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ABSTRACT

The primary objective of this thesis is to present a straightforward, efficient,
and easily applicable numerical approach for obtaining approximate solutions to the
Goursat problem in hyperbolic partial differential equations with variable coefficients,
as well as for solving two-dimensional Volterra integral equations of the first kind and
three-dimensional Volterra integral equations. The study develops algorithms utilizing
Taylor polynomials to numerically solve these types of equations. Additionally, a com-
prehensive error analysis is provided. To demonstrate the accuracy and effectiveness

of the proposed convergent algorithms, numerical examples are included.

Key Words: Two-dimensional Volterra integral equations of the first and second
kind, Three-dimensional Volterra integral equations, Collocation method, Taylor poly-

nomials, Error analysis.



RESUME

L'objectif principal de cette these est de présenter une méthode numérique
simple, efficace et facilement applicable pour obtenir des solutions approximatives
au probleme de Goursat dans les équations aux dérivées partielles hyperboliques a
coefficients variables, ainsi que pour résoudre les équations intégrales de Volterra
a deux dimensions de premier type et les équations intégrales de Volterra a trois
dimensions. L’étude développe des algorithmes utilisant des polyndmes de Taylor
pour résoudre numériquement ces types d’équations. De plus, une analyse d’erreur
approfondie est fournie. Des exemples numériques sont inclus pour démontrer la

précision et 'efficacité des algorithmes convergents proposés.

Mots-clés: Equations intégrales de Volterra a deux dimensions (premier et deux-
ieme éspese), Equations intégrales de Volterra a trois dimensions, Méthode de colloca-

tion, Polyndmes de Taylor, Analyse d’erreur.
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GENERAL INTRODUCTION

Volterra integral equations have long been a cornerstone in the analysis of
both mathematical and physical phenomena. Named after the renowned Italian math-
ematician Vito Volterra, these equations are widely applied across various disciplines,
including physics, biology, and engineering. While classical Volterra integral equations
typically involve functions of a single variable, the increasing complexity and diversity
of real-world challenges have led to the development of multi-dimensional Volterra

integral equations (MDVIEs).

MDVIEs extend the classical concept to functions of multiple variables,
making them particularly valuable for modeling systems that depend on more than
one spatial or temporal variable. This multi-dimensional framework allows for a more
nuanced and comprehensive representation of dynamic systems, capturing complex
interactions across various dimensions. The study of MDVIEs encompasses both theo-
retical and numerical approaches. Theoretical research primarily focuses on solutions’
existence, uniqueness, and stability, while numerical methods are employed to obtain
efficient and accurate approximations of these complex equations. Given the inherent
complexity of MDVIEs, analytical solutions are often impractical, underscoring the
importance of developing effective numerical techniques. Over time, various methods

have been designed to solve MDVIEs, each tailored to specific types of problems. For

4



General Introduction

instance:

e Trapezoidal rule [[1] is frequently generalized for multi-dimensional integrals by
discretizing each independent variable. This method is extensively utilized in
applications such as heat transfer and fluid dynamics, where accurate numerical

integration is essential.

e Simpson’s rule [5, BT], widely recognized for its higher accuracy compared
to the trapezoidal rule, has been extended to multi-dimensional integrals by
applying quadratic interpolation to approximate the integrand. This refinement
improves the precision and efficiency of numerical integration, making it effective

for computations in higher-dimensional spaces.

e Operational matrices method [#4]is a direct approach that approximates functions
using Bernstein multiscaling polynomials. By employing operational matrices,
this method transforms integral equations into a system of algebraic equations,

facilitating efficient numerical solutions.

e Galerkin method [37, 7] is an approach for solving integral equations by rep-
resenting the solution as a combination of basis functions and ensuring that the
residual error is minimized in a weighted manner. This method provides accu-
rate approximations and is widely used in numerical analysis and computational

mathematics.

e Collocation methods [I?7, B, b4] approximate solutions by using polynomial
expansions, such as Taylor or Lagrange polynomials, and solving the integral
equation at specific discrete locations known as collocation points. This approach
ensures high accuracy in numerical approximations and is widely applied in

solving integral and differential equations.

Multi-dimensional Volterra integral equations represent a versatile class of integral

equations that are widely used in various scientific, engineering, and mathematical

5
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applications [[5, 7, B, 46, b4]. Below are some real-world applications where MDIEs

play a crucial role:

e Heat conduction: A notable real-world application of MDVIEs appears in the
modeling of heat conduction in materials with memory effects [T5]. Unlike classi-
cal Fourier heat conduction, which implies infinite speed of thermal propagation,
materials with memory exhibit a delayed response governed by a relaxation ker-

nel.

In this context, the temperature distribution u(x, t) in a rigid heat conductor is

described by the following integro-differential equation:

u(x,t):j;K(t—T)Au(x,T)dT+f0f(x,T)dT,

where:

— x € R? denotes the spatial position and ¢ is the time.

— K(t — 1) is the memory kernel, which accounts for hereditary effects in heat

conduction.

— Au(x, 7) is the Laplacian of the temperature field, representing spatial diffu-

sion.

- f(x,7) is an external source term or internal heat generation function.

This model has been used to capture the behavior of materials with finite thermal
response time, such as polymers, composite materials, and biological tissues. It
allows for more accurate modeling of heat waves, phase transitions, and thermal
relaxation effects. Importantly, it also enables the mathematical treatment of cases
where the kernel K(t) is singular at t = 0, reflecting real materials” sharp initial

thermal responses.

Such equations are not only theoretically significant but also vital in applications
including laser heating, electronic cooling, and the design of thermal metamate-

rials.
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¢ Ecological Modeling: Ecological systems are inherently complex and evolve over
both time and space. Traditional models, such as ordinary differential equations,
typically describe temporal dynamics alone and often neglect spatial heterogene-
ity. However, real ecosystems exhibit localized interactions, spatial patterns, and
memory-dependent behaviors, which require more sophisticated mathematical

tools for accurate modeling.

A promising framework for capturing such dynamics is the use of MDIEs. These
equations are particularly useful in ecological systems where the current state
depends not only on the immediate conditions but also on the cumulative effects

of past spatial and temporal interactions.

One generalized form of a spatio-temporal ecological MDIE is:

t
u(x, t) = f f K(x,y,t=s) R(u(y, s)) dyds + f(x,t),
0 Ja
where:
— u(x, t) denotes a state variable such as biomass or nutrient concentration at

spatial location x € O ¢ R? and time ¢.

- K(x,y,t - s) is a space-time kernel representing the influence of location y at

earlier time s on location x at current time ¢.

— R(u) describes nonlinear ecological interactions, such as predation or com-

petition.

— f(x,t) is an external source term or forcing function.

In the work of Chen, Q. et al. [17], various ecological modeling paradigms are dis-
cussed, including reaction-diffusion equations, cellular automata, and individual-

based models.

Such models naturally lend themselves to MDIEs, making them powerful tools
in modern ecological forecasting, conservation planning, and environmental re-

source management.
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¢ Population dynamics and infectious disease: MDIEs naturally arise in the mod-
eling of population dynamics and infectious disease [64], where individual move-

ment and delayed biological responses are essential. For example:

— In population dynamics, individuals may disperse over a region while re-

taining memory of past environmental conditions.

— In infectious disease modeling, transmission may depend on contact with
individuals who were infected in the past and are now in different spatial

locations.
A representative form of a model is given by the following system:
du(x, t) = DIPu(x, t) — yu(x, t) + f(u(x, 1), (g *h)(u(x, t))), t>0, xeR,
u(x, t) = 9(x, 1), t<0,
where:

— u(x, t) is the population density at location x and time t.
— D > 0 is the diffusion rate, and y > 0 is the per capita mortality rate.
- fisanonlinear function modeling local reactions (e.g., birth or competition).

— (g9 * h)(u(x, t)) represents a spatio-temporal convolution, defined by:

9+ h)(u(x, ) = fo f Gls, %, y) k(&) h(u(y, £ — ) dyds,

where:

B (x=y)?\. e
- G(s,x,y) = exp|— is the spatial diffusion kernel.

1
V4rDs 4Ds

— k(s) is a probability density function modeling memory in time, satisfying

[ k(s)ds = 1.

— h(u) is a continuous nonlinear function (e.g., a density-dependent birth or

infection rate).
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The work by Zhao, Z. and Rong, E. [h4] establishes the existence, uniqueness,
and asymptotic behavior of solutions to this system, making it a rigorous and

well-grounded example of an MDIE in applied mathematical biology.

The primary objective of this thesis is to introduce a straightforward yet effective
numerical method for approximating solutions to the Goursat problem in hyperbolic
partial differential equations with variable coefficients, as well as for solving two-
dimensional Volterra integral equations of the first kind. Additionally, it extend the
approach to derive solutions for three-dimensional linear and nonlinear Volterra in-
tegral equations by using Taylor collocation method. This method is particularly
advantageous because it can approximate the exact solution of an integral equation by
employing an appropriate function from a predefined finite-dimensional space. This
method ensures the approximation satisfies the integral equation at specific colloca-
tion points. One of the key strengths of this approach is its flexibility, allowing for
adjustments to both the number of subintervals and the degree of the Taylor polyno-
mials, which in turn improves the accuracy of the results. Furthermore, the method is
straightforward to implement, relying on iterative formulas rather than solving com-

plex algebraic equations, and it provides a clear and predictable convergence rate.

This thesis is organized into four chapters, each addressing a distinct aspect of the

research:

Chapter 1 lays the groundwork by introducing essential concepts, definitions, and
key theorems necessary for the subsequent chapters. Topics covered include Taylor
series, integral equations, the Leibniz rule, piecewise polynomial spaces, and the Taylor
collocation method. Additionally, we cover some important discrete and integral

inequalities that will be referenced in later chapters.

Chapter 2 focuses on the development of a collocation method, as introduced by

[35], to solve the Goursat problem in hyperbolic linear partial differential equations

9
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(I3). The Goursat problem is converted into a linear Volterra integral equation of the
second kind (Z4)). We create an algorithm using Taylor polynomials to approximate the
solution of the integral equation within a chosen finite-dimensional function space (Z5).
The solution is constructed to satisfy the integral equation at collocation points. This

chapter includes error estimates and numerical illustrations to validate the findings.

Chapter 3 broadens the scope of a numerical approach that employs Taylor poly-
nomials, building upon the foundational work of [, B5], to approximate the solution
of nonlinear two-dimensional Volterra integral equations of the first kind (1) by con-
structing a collocation solution in space (Z5). An algorithm is created to solve these
equations after they are transformed to (B3). We prove the algorithm’s convergence
and validate its effectiveness with numerical examples, demonstrating the accuracy

and efficiency of the proposed method.

Chapter 4 extends the collocation method, building upon previous works such as
[6, B3, B4, B5] to solve three-dimensional Volterra integral equations (1) and (&2) by
applying Taylors theorem in three variables. In this chapter, we approximate the exact
solution within a piecewise polynomial spline space (B3). We conduct a convergence
analysis to affirm the method’s reliability and present comparative numerical examples

to showcase the methods performance and practical applicability.

In the conclusion, we summarize this thesis’s contributions, highlight potential

areas for further improvement, and propose directions for future research.

10



CHAPTER 1

BASIC AND ESSENTIAL CONCEPTS

11



Basic and Essential Concepts

In this chapter, we introduce the essential concepts and foundational ideas that
serve as the basis for the subsequent discussions. These preliminary notions are crucial
for establishing a clear understanding of the subject and will provide the necessary
definitions and theorems. By laying out these core principles, we ensure a coherent

and structured progression throughout the content.

1.1 Taylor Series

The Taylor series, also known as the Taylor expansion, is a mathematical technique used
to express a function as an infinite sum of terms derived from the function’s derivatives
at a particular point. This method is extremely useful for approximating functions
that are challenging or impossible to compute directly. For many common functions,
the original function and the sum of its Taylor series are identical in the near of this
point. The series is named after Brook Taylor, who introduced it in 1715. A special case
of the Taylor series, called the Maclaurin series, is obtained when the derivatives are
evaluated at the point 0. This version was extensively studied by Colin Maclaurin in

the 18th century.
Definition 1.1.1 For a function ¢ that is differentiable up to n + 1 times at the point 7, the
Taylor theorem provides the following approximation of ¢(t) near ty:

(P(U)(TO)

n!

(P”(To)
2!

@(1) = ¢(T0) + @ (T0)(T — T0) + (T = 7o) + .. + (T — 70)" + Ry (7),

where R, (1) represents the remainder term that quantifies the error incurred by truncating
the series after n terms. The remainder can be written in various forms, with one common

expression being the Lagrange form:

(p(n+1)(g)

Ry(0) = (n+1)!

(T — o).

where ¢ is a point between Ty and T.

12



Basic and Essential Concepts

Lemma 1.1.1 (Taylor’s theorem for functions of two independent variables [I8]) Let ¢ be p
times continuously differentiable on R = [Ao, A1] X [Bo, B1] and let (ty,s0) € R. Then for all

(t,5) € R, we have

p-1
1 i)~ i ; 1 NG ; .
P(t,s) = Z F8§ )32])§0(to, So)(f — to)'(s — so) + Z l,—,a,(g )ag)(P(tl,Sl)(t —t)'(s — s0)/,
i+j=0 J: i+j=p "
where
th = 6t+(1—6)t0€[A0,A1], QE(O 1)

s1 = 0s+ (1 - 0)sy € [By, B1],

1.2 Integral Equations

An integral equation is a type of equation where the unknown function w(x) appears
within the integral. Integral equations are a powerful and versatile tool in both pure
and applied mathematics, playing a crucial role in solving various physical problems.
Many problems related to initial and boundary conditions for ordinary differential
equations and partial differential equations can be reformulated as problems of solving
corresponding integral equations. A common linear form of an integral equation is

expressed as:
(1)
e(T)w(t) = u(t) + /\f x(T, S)w(s)ds ,
a(t)

and where A is a constant parameter and «(7, s) represents the kernel. The unknown
function w(7) appears inside the integral. In some cases, the function w(7) may appear
both inside and outside of the integral. It is important to note that the functions ¢(7),
u(t) and «x(7,s) are known functions, and the limits of integration a(7) and f(7) could
either be variables, constants, or a combination of both.

Integral equations (IEs) can be categorized into a wide range of types, each with dis-
tinct theoretical and numerical characteristics. One key distinction is between one-

dimensional and multi-dimensional IEs, and within each of these categories, IEs can

be classified as either linear or nonlinear. A further classification depends on the limits

13
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of integration, with two main types:

e If the limits of integration are constant, the equation is referred to as a Fredholm

integral equation (FIE), which has the form:

b
e(T)w(t) = u(t) + /\f x(T,s)w(s)ds ,
where g and b are constants.

o If at least one limit is variable, the equation is known as a Volterra integral

equation (VIE), with the form:
p(t)w(t) = u(t) + /\f x(T, s)w(s)ds .

Both Fredholm and Volterra integral equations can be either homogeneous or inhomo-
geneous. If u(7) = 0 the equation is classified as a homogeneous FIE or VIE.
Additionally, integral equations are also classified based on how the function ¢(7)

appears, as outlined below:

o If (1) = 0, the equation is called a first kind FIE or VIE.
e If p(7) =1, the equation is called a second kind FIE or VIE.

o If (1) # 0 and @(7) # 1, the equation is referred to as a third kind FIE or VIE.

1.3 Leibniz Rule for Differentiation of Integrals

A useful approach for solving integral equations involves converting them into equiv-
alent differential equations. The Leibniz integral rule provides a formula for differenti-
ating under the integral sign, named after Gottfried Wilhelm Leibniz, who developed
it in the 17th century.

14
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Theorem 1.3.1 (Leibniz integral rule [62]) Consider ¢(t,s) as a continuous function, and
assume that d.@ is continuous within the domain [Ty, T1] X [So, 511, for the integral expression
B(7)

I'(7) = p(T, t)dt,

a(t)
the derivative of I'(t) with respect to T is given by:

B(T)
I"(7) = (7, B(1))B () — @(1, a(T))a’(T) + d.¢(t, t)dt.

a(7)

Remark 1.3.1 In situations where a(t) = a and f(t) = b, with a and b being constants, the

Leibniz rule simplifies to the following expression:

b
l"'(”c)zf 9 (7, t)dt.

1.4 Piecewise Polynomial Spaces

Piecewise polynomial spaces are mathematical structures used for approximating func-
tions across an interval by dividing the domain into smaller subintervals and defining
polynomial functions on each of these subintervals. These spaces are foundational in
tields like numerical analysis, the finite element method, computer-aided design, and
data interpolation, where they enable a local, adaptable approach to modeling complex

behavior within a domain.

Let Ji ={ym : 0 = yo < y1 <--- < ym = b} represent a grid (or mesh) on the interval
J = [0, b], with the stepsize defined as k = %
Define the subintervals 6,, = [Ym, Ym+1] form =0,..., M - 1.

Definition 1.4.1 [[[3] For the grid Ji, the piecewise polynomial space Sﬁf)(]k) is defined for

15
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parameters 1 > 0 and —1 < d < 1 as follows:
SV(Ji) = {u € C(J) : uly, € 1,0 <m < M—1),

here, 1, represents the space of real polynomials whose degree does not exceed 1.

It can be shown that S%d) (Jk) is a (real) linear vector space, and its dimension is given by:

dim S (Jy) = M(n —d) +d + 1.

Remark 1.4.1 The particular piecewise polynomial space S;f_lz U withp > 1and d > -1
where its dimension is Mp + d + 1, it may be viewed as the natural collocation space for
the approximation of solutions to initial-value problems for ordinary differential equations or
Volterra equations.

The selection of the regularity degree d is determined by the number of specified initial conditions,
while the factor Mp indicates that p distinct collocation points should be assigned to each of the

M subintervals 6,,. Therefore, the most suitable choice for d is as follows:

e For Volterra integral equations without initial conditions, we set d = —1.

e For first-order ordinary differential equations or Volterra integro-differential equations

with one initial condition, d = 0 is used.

o For ordinary differential equations or Volterra integro-differential equations of orderk > 2,

which have k initial conditions, we set d = k — 1.

The particular piecewise polynomial space S;__ll),q_l(HN,M) of bivariate polynomial spline
functions of order p (degree p — 1) in t and order q (degree q — 1) in s is a tensor-product
space based on the univariate spline spaces S,(;l)(l—IN) and S;_l)(l—IM). An element of this
space has jumped discontinuities at the interior grid lines t = t,(n = 1,...,N — 1) and

s=s,(m=1,..., M—-1).

16
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1.5 Collocation Method

An effective numerical technique for approximating the solutions to differential and
integral equations is the collocation method. This approach involves selecting a finite-
dimensional space of potential solutions typically polynomials of a specific degree and
a set of points in the domain, known as collocation points. The method aims to identify

a solution that satisfies the equation at these chosen points.

The collocation method is highly adaptable and can be applied to various types
of equations. For ordinary differential equations (ODEs), several notable collocation
methods include: the Chebyshev collocation method, which represents solutions as
Chebyshev series; the Legendre-Gauss collocation method, designed for initial value
problems of second-order ODEs using Legendre-Gauss interpolation; the Bernstein
collocation method, employing Bernstein polynomials to solve nonlinear ODEs; and
the block hybrid collocation method, tailored to directly solve third-order ODEs. When
addressing partial differential equations (PDEs), several key methods are employed.
These include the sparse grid stochastic collocation method, which uses a Smolyak-
type sparse grid to approximate statistical quantities associated with PDE solutions; the
wavelet collocation method, based on Daubechies wavelets” autocorrelation functions
for numerical solutions; and the spline-collocation method, which utilizes B-spline

functions for approximation.

In the realm of integral equations, the collocation method also offers specialized
techniques. The Galerkin collocation method, for example, is commonly used to solve
integral equations of the first kind, while the iterated collocation method is well-suited

for nonlinear Volterra integral equations of the second kind.

The effectiveness of the collocation method depends on several factors, including
the selection of collocation points, the choice of basis functions, and the nature of the
equation being solved. Proper attention to these factors is essential for ensuring the

convergence and accuracy of the approximated solution.
A key advantage of the collocation method is its flexibility. It can be implemented

17
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without the need for meshing in some cases, such as with node-based techniques, which
significantly reduces computational complexity. This ease of implementation, coupled
with its ability to handle complex boundary conditions and irregular domains, makes
it a powerful and versatile tool in numerical analysis. Additionally, with the careful
selection of basis functions and collocation points, the method can yield highly precise

approximations for a wide range of problems.

1.6 Taylor Collocation Method

The Taylor collocation method is a numerical approach used for solving various
types of differential, integral, and integro-differential equations by expressing the solu-
tion as a finite Taylor series. The method involves by selecting specific points, referred
to as collocation points, and determining the coefficients of the Taylor series to satisfy
the equation at those points. Initially applied in the context of solving Volterra integral
equations, the method has been refined and extended over the years by numerous

researchers, such as:

e Karamete, A. and Sezer, M. [2Y] presented a spectral Taylor matrix collocation
technique used for solving linear integro-differential equations by truncating the

Taylor series.

e Bellour, A. and Bousselsal, M. [4, 5] developed a numerical approach using Taylor
polynomials to approximate solutions to delay integral and integro-differential

equations.

e Laib, H. etal. [32] applied the Taylor collocation method to a system of nonlinear

Volterra delay integro-differential equations.

These developments have significantly expanded the use of the Taylor collocation
method in solving a wide array of complex mathematical problems across different

disciplines.
In this thesis, we intend to build upon these pioneering contributions

18
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by extending the Taylor collocation method to a broader class of Volterra integral
equations, particularly focusing on the two and three dimensions. By tackling both
linear and nonlinear equations, this research seeks to broaden the applicability of the
Taylor collocation method and offer more efficient numerical solutions for a wider

range of integral equation problems.

1.7 Comparison Theorems

In this section, we will examine several key theorems pertaining to discrete and con-
tinuous inequalities. These theorems are crucial for developing the proofs necessary to
demonstrate the convergence of the approximate solution to the exact solution, which

we will address in the subsequent chapters.

1.7.1 Discrete inequalities

Lemma 1.7.1 [T3] Consider the sequence {x;}(j > 0) , which is non-negative, and let {w,} be

a sequence satisfying the conditions:

n-1

wy <py and w, $p0+Z1c]-a)]-, n>1,
j=0

where py > 0. Then for n > 1, it follows that

n—1
Wy < poexp( K]'].
0

j:
Lemma 1.7.2 [b?] Let w(n), b(n) and e(n) be non-negative sequences. If w(n) satisfies

n-1
w(n) < b(n) + Z e(s)w(s),
s=0
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forall n € N. Then

w(n) < b(n) + Z b(s)e(s) H [1+e@)], neNlN,

o=s+1

Lemma 1.7.3 [#2] Let w,, ,, be a given non-negative sequence satisfies

n— m— n-1
(00) mShli\lza}&m+h2AZZa)n,p+h1h2/\3 C()gp'l' n=0,....NNm=0,...,M,
&=0 p=0 &=0 p

E
AR

1l
o

such that hy = % and hy, = z\%/ where A, B, A1, Ay, A3 and « are finite strictly positive constants

independent of N and M. Then

wnm < aexp (n(A+ B)),

where n =1 (A1 + A2 + (A1 + A2)7 +423).

Lemma 1.7.4 [b1] Assume w(n,m),b(n,m) and e(n,m) are non-negative sequences, with
b(n, m) being nondecreasing in each variable n and m. Suppose w(n, m) adheres to
n—1 m-1

w(n,m) < b(n,m) + e(s, Hw(s, t),
s=0 t=0

forall n,m € IN. Then

n-1

w(n, m) < b(n,m) H

s=0

-1
1+ e(s,t)}, n,m € IN.

t

§

I
[«

Lemma 1.7.5 [b6] Consider w(i, j, k) and (i, j, k) as real-valued non-negative functions defined
for (i, j, k) € IN®, and let b(i, j, k) be a positive function that is nondecreasing in each of the three
variables, defined for (i, j, k) € IN®. The inequality

i-1 j-1 k-1

Cl)(l, ]/ < b(Z ]/ + G(OC, ﬁ/ V)w(a/ ﬁ/ )/); i/ j/ k € N/

a=0 =0 y=0
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leads to
i-1 j-1 k-1
Wi, i) < bl 0 | ] |1 +ZZe<a,ﬁ,y>], ijkeN.
a=0 p=0 y=0

1.7.2 Integral inequalities

Lemma 1.7.6 [#(]] Assume w(t,s) and p(t,s) are non-negative continuous functions defined
on R = [to, t1] X [s0,51]. Suppose p(t, s) is non-decreasing in each of the variables within R and

satisfies the following inequality:

S

w(t,s) < p(t,s) + Kf w(x,s)dx + Kf

to So

t S
w(t, y)dy + Kf f w(x, y)dydx, (t,s) € R,
to S0
where « is a positive constant. Then there exists a positive constant v, such that

w(t,s) < vp(t,s).

Lemma 1.7.7 [8] Consider w(t,s,r) as a non-negative continuous function defined on R =

[to, t1] X [s0,51] X [ro, 1], with ¢4, ¢» being non-negative constants. The inequality

t S 7
w(t,s,r) <¢1+ ¢ f f f w(x,y,z)dzdydx, (t,s,1) €R,
to So 70

leads to

w(t,s,1) < crexp (Valt +s+7), (ts,)€R
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TAYLOR COLLOCATION METHOD
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2.1 Introduction

Partial differential equations (PDEs) are widely utilized to solve problems in a range
of fields, such as engineering, physics and finance. The form of a second-order linear

hyperbolic partial differential equation is expressed as follows:

@
Y

a9 w(x, y) +o:9,w(x, y) + Y9y w(x, y) + 6d:w(x, y) +edyw(x, y) + ew(x, y) +1 =0, (2.1)

where ﬁ2 —4ay > 0,and a, 8,7, 0,€, ¢ and 7 are functions of the variables x and y. We
can reduce it to the canonical form of the hyperbolic equation known as the Goursat

problem

d:dyw(x, y) = ¢ (x, v, w, dxw(x, y), dyw(x, y)) . (2.2)

The study of cosmological and ecological phenomena often involves the use of
hyperbolic PDEs [63]. A number of numerical methods have been proposed for this
purpose, such as the Legendre multi-wavelet Galerkin method [b5, b6], the finite differ-
ence methods [T, 7], the finite element methods [], the Taylor matrix method [4, 6],

and the Chebyshev wavelet scheme [?4].

This chapter provides an approximate solution for the linear Goursat problem of

the second order with variable coefficients, represented as follows:

ddyw(x,y) + a(x, y)d w(x,y) + B(x, y)dyw(x, y) + y(x, y)w(x,y) = h(x,y)
w(0,y) = a(y), w(x,0) = b(x),a(0) = b(0), (x,y) €R,

(2.3)

where R = [0,A] X [0,B], and a, 8, y, h are smooth functions through the domain
of discussion, and which was published in the reference [10]. For the existence and
uniqueness of the solution, see [27].

By integrating both sides of (Z3) with respect to y and x, we obtain

w(t,s) :f(t,s)+‘]; Kl(x,s)w(x,s)dx+f0 Ka(t, y)w(t, y)dy

+ ‘fo fo k3(x, y)w(x, y)dydx, (t,s) € R, (2.4)
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where the functions f, k1, k; and x5 are given smooth functions defined, respectively,
onR,S1:=1{(x,5) :0<x<t<A0<s<B},S:={ty):0<t<A0<y<s<B}and
S3:={(x,y):0<x<t<A0<y<s<B}by:

K1(x,8) : = =(x,8), x2(t, y) == —alt, y), k3(x, y) == dra(x, y) + J,p(x, y) — y(x, ),
f(t,s): =a(s)+ b(t) —w(0,0) + f a(0, y)a(y)dy + f B(x, 0)b(x)dx
0 0

t S
+ f f h(x, y)dydx.
0 Jo

Numerical solutions to the Goursat problem have been extensively studied. For
instance, the homogeneous Goursat problem (Z3), in which the coefficients rely on a
same variable, was the subject of Scott, E. J. [bA]. A nonlinear trapezoidal formula
based on geometric means was introduced by Evans, D. J. and Sanugi, B. B. [22]. The
Runge-Kutta method was used by Day, J. T. [?0] to estimate solutions for (7). A novel
exponential finite difference approach was developed by Pandey, P. K. [b3] to solve
(Z2). In order to determine the quadruple solution of a Goursat problem within a

triangular domain, Drignei, M. C. [2T] created an algorithm.

This chapter’s remaining sections are organized as follows: A Taylor polynomial
is used to approximate the solution of (Z4) in each collocation point in Section 2.
Section 3 examines the convergence analysis. The theoretical results are presented

with numerical examples in Section Z4. Finally, Section 3 provides a conclusion.

2.2 Description of the Method

We define the uniform partitions of the intervals [0, A] and [0, B] as follows:

HN:{tiZihl,iZO,...,N}, HMZ {sj:jhz,j:O,...,M},
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where the step sizes are given by h; = 4 and i, = £. These partitions collectively form

a grid over the domain R:
Iypm =TIy X Ty = {(ty,5m), 0 <n < N,0 <m < M},
we further define: R,,,, := 61 x 6% foralln =0,...,N-1,m=0,...,M —1, where
Oy = [t tur1),n=0,...,N=2; 05, = [tn-1,tn],

6%1 =[Sm;Sms1),m=0,..., M—-2; 512\4_1 = [sm-1, Sml.

Within each rectangle R, ,,, wheren =0,..., N-1land m =0,...,M -1, we employ
the Taylor polynomials 9, ,(t, s) to approximate the solution of (234) in the space:

S;‘_ll)(HN,M) ={u: thyy = tlg,, €7p,n=0,...,N=T;m=0,..., M—1}, (2.5)

its dimension is NMp?, with 7,_; denoting the set of all real polynomials of degree not
exceeding p — 1 in both variables t and s. Additionally, it is observed that the solution
w of (Z4) is known at the point (0, 0).

2.2.1 Approximate solution in R

The polynomial 9(t, s) is employed to approximate w(t,s) within the rectangle Ry,
such that
i .
S00(t,9) = Y == w(0,0)¢'s';  (t,5) € Rog, (2.6)
i+j=0 L
where 8?8? 'w(0,0) is the exact value of 8§i)8§j 'w at point (0, 0).

By differentiating equation (Z3) j-times with respect to s and i-times with respect to ¢,
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we get

I w(t,s) = IV f(t,5)

-

i1
])(z -~ 1) 1) [ e, S)] 390w, s)

+
I=0 n=0 l 1
1 r\(i
(-1 [ A(-1-1) (M 7
) l)(n)at [0V et )] 99t
=0 1=0
-1 -1 . -
.\ j 1)(1 - 1)a§1—1—1]) [agj—l—l)KS(tl s)] aiﬂ)&gl)w(t,s).
1=0 n=0 l 1

2.2.2 Approximate solution in R, ,,

2.7)

The polynomials 9, ,(t, s) are used to approximate w(t, s) within the rectangles R, ,,, n =

0,....N-1,m=0,..., M—1and (n,m) # (0,0), such that
p-1 1 .
Sumlt,s) = Y i!—ﬂaioa;”sn,m(tmsm)(t —t) (s =) (45) € Ry,
i+j=0
where @n,m is the exact solution of the integral equation:

n-1 fest ¢
§n,m(t,s) = f(t,s) + Z f K1(x, )9 m(x, s)dx + f x1(x, s)§n,m(x, s)dx
t ty

£=0 Yie

m—1 Spi1 S
+Z f wa(t, Y)Onp(t, y)dy + f 2t Y)Sum(t, y)dy
PZO Sp Sm

n—1 m-1 teit Spil

+ Z Z JI: f w3 (x, y)sé,p(x; y)dydx
&=0 p=0 % Sp
n-1

+

fé+1 S
f f K3(x, Y) e m(x, y)dydx
c 0 tg Sm

=

26
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m—1 f Spr1
* Z f f K3(x, y)sn,p (x, y)dydx
PZO tn Sp

t S
+ f f 13(x, Y) S m(x, y)dydx, (2.9)
ty Sm

and 8?8? )én,m(tn, s,;) is the exact value of 8§i)8§j )\@n,m at point (t,, Sy).
We can derive this result by differentiating equation (Z9) j-times with respect to s and

i-times with respect to t:
o - LoEN NG 1\ .
90908, .(t,5) = IV f(t,5) + ZZ(;)( , )351'1'”) [V k1 (t,9)| 0P8,k )
=0 1=0

( )85"—77) (077 kol )| 97908, 5)
(i 1

)af‘l"ﬂ [0V st )| 97V S, u(t, 5). (2.10)

2.3 Error Analysis

We consider the space L*(R) with the norm

Tl ) = inf{K € R : |T'(,8)] < K for a.e. (,5) € R} < o0.

Remark 2.3.1 In the proofs that follow, we adopt the notation ||.|| as a substitute for ||.|| =) to

streamline the expression.
The convergence of the suggested method is established by the following theorem.

Theorem 2.3.1 Assume f, 1, k, and k3 are p times continuously differentiable on their

respective domains. Then, equations (Z6) and (Z8) uniquely determine an approximation
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de S (HN m). The associated error function e(t,s) = w(t, s) — S(t, s) satisfies the inequality:
llellze®y < c(h1 + hy),

where ¢ is a finite constant independent of hy and h,.

Proof. The error e(t,s) within the rectangles R,,,,,n =0,... N-1,m=1,... M-1is
described by:
enm(t,s) = w(t,s) = Oy m(t,s).

The proof is organized into two steps.

Step 1. Let us define ¢, +] = ||8§i)8£j)9n,m||. It will be shown that there exists a positive
constant ¢(p) such that el“ < ¢p), foralln =0,...,N-1, m =0,...,M -1 and
i+j=0,...,pwhere 190,0(15, s) = w(t,s) for (t,5) € Rop.

First, we have

l+]<max{“(9()9]) _0,...,p}=§01(l9)-

Second, fori+j=1,...,p, we deduce from equation (Z10) that:

i j -1 i-1
1 1
Z+] SA1+AZZZ e +A322 Z;+A4 €Zm,
=0 1=0 =0 1=0 =0 1=0
and for i + j = 0, we have from (Z9)
n-1 p-1 m-1 p-1
2-;(1) <A+ Ashy Z €0+O +A hlenm + Aghy Z Z 0+0 Aghy €0+0
E=0 a+b p=0 a+b=0
n-1 m-1 p-1 n-1 p-1
+ A7h1h2 Z Z €O+O + /\7”11]/12 Z Z 82;?
&=0 p=0 a+b=0 &=0 a+b=0
m-1 p-1
.04+0 0+0
+ A7h1h2 Z Z én:‘—p + A7h1h2€ntnl
p=0 a+b=0
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here foralli+j=0,...,p

},

Ao =max{ () [ [ e 9]

A= max{| ;

T]:O,...,i_l;l:()/"'/j }’

As =max{ (7)) a8 [

{
{
A =max{ (0 o777 [ st )
{
{

As = max{ L |K1ts)t—tn)”(s—sm)b ,p—1 },
As = max{ -L |1<2(t S)(t —t,)(s — 5,)"||, ,p—1 },
and

Az =max{ st )t = (s = 5|, =0,...,p—1 }

the constants A;,i =1, ...,7 are positive and independent of N and M.

Hence, foralli+j=0,...,p

n-1 p-1 i+j-1 i+j-1

l+] +b +b +b
<A1+/\5h1226%m+/\22 4 +/\5I’l12 Zm
&=0 a+b=0 a+b=0 a+b=0
m-1 p-1 i+j-1 i+j-1
a+b a+b a+b
+/\6hQZZ€n,p+/\32 +/\6h22 Enm
p=0 a+b=0 a+b=0 a+b=0
n-1 m-1 p-1 n-1 p-1 m-1 p-1
+ A7h1h2 8?—; + /\7]’[1]/12 Z Z E?HEJ + A7h1 2 Z Z 8u+b
&=0 p=0 a+b=0 &=0 a+b=0 p=0 a+b=0
i+j-1 i+j—1
+ /\4 Z atz + /\7h1]’l2 Z lrlz+n€
a+b=0 a+b=0

(2.11)
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Consider, the sequence W,, , = max{e%,ﬂj =0,...,p},n=0,...,N-1,m=0,..., M—-1.
Then, based on equation (1), we have

n-1 m-1 i+j-1
Zn+,]n < A1 + h1b1 Z \P m + h2b2 Z \Ilnp + h1h2b3 \IIE,P + b4 Z S;Z:;z, (212)
p=0 &=0 p=0 a+b=0

where b1 = (A5+/\7B)p2, b2 = (A6+A7A)p2, b3 = /\7}92 and b4 = A2+/\5A+A3+/\6B+/\4+/\7AB.
By applying Lemma 71 with the following notation:

3
iR

n—1

n— m—
i+
Witj = énr]n/ po = A1+ hib Z Ve + haby Z W,p + hihybs \I’g,p, Kasp = D4,
&=0 p=0 &=0 p

Il
o

we derive from (Z12)

n—1 m—1
) < A1 exp(pbs) +h1 by exp(pbs) Z We,n + hy by exp(pbs) Z Wop

&=0 N~ p=0
c1 2 C3
n—-1 m-1
+ hyhy by exp(pbs) We,,
S~———— &=0 p=0
Cy
therefore,
n— m— n-1 m-1
\yn,m <c+ h1C2 Z \yé,m + ]’lzC3 Z \yn,p + h1h2C4 \Pg,p.

=0 p=0 &=0 p=0

Lemma [CZ3 allows us to obtain foralln =0,..., N-1,m=0,...,N—1

e < Wy < crexp(mi(A + B)) = @a(p),

where n; = 1 (cz +e3+ AJ(c2 +c3)? + 4c4).

Thus, the first step is accomplished by establishing

@(p) = max {p1(p), p2(p)} -
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Step 2. It will be shown that there exists a constant ¢ , which is independent of h; and
h,, such that
llewmll < c(h + h2)?,

forallm=0,.... N-1,m=0,... M—1.
Initially, consider (t,s) € Ry . Utilizing Lemma [T, we derive from (Z8) the following

result:
1 o
leoott, ) < ), = (100wl i1,
!
hence,

ol <) Y i = S22 i+
fp 1T

C1
Next, consider (t,s) € R, forn =0,...,N=1, m =0,...,M -1, excluding the case
(n,m) = (0,0), we have from (Z9)

[y

n—

[0(t, $) = St N < Y rcllecull + Y horclen,
&=0 =0
n—-1 m-1 n—1 m—1
+ mewmu[hwmmwiyww%n
=0 p &=0 0=0

ol s) - nax@ux+xoway) Sumlt, Iy

+ Kf js; lw(x, y) — nm(x y)ldydx,

where x = max{||x;llL~%), i = 1,2,3}.

Then, applying Lemma [CZ8, we derive

00,) = St < Y k(L + By lleull + Y o (1 + Al
211 o+ S :

p=0 N
/\8 /\9
n—-1 m-1
+ hhy xv leg,ll,
——
£=0 p=0 Ao
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this implies, through the application of Lemma [T, that

hence,

”en,m” < ”w - Sn,m” + ||‘9n,m - Sn,m”

n-1 m—1 n—-1 m-1
I Asllecll + Y Hadollen,oll + IhaAsollec ol
&=0 p=0 &E=0 p=0
L0508 Nyig
+ l'_]' ||8t 85 Sn,m”hlhz/
=p

n-1 m-1

n-1 m—1
P(p)
llew,mll < hiAsg E lleg,mll + haAg E llewoll + hihaA 10 E E lleg ol + P (h1 + hy).
&=0 p=0

:Op

Thus, using Lemma [CZ3, we derive

el < £ exp (a4 + B + e,

G2

where 1, = 1 (As + Ag + (A5 + A0)2 + 4A1).

Consequently, the proof is concluded by setting ¢ = max{ci,c,}. =

2.4 Experimental Results

The numerical approach detailed in this chapter is applied to three distinct illustrative

examples. For each example, we determine the absolute error le,, ,| = [w — 9, for all

n=0,...

,N—1and m =0,...,M — 1, where w represents the exact solution and 9,

denotes the computed approximate solution. These error values provide a basis for a

detailed comparison, enabling an assessment of the method’s precision and reliability.

Example 2.4.1 Consider the following linear and homogeneous Goursat problem [P1]]:

300, w(x,y) = dyw(x, y) + d,w(x, y) + w(x,y), (x,y)€[0,1]x[0,1],
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with initial conditions w(x,0) = e* and w(0, y) = €Y. This equation can be transformed into the

following linear two-dimensional Volterra integral equation:

w(t,s) = %(et +é°) — % + %(fo w(x,s)dx + [)S w(t, y)dy + fo I)S w(x, y)dydx),

with the exact solution given by w(t,s) = e'**.
Table 1 and Figure U1 present the numerical findings for p = 3,4 and hy = h, = 0.05,0.025
using the TCM.

The results in this example confirm the theoretical results and suggest that the experimental
log(en/ean)

order of convergence (EOC) is p, as shown in Table 72, using the formula: EOC = )

Table 2.1 — Numerical outcomes of Example 27T

(ts) |[N=M=20,p=3 | N=M=20,p=4|N=M=40,p=3
(0.1,0.1) 1.62x107° 157 x10°° 4.05 % 1076
(0.2,0.2) 3.82 x 1075 3.65 x 107 9.47 x 1076
(0.3,0.3) 6.67 x 107 6.37 x 107 1.66 X 10°°
(0.4,0.4) 1.05x 107 9.89 x 102 2.59 x 103
(0.5,0.5) 1.56 x 1074 1.44 x 107 3.80 x 1075
(0.6,0.6) 2.21 x 10~ 2.01 x 10~ 5.35 x 1075
(0.7,0.7) 3.04 x 10~ 2.74 x 107 7.34 x 107
(0.8,0.8) 411 % 1074 3.66 x 10~ 9.86 x 107
(0.9,0.9) 5.48 x 10~ 4.82 x 107 130 x 10~
(1.0,1.0) 1.99 x 107 6.39 x 107 3.38 x 107

Table 2.2 — Experimental orders of convergence (EOC) for Example 41

(N,M) | (2,2) | (4,4) | (8,8) | (16,16) | (32,32) | (64,64)
p=21] / [145[ 171 185 | 194 | 1.96
p=3| / | 240|269 | 284 | 292 | 29

Example 2.4.2 Let us consider the following linear non-homogeneous Goursat problem [19]:
99, w(x,y) = dxy — ¥*y* +w(x,y), (x,y) €[0,1]1x[0,1],

with initial conditions w(x, 0) = e* and w(0, y) = e¥. This equation can be transformed into the
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I’ll = I’lz =0.05

hl = I’lz =0.025
Figure 2.1 — Plot of the absolute error function for p = 3 of Example "4

following linear two-dimensional Volterra integral equation:

303 s
w(t,s) = e + ¢ + t7s* — th + f f w(x, y)dydx.
o Jo

The exact solution for this problem is w(t,s) = t2s* + e'**.
Table U3 and Figure U2 showcase the numerical findings for p = 3 and hy = h, = 0.05,0.025
using the TCM.

Table 2.3 — Numerical outcomes of Example 2272

(ts) |[N=M=20,p=3 | N=M=40,p=3
(0.1,0.1) 3.64 x 1077 480 % 1078
(0.2,0.2) 1.77 x 107 2.29 x 1077
(0.3,0.3) 4.77 x 1076 6.13 x 1077
(0.4,0.4) 1.00 x 1075 1.28 x 1076
(0.5,0.5) 1.83x107° 2.32x 107
(0.6,0.6) 3.07 x107° 3.93x10°¢
(0.7,0.7) 4.85 % 1075 6.21 x 107
(0.8,0.8) 7.32 X 1075 9.36 x 107
(0.9,0.9) 1.06 x 10~ 1.36 X 1075
(1.0,1.0) 1.76 x 1073 2.28 x 10~
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(a) Exact solution (b) Approximate solution

Figure 2.2 — Numerical results of Example "4

Example 2.4.3 Let us examine the following partial differential equation with variable coeffi-

cients:
dxdyw(x, y) = (x+ 1) w(x, y)+ (X +y)d,w(x, y) +xyw(x, y)+9(x, y), (x,y) € [0,11x[0,1],

with initial conditions w(x,0) = cos(x) + e* and w(0, y) = cos(y) + 1 + y. This equation can

be transformed into the following linear two-dimensional Volterra integral equation:

w(t,s) = f(t,s) + f(; (® + s)w(x, s)dx + f:(t + y)w(t, y)dy + f(; j:(—Z - xy)w(x, y)dydx,

where f(t,s) is chosen in such a way that the exact solution becomes w(t, s) = cos(t +s) + e’ +s%.
The numerical results obtained using the TCM for p = 3 and h; = h, = 0.05,0.025 are shown
in Table 4.
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Table 2.4 — Numerical outcomes of Example 23

(ts) |[N=M=20,p=3 | N=M=40,p=3

(0.1,0.1) 132x107° 1.66 x 10°°
0.2,0.2 2.84 x 1075 3.73 x 107
( )
(0.3,0.3) 4.72 X107 6.54 x 107
0.4,0.4) 7.13 x 107 1.05x 10°°
(
(0.5,0.5) 1.03x 107 1.62x107°
(0.6,0.6) 1.46 x 107+ 2.44 %107
0.7,0.7 2.07 x 10~ 3.64 x 1075
( )
(0.8,0.8) 2.98 x 107+ 5.47 x 1075
0.9,0.9) 444 %107 8.47 x 1075
(

1.0,1.0) 1.04 x 107 1.89 x 107
(

2.5 Conclusion

This chapter offered a collocation method utilizing Taylor polynomials to solve a two-
dimensional linear Volterra integral equation of the second kind, which is derived from
converting a hyperbolic linear PDE Goursat problem. Various numerical examples
were provided to demonstrate the method’s accuracy and efficiency. The analysis of
convergence and error was performed, showing that the numerical results aligned with
theoretical estimations. These findings indicate that the method exhibits a high level

of precision in convergence.
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VOLTERRA INTEGRAL EQUATIONS

37



TCM for Solving 2D-First Kind VIEs

3.1 Introduction

A standard form for the nonlinear 2D-VIEs of the first kind, which incorporate an

unknown function v, is as follows:

f fs k(t,s,x, y)G(x, y))dydx = h(t,s), (t,5) €R, (3.1)
0 Jo

where R = [0, A] X [0, B], h and x are smooth functions on their corresponding domains,
the inverse function G is also continuous and nonlinear with respect to v. Equation

(B) is solved by substituting w(x, y) = G(v(x, y)), yielding the linear equation

f fs k(t,s, x, y)w(x, y)dydx = h(t,s), (t,s) € R. (3.2)
0 Jo

We differentiate equation (B22) with respect to s and ¢ in order to convert the first-kind
Volterra integral equation (B22) into the second-kind Volterra integral equation (B3).
This conversion process is only useful when h(t,0) = h(0,s) = 0 and «(t,s,t,s) # 0 for

(t,s) € R. The resulting linear 2D-VIE requires the following form:

w(t,s) = f(t,s) +f0 x1(t, s, x)w(x, s)dx + ‘fos Ka(t, s, y)w(t, y)dy
(3.3)

t S
+ f f Ks(t, s, x, y)w(x, y)dydx, (t,s) € R,
0 Jo

where the functions f, k1, k, and «x3 are given smooth functions defined, respectively,
onR, S ={(t,s,x):0<x<t<A0<s<B},S:={tsy):0<t<A0<y<s<B}
and S3 :={(t,s,x,y) : 0<x<t<A,0<y<s<B}by:

k1(t,s,x) := =dik(t,s, x,5)/x(t,s,t,5), wa(t,s,y) := —dsx(t,s, t,y)/x(t,s,t,s),
K3(t, s, x,y) := —didsk(t, s, x, y)/x(t,s,t,5), f(t, )= ddsh(t,s)/x(t,s,t,9).

For (B), the approximate solution is G~ (w(x, v)) = v(x, y), and which was published in

the reference [9]. The existence and uniqueness of the solution for equation (B1), using
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G(v(x, y)) = w(x, y) and equation (B33), have been explored in works such as [42, b1].

The equation (Bl) has motivated mathematicians to develop reliable methods for its
solution. In [A0], a method based on applying two-dimensional block-pulse functions
and a hybrid of block-pulse functions was utilized to solve nonlinear 2D-VIEs of the
tirst kind. An Euler-type technique was discussed in [42]. The Chelyshkov polynomial
strategy for solving 2D-NVIEs of the first kind was considered in [B8]. In [67], the
Tau technique was employed to approximate the solution of linear 2D-VIEs of the first
kind. Nemati, S. et al. [4Y] used operational matrices of Legendre polynomials to
approximate the solution of a class of nonlinear 2D-VIEs of the first kind, specifically
when G = v" and n is a positive integer. In [5Y], a multi-step method was implemented

for the first kind’s numerical solution of nonlinear 2D-VIEs.

This chapter is organized as follows: Section B3 discusses the convergence analysis
of our method, Section B4 shows the validity of our theoretical results through a number
of numerical examples, and Section B3 presents our conclusions. The following section
describes our method for approximating the solution of equation (B3) using Taylor

polynomials.

3.2 Description of the Method

In this section, solutions of 2D-VIE (B3) are approximated in the space S;__ll)(HN,M), as
defined in (Z3), the collocation solution is formulated using Taylor polynomials over
each rectangle R, ,, where n = 0,...,N —1 and m = 0,...,M — 1. Furthermore, it is

observed that w(0,0) = £(0,0).
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3.2.1 Approximate solution in R

We approximate w within the rectangle R using the polynomial

p-1
Soo(t5) = Y ‘]‘ay)a(f w(0,0)t's’ ;  (t,5) € Ry, (3.4)
i+j=0 EJ:

by differentiating equation (B3) j-times with respect to s and i-times with respect to t,

we get

a(i)a(f)w(t s) = a(i)a(j)f(t’ s)

-1 q

Z ( )( )a“’"” [2V777] 0Vt s, 2)| 9P i, )
0

=0

+

=

+

| T —. -
=] O

A &

) f 8 Sj _Z)Kl(t, s, x)0Vw(x, s)dx

+ r Z(r)( )a(z n)[a(r l)(a]lr)
=\ =

r=0 =0 7

1) f 9D (t, s, y)dw(t, y)dy
0

n
q ¥ ]
Z( )( ) 5 [ 8" 1- q)| (ag—l) [ QU]
/ y=

r i-1
n=0

xa(t, s, ) )] 8(”)(9(1 w(t,s)

—

=
= o

—.

_Ks(t,s, x, y)])] "Dt s)

™

I=0 gq

;)f 30 a“ D gu1

(Z) a(q 4l 8(’ 1- q)| 8(] K3(t, 8, x, ]/)]] a(n)w(t y)dy

<

\
RS

M1
T4 - -

yes K3(L5, %, y)]] Vw(x, s)dx

T
- o

+
g=0 7

+ f 8§i)8g)1<3(t,s,x, y)w(x, y)dydx.
0o Jo

<
I
4 <

Consequently,
9"0Vw(0,0) = 9”3 £(0,0)

t

)(q)a(q ) [&(l 1- q)| &(] ])Kl(f s, x)] a(”)&(l)w(O 0)
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t=0
g K2l y))] 3"9%w(0,0)
- s=0

-1 7 i
+] r\(#) 50 [a(r—l)< U1
l T] t S s
_ ka(t s, x, y)])] 3"30w(0,0).

q
\[4) 5= | Hi-1-q) (r=D) | 5(j=1-7)
LR LR e [ s

3.2.2 Approximate solution in R,

The function w is approximated by 9,y within the rectangles R, o, forn =1,...,N -1,

using polynomials

p-1
1 i) a ”
Suolti) = Y = 700000l ONE =15 (8,5) € Ry, (35)
i+j=0 /"

where 3, represents the exact solution of the following integral equation:

Su0(t,s) = f(t,s) + f 12(t, s, 1) Su0(t, y)dy
0

n—1 teil +
+ Z f K1(t, s, x)d¢ o(x, s)dx + f K1(t, s, X)9,0(x, s)dx
£=0 te ty

n=l ey s t s )
Y [ [ st vt s [ [ e xnSa s
=0 Yie 0 t, JO

(3.6)

Differentiating equation (B-f) j-times with respect to s and i-times with respect to t, we

derive

39998,,0(t,5) = dPIVf(t,5)

n-1 j

" t(‘,+1 . X
+ Z (;) L 85’)(92 Dty s, 0090 0e o(x, s)dx

&=0 =0
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(3.7)

)(q)a?"v [0 _, 0Vt 5,2)| 97908, 00, )
8(1)07(] Vi1t s, 0)908,0(x, s)dx

(Tl’)(;) a:z‘—n) [ ag—l)[ agj—l—r) .

a( T])a(])KZ(t s, y)g(ﬂ)sno(t ]/)dy

fetq
r N i _ i—1—
l)f 85’) [8? Z)[ag o y=
te

8(1)8(])1<3(t 8, %, Y)deo(x, y)dydx

q
Z (l )(Z)giq—n) [ail_l_q)'x:t (9§r_l) [(%J—l—r) -
=0

0n

¥ @) | A(r=Dp AG-1-7)
Z)fa (9 [0,
q)fa(qn[a -1-¢)
n

+ f f aii)8§j)1<3(t,s,x, y)§n,0(x, y)dydx.
t, JO

+
-
—_—
— .
- h 1[_\4&

r

[

s, 1[0 8,0, )

ﬁ
Il
o
—
1l
o
=
Il
o

-
|

+
-
—_—
_ :ES =
h

T
= O

. x3(t, s, x, y)]] 821)\95,0(3(, s)dx

+
[
. =

T
= O
<
Il
o
—
Il
o

+
%

oy
L

-
|
—_

r

s K3(t1 5,X, ]/)])] agn)ag)é\n,()(t/ S)

™1
3

— 3
1]
»A o
—
H

M1
M- 1D

— ———

J Kl X, y)]] IV8,,0(x, s)dx

T
- o

+

_ 13(t, 8, x, y)] 8(77)9;10(15 y)dy

Q
o
=
I
o

Consequently,

38,08, 0) = 99V fi(t,, 0)

n-1 j . tei
+ Z Z( )f (l>c9(’ Vit s, x)] "0V o(x, 0)dx
&=0 =0
j -1 q .
+ Z Z( )( )8@ m a(l 1- ‘7)| a(] l)Kl(t s, X)] a(’])a(l)sno(tmo)
I=0 g=0 n=0
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ralts, y)]] "I, ok, 0)

f e 50 [ D[ g1
tg t y=
i q
N4 @G- | Ai-1-9)
DWH BN ZRE

t=ty
. xs(t, s, x, y)]] &S)S&O(x, 0)dx

t=t, A
B ICEEY y)])] . d""8,0(t, 0).

(ar l)[a(f 1-7)
x=t

3.2.3 Approximate solution in R, ,,

The function w is approximated by 9, ,, within the rectangles R, ,, forn =0,...,N -1

and m=1,...,M -1, using polynomials

p-1

L o500 g i i
Sy m(t,5) Z Wa V8, b, su)(t = 1) =5 5 (,5) € Ry (3.8)

i+j=0

in which §,,,, denotes the exact solution to the integral equation provided below:

nm(t s) = f(t,s) + Zf 1(t, 8, x)9¢ m(x, s)dx +f x1(t, s,x)@n,m(x, s)dx

n

m—1 5P+1 S R
+Z f K2(t, s, Y) O p(t, y)dy + f Ka2(t, s, Y)Oum(t, y)dy

p=0 Y$p Sm
n—l m-1 ter1 Sp+1
+ Zf f K3(t, s, X, ¥)9¢ o (x, y)dydx
&=0 p=0 Ve Sp
n-1 test J
+ f f ks(t, s, %, Y)Os m(x, y)dydx
=0 te Sm
m—1 t Sp+1
+ f f K3(t, s, %, 1)9, p(x, y)dydx
p=0 tn Jsp

+

—

| st %, )8t i (3.9)

m

tn
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By differentiating equation (BY) j-times with respect to s and i-times with respect to ¢,

we obtain
. . ‘ ‘ n-1 j K tein ‘ ‘
V8t 5) = N fit,s)+ Y Y (7 ) f 003U e (t, 5, %) 9 ¢ (x, 5)dx
&=0 1=0 l te

-1 9

+

()( )a(’i m a(z 1- L7)| [a(] Dy W(t,s, x)]] 8(’7)8 Z)Snm(t s)

q=0 n=0

- 2D

A

+

)f 8(1)8(] Dt s, )08, m(x, s)dx

3 -
K N

gl

(:1) p Aot 5, 1)t )y

T i

n=0

'NT:
Il

+

(Z)(n)agl m [ag’—l)[agj_l_r)|yzs K2(t, s, y)]] a:fl)agl)‘§n,m(t’ S)
0

‘&
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o
—
. I
o
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Il

030 kalt 5, A St Ay
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[
ﬁ

m

T
=

el Sp+l
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£

fevl

r ’ ; - i—1—

) [l
te

f 099V kea(t, 5, X, ) O m(x, y)dydx

|
—_

+

[
i el
-~

| M

%
.
Il

Ks(t, s, %, y)]] 09, u(x, $)dx
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T
— o
<
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o
—
Il
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+
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o

3
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m m

85”8? )K3(t, S, %, Y) 9,0 (X, y)dydx

e}
I
S

+
N gl
S
—

-
|
<
|
—_

[fﬂ.
-

r o T i T s )
(l)(fz)aiq DO (0 [0, st )| 9790 St )

t
b

T
= O
—
= Il
o
K
1l
o
=
Il
o

+

JKa(t, s, x, y)]] VS, m(x, s)dx

‘
Il
o
—
Il
o

44



TCM for Solving 2D-First Kind VIEs

(3.10)
i—1

q s
pn3 (Z) f I [IT| LV ks(t, s, x, )] O St y)dy

q=0 n=0

t S
+ f f o"f)&g)m(t, 5, %, )9, m(x, y)dydx.
ty Sm

Consequently,

n-1 j
a(l a(])‘9;1 m(tn/ Sm) - l)a(])f tn/ Sm) + Z Z ( ) f 8(1 8(] ) (tn, Sy X)a( )\95 m(x sm)dx
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q .
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3.3 Error Analysis
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The convergence of the proposed method is confirmed by the following theorems.

Theorem 3.3.1 If x1, k2, k3 and f are functions that can be differentiated p times continuously
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within their respective domains, then the equations (B4), (33), (B8) establish a unique approx-
imation S in the space S;__ll)(l'IN,M). The associated error function, e(t,s) = w(t,s) — d(t,s),
adheres to the inequality:

llellzew) < c(hy + hy),

where ¢ is a finite constant that does not depend on hy or hj.

Proof. The proof of the theorem will consist of two steps:

Step 1. Let us define eﬁf,]n = ||8§i)8£j)9n,m||. It will be shown that there exists a positive

constant ¢(p) such that 6% < @), foralln =0,...,.N-1, m =0,...,M -1 and
i+j=0,...,pwhere Soo(t,s) = w(t, s) for (t,s) € R.

First, we have

sgré < max {||a§i>a§f)w

A+j=0,..,p) = pi(p).

Second, fori+j=1,...,p, we obtain from (382)

r=0 =0 n=0 n=0
n-1j-1 r tee PT1 =1 nteyq s PTL
+ Ag f Z eXdx + A7 Z f f et dydx
&=0 1=0 Yt 4+p=0 &=0 Vi a+b=0
j-1 i-1 -1 7 t

+
&
1

+

~

O
= -
Il |
O —
-
I}
o

and for i + j = 0, we have from (Bf)

n=1 At P71 t
0+0 a+b 0+0
€0 SM+ A E f E €rpdx + )\zf €, dx

&=0 Yt a+b=0 tn
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=0 n=0
n—1 tean s p-1 t s
" /\7 f f a+bdydx+ /\7f f O+Odydx
=0 Vi 0 4+b=0 fn S0
here foralli+j=0,...,p
Alzmax{i h },
Ay = maX{ Dz ‘8(1)8(] Ykt s, )@ — b)Y 1=0,. a+ b =0, p -1 }'
O-,owi Uy (tsx)] =0,...,4;9=0,...,i—1;
A3: !
[=0,...,j
7]) Vl) ]1F)| Kz(tsy)] T] 0,...,i;l=0/-"lr;
A4: ’
r=0,...,7-1

=
a1
I

= max{ (|93 xatt, 5, )],

= ,...,i}/

0100100 st s, = gays |

=0,...,7;

1
W=

r=0,...,j—La+b=0,...,p-1

= ,..,p_l}/

OO [0 (2[00 ess, )| n =00

max ,
q=0,...,i—-1;,1=0,...,,r=0,...,j-1

Ay = max{ ﬁ ||a§">a§”1<3(t, s, %, y)(x — t,)"y"

As

Agzmax{ ’ aﬁ""”[af‘l‘q) 8£j)x=t1<3(t,s,x,y)] N=0,...,;9=0,...,i—1 },
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where the constants A;,i = 1,...,9 are both positive and independent of N and M.

Thus, forany i+ j=0,...,p, we have

n-1 p-1 -1 j
1
l+] <A+ AthpZ Z €a+b + /\3]9 Z €’]+ + Azh] Z 82-51
£=0 a+b=0 1=0 =0 1=0
1
T Y ”5’122
1=0 n=0
n-1 p-1 n-1 p-1 -1 i1
1
+ Ad’llpz Z Z &a(-t)b + /\7”11}12 Z Z é?bb + Agpz én+
&£=0 a+b=0 &=0 a+b=0 =0 n=0
+ Aéhlp Z 0+ +A th Z + A7]’l th(y)lBO,
which yields
n-1 p-1 i+j-1
Z+] < Al + b1h1 Z Z (‘fi%b + bz Z Ef:bb,
&=0 a+b=0 a+b=0

where b1 = AZP + A6p2 + A7B and bz = /\3]7 + /\2A + A4p + /\5B + /\8]?2 + A@Ap + AgBP + /\7AB

Let us consider the sequence W, = = maxi{e i + j=0,...,p},n=0,...,N -1, we can

nO’
derive
i+j-1
Hj a+b
6'” /\1+b1ph1z\yr+bzz nO’
a+b=0

using Lemma [CZ, we obtain
n-1 i+j-1
;+é < [Al + b1p2h1 Z \Pg] exp ( Z bz]
&=0 a+b=0

n—1
< A1 exp(p?ha) + bip? exp(pba) by Y W,
&=0

bs by
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it follows that, foralln =0,...,N -1

‘I’n < b3 + b4h1 Z \Pg,
&=0

again, using Lemma [C’ZT, we obtain

e:ré < W, <bsexp(Abs).
! R
P2(p)

Third, by following a similar process with slight adjustments, we obtain from (89) and

@) fori+j=0,...,p

n-1 p— i+j-1 i+j-1

S::,L <A+ /\2]’11]9 Z Z 8?—75 + /\3]? Z atb m T /\2]’11 Z T—nl;
&£=0 a+b=0 a+b=0 a+b=0
m-1 p-1 i+j-1 i+j-1
+ /\5h2p Z Z atb + A4p Z a+b m T )\5]”[2 Z th
p=0 a+b=0 a+b=0 a+b=0
n-1 m-1 p-1 n-1 p-1
+ A7l’l1 2 Z Z €a+b + /\6h1p Z Z atb m T A7I’l1h2 Z Z Slg—rz
=0 a+b=0 =0 a+b=0
m-1 p-1 i+j-1

+ Aohyp? Z Z ert + Azhih Z Z b Agp? Z ertt

p=0 a+b=0 p=0 a+b=0 a+b=0

M
O
)
+
S
Il
o

i+j-1 i+j-1 i+j-1

+ A6pl’l1 éu+b + /\9]9”12 Z EZ_;'ZZ + A7I’11h2 Z EZ;};.

a+b=0 a+b=0 a+b=0

Considering the sequence V¥, , = max{eﬂq,i +j=0,...,p,, n =0,.... N-1,m =

0,...,M -1, we obtain

n-1 m-1 i+j-1
z+] <A+ bs Z \I/é m + hobg Z(; v, ot hihyb, Lt L \yé,p + bg Zh‘O é‘;zl;z, (311)
p= =0 p= a+b=
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where b5 = (Azp + /\6]72 + /\7B)p2, b6 = (/\5]? + Agpz + /\7A)p2, b7 = /\7}72 and bg =
Agp + AA + /\4]9 + AsB + Agpz + AGPA + /\9pB + A/AB,

using Lemma [CZT with the following notation:

§
iR

n—-1

i+
Witj = nr]n/ po = A1+ hibs E We i + habs E W,,p + hihoby \I’g,p, Kasp = Ds,
&=0 p=0 &=0 p

Il
o

we obtain from (B3)

< Ay exp(p®bs) +hy bs exp(p*bs) Z We ., + hy b exp(p*bs) Z Wop
| S —— %,_/ | ——

p=0
bo bio b1y
n-1 m-1
+ hihy by exp(p bs) Ve,
%,_/ =0 p=0
it follows that, foralln =0,..., N-1,m=0,... M -1
n—-1 m-1
Wm < by + hibyg Z e + habiy Z W, + hihobyo We,,
&=0 p=0 &=0 p=0

using Lemma [Z3, we obtain

sﬁ% < W, < byexp (n1(A + B)),

P3(p)

where m= % (b]o + b11 + \/(b]o + bll)z + 4b12) .
Consequently, the first step is concluded by taking

p(p) = max{p1(p), p2(p), P3(p)}-

Step 2. It will be shown that there exists a constant ¢ , which is independent of i; and
h,, such that
”en,m” < C(hl + hz)p,
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forallm=0,... N-1,m=0,... M—1.
First, let (t,s) € Rop, by using Lemma [LT, we obtain from (B.4)

eont, 9 < Y| 1,17 [ERER

i+j=p
hence,
1 i1.] ()
lewnll < @) Y =t = £ g+ oy
el ! p!

G1

Second, let (t,5) € Ro, foralln =1,...,N — 1, we have from (38)

Wit s) - Sualt,s) = fo kalt,s, y)alt, ) — Suolt, )y

n-1 fevl t
+ Z f K1(t, s, X)es o(x, s)dt + f x1(t, s, x)(w(x,s) — \§n,o(X, s))dx

CSZO té ty

n—1 fei S ¢ S .
£y f f st 5, ¥, Yesolx, y)dydx + f f st 5, %, (@0, y) = Suox, )dydy,
&=0 Vit 0 tn JO

hence,
n-1 n—1
[w(t, $) = Snot,9)] < ) Inrclecoll + ) Baharclecll
£=0 &=0

t S
+ K f lw(x, ) — 9,0(x, s)ldx + « f lw(t, y) — S,0(t, v)ldy
t 0

n

t S
,r f f w0(x, y) - S10(x, 1)ldydz,
t, 0

where x = max{||x;l|~%), i = 1,2,3}, then by Lemma ["7A

n-1 n-1
[wt, ) = Su0(t, 9)| < (Z Ixllecll + ) hlhzxneg,on)v
&=0 &=0

| ——
71

n—1
< Z hi k(1 + B)v lecoll,
=0
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which implies, by using Lemma [CTT], that

llenoll < llw = Suoll + (91,0 = Inoll

-1
Zh1y1||e§,0|| + Y % 199098,,,

i+j=p

I,

O

v a(p)
hyyllesoll + _(hl + hy),

£=0
then, by Lemma [CZT, we have

a
llenoll < % exp(Ay1)(h + hy).

————
G2

Third, let (t,s) € Ry, foralln =0,..., N-1,m=1,..., M -1, we have from (B9)

n—1 m—1
[w(t, $) = St 9 < Y hrcllecull + Y harclen,l
p=0

o

et

BN
—_
=

m—

¥ Zhlhzxne coll + Zhlhzxuegmn * Zhlhzxnewn
p:
t

+ K lw(x, s) — nm(x s)|dx + Kf [w(t, y) — nm(t y)ldy

tn

,r f f 0l 5) — Sum(, y)ldydx,
tn Sm

M

then by Lemma 78,

-1 m—1
w(t,s) = Sumt, ) < Y Il +ha)vllegull + ) haac(L+ vl
; 1 2 g, Z 2 1 0

p=0
72 V3
n—-1 m-1
+Z hlhz KV |€g,p||,
N——
£=0 p:O
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which implies, by using Lemma [CTT], that

”en,m” < ”w - Sn,m” + ”‘9n,m - Sn,m”

n—1 — n—1 m-1
Iyalles +Zh2y3||en,p|| * Ihayallec ol

&=0 p=0 &=0 p=0

+ || 99308, i1
ll]l
hence,
n-1 m-1 (P(P)
lewmll < thnegmn + Z Baysllenll + mhayillesll+ = + oY,
p=0 &=0 p=0

using Lemma [CZ3, we obtain

el < £ exp (a4 + B + e,

G3

such that m = % (7/2 + Y3+ \/(')/2 + ')/3)2 + 47/4) .
Thus, the proof is completed by taking ¢ = max{ci, ¢z, ¢3}. ®

Theorem 3.3.2 Let w = G o v, where G is a continuously differentiable bijective function, and
suppose that its inverse G™' is Lipschitz continuous with Lipschitz constant L > 0 on the range
of v. Let 3 be the numerical approximation to w as constructed in Theorem B3, and define
w = G™' o 9 as the corresponding approximation to v. Then the error function E := v — w
satisfies

|Ellzow) < &"(h1 + ho)P,

where ¢’ is a finite constant independent of hy and h .

Proof. From the assumptions, we have

v(t,s) = G Hw(t,s)) and w(t,s) = G (S, 5s)).
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Therefore, the error function E(t, s) becomes
E(t,s) = v(t,s) — w(t,s) = G (w(t,s)) — G H(S(t,s)).
By the Lipschitz continuity of G, it follows that
|E(t,s)| = |G‘1(w(t, s)) — G71(3(t, s))| < L-|w(t,s)— 3t s),
which implies, from Theorem B3, that

IEllz~®) < L - llellr=®)
< L-¢c (h1+h2)p.

——
C’

3.4 Experimental Results

In this section, we report some numerical experiments that show the performances of
the Taylor collocation method (TCM) when applied to some problems of the form (B1)
and (B2). Moreover, we compare our results with other methods such as the multi-step
method [6Y], Euler-type method (EM) and trapezoidal method (TM) [42], Chelyshkov
polynomials method (2D-CPs) [385], bivariate shifted Legendre functions method [b]

and two-dimensional block-pulse functions method (2D-BPFs) [&1].

Example 3.4.1 Let us first begin with an illustrative example and consider the following two-

dimensional linear Volterra integral equation of the first kind:

f fs(ts + Dw(x, y)dydx = h(t,s), t,s€[0,1].
0 Jo
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By differentiating both sides of this equation, we obtain

t S tw(t,
e [ [ [ [t

—3t? + (2 + 3t + 3ts)te’
2(1 + ts)

for t,s € [0,1], where f(t,s) =
w(t,s) =

is chosen so that the exact solution is

Comparing the approximate and exact solutions is demonstrated in Table B, by applying TCM
on the equation above at specific points withp = 3,4 and (N, M) = (10, 10), (20, 20). Figure B1:
(a) and (b) display the approximate and exact solutions respectively, while (c) and (d) illustrate

the function error for p = 3 and (N, M) = (10, 10), (20, 20).

Table 3.1 — Numerical results of Example B4

(ts) |[N=M=10,p=3 | N=M=20,p=3 [ N=M=10,p =4
.1,0. 73 x 10~ 99 x 10~ 59 x 10~
(0.1,0.1) 1.73x10°° 5.99 x 1077 2.59 x 107
(0.2,0.2) 1.84 x 1075 5.29 x 1076 2.20 x 1075
3,0. 23 %10~ 68 x 10~ .02 x 10"
(0.3,0.3) 6.23 x 107 1.68 x 107° 7.02 x 107
(0.4,0.4) 1.34 x 10~ 3.53 x 1070 1.47 x 107
(0.5,0.5) 2.28 x 10~ 5.85 x 1075 2.46 x 1074
(0.6,0.6) 3.29 x 10~ 8.35 x 107 3.52 x 107
(0.7,0.7) 427 x 107 1.07 x 107+ 455 x 1074
.8,0. 14 x 10~ 28 x 10~ 46 x 10
(0.8,0.8) 5.14 x 10~ 1.28 x 107 5.46 x 10~
9,0. .85 x 10~ 45 %10~ 21 x 10~
(0.9,0.9) 5.85 x 10~ 1.45x 107 6.21 x 1074
(1.0,1.0) 1.86 x 1072 3.17 x 10~ 5.93 x 10~

Example 3.4.2 We selected the second example from reference [bY], which is represented by the

following equation:

t2s? + 2 sin(ts)
2s

fort,s € [0,1], and the exact solution is w(t,s) = t cos(s).

t s
2— 2ts COS(ts)) sil’l(S) = f f (Sil’l(SX) + 1)ZU(X, y)dydx’
0 0

This equation is equivalent to the following linear 2D-VIE of the second kind:

w(t,s) = tcos(s) +

t2 sin(s) cos(ts) _ f °
sin(ts) + 1 o sin(ts) +1
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[

i'i.|||LI\1>||||L'.'?I'||

=
in

vivabe s lies

?

(a) Approximate solution (b) Exact solution

(c) Error function plot forp =3, N = M = 10. (d) Error function plot forp =3, N = M = 20.

Figure 3.1 — Numerical results of Example B4

The numerical results for p = 4 and N = M = 15 of the TCM are compared with the numerical
results obtained by using multi-step method [b6Y] in Table B
The absolute error function for p = 4 and N = M = 15 are plotted in Figure B2
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Table 3.2 — Comparison of the absolute errors of Example B.42

(t,s) Multi-steps method TCM
(27,27) 2.38x 1077 2.00 x 10712
(276,279) 1.90 x 107° 4.00 x 1071
(27°,27°) 1.57 x 10° 1.24 x 107°
(274,27 225x10°° 3.97 x 1078
(273,27%) 1.51x 1077 1.88 x 1077
(272,272 1.92 x 1077 2.66 x 1077
71,27h 6.16 x 1077 8.87 x 1078
Lx 1077
9.x 107"

8.2 107%™
7.% 1{1'?{
6.% 1075
5% 107 S50
ax107) LD
3107
2.% 107
1.5 107
'

Figure 3.2 — Plot of the absolute error function for Example B2

Example 3.4.3 Regarding the third example, we selected it from reference [42], which is de-
scribed by the following equation:

h(t,s) = \fo‘ fo‘ S(sin(s + x) + sin(t + y) + 3)w(x, y)dydx,

for t,s € [0,2], where h(t, s) is chosen so that the exact solution is w(t,s) = cos(t + s).

The numerical results for p = 3 and hy = hy = 0.1,0.05 obtained using the present method
(TCM) are compared with those derived from the Euler-type method (EM), the trapezoidal
method (TM) [42], the Chelyshkov polynomials method (2D-CPs) [38], the bivariate shifted

Legendre functions method [bl], and the two-dimensional block-pulse functions method (2D-

57



TCM for Solving 2D-First Kind VIEs

BPFs) [41], as shown in Table B3.

Figure B3 illustrates both the exact and approximate solutions for N = M = 40 and p = 3.

Table 3.3 — Comparison of the absolute errors for Example 243

(t,s)

TCM
hy =0.05

EM [27]
hy = 0.05

TM [27]
hy = 0.05

Method in [b0]

M=4

2D-BPFs [41]
m =32

(1,1)
(1,2)
(2,1)
(2,2)

8.57 x 10~
2.29%x10™°
2.29%x10™°
427 x107°

4.06 x 1072
1.23 x 1072
1.23 x 1072
4.06 x 1072

9.80 x 107*
547 x 107
5.47 x 107
2.03x1073

496 x 10°°
5.98 x 10
9.87 x 1073
1.22 x 107

6.08 x 1072
4.00 x 1073
4.00x 1073
4.74 x 1072

Example 3.4.4 In the last example, let us consider the following nonlinear 2D-VIE of the first

kind [4T1]:

fort,s € [0,1], and the exact solution is u(t,s) = e

(t,s)

TCM

hl =0.1

hy = 0.05

2D-CPs [B5]

N=2

M=4

(0.1,0.1)
(0.2,0.2)
(0.3,0.3)
(0.4,0.4)
(0.5,0.5)
(0.6,0.6)
(0.7,0.7)
(0.8,0.8)
(0.9,0.9)
1,1)

2.77 x 1077
9.38 x 10~/
1.63 x10°°
2.14x107°
2.33%x10°°
2.09%x10°°
1.28 x107°
2.85%x 1077
2.80x 107
6.85x 107

3.78x107°
1.18 x 1077
2.03x 1077
2.67x1077
291 x1077
2.62x1077
1.60 x 1077
3.66 x 1078
3.58 x 1077
8.59 x 1077

7.41x107°
443 x10™*
5.40x 1073
6.65x 1073
448 %1073
543 x 107
480%x 1073
7.93x 1073
7.08 x 1073
2.77 x 107

4.77 x 107°
210%x 107
7.20 x 10°¢
8.20 x 107
6.40 x 107
6.90 x 107°
1.20x 107
5.00 x 107°
3.00 x 10
1.80 x 107°

1
9

t+2s

t S
_(et+s — pltds _ p7t+s e7t+45) — f f 26t+su3(x’ y)dydx,
0 0

This equation is equivalent to the following linear 2D-VIE of the second kind:

w(t,s):f(t,s)—ﬁw(x,s)dx—[) w(t,y)dy—fo fo w(x, y)dydx,

where w = u®. Table B4 and Figure B2 present a comparison of the numerical results for
p =3 and N = M = 64 obtained through the TCM with those derived using the Chelyshkov
polynomials method (2D-CPs) [38], the bivariate shifted Legendre functions method [bU], and
the two-dimensional block-pulse functions method (2D-BPFs) [#1].
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(a) Approximate solution

(b) Exact solution

Figure 3.3 — Plot of the approximate and exact solution for Example B23

Table 3.4 — Comparison of the absolute errors of Example 24

Figure 3.4 — Computational errors corresponding to different methods of Example 323

= 8 = 2D-8PFs [41]
= = Method in [50]

=== Present method

2D-CPs [38]

Grid points

59

(2%, 2% [ 2D-BPFs [&1] | Method in [50] | 2D-CPs [38] | TCM
k=1 1.0 x 107! 2.6 x10°° 35x10° [6.1x10°
k=2 4.6 x1072 4.6x107° 20x10™° |2.6x107°
k=3 2.9 x 1072 6.3x1077 1.5x107° |[13x10°
k=4 2.3x1072 12x107° 12x107° |7.2x1077
k=5 2.0x 1072 3.8x107° 59x107° |3.7x107
k=6 3.1x1072 9.0x10°° 9.6x107° |1.9x1077

107! -
& .
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3.5 Conclusion

In this chapter, the problem described in (B) is converted into a linear two dimen-
sional Volterra integral equation of the second kind, as specified by (B3). A collocation
method utilizing Taylor polynomials is formulated to solve this equation. The method’s
convergence and error analysis are thoroughly examined, and several numerical ex-
amples demonstrate its efficiency and precision. The numerical results align with the

theoretical predictions, and comparisons with other methods are also provided.
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CHAPTER 4

TAYLOR COLLOCATION METHOD
FOR SOLVING 3D-VOLTERRA
INTEGRAL EQUATIONS
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4,1 Introduction

Multi-dimensional integral equations are crucial for modeling various phenomena in
mathematics, physics, and engineering. Among these, the three-dimensional Volterra
integral equations of the second kind (3D-VIEs) arise in various fields, including elec-
tromagnetic phenomena, disk problems, electrified plates, the Schrodinger equation
in three-dimensional momentum space and the mathematical modeling of the spa-
tiotemporal development of an epidemic physical, mechanical, and biological prob-
lems [28, BS, b1]].

The present chapter sets out to employ the TCM for solving linear and nonlinear three-

dimensional Volterra integral equations of the form:

t S r
w(t,s,r) = f(t,s,1)+ f f f k(t,s,1,x,y,2)w(x, y,z)dzdy dx, (4.1)
0 Jo Jo

and

t S 7
w(t,s,r) = f(t,s,1)+ f f f Kk(t,s,1,x,Y,z,w(x,y,z))dzdy dx, (4.2)
0o Jo Jo

where (t,5,7) € Rand the functions f and « are sufficiently smooth, defined respectively
on R :=[0,A] x[0,B] X[0,C] c R®and S := {(t,s,7,%,,2) : 0 <x <t <A0<y<s<
B,0 < z < r < C}, and which was published in the reference [8]. The classical theory
of Volterra illustrates the investigation into the existence and uniqueness of solutions
for Equation (ET). This study can be referenced in the literature, such as in the works

[T3, BO].

Numerous researchers have explored the numerical solution of 3D-VIEs, each con-
tributing valuable insights and methodologies. For instance, Bakhshi, M. et al. [B]
introduced the three-dimensional differential transform method, while Mirzaee, F.
and Hadadiyan, E. [33] utilized modified block-pulse functions to solve the three-
dimensional nonlinear mixed Volterra-Fredholm integral equations. Mohamed, D.S.

[45] applied the shifted Chebyshev polynomial method, and Maleknejad, K. et al. [BY]
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employed Bernstein’s approximation. Nawaz, R. et al. [48] leveraged the optimal
homotopy asymptotic method, and Ghiasi, H. et al. [?3] utilized operational matrix

techniques with block-pulse functions.

This chapter is structured as follows: Section B2 outlines the approximation of the
solution of (1) in each domain using Taylor polynomials. Section B3 delves into the
convergence analysis of our method. We present numerical examples in Section B4 to
validate the effectiveness of our approach. Finally, Section BEJ concludes the chapter

and summarizes our findings.

4.2 Description of the Method

We define the space of trivariate polynomial spline functions of degree (at most) p — 1
in t, s and r as follows:

SH)(H) =AU Uy = Ulg

p-i €emn,,n=0,.... N-1,m=0,... M-1;7=0,...,T-1}.

1,M,T

Its dimension is NMTp?, where

IT:=TIy X Iy X Iy = {(ty,Sm,7:),0 <n < N,0 <m < M,0 <1 < T}, such that ITy :=
{ti =ih,i=0,...,N}, Iy == {s; = jhp,j = 0,...,M} and Iy := {ry = kh3,d = 0,..., T}
denote, respectively, uniform partitions of the intervals [0, A], [0, B] and [0, C], with the
stepsizes are givenby Iy = 4, h, = £ and h; = §.

Set the subintervals

oy = [tytu),n=0,...,N =2; oy, == [tn-1, ],
05, = [Sm;Sme1),m=0,...,M—=2; 03, | = [Sp-1,5m],
03 = [t 1), 1=0,...,T=2; 03, :=[rr_,r7],
and

Rume = 0L X024, %02, n=0,....,N-1,m=0,.... M-1;1=0,...,T — 1. Moreover,

denote by 7t,_; the set of all real polynomials of degree not exceeding p —1in t,sand r.
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Note that the solutions w of equations (B1) and (B2) are known on part of the boundary
of R:

w(t,0,0) = f(¢,0,0)if 0 <t <gq,

w(0,s5,0) = £(0,5,0)if0 <s < b,

w(0,0,7) = f(0,0,r)if0<r<c.

Taylor collocation solution w is determined in Ropo, Ru00, Rumo and Ry, by the
polynomials 3¢, 9,00, Onmo and 9,  respectively, forn =0,..., N-1,m=0,... M-
1;,7=0,...,T -1, such that

p-

‘90,O,O(t/ S, 1’) Z o lkl ail)a(])a(k)w(o, 0, O)tisjrk ; (t, S, 1") S RO,O,O/ (44)
j+k=0
p . .
S0t s, 1) = Z g ,k'agﬂama(k’sn 00(tn, 0,0)(t — 1)’ 5 (t,5,7) € Rugo,  (45)
j+k=0
p .

Sumolt,s,7) = Z F ,k,a@a‘”a(’”snmoamsm, O)(t=ta) (s=su)7*;  (t,5,7) € Runo, (4.6)

j+k=0
and
p—1

Smlt, s, 1) = Z ']'k'&(l OV, by S 1) (E— 1) (s =Y (r=1) 5 (£,5,7) € Ryms

i+j+k=0

(4.7)
where the coefficients 898? )8§k)w(0, 0,0), 8?)8? )8£k)§nlolo(tn, 0,0), 8?8? )8§k)§n,m,0(tn, S, 0)
and 898? )8§k)§n,mﬂ(tn, Sm, 1) are defined differently in this section.
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4.2.1 Algorithm for linear 3D-Volterra integral equations
Taylor collocation solution in R

First, we differentiate equation (&) k-times with respect to 7, we obtain

k-1 ¢ s
IVw(t,s,r) = dVf(t,s,7r) + Z f f v [35’(_1_”)
=0 0 0 z=

t S 7
+ f f f 8§k)1<(t, s, 1,x,Y,z2)w(x, y,z)dzdydx,
0o Jo Jo

k(t,s,1,x,y,z)w(x, y, r)] dydx

hence,
k-1 { u f s
(k) _ k) (=A) [ ytk=1-p)
d, w(t,s,r) = dy f(t,s,1) + ; AZ:;‘ (/\)‘fo ﬁ 2, [8r _ k(t,s,7,%,Y, z)]

t S r
x 0N w(x, y, r)dydx + f f f oWk(t,s, 1, x, y,z2)w(x,y,z)dzdydx.  (4.8)
0o Jo Jo

Second, we differentiate equation (B8) j-times with respect to s, we get

M oPwt,s,r) = VIV f(t,s,7)

k-1

=1 A
H @ | 7(-1-9) (u=A) [ Alk=1-p) W
+ Z (A) % L &S [as |y:s (ar [ar ‘Z:r K(t/ 51nXY, Z)]) ar ZU(x, Y, r)dx

=0 A=0
-1

H t S
u f f 90 ( =) [ 5k-1-1)
Z (A) 0 0 S r [ r .

A=0

> =

™

) k(t,s,1,x,y, z)]) Qﬁ)‘)w(x, y,r)dydx

o

1=

-

o)

q=

0 Jo
t S v
+ f f f oWk (t,s, 7, x, y, z)w(x, y, z)dzdydx,
o Jo Jo

—.
—_
<

[ [0, (3530t

(=]

which implies,

k-1 u j-1

o wit,s, 1) = AV f(t,s,1) + Y )3 @(77)
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(4.9)

s (8&” 4 [851{_1_“ )' x(t,s,1,x,Y, z)])] dPoWw(x, s, r)dx

[
+ZZ( )ff&m (9@ O [k

u=0 A=0

x(t,s,1,x, y,z)]) w(x y,r)dydx

zZ=r

j-1

q t S
q f f (q—n)[ (j-1-0)
+ o, o,
- Z‘ (77) 0 Jo

q=0 n=0

t S v
+ f f f oW (t,s, 7, x, y, z)w(x, y, z)dzdydx.
0o Jo Jo

Third, we differentiate equation (E9) i-times with respect to ¢, we get

99990 w(t,s, r) = I9VdN f(t,s,7) + Z i Zi ) Za:‘ (K)(Z)(g)

s oNk(t,s,1,x,y, z)] OV w(x, s, z)dzdx

+Zi“i(ﬁ)(z)

) K(t, S,1,X,Y, z))])] 8§ﬁ )89)w(t, y,1)dy

K(t,s,1,%,Y,2 )])] oMw(x, y,r)dydx

Z=r

8(“_ﬁ )[8(' 1= “)| ( 94" ”)[ ij_l_q)L:S oVx(t,s, 7, x, y,z)])] &gﬁ )8§'7)w(t,s,z)dz

t

j-1

XL

q=0 =0

s oVx(t,s, 7 x, y,z)])8(”)w(x s, z)dzdx
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i-1 a S 4
a (a=p) [ y(i-1-a) (1) k) ®)
+ 0 % 9.9 «x(t,s,r,x,y,2)| 0" w(t, y, z)dzd
Z — (ﬁ)‘f(; ‘f(; t [ t |x_t y ] t y y

t S r
+ f f f 099V 0(t,s,1,x, y, 2)w(x, y, 2)dzdydx,
0 Jo Jo

hence,

w j-1 q i-1 «a
99 9Mw(0,0,0) = 9799 £(0,0,0) + Z Z ( )( )( )
=0 0 p=0

u=0 A=0 g=0 n=0 a=

| | t=0
< [0 (o [0 o s

x 9P oMw(0,0,0).

Taylor collocation solution in R, o

Initially, 9,0, is the exact solution to the integral equation that follows:
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First, we differentiate equation (EI0) k-times with respect to r, we get
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t S '
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Second, we differentiate equation (BTT)) j-times with respect to s, we get
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Third, Differentiating equation (B12) i-times with respect to ¢ yields
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(4.13)
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Taylor collocation solution in R, .o

In the beginning, 3, . is the exact solution to the following integral equation:
)’Z m—

n sp-%—l
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+ f f f k(t,s,1,%,Y,2)O¢ mo(x, y, z)dzdydx
-1
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First, we differentiate equation (ET4) k-times with respect to r, we get

IV, ot s,7) = IV f(t,s,7)
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Second, we differentiate equation (BT15) j-times with respect to s, we obtain
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(4.16)
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Third, we differentiate equation (BTH) i-times with respect to ¢, we get
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4.17)
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Taylor collocation solution in R, ,, ;

At the outset, 3, ,, . stands as the exact solution to the following integral equation:
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(4.18)
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By applying the same steps as before and differentiating equation (BI8) k-times with
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8§ﬁ )8§U)Sn,m,9(t, s,z)dz

-1

TR
= o

a4 D
1K

>
LE

1=

I
o

T
L

hi
o

j-1

t To+1 | X
f f agl) (agq—n) [a§]—1—q)| y=s 0-’£k)7<(t, S, 1,X,Y, Z)]) aﬁ”’sn,m,g(x, s, z)dzdx

S T0+1 . .
) f f 8£a_ﬁ ) [851_1_“)|x: t oWk, s, 7 x, Y, z)] 8§ﬁ )Sn,m,e(t, y, z)dzdy
Sm )

=

2
H
g a

T9+1 . .
f VIVt 5, 1,%, y,2) S me(x, y, 2)dzdydx
ro

(30

A o0 (40 a0 w5, n)|)|)] 90009 St
- z=r

X0

oV (82‘7_”) 8§j_1_q)|yzs (85“ - [85’(_1_“ )' xk(t,s,1,X, Y, z)])])&i”@ﬁmﬁn,m(x, s, r)dx

—_

1=

[y

i—

—.

P
Il
o
-
1l
o
=
1l
o
I~
I
T
o

=
=
QO
-
I
T
2
=
Ii
L
A o

[1-

Nl.

-1
=

=
Il
1l
o

n=0
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(4.19)
k-1 U i-1 «a [.l o S
(@) [ Ai-1-a) O [ w2 [ 4k-1-w
+ d ZZ 4 (/\)([7’)‘[ d, [8t |x:t(a5 [8r [ar |Z:y1<(t,s,r,x,y,z)“)]
u=0 A=0 a=0 p=0 m
X 8§ﬁ) m(t, y,1)dy

k(t, s, 1,x,Y, z)])] NS, (x, v, r)dydx

(
SERIL Lot fet
H=0 A=0 tn Sm =
GRS R a\ 7 . '
Z Z (q)( ) f . [ail_l_awx:t (agq—n) [agj_l_q)b:s IVx(t,s,1,x,y, z)])]
n=0 a=0 p=0 T] ﬁ e

X o'?gﬁ)&s') wma(t,s,2)dz

-1 ¢
+ZZ( )f f a(o - n)[az - q)y Ot mx, y,Z)])8(”)8W(x o, 2)dadx
q=0 1=0
izl a s r .
+ (g) f f 85"‘"3) [agi—l—a)ag)&(rk);((t, S, 1,%,Y, z)] aiﬂ) S malt, y, 2)dzdy
a=0 ﬁ:o S Tt

t S r
+ f f f 851)82] 0Bt s, 1, x, Y,2)9, . (x, y, 2)dzdydx,
ty Sm It

hence,

a§f>a§f>a<k>énm b S, 70) = 0PI Fbu, 5, 77)

n-1 m-1 7— teil Sp+1
+ Z Z f f f [8 29900 (t,s,1,x, y,z:)]s o Vepo(xy, 2)dzdydx
£=0 p=0 60
n-1 m-1 k-1 U t=t,
+ Z( )f f " 8(] 8(” M[& K(t S, 1, X, y,z)])]
0 p=0 1=0 1=0 S=Sy,I=T¢
n-1 -1 j-1 ¢q
x o )SEPTxy,rT)dydx+Z Z( )
£0 6=0 =0 1=0

t=t,
f f a(z) [a(q ) [a(] 1- q)| a(k)K(t 5,1,%, 1, Z)” 8?7)\9,5,%9(36, Sm, z)dzdx

S§=Sm, =T

t=t,

[851(_1_‘ Ykt s, 1%, Y, z)])“

fev1 )
y f agn [agq—m [ 0’;21—1—@|y:s ( oM
t _

S=Sy,,I=T"
é % T
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m=111-1 i-1 «a a
X AP I O e, 5, 72)dlx + Z Z (ﬁ )
=0

p: 0=0 a=0

Sp+1 70+1 .
xf f 85“ 2 [8(1 1= “)| oWk, s, 7 x, Y,z )] N tﬁ)Sn,p,g(tn,y,z)dzdy

S=8y,I=rr
r

SRHWHAAH

. (ag]) [ar#—)\) [8§‘k—1—ﬂ)| i K(t, S, 7, X, y’ Z)”)]

-1 j-1

x POM S, (b, y, ro)dy + Z Z Xq: y Z (Z)(g)
= -

=0

% f (95”‘_@[ 851—1—a)|x:t (8§q—77) 8§]_1_q)|y:s 8§k)1<(t,s, rx, y,Z)])]

o S=Sy,,I=r¢

k-1 up j-1

X OO 91m0(tn, Sy 2)dlz + Z Z Z Zq: ) Z (5\[)(2)(;)
p=0

t=t,
A [aﬁ"‘l‘“ ) xk(t,s,7,x, y,z)])])]

S=Sy,I=r¢

t=ty

S=Sm,I=rr

t=t,

y=s

(a=p) | y(i-1-a) (g | 7G-1-9)
T GO B

A A
x 0PN, (b, S, 7).

4.2.2 Algorithm for nonlinear 3D-Volterra integral equations
Taylor collocation solution in R

The differentiation of (B2) k, j and i-times in terms of r, s and t, respectively, gives
k=1 j-1 i-1

399Pw(0,0,0) = "3V 9 £(0,0,0) +
“:O qZO a=0

) L L t=0
[ o [0 ] stsmnvzots v
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Taylor collocation solution in R,

A

Initially, 9,0, is the exact solution to the integral equation that follows:

n—1 tesl S s
‘§n,0,0(t1 5, 7’) = f(t/ 5, 7") + Z f f f K(tl 51X, yr z, ‘95,0,0(3(1 y, Z))dZd]/dx

t S 7
+ f f f k(t,s,1,x,Y,z, én,0,0(x/ Yy, z))dzdydx,
t, Jo Jo

by differentiating equation (B20) k-times with respect to 7, j-times with respect to s, and

(4.20)

i-times with respect to t, we derive

n-1 k-1 j-1

3909 S,00(41,0,0) = 9V f(x,,0,00+ 3" )"}

&=0 u=0 ¢=0
o @ [ -1 @ [ Ak-1-p)
Z . L
f % [85[1 [85] q |y=s (8#‘ [8, ' .
te

&

t=t,

k(t,s,1,x,Y,2,9:00(x, Y, z))])” dx
r s=r=0

k-1 j-1 i-1

DWW

u=0 g=0 a=0

(a) | H(i-1-a) @ | 7(-1-9) (1) | Ak=1-p)
Py Pt |Fi¢ Ps |FJ@ P,

t=t,

rxwannmzéwﬂn%mﬂﬂﬂ

7= s=r=0

Taylor collocation solution in R, .

In the beginning, 3, . is the exact solution to the following integral equation:

A n-1 m-1 fev1 Sp+1 7
Snmolt,s,1) = f(t,s,7) + Z Z f f f K(E5,1,%,Y,2,9¢,00(x, y, 2))dzdydx
&=0 p=0 vt Sp 0

n-1 feil s r
+ Z f f f k(t,s,1,%,Y,29:mo(x, y,z))dzdydx
5: té Sm 0 n
t Sp+1 7
f f f K(t,s,1,%,Y,2, 0%, ¥, 2))dzdydx
0 t, Sp 0

N f
tn

= O

m

+

e
<

f f k(t,s,1,x,Y,z2, @n,m,o(x, Yy, z))dzdydx, 4.21)
Sm JO

81



TCM for Solving 3D-VIEs

by differentiating equation (B2 k-times with respect to 7, j-times with respect to s, and

i-times with respect to t, we derive:

n-1
) () 7K § i) 3() 9k
9099908, ot 5, 0) = 9P9P0P £(t,,,5,,,0) +

&=0 p=0 p=0

fev1 Sp+l . t=t,
f f 851) [agﬁ ( 85”) [ 85k—1—#)‘ k(t,s,1,%,Y,2,9¢,0(x, Y, Z))])] dydx
té S z=r

0 $=5,,r=0

k-1

§
AR

Il
o

t=t,

k(t, s, 1,x, Y2, Sg,m,O(xl Y Z))]])] o

$=5y,,r=0

t=t,

K(t, 51nX,Y,z, SnIP'O(x’ Y Z))]])] dy

5=8y,,r=0

zZ=r

f o 8?”[ 51| _ (agf) [(99»[ PSRl

=0

(@) [ H(i-1-a) @ | 4G-1-9) (W) | k=1-p)
8t [&t |x:t (85 [as |y:s (‘91’ [ar

i
o
=
I
o
=~}

t=t,

(5, 7,%,Y,2, Sumo(x, Y, 2) )])])]

z=r §=8,r=0

Taylor collocation solution in R, ,,, -

Initially, 3, ,,. is the exact solution to the following integral equation:
A n-lm-1 ol Aty pspa ros
Sn,m,’[(t/ S, 1’) = f(t, S, 1’) + Z Z Z f f f K(tl 51nXxY,z, Sé,p,@(x/ Y, Z))dZdydx
£=0 P_ 0=0 tr Sp To
te Sp+1

f K(t,s,1,%,Y,2,9¢p(x, y,2))dzdydx

! T0+1
+ Zsft [ f k(t,s,1,%,Y,2, 9 mo(x, ]/,Z))dZdydx

+
3
%

To
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(4.22)
m=1 71 t Sp+1 70+1
+ f f f K(t,s,1,%,Y,2, 9np0(x,y,2))dzdydx
p=0 0=0 Yin Y5 7o
m—1

+

M

Sp+1
f fp f K(t,s,1,%,Y,2, 9 (%, y,2))dzdydx
76+1
Zf f f k(t,s,1,%,Y,2, S me(X, y,z))dzdydx
+ f f f k(t,s,1,x,1,z2, én,m,r(x/ Yy, z))dzdydx,
tn Sm Tt

by differentiating equation (B222) k-times with respect to 7, j-times with respect to s, and

Hb
HO

i-times with respect to t, we derive:

o .
3P9P9B 8, ety Smy 72) = ALV F(t, S, 720)

-1 -1 fev Sp+1
+ Zf f f 8(1)&(])8(k)1<(t $,1,%, 1,2, 9 p0(x, y,z))] _, dzdydx

3
|
—

E

£=0 p=0 0=0
n-1 m-1 k-1 feil S+l ) 1 t=t,
+ Z Z f f 89 [821) (85“ ) [85 L k(t s, 1%, Y, 2, 9:,0:(x, Y, z))])] dydx
S te s z=r S=8y,,F=T¢
&E=0 p=0 p=0 7% P
n-1 -1 j-1 el o ‘ t=ty
+ Zf f oV [825’) [(921_1_q)| . ONic(t,s,1,%, 1,2, S molx, y,z))“ dzdx
&=0 0=0 q=0 te ro y=s S=Sy,I=Ir
n-1 k-1 j_l tél ) ) t=ty
+ Z f oV [8@ [82"1_")| _ (8£” ) [85'(_1_” Mkt 5,1,%, Y, 2, Seme (X, Y, z))])” dx
: — - t ° y=s z=r ) S=8,,1=F¢
&=0 u=0 g=0 't
m=1 -1 i-1 Sp+1 79+1
(@) | 5-1-a) (7) 4k)
+ Z[ f J [07 “| 979, x(t,s,1,%, 1,2, 9,p0(x, y,z))] . rrdzdy
p=0 0=0 a=0 % o
e N B ‘ ‘ =t
+ Y f 95“)[3(1_1_a)| (92]) [35“)[ , K(t,s, 1, %, y,z,Sn,p,T(x,y,Z))”)] dy
=r S$=Sy,I=rr
p=0 u=0 a=0
-1 ] 1 i1 ro+1 ) t=t,
+YYY f oA (A [0, At s vz Sumoey |||
0=0 g=0 a=0 Y70 S=Su, =1
k-1 j-1 i-1 ' t=t,
; Pe [a“ (a&” [aﬁf*“”[ (aﬁ*” [aﬁk‘l‘“" Kt 5,7, %, Y, 2, S (5, ¥, z))])])]
=t y=s z=r m S=Sy,I=T.
=0 =0 a=0 =Tt
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4.3 Error Analysis

We consider the space L*(R) with the norm
Tl %y = inf{K € R : [T'(t,s,7)| < K fora.e. (t,s,7) € R} < o0

The following lemmas will be used to illustrate the convergence of the suggested

approach, with an emphasis on the linear form provided in (ET).

Lemma 4.3.1 (Taylor’s Theorem for functions of three independent variables) Let f be p times
continuously differentiable on R = [a,b] X [c,d] X [e, h] and let (ty,s0,70) € R. Then for all

(t,s,1) € R, we have

p-1
flts,m) = Z |]|k|a(l)a(])a(rk)f(to, S0, T0)(t — to)'(s — s0)/(r — 7o)
i+j+k=0
+ Z ikl == 00D f(tr, 51, 1)(E — t0) (s = s0)/(r = o),
i+j+k=p
where,
t=0t+(1-0)ty €a,b],
s1=0s+(1—-0)sye[c,d], 06€(01).
r=0r+(1—-0)r € [e h,
Proof. let

F(0) = 1 (t(6),5(0),1(0)),

where t(0) =ty + O(t — to), s(0) = 5o + O(s — sp) and 1(0) = ry + O(r — 1p), the point with
coordinates (t(0), s(0), r(0)) traverses the line segment joining (o, s, 79) and (¢, s, r).
By applying Taylor theorem of one variable to F(0) € C?([0, 1]) around 0 = 0 up to order

p, we have

p-1 n
F(1) = ﬂxm F@w% 0 € (0,1),

=0

3
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where F(1) = f(t,s,r) and F(0) = f(to, S0, 70). We begin by calculating the derivatives of
F(0).
First derivative F'(0) is given by:
s A 3 ot ds ar
F(0) = == (HO),(0),10) = Aif - 55+ 0.f - 52 +0f - 55
= (t —t0)dif + (s —50)dsf + (r —10)d, f.

Now, by differentiating F’(0) again with respect to 6, we obtain

P"(9)=i[(t—to Lf + (5 = 50)sf + (7 = 1), ]
= () ) + 5= 500 (9sf)+(r—ro)%(9rf)

= (t—to) [&(Z)f +0 &sf -|- 00 7,f ;l; + (s — sp) |f9 Qtf 8(2)f asarf . 5_2

+(r = 10) [c%&f- 5 +0,0.f - £ +9?f . j—g]

= (t = 10)20P f + (t — to)(s — 50)Ai0sf + (t — to)(r — 10)As0, f + (£ — to)(s — 50)D<Oy f
+ (s = 5007 f + (5 = 50)(r = 10)9s0, f + (t = o) (r = 70,01 f + (5 = S0)( = 70)3,0s f
+(r =100

= (t = t0)207 f + 2(t — to)(s — 50)Aids f + 2(t — to)(r — 10)Ds0, f + (5 — 50)?L f
+2(s = 50)(r — 10)3s0, f + (r — 10?07 f,

which implies,

” 2 i j i) 5(j
FO)= ), gt t)6 =0/ =) o{'a) 37 f(H0),50),1(0))
i+j+k=2
The second derivative of F(0), and more generally the nth derivative, gathers all mixed
partial derivatives of order n, weighted by powers of (t — ty), (s — s0), (r — ry) and
multiplied by appropriate multinomial coefficients.

In general, we find by mathematical induction that the nth derivative is given by the

85



TCM for Solving 3D-VIEs

expression:

F0)= ) l,’}“,',{,( to)/(s = s0)/(r = 10)/ 9,03} £(£(0),5(6), 1(0)),

i+j+k=n

then, we have

o= Y, = ],k, ——(t = to)/(s — 50)/(r — o) 39V IV f(to, 50, 0).

i+j+k=n

Thus,

Pl E0) (0) Pl - , ,
Y= Y a0 fltoso, )~ ) (s = s0) = 1)

lJlkl t
n=0 i+j+k=0

and the Lagrange form of the remainder is:

F®»)(O 1
pf ) _ Z Z']'k'éx 10V f(ty, 51, r1)(t = to)'(s — s0)(r — o),

i+j+k=p

where (t1,s1,71) = (t(0),s(0),r(0)) with 6 € (0,1). =

Lemma 4.3.2 Let f and « be p times continuously differentiable on their respective domains.
Then, there exists a positive number @(p) such that foralln =0,..., N-1,m=0,... M-1;
1=0,...,T-1andi+ j+k=0,...,p, the inequality

T
17929 81,2

L (Romz) = (P(P )

holds, where @0,0,0(1‘, s, 1) =w(t,s,r) for (t,s,1) € Roppo.

Proof. Set 5;%1 = ||8§i)8§j )8£k)§n,m,T||, the proof is organized into four steps.

Step1. Foralli+ j+k=0,...,p, we have

B]Oko < max {”a(l)&(])a(k

1) = eilp). (4.23)
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Step 2. Fori + j + k = 0, we have from (ET0)

: n—1 - £ S 7
;JokO <c +C5Z f f f g%i)dzdydx+c5j; ‘[0 fo %gdzdydx (4.24)

&=0 a+b+c=0

and from (ET3), we have foralli+ j+k=1,...,p

. poj-1 g tee  P1 n— i

1], abc & b,c

Enpo St G Z Z j; Z €g oo + C3 Z f f €¢podydx
. a =

a+b+c=0

n—1 j_ q t§+1 T p_l t5+1 p 1
a,b,c a b,c
te) ) ft L Y e dzdx + cs Z f f f ehe dzdydx

é=0 a+b+c=0
-1

i-1 «a s r t s 7
+ o f f eﬁ ’g’gdzdy + s f f f eﬁ’%’%dzdydx, (4.25)
oJo Jo tn Jo Jo

where foralli+ j+k=0,...,p

},

= max{” ;

Cr =

o (o [agf‘l“”|yzs (o] e sy, 2)])|) 6 = st

max ><(“)( P n)'(c T 1= 0,....;9=0,...,j-LA=0,..., 1 ’
u=0,....k=La+b+c=0,...,p-1

(ﬁ)mb!(i—m! t' (agj) [aiy_A) [aik_l_y)| ~ K(t,s, 1, x, y,z)“)(x— tn)ayb"c_A ’

A=0,...,,u=0,....k=La+b+c=0,...,p—-1

C3 = max

4
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) [ 5@ [ 4G-1- K -
R G A W O |
€4 = max ,

n=0,...,;9=0,...,j—La+b+c=0,...,p-1

5 = max{u,b,c, ||8(Z)8 DoWx(t,s, 1, x,y,2)(x — t,)"y" 0,...,p— 1},
Ce =
[ oo Al (e, (o8 [ s w2 )]

p=0,...,,a=0,...,i-1,n=0,...,4;9=0,..., ] - LA=0,...,,u=0,... k=

()G o o0 (02 [0 7] it smn 2| ||
C; = max B z=r
p=0,...,a;a=0,...,i-L;A=0,...,,;,u=0,..., k-1
B 5110 i W G e o) B
8 — 7

=0,...,00aa=0,...,i-1;n=0,...,4,g=0,...,] -1

=0,...,;a0=0,...,i—1 },

- —1— ) ok
Co = maX{ O o] L a0kt 5,1, x,y,2)]|||,

where the constants ¢;,i =1,...,9 are positive and independent of N,M and T.

By considering the sequence W, = = max{e’ i+ j+k=0,...,p},n=0,...,N-1,, we

00’

can combine equations (E24) and (225) to obtain

ﬁ
nOO
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By setting c19 = cap” + c3Bp® + caCp°® + ¢sBCp® and c11 = cep® + C2Ap* + ¢7Bp? + c3ABp +
csCp? + c4ACp + ¢oBCp + csABC, we obtain

k=1 j-1 i-1
Bmn.A
n OO <c+ Cl()]’ll Z ‘y,g + C11 gn,0,0’ (426)
=0 A=0 1=0 p=0
we put for each fixed n € N
n—1

(i, j, k) = € b, jk) = 1 + el Z W, eB,nA)=cn.
=0

Then, by Lemma [C7H, we obtain from (E7H)

,_x

< [1 +p Cll] + C1o [1 +p C11] hlz\yg,

€12 €13

consequently, we obtain for alln =0,..., N -1

n—
\yn <cCpp+ C13h1 Z \I"g,
&=0

therefore, by Lemma 7T

e < W, < cpexp(cisA) = ga(p). (4.27)

Step 3. Let the sequence\I’nm—max{ z+]+k—0 ophbn=0,...,N=-1,m =
0,...,M -1, by following a similar process with slight adjustments, from (ET14) and
(BT12), we have, foralln =0,..., N-1,m=1,... M—1landi+j+k=0,...,p

n-1 m-1 n-1 m-1 n—1 n—1

i,j,k 5 3 7 5

/ <c+ C3h1h2p \yé,p + C5I’l1h2h3p \yg,p + Czl’llp E \yé,m + Cghll’lzp E \yglm
£=0 p=0 £=0 p=0 =0 =0
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m—1

+ C4I’l1h3p Z \yg m T C5I’l1]’l2h3p Z \Ilg m T C7I’l2p Z \I]n 0 + C3h1h2p Z \I]n 0

&=0 p=0 p=0

1A N,A
+ C9h2h3p Z v, 0 + C5h1]’12h3p Z v, 0 + C6p3 Z gi,nm,() + Czhlpz 52/21,0

p=0 p=0 A=0 n=0 B=0 A=0 n=0
k=1 i1 k-1 j=1 i1 j-1

2 B,0,A 0,0,A 2 B0 0,n,0

+ cyhop Emo T cshihop Z Emo T+ cshsp Z Emo T cahihsp €m0

A=0 B=0 A=0 n=0 =0 1=0

+ C9h2h3p + C5h1h2h3€

n,m, 0
By setting by = c3p° + ¢sCp®, by = cop” + c3Bp® + c4Cp° + ¢sBCp?,

bs = c7p” + c3Ap® + coCp° + csACp® and by = cep® + coAp* + ¢7Bp? + c3ABp + csCp* + c4ACp +
c9BCp + csABC, we obtain

we put for each fixed n,m € N

Wi, j k) = e b, jk) = ci+bihh wgp+b2hlz\ygm+b3h22ww, e, 1, A) = by.

&=0 p=0 &=0 p=0

5;],];0 <|c1 + bihihy \I]g,p + byl Z We, + bsh, Z \Pn,p)

bs b by



TCM for Solving 3D-VIEs

+ b3 [1 + p2b4]p h2 - ‘-Iln,p,

‘/_/ p
bg

3

1l
o

consequently, we obtain foralln =0,... N-1,m=1,... M-1

W, m < bs + bghihy nZi ’”Zi We , + bshy HZ_}‘ W + bghy E W0
0 p=0 &=0 p=0

therefore, by Lemma [C’Z3, we obtain

;]mko < W, < bsexp (m(A + B)) = @s(p), (4.29)

where 1; = %(b7+ bs + /(b7 + bs)? +4b6).

Step 4. We consider the sequence V¥, . = max{si’{;ﬁlf,i+]’+k =0,...,p},n=0,...,N -
IL,m=0,.. M-1,7=0,..., T-1.

We have, from (E18) and (B19) foralln =0,... N-1,m=1,... M-1,t=0,...,T—-1
andi+j+k=0,...,p

n-1 m-1 7-1 n—-1 m-1 n-1 m-1
ik 3 5 3
n]m S0+ C5h1h2h3p \pglp,g + Cghlth \I],g,pﬂ + C5]’l1h2h3p \I]g 0,7
£=0 p=0 6=0 £=0 p=0 £=0 p=0
n-1 t-1 n-1 t-1
5 3
+ C4h1h3p \Ilé,m,e + C5h1h2h3p \Ijr 0 + Czhlp Z \I]9 m,T
&=0 6=0 &=0 6=0 &=0
n—1 n—1
5
+ C3h1h2p \Ilg mr T C4h1h3p Z \Ifg mr T C5h1h2h3p Z \Ilg m,
&=0 &=0
m—1 7-1 m—1 7-1 m—1
5 3 7
+ cohohsp Z W, 0,0 + cshihyhsp W, 00 + c7hap Z W01
p=0 6=0 p=0 6=0 p=0
m—1

+ C3h1h2p5 \Ij 0,7 + Cghzl’lgp Z \I]n 0,7 + C5h1h2h3p Z \Ijn 0T
p=0 p=0
1
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k-1
2 B0, 0,0,A 2 B:1,0
+ C7h2P én m,T + C3h1h2p Z Enm + C8h3p Enm,

j-1 i1

+ C4hlh3l7 Z n m T + C9h2h3 Z m T + 05h1h2h38n m,T*
=0 =0

By setting y1 = csp®,  v2 =cp’ +¢sCp°,  y3 =cap® + sBp®,  ya = cop® + AP,
ys = cp’ + c3Bp® + csCp° + ¢sBCp®, v = c7p” + c3Ap° + coCp° + csACP?,
y7 = cgp’ + C4Ap® + coBp® + cs ABp® and yg = cep® + c2Ap? + c;Bp* + c3ABp + csCp? + e, ACp +

c9BCp + csABC, we obtain
n—-1 m-1 -1 n-1 m-1 n-1 -1
i,k
Ex e < 01+ y1hihaohs Z Wep0 +y2hihs Z We oo+ yalihs Z Wemo
&=0 p=0 6=0 &=0 p=0 &=0 6=0
m—-1 t-1 m—1 -1
+ V4h2h3 Z \I]n ,0,0 + )/5h1 Z \I]g m,T + )/6}12 Z \yn ,0,T + 7/7h3 q”n,m,@
p=0 6=0 &=0 p=0 6=0
k-1 j-1 i-1
n,A
T Vs gﬁ,}lq,rr
=0 n=0 B=0

we put for each fixed n,m, 7 € N

ijk

(1)(1, j/ k) = 6;1,,;,11,7:/ 6(,81 TI/ /\) = 7/8/
n-1 m-1 t-1 n-1 m-1 n-1 t-1
b(l, j, k) =C + 7/1h1h2h3 \Pg,p,g + ]/zhlhz \I];plf + ')/3h1h3 \yé,m,ﬁ
&=0 p=0 6=0 &=0 p=0 =0 6=0
m—-1 7-1 -1 m—1
+ yahohs np9+7/5h12\115m1'+)/6h22\y11p”(+y7h32\ynm9
p=0 0=0 p=0
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Then, by Lemma [CZ35, we get

k-1 -1 i-1
e o<k |||+ Vs

consequently, we obtain foralln =0,..., N-1,m=1,... M-1,7=0,...,T-1

n—-1 m-1 -1 n—-1 m-1 n-1 -1
W, < C1Y9 + +y1yohihohs We o0+ V2yohihy Z Z We oo+ V3yohihs Z Z We o
£50 p=0 =0 €20 p=0 £=0 6=0
m-1 1-1 -1
+ Yayohahs W00 + V5y9h1 Z We e+ V6yoha Z W0+ V7yohs Z Wm0,
0=0 6=0 £=0 =0
(4.30)

where y9 = [1 + p?ys]”, we put for each fixed T € N

n-1 m-1 t-1 n-1 -1
em,m) =W, ., P=c1y9+y1yohihshs We o+ V3yohihs We oo
&=0 p=0 0=0 &=0 0=0
m—-1 7-1 -1
+ Ya)yohohs W, 00 + V7yohs Z Wm0,
p=0 6=0 =

then, by Lemma 73, we obtain from (E=30)

W,me < pexp (n2(A + B)),

where n, = % (()/5 + V6)Yo + \/ (ys + 7/6)27/3 + 47/27/9)

consequently, we get

n-1 m-1 -1 n-1 t—1
W e < |1+ y1hihohs Z We o0 + yshihs Z Z Wemeo | V10
&=0 p=0 6=0 &=0 6=0
m-1 t-1
+ | yahohs W, 00t y7hs Z W, me | V10,
p=0 6=0 6=0
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where Y19 = y9exp (n2(A + B)). By reapplying Lemma 73 for each fixed m € IN, we
conclude

n-1 m-1 7-1 m—-1 7-1

Wima < [Cl + y1hihohs Wepo + yahahs W6 | V11

where y11 = y10exp (13(A + C)) and 13 = %(7/7 + Vs + 4)/3). Applying Lemma 73
once more for each fixed n € IN, we get

n—-1 m-1 t-1

W, mr < [C1 + y1hihyhs Z

Weo0|V12,
£=0 p=0 0=0

where y1, = y11 exp ( \7a(B + C)). Thus, by applying Lemma [C75, we derive

n-1 m-1 17-1
W, mr < C1Y12 H 1+ y1y2hihahs
£=0 p=0 6=0
< 1712 eXp(ABCy1y12) = @a(p). (4.31)

Hence, by relying on (BE23), (£27), (B29) and (B31), the proof of Lemma B37 is con-
cluded by setting ¢(p) = max{1(p), 2(p), @s(p), @a(p)} . =

The upcoming theorem establishes the convergence of the proposed method.

Theorem 4.3.1 Let f and « be p times continuously differentiable on their respective domains.
Then equations (B4),(BESR),(E6),(B2) define a unique approximation 9 € S;__ll)(H), and the

resulting error function e(t,s,r) = w(t,s, r) — (¢, s, r) satisfies:
llellLew) < c(h + ha + h3)F,

where ¢ is a finite constant independent of hy, hy and h;.

Proof. Define the error e(t,s,r) on R, by €ym(t,s,7) = w(t,s,r) — Sy m(t,s,r) for all

nef0,...,N=-1},me{0,..., M=1}and 7 € {0,..., T -1}, four steps comprise the proof.
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Claim 1. Let (t,5,7) € Ry ,, by using Lemma B3, we obtain from (E4)

lw(t,s, ) — So00(t,s, 1) < Z z']'k| ||a(1)a])07(k) ”hzh]hgl

i+j+k=p
hence, by Lemma B3, we have
j ()
leosll < 9(p) Y, = |k|h1h1hk <PP (s + iy + ).
i+j+k=p ]
\,_/

91

Claim 2. Let (t,s,7) € Ry00, 1 € {1,...,N — 1} we have from (E10)

n-1 t;+1 S s
w(t/ S5, 1") - é1’1,0,0(’1:1 5, 7’) = Z f f f K(t, 51X, }/, Z)eE,O,O(x/ ]/, Z)dZd]/dx
=0 tg 0 0
£ S r
+ f f f K(t/ 51X, yl Z) [w(x/ ]// Z) - é1’1,0,0 (x/ ]/, Z)] dZd}/dx/
ty JO 0

consequently, by setting x; = max{||x[|;~®,,,), 7 =1,...,N — 1}, we get

n—1 t S 7
lw(t,s,r) — ,00(t,s,7) < Zh1h2h37<1||35,0,0|| + K1 f f f lw(x, y,2) — S,00(x, y, z)ldzdydx,
tn 0 0

&=0

then, applying Lemma [CZ7, we derive

-1
[w(t,s,r) — noo(tST’)|SZ BCicy exp ({/x1(A + B+ O)) llec,ooll,
=0

by

this implies, through the application of Lemma &3, that

||€n,0,0|| < lw — 9n,0,0|| + ||\9n,0,0 - 9n,0,0||

n—1
1 )~ & o
< Zh1b1||€é,o,0|| + Z W||9§Z)9§])3£)Sn,o,o”hllhéhg,
&=0 i+j+k=p JHE
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thus, using Lemma B3, we obtain

P(p)
llen,o,0ll < z hiblles o0l + _(hl + hy + h3)P,
=0

applying Lemma [CZT, we derive

llen,o,0ll < (P;P) exp(Abi1)(h1 + hy + h3)?.

————
G2

Claim 3. Let (t,s,7) € Rymo, n€1{0,...,N—-1}and m € {1,...,M — 1}, we have from
(BT13)

n—-1 m-1
[ot, s, 7) = Sumolt, s, ] < ZZh hahsalle poll + Zhlhzhsxzuegmon + Zhlhzhsxznenpon
&=0 p=0 &=0 p=0

t
+ Kp ffflw(x Y,z) — nmo(x Y, z)ldzdydx,

where x; = max{||«||i~®,, 7" =0,..., N-1,m=1,...,M -1}, then by Lemma [CL’Z4

n—-1 m-1 n-1 m—1
[t 5, 7) = Sumolt, s, ] < leg poll + Y lleemoll + Y, llewpoll

X h h2h3 Ky eXp ({/K_z(A + B+ C))/

by

which implies, by using Lemma E3T, that

”en,m,O” < ||ZU - Snm()” + ”‘9an - Snmoll
n— -1

< lec poll +Z||egmo|| +Z||enpo|| Iihahsb

p p=0

" Z ikl 0300 8ol i1,

i+j+k=p

_
S

et
I
o
Il
o
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hence, by Lemma E37, we obtain

n—-1 m-1

lewmoll < F11haChs |W@m”+hﬂK}22:”%m0”+hﬂK322:H%pN
&=0 p p=0

(ot ho)

3

o
]
o

(P(P)

Moreover, by Lemma [CZ3, we deduce that

(P(P)

llen,moll < —— exp (na(A + B))(h1 + hy + h3),

G3

where 1y = 1 (BChy + AChy + +[(BCb, + ACb,)? + 4Ch;).

Claim 4. Forallne{0,..., N-1},me{0,..., M—1}and 7 €{1,...,T -1},
let (t,s,7) € Ry, ., we have from (ETIH)

n-1 m-1 7-1 n-1 m-1
lw(t,s, r) — nmI(t s, 7| < Z hihahsicslles,p0ll + hihahsicsles p ol

£=0 p=0 6=0 £=0 p=0
n-1 7-1 n—1

+ Z hihahsics|les m,oll + Z hihahsxcslleg m, |l
&=0 6=0 &=0
m-1 1-1 m—-1

+ Y Y hahsisllenpoll + Y nhahskslen |
p=0 6=0 p=0
71

+ hihahsics|lenm,oll +K3f f f lw(x, y,z) - n,m(x Yy, z)ldzdydx,
6=0

where 3 = max{||[x||.~®,, n=0,...,N=-1,m=0,... M-1;7=1,...,T -1}, then by
Lemma 24

n-1 m-1 17— n-1 m-1

[w(t,s, 1) = Sum(t,s,7)| < [ lles,p,0ll + ||€5,p,m||] hihyhsb,
&=0 p 0 &=0 p

§
AR
3

Il
o
(o)
]

Il
o
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n-1 -1 n—1 m—1 71
Y leemoll + Y lleemell + lew ol { s hahsbs
&=0 0=0 &=0 p=0 6=0
m—1
* ||enpr||+2||enm9|| hahsbs,
p=0 0=0

where by = xzexp({/x3(A + B + C)), then by Lemma B3

”en,m,"(” < ||ZU - 19n,m,T” + ”Sn,m,T - SH,I’VZ,T”
n—-1 m-1 -1 n—-1 m-1
<UD Y Y llecpoll + )Y llee ol | ahahsby
£=0 p=0 6=0 £=0 p=0
n-1 7-1 n-1 m=1 71
DY leemoll + Y lleemll + lew ol { s altsbs
£=0 6=0 £=0 p=0 6=0
m=1
() H(k k
1Y llewpell + Z lewmoll | ahshsby + Y — iz [0V 98, i,
p=0 i+j+k=p ]
hence, by Lemma BE-37, we obtain
n-1 m-1 -1 n—-1 m-1
lewmell <{ YY) llecpoll + lec pll | FuFalsbs
£=0 p=0 6=0 £=0 p=0
n-1 7-1 n—1 m=1 7-1
* legmoll + Y lleemll + lew ol | B hahsbs
£=0 6=0 &=0 p=0 6=0
v 90(;9)
| ) lewpll + Z lewmoll | nhaltabs + == (hy + iz + s,
p=0
then, by Lemma [CZH, we obtain
n—-1 m-1 n-1 7-1 m—=1 7-1
e, m|l < llee,p,<ll + lle,moll + llen,p,0ll | i1hahsbsbs
£=0 p=0 £=0 6=0 p=0 6=0
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(4.32)

n—1 m—1 -1
' [Z lecumell + Y llewpell + Y lewmoll |nhahsbsbs + (’);p Db + 1 + s,
=0 =0 6=0

where bs = exp(ABCb,), we put for each fixed 7 € IN

w(n,m) = ||€n,m,1||, €(n, m) = hyhyhsbsbs,

n-1 -1 m-1 7-1

n-1 m—1 -1
b(n, m) = [Z Y lecumoll + Y Y lewpoll + Y llecumell + Y lewpell+ Y lewmoll | Frhahsbsbs
&=0 0=0 6=0

&=0 0=0 p=0 0=0
(p)

b5(h1 + hz + hg)

Lemma 74 therefore allows us to derive from (E32)

n—1
lewm eIl < b, m)H {1 * Ze(é p)]

&=0
<
=0

]5;'7 b@(l’l] + hy + h3)P (433)

-1 7—

lec moll + lewpoll + ): lew pell + }: lewmoll + Z ||e5m||}h1h2h3b4b6

0 p 0

._.
§
AR

T—

M:
[
I
Il
o
[
I

where bg = bs exp (ABCb4bs), we put for each fixed m € IN

w(n, ) = ||€nm A, €, t) = hihahsbabs,

m—=1 7-1
b(n, ) = [Z Y llewpoll + 2 lew pell + Z lewmoll + Z ||eng||Jh1hzh3b4b6

p=0 6=0

?l%(hl + hz + hg)p

Using Lemma [C74 again, we derive from (E33)

+ TZi €(¢, 9)]

n-1

lewml < b, T’H

0=0
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hence,
m—=1 7-1 m—1 -1 n—1
lewmell < | DY Mlewpoll + Y llewocl + Y Newmoll + Y lleemell {Bihatsbaby
p=0 6=0 p=0 0=0 £=0
POy 4y

p!

m—=1 7-1
< hahs Absby lewpoll + 12 ACDsb, Z lewcll + h3ABb3by Z lewmoll

p=0 6=0 p=0

-1

F1BCiE, Y el + 20
=0

b7(l’l1 + ]’12 + h3)P

where b; = bg exp (ABCbsbg), by using Lemma ["Z3, for each fixed n € IN

n-1
lewmell < | mBChabz Y llecmll + 90;’9 Dby + 1o + ) | exp (bs(B + C))
&=0
n—1 ( )
< IuBCiby Y el + = =bolhy + i + o)
&=0

where bg = % (ACb4b7 + ABb4b7 + \/(ACb4b7 + ABb4b7)2 + 4Ab4b7) and bg = b7 exp (bg(B + C))
In addition, Lemma [CZ1 yields

@(p)

e, m, |l < b9 exp(ABCbubo)(h1 + hy + h3),

G4

by taking ¢ = max{c, ¢, ¢3, ¢4}, the proof is thus completed. m

4.4 Experimental Results

This section presents several examples with analytical solutions to assess the efficiency
of the method described in Section B2 for solving equations (B1) and (E2). These
examples are sourced from a range of references [B, 3, BY, 43, A5, h7], enabling a

comparison of the numerical outcomes.
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Example 4.4.1 Consider the following three-dimensional linear Volterra integral equation [bZ]:

w(t,s,r) = tcos(r)——sm(r)+ f f f xy*w(x, y, z)dzdydx,

where t,s,v € [0,1], the exact solution can be expressed as w(t,s,r) = tcos(r). Applying
the Taylor collocation method to the above integral equation, with p = 2 and a grid size
of (N,M,T) = (100,100, 100), the error results are presented in Table B1l. Furthermore, a
comparison between the errors computed using the current method (TCM) and the shifted
Chebyshev polynomial (SCP) [#5], as well as three-dimensional block-pulse functions (3D-
BPFs) [73], is provided. The plots of the error functions for N = M = T = 10, with fixed values
of t,s and r for each plot, are shown in Figures BT, B2 and B3, respectively.

0.040 0040 0.0407

0.035 0.035 0.0357

0.030-] 0050+ 003 || FTe

1l
01,025 0025 0025 |||

0,020 .02 0020

0.015+ 0.015 s 0.0157)

0.010- 0.010- 0.010

0.005 =2 0.005 0.005

e . - 2 ]

t=04

Figure 4.1 — Error function plot for a fixed t in Example EZT

Example 4.4.2 Consider the given three-dimensional linear Volterra integral equation [62]:

t S r
w(t,s,r) ="+ (@ —1) +e —1)+ f f f w(x, y,z)dzdydx,
0o Jo Jo

where t, s, r € [0, 1], the exact solution can be expressed as w(t,s, r) = e"***". Table B2 presents
the absolute errors at certain points withp = 2and N = M = T = 10. Additionally, a com-
parison between the errors computed using the current method (TCM) and shifted Chebyshev
polynomial (SCP) [#5], is provided.
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r=0.1 r=05

Figure 4.3 — Error function plot for a fixed r in Example B4

Example 4.4.3 Consider the given three-dimensional linear Volterra integral equation [B]:

t 7
w(t,s,r) = f(t,s,r)—24 f f f Psw(x, y, z)dzdydx,
0o Jo Jo

fort,s,r €[0,1]and f(t,s,r) = 4°°r + 48251 + 3t*s*r* + t2s + sr* + tsr. This equation has an
exact solution w(t,s, r) = t%s + sr® + tsr. Table B3 presents the absolute errors at certain points
withp =2and N = M =T = 10. Additionally, a comparison between the errors computed
using the TCM and the three-dimensional block-pulse function method (3D-BF) [43], as well

as the three-dimensional block-pulse functions method (3D-BPFs) [?3] and three-dimensional
Bernstein polynomials (3D-BPs) [BY], is provided.
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Table 4.1 — Comparison of the absolute errors of Example B4

t s r SCP [&5] TCM
0.1 0.1 0.1 [229x10™* | 1.10x 1078
0.01 | 0.1 0.1 [229%x10™° |1.10x 10"
0.01 | 0.01 | 0.1 |229%x107°|1.10x10™
0.01 | 0.01 | 0.01 |292x10°°|1.11x10°P

0.001 | 0.01 | 0.01 [292x107 | 1.11x 1078

0.001 | 0.001 | 0.01 {292%x107 | 1.11 x 107

0.001 | 0.001 | 0.001 | 2.99x 1078 | 1.11 x 1022

t s r | 3D-BPFs [23] TCM

01[01|01| 640%x10% |1.10x107®
03[03]03]| 3.07%x107° |239x107°
05[05|05| 1.11x1072 |832x10™*
0.7]07]07| 1.14x1073 |842x1073

090909 | 992x10* | 4.63x1072

Table 4.2 — Comparison of the absolute errors of Example EZ2

t S r SCP [45] TCM
0.1 0.1 0.1 [330%x1072|1.16x107°
0.01 | 0.1 01 [216x1072|1.11x10™*
0.01 | 0.01 | 01 |1.19%x1072|1.06x 107
0.01 | 0.01 | 0.01 |3.66x107%|1.01x10°°

0.001 | 0.01 | 0.01 | 255%x1072 | 1.01x1077
0.001 | 0.001 | 0.01 | 1.45%x 1073 | 1.00 x 1078
0.001 | 0.001 | 0.001 | 3.69 x 10~* | 1.00 x 10~°

Example 4.4.4 Let us now consider the three-dimensional nonlinear Volterra integral equation

[67]
3 t S 7
(tsr) + f f f wz(x, y,z)dzdydx,
27 0o Jo Jo

which has the exact solution w(t,s,r) = tsr. By applying the Taylor collocation method to the

w(t,s, r) =tsr —

above integral equation, the absolute errors for p = 2 and (N, M) = (10, 10) at some points are

shown in Table 4.
Example 4.4.5 Consider the three-dimensional nonlinear Volterra integral equation [bl]

t S r
w(t,s,r) = f(t,s,1) + f f f (tsr + xy + ) w*(x, y, z)dzdydx,
0o Jo Jo

fort,s,r € [0,1] and f(t,s,1) = Ps°r® — 51851218 — L8127 — 4711y, This equation has
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Table 4.3 — Comparison of the absolute errors of Example E43

(27527527

3D-BFs [43]

3D-BPs[3Y]

TCM

oA o e
Il Il
N U W N

8.44 x 1072
2.30 X 1072
7.36 x 1073
2.80 x 1073
412 %10
492 %104

3.03 x 107
7.13 x 10712
7.93 x 1071
478 x 10712
1.81x 10713
1.65 x 10713

214 %107
419x107°
8.19 x 1078
1.60 x 1071
3.12x 1078
6.10 x 1071°

t S r | 3D-BPFs [23]
01/01/01] 9.30x10™*
03]03/03| 245x1073
05]05]05]| 3.63x1072
07107107 | 1.38x1072
09109 |09| 6.78x1072

TCM
1.10x 107®
216 x 107
2.14 x 1072
443 x 107!
4.26 x107°

Table 4.4 — Numerical results of Example B4

TCM
3.70 x 1071
1.89 x 1078
7.29 x 107
9.70 x 107
7.23x107°
3.73x107*
1.49 x 1073
497 x 1073
1.43x 1072
5.66 X 1072

t S r
01(01]01
02102102
03103103
0410404
05105105
0.6 0.6 0.6
07107107
08108 10.8
091109109
1.0 1.0 (1.0

an exact solution w(t,s,r) = £3s°r°.

The absolute errors for p = 2 and (N, M) = (10, 10) are also shown in Table EA.

4,5 Conclusion

This chapter has introduced a new method for solving linear and nonlinear 3D-VIEs of
the second kind by applying the TCM. Developing an algorithm utilizing Taylor polyno-
mials enabled us to approximate solutions effectively within a finite-dimensional space.

A convergence analysis was conducted to validate the efficacy of our method, affirm-
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Table 4.5 — Numerical results of Example E43

t S r TCM
01/01/]01]311x10%
0202|102 |443%x107%
031]03]03|265%x107"
04/104|04|661x10H
05/05]05|287x10 1
0606 |06 413x107°
07107107 | 277 %1077
0.8]0.8|0.8| 1.06 x107°
090909 | 267x10*
1.0 1.0|1.0| 3.03x 10"

ing its reliability in providing accurate solutions. Additionally, comparison examples

were presented, demonstrating the method’s effectiveness compared to alternative ap-

proaches. Through these comparisons, our approach proved efficient and reliable in

resolving 3D-VIEs. The results of this study contribute to advancing mathematical

methodologies for solving complex integral equations, offering practical implications

across various disciplines.
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In summary, multi-dimensional Volterra integral equations significantly expand clas-
sical integral equations, allowing for the modeling of complex systems with multiple
variables. Their theoretical underpinnings and practical uses remain a vibrant field of

research, driving progress across various scientific and engineering fields.

In this thesis, a new numerical method was developed using the Taylor collocation
method to approximate solutions of the Goursat problem within hyperbolic linear
partial differential equations. This method operates in the real polynomial spline space

S;__ll)(HN,M) and has been proven to be convergent.

Furthermore, a numerical framework was established to approximate solutions for
nonlinear two-dimensional Volterra integral equations of the first kind. By converting
these problems into Volterra integral equations of the second kind, an efficient and

accurate solution was proposed using Taylor polynomial approximations.

In the spline space S;__ll)(l_[), approximate solutions for three-dimensional Volterra
integral equations were obtained by applying Taylor’s theorem in three variables. The
convergence of these approximate solutions to the exact solutions was studied. This
method is straightforward to implement, with the coefficients of the approximate solu-

tion determined by iterative formulas without requiring the solution of any algebraic
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equations. Numerous numerical examples demonstrated the method’s convergence

and accuracy, aligning with theoretical estimates.

This thesis has demonstrated the effectiveness of the Taylor collocation method in
solving various classes of Volterra integral equations. While the proposed approach

has yielded promising results, several directions remain open for further research:

e Extension to Goursat Problems in Higher-Order Linear Hyperbolic Equations

A possible extension of this work involves solving higher-order linear hyperbolic

equations with Goursat-type initial conditions, given by:

ak—w+ i (92—w+i .&_w+ w—F
X105 . . . Xk jl’bl’] 0x;0x; b= Yi ox; yw=FE

i,j=1,i<
where 1;;,1; fori < j,i,j = 1,2,...,k, and ¢ and F are specified real functions.
Developing a numerical collocation method to approximate the solution of such
equations would be valuable for applications in wave propagation, fluid dynam-

ics, and elasticity theory.

e Extension to Three-Dimensional Nonlinear Delay Volterra Integral Equations

Another potential research direction is the application of collocation techniques
to three-dimensional nonlinear delay Volterra integral equations, which are of the

form:

t—171 S—To r—1T3
w(t,s, r) = f(t,s, 1)+ f f f k(t,s,1,x,y,z,w(x,y,2)dzdy dx,
0 0 0

with f and «x being sufficiently smooth functions. These equations arise in bi-
ological systems, population dynamics, and control processes with hereditary
effects. Investigating numerical methods for solving such equations can improve

modeling accuracy in these domains.

e Development of Collocation Methods for Transport-Diffusion Equations
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A further research avenueis the development of collocation methods for transport-

diffusion equations, given by:

Ju

o +o(t,x) - Vu — kAu + Au = f(t,x),

where:

— u = u(t, x) is the unknown function representing the transported and diffused

quantity.
— o(t, x) is the velocity vector of the transport process.
— « is the diffusion coefficient.
— A is a large reaction coefficient.
— f(t, x)is a given source term.

— Ais the Laplacian operator.

Many real-world transport-diffusion problems, particularly those involving sharp
gradients, turbulence, or fast reaction kinetics, require adaptive numerical strate-

gies to efficiently capture localized behavior.
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