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Abstract 

    In this thesis, we propose three algorithms to solve the Hub Location Routing 

Problem: Simple Local Search, Tabu Search and Neighborhood search with Random 

Selection. In this problem, the goal is to select a subset of hubs from a set of candidate 

ones, to construct local routes that start and end at the same hub to serve not-hub nodes 

and to create an inter-hub route. The objective is to minimize the total transportation 

cost, including transportation cost of the local routes and the transportation cost of the 

inter-hubs route. Mainly, the proposed algorithms start with an initial random solution 

and keep improve it by exploring neighborhood solutions until the stopping criterion is 

met. The experiments showed that the three proposed methods obtained promising and 

competitive results comparing to the literature. 

 

    Key words: Hub Location Routing Problem, Local Search, Tabu Search, Neighborhood 

Search, metaheuristic, Hub location problem. 

. 

 ملخص 

: البحث المحلي البسيط، تحديد مواقع المراكز و توجيه المسارا ت، نقترح ثلاث خوارزميات لحل مشكلة  مذكرةفي هذه ال   

  راكز والبحث المحظور، والبحث عن الجوار مع الاختيار العشوائي. الهدف في هذه المشكلة هو اختيار مجموعة فرعية من الم

، وإنشاء  ركزيةلخدمة العقد غير الم ركزالمرشحة، وإنشاء مسارات محلية تبدأ وتنتهي في نفس الم راكزمن مجموعة من الم

الم النقل الإجمالية، بما في ذلك تكلفة نقل المسارات المحلية وتكلفة نقل مسار بين  راكزمسار بين  . الهدف هو تقليل تكلفة 

استكشاف حلول الجوار  . بشكل أساسي، تبدأ الخوارزميات المقترحة بحل عشوائي أولي وتواصل تحسينه من خلال  مراكزال

 حتى يتم استيفاء معيار التوقف. أظهرت التجارب أن الطرق الثلاثة المقترحة قد حققت نتائج واعدة وتنافسية مقارنةً بالأدبيات. 

 

البحث في الأحياء    ,البحث المحظور  ،  البحث المحلي  ,تحديد مواقع المراكز و توجيه المسارا تمشكلة    :الكلمات المفتاحية    

 .تحديد مواقع المراكزمشكلة  ،الطرق التقريبية ،يمع الإختيار العشوائ
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General introduction 

   Location and routing problems occupy a central place in the field of combinatorial 

optimization due to their significant practical relevance in various sectors, including: logistics, 

telecommunication, and transportation systems, etc. The optimal selection of facility location 

(such as hubs, distribution centres, or logistics platforms) and the design of efficient routing 

plans have a direct impact on the operational and economic performance of the considered 

networks. Poor hub placement or suboptimal routing may result in high transportation costs, 

low customer satisfaction, and inefficient use of resources, etc. 

   The Hub Location Routing Problem (HLRP) is one of the most complex variants of the Hub 

location problem. It involves partitioning the nodes of a graph into local routes, where each 

route is associated with a single hub. Each local route starts and ends at its associated hub, while 

a separate circular route connects all the selected hubs. This problem requires two levels of 

decision-making: (1) selecting the most appropriate set of hubs, which serve as consolidation 

and redistribution points for flows between customers, and (2) organizing efficient local routes 

around each hub to serve the assigned non-hub nodes. The objective is to minimize the overall 

cost of the system, including inter-hub transportation costs, and local routing costs. 

   This thesis focuses on the study of HLRP and we will propose new efficient methods to solve 

it. The approaches we propose include Simple Local Search (SLS), Tabu Search (TS), and 

Neighborhood Search with Random Selection (NSRS). 

     The following of the thesis is structured as: In the first chapter, we present an overview on 

the literature of the Hub location problems and the Hub location routing problems. In the second 

chapter, we will present famous and most relevant methods and algorithms that are widely used 

to solve combinatorial optimization problems. In the third chapter, we will present the 

algorithms we propose to solve the HLRP. In the fourth chapter, we will present and analyse 

the results obtained by applying our algorithms on a benchmark instances from the literature, 

and we will compare the obtained results to the literature ones. Finally, we terminate with a 

general conclusion. 
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Chapter 01: Hub location problems and Hub 

location routing problem 

1.1  Introduction 

    Hub location problems are NP-hard combinatorial optimization problems [1] which have 

several applications notably in transportation and logistics. Mainly, the objective in these 

problems is to reduce costs of transportation of product(s) from one site to another and 

consequently improve the efficiency of the developed system. These problems involve the 

strategic placement of hubs, which act as intermediate points for consolidating and routing 

flows between origins and destinations. 

Hub location problems aim to determine the optimal location of hub facilities and assign non-

hub nodes to them, in order to consolidate flows and minimize overall transportation costs. 

They involve key decisions such as the number of hubs to open, their placement in the network, 

and how to allocate demand nodes. Different variant exist depending on allocation rules, 

capacity constraints, or cost structures. 

   This chapter presents the hub location problem and its variants, their applications, and their 

integration with the routing problems, leading to the Hub Location Routing Problem (HLRP) 

and its variants. 

 

1.2 Basic Hub Location Problems (HLP) 

   The Hub Location Problems (HLP) are considered as variants of the facility location problems 

[1]. In HLP, the Hubs serve as intermediate facilities to transport products, providing indirect 

connections between the origins and the destinations of requests. In hub systems, products are 

transported from the origin to the hub, and then from the hub to the destination either directly 

or via another hub. The transportation cost between hubs is discounted with a factor α%, which 

reduces the total transportation cost and improves the efficiently of the transportation networks 

[1] [2] [3] [22]. 

    Furthermore, hub location problems are classified regarding several characteristics, such as: 

the number of hubs, hub capacity, hub location costs, and other factors [1]. In following, we 



Chapter 01: Hub location problems and Hub location routing problem 

3 

 

will present formal and mathematical definitions of basic variants of HLP. Therefore, first, we 

define the variables used in these definitions:   

P:   number of hubs. 

hij:  the amount of products to be transported from node i to node j  

Cij:   the unit cost of transferring one unit of product from node i to node j. 

α:  discount factor for transportation between hubs, with (0 ≤ 𝛼 ≤ 1). 

𝑍𝑖𝑗
𝑘𝑚  : the flow of products transported from the origin node i to the destination node j via hub 

facilities located at nodes k and m. 

𝐶𝑖𝑗
𝑘𝑚 :  the unit transportation cost between the origin node i, the destination node j, and hub 

nodes k and m (in this order i→ k → m → j). 

Xk:   a decision variable that equals 1 if k is hub and 0 otherwise. 

 

1.2.1 Single-Allocation Hub Location Problem (SAHLP) 

   The Single Allocation Hub Location Problem (SAHLP) is considered as the basic variant in 

the Hub Location Problems. In the SAHLP, each non-hub node can be assigned to only one 

hub. In addition, the number of hubs to be installed is not fixed and the fixed location cost of a 

hub is included in the overall cost of the solution. 

   Key decisions in SAHLP involves: 

• Determining the number of hubs to be used. (P is not fixed). 

• Location of hubs: Deciding where in the network the hubs should be located. 

• Allocation of non-hub node to hubs: Assigning each non-hub node to a single hub. 

   The objective of SAHLP is to minimize the total cost including location cost of hubs and 

transportation cost [23]. 

In figure 1, we show an example of the Single-Allocation Hub Location Problem. 
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Figure 1:Single-Allocation Hub Location Problem 

1.2.2Multiple Allocation p-Hub Median Location problem (MAp-HMLP) 

   The Multiple Allocation p-Hub Median Location Problem (MAp-HMLP) is an NP-hard 

optimization problem where the goal is to determine the best locations to install 𝑝 hubs in a 

given network in order to minimize total transportation costs. Hubs serve as intermediate points 

to transfer products from the origins to the destinations. Each non-hub node can be assigned to 

one or more hubs.[1] 

The mathematical formulation of the MAp-HMLP is as follows [1]: 

               𝑚𝑖𝑛 ∑ ∑ ∑ ∑ 𝐶𝑖𝑗
𝑘𝑚 hij

mkji

𝑍𝑖𝑗
𝑘𝑚                                                          (1𝑎) 

                        s.t 

𝐶𝑖𝑗
𝑘𝑚  =  𝐶𝑖𝑘 + 𝛼𝐶𝑘𝑚 + 𝐶𝑚𝑗                                                            (1𝑏)   

∑ 𝑋𝑘 =  𝑃                                                                                      (1𝑐) 

𝑘

 

∑ ∑ 𝑍𝑖𝑗
𝑘𝑚

𝑚𝑘

= 1∀𝑖, 𝑗                                                                     (1𝑑) 

𝑍𝑖𝑗
𝑘𝑚 ≤ 𝑋𝑚       ∀ 𝑖, 𝑗, 𝑘, 𝑚                                                               (1𝑒) 

𝑍𝑖𝑗
𝑘𝑚 ≤ 𝑋𝑘       ∀ 𝑖, 𝑗, 𝑘, 𝑚                                                                 (1𝑓) 

𝑍𝑖𝑗
𝑘𝑚  ≥  0       ∀ 𝑖, 𝑗, 𝑘, 𝑚                                                                    (1𝑔) 

𝑋𝑘  ∈   {0 , 1}      ∀ 𝑘                                                                           (1ℎ) 
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     In this model, the objective function (1a) minimizes the total transportation cost. The 

constraints (1b) is the unit transportation cost between start node i, end node j, and hub nodes 

k and m (note that this is in order i → k →  m →  j). The constraints (1c) ensures that exactly p 

hubs are selected. The constraints (1d) ensures that each origin–destination pair (i, j) is allocated 

to one pair of hub nodes (k, m). Note that the origin–destination pair (i, j) could be allocated to 

a single hub facility as indices k and m could be the same. The constraints (1e) and (1f) ensure 

that demand from origin node i to destination node j cannot be allocated to a hub pair (k, m) 

unless both nodes (k, m) are selected as hub facilities. Finally, the constraints (1g) and (1h) 

define the decision variable types.  

 

1.2.3 p-Hub Center Location Problem (p-HCLP) 

    The p-Hub Center Location Problem consists in determining the optimal locations for 𝑝 hubs 

in a given network and allocating the non-hub nodes to these hubs to minimize the maximum 

travel time (or distance) between any origin-destination (o-d) pair. This problem is particularly 

important for cases where minimizing travel time is essential, such as express mail services and 

emergency services [24] [25]. In figure 2, we show an example of the p-Hub Center Problem. 

                                     

Figure 2:p-Hub Center Problem 

 

1.2.4 Hub Location Problem with Fixed Costs (HLP-FC) 

    The Hub Location Problem with Fixed Costs is a variant of HLP where a fixed cost is 

imposed for assigning non-hub node to a hub. That means, when we assign a non-hub node i to 

a hub k, a fixed cost 𝑔𝑖𝑘 will be considered in addition to the transportation costs [1]. 
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1.2.5 Hub Covering Location Problem (HCLP) 

    The Hub Covering Location Problem (HCLP) is an extension of well-known Set Covering 

Location Problem. The goal in HCLP is to install a set of hubs so that each origin-destination 

pair of non-hub nodes is covered by a pair of hubs. A hub can cover a non-hub node if the 

distance between them is less than or equals a given maximal distance. For this coverage to be 

valid, the transportation cost between nodes - when routed through the selected hubs - must not 

exceed a maximum allowable value.[1]  

 

1.3 Applications of hub location problems 

    Airlines and Airport Industries: The Hub Location Problem is one of the most important 

problems applied in the design of the airline networks. For the airlines companies, the goal is 

to reduce the number of direct flights and consequently reduce their operating costs. To do, they 

try to find the best intermediate points (hubs) for their passengers coming from different sites 

(origins). Then, the passengers are transported directly to their destinations (destination) 

together [9]. 

 

    Emergency Services: The Hub Location Problem is effectively applied in the design of 

emergency service networks. Service facilities are established as central hubs, connected to 

nearby points (spokes) within a hub-and- spoke networks. This structure consolidates 

emergency resources optimizes their distribution, and enhances service coverage. Origin-

Destination (O-D) flows converge at central hubs, reducing response times and costs while 

improving across network [10]. 

    Telecommunication Networks: In telecommunication network design, the Hub Location 

Problem is applied to optimize data routing and infrastructure costs. The goal is to strategically 

place hubs (e.g. data centres) to efficiently route traffic-such as data or calls-from access points 

(origins) to end users (destinations). By minimizing direct connections between non-hub nodes 

and consolidating traffic while ensuring network reliability, scalability, and compliance with 

bandwidth or latency constraints [11][12]. 

    Transportation Systems: Transportation systems utilize the Hub Location Problem to 

optimize costs and routing across multiple sectors. In freight transport, hubs streamline logistics 

operations and delivery routes. Public transport benefits from improved urban traffic planning 
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through the efficient placement of hubs. In air transport, capacitated network designs enhance 

flight routing, while maritime transport hubs improve port management and container 

distribution. Overall, this network model boosts efficiency in logistics, aviation, and shipping 

systems [13]. 

1.4 Routing Problems 

    Routing Problems are NP-hard combinatorial optimization problems where the goal is to find 

the best routes for a fleet of vehicles to serve a set of customers (e.g., while respecting related 

constraints such as : (1) vehicle capacity, (2) time windows of the visits, (3)route durations, etc. 

These problems are widely used to model and solve real-life problems, such as : a school bus 

routing system (SBRP) involves identifying optimal routes to pick up and drop off students, 

while minimizing the total travel time and number of buses, taking into account constraints (1), 

(2) and (3) (e.g. A study applied by Hong Kong researchers to kindergartens in Hong Kong that 

reduced the total travel time of students by 29% compared to current practices) [35][36]. 

Another example of this problem is waste collection, where municipalities optimize garbage 

collection routes to reduce fuel costs and working hours, while respecting truck capacity and 

zone access restrictions (e.g. the application of this method in some regions of Eastern Finland 

demonstrated significant cost reductions could be achieved compared to existing practices) 

[37].  

    In the following, we will present basic variants of the routing problems: the Traveling 

Salesman Problem (TSP) and the Vehicle Routing Problem (VRP). Also, we will present some 

variants of the VRP, and their real-world variants. 

 

1.4.1 The Traveling Salesman Problem (TSP) 

    The Traveling Salesman Problem (TSP) is a well-known and widely studied optimization 

problem.[27]. It consists in finding the shortest path that visits all nodes of a given complete 

graph exactly once, and this path must begin and end in the same node. In figure 3, we show an 

example of the TSP. 
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Figure 3 :The Traveling Salesman Problem 

                                                  

Mathematically, TSP can be modelled as [34]: 

 

𝑀𝑖𝑛 ∑ ∑ 𝑐𝑖𝑗

𝑁

𝑗≠𝑖,𝑗=0

𝑁

𝑖=0
𝑥𝑖𝑗                                                              (2𝑎) 

 

Subject to: 

 

∑  
𝑁

𝑖=0,𝑖≠𝑗
 𝑥𝑖𝑗 = 1                𝑗 = 0, … . , 𝑛                                         (2𝑏) 

                             ∑  
𝑁

𝑗=0,𝑗≠𝑖
 𝑥𝑖𝑗 = 1          𝑖 = 0, … . , 𝑛                                              (2𝑐) 

                   ∑ 𝑥𝑖𝑗 ≤ |𝑈| − 1

𝑖,𝑗∈ 𝑈

   ∀𝑈 ⊂ 𝑉 ,    2 ≤ |𝑈|  ≤ |𝑉| − 2                      (2𝑑) 

                      𝑥𝑖𝑗 ∈ {0,1}         𝑖, 𝑗 = 0, … . , 𝑛                                                           (2𝑒) 

 

Here: 

 

N:  total number of cities. 

V:  set of cities, labelled from 0 to n. 

cij:  distance from city i to city j 

xij:  is a binary decision variable that indicates whether a path exists from city i to city j.  It is 

equal to 1 if the path goes from city i to city j, 0 otherwise. 
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  Objective function (2a) aims to minimize the total travel cost or distance. The first constraint 

(2b) ensures requires that each city i be arrived at from exactly one other city j . Constraint (2c) 

ensures that from each city i, exactly one departure is made to another city. Constraint (2d) 

(subtour elimination constraints) enforce that there is only a single tour covering all cities, and 

not two or more disjointed tours that only collectively cover all cities. 

 

1.4.2 The Vehicle Routing Problem (VRP) 

    In the Vehicle Routing Problem (VRP), the goal is to construct a set of routes for a fleet of 

vehicles to visit and serve a set of sites or customers while minimizing an objective function 

mostly represents the operating cost(s) and satisfying the constraints related to the problem. In 

the following, we present some variants of the VRP, which are studied in the literature. In figure 

4, we show an example of the VRP.  

 

Figure 4 :The Vehicle Routing Problem 

 

1.4.3 Variants of Vehicle Routing Problem (VRP) 

    In the literature, several constraints and assumptions are considered when solving the VRP, 

which creates numerous variants of it. In the following, we show the variant of the VRP and 

the specific assumptions and/or constraints considered in it. 

1. Capacitated VRP (CVRP) 

• Each vehicle has a specific maximum capacity. 

2. VRP with Time Windows (VRPTW) 

• Each customer must be a served in a given time window. 
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3. VRP with Pickup and Delivery (VRPPD) 

• The vehicles picks up goods/products from some locations and deliver them to 

other ones. The delivery visits must be planified after picking up the 

corresponding products. 

4. Multi-Depot VRP (MDVRP) 

• Several depots are available and we can serve a customer by any vehicle that 

starts its route from any depot. 

5. Periodic VRP (PVRP) 

• The horizon time of the service is decomposed to set of periods, where each 

customer might be visited one or several times. 

6. VRP with Backhauls (VRPB) 

• Similar to The VRPPD described above, however in the VRPB the pickup sites 

must be visited before the delivery ones. 

7. Dynamic VRP (DVRP) 

• In the DVRP, one or more element in the problem can be changed, such as : the 

requests of customer, the availability of vehicles, etc.      

 More details on variants of VRP can found in [16] [17] [18] [29] [30] [31]. 

 

1.5 Hub location routing problem (HLRP) 

 1.5.1 Definition of HLRP  

    The Hub Location Routing Problem (HLRP) is an NP-hard combinatorial optimization 

problem, which combines the Hub Location and the Vehicle Routing Problems. It consists in 

selecting 𝑝 hubs from n nodes candidates, and assigning each non-hub node to exactly one hub. 

Then a local route is created for each hub, which starts and ends at this hub. Finally, we need 

to create another route (hub route) that visits all hubs. The number of hubs is represented by 𝑝, 

and the maximum capacity of each local route is represented by C and it refers to the maximal 

number of nodes that can be inserted in a local route including the hub. The objective is to 

minimize the total transportation costs including transportation cost of the local routes and the 
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cost of the hub route. [19] [20]. In figure 5, we show an example of the solution of Hub location 

routing problem. 

 

Figure 5:A solution of Hub location routing problem 

 

1.5.2 Variants of HLRP 

 In the following, we cite three variant of the HLRP: 

• Capacitated Single-Allocation Hub Location Routing Problem (CSA-

HLRP)  

   The Capacitated Single-Allocation Hub Location Routing Problem (CSA-HLRP) is a 

variant of the Hub Location Routing Problem (HLRP) where: (1)each non-hub node is 

allocated to exactly one selected hub, and (2) the capacity constraint is imposed on both the 

hubs and the vehicles[32][33]. 

• Capacitated Multi-Allocation Hub Location Routing Problem (CMA-

HLRP)  

   The Capacitated Multi-Allocation Hub Location Routing Problem (CMA-HLRP) is a 

variant of the Hub Location Routing Problem (HLRP) where: (1) each non-hub node can 

be connected to multiple hubs, allowing flexibility in service allocation, (2) both hubs and 

vehicles are subject to capacity constraints, ensuring resource limitations are respected, and 

(3) route length constraints are imposed to maintain service quality and efficiency [32]. 
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• Stochastic Single-Allocation Hub Location Routing Problem 

(CSAHLRPSD) 

   The Stochastic Single-Allocation Hub Location Routing Problem (CSAHLRPSD) 

extends the HLRP to account for uncertainty in customer demand. In this problem: (1) each 

non-hub node is allocated to a single hub and the objective is to determine the hub locations 

and vehicle routes under demand variability. (2) Both hub and vehicle capacities are 

considered, with the goal of minimizing total operational costs while ensuring service 

reliability. This variant is particularly relevant for logistics and express delivery services 

operating in dynamic and uncertain environments [21]. 

 

1.6 Conclusion 

    In this chapter, we first highlighted the hub location problem and we showed various of its 

basic variants including: Single-Allocation Hub Location Problem, p-hub median Location 

Problem, p-hub Center Location Problem, Hub location Problem with Fixed Costs and Hub 

Covering Location Problem. After that, we explored some routing problems, including the 

Traveling Salesman Problem (TSP), the Vehicle Routing Problem (VRP), and seven  variants 

of the VRP. Finally, we presented and defined the Hub Location Routing Problem (HLRP) and 

three of its variants. In the next chapter, we will present the methods and the algorithms used 

to solve NP-hard optimization problems including the problems discussed in this chapter. 
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Chapter 2: Methods and algorithms to solve 

optimization problems 

2.1 Introduction: 

   Combinatorial optimization problems aim to find the best solution from a finite set of 

solutions while satisfying the defined constraints. To do, two main categories of methods are 

used: exact methods, which guarantee an optimal solution but they are useful only for small 

problems due to their computational time, and approximation methods, which provide high-

quality solutions in a reasonable CPU time, making them suitable for large-scale problems.  

   In this chapter, first, we present a general define of a combinatorial optimization problem and, 

then we will present a various algorithms and methods that can be used to deal with the 

optimization problems. 

2.2 Combinatorial optimization problems 

 The goal in a combinatorial optimization problem is to search for the best  solution which 

minimizes or maximizes a given objective function from the set of possible solutions S. The 

challenge is that the S contains a huge number of solutions and examine all of them is not an 

easy task.  Here is a simple formulation of an optimization problem [82]:     𝑃 = (𝑆, 𝑓, 𝛺) 

• P : represents the optimization problem. 

• S : symbolizes the search space of the problem domain. 

• f  : represents the objective function . 

• Ω : corresponds to the set of problem’s constraints. 

 

2.3 Exact Methods 

   The objective of the exact methods is to search for the optimal solution to any problem within 

the entire search space, which encompasses all possible solutions. These methods use 

techniques to exclude solution subsets that cannot be optimal or don’t have promising solutions, 

thereby reducing the search time. However, they are used for small-sized instances, for large-
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sized instances these methods are impractical due to the excessive computational time required 

to find the optimal solution [48]. Among the methods, we can cite: (1) Backtracking method, 

(2) dynamic programming, (3) column generation, (4) the A* algorithm, (5) branch & bound, 

(6) (6) branch & cut, (7) branch & price, etc. [48]. 

2.3.1 Backtracking algorithm 

    The backtracking algorithm is a classical recursive method used for combinatorial and 

constraint satisfaction problems. It works by trying out different paths, and if one doesn’t lead 

a solution, it backtracks and tries another until it finds the correct one.   

   The algorithm explores the search space in a depth-first manner attempting to construct a 

complete solution by extending partial solutions step by step. If at any step a constraint is 

violated, the algorithm revert to a previous state and tries a different option. This pruning 

reduces the number of configurations to explore, which is important for solving NP-complete 

problems efficiently. Backtracking guarantees finding an optimal or feasible solution if one 

exists. However, its worst-case time complexity remains exponential which making it more 

suitable for small sized instances [39,40,41]. 

2.3.2 Branch and bound 

    The branch and bound algorithm (B&B)  first appeared in in the 60s [42] and is used to solve 

NP-hard problems. This algorithm is based on intelligently exploring all possible solutions by 

constructing a search tree using a partitioning technique. More, it prunes branches that do not 

lead to the optimal solution, thereby reducing computational time [43]. 

   To create a branch and bound (B&B) method, we have to develop the following techniques: 

   The separation technique (branching): this involves dividing the search space into several 

parts such that their union covers all possible solutions. 

   The evaluation technique (bounding): this requires calculating the upper and lower bounds 

for each branch to determine if there might be better solutions than those already explored. 

   The exploration technique: used to determine the order in which branch are visited. There 

are several way to explore branches such as: depth-first, breadth-first, best-first, etc.  
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Algorithm 1: Branch and Bound for minimization 

1: 𝑇𝑟𝑜𝑜𝑡 ← 𝐶𝑟𝑒𝑎𝑡𝑒 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑎𝑟𝑐ℎ 𝑡𝑟𝑒𝑒 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒 ; 

2: 𝑈𝑏𝑜𝑢𝑛𝑑 ← +∞; 𝐿 ← 𝑇𝑟𝑜𝑜𝑡 ; 
4: while (L≠∅) 
5: 𝑆𝐶 ←  Explorer(L); 
6: If (Evaluation (𝑆𝐶) ≤ 𝑈𝑏𝑜𝑢𝑛𝑑) 
7: L′ ← All partial solutions S′ that can be obtained from Sc; 
8: For (each S' in L' do) 

9: If (S' is a complete solution) 

10: update 𝑈𝑏𝑜𝑢𝑛𝑑; update 𝑆𝑏𝑒𝑠𝑡; 
12: Else 

13: add S′ to L ; 
14: End 

15: End 

16: Else 

17: delete 𝑆𝐶 from L ; 
18: End 

19: End 

 20:  Return 𝑆𝑏𝑒𝑠𝑡;  

 

2.4 Approximation Methods: 

   Approximate methods are commonly used   to solve combinatorial optimization problems. 

especially when the problem involves complex constraints or a large solution space. In contrast 

to exact methods, which can take an impractically long time sometimes even years to find the 

optimal solution, approximate methods focus on finding good quality solutions within a 

reasonable computational time.   

 Approximate methods  are be divided into several classes including: heuristics and 

metaheuristics.  

2.4.1 Heuristics 

   Several definitions of a heuristic have been proposed by various researchers in the literature. 

Here, we present some of the most notable ones: 

   Definition 1.1 «A heuristic (heuristic rule, heuristic method) is a rule of thumb, strategy, 

trick, simplification, or any other kind of device which drastically limits search for solutions in 

large problem spaces. Heuristics do not guarantee optimal solutions; in fact, they do not 

guarantee any solution at all; all that can be said for a useful heuristic is that it offers solutions 

which are good enough most of the time. » Feigenbaum and Feldman (1963) [44] 
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   Definition 1.2 «A heuristic method (or simply a heuristic) is a method which helps in 

discovering a problem's solution by making plausible but fallible guesses as to what is the best 

thing to do next. » Feigenbaum and Feldman (1963) [44] 

  Definition 1.3 «A heuristic is a rule of thumb, strategy, method, or trick used to improve the 

efficiency of a system which tries to discover the solutions of complex problems. » Slagle (1971) 

[45] 

  Definition 1.4 «Heuristics are criteria, methods, or principles for deciding which among 

several alternative courses of action promises to be the most effective in order to achieve some 

goal. » Pearl (1984) [46] 

    Moreover, in the field of combinatorial optimization, a heuristic is an approximate method 

designed to solve specific problem by relying on a deep understanding of it. Its primary goal is 

to provide high-quality solutions, although they may not necessarily be optimal, while ensuring 

a reduced computation time [47]. 

 

1) Greedy constructive heuristics 

   The greedy heuristic [48] is an algorithmic model that builds the solution gradually element 

by element. It starts with an empty solution S and at each stage of the construction process, 

selects the next element e using the local optimal choice strategy (greedy choice rule), which 

measures the increase or decrease in the objective function when adding each element. 

 

Algorithm 2:Greedy algorithm for minimization 

1: S ← ∅; 
2: 𝐶 ← {𝑒1, 𝑒2, ........... , 𝑒𝑛 }; 

3: Evaluate the incremental cost c(e) for all e ∈ C; 

4: While (C ≠ ∅) 

5: 𝑒𝑏 ← select e ∈ C with the smallest incremental cost c(e); 
6: S ← S ∪ {𝑒𝑏}; 
7: C ← C − {𝑒𝑏}; 
8: Revaluate the incremental cost c(e) for all e ∈ C; 
9: End 

 10:  return S;  
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2) Randomization and Greedy Randomized heuristics 

   Randomization plays an important role in the optimization algorithms [48]. It is used to 

enhance the exploration of the search space, improve solution diversity and avoid local optima, 

as is the case with greedy algorithms.  

   The difference between the greedy randomized heuristic (GRH), and the traditional greedy 

heuristic (GH) is, in the GRH we select the next element to be added to the solution randomly 

from a restricted list containing several locally optimal elements, where the GH selects the best 

[48] [49]. This algorithm is widely employed when solving hard optimization problems.        

                    

 

Algorithm 3:Greedy randomized algorithm for minimization 

1: S ← ∅ 
2: 𝐶 ← {𝑒1, 𝑒2, ............ , 𝑒𝑛 }; 

3: Evaluate the incremental cost c(e) for all e ∈ C; 

4: While (C ≠ ∅) 

5: Build the restricted candidate list with the candidate elements having the 
smallest incremental costs; 

6: 𝑒𝑏 ← Select random e ∈ the restricted candidate list; 
7: S ← S ∪ {𝑒𝑏}; 
8: C ← C − {𝑒𝑏}; 
9: Revaluate the incremental cost c(e) for all e ∈ C; 

10: End 

  11:  return S;  
  

 

3) Local Search algorithms 

     Local search algorithm (LS) starts from a complete initial solution and try to find a better 

solution in an appropriately defined neighborhood structure. The algorithm systematically 

neighbouring solutions to find one that improves the quality of the current solution. When a 

better solution is found, it replaces the current solution, and the search process continues. This 

cycle is repeated until no further improvements can be found, leading the algorithm to converge 

to a local optimum [50]. 
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Algorithm 4:Local Search 

1: 𝑆 ← start solution; 
2: While (S is not a local optimal) 

3: 𝑆𝑛 ← select the best solution S ∈ N(S); 
4: If (f (𝑆𝑛) is better than f (S)) 

5: S ← 𝑆𝑛; 
6: End 

7: End 

 8:  Return S;  
 

2.4.2 Meta-Heuristic 

   According to Osman and Laporte (1996): “A metaheuristic is formally defined as an iterative 

generation process which guides a subordinate heuristic by combining intelligently different 

concepts for exploring and exploiting the search space, learning strategies are used to structure 

information in order to find efficiently near-optimal solutions.” [51] 

 The main components of any Metaheuristic algorithm are intensification and diversification 

, also called exploitation and exploration. The combination of these two mechanisms helps 

guide the search process and find best solutions. [52]  

• Diversification:  consists in exploring the search space on a global scale by moving 

solution to other regions of the space search. 

 

Figure 6:Diversification Process of a solution. 

• Intensification: consists in  focusing on the search in a local region by exploiting the 

information that a current good solution is found in this region. 



Chapter 2: Methods and algorithms to solve optimization problems 

19 

 

 

Figure 7:Intensification Process of several solutions 

a) Single-solution based metaheuristics 

    Single-solution-based metaheuristics work with a single solution. They start the search with 

an initial solution and gradually improve its quality by exploring its neighborhood structure. 

This improvement relies on a series of local modifications applied to the current solution to 

efficiently exploit the search space. Several methods of this type have been developed in the 

literature, including: Hill Climbing (HC), Simulated Annealing (SA), Tabu Search (TS), 

Variable Neighborhood Search (VNS), Iterated Local Search (ILS), Guided Local Search 

(GLS), and Greedy Randomized Adaptive Search Procedure (GRASP), etc. 

 

1) Simulated Annealing 

   The simulated annealing algorithm (SA) is a method proposed by Kirkpatrick, Gelatt, and 

Vecchi [53], inspired by the annealing process used in metallurgy. This thermal procedure 

slowly and in a controlled manner to allow the atoms to gradually reorganize. This 

rearrangement promotes the formation of a more stable and homogeneous structure by reducing 

defects that may occur during the transition from the liquid to the solid state.  

   The SA algorithm starts the search with an initial solution 𝑆 and initial temperature T. Then, 

at each iteration, SA randomly selects a neighboring solution 𝑆𝑛 of current solution. if 𝑆𝑛 is 

better than 𝑆, then 𝑆 is replaced by 𝑆𝑛. otherwise, 𝑆𝑛 is accepted with a probability equal to 

𝒆−(∆/𝐓)  (𝐰𝐡𝐞𝐫𝐞  Δ =  𝑓(𝑺𝒏)  − 𝑓(𝑺) in minimization problems and Δ =  𝑓(𝑺) −  𝑓(𝑺𝒏)  

in maximisation problems). Then, the temperature and the best solution found are updated. 

The algorithm terminates when the stopping criterion is met. 
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Algorithm 5:Simulated annealing 

1: 𝑆 ← initial solution; 

2: T ← initial temperature; 

3: while (the stop criterion is not met) do 

4: randomly choose 𝑆𝑛 ∈ N(S) 

5: r ← a random number between 0 and 1. 

6: calculate Δ; 

7: If (𝑆𝑛 is better than S Or 𝑟 < 𝑒−(∆/𝑇)) 

8: S ← 𝑆𝑛; 

9: if (𝑆 is better than 𝑆𝑏) 

10: 𝑆𝑏 ← S; 

11: End 

12: End 

13: update T; 

14: End 

15: return 𝑆𝑏; 

 

2) Tabu Search 

   Tabu search (TS) was proposed in 1986 by Glover [54]. It is an optimization algorithm 

that extends local neighbourhood search. In addition, it uses mechanism to prevent getting 

trapped in local optima and to explore search space  more efficiently. This mechanism is the 

tabu list, which is used to record the solutions discovered after each iteration to prevent them 

from being accepted in the future [55]. 

   The first step in the tabu search algorithm is to create an initial solution 𝑆 with empty list tabu 

L. after that, the algorithm enters a loop in which the neighborhood structure N(S) of  the current 

solution S is created. The best solution 𝑆𝑛 from N(S)that is not present in L  is then selected. 

Next, 𝑆 replaced by 𝑆𝑛. 𝑆 is then added to L and the oldest solution is removed (if L is full). If 

𝑆 is better than 𝑆b it replaces it. The loop continues until the stopping condition is satisfied. 

Finally, the algorithm returns 𝑆best. 
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Algorithm 6:Tabu Search 

1: 𝑆 ← initial solution; 
L ← ∅; 

2: while the stop criterion is not met do 

3: Generate N(S); 
4: find the best solution 𝑆𝑛 , { 𝑆𝑛 ∈ N(s) and 𝑆𝑛  ∉ L} ; 
5: Update L; 
6: 𝑆 ← 𝑆𝑛 ; 
7: If (S is better than 𝑆𝑏) Then 

8: 𝑆b ← S; 
9: End 

10: End 

11: return 𝑆b; 

 

3) Greedy Randomized Adaptive Search Procedures 

   Greedy Randomized Adaptive Search Procedures (GRASP) is a multi-start metaheuristic 

developed in the 1980s by Feo and Resende [56] [57] to solve combinatorial optimization 

problems. Each iteration consists of two phases [57] [58]: 

Construction phase: in this phase, a feasible solution is iteratively constructed using a greedy 

randomized function, encouraging diversity and exploration. 

Local search phase: in this phase, the neighborhood of the constructed solution is explored to 

improve it until a local optimum is reached. 

GRASP works by independently sampling the solution spaces at each iteration, retaining only 

the best solution found as the final result. 

 

Algorithm 7:Greedy Randomized Adaptive Search Procedures for Minimization 

1: 𝑓𝑖 ← ∞; 

2: While (the stop criterion is not met) 

3: 𝑆 ← Greedy Randomized Algorithm ( ); 
4: if (S is not feasible) 
5: 𝑆 ← Repair Solution(S) ; 
6: End 

7: 𝑆 ← Local Search(S) ; 
8: if ( 𝑓(𝑆) < 𝑓𝑖) 

9: 𝑆𝑏 ← 𝑆 ; 
10: 𝑓𝑖 ← 𝑓(𝑆) ; 
11: End 

12: End 

13: return 𝑆𝑏; 
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4) Variable Neighborhood Search 

    Variable Neighborhood Search (VNS) was proposed in1997 by Hansen and Mladenović 

[59]. VNS is an optimisation algorithm that explores different neighborhood structures to 

improve a given solution systematically. It relies on three iterative phases. First ,the shaking 

phase helps escape from local optima .Second, an improvement phase applies local search to 

enhance the solution. Finally, the neighborhood changes phase guides the algorithm while 

exploring the search space [60] [61].  

     The algorithm starts with an initial solution 𝑆, and a set of neighborhood structures 𝑵𝑳 is 

defined where L =1, 2,…, Lmax. . At each iteration, the initial value of L is set to 1.  

Subsequently, the algorithm iteratively explores the neighborhoods until the maximum 

neighborhood index is reached i.e. L= 𝐿𝑚𝑎𝑥 . 

   During each iteration, a random solution 𝑆𝑥 (shaken solution) is generated from the 𝑳𝒕𝒉 

neighborhood 𝑵𝑳(𝐒) of current solution 𝑆. A local search procedure applied to 𝑆𝑥 to generate 

an improved solution 𝑆𝑦. If 𝑆𝑦 is better than the best-known solution 𝑆𝑏, both 𝑆𝑏 and 𝑆 are 

updated with 𝑆𝑦, and the search continues in the first neighborhood 𝑵𝟏  .if no improvement is 

found, the search moves to the next neighborhood structure 𝑵𝑳+𝟏 . 

   These operations are repeated until a termination criterion is satisfied. Finally, the algorithm 

returns the best solution found. 

Algorithm 8:Variable Neighborhood Search 

1: 𝑆 ← initial solution; 
2: 𝑁𝐿 , L = 1.2 ............... 𝐿𝑚𝑎𝑥 ; 
3: While the stop criterion is not met do 

4: 𝐿 ← 1; 
5: While (𝐿 < 𝐿𝑚𝑎𝑥) 
6: 𝑆𝑥 ← Shaking(S, 𝑁𝐿) ; 
7: 𝑆𝑦 ← Local Search(𝑆𝑥); 

8: if ( 𝑓(𝑆𝑦) < 𝑓(𝑆𝑏)) 

9: 𝑆 ← 𝑆𝑦 ; 

10: 𝐿 ← 1; 
11: 𝑆b ← 𝑆 ; 
12: End 

13: 𝐿 ← 𝐿 + 1; 
14: End 

15: End 

16: End 

17: return 𝑆best ; 
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5) Iterated Local Search 

   Iterated Local Search (ILS) is a multi-start metaheuristic designed to overcome limitation of 

Random Restart approaches by incorporating advanced procedures [63]. Its main goal is to 

escape local optima by systematically modifying solutions and exploring different regions of 

the search space. This is achieved through strategic perturbations that guide the algorithm from 

one local optimum to another [62]. It operates in four phases [63]: 

➢ First, an initial solution is constructed (Generate an Initial Solution). 

➢ Next, a Local Search method is applied to improve the solution and find a local 

optimum. 

➢ Then, a random Perturbation phase is applied to modify the current solution by altering 

some of its components. 

➢ After that, the Local Search method is reapplied to the perturbed solution. If the resulting 

solution passes the Acceptance Criterion, it becomes the new current solution; 

otherwise, the algorithm reverts to the previous solution. 

 

Algorithm 9:Iterated Local Search  

1:    𝑺𝒏  ⃪  Generate Initial Solution ; 

2:    S*  ⃪  Local Search (𝑺𝒏 ) ; 

3:    Repeat 

4:          S′  ⃪ Perturbation (S* , history ); 

5:          S′′  ⃪ LocalSearch (S′ ); 

6:          S*  ⃪ AcceptanceCriterion (S*, S′′, history); 

7:  Until termination condition is met; 

8:   return S* ; 

 

 

b) Population-based metaheuristics 

    Population-based optimization methods are techniques that work on a population of solutions 

and are generally inspired by nature.  They start with an initial population and, at each iteration, 

attempt to construct a new better population based on the previous one to converge toward good 

solution(s). 

  As examples of these methods, we can cite genetic algorithms, particle swarm optimization, 

ant colony algorithm, artificial bee colony algorithm, etc. 
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1) Genetic algorithm 

   Genetic algorithm (GA) is a method proposed by Holland in 1975[64]. The GA is stochastic 

algorithm inspired by the biological evolution theory, founded on genetics and natural selection 

(diversity, adaptation, inheritance). Each solution is represented as a chromosome composed of 

genes (solution elements). The algorithm uses selection to choose the solutions that will survive 

to the next generation, crossover to combine solutions to create Childs (new solutions) and 

mutation to introduce diversity. Over successive generations, these operations/processes work 

together to improve the overall quality of the solutions [65] [66]. 

   The first step in GA is to Create an initial population P, typically consisting in randomly 

generated chromosomes .At each iteration, a set of | P | solutions is selected and saved in a new 

population 𝑃𝑛, called parents. The Crossover process is then applied to 𝑃𝑛 to produce the set 

of solutions E (called Childs), which is then modified using mutation operator to introduce 

small random changes. Finally, the population P is updated by choosing the best solutions from 

both E and P for use in the following iteration. 

 

Algorithm 10:Genetic algorithm  

1:    P ← Create an initial population (); 

2:    While (the stopping criterion is met) 

3: 𝑃𝑛 ← Selection(P); 

4: E ← Crossover(𝑃𝑛); 

5: E ← Mutation(E); 

6: P ← Replacement (E, P); 

7:   End  

8:   return the best solution found 

 

 

 

i. Selection: 

    The Selection is the process of choosing parents solutions from current population P. each 

solution is selected based on its quality and can be chosen zero, one or multiple times. Here we 

present some well-known selection techniques: 
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• Roulette selection: 

   This method consists in randomly selecting a solution based on a probability proportional to 

the value of its objectives function, the selection probability 𝑷𝒓(s) for a solution S is 

calculated as follows:               𝑷𝒓(𝑺) =
𝒇(𝒔) 

∑ 𝒇(𝐬′)
|𝒑|
𝟏

 , 𝑠′ ∈ P       

If we are dealing with a minimization problem, then the selection probabilities must be 

transformed using the following equation:      𝑷𝒓(𝑺) =
𝟏− 𝑷𝒓(𝑺)

|𝑷|−𝟏
   

 

Figure 8:Roulette selection. 

 

 

• Rank selection: 

   Rank selection is the modified form of Roulette wheel selection. It utilizes the ranks instead 

of fitness value. It is used when the value of solutions converges to similar values ,making it 

difficult to differentiate between them. 

   The first step is to rank the solutions based on their fitness, assigning (rank = 1) to the worst 

solution until (rank = |P|) to the best solution in the population.  Then, the selection probability 

of each solution is calculated using the following formula:  𝑷𝒓(𝑺) =
𝒓𝒂𝒏𝒌(𝑺) 

∑ 𝒓𝒂𝒏𝒌(𝐬′)
|𝒑|
𝟏

,  𝒔′ ∈  𝑷 

• Tournament selection: 

   This method consists in randomly selecting k solutions from population P where (K< |𝑷|). 

Then, the best of these solutions is selected. 
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• Uniform selection: 

   This method involves randomly selecting, giving all solutions an equal probability of being 

selected, which is :1 / |P| . 

ii. Crossover: 

    The Crossover is a process applied to each pair of parents, and it consists in combining their 

original genes to produces new solutions, called children or offspring. It is applied on the parent 

population with a random probability 𝑃𝑐 between 0.65 (65%) and 0.90 (90%). Here we present 

some of the well-known crossovers used in the literature : 

• Single-point crossover: A random point is chosen to split each parent into two parts. 

The parts of the parents are swapped to produce two children as shown in the example. 

 

Figure 9:Single point crossover. 

• Two-point and K-point crossover: randomly choose two or more crossover points to 

split the parents and then the parts of parents to produce children.  

 

Figure 10:Three-point crossover. 
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• Uniform crossover: in this method, the parent is not split into parts. Instead, each gene 

is considered individually. We randomly decide if each gene is swapped with the 

corresponding gene in the other parent or not. 

 

Figure 11:Uniform crossover. 

iii. mutation: 

   The Mutation is a component of the genetic algorithm that introduces very small random 

changes to a solution. It ensures effective exploration of the search space and is applied to the 

population E with a probability𝐏𝐦 between 1% and 5%. 

  

Figure 12:Simple mutation. 

In the literature [66], several operators of mutation are used, such as : 

• Displacement mutation: displaces a substring (part of the solution) of a solution to 

another random position within same solution. there are two variants of this mutation:   

- Exchange mutation: swap two randomly selected substring of the solution. 

  

Figure 13:Exchange mutation. 
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- Insertion mutation: selected a random substring in the chromosome, 

remove it and re-insert it into a different position. 

 

Figure 14:Insertion mutation. 

iv. Replacement: 

   Replacement is the process of selecting the new population of the new iteration from the old 

population and the created children. Several methods can be used, in the following we cite three 

methods: 

• Complete replacement: In this method, the children E is selected as the new 

population. 

• Combination with selection: In this method the old population and the children (E 

and P) are combined. Then one of the selection methods is used to choose the new 

population. 

• Elitist method: in this method the best solutions from E and P are selected. 

•  

2) Particle Swarm Optimization 

    Particle Swarm Optimization (PSO) is a metaheuristic based on swarm intelligence, proposed 

in 1995 by Kennedy and Eberhart [67]. It is inspired by the collective behaviour of birds when 

moving in groups. 

    The algorithm starts with a population of solutions, called particles, where each solution is 

defined by a position and velocity in the search space. During the search process, each particle 

adjusts its position according to its current speed, its current position the best solution found in 

the previous iteration, and the best position identified by the set of particles. This update, carried 

out at each iteration, enables the particles to explore the search space and progress towards an 

optimal solution [68]. 
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Algorithm 11:Particle Swarm Optimization  

1:    Initialize_Speed (particles); 

2:    Initialize_Position (particles); 

3:    While (the stop criterion is not met) 

4:            For (each particle 𝒑) do 

5:               evaluate_fitness (𝒑); 

6:               update_Speed (𝒑); 

7:               update_Position (𝒑); 

8:                update_best (𝒑); 

9:            End 

10:           update_best (particles); 

11:   End  

12:   Return the best solution found ; 

 

 

3) Ant Colony Optimization 

   The Ant Colony Optimization (ACO) algorithm is a metaheuristic inspired by the cooperative 

behaviour of ants, introduced in the 1990s by Colorni, Dorigo, and Maniezzo. It is based on the 

ability of ants to explore their environment and communicate indirectly through pheromones to 

find the shortest path to a food source [69].   

   In ACO, first, a population of agents (the ants) explore the search space randomly. Then, 

when a promising solution is found, a quantity of pheromones is deposited on the corresponding 

path, reinforcing its attractiveness to other agents. The shorter and more efficient path is, the 

faster it accumulates pheromones, which accelerates convergence towards an optimal solution. 

In contrast, less efficient paths are gradually abandoned due to pheromone evaporation [68]. 
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Algorithm 12:Ant Colony Optimization  

1:    randomly initialize pheromone values; 

2:    While (the stopping criterion is met) 

3:          For (each Ant) 

4:               construct a solution; 

5:               update local pheromone values; 

6:           End 

7:   End  

8:   Return the best solution found  ; 

 

 

4) Artificial Bee Colony 

   The Artificial Bee Colony (ABC) algorithm is a metaheuristic introduced by Karaboga in 

2005 [70], inspired by the foraging behaviour of honeybees. It simulates the bee’s efficient 

process of finding food through cooperative communication, using a ′′ waggle dance′′ to share 

information about the direction, distance, and quality of food sources [68]. 

   The algorithm models food sources as a potential solution and the bee colony as three types 

of agents [68] [71]: 

Employed bees: Exploit known food sources and search for better alternatives nearby. 

Onlooker bees: Observe employed bees’ information and select food sources based on their 

quality. 

Scout bees: Perform random searches for new food sources when the current ones are depleted. 

  The algorithm operates through an iterative cycle with three main phases: 

Exploitation (Employed Bees Phase): Employed bees assess the fitness of their assigned food 

sources and share their findings. 

Selection & Local Search (Onlooker Bees Phase): Onlookers probabilistically choose food 

sources based on shared nectar quality and refine existing solutions. 

Exploration (Scout Bees Phase): Scouts randomly explore the search space for new solutions, 

replacing exhausted or poor-quality ones. 

  By balancing exploitation (improving known solutions) and exploration (discovering new 

ones), the ABC algorithm efficiently solves complex optimization problems. 
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Algorithm 13:Artificial Bee Colony  

1:    Initialize the bees; 

2:    Memorize the current best solution; 

3:    While (the stopping criterion is not met) do 

4:             Employed bees phase; 

5:             Onlooker Bees Phase; 

6:             Scout Bees Phase; 

7:             𝑺𝒃 ⃪  the best solution found so far; 

8:   End  

9:   Return 𝑺𝒃 ; 

 

 

 

5) Cuckoo Search 

    Cuckoo Search (CS) is a metaheuristic, developed in 2009 by Yang and Deb, inspired by the 

parasitic reproductive behaviour of cuckoos. These birds lay their eggs in the nests of other 

species, entrusting the incubation and rearing of their chicks to host birds [72]. 

    In the CS algorithm, a solution is represented by an egg in a nest, while a cuckoo egg 

symbolizes a new potential solution. The goal is to replace lower-quality solutions (eggs) with 

better alternatives (cuckoo eggs). This principle can be extended to more complex cases where 

each nest contains multiple eggs representing a set of solutions. 

Standard Cuckoo Search follows three based rules: 

➢ Each cuckoo lays one egg at a time and places it in a randomly chosen nest. 

➢ The best nests, containing high-quality eggs, are preserved for future generations. 

➢ The number of available host nests is fixed, and a cuckoo’s egg is discovered by the 

host bird with a probability 𝑝𝑎 ∈ (0,1). if detected, the host bird either discards the egg 

or abandons the nest to build a new one. 

   To enhance the search efficiency, the algorithm incorporates Lévy flight (described below), 

which optimally explores the search space by combining large random jumps and small local 

variations. This ensures a balance between exploration and exploitation, making Cuckoo Search 

a good tool for solving complex optimization problems. 

      Lévy flight are a type of random walk which the step lengths follow a heavy-tailed 

probability distribution, typically a power law. They combine frequent short steps with rare but 
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extremely long jumps. This behaviour allows for efficient exploration of large or complex 

search spaces. The structure of Lévy flight helps balance local exploitation and global 

exploitation, which is essential when navigating sparse or uncertain environments [73][74] 

 

Algorithm 14:Cuckoo Search 

1:   Define the objective function f (x); 

2:    Generate initial population of n host nests 𝒙𝒊 (𝒊 = 𝟏 … . 𝒏); 

3:    While (the stopping criterion is not met) do 

4:           Generate a new solution (a cuckoo) using Lévy flight;  

5:           Evaluate its fitness 𝒇𝒊 ; 

6:           Randomly select a nest j from the population; 

7:           If (𝒇𝒊 >  𝒇𝒋) then 

8:                   Replace 𝒋 with the new solution; 

9:             End 

10:           Abandon a fraction (𝒑𝒂) of the worset nests and generate new ones; 

11:           Retain the best solutions (nests with high-quality solutions); 

12:           Rank the solutions and identify the current best; 

13:   End  

14:   Report the best solution found; 

2.4.3 Hybridization 

   Hybridization involves combining multiple optimization methods to develop more efficient 

approaches. Hybrid metaheuristics are particularly suited for complex and real-world problems 

[75]. This subsection explores hybridization strategies, including the combination of 

metaheuristics with exact methods and the combination of between metaheuristics to enhance 

the performance of the developed algorithm. 

1) Coupling metaheuristics with exact methods 

     Originally, the hybridization focuses on the collaboration between the metaheuristics [76]. 

However, several studied have shown that exact methods and metaheuristics can complement 

each other effectively [83]. Exact methods are well suited for solving small-scale problems and 

find optimal solutions to them, but they become impractical for large-scale ones due to their 

high computational cost. Therefore, hybrid approaches leverage the strengths of both: an exact 
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method can be used to solve a sub-problem within a heuristic framework, while a heuristic can 

provide lower and upper bounds to guide an exact method [38].      

2) Coupling metaheuristics with other metaheuristics 

    Combining metaheuristics is the most common form of hybridization in the literature [76]. 

Such synergy enhances the overall performance in solving optimization problems. 

Metaheuristics can be integrated in various ways, including the following widely used strategies 

[78], [79], [80]: 

a) Parallel hybrids  

   Parallel hybrids involve multiple metaheuristics operating simultaneously. Each 

metaheuristic independently explores the search space and generates solutions, which are later 

compared to select the best. Parallelization improves search speed and solution quality for large-

scale problems [78]. 

   The authors in [77] highlight that parallelization strategies differ based on whether 

metaheuristics rely on single solutions or populations. For single solution based metaheuristics, 

three models are commonly used: «Parallel Moves Model » [79], «Parallel Multi start 

Model» [80], «Move Acceleration Model  » [81]. 

Additionally, [83] categorizes parallel hybrids into two types: 

• Synchronous Parallel Hybrids: one algorithm replaces a specific operator (e.g., 

substituting tabu search for mutation in a genetic algorithm). 

• Asynchronous Parallel Hybrids: multiple algorithms exchange information 

dynamically during execution. 

b) Sequential hybrids: 

    In Sequential hybrids, two methods execute consecutively, where the results of the first 

method serve as initial solutions for the second. This approach leverages the strengths of each 

method at different optimization stages. 

2.5 Conclusion: 

    In this chapter, we explored various combinatorial optimization methods and algorithms. We 

began with exact methods, highlighting approaches such as branch and bound and branch and 

cut, which guarantee optimal solutions but remain computationally expensive for large-scale 
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problems. Then, we introduced heuristic methods, including greedy algorithms and local search 

methods, which provide efficient solutions within reasonable time constraints. 

   In addition, we examined the metaheuristics, which offer powerful optimization frameworks 

for complex problems. Among the widely used metaheuristics, we presented simulated 

annealing (SA), tabu search (TS), variable neighborhood search (VNS), GRASP, genetic 

algorithms (GA), particle swarm optimization (PSO), ant colony optimization (ACO), etc. 

Finally, we discussed hybridization, which integrates different approaches enhance the 

performance and the adaptability of the developed algorithms to solve optimization problems.  
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Chapter 03: Heuristic algorithms for the Hub 

Location Routing Problem 

3.1 Introduction 

   In this chapter, we present our proposed algorithms to solve hub location routing problem. 

The algorithms we propose are: (1) Simple Local Search, Tabu Search and Neighborhood 

Search with Random Selection (NSRS). First, we will present the definition of the HLRP as 

shown in [19]. Then, we will provide a review of the most related works that have addressed 

the HLRP. After that, we will present the solution methodologies we proposed to solve the 

problem, and we finish with a conclusion. 

3.2 Problem definition  

   In our project, we deal with the variant of HLRP as defined by Lopes et Al. (2016). 

•   The hub location routing problem is an NP-hard problem that can be defined on an undirected 

complete simple graph G= (V, A), where V is the set of nodes V = {1, 2..., n} with |V|= n, and 

A is a set of edges such A= {(i, j) / i, j ∈ V, i ≠ j}. Each e ∈ A has a cost 𝐶𝑒 ∈ 𝑅+. 

•   The objective is to select a subset of p nodes from V to be the hubs and we create local 

routes R= {𝒓𝟏, 𝒓𝟐, 𝒓𝟑..., 𝒓𝒑} for these hubs. Each local route 𝑟𝑘 (for k = {1,2, 3…, P}) starts 

and ends at the hub k and visits a subset of nodes (all not-hub nodes must be visited by a local 

route of a hub). In addition, an Inter-hubs route is established to connect the hubs where each 

hub is visited one time. 

•   The length of a local route (including the non-hub) cannot exceed capacity C. More, a 

discount factor α is applied to the cost of arcs of the Inter-hubs route, where α ∈ [0,1]. 

•      A feasible solution s is represented as a table of P vectors. Each vector of the table represents 

a local rout 𝑟𝑘 where the first element is a  hub. The total cost of the solution s is calculated 

using this formulation: 

𝑓(𝑠) = 𝛼 [(∑ 𝑐𝑟𝑘(1),𝑟𝑘+1(1)

𝑃−1

𝑘=1

) + 𝑐𝑟𝑃(1),𝑟1(1)] + ∑ [( ∑ 𝑐𝑟𝑘(ℎ),𝑟𝑘(ℎ+1)

|𝑟𝑘|−1

ℎ=1

) + 𝑐𝑟𝑘(|𝑟𝑘|),𝑟𝑘(1)]

𝑃−1

𝑘=1
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3.3 Most related works 

   In this subsection, we provide a review on the methods proposed in [19] [20] to deal with 

the HLRP:  

   In 2016 Lopes et Al. [19], several heuristic methods were introduced to address the 

problem: 

1) Multi-start Variable Neighborhood Descent (VND): This approach iteratively 

applies a Variable Neighborhood Descent on a randomly generated initial solution. 

Two versions of VND are proposed, both used similar neighborhood structures, such 

as transferring non-hub nodes between local routes, swapping two non-hub nodes, 

and change hub node by non-hub nodes in same local route. Both variants employ 

the Lin-Kernighan heuristic for tour optimization and use random improvement 

moves rather than first or best improvement strategies. The difference between two 

approach is in the organization of neighborhood exploration:  

o M-VND: utilizes a nested Variable Neighborhood Descent. 

o M-CNS: Employs Consecutive Nested Neighborhood Search 

2) Biased Random-key Genetic Algorithm (BRKGA): A genetic algorithm where 

solutions are encoded as chromosomes using random keys in [0,1]. It uses a decoder 

to extract a solution from the chromosomes and attempts to improve the solution 

using a local search procedure. It implements a local search based on the Lin-

Kernighan heuristic for TSP. This is a well-defined evolutionary process that uses 

parameterized uniform crossover and replaces the mutation operator applied to 

existing chromosomes with newly introduced mutants for exploration. 

3) Commercial Solver (Local Solver version 6.0): consists of a collection of 

techniques using a hybrid neighborhood search approach. Local Solver combines 

local search techniques, constraint propagation and inference methods, linear and 

mixed-integer programming techniques, as well as nonlinear programming 

techniques.    

    In 2022, Ratli et Al. [20], the authors used the General Variable Neighborhood Search 

(GVNS) algorithm, an advanced variant of the Variable Neighborhood Search (VNS), to deal 

with HLRP. The GVNS utilized seven neighborhood structures including: swapping non-hub 
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nodes between local routes, swapping two non-hub nodes from two different local routes, 

replacing a hub node with non-hub node in the same local route, reversing a part of route, 

reversing a part of route consisting of two consecutive nodes (a simplified case of reversing a 

part of route), and inserting a node in either a forward or backward position in the same route .  

The GVNS systematically alternates between two complementary phases: 

• An intensification phase, which focuses on improving the current solution using the 

variable Neighborhood Descent (VND). 

• A diversification phase, which introduces a shaking procedure to explore new regions 

of the search space. 

These two phases are iteratively executed until the predefined stopping condition (Tmax) is met. 

Differences between the VNS algorithms used in [19] and [20]: 

The main differences between GVNS, M-VND, M-CNS are as follows: 

• Number and organization of neighborhood structures: GVNS explores seven 

neighborhood structures sequentially, while M-VND and M-CNS use only three 

neighborhoods.  

• Shaking phase: GVNS employs a shaking procedure to escape from the local optima, 

while the M-VND generate a new random initial solution at the beginning of each 

iteration. 

• Improvement phase: GVNS uses the Basic sequential Variable Neighborhood descent 

(VND). In contrast, M-VND employs a nested VND, which incorporates the Lin-

Kernighan heuristic while M-CNS also applies the Lin-Kernighan heuristic.  

3.4 Proposed heuristic algorithms 

   In this subsection, we present the three heuristic algorithms we propose to solve the HLRP. 

First, we present the components of these methods, and then we present how these components 

are employed in the three algorithms. 

3.4.1 Components of solution Methodology 

1) Initial solution procedure  

   The initial solution procedure starts with an empty solution s (table of p vectors) and creates 

a complete feasible solution at random. First, it selects randomly from p hubs the set of nodes 
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V, and creates a local route for each one. Then, it keeps randomly selects one node from V and 

add it in a random position into a random local route until all nodes in V are assigned. The 

initial solution procedure respects the local routes capacity constraint, therefore it doesn’t 

assigns a new node to a local route only if its capacity allows that. 

 

Algorithm 15:initial_random_solution (p, C, V) 

1: Create empty solution: table S [] of p vectors 

2:      for  i = 1 to  p do 

3:                select randomly node v ∈ V ; 

4:                      S [i]. 𝑟(1)  ← v ;/∗ insert v as a hub in the first position of the local route S [i]. 𝑟 */ 

5:                          V  ←  V  −   {v} ; /*remove v from V*/ 

6:    End   

7: While (V is not empty) 

8: select randomly a node v ∈ V ; 

9: i  ←  random(1, P);   

10: If (|S [i]. 𝑟|  < C) then 

11:           S [𝑖]. 𝑟(|S [i]. 𝑟|  + 1)   ←  v; /*add the non-hub v to local routeS [i]. 𝑟 */ 

12:                 V  ←  V  −    {v} ; /*remove v from V*/ 

13: End 

14: End 

15:    Return S; 

 

2) Neighborhood structures 

   In our methods, we consider eight neighborhood structures where each neighborhood 

structure contains a distinct set of neighboring solutions generated based on a specific move. 

The neighborhood structures are named N1, N2, ... N8 and they are created based on the moves 

intra-route Swap two non-hub, swap two hubs, intra-route Swap hub by non-hub, remove 

and add (shift) node, extra-route Swap two non-hub, extra-route Swap hub by non-hub, 

swap two local routes and remove and add (shift) local route respectively. In the following, 

we will describe these moves: 

i. Intra-route Swap two non-hub (N1): This movement consists of exchanging two 

nodes non-hubs in the same local route. This move is applied on all local routes of the 

solution. In algorithm 16, we depict, as an example, how the neighbors solutions related 

to this move are generated.  
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Algorithm 16: N1(S) 

1:      N1  ←   ∅ ; 

2:  for  i = 1 to  p do 

3:                  for  j = 2 to   |S [i]. 𝑟| do 

4:                               for  k = j+1 to  |S [i]. 𝑟| do 

5:                S’ ← swap(S , S [i]. 𝑟(𝑗), S [i]. 𝑟(𝑘)); 

6:                                   N1 ←  N1 ∪  { S’ }; 

7:             End   

8: End 

9: End 

10:  Return N1 ; 
 

 

 

Figure 15:Swap two non-hubs (intra-route) of N1 (n1, n5).  

ii. Swap two hubs (N2): This movement consists of exchanging two hubs in the solution. 

 

Figure 16:Swap two hubs of N2 (h2, h3). 
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iii. Intra-route Swap hub by non-hub (N3): This movement consists of exchanging the 

hub node with a non-hub node in the same local route. This move is applied on all local 

routes of the solution. 

 

Figure 17:Swap hub by non-hub (intra-route) of N3 (h1 ,n2). 

 

iv. Remove and add (shift) node (N4): this movement consists of removing a node (hub 

or non-hub) from its position and re-inserting it in other position in solution. This move 

is applied on all local routes of the solution. 

 

Figure 18:Remove and add (shift) node of N4 (n2). 
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v.  Extra-route Swap two non-hub (N5): This movement consists of exchanging two 

node non-hub in the different local route. This move is applied on all combinations of 

two local routes in the solution. 

 

Figure 19:Swap two non-hub (extra-route) of N5 (n1, n2). 

         

 

vi. Extra-route Swap hub by non-hub (N6): This movement consists of exchanging hub 

node by non-hub node in the different local route. This move is applied on all 

combinations of two local routes in the solution. 

 

Figure 20:Swap hub by non-hub (extra-route) of N6 (h3 , n6). 
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vii. Swap two local routes (N7): This movement consists of exchanging two local routes 

in solution. This move is applied on all combinations of two local routes in the solution. 

 

Figure 21:Swap two local routes of N7. 

viii. Remove and add (shift) local route (N8): this movement consists of removing a local 

route from its position and inserting in other position. This move is applied on all local 

routes of the solution. 

                      

Figure 22:Remove and add (shift) local route of N8 . 

3.4.2 Proposed heuristic algorithms 

1) Simple Local Search 

   The first method we propose is a Simple Local Search (SLS) method. The SLS starts with an 

initial solution S generated at random using the procedure described above 

“initial_random_solution”. Then, it iteratively improves this solution until reaching a local 



Chapter 03: Heuristic algorithms for the Hub Location Routing Problem 

43 

 

optimum. In each iteration, it creates the neighborhood structure N(S) of the solution S, where 

N(S) = N1(S) U N2(S) …N8(S). After that, the SLS selects the best solution S’ In N(S). If S’ 

is better than 𝑆, then it replaces it otherwise, the procedure terminates (this case is when the best 

solution in the current neighborhood is the current solution, that means 𝑆 = 𝑆𝒃𝒆𝒔𝒕 ). The SLS is 

presented in Algorithm 17. 

 

Algorithm 17:Simple Local Search (S) 

  1: stop  ←   false ; 

  2: While (not stop) do 

  3:                 N  ←{ N1 (S) ∪ N2 (S) ∪ N3 (S) ∪ N4(S) ∪ N5(S) ∪ N6(S) ∪ N7 (S) ∪N8(S) } 

  4:         S’  ←   choose the best solution in set N(S); 

  5:        If (f (S’) <  f (𝑆𝒃𝒆𝒔𝒕)) then 

  6:                         𝑆𝒃𝒆𝒔𝒕 ← S’; 

  7:        End 

  8:        If ( 𝑆𝒃𝒆𝒔𝒕 = 𝑆 ) then 

  9:                Stop ←  true ; 

10:                  End 

11:                         S ← S’; 

12: End 

13:        Return 𝑆𝐛𝐞𝐬𝐭; 

 

2) Tabu Search 

   The tabu search algorithm starts with an initial solution 𝑆 generated at random using the 

procedure described above “initial_random_solution” and an empty tabu list L. at each 

iteration, it generates a set of neighbors solution N (S). After that, the TS selects the best solution 

𝑺′ in N(s) where S’ must be not-tabu solution, that means must not be in L. Then, S’ becomes 

the new current solution and we add it to the tabu list L. if 𝑺′  is better than 𝑆best it replaces it. 

The algorithm terminates after a fixed number of iterations.  
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Algorithm 18: Tabu Search(S) 

1: L ← ∅; 𝑆𝒃𝒆𝒔𝒕 ← 𝑆;  
2: While (iteration_number>  0)do 

3: N  ←{ N1 (S) ∪ N2 (S) ∪ N3 (S) ∪ N4(S) ∪ N5(S) ∪ N6(S) ∪ N7 (S) ∪N8(S) } 
4: 𝑆′    ←   choose the best solution in set N, { 𝑆′ ∈ N and 𝑆′ ∉ L}; 
5: Update tabu list L;/*add 𝑆′  into tabu list L*/ 

6: If (f (S’) <  f (𝑆𝒃𝒆𝒔𝒕)) then 

7: 𝑆best ← S; 
8:       End 

9:                  S   ←   S’; 
10: iteration_number ←   iteration_number - 1; 
11: End 

12: Return 𝑆best; 

 

3) Neighborhood Search with Random Selection 

  The Neighborhood Search with Random Selection (NSRS) iteratively improves the initial 

solution 𝑆 , (generated at random using the procedure described above 

“initial_random_solution” ) by exploring neighborhood structures through the 

“Apply_All_Neighborhood” function below. The Apply_All_Neighborhood function, at 

each iteration, randomly selects a neighborhood structure k from the set of all neighborhood 

structures L . Then, it generates the set of possible solutions for the selected Nk(S)chooses the 

best solution from this set and replaces the current solution S found by this best solution. This 

process continues until all eight neighborhood structures have been explored and, at the end, it 

returns the best solution found. Finally, the NSRS terminates after a fixed number of iterations.  

 

Algorithm 19:Neighborhood Search with Random Selection (S) 

1: 𝑆𝒃𝒆𝒔𝒕 ← 𝑆;    

2: While (iteration_number >  0 ) do 

3: 𝑆    ← Apply_All_Neighborhood (S); 
4: If (𝑓(𝑆)  <  𝑓(Sbest)) then 

5: 𝑆best ← S; 
6: End 

7:        iteration_number ←   iteration_number - 1; 
   8:  End 

9: Return 𝑆best; 
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   Algorithm 20:Apply_All_Neighborhood (S) 

 1: L   ←  { N1 , N2 , N3 , N4 , N5 , N6 , N7 , N8 }; N   ←∅   ; 

2: While (L ≠ ∅) do 

3:  Choose randomly Nk from list L; 
4:        N   ←  Nk (S); 
5:  S    ←   choose the best solution in set N(S); 

6:         L    ←   L  -  { Nk }; 

7:   End 

  8:        Return S; 

 

3.5 Conclusion 

    In this chapter, we have presented the heuristic algorithms we proposed to solve the Hub 

Location Routing Problem (HLRP). The proposed methods include Simple Local Search, Tabu 

Search, and Neighborhood Search with random Selection. Starting with the  definition of the 

HLRP, we provided a detailed overview of the problem’s formulation including the objective 

function, the constraints and the decision variables. After that, we reviewed the most relevant 

works and existing methodologies addressing the HLRP. Then, we introduced the proposed 

heuristic approaches, starting by the presentation of their components such as the initial solution 

procedure, neighborhood structures. After the presentation of the components, we presented 

each method and how it employed these components. In the next chapter, the proposed 

algorithms will be tested using benchmark data set from the literature and the obtained results 

will be compared with those of the most related works. 
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Chapter 04: Tests and Comparison with the 

literature 

4.1 Introduction 

   In this chapter, we will evaluate the effectiveness of the algorithms we proposed through a 

series of experiments. We will begin with a detailed description of the dataset provided by [19], 

along with the method used for its generation. Next, we will present an example from the set of 

instances. Finally, we will report the results obtained by our developed algorithms and compare 

them with those achieved by state-of-the-art methods from the literature. 

4.2 Description of benchmark 

    In [19], the authors derived a dataset of instances for HLRP using a set of 77 instances from 

TSPLIB as follows: 

First, let define the following parameters: 

n: Total number of nodes in the network. 

p: Number of hubs. 

C: Maximum capacity of each local route. 

α: Discount factor applied to inter-hub transportation costs. 

   To diversify the experimental conditions, three scenarios were used to define p and C: 

• Scenario ST: p = ⌈0.2n⌉  and 𝐶 = ⌈
𝑛

𝑝
⌉: this scenario enforces tight local routes, ensuring 

that every hub at least one associated local route. 

• Scenario SL: 𝑝 as in ST and 𝐶 = ⌊1.8 ⌈
𝑛

𝑝
⌉⌋: this scenario allows large local routes, meaning 

some hubs may not have an associated local route. 

• Scenario SQ: 𝑝 = 𝐶 = ⌈√n ⌉: this scenario allows large local routes and hubs may have 

no local route associated with them. 

Then, for each scenario, we set α equals to {0.2, 0.4, 0.6, 0.8}. 

    Based on the number of nodes 𝑛 in each instance, they classified the dataset into two 

categories: small instances consist of 28 instances with less than 100 nodes, and large instances 
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consists of 49 instances containing between 100 and 1000 nodes. All instances are available at 

the following address: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/. 

 The following figures show examples of instances with varying distances and formats: 

 

 

Figure 23:Example of an instance using     

Euclidean distance. 

 

 

Figure 24:Example of an instance using 

Geographical distance. 

  

 

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Figure 25:Example of an instance using ATT 

distance. 

 

 

Figure 26:Example of an instance with UPPER ROW 

format. 

 

 Figure 27:Example of an instance with LOWER DIAG ROW format. 
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4.3 Generated solution structure 

  The generated solution contains the ids of the selected hubs, along with the ids of the non-hubs 

assigned to each hub. In the next table we present the structure of generated solution. 

Fitness 

Scenario 

alpha 

             Capacity local route 

                        1         2     3………………………….... ….C 

Nbr hub hub Id Assigned non-hub id 

1 5 8 55 19 25 ..... 30 

2 6 77 60 3 ….. 18   / 

3 20 4 88 65 67   ..... 45 

⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ ⁝ 

p 70    /    /   /    /     /   / 

Table 1:Generated solution structure 

We present the complete solution obtained by the Tabu Search algorithm for the a280 instance 

under scenario SQ with α = 0.4 in the following figure: 

 

Figure 28:example of check by hand of a generated solution 
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4.4 Experiments results 

   In this section, we present the results obtained by running three algorithms (Simple Local 

Search, Tabu search and Neighborhood Search with Random Selection) on a selected subset of 

instances with different topologies. This subset consists of the following eight instances: 

burma14, gr14, berlin52, pr76, kroB100, ch130, a280, u574. Each instance is evaluated under 

three scenarios (ST, SL, and SQ) and with four values of α: {0.2, 0.4, 0.6, 0.8}. 

 

4.4.1 Parameters and implementation details 

   All algorithms were implemented in java, using the java SE-17 (JDK 17) compiler. Our 

algorithms was executed on a computer equipped with an Intel(R) Core (TM) i5-8365U  

running at 1.60 GHz (with a maximum turbo frequency of 1.90 GHz) and with 16 GB of RAM. 

   In Tabu Search algorithm, we used the following parameters: we set the maximal number of 

iterations equals to 1000 iterations and the tabu list size equals to 20, whereas in Neighborhood 

Search with Random Selection we set the maximal number of iterations equals to 1000. 

 

 4.4.2 The obtained results 

 To evaluate the proposed algorithms, we run each one 10 times on each instance and we report: 

the value of the best solution found (Best), the average value (AVG) of the obtained solutions 

and the average of the running time (Time), aver all the 10 runs.  
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Instance 

Simple Local Search Tabu Search NSRS 

   Best AVG Time Best AVG Time Best AVG Time 

S
m

all 

 

S
m

all 

burma14 3737.54 3778.76 0.03 3737.54 3772.61 0.03 3737.54 3772.61 1.22 

gr24 1482.8 1614.44 0.07 1469.6 1541.76 2.82 1469.6 1475.28 2.38 

berlin52 8907.91 9418.30 0.71 8836.67 9370.44 10.19 8570.24 8915.55 9.77 

pr76 138209.35 144315.34 2.11 138209.35 144093.12 21.55 123226.15 128342.53 21.14 

kroB100 32869.23 34137.14 4.26 32866.73 34109.90 26.96 28620.32 31278.00 26.69 

L
arg

e 

 ch130 8618.74 9106.94 10.60 8702.55 9069.97 47.85 7796.88 8377.33 47.20 

a280 4058.1 4373.72 84.28 4058.1 4372.08 203.97 3665.51 3918.07 199.99 

u574 58173.4 62927.48 884.01 58310.76 63135.07 914.95 56908.06 61149.25 898.17 

Average 32007.13 33709.02 123.26 32023.91 33683.12 153.54 29249.28 30903.58 150.82 

Table 2:Obtained results for the ST scenario and α = 0.2. 

  

 

Instance 

Simple Local Search Tabu Search NSRS 

   Best AVG Time Best AVG Time Best AVG Time 

S
m

all 

 

 

 burma14 3943.82 4001.09 0.03 3943.82 3975.28 1.18 3943.82 3943.82 1.22 

gr24 1542.2 1666.86 0.07 1542.2 1637.26 2.48 1542.2 1556.82 2.49 

berlin52 9562.55 9737.12 0.63 9475.29 9710.73 9.99 9174.38 9534.81 10.12 

pr76 141780.8 154209.37 1.98 141780.83 153748.41 21.20 131225.87 137088.06 20.54 

kroB100 34918.94 36746.54 3.90 34440.65 36627.55 26.54 30944.71 34045.28 26.03 

L
arg

e 

 L
arg

e 

ch130 9328.29 10065.93 8.70 9328.29 10065.79 43.71 8463.7 9493.31 43.59 

a280 4467.77 4888.99 88.40 4467.77 4876.80 663.90 3986.63 4312.86 212.51 

u574 63157.42 66939.28 951.93 63409.82 67033.13 931.53 62237.14 66330.58 821.48 

Average 33587.72 36031.90 131.96 33548.58 35959.37 212.57 31439.80 33288.19 141.12 

Table 3:Obtained results for the ST scenario and α = 0.4. 
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Instance 

Simple Local Search Tabu Search NSRS 

   Best AVG Time Best AVG Time Best AVG Time 

S
m

all 

 

 

S
m

all 

burma14 4150.10 4191.1 0.042 4150.10 4150.63 1.55 4150.10 4150.10 1.420 

gr24 1665.6 1755.86 0.08 1635.6 1681.86 3.92 1614.8 1627.17 3.88 

berlin52 10238.33 10706.56 0.98 9935.26 10567.04 15.14 9889.63 10152.87 16.048 

pr76 154708.87 173030.49 2.70 154708.87 171481.92 29.00 141620.29 148466.57 29.30 

kroB100 35088.31 38318.33 5.14 34805.87 37853.46 35.09 32410.04 35399.54 33.62 

L
arg

e 

  ch130 9695.53 10908.81 13.80 9695.53 10834.75 68.67 9626.22 10313.34 62.49 

a280 4393.77 5081.30 193.75 4388.06 5072.86 275.38 4312.54 4653.69 264.97 

u574 68456.06 73517.76 1302.86 68966.37 74013.43 1354.50 64743.83 70520.35 1481.84 

Average 
36049.57 39688.77 189.91 36035.70 39456.99 222.90 33545.93 35660.45 236.69 

Table 4:Obtained results for the ST scenario and α = 0.6. 

 

 

Instance 

Simple Local Search Tabu Search NSRS 

   Best AVG Time Best AVG Time Best AVG Time 

S
m

all 

 

  

   burma14 4290.65 4399.46 0.038 4290.65 4295.79 1.95 4290.65 4290.65 1.85 

gr24 1702.2 1796.52 0.110 1676.6 1718.08 4.803 1676.6 1676.6 4.76 

berlin52 10606.21 11462.54 0.90 10606.21 11259.09 15.02 10328.04 10711.30 15.00 

pr76 168243.67 180005.78 2.24 167528.74 179488.18 25.00 148849.26 156477.86 25.84 

kroB100 37844.56 41225.56 5.49 37844.56 41113.76 35.01 35510.81 38935.05 34.05 

L
arg

e 

 

  L
arg

e 

 ch130 10620.66 11123.96 10.90 10535.32 11076.55 56.62 9650.92 10857.51 55.47 

a280 5127.74 5317.27 175.40 5033.11 5252.16 270.59 4554.66 4803.08 261.69 

u574 74218.14 79964.76 1305.38 74218.14 79964.66 1310.25 68688.43 75998.76 1448.79 

Average 
39081.72 41911.98 187.55 38966.66 41771.03 214.90 35443.67 37968.85 230.93 

Table 5:Obtained results for the ST scenario and α = 0.8. 
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Instance 

Simple Local Search Tabu Search NSRS 

   Best AVG Time Best AVG Time Best AVG Time 

S
m

all 

 

  

   burma14 2917.46 3215.3 0.03 2917.46 3215.3 1.63 2917.46 2917.46 1.35 

gr24 1321.2 1415.96 0.11 1223.2 1355.58 3.28 1192 1209.4 3.44 

berlin52 7430.3 8451.91 1.12 7417.51 8396.11 15.23 6823.71 7615.89 16.02 

pr76 114354.58 129496.82 3.55 114338.97 129092.52 32.43 105505.15 115073.53 32.38 

kroB100 25714.14 28984.00 3250.44 25656.22 28905.97 54.25 22864.09 25494.91 57.33 

L
arg

e 

    ch130 7539.99 8125.27 19.20 7386.75 8080.77 91.05 6479.99 7066.76 104.40 

a280 3385.18 3925.86 229.76 3365.14 3915.04 429.49 3505.92 3889.82 399.60 

u574 50680.81 57806.73 2304.04 51202.02 59285.39 2173.12 50305.99 59253.18 1846.08 

Average 26667.95 30177.73 726.03 26688.40 30280.83 350.06 24949.28 27815.12 307.57 

Table 6:Obtained results for the SL scenario and α = 0.2. 

 

 

Instance 

Simple Local Search Tabu Search NSRS 

   Best AVG Time Best AVG Time Best AVG Time 

S
m

all 

 

  

  S
m

all 

 burma14 3240.65 3586.59 0.03 3199.23 3403 1.33 3199.23 3199.23 1.32 

gr24 1385.2 1483.64 0.11 1348.8 1441.5 3.42 1287 1308.56 3.49 

berlin52 3199.23 9074.19 1.11 8163.66 8869.50 16.02 7596.96 8124.41 15.80 

pr76 128209.56 141807.62 3.55 128209.56 140887.07 32.47 118403.42 129977.49 31.95 

kroB100 28427.45 30834.64 8.32 28413.75 30692.12 54.25 25117.7 27947.15 54.98 

L
arg

e 

  ch130 7887.88 8591.53 19.83 7887.69 8586.79 104.48 6966.53 7753.95 97.31 

a280 4031.26 4396.67 230.86 4031.26 4391.00 443.05 3586.95 3390.95 427.27 

u574 55569.24 62359.33 2352.87 56557.6 64729.32 2151.35 55569.24 62956.00 1837.54 

Average 28993.80 32766.77 327.08 29726.44 32875.04 350.79 27715.87 30582.22 308.71 

Table 7:Obtained results for the SL scenario and α = 0.4. 
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Instance 

Simple Local Search Tabu Search NSRS 

   Best AVG Time Best AVG Time Best AVG Time 

S
m

all 

 

  

  S
m

a S
m

all 

ll burma14 3422.18 3706.68 0.034 3422.18 3583.39 1.98 3422.18 3422.73 1.89 

gr24 1526.4 1598.08 0.63 1429.6 1512.80 5.77 1375.0 1394.0 7.15 

berlin52 8997.58 10279.99 1.73 8703.78 10136.31 22.76 8153.27 8727.42 23.96 

pr76 135880.57 154672.92 4.53 134555.88 150206.56 44.42 128004.44 135461.46 44.76 

kroB100 30006.92 34377.05 14.42 29912.70 33480.32 91.68 27124.35 31273.28 81.89 

L
arg

e 

  ch130 8606.98 9255.82 25.81 8606.98 9258.11 131.37 8255.19 9152.87 123.15 

a280 3992.80 4460.77 359.16 3990.00 4414.92 634.10 3907.38 4442.41 567.91 

u574 61703.38 66467.76 2459.69 64334.75 69023.15 9101.52 63666.32 68857.05 1902.89 

Average 31767.10 35602.38 358.25 31869.48 35201.94 1254.2 30488.51 32841.40 344.2 

Table 8: Obtained results for the SL scenario and α = 0.6. 

 

 

Instance 

Simple Local Search Tabu Search NSRS 

   Best AVG Time Best AVG Time Best AVG Time 

S
m

all 

 

  

  burma14 3522.45 3819.53 0.031 3522.45 3590.30 1.92 3522.45 3522.45 1.84 

gr24 1516.8 1614.69 0.18   1464.2 1525.46 7.16 1452.4 1462.84 7.46 

berlin52 9685.86 10538.14 1.40 9658.85 10315.08 19.87 8828.43 9642.35 21.09 

pr76 147901.68 166813.99 4.51 147901.68 164017.24 40.53 135312.50 146436.27 41.16 

kroB100 31403.37 34123.11 11.97 31108.09 33867.94 85.82 29894.98 34033.76 82.88 

L
arg

e 

   ch130 9013.38 10333.39 25.82 9013.38 10223.45 124.05 8462.70 9923.82 119.07 

a280 4301.46 4734.76 322.59 4232.38 4674.60 620.89 4365.87 4655.54 556.34 

u574 69125.64 73793.59 2522.82 73106.82 77905.92 2225.65 69042.3 75923.32 1855.22 

Average 34558.83 38221.40 361.16 35000.98 38264.99 390.73 32610.20 35700.04 335.63 

Table 9:Obtained results for the SL scenario and α = 0.8. 
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Instance 

Simple Local Search Tabu Search NSRS 

   Best AVG Time Best AVG Time Best AVG Time 

S
m

all 

 

  

  S
m

all 

burma14 3527.47 3625.07 0.02 3527.47 3607.38 1.15 3527.47 3527.47 1.09 

gr24 1505.8 1593.98 0.07 1469.6 1563.8 2.36 1469.6 1472.1 2.3267 

berlin52 8914.31 9847.79 0.86 8914.31 9760.20 12.06 8265.47 8419.37 12.7749 

pr76 139511.24 165427.28 2.4368 139452.73 164367.95 20.31 127465.15 132961.69 21.42 

kroB100 33366.75 42722.15 4.403 33366.75 42281.59 26.48 30790.97 35638.47 25.87 

L
arg

e 

    ch130 9534.59 13242.91 1213.33 9534.59 11206.32 58.80 7243.15 9120.03 59.53 

a280 5245.01 6051.29 129.80 5209.87 5938.97 244.64 4342.99 5183.33 235.53 

u574 79208.72 98980.19 1225.02 102933.65 99334.24 863.73 83330.89 90340.10 824.24 

Average 35101.73 42686.33 321.99 38051.12 42257.56 153.69 33304.46 35832.82 147.85 

Table 10:Obtained results for the SQ scenario and α = 0.2. 

 

 

Instance 

Simple Local Search Tabu Search NSRS 

   Best AVG Time Best AVG Time Best AVG Time 

S
m

all 

 

  

  S
m

all 

burma14 3573.87 3851.72 0.02 3573.87 3851.72 1.12 3527.47 3727.18 1.11 

gr24 1561 1649.76 0.07 1542.2 1618.6 2.40 1542.2 1557.04 2.43 

berlin52 9418.44 10598.49 0.83 9334.81 10354.40 11.01 8621.69 9153.18 12.57 

pr76 151865.95 174004.59 2.21 144409.6 165058.88 20.11 128385.64 137694.95 21.06 

kroB100 36376.67 43551.21 3.97 34127.29 41431.53 25.75 29568.58 35312.46 25.71 

L
arg

e 

    ch130 9618.51 10787.56 12.69 9590.7 10762.68 58.60 7747.34 9843.57 59.58 

a280 5156.04 6193.513 123.03 5150.89 6115.86 238.32 4463.39 5369.33 231.68 

u574 90602.73 101973.23 1214.41 106121.1 113622.03 888.40 84512.8 88741.23 843.76 

Average 38521.65 44076.26 169.65 39231.30 44101.96 155.71 64353 .03 36424.87 149.74 

Table 11:Obtained results for the SQ scenario and α = 0.4. 
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Instance 

Simple Local Search Tabu Search NSRS 

   Best AVG Time Best AVG Time Best AVG Time 

S
m

all 

 

  

   burma14 3971.29 4102.08 0.019 3971.29 4094.06 1.52 3971.29 3971.29 1.52 

gr24 1636.2 1732.84 0.078 1614.8 1665.14 3.12 1614.8 1626.43  3.01 

berlin52 9417.57 10573.45 1.08 9321.80 10278.55 16.62 8843.88 9317.89 16.81 

pr76 152594.51 177713.26 2.60 152594.51 173164.98 26.18 138038.27 150099.70 29.38 

kroB100 40282.16 47467.99 5.72 39917.69 46866.45 37.48 32472.20 44606.40 36.47 

L
arg

e 

    ch130 10056.42 11646.47 18.11 9134.04 11042.01 90.94 7522.39 9273.20 93.88 

a280 4766.32 6151.76 171.06 4725.97 6019.96 338.34 4112.49 5948.61 301.57 

u574 103085.74 112848.79 1365.88 103085.74 112848.79 1336.46 94888.29 100004.43 1317,50 

Average 
40726.27 46529.58 195.56 40545.73 45747.49 231.33 36432.95 40605.99 225.01 

Table 12:Obtained results for the SQ scenario and α = 0.6. 

 

 

Instance 

Simple Local Search Tabu Search NSRS 

   Best AVG Time Best AVG Time Best AVG Time 

S
m

all 

 

  

   burma14 4193.19 4339.30 0.026 4193.19 4232.11 1.96 4193.19 4193.19 1.83 

gr24 1676.6 1783.1 0.47 1678.8 1730.41 4.02 1676.6 1676.6 4.10 

berlin52 10139.75 10798.92 1.06 10079.23 10580.86 15.20 9267.26 10123.98 17.22 

pr76 171213.55 186514.57 2.95 158178.48 182695.14 28.80 141103.89 156130.45 30.93 

kroB100 42665.31 49545.13 5.69 42474.31 48431.94 42.13 39813.15 47201.63 39.96 

L
arg

e 

   ch130 10040.12 11722.95 17.65 9736.86 11347.85 88.26 8664.12 10632.60 77.65 

a280 5217.23 6419.08 181.96 5098.16 6316.01 327.20 4722.19 5651.11 326.25 

u574 107438.78 114459.41 1321.62 107438.78 114459.41 13294.4 88147.05 99217.15 1322.83 

Average 
44073.06 48197.80 191.42 42359.72 47474.21 229.62 37198.43 41853.33 227.59 

Table 13:Obtained results for the SQ scenario and α = 0.8. 

    Tables from 02 to 13 present the results obtained from executing our algorithms on the 

selected set of benchmark instances. When applying the Simple Local Search algorithm to 

instances such as burma14, gr14, berlin52, and pr76, we observe promising results. In contract, 

in the instances kroB100, ch130, a280, and u574, the SLS produces  lower-quality solutions 

compared to TS and NSRS. The Tabu Search algorithm obtained results that were generally 
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comparable to, or slightly better than, those obtained with SLS. For Neighborhood Search with 

Random Selection, we observe that it consistently produces better results than both SLS and 

TS on most instances, with the exception of burma14, where all three algorithms obtain the 

same solution. 

   Regarding the running time, the SLS proved to be the fastest in scenarios ST and SL, and SQ 

for all tested instances whereas TS and NSRS required more time to converge. However, for 

the u574 instance, both TS and NSRS  were faster than Local Search in specific cases-namely 

scenario ST with α = 0.6, scenario SL with α = 0.2, 0.4, 0.8, and scenario SQ with α = 0.4, 0.6. 

 To sum up, in general, from the obtained results we can see that the SLS was the faster method 

and it returns good quality solutions. In addition, we can see that the TS and the NSRS obtain 

better results than the SLS however they need more running times. Comparing NSRS to TS, 

we can see that NSRS obtains better results than TS without a considerable difference in the 

running times. From the obtained results, we can assume that the results of NSRS are better 

than those obtained by TS and SLS, and therefore we will use its results in our comparison with 

the literature. 

4.4.3 Comparison with literature 

   In this subsection, we compare the results obtained by the NSRS algorithm against several 

state-of-the-art heuristics presented in [19], namely: BRKGA, M-VND, M-CNS, and Local 

Solver. It worth mentioning that we compare our results to only methods from [19], because 

unfortunately the detailed results of the methods proposed in [20] were not available. In tables 

from 14 to 25, the columns are defined as follows:  

• Best-known: reports the value of the best known solution found in the literature for each 

instance. 

• %: indicates the percentage gap between the solution obtained by the algorithm and the 

Best-known value. 

• Time: represent the average computational time (in seconds) requires to reach the 

reported solution(s). 

• AVG: shows the average value of the solutions obtained over multiple runs. 

• Best: provides the best solution found by the NSRS for each instance. 

In addition, the star symbol (*) indicates that the algorithm successfully found the Best-known 

solution. Also, For each method, the percentage gap is calculated using the following formula: 
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𝐺𝑎𝑝 (%) = 𝑥 =
𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 − 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐵𝑒𝑠𝑡_𝑘𝑛𝑜𝑤𝑛

𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝐵𝑒𝑠𝑡_𝑘𝑛𝑜𝑤𝑛
× 100 

 

Instance 

Best-

known 

BRKGA M-VND M-CNS LS NSRS 

% Time % Time % Time % Time Best AVG % Time 

S
m

all 

    

burma14 3680.20 * 0 * 0 * 0 * 11 3737.54 3772.61 1.55 1.22 

gr24 1469.60 * 1 * 13 * 9 * 11 1469.6 1475.28 * 2.38 

berlin52 8564.80 11.26 1014 * 114 * 334 * 11 8570.24 8915.55 4.09 9.77 

pr76 121663.80 23.04 2438 2.09 51 4.18 148 * 1735 123226.15 128342.53 1.28 21.14 

kroB100 27320.00 22.60 3016 5.09 103 6.67 367 * 3932 28620.32 31278 4.75 26.69 

L
arg

e 

  

ch130 7592.80 152.58 2 5.95 919 * 1758 * 1758 7796.88 8377.33 2.68 47.2 

a280 3456.60 212.09 4 14.85 306 * 3662 * 3662 3665.51 3918.07 6.04 199.99 

u574 51889.80 323.94 11 17.73 42 * 3797 * 3797 56908.06 61149.25 9.67 898.17 

Average 28204.7 93.18 810.75 5.71 193.5 1.35 1259.37 0 1864.6 29249.28 30905.57 3.75 150.82 

Table 14:Comparison Obtained results for the ST scenario and α = 0.2. 

 

 

Instance 

Best-

known 

BRKGA M-VND M-CNS LS NSRS 

% Time % Time % Time % Time Best AVG % Time 

S
m

all 

    

burma14 3891.40 * 0 * 0 * 0 * 11 3943.82 3943.82 1.34 1.22 

gr24 1542.20 * 24 * 75 * 14 * 11 1542.2 1556.82 * 2.49 

berlin52 9154.60 4.99 513 * 88 0.08 197 * 236 9174.38 9534.812 0.21 10.12 

pr76 130948.00 18.38 3139 0.11 476 2.27 298 * 1600 131225.87 137088.06 0.21 20.54 

kroB100 29295.80 16.16 2726 5.04 239 5.04 199 * 518 30944.71 34045.28 5.62 26.03 

L
arg

e 

  

ch130 8138.60 143.02 2 8.66 513 * 2085 * 2085 8463.7 9493.31 3.99 43.59 

a280 3770.20 192.45 5 13.67 2329 * 2332 * 2332 3986.63 4312.86 5.74 212.51 

u574 54591.40 309.45 10 15.61 84 * 3842 * 3842 62237.14 66330.58 14.0 821.48 

Average 30166.52 85.55 802.3 5.38 475.5 0.92 1120.87 0 1329.37 31439.80 33288.19 3.88 141.12 

Table 15:Comparison Obtained results for the ST scenario and α = 0.4. 
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Instance 

Best-

known 

BRKGA M-VND M-CNS LS NSRS 

% Time % Time % Time % Time Best AVG % Time 

S
m

all 

    

burma14 4102.60 * 0 * 0 * 0 * 11 4150.10 4150.10 1.15 1.42 

gr24 1614.80 * 67 * 106 * 13 * 22 1614.8 1627.17 * 3.88 

berlin52 9744.40 6.69 1537 * 3 0.17 91 * 416 9889.63 10152.87 1.49 16.048 

pr76 139383.00 14.93 3243 1.19 274 3.01 164 * 2174 141620.29 148466.57 1.60 29.30 

kroB100 31161.20 18.15 2420 3.75 498 2.95 735 * 2061 32410.04 35399.54 4.00 33.62 

L
arg

e 

 

ch130 8637.20 135.94 2 6.28 20 * 3865 * 3865 9626.22 10313.34 11.45 62.49 

a280 4027.00 179.71 4 10.22 2638 * 3752 * 3752 4312.54 4653.69 7.09 264.97 

u574 60074.40 278.04 11 9.60 1488 * 3358 * 3358 64743.83 70520.35 7.77 1481.84 

Average 32343.07 79.18 910.5 3.88 628.37 2.04 1497.2 0 1957.37 33545.93 35660.45 4.31 236.69 

Table 16:Comparison Obtained results for the ST scenario and α = 0.6. 

 

Table 17:Comparison Obtained results for the ST scenario and α = 0.8. 

 

 

 

 

Instance 

Best 

-known 

BRKGA M-VND M-CNS LS NSRS 

% Time % Time % Time % Time Best AVG % Time 

S
m

all 

   

burma14 4270.80 * 0 * 0 * 0 * 11 4290.65 4290.65 0.46 1.85 

gr24 1676.60 * 2 * 53 * 23 * 11 1676.6 1676.6 * 4.76 

berlin52 10321.40 4.79 859 0.12 4 0.02 182 * 2704 10328.04 10711.30 0.06 15.00 

pr76 148434.8 10.71 3287 1.57 50 0.79 105 * 2907 148849.26 156477.86 0.27 25.84 

kroB100 33131.00 10.31 2672 4.42 209 3.57 218 * 1025 35510.81 38935.05 7.18 34.05 

L
arg

e 

  

ch130 9162.40 69.41 3594 5.50 339 * 3730 * 3730 9650.92 10857.51 5.33 55.47 

a280 / / / / / / / / / 4554.66 4803.08 * 261.69 

u574 64653.00 256.64 11 7.99 1084 * 2051 * 2051 68688.43 75998.76 6.24 1448.79 

Average 33956.25 43.98 1489.2 2.45 248.42 0.54 901.28 0 1777 35443.67 37968.85 2.44 230.93 
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Table 18:Comparison Obtained results for the SL scenario and α = 0.2. 

 

 

 

 

Instance 

Best-

known 

BRKGA M-VND M-CNS LS NSRS 

% Time % Time % Time % Time Best AVG % Time 

S
m

all 

    

burma14 3136.40 * 0 * 0 * 0 * 11 3199.23 3199.23 2.00 1.32 

gr24 1256.00 4.95 34 * 39 * 30 * 135 1287 1308.56 2.46 3.49 

berlin52 7340.40 6.92 1115 2.24 843 4.64 275 * 3470 7596.96 8124.41 10.68 15.80 

pr76 113871.4 11.50 1448 4.02 558 6.79 503 * 3447 118403.4 129977.49 3.97 31.95 

kroB100 24093.40 20.36 0 3.34 1448 3.38 357 * 2873 25117.7 27947.15 4.25 54.98 
L

arg
e 

  

ch130 6738.40 5.26 1 3.74 2184 * 2163 * 2163 6966.53 7753.95 3.38 97.31 

a280 3284.60 9.07 3 1.78 3529 * 3628 * 3628 3586.95 3390.95 9.20 427.27 

u574 47989.60 34.33 9 * 376 3.65 2231 3.65 2231 55569.24 62956.00 15.76 1837.54 

Average 25963.77 11.54 326.25 1.89 1122.12 2.30 1148.37 0.45 2244.7 27715.87 30582.21 6.46 308.70 

Table 19:Comparison Obtained results for the SL scenario and α = 0.4. 

  

 

 

Instance 

      Best 

-known 

BRKGA M-VND M-CNS LS NSRS 

% Time % Time % Time % Time Best AVG % Time 

S
m

all 

   

burma14 2832.00 * 0 * 0 * 0 * 11 2917.46 2917.46 3.01 1.35 

gr24 1163.60 * 6 * 40 * 18 * 169 1192.00 1209.4 2.44 3.44 

berlin52 6700.80 6.95 572 1.86 93 6.36 74 * 3346 6823.71 7615.89 1.83 16.02 

pr76 100117.60 18.08 994 1.34 823 12.76 42 * 597 105505.15 115073.53 5.38 32.38 

kroB100 21969.80 23.33 0 4.44 1970 4.30 305 * 405 22864.09 25494.91 4.18 57.33 

L
arg

e 

  

ch130 6101.20 6.62 1 6.53 772 * 3256 * 3256 6479.99 7066.76 6.20 104.40 

a280 2923.80 14.48 4 7.00 2941 * 1927 * 1927 3505.92 3889.82 19.90 399.60 

u574 43541.60 40.02 10 2.64 3243 * 3380 * 3380 50305.99 59253.18 15.53 1846.08 

Average 23168.80 13.68 198.3 2.97 1235.25 2.92 1125.25 0 1636.37 24949.28 27815.11 7.30 307.57 
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Instance 

Best-

known 

BRKGA M-VND M-CNS LS NSRS 

% Time % Time % Time % Time Best AVG % Time 

S
m

all 

    

burma14 3370.20 * 0 * 0 * 0 * 11 3422.18 3422.73 1.54 1.89 

gr24 1334.20 2.59 63 * 39 * 19 * 56 1375.0 1394.0 3.05 7.15 

berlin52 7979.00 6.10 894 2.08 155 2.83 183 * 1476 8153.27 8727.42 2.18 23.96 

pr76 124700.0 8.40 1180 2.44 158 1.87 213 * 11 128004.4 135461.46 2.64 44.76 

kroB100 25839.00 19.56 436 4.67 2220 4.02 1080 * 811 27124.35 31273.28 4.97 81.89 

L
arg

e 

  

ch130 7209.60 6.54 1 5.01 930 * 2569 * 2569 8255.19 9152.87 14.50 123.15 

a280 3513.60 8.77 3 0.82 2206 * 3876 * 3876 3907.38 4442.41 11.20 567.91 

u574 51394.80 32.22 10 * 2528 5.90 1408 5.90 1408 63666.32 68857.05 23.87 1902.8 

Average 28167.55 10.52 323.37 1.87 1029.5 1.82 1168.51 0.73 1277.25 30488.51 32841.40 7.99 344.18 

Table 20:Comparison Obtained results for the SL scenario and α = 0.6. 

 

 

Instance 

Best-

known 

BRKGA M-VND M-CNS LS NSRS 

% Time % Time % Time % Time Best AVG % Time 

S
m

all 

    

burma14 3468.00 * 0 * 0 * 0 * 11 3522.45 3522.45 1.57 1.84 

gr24 1398.00 2.60 1 * 47 * 19 * 56 1452.4 1462.84 3.89 7.46 

berlin52 8526.20 0.55 2100 0.58 169 2.50 171 * 2147 8828.43 9642.35 3.54 21.09 

pr76 129003.0 17.32 0 4.69 1058 4.22 264 * 3064 135312.5 146436.27 4.89 41.16 

kroB100 27375.6 19.83 0 6.02 910 3.99 712 * 2963 29894.98 34033.76 9.20 82.88 

L
arg

e 

  

ch130 7806.60 5.92 1 1.80 2247 * 4000 * 4000 8462.70 9923.82 8.40 119.07 

a280 3758.80 7.84 4 0.87 3612 7.00 1566 7.00 1566 4365.87 4655.54 16.15 556.34 

u574 62743.6 19.74 12 * 3116 9.75 2175 9.75 2175 69042.3 75923.32 34.33 1855.22 

Average 30509.97 9.22 264.75 1.74 1394.87 3.43 1113.37 2.09 1997.75 32610.20 35700.04 9.3 335.63 

Table 21:Comparison Obtained results for the SL scenario and α = 0.8. 
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Instance 

Best- 

known 

BRKGA M-VND M-CNS LS NSRS 

% Time % Time % Time % Time Best AVG % Time 

S
m

all 

    

burma14 3480.00 * 0 * 0 * 0 * 11 3527.47 3527.47 1.36 1.09 

gr24 1469.60 * 1 * 13 * 10 * 11 1469.6 1472.1 * 2.32 

berlin52 7956.20 7.90 583 0.17 235 1.08 50 * 1960 8265.47 8419.37 3.88 12.77 

pr76 122930.2 11.24 1395 1.56 170 3.69 351 * 1938 127465.15 132961.69 3.68 21.42 

kroB100 26494.20 14.07 3600 5.71 1038 4.13 1238 * 1487 30790.97 35638.47 16.21 25.87 

L
arg

e 

  

ch130 6982.20 59.55 1 3.92 114 * 3876 * 3876 7243.15 9120.03 3.74 59.53 

a280 3143.20 75.69 3 17.27 2785 * 1825 * 1825 4342.99 5183.33 38.17 235.53 

u574 48388.60 114.65 7 32.42 550 * 2479 * 2479 83330.89 90340.10 72.21 824.24 

Average 27605.52 35.38 698.75 7.63 613.12 1.11 1228.62  0 1698.37 33304.46 35832.82 19.89 147.84 

Table 22:Comparison Obtained results for the SQ scenario and α = 0.2. 

 

 

Instance 

Best-

known 

BRKGA M-VND M-CNS LS NSRS 

% Time % Time % Time % Time Best AVG % Time 

S
m

all 

    

burma14 3690.00 * 0 * 0 * 0 * 11 3527.47 3727.18 -4.40 1.11 

gr24 1542.20 * 3 * 13 * 9 * 11 1542.2 1557.04 * 2.43 

berlin52 8419.80 9.92 571 0.25 9 0.64 42 * 45 8621.69 9153.18 2.39 12.57 

pr76 128720.0 9.52 2322 * 129 3.05 35 0.09 2850 128385.64 137694.95 -0.25 21.05 

kroB100 27893.40 7.39 2048 4.79 159 6.25 1977 * 1352 29568.58 35312.46 6 25.71 

L
arg

e 

  

ch130 7490.60 53.60 1 2.06 1596 * 766 * 766 7747.34 9843.57 3.42 59.58 

a280 3512.00 60.83 3 6.96 1344 * 2637 * 2637 4463.39 5369.33 27.08 231.68 

u574 54956.00 91.28 8 16.43 1080 * 1217 * 1217 84512.8 88741.23 53.78 843.76 

Average 29528 29.06 619.5 3.81 541.25 1.24 835.37 0.01 1111.12 33546.13 36424.86 11.0 149.73 

Table 23:Comparison Obtained results for the SQ scenario and α = 0.4. 
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Instance 

Best-

known 

BRKGA M-VND M-CNS LS NSRS 

% Time % Time % Time % Time Best AVG % Time 

S
m

all 

    

burma14 3900.00 * 0 * 0 * 0 * 11 3971.29 3971.29 1.8 1.52 

gr24 1614.80 * 6 * 13 * 10 * 22 1614.8 1626.43 * 3.01 

berlin52 8843.20 7.92 591 0.22 200 0.89 214 * 552 8843.88 9317.89 0.007 16.81 

pr76 133609.40 7.17 1282 0.37 266 2.28 38 * 822 138038.27 150099.70 3.31 29.38 

kroB100 29291.80 8.82 3390 4.23 261 3.44 628 * 3797 32472.20 44606.40 10.8 36.47 

L
arg

e 

  

ch130 7709.20 53.98 1 1.34 1294 * 124 * 124 7522.39 9273.20 -2.42 93.88 

a280 3706.40 55.80 3 3.76 2912 * 3076 * 3076 4112.49 5948.61 10.95 301.57 

u574 56628.80 88.12 7 15.29 668 * 4045 * 4045 94888.29 100004.43 67.56 1317,5 

Average 30662.95 27.72 660 3.15 701.75 0.82 1016.87  0 1556.12 36432.95 40605.99 11.50 225.01 

Table 24:Comparison Obtained results for the SQ scenario and α = 0.6. 

 

 

Instance 

Best-

known 

BRKGA M-VND M-CNS LS NSRS 

%  Time % Time % Time % Time Best AVG % Time 

S
m

all 

   

S
m

all 

burma14 4110.00 * 0 * 0 * 0 * 11 4193.19 4193.19 2.02 1.83 

gr24 1676.60 * 2 * 16 * 10 * 11 1676.6 1676.6 * 4.10 

berlin52 9266.60 8.92 640 0.21 24 0.21 48 * 112 9267.26 10123.98 0.007 17.22 

pr76 139551.80 8.35 1458 0.94 133 2.90 128 * 1949 141103.89 156130.45 1.1 30.93 

kroB100 30956.80 4.49 3480 4.25 1568 3.93 1639 * 416 39813.15 47201.63 28.60 39.96 

L
arg

e 

ر
  

ch130 7974.00 48.75 820 2.15 1223 * 3482 * 3482 8664.12 10632.60 8.65 77.65 

a280 3713.40 58.91 3 8.00 822 * 4000 * 4000 4722.19 5651.11 27.16 326.25 

 u574 62333.20 73.29 8 5.51 1629 * 1927 * 1927 88147.05 99217.15 41.41 1322.83 

Average 32447.8 25.33 801.37 2.63 676.87 0.88 1404.25 0  1488.5 37198.43 41853.33 13.61 227.59 

Table 25:Comparison Obtained results for the SQ scenario and α = 0.8. 

   In Tables from 14 to 25, we can observe that the solutions obtained by NSRS are very 

competitive compared to those reported in the literature. If we examine the results by scenario 

and by α, and by calculating the difference between the average GAP values achieved by NSRS 

and those  achieved by BRKGA, M-VND, M-CNS and LS respectively, we can see that :
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➢ In the ST scenario with α = 0.2,  NSRS achieved an average GAP of 3.75%, which is 

close to both M-CNS (1.35 %) and LS (0%). It performed better than M-VND (by 

5.71%) and outperformed BRKGA (93.18 %). 

➢ In the ST scenario with α = 0.4, NSRS achieved an average GAP of 3.88%, which is 

close to both M-CNS (0.92%) and LS (0%). It performed better than M-VND (5.38%) 

and outperformed BRKGA (85.55%). 

➢ In the ST scenario with α = 0.6, NSRS achieved an average GAP of 4.31%, which is 

close to both M-CNS (2.04%), LS (0%), and M-VND (3.88%). Additionally, it 

outperformed BRKGA (79.18%). 

➢ In the ST scenario with α = 0.8, NSRS achieved an average GAP of 2.44%, which is 

close to both M-CNS (0.54%) and LS (0%). It performed better than M-VND (2.45%) 

and outperformed BRKGA (43.98%). 

➢ In the SL scenario with α = 0.2, NSRS achieved an average GAP of 7.30%, which is 

close to both M-CNS (2.92%), LS (0%), and M-VND (2.97%). Additionally, it 

outperformed BRKGA (13.68%). 

➢ In the SL scenario with α = 0.4, NSRS achieved an average GAP of 6.46%, which is 

close to both M-CNS (2.30%), LS (0.45%), and M-VND (1.89%). Additionally, it 

outperformed BRKGA (11.54%). 

➢ In the SL scenario with α = 0.6, NSRS achieved an average GAP of 7.99%, which is 

close to both M-CNS (1.82%), LS (0.73%), and M-VND (1.87%). Additionally, it 

outperformed BRKGA (10.52%). 

➢ In the SL scenario with α = 0.8, NSRS achieved an average GAP of 9.3%, which is 

close to both M-CNS (3.43%), LS (2.09%), and M-VND (1.74%). Additionally, it 

outperformed BRKGA (9.22%). 

➢ In the SQ scenario with α = 0.2, NSRS achieved an average GAP of 19.89%, which is 

significantly different from M-CNS (1.11%) and LS (0%), but close to M-VND 

(7.63%). Additionally, it outperformed BRKGA (35.38%). 

➢ In the SQ scenario with α = 0.4, NSRS achieved an average GAP of 11.0%, which is 

close to both M-CNS (1.24%), LS (0.01%), and M-VND (3.81%). Additionally, it 

outperformed BRKGA (29.06%). 

➢ In the SQ scenario with α = 0.6, NSRS achieved an average GAP of 11.50%, which is 

close to both M-CNS (0.82%), LS (0%), and M-VND (3.15%). Additionally, it 

outperformed BRKGA (27.72%). 
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➢ In the SQ scenario with α = 0.8, NSRS achieved an average GAP of 13.61%, which is 

close to both M-CNS (0.88%), LS (0%), and M-VND (2.63%). Additionally, it 

outperformed BRKGA (25.33%). 

  We present comparative diagram illustrating the performance of our best-performing 

algorithm, NSRS, in comparison with results reported in the literature. The evaluation is 

based on the average gap between solutions. 

 

 

Figure 29: Comparison with the literature for the ST scenario across all α values. 

 

These plots show that the results of the NSRS algorithm are more competitive than those of 

M-VND, M-CNS, and LS, and it widely outperforms the results of BRKGA. 
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Figure 30:Comparison with the literature for the SL scenario across all α values 

. 

 

Figure 31:Comparison with the literature for the SQ scenario across all α values. 

 

   In scenarios SL and SQ, the quality of the NSRS results slightly decreases; however, it still 

outperforms BRKGA. 
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    Regarding execution time, we can observed from Tables (14-25) that the average execution 

time of the NSRS algorithm is lower than average running times of BRKGA, M-VND,  M-CNS 

and LS in all scenarios and α. 

 

Instance Scenario α 

 

Best-know BRKGA M-VND M-CNS LS NSRS 

% % % % Best % 

burma14 SQ 0.4 3690.00 * * * * 3527.47 -4.40 

gr24 ST 

ST 

ST 

ST 

SQ 

SQ 

SQ 

SQ 

0.2 

0.4 

0.6 

0.8 

0.2 

0.4 

0.6 

0.8 

1469.6 

1542.20 

1614.80 

1676.60 

1496.60 

1542.20 

1614.80 

1676.60 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

* 

1469.6 

1542.2 

1614.80 

1676.60 

1496.60 

1542.20 

1614.80 

1676.60 

* 

* 

* 

* 

* 

* 

* 

* 

pr76 SQ 0.4 128720.0 9.52 * 3.05 0.09 128385.64 -0.25 

ch130 SQ 0.6 7709.20 53.98 1.34 * * 7522.39 -2.42 

a280 ST 0.8 / / / / / 4554.66 * 

Table 26:Comparison of the best obtained results with those from the literature. 

 

   In table 26, we present the instances and the values of obtained solutions where our NSRS 

finds the best-known solutions of the literature or reports new best-known solutions. So, in the 

instances burma14 and pr76 in the SQ scenario with α = 0.4, ch130 in the SQ scenario with       

α = 0.6, and a280 in the ST scenario with α = 0.8 yielded solutions that outperformed those 

obtained by BRKGA, M-VND, M-CNS, and LS .  

 For example, in the case of burma14 under the SQ scenario with α = 0.4, our approach 

consistently outperformed the algorithms BRKGA, M-VND, M-CNS, and LS.  

Furthermore, in some cases, our method matched the best-known results for the gr24 instance, 

where the solutions obtained in both ST and SQ scenarios for all values of α, were identical to 

those produced by BRKGA, M-VND, M-CNS, and LS. 
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4.5 Conclusion 

   In this chapter, we presented the results of the experiments of our proposed methods using a 

benchmark dataset from the literature. First, we explained the process by which the instances 

of problem were generated. Then, we presented few representative examples of these instances. 

Next, we provided the parameters and technical details of the implementation we used. Also, 

we described the structure of a solution as defined in our approach. In our experiments, first, 

we compared the results of the proposed methods, and the NSRS reported better results than 

the SLS and the TS. After that, we compared the obtained results of NSRS with those reported 

by the state-of-the-art methods.  In the comparison with the literature, we found that the NSRS 

was very competitive comparing to the four methods of the literature. In addition, it was able 

to reach 8 best known solutions and to find new best-known solutions for 4 instances. Therefore, 

we assume that the NSRS found very promising results.  
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General conclusion   

   In this thesis, we proposed algorithms to solve the Hub Location Routing Problem (HLRP). 

The main objective was to determine an optimal set of hubs to be installed, organize local routes 

between these hubs and non-hubs, and design an efficient inter-hub route. This should be done 

while minimizing the total cost, including local transportation, and inter-hub transport costs. 

In the first chapter, we presented the hub location problem and its main variants, including the 

Single-Allocation Hub Location Problem, the Multiple Allocation p-Hub Median Location 

problem, and p-Hub Center Location Problem. Also, we highlighted their real-world 

applications. In addition, we introduced routing problems such Traveling Salesman Problem 

(TSP) and the Vehicle Routing Problem (VRP), along with their main variants. we then 

provided description of the Hub Location Routing Problem and some of its key variants. 

   In the second chapter, we provided a general overview of combinatorial optimization 

problems. We introduced exact methods, including the backtracking algorithm and the branch 

and bound method. We also described commonly used heuristic and metaheuristic approaches, 

and discussed several hybridization techniques. 

   In the third chapter, we defined the specific HLRP variant addressed in this work and 

reviewed the most related studies in the literature that dealt with it. Then, we described the 

algorithms we developed to solve the problem, namely: a Local Search algorithm, a Tabu 

Search algorithm, and Neighborhood Search with Random Selection. 

 In the fourth chapter, we assessed the performance of our algorithms using benchmark 

instances from the literature. The results obtained were promising and demonstrated 

competitive performance compared to existing approaches in the literature. 

Finally, we are looking forward to: 

• Study the application of population-based metaheuristics on the HLRP, such as Cuckoo 

search method. 

• Study the hybridization of the proposed methods in this thesis with other optimization 

methods. 

• Extend the methods proposed to solve more hard and realistic variants of the HLRP. 
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