0.21 20.54
kroB100 29295.80 16.16 2726 5.04 239 5.04 199 * 518 30944.71 34045.28 | 5.62 26.03
ch130 8138.60 143.02 2 8.66 513 * 2085 * 2085 8463.7 9493.31 3.99 43.59

5 a280 3770.20 192.45 5 13.67 2329 * 2332 * 2332 3986.63 4312.86 5.74 21251

a

i us74 54591.40 309.45 10 15.61 84 * 3842 * 3842 62237.14 66330.58 | 14.0 821.48
Average 30166.52 85.55 802.3 5.38 4755 | 0.92 | 1120.87 | 0 | 1329.37 | 31439.80 33288.19 | 3.88 141.12

Table 15:Comparison Obtained results for the ST scenario and o. = 0.4.
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Best- BRKGA M-VND M-CNS LS NSRS
Instance | Known % [Time| % [ Time | % | Time [% | Time Best AVG % | Time
burmal4 4102.60 * 0 * 0 * 0 * 11 4150.10 4150.10 1.15 1.42
gr24 1614.80 * 67 * 106 * 13 * 22 1614.8 1627.17 * 3.88
g berlin52 9744.40 6.69 1537 * 3 0.17 91 * 416 0889.63 10152.87 1.49 16.048
- pr76 139383.00 | 14.93 | 3243 | 1.19 274 3.01 164 * 2174 14162029 | 14846657 1.60 29.30
kroB100 31161.20 18.15 2420 3.75 498 2.95 735 * 2061 32410.04 35399.54 4.00 33.62
ch130 8637.20 135.94 2 6.28 20 * 3865 * 3865 0626.22 10313.34 11.45 62.49
5 a280 4027.00 179.71 4 10.22 2638 * 3752 * 3752 431254 4653.69 7.09 264.97
<c
® us74 60074.40 278.04 11 9.60 1488 * 3358 * 3358 64743.83 70520.35 7.77 1481.84
Average 32343.07 79.18 910.5 3.88 628.37 | 2.04 | 14972 | 0 | 1957.37 33545.93 35660.45 431 236.69
Table 16:Comparison Obtained results for the ST scenario and o. = 0.6.
Best BRKGA M-VND M-CNS LS NSRS
Instance -known % Time % Time % Time | % | Time Best AVG % Time
burmal4 | 4270.80 * 0 * 0 * 0 * 11 4290.65 4290.65 046 | 1.85
gr24 1676.60 * 2 * 53 * 23 * 11 1676.6 1676.6 * | 476
S%: berlin52 10321.40 4.79 859 0.12 4 0.02 182 * 2704 10328.04 10711.30 0.06 | 15.00
= pr7é 148434.8 10.71 3287 1.57 50 0.79 105 * 2907 148849.26 | 15647786 | 0.27 | 25.84
kroB100 33131.00 10.31 2672 4.42 209 3.57 218 * 1025 35510.81 38935.05 7.18 | 34.05
ch130 9162.40 69.41 3594 5.50 339 * 3730 * 3730 9650.92 10857.51 5.33 | 5547
(g a280 / / / / / / / / 455466 | 4803.08 * | 26169
i us74 64653.00 | 256.64 11 7.99 1084 * 2051 * 2051 68688.43 75998.76 6.24 | 1448.79
Average 33956.25 | 43.98 1489.2 | 245 | 24842 | 0.54 | 901.28 0 1777 3544367 | 37968.85 2.44 | 230.93
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Best BRKGA M-VND M-CNS LS NSRS
Instance -known % Time | % Time % Time | %| Time Best AVG % Time
burmal4 2832.00 * 0 * 0 * 0 * 11 2917.46 2917.46 3.01 | 135
gr24 1163.60 * 6 * 40 * 18 * 169 1192.00 1209.4 244 | 3.44
g berlin52 6700.80 6.95 572 1.86 93 6.36 74 * 3346 6823.71 7615.89 1.83 | 16.02
- pr76 100117.60 | 18.08 994 1.34 823 12.76 42 * 597 105505.15 | 115073.53 | 5.38 | 32.38
kroB100 | 21969.80 23.33 0 4.44 1970 4.30 305 * 405 22864.09 2549491 418 | 57.33
ch130 6101.20 6.62 1 6.53 772 * 3256 * 3256 6479.99 7066.76 6.20 104.40
g a280 2923.80 14.48 4 7.00 2941 * 1927 * 1927 3505.92 3889.82 19.90 | 399.60
s
® us74 43541.60 | 40.02 10 2.64 3243 * 3380 * 3380 50305.99 | 59253.18 15.53 | 1846.08
Average 23168.80 13.68 198.3 | 2.97 | 1235.25 2.92 112525 | 0| 1636.37 | 24949.28 27815.11 7.30 | 307.57
Table 18:Comparison Obtained results for the SL scenario and o. = 0.2.
Best- BRKGA M-VND M-CNS LS NSRS
Instance known ™0™ T Time | % | Time | % | Time | % | Time | Best AVG % | Time
burmal4 3136.40 * 0 * 0 * 0 * 11 3199.23 3199.23 2.00 1.32
gr24 1256.00 4.95 34 * 39 * 30 * 135 1287 1308.56 2.46 3.49
g berlin52 7340.40 6.92 1115 2.24 843 4.64 275 * 3470 7596.96 8124.41 10.68 15.80
= pr76 113871.4 | 11.50 1448 4.02 558 6.79 503 * 3447 118403.4 | 129977.49 | 3.97 31.95
kroB100 24093.40 20.36 0 3.34 1448 3.38 357 * 2873 25117.7 27947.15 4.25 54.98
ch130 6738.40 5.26 1 3.74 2184 * 2163 * 2163 6966.53 7753.95 3.38 97.31
5 a280 3284.60 9.07 3 1.78 3529 * 3628 * 3628 3586.95 3390.95 9.20 427.27
S
® us74 47989.60 | 34.33 9 * 376 3.65 2231 3.65 2231 55569.24 | 62956.00 | 15.76 | 1837.54
Average 25963.77 11.54 326.25 1.89 | 112212 | 2.30 | 1148.37 | 0.45 | 2244.7 | 27715.87 | 30582.21 6.46 308.70

Table 19:Comparison Obtained results for the SL scenario and o. = 0.4.
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Best- BRKGA M-VND M-CNS LS NSRS
Instance known % | Time [ % [ Time | % [ Time | % [ Time | Best AVG % | Time
burmal4 3370.20 * 0 * 0 * 0 * 11 3422.18 3422.73 154 1.89
gr24 1334.20 2.59 63 * 39 * 19 * 56 1375.0 1394.0 3.05 7.15
ggc? berlin52 7979.00 6.10 894 2.08 155 2.83 183 * 1476 8153.27 8727.42 2.18 23.96
= pr76 124700.0 8.40 1180 2.44 158 1.87 213 * 11 128004.4 | 135461.46 2.64 44,76
kroB100 25839.00 19.56 436 4.67 2220 4.02 1080 * 811 27124.35 31273.28 4.97 81.89
ch130 7209.60 6.54 1 5.01 930 * 2569 * 2569 8255.19 9152.87 14.50 123.15
5 a280 3513.60 8.77 3 0.82 2206 * 3876 * 3876 3907.38 4442 .41 11.20 567.91
S
® us74 51394.80 32.22 10 * 2528 5.90 1408 5.90 1408 63666.32 | 68857.05 23.87 1902.8
Average 28167.55 10.52 323.37 1.87 1029.5 1.82 | 1168.51 | 0.73 | 1277.25 | 30488.51 | 32841.40 7.99 344.18
Table 20:Comparison Obtained results for the SL scenario and o. = 0.6.
Best- BRKGA M-VND M-CNS LS NSRS
Instance known % Time | % Time % Time % Time Best AVG % Time
burmal4 3468.00 * 0 * 0 * 0 * 11 3522.45 3522.45 1.57 1.84
gr24 1398.00 2.60 1 * 47 * 19 * 56 14524 1462.84 3.89 7.46
;%: berlin52 8526.20 0.55 2100 0.58 169 2.50 171 * 2147 8828.43 9642.35 3.54 21.09
= pr7é 129003.0 17.32 0 4.69 1058 4.22 264 * 3064 135312.5 146436.27 4.89 41.16
kroB100 27375.6 19.83 0 6.02 910 3.99 712 * 2963 29894.98 34033.76 9.20 82.88
ch130 7806.60 5.92 1 1.80 2247 * 4000 * 4000 8462.70 9923.82 8.40 119.07
E a280 3758.80 7.84 4 0.87 3612 7.00 1566 7.00 1566 4365.87 4655.54 16.15 556.34
S
® us74 62743.6 19.74 12 * 3116 9.75 2175 9.75 2175 69042.3 75923.32 34.33 | 1855.22
Average 30509.97 | 9.22 | 26475 | 1.74 | 1394.87 | 3.43 | 1113.37 | 2.09 | 1997.75 | 32610.20 [ 35700.04 [ 9.3 | 335.63

Table 21:Comparison Obtained results for the SL scenario and o. = 0.8.
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Best- BRKGA M-VND M-CNS LS NSRS
Instance known % Time % Time % Time | % | Time Best AVG % Time
burmal4d | 3480.00 * 0 * 0 * 0 * 11 3527.47 3527.47 1.36 1.09
gr24 1469.60 * 1 * 13 * 10 * 11 1469.6 1472.1 * 2.32
ggc? berlin52 7956.20 7.90 583 0.17 235 1.08 50 * 1960 8265.47 8419.37 3.88 12.77
- pr76 122930.2 11.24 1395 1.56 170 3.69 351 * 1938 127465.15 | 132961.69 | 3.68 21.42
kroB100 | 26494.20 | 14.07 3600 5.71 1038 | 413 | 1238 * 1487 30790.97 | 35638.47 | 16.21 | 25.87
ch130 6982.20 59.55 1 3.92 114 * 3876 * 3876 7243.15 9120.03 3.74 59.53
5 a280 3143.20 75.69 3 17.27 | 2785 * 1825 * 1825 4342.99 5183.33 | 38.17 | 235.53
<
i us74 48388.60 | 114.65 7 3242 | 550 * 2479 * 2479 83330.89 | 90340.10 | 72.21 | 824.24
Average 27605.52 35.38 698.75 7.63 613.12 | 1.11 | 1228.62 0 | 1698.37 | 33304.46 35832.82 19.89 147.84
Table 22:Comparison Obtained results for the SQ scenario and o. = 0.2.
Best- BRKGA M-VND M-CNS LS NSRS
Instance known % Time % Time % Time | % Time Best AVG % Time
burmal4 | 3690.00 * 0 * 0 * 0 * 11 3527.47 3727.18 | -4.40 1.11
gr24 1542.20 * 3 * 13 * 9 * 11 1542.2 1557.04 * 2.43
2 | verlin52 | 8419.80 9.92 571 0.25 9 0.64 42 * 45 8621.69 9153.18 2.39 12.57
o
= pr76 1287200 | 952 | 2322 * 129 3.05 35 0.09 | 2850 | 128385.64 | 137694.95 | -0.25 | 21.05
kroB100 | 27893.40 | 7.39 | 2048 | 4.79 159 6.25 | 1977 * 1352 29568.58 | 35312.46 6 25.71
ch130 7490.60 53.60 1 2.06 1596 * 766 * 766 7747.34 9843.57 3.42 59.58
g a280 3512.00 | 60.83 3 6.96 1344 * 2637 * 2637 4463.39 5369.33 | 27.08 | 231.68
<
i us74 54956.00 | 91.28 8 16.43 | 1080 * 1217 * 1217 84512.8 | 88741.23 | 53.78 | 843.76
Average 29528 29.06 | 6195 | 3.81 | 541.25 | 1.24 | 835.37 | 0.01 | 1111.12 | 33546.13 | 36424.86 | 11.0 | 149.73

Table 23:Comparison Obtained results for the SQ scenario and o. = 0.4.
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Best- BRKGA M-VND M-CNS LS NSRS
Instance Known ™™ T Time | % | Time | % | Time | % | Time Best AVG % | Time
burmal4 3900.00 * 0 * 0 * 0 * 11 3971.29 3971.29 1.8 1.52
gr24 1614.80 * 6 * 13 * 10 * 22 1614.8 1626.43 * 3.01
(3,) berlin52 8843.20 7.92 591 0.22 200 0.89 214 * 552 8843.88 9317.89 0.007 16.81
5
= pr76 133609.40 | 7.17 1282 0.37 266 2.28 38 * 822 138038.27 | 150099.70 3.31 29.38
kroB100 29291.80 8.82 3390 4.23 261 3.44 628 * 3797 32472.20 44606.40 10.8 36.47
ch130 7709.20 53.98 1 1.34 1294 * 124 * 124 7522.39 9273.20 -2.42 93.88
g a280 3706.40 55.80 3 3.76 2912 * 3076 * 3076 4112.49 5948.61 10.95 301.57
S
® us74 56628.80 | 88.12 7 15.29 668 * 4045 * 4045 94888.29 100004.43 | 67.56 1317,5
Average 30662.95 | 27.72 660 3.15 701.75 | 0.82 | 1016.87 0 | 1556.12 | 36432.95 40605.99 11.50 225.01
Table 24:Comparison Obtained results for the SQ scenario and o. = 0.6.
Best- BRKGA M-VND M-CNS LS NSRS
Instance known % Time % Time % Time % | Time Best AVG % Time
burmal4 4110.00 * 0 * 0 * 0 * 11 4193.19 4193.19 2.02 1.83
gr24 1676.60 * 2 * 16 * 10 * 11 1676.6 1676.6 * 410
%) berlin52 9266.60 8.92 640 0.21 24 0.21 48 * 112 9267.26 10123.98 0.007 17.22
5
= pr7é 139551.80 | 8.35 1458 0.94 133 2.90 128 * 1949 141103.89 156130.45 11 30.93
kroB100 | 30956.80 4.49 3480 4.25 1568 3.93 1639 * 416 39813.15 47201.63 28.60 39.96
ch130 7974.00 48.75 820 2.15 1223 * 3482 * 3482 8664.12 10632.60 8.65 77.65
g a280 3713.40 58.91 3 8.00 822 * 4000 * 4000 4722.19 5651.11 27.16 326.25
S
® us74 62333.20 73.29 8 551 1629 * 1927 * 1927 88147.05 99217.15 4141 1322.83
Average 32447.8 25.33 801.37 | 2.63 | 676.87 0.88 | 1404.25 0 1488.5 37198.43 41853.33 13.61 227.59

Table 25:Comparison Obtained results for the SQ scenario and a. = 0.8.

In Tables from 14 to 25, we can observe that the solutions obtained by NSRS are very
competitive compared to those reported in the literature. If we examine the results by scenario
and by o, and by calculating the difference between the average GAP values achieved by NSRS
and those achieved by BRKGA, M-VND, M-CNS and LS respectively, we can see that :
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> In the ST scenario with a = 0.2, NSRS achieved an average GAP of 3.75%, which is
close to both M-CNS (1.35 %) and LS (0%). It performed better than M-VND (by
5.71%) and outperformed BRKGA (93.18 %).

» In the ST scenario with o = 0.4, NSRS achieved an average GAP of 3.88%, which is
close to both M-CNS (0.92%) and LS (0%). It performed better than M-VND (5.38%)
and outperformed BRKGA (85.55%).

» In the ST scenario with o = 0.6, NSRS achieved an average GAP of 4.31%, which is
close to both M-CNS (2.04%), LS (0%), and M-VND (3.88%). Additionally, it
outperformed BRKGA (79.18%).

» In the ST scenario with o = 0.8, NSRS achieved an average GAP of 2.44%, which is
close to both M-CNS (0.54%) and LS (0%). It performed better than M-VND (2.45%)
and outperformed BRKGA (43.98%).

» In the SL scenario with o = 0.2, NSRS achieved an average GAP of 7.30%, which is
close to both M-CNS (2.92%), LS (0%), and M-VND (2.97%). Additionally, it
outperformed BRKGA (13.68%).

» In the SL scenario with o = 0.4, NSRS achieved an average GAP of 6.46%, which is
close to both M-CNS (2.30%), LS (0.45%), and M-VND (1.89%). Additionally, it
outperformed BRKGA (11.54%).

» In the SL scenario with o = 0.6, NSRS achieved an average GAP of 7.99%, which is
close to both M-CNS (1.82%), LS (0.73%), and M-VND (1.87%). Additionally, it
outperformed BRKGA (10.52%).

» In the SL scenario with o = 0.8, NSRS achieved an average GAP of 9.3%, which is
close to both M-CNS (3.43%), LS (2.09%), and M-VND (1.74%). Additionally, it
outperformed BRKGA (9.22%).

» In the SQ scenario with o= 0.2, NSRS achieved an average GAP of 19.89%, which is
significantly different from M-CNS (1.11%) and LS (0%), but close to M-VND
(7.63%). Additionally, it outperformed BRKGA (35.38%).

» In the SQ scenario with o = 0.4, NSRS achieved an average GAP of 11.0%, which is
close to both M-CNS (1.24%), LS (0.01%), and M-VND (3.81%). Additionally, it
outperformed BRKGA (29.06%).

» In the SQ scenario with a = 0.6, NSRS achieved an average GAP of 11.50%, which is
close to both M-CNS (0.82%), LS (0%), and M-VND (3.15%). Additionally, it
outperformed BRKGA (27.72%).
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» In the SQ scenario with a = 0.8, NSRS achieved an average GAP of 13.61%, which is
close to both M-CNS (0.88%), LS (0%), and M-VND (2.63%). Additionally, it
outperformed BRKGA (25.33%).

We present comparative diagram illustrating the performance of our best-performing
algorithm, NSRS, in comparison with results reported in the literature. The evaluation is

based on the average gap between solutions.

ST scenario with all o
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Figure 29: Comparison with the literature for the ST scenario across a// a values.

These plots show that the results of the NSRS algorithm are more competitive than those of
M-VND, M-CNS, and LS, and it widely outperforms the results of BRKGA.
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SL scenario with all o
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Figure 30:Comparison with the literature for the SL scenario across all o. values
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Figure 31:Comparison with the literature for the SQ scenario across all a values.

In scenarios SL and SQ, the quality of the NSRS results slightly decreases; however, it still
outperforms BRKGA.
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Regarding execution time, we can observed from Tables (14-25) that the average execution
time of the NSRS algorithm is lower than average running times of BRKGA, M-VND, M-CNS

and LS in all scenarios and a.

Instance | Scenario | Best-know BRKGA | M-VND | M-CNS | LS NSRS
% % % % Best %
burmal4 SQ 0.4 3690.00 * * * * 3527.47 | -4.40
gr24 ST 0.2 1469.6 * * * * 1469.6 *
ST 04 1542.20 * * * * 1542.2 *
ST 0.6 1614.80 * * * * 1614.80 *
ST 0.8 1676.60 * * * * 1676.60 *
SQ 0.2 1496.60 * * * * 1496.60 *
SQ 0.4 1542.20 * * * * 1542.20 *
SQ 0.6 1614.80 * * * * 1614.80 *
SQ 0.8 1676.60 * * * * 1676.60 *
pr76 SQ 04 128720.0 9.52 * 3.05 0.09 | 128385.64 | -0.25
ch130 SQ 0.6 7709.20 53.98 1.34 * * 7522.39 | -2.42
a280 ST 0.8 / / / / / 4554.66 *

Table 26:Comparison of the best obtained results with those from the literature.

In table 26, we present the instances and the values of obtained solutions where our NSRS

finds the best-known solutions of the literature or reports new best-known solutions. So, in the

instances burmal4 and pr76 in the SQ scenario with a = 0.4, ch130 in the SQ scenario with

a = 0.6, and a280 in the ST scenario with o = 0.8 yielded solutions that outperformed those
obtained by BRKGA, M-VND, M-CNS, and LS .

For example, in the case of burmal4 under the SQ scenario with a = 0.4, our approach

consistently outperformed the algorithms BRKGA, M-VND, M-CNS, and LS.

Furthermore, in some cases, our method matched the best-known results for the gr24 instance,

where the solutions obtained in both ST and SQ scenarios for all values of a, were identical to

those produced by BRKGA, M-VND, M-CNS, and LS.
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4.5 Conclusion

In this chapter, we presented the results of the experiments of our proposed methods using a
benchmark dataset from the literature. First, we explained the process by which the instances
of problem were generated. Then, we presented few representative examples of these instances.
Next, we provided the parameters and technical details of the implementation we used. Also,
we described the structure of a solution as defined in our approach. In our experiments, first,
we compared the results of the proposed methods, and the NSRS reported better results than
the SLS and the TS. After that, we compared the obtained results of NSRS with those reported
by the state-of-the-art methods. In the comparison with the literature, we found that the NSRS
was very competitive comparing to the four methods of the literature. In addition, it was able
to reach 8 best known solutions and to find new best-known solutions for 4 instances. Therefore,

we assume that the NSRS found very promising results.
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General conclusion

In this thesis, we proposed algorithms to solve the Hub Location Routing Problem (HLRP).
The main objective was to determine an optimal set of hubs to be installed, organize local routes
between these hubs and non-hubs, and design an efficient inter-hub route. This should be done

while minimizing the total cost, including local transportation, and inter-hub transport costs.

In the first chapter, we presented the hub location problem and its main variants, including the
Single-Allocation Hub Location Problem, the Multiple Allocation p-Hub Median Location
problem, and p-Hub Center Location Problem. Also, we highlighted their real-world
applications. In addition, we introduced routing problems such Traveling Salesman Problem
(TSP) and the Vehicle Routing Problem (VRP), along with their main variants. we then

provided description of the Hub Location Routing Problem and some of its key variants.

In the second chapter, we provided a general overview of combinatorial optimization
problems. We introduced exact methods, including the backtracking algorithm and the branch
and bound method. We also described commonly used heuristic and metaheuristic approaches,

and discussed several hybridization techniques.

In the third chapter, we defined the specific HLRP variant addressed in this work and
reviewed the most related studies in the literature that dealt with it. Then, we described the
algorithms we developed to solve the problem, namely: a Local Search algorithm, a Tabu

Search algorithm, and Neighborhood Search with Random Selection.

In the fourth chapter, we assessed the performance of our algorithms using benchmark
instances from the literature. The results obtained were promising and demonstrated
competitive performance compared to existing approaches in the literature.

Finally, we are looking forward to:

e Study the application of population-based metaheuristics on the HLRP, such as Cuckoo

search method.

e Study the hybridization of the proposed methods in this thesis with other optimization

methods.

e Extend the methods proposed to solve more hard and realistic variants of the HLRP.
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