Aol Aol aal) A 0 Jad) Ay sgan
People's Democratic Republic of Algeria
alad) Cuanll g Ml alatl) B ) 3

Ministry of Higher Education and Scientific Research

Abdelhafid Boussouf
University Center— Mila

Institute of Mathematics and Computer Sciences Department of mathematics

Submitted for the degree of Master
In: Mathematics
Specialty: Applied Mathematics

P
Heisenberg uncertainty principles for

the generalized wavelet
transform

N

Presented by:

Khouloud mokhnache

Defended on 25/06/2025 In front of the jury

Yassamine Chellouf MCA Abdelhafid Boussouf U. C.of Mila Chairman
Zineb Hafirassou MCB Abdelhafid Boussouf U. C. of Mila Supervisor
Khaoula Rouibah MCB Abdelhafid Boussouf U. C.of Mila Examiner

Academic year: 2024/2025

¢
SI
¢
¢
¢
5
5
¢
g
g
g
g
¢
g
g
g
g
g
¢
g
¢
¢
¢
g
g
?
?
?
?
¢
0
0
0
0
0
0
0
0
0
0
0
0
0
0
?
?
?
g
?
?
?
¢
0
q

IAAAAAAAAAAAAAAAAAAAAAAAASAAAAANAAAAAAAAAAAASAAAAAAAAAASAAAAAAAAAASAAAAAA

. )




Sl glll All] sy
eallly gl ol
Liasaj fla oflally
|
allang [




4Ty

"y s (9'; W g 3}23@ "I e
0983 ol lal @i Yo Bae dlall oL 4l
sy Ypnilly Lygoas ol goshall ¥ Ligys alall gy ol
Laslyg Lazles gl
il pgell 5] L alinisy @il filisaly L2 (2aax all smaall
4y gl Lesly geml mg gl Jll gla ol
osallell sgig Banyll s L &all gy - &3lall gnly illagll gly oa ll
"plag agle alll @l mana g "

@alad s lagles la g @l idigmy Mg (Lol giadls alll mry qigds «sallll @llle @l
"Ragi” gal ssgliall @zl @l @alya aly lailiag

32 aaal Jaal g @Il llasl gy ellell @iale s @l .. sloglly Gegally alll ala2 pa L
"egaall mge" @Il gl bl

"Rl @l il galyl slaly @il el ga @l
"Jyma gl il @lbd ol 28835 s @by o @l
"alal" spall qal @ors 339 @l sa8 @l
diad g mliana Al - gilile sl J& @l
"ssigy puly @ola" Al M Al loll ipna aagill s alell o Ylia sild gpa ll
el gilygnam aillal gitanly @3UlLsloaall slagsy @l

2025 izgn — dgsphy aylemlys sgula AL ATl @6 @3lay @l




O:Q‘bn \g\lLALqu &9 R.lLa) vn‘_-w’t l}la.\ \”'\_-Jl \g\lL eALnlt é)nlt \g\l]; mlnlxll, Ml Z’\)l:m \;\IL
" Jea Lo Grislal” diyeally alell g5k 3] Lyaa
dalyallslpin Al goils @Il asigs @imila g J& @l
olisally s2all J2 qia 921




Acknowledgments

I would like to thank God first of all for everything, because he gave us the courage

and desire to continue our studies.

I extend my deepest gratitude and heartfelt thanks to my beloved parents, for
every moment of hardship, every prayer in the silence of the night, and every word
of encouragement.You have always been my source of strength and inspiration,
and without your prayers and support, I would not have reached where I am
today.May Allah reward you abundantly on my behalf, bless your lives, and keep

you as a crown upon my head.

I would like to express my deepest and heartfelt gratitude to my supervisor,
Dr. Zineb Hafirassou, for her guidance, for her invaluable assistance and inspiring

advice.

All my appreciation to the members of the jury Dr. Yassamine Chellouf and

Dr. Khaoula Rouibah for their intellectual insights, encouragement and help.

I would also like to express my sincere gratitude to all members of department of

Mathematics and special thanks to our teachers and colleagues.



Contents

Abstract
Résumé
General Introduction

1 Hankel transform
1.1 Besseloperator . ... .............. .. . .. ... .. ..
1.1.1 Translation operator associated to the Bessel operator . . . .
1.1.2  Convolution product for the Bessel operator . . . ... ...

1.2 Hankel transform . . . . . . . . . . e

2 Hankel Wavelet transform
2.1 Dilationoperator . . ... ... .. ... ... .. ... . ...
2.2 The Continuous Hankel Wavelet transform . . . ... ... ... ..

2.3 Reproducing kernel Hilbert space Tf;(LZ(dva)) .............

3 Heisenberg-type uncertainty principle for T
3.1 Heisenberg uncertainty principlefor %, . . . . ... ... ... ...

3.2 Heisenberg uncertainty principle for Ti ................

Bibliography

10

17
19
23
28
30

50
50
51

57



Tyl JelS 1) i) LB 55 i JSked i sl sl Al 35 i 52 5,531 038 (50 gl
sl sale) dapa ¢dalail) duald c@ﬂq%@mwb@@ﬁj o gl 13

S iy pally i pnill Kl § 53 55 (oo 0ol e {50k L) 8 Jaal) I3gd AT anity Coon Jiaiy LS

£ 3l Gl e Tase il salls i snl (IS st ¢80 Jatl: Al el



Abstract

Our objective in this thesis is to define and study the Hankel wavelet transform.
We will prove all the harmonic analysis associated to this transform, in particular
a Plancherel’s formula, an orthogonality property and a reconstruction formula.

Another main purpose of this thesis is to prove the Heisenberg-type uncertainty

principles for the Hankel wavelet transform.

KeyWOI‘ds: Harmonic analysis, Hankel transform, wavelet transform, Heisen-

berg uncertainty principle.



Résumeé

L’objectif de cette mémoire est de définir et d’étudier la transformation en on-
delettes de Hankel. On établit toute ’analyse harmonique associée a cette trans-
formation, en particulier on démontre une formule de Plancherel, une propriété

d’orthogonalité et une formule de reconstruction.

Un autre objectif principal de ce mémoire est de démontrer les principes d'incertitude

de type Heisenberg pour la transformée en ondelettes de Hankel.

Mots clés: Analyse harmonique, Transformation de Hankel, Transformation en

ondelettes, Principe d’incertitude de Heisenberg.



General Introduction

Many non-stationnary signals as seismic signal, genomic signal, electrocardio-
grams, and speech are gaining more attentions as they intervene in the real life.
So, during the last decades, many methods of determining local spectra have been
investigated. In fact, in signal theory, the Fourier transform of a given signal was
firstly introduced by Joseph Fourier in 1822, defined for an integrable function f

(stable signal) by

) = fR f(x)e"“"%; VAER,

represents the set of frequencies that compose the signal with their respective
amplitudes that called the spectrum of the signal.
One of the major problems with the Fourier Transform consists of the fact that the

frequency representation is global and does not give any temporal localization.

10



*GENERAL INTRODUCTION
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Figure 1: Loss of temporal localization of the Fourier transform

The notion of time-frequency representations was therefore introduced in order
to overcome this problem, the basic idea concerning the time-frequency analysis
is to introduce into the Fourier analysis, which is a purely spectral analysis, a
notion of spatial or temporal locality by replacing the analyzed function f with the
product of f by a function 1) suitably chosen having good localization properties,
then we apply the Fourier transform to them.

The most famous time-frequency representation was introduced by Denis Gabor
[10] called the Short-time Fourier transform (STFT).
Let us consider a non-zero function 1 € L*(R) called window. Then, for every

f € L*(R), the Short-time Fourier transform of f is defined by

4
Vl/,(f)(a,r):Lf(x)w(x—a)e‘l’xv%; a,reR.

Tt

11



*GENERAL INTRODUCTION
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Figure 2: The Short-time Fourier transform

Example of two musical notes played one after the other: time-frequency
analysis makes it possible to find both the frequencies (the notes) and the temporal

information (the order in which they are played).
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Figure 3: Time-frequency localization
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*GENERAL INTRODUCTION

But quickly, this transform showed many disadvantages like its inability to
detect low frequencies and poor time resolution of high frequency events due to
the fixed width of the window function this means that the short-time Fourier
transform supposes a certain stationary of the signal and it might be unsuitable to
non-stationary signals.

In contrast with the STFT, the wavelet transform (WT), introduced by Morlet [14]
proposed to use a window of size depending on the analyzed frequency but with
a fixed number of oscillations.

A non-zero function ¢ € L*(R) is said to be a mother wavelet if

f Ilﬁ(a)lzd—u < 400.
0 a

The wavelet transform W, with respect to the mother ¢ is defined on L*(R) by

Wy(f)a,r) = % fmf(x)w(x a_ ”) j;f_n; a,re R, XR,

ol —
Ay —h—

Gabor's window Morlet's wavelet

-

The wavelet transform analyzes function with respect to position and scale

that is why “wavelet analysis” has recently drawn a great deal of attention from

13



*GENERAL INTRODUCTION

mathematical community in various disciplines (see [1, 21, 23, 26]). It is creating a
common link between mathematicians, physicians and electrical engineers. Hence,
the wavelet transform emerged as an important tool in signal and image processing,
and have many applications in several research areas, such as signal and image
processing, time series analysis, geophysics, medicine (see [4, 5, 6, 7, 8, 20, 22]).

This is what motivated us to work on the wavelet theory.

Recently, many authors have been interested to extend the classical wavelet
transform in different settings like the Dunkl [13], the Jacobi [27] and the Hankel
settings [16]

The Hankel transform also known as the Fourier-Bessel transform arises
as a generalization of the Fourier transform of a radial integrable function in
the euclidean space RY. More precisely, let f € L}(RY) it is well known that if

f(x) = F(||lx|]) is radial function on IR, then f is also radial on R and we have

d—l

VAR, ()= fo Py (M) ——dx = 7, (BN,

25711(2)

where j;_; is the modified Bessel function of index £ — 1 and 7y _y is the Hankel
transform of index 2 -1

As the harmonic analysis associated to the Hankel transform has shown remarkable
development, itis a natural question to ask whether there exists the equivalent of the
theory of time-frequency analysis for the wavelet transform in the Hankel setting.
In fact, many results for the Hankel wavelet transform have been established in
particular, let ¢ be an admissible Hankel wavelet in L?(dv,). Then, we have:

e Plancherel’s formula: Let ¢ be an admissible window function in L?(dv,), then

we have

h +OOTO‘ P dug(a,r) =C m 2 gy,
fo f(; Ty ()@, )" dua(a,r) wfo‘ IF ()P dva(r)

14




*GENERAL INTRODUCTION

e Parseval’s formula: Let ¢ be an admissible Hankel wavelet in L*(dv,). Then, for

all f and g in L*(dv,), we have

) _ 1 +o0 oo
fo f(Ng(r)dva(r) = o fo fo TS()a,NT3(8)@, 1) dua(a, ).

¢ Reconstruction formula:Let ¢ be an admissible Hankel wavelet in L?(dv,) such

that [i)] is an admissible window function. Then, for every f € L?(dv,), we have

1 B o @
fo= [ oo,

weakly in L*(dv,).

The term uncertainty principle first appeared in 1927 in quantum mechanics,
when Werner Heisenberg demonstrated that there is a fundamental limit to the
precision with which two complementary properties of a fast-moving particle can
be measured.

Heisenberg thus showed that it is impossible to determine both the position and

the momentum of a quantum particle simultaneously and with arbitrary precision.

“The more precisely the position of a particle is determined, the less precisely

its momentum is known, and vice versa.”

The theoretical formulation of this principle was established in 1928, linking the
standard deviation of position Ax and the standard deviation of momentum Ap

through the following inequality:

h
Ax - Ap > —
X p_47t

where 1 is Planck’s constant.

The uncertainty principles in harmonic analysis state that a function f and its

15



*GENERAL INTRODUCTION

Fourier transform j?cannot be simultaneously sharply localized, actually many
mathematical formulations of this general fact have been proved, for more details
we refer the reader to [9, 17]. The most famous of them is the following Heisenberg-
Pauli-Weyl sharp inequality [18]. It states that for all square integrable function f

on R with respect to the Lebesgue measure, we have

([ eerae) 3 [ vora]

Recently, many works have been devoted to establish the Heisenberg-Pauli-Weyl
inequality in different setting and for various transforms, in [25, 40] the authors
established Heisenberg-type inequalities, respectively on Chébli-Trimeche hy-
pergroups and on the Heisenberg groups. Later, in [11] Jaming and Gohbber
have proved a Heisenberg uncertainty principle for a family of integral transform
including in particular, usual Fourier transform, the Hankel transform, the Dunkl
transform,etc.

Nowadays, new uncertainty principles involving time—frequency representations
such the Gabor and wavelet transforms have been formulated with different
approaches [1, 2, 3, 12].

This thesis is arranged as follows:

In the first chapter, we give a brief background of some harmonic analysis results
related to the Hankel transform .

In the second chapter, we define and study the Hankel wavelet transform.

The third chapter is devoted to prove the Heisenberg-type uncertainty principles

for the Hankel wavelet transform.

16



Chapter

Hankel transform

The Hankel transform also called Fourier-Bessel transform is integral transforma-
tion whose kernel is Bessel function. When we are dealing with problems that
show circular symmetry, the Hankel transform may be very useful. For example,
the Hankel transform is the two-dimensional Fourier transform of a circularly
symmetric function. Moreover, the Hankel transform came for the first time by
studying the Fourier transform of radial functions and has been generalized later
in the general case.

In this chapter, we summarize some harmonic analysis tools related to the Hankel

transform that we shall use later (for more details, one can see [15, 19, 33, 37].

17



“CHAPTER 1. HANKEL TRANSFORM

Notations

We denote by

® v, is the measure defined on [0, +oo[ by

7,204+1

dva(r) = m dr.
o [P(dv,), p € [1,+00], is the space of measurable functions f on [0, +oo[ such

that

(Eoo [f(r)P dva(r))w <+00, if1<p<+oo,
A1l =

€SS SUP, (g 4ol /(M| < +00,  ifp = +o0.
e (-|-)y, the inner product on L*(dv,) defined by

w2, = fo WD dva(r).

e C'(R): the space of even continuous functions on IR.

18



“CHAPTER 1. HANKEL TRANSFORM

1.1 Bessel operator

In this section, we define the Bessel operator ¢,, the modified Bessel function j,,
and we give some related results. We also define the translation operator, the
convolution product related to the Bessel operator, and we recall some known
inequalities which can be useful throughout this manuscript.

Let ¢, be the Bessel operator defined on ]0, +oo[ by

P d_2+2a+1i
S %) roodr

_ 1 i 7,2c»c+1i
iy dr

Proposition 1.1.1. Forall A € C, the following problem:

Ca(u)(r) = =A%u(r),
u(0) =1,

w(0) =0,

admits a unique solution given by the modified Bessel function j,(A-), where

Ja(7) (=1)* (r)z"l

ja(T) = Z“F(a + 1)1’_0‘ = P(OZ + 1) ; m E (11)

and ], is the Bessel function of the first kind and index o [24, 38]. .

Proof. Let A € C. Then, we have

20+ 1
r

Ca(ja(AD)) = jZ(AT) + Ja(AT).

19



“CHAPTER 1. HANKEL TRANSFORM

Since

Ja(AT)

and

Ja (A7)

(/\1’2>2k
(Ar2)2k—l
(AV2)2k+l

(="
r(“”)z KT(+ k+1)

(1N
o+ 1)2 KT(@+k+1)

(=11 (k + 1)
“”)Z k+DT(@+k+2)

a+1

e

a+1

I +1)

F( + 1) Zk‘l‘(a+k+2)

12,2

ja+1(/\r)

AZ
= = e e
A? A?r
(0( n 1)]a+1( r) — 2a+ 1)]a+1( r)
PLE 1472
TS L TP sy

Then, by relations (1.2) and (1.3), we have.

La(julAP))

2(a +1)

Az (joz+l (AV)

4.2 .
It s -
AZ 2
2o+ Do+ 2)]“+2W))

/\2

]a+1(A )

Using the fact that (see [69])

]a+1(r) + ]oz—l(r) = 27a]a(r)

Ja+2(AT).

2k
AP)

(1.2)

(1.3)

A2(2a + 1)

( 1) ]a+1(/\ )

20



“CHAPTER 1. HANKEL TRANSFORM

thus, we get

1,2

T da+1)(@+2

ja+1(r) )ja+2(r) + ja(r)

Furthermore, j,(0) = 1 and j/,(0) = 0. The proof is complete.

Proposition 1.1.2. The function j, has the following integral representation formula,

forallr € R

1 .
Tl fo (1 - )2 cos(tr)dt, ifa>-1,

jalr) = 3 VD)

cos(r), ifa=—12.

Proof. 1) For a = -1, we get

j-1(r)

e )

B (_1)k z 2k
- \/EZF(k+1)F(k+%)(2)

k=0

[o¢]

_ (=1)* 1
B \/E222k—1r(k)r(k+§)r 2k

k=0

Using the fact that

22"‘1F(k)1”(k+%) = VAT(k),

21



“CHAPTER 1. HANKEL TRANSFORM

then we obtain

J-1(r)

2) For a > —3, we have

1
f 1- tZ)“_% cos(tr) dt
0

' [V CDEEn*
f(l—t2) [ZW dt

Il
N =
1
N
|
=1
0|
XA =
N

2

N

=
> S5—

2
=

2

N
—~~~

—

=

p—

T

N

o

=

1
f 1- tz)“_% cos(tr) dt
0

= vr i 1’ B (a + l,k + 1)

2 pan 22k—1r(k)1“ (k+ l) 2 2
\/_1" oz+ (=1) F\2K
Z k'I"(a +k+1) (E)
\/_I"(oc+ )
= arn 0

Remark 1.1.1. The function j, is bounded, for all n € IN and r € IR, and we have

] <1 (1.4)

We have also the following product formula satisfied by j, for all 7,s € R*:

22



“CHAPTER 1. HANKEL TRANSFORM

F(OL+1) fﬂ . \/ 2 2 2 6 . 6 2a d@ f _l

- ja | V1?2 4+ 52 4+ 2rscos 0) (sin 0) , ifa>-—3,
a)jale) = VTl ( ) (15)
] r+s +]_l r—S

2

1 . 1
, ifa=-3.

1.1.1 Translation operator associated to the Bessel operator

Definition 1.1.1. We define the Hankel translation operator t¢, for v € [0, +oo[, and

forall f € C'(R), by
r(a—+1)1fnf(\/rz+sz+2rsc056)(sin6)2"‘d9, ifa> -1,
(e = VAT (@+3) (1.6)
(r+5) + f(Ir —sl) ,
f(r szfr s, o= 1.

Theorem 1.1.1. Let a > —3 and f € C(R). Then, for all 1,5 € |0, +co], the operator

¢ can also be written as:
+00
T (f)(s) = f f(w) wa(u, 1,5) dva(u) (1.7)
0
where w, is the Hankel kernel given by
Wy (U, 1,s) =

Fz(oz +1) [u2 —(r— S)z]“—% [(r + S)z _ uz]“‘%

VAT(a+1) (urs)

, iflr=sl<u<r+s,

0, otherwise.

Proof. According to Definition 1.1.1, we have for every a > -1,

23



“CHAPTER 1. HANKEL TRANSFORM

“()(s) = —a+ 1) j fo ’ f (V2452 + 215 cos 6) (sin 0)> d6

\/Ef(a+%

We set u = Vr2 + s2 + 2rs cos 0, we obtain

1 1
T(a+1) e [u = (r=8)?]% u [u? = (r—s)?] 2 [(r+5)? —u?] 2
. _ u d
N e R DR @) "
T(a+1) = (r = )21 [+ s — ]
= d
2201 \[nT (a + %) Irsl A (rs)% "

1 1
I(a+1) f”s [u? — (r—s)?1* 2[(r +s)®> —u?]*"2 2ot
22a-1 \/EF (a + %) f(u)

o (rs)2e Ta+D) ™
f+°° fu) wa(u,r,s)dv,(u)
0

kernel w, is symmetric in the variables u, r, s and we have

f+°° wa(u,r,s)dv,(u) = 1. (1.8)
0

Proposition 1.1.3. For every f € L'(dv,) and for r € [0, +oo], the function t4(f)

belongs to L'(dv,) and we have

f (F)(E) dvals) = f AehEn): (1.9)
0 0

Proof. From relation (1.8) and using Fubini-Tonelli’s theorem, we obtain that for

24



“CHAPTER 1. HANKEL TRANSFORM

f e LY(dv,) and for r € [0, +oo[,

J:OO ﬁm f(u) wa(u,r,8)dv,(u)
o 7y d a d o
L vm(ﬁ wmr@v@)vw

1 f1l,v, < +oo.

\ﬂ|ﬂ@@ﬁw@ o(6)

INA

This shows that 7%(f) belongs to L!(dv,) and

f - f ) 0,7, 5) dva ) dvas)
0 0

a\**, 1, d(X da
ﬁ mﬂﬁ w@r@v@)wm

L £ dva(u).

ﬁ E(F)(S) dva(s)

Corollary 1.1.1. Vr,s € [0, +oo[ and VA € C, we have

(ja(1.))(6) = jalAP) ju(As). (1.10)

Proof. Letr, s € [0, +oo[. Then, we get

(ja(A))(6) % fo ' ja (A V2 + 52 + 2rs cos 0) (sin 0)** dO
= % fo ’ i (VANZ + (As)2 +2(Ar)(As) cos 0) (sin 0)** 4O

Ja(AT) Ja(AS).

25



“CHAPTER 1. HANKEL TRANSFORM

Proposition 1.1.4. For every f € LP(dv,), p € [1, +oo] and for every r € [0, +oo], the

function t¢(f) belongs to LP(dv,) and we have

77 e < 1 fllp v (1.11)

Proof. Let f € LP(dv,), p € [1, +o0].

o If p = +oo, then for all 1, s € [0, +oo[, we have

T (f)(s) = —71;(?(; 1) %) fo ’ f( V2 + 52 + 2rs cos 6) (sin 6)** d6
Then,
N Ia+1) ™o >
< oy, ————————— 60)“*do
um®|<nﬂ,anr@+9ﬁkml>
I'a+1) 11
= 00,1, —B _, =
|myawﬁ@+9 (a+1,)
= fllen.

This shows that the function 7¢(f) belongs to L*(dv,), and

T Moo < M1 lloov,-
o If p =1, we know that

ﬁm®=ﬁ‘ﬂW%MMWMW

26



“CHAPTER 1. HANKEL TRANSFORM

According to Fubini-Tonelli’s theorem and by relation (1.8), we have

fo £ ) ( fo wa(u,r,swva(s))dva(u)

fo )] dva)
T

77 Ml

IA

e If p € (1, +00) and g is the conjugate exponent of p. According to Holder’s

inequality and relations (1.7) and (1.8), we obtain

2(F)s)]

IA

f G0 a1, 5)hont, 7,5)} dvala)
0

1 1

(fm lfu)Pwa(u,r,s) dva(u))p (f+°° w,(u,r,s) dva(u))t_].
0 0

1
P

( fo P ns) dva(u)) .

IA

Now, using Fubini-Tonelli’s theorem, we have

eI, < fo fo QP waltt, ) dvals) dva(i)

p o 7ty dﬁ( da
fo £ ( fo walt 1,5) v <s)) val)

1FIE, ..

27



“CHAPTER 1. HANKEL TRANSFORM

1.1.2 Convolution product for the Bessel operator

Definition 1.1.2. The convolution product of f, g € L'(dv,) is defined by

f+30) L 6 g5) dva(s),

ﬁ £(5) T(9)(S) dva(s).

Theorem 1.1.2. Forall f,g € L'(dv,), f » g € L'(dv,) and we have

I1f * &llve < f Tl lIglhv,-

Proof. According to Fubini-Tonnelli’s theorem and relation (1.11), we have for

every f, ¢ € L(dv,)
LMVwmwmns‘ﬁmﬁmwm@MwmmWMﬂ
:‘f|wwf wmwmw%M®
0 0
=‘f SO fll v, dva(s)
0
<

ummﬁ 19(6)] dva(s)

Then, the function f = ¢ € L'(dv,) and

I1f * &llve < N flhwlIglhv, -

28



“CHAPTER 1. HANKEL TRANSFORM

Theorem 1.1.3. For all f € LY(dv,), ¢ € LP(dv,) such that p € [1,+[, f*g €

LP(dv,). Furthermore,

”f*g”p,va < ”f”l,vn ”g”p,va-

Proof. Let f € LY(dv,), g € LP(dv,), p € [1,+co[ and let g be the conjugate exponent

of p. So, from Holder’s inequality, we obtain

IA

If * g L ()6 dva(s)

ﬁ MG ()6 dva(s)

1/p

IA

WMM(E WMW@mwmwﬂ

Using Fubini-Tonnelli’s theorem and relation (1.11), we get

« ol rla - e p
ufmw<nmwﬁ|mﬂ£ m@mwmﬂmw>

+00
wmyftmwﬁ@mMM@
0
AR gl

FIE , gl

IA
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“CHAPTER 1. HANKEL TRANSFORM

Theorem 1.1.4. For all f € LP(dv,), § € LI(dv,) and for all p,q,r € [1, +00] such
that  + o =1+ 1, the function f + g belongs to the space L'(dv,) and we have the

following Young’s inequality.

ILf * 8llrve < 1 fllplIgllgve- (1.12)

1.2 Hankel transform

The main aim of this second part of the first chapter is to introduce some notations,

properties, definitions and basic facts that will be used throughout this work.

Definition 1.2.1. The Hankel transform 3, is defined on L*(dv,) by

AN = f F()ja(A dva(h), VA€ R

where j, is the Bessel function given by (1.1).

Proposition 1.2.1. 1. The Hankel transform 2, is linear, continuous from

L'(dv,) onto L=(dv,), and

71 = sup [17a(lleoy, = 1.

£l <1

2. Forall f, g € LY(dv,), we obtain the following transfer formula

fo H(f)N) §(A) dva(A) = fo f(r) A(Q)(r) dv,(r). (1.13)
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Proof. 1. Let f, g € L'(dv,). Then, from Definition 1.2.1, we get:
Haf +BRN) = a A(FYA) + B AN, YAER
and by relation (1.4), we have

DD < fo O aA)] dva(r)

f ) dva(r)
0
flhoe.

IA

So, the Hankel transform .77, is linear, continuous from L!(dv,) onto L= (dv,,),

and

Il = sup [[7(flleo, < 1.

£l <1

Let the function f defined by

f(f’) — ,,204+1e—r2

Itis clear that f € L'(dv,) and ||fll1, = 1. Then, for every A € R, we get

AP = 27 [ e,
- k Az ‘ ” 2 2a+2k+
- Z 'F(a+k+1)( )fo e dr
S G VA 1 W
oz+k+1)( ) j(: e et

_ i; (-1)F (AZ)

4 .

D’J

Il
o
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Thus

1A, =1=f

Lvg

Hense, we obtain

71 = 1.

2. Let f, g € L'(dv,). Using Fubini-Tonelli’s theorem, we get

\fo‘ (fo‘ f(i’)fa()\r)dva(r))g(/\)dva(/\)
f f() (f 8(/\)ja(/\r)dva()\))dva(r)
0 0

fo £) A0 dvar).

fo AFN) () dva(A)

|
Proposition 1.2.2. 1. For every f € L\(dv,) and r € [0, +oo[, we have
AT ()A) = ja(Ar) A (f)(A), YA ER. (1.14)
2. For every f € L\(dv,), we have
Ha(f * 8)A) = H(f)(A) - Au(Q(A), YAER (1.15)

Proof. 1. Let f € L'(dv,). Then, from Proposition 1.1.4, the function 7(f) €

L(dv,). By using Fubini-Tonelli’s theorem and relation (1.10), we have for
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every A € R:

(17 (f))(A)

fo E(F)E) jalAS) dva(s)

fow ([]w fW) wa(u, 1,5) dva(u)) ja(As) dvy(s)

f ) fu) ( f ) Ja(As) wa(u, 1, 5) dva(S))dva(u)
0 0
L S (W) T (ja(A)) (1) dva(u)

jo‘ f() ja(AY) jo(Au) dv,(u)

Ja(Ar) H(f)(A).

2. From Theorem 1.1.2, for every f, g € L!(dv,), the function f = ¢ € L}(dv,), and

by using Fubini-Tonelli’s theorem, we obtain

Ho(f+ Q) = j;(f*g)(r)ja(/\r)dva(r)

fo ( fo T?(f)(S)g(S)dva(S)) Ja(AT) dva(r)

f ¢(6) ( f ) D) dva<r>) ()
0 0

fo 8(5) Ao (TS (f))(A) dva(s)

fo 9(6) jaA8) Al FA) )

Ho() D) ALL(A).
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Theorem 1.2.1. 1. (Inversion formula for the Hankel transform)

Let f € LY(dv,) such that s,(f) € LY (dv,), then we have
f(r) = j; F(f)A) Ja(Ar) dva(A) = F(A())(T)  ae. (1.16)

2. (Plancherel’s formula)
The Hankel transform 7 can be extended to an isometric isomorphism from

L?(dvg) onto itself, and we have
1722w, = |l fll20,- (1.17)

3. (Parseval’s formula)

For all f, g € L*(dvg), we have

fo f(3(r) dva(r) = fo Ho()A)A(Q)(A) dva(A). (1.18)
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Proposition 1.2.3. 1. For every f € L*(dv,) and r € [0, +oo[, we have

Ao (T () (A) = ja(ANAL(f)(A), YA ER (1.19)

2. Forevery f € LY(dv,) and g € L*(dv,,), the function f * ¢ belongs to L*(dv,) and

we have
Ho(f * ) = Ho(f)H0(8) (1.20)

3. Let f, g € L*(dvy). Then f * ¢ € L*(dv,), if and only if ,(f)#(g) € L*(dv,)

and we have

Ha(f *+ 8) = Ha(f)H(Q),

Moreover,

f If*g(r)IZdva(r)=f I (HDPIANE dva().  (1.21)
0 0

where both integrals are finite or infinite.

Remark 1.2.1. For every f, ¢ € L*(dv,) and r € [0, +co[, we have

T (f+8) =7T(f)*g=f*7;(9) (1.22)
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Chapter

Hankel Wavelet transform

The Wavelet Transform is a mathematical technique used to analyze signals at
multiple scales (or resolutions). Unlike the Fourier Transform, which only gives
frequency information, the Wavelet Transform provides both time and frequency
localization. This makes it especially useful for analyzing signals that change over
time.

In wavelet transform we used different window size for different frequency
components. Low scale (small window size or small time scale) is used for higher
frequencies and higher scale (large window size or large time scale) is used for
low frequencies.

Our investigation in this chapter is to define and study the Hankel wavelet
transform and we establish several basic properties for this transform. We also
prove that Ti (L*(dv,)) is a reproducing kernel Hilbert space with kernel function

defined by

K (@1 @, 7)) = Ciw T )@n, (@), @ r)eR, xR,;

where ¢, , is the family given by relation (2.8), and C, is the admissibility condition

a’

for the Hankel wavelet transform given by (2.10).
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In the following, we denote by

® [, the measure defined on R}, X R, by

di1a(a, 1) = dva(a) dva(r). 2.1)

o [P(du,), 1 £ p £ +00, the Lebesgue space on R, X R, with respect to the

measure (i, with the [P-norm denoted by || - ||, -

e (-|-),, be the inner product on L*(du,) defined by

s =f0 f £0,) 3@ dpa(a, )

2.1 Dilation operator

For every a € IR}, the dilation operator DY is defined for every measurable function

Y on R, by
D(W)(r) = a*(ar), Vr € [0, +oo].

Then, we have the following properties:
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Properties 2.1.1. 1. For every i € L*(dv,),

D@2, = 2, - (22)

2. Forall , ¢ € L2(dv,),
D) | D), = @ | DY@ (23)

3. For every € L*(dv,),
IDE@)P = a1 DSy, (24)

and

VD:(gl) = a1 D (). (2.5)

4. For every ¢ € L2(dv,),
DY) = DY), (2.6)

5. For every i € L*(dv,),
H(D W) = DS (A)). 27)
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Proof. 1. For every ¥ in L*(dv,), we have

DY, fo DR dva(r)
— 2a+2 i Zd

a fo W@r) dva(r)
f PO dva(s)

0

1113, -

2. For every ¢, ¢ in L*(dv,), we get

(i) 10), = [ Di@IE0I0

a*+! ‘fo gb(ar)% dou,(r)

[ sl

(v 1D5)

Va

3. For every ¢ in L*(dv,), we obtain

ID;@)NF = ™ @l

— a2a+2|¢(ar) |2

= a™'Di([YP)(n),

and

Di(lph(r) = Ja*y(ar)|

't \flp(an)]

_atl
2

D (VIgl) (.

= a
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4. Lety € L*(dv,). So, by Definition (1.1.1), we have

(D% (1)) (s) fat+D ) fo ' DY) ( V2 + 52 + 2rs cos 0) (sin 0)** dO

A [ T ) o o
= a*"rg () (as)

Dg (7 (1)) (5)-

a+1

5. Let ¢ € L*(dv,), then

ADEGNN) fo DA (A dva(r)

R ‘[0 - W(ar)ja(Ar) dvy(r)

= [ e (39 i

- 7 i(g)

= DA

2.2 The Continuous Hankel Wavelet transform

The main aim of this part is to define the Hankel wavelet transform T} and to prove
a Plancherel’s formula and a reconstruction formula for this transform. We also

prove that the function Tj( f) belongs to L (du,), p € [2, +oo] for every f € L*(dv,).

Definition 2.2.1. For every € L*(dv,), the family y2,, (a,7) € R}, X R, is defined by

Yar(s) = 77 (D () (5)- (2.8)
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By relations (1.11) and (2.2), we have

195, < 1iPll2,- (2.9)

Definition 2.2.2. A nonzero function ¢ € L*(dv,) is said to be an admissible Hankel

wavelet if

0<C¢=%jwﬂﬁawww%§<+m. (2.10)
0

where
1
Cp = ————.
2¢T(a + 1)

Definition 2.2.3. Let 1 be an admissible Hankel wavelet. The continuous Hankel wavelet

transform Ty is defined in L*(du,) by

@ = [ OV @R XR,,

where Y3, is given by relation (2.8).

The continuous Hankel wavelet transform can also be written as

f* D)) (2.11)
f 1 Ve (2.12)

T3, 1)
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Proposition 2.2.1. Let i be an admissible Hankel wavelet. Then, the continuous
Hankel wavelet transform Tf;} is a bounded linear operator from L*(dv,) onto L™ (dyi,)

and we have

”Tl(;(f)”omm < ||f||2,va||77b”2,va- (213)

Proof. Let ¢ € L*(dv,) be an admissible Hankel wavelet. Then, from Cauchy-

Schwarz’s inequality and relations (2.9), (2.12) , we obtain

Ty (@l = Kflgg vl
< g vl fll2,
< Al lIf 12,

Then

1Ty (Moo < Ml M1 12,0, -

The Hankel wavelet transform T3 satisfies the following properties:

Theorem 2.2.1. (Plancherel’s formula) Let Y be an admissible window function in

L2(dv,), then we have

[ [ mpentdnen=c, [ iforann @
0 0 0

Proof. From relations (1.21), (2.11) and using Fubini-Tonelli’s theorem, we get
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fo f IT8(F)(a, P dpsala, 7

fo fo |f # DAY dva(a) dva(r)

fo f AN DPIADE D) dvaa) dva(D)

f FAGL ( f (D @) DP dva(a)) dva(A). (2.15)
0 0

Now, using relations (2.4) and (2.7), we get

+00 +00
\ﬁ L

[ LD (1w Wdvaa)
S| A
fo @) (5)av@

e d
- o [ bawfol

D444 () (V)] dva(@

2
HDE@)W)| dva(a)

Then, we get

2
HA(DEW)N)| dvala) = Cy. (2.16)

—+00
«L

Then, from Plancherel’s formula for the Hankel transform H,, and by combining

relations (2.15) and (1.16), we obtain

N EAGI
NCHT

”T:;(f)”Z,pa
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Corollary 2.2.1. (Parseval’s formula) Let 1 be an admissible Hankel wavelet in
L*(dv,). Then, for all f and g in L*(dv,), we have

+00 L 1 +00 oo i _
| rosdao=z [ [ ToenTeendwen. @)

Proof. Using Polarization identity and Plancherel’s formula for the Hankel wavelet

transform (2.14), we have

f f T3 (), VTS @@ 1) daala, 1) = CTLAIT
= (||T“ (f) + TSR, — ITS(F) = TSQIB,, +ITS(H) +iTSQIB,, — TS = iTSQIE,.)
= ;L(||T;';<f+g>||2,ya —ITS(F = QB + ITS(f + iR, — ITS(f = i)IB,.)
= Cy (30 + IR, ~1f = 1B, +1F + gl ~1f - igiR,, )
= CylfIDn,

+00

=G ) f(1)g(r) dv,(r)

Theorem 2.2.2. (Reconstruction Formula) Let Y be an admissible Hankel wavelet in
L*(dv,) such that [\| is an admissible window function. Then, for every f € L*(dv,),

we have

1 B o a
=g [ [ moenmoduen

weakly in L*(dv,).

Proof. From Corollary 2.2.1 and Fubini-Tonelli’s theorem, we have for all g in
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L*(dv,)

Flgh, = f FS)ZE) dvals)
_ 1 f f T3 (F)(a, TS, 7 diaala,

-z [ mn @il duan.

which gives the result.

Remark 2.2.1. Using the fact that T( f) belongs to L*(1,) and for almost a € R?,,
the function r — Ti (f)(a,r) = f+Dg (J)(r) belongs to L*(dv,), we get from relations
(1.21) and (2.11),

A(TYP@ NN = 2 AP AD) @.18)

Proposition 2.2.2. Let ¢ be an admissible Hankel wavelet in L*(dv,). For every

function f in L*(dv,), we have

1. Forrg >0,
Ty (D) @) =75, (Ty(H@)) ), @ eR, xRy (219)
2. For A > 0, we have

(D)@, 7) = () (%,Ar), (@, € R, X R,. (2.20)
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Proof. 1. From relations (1.22) and (2.11), we have

Tyt (@) = i (f)* Di)(r)
T2 (f * D)) (r)

T (Ty ()@, ))(r)

2. Using relations (2.3), (2.6), and (2.12), we have

Ty(D3f)a,7) (DY) | Dy (),
(F 1 DDA,
(175D,

TS(f) (%,/\r), (@,7) € R XR,.

Theorem 2.2.3. Let 1 be an admissible Hankel wavelet in L*(dv,). For every

f € L*(dv,), the function Ti( f) belongs to LF(d,), p € [2, +00] and we have

1 1=
IS My < Colf el

Proof. For p = 2. The Plancherel’s formula for the Hankel wavelet transform (2.14)

gives
1Ty (M2 = Collfll2,

For p = +o0 and by relation (2.13), we have

1Ty (NMlooa < M M2 10120, -
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From Riesz-Thorin’s interpolation Theorem [36], we get for every p € [2, +o0]

1-2 2
TS Alleo e ITSCONS,,,

1 1-2
C Il 1,

IN

TSl

IN

2.3 Reproducing kernel Hilbert space Tf;(Lz(dva))

In this section, we prove that Tz(Lz(dva)) is a reproducing kernel Hilbert space

with kernel function defined by (2.21) [32].

Definition 2.3.1. (Reproducing kernel)
Let H be a Hilbert space of functions defined from an arbitrary set X into C issued with
the inner product (- | -)y. Let k be a function defined from X X X into C, we say that k is a

reproducing kernel for H, if

1. For every y € X, the function x — k(x,y) € H.

2. Forevery f € Hand for every y € X, f(y) =f | k(-, y))u.

Definition 2.3.2. (Reproducing kernel Hilbert space) A reproducing kernel Hilbert space

is a Hilbert space H with a reproducing kernel whose span is dense in H.
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Proposition 2.3.1. (Reproducing kernel) Let { be an admissible Hankel wavelet in
L*(dv,) and f € L*(dv,). Then, Tf;}(LZ(dva)) is a reproducing kernel Hilbert space

with kernel function

1
K¢((a’, r); (a, 1)) C_w Tf;j(%,,r,)(a, r) (2.21)
1 a a
= C_¢<llba,7 | Ilba’,r’>Va

1 [ ——=
- C_wfo Yar,r (1) P (1) dpa(r),

1
= C_lp lpa’,r/ * Da(l;b)(r)

Moreover, the kernel ky is pointwise bounded and

IIIPIEM
Cy

Ky (@', 7'); (a,7)| < Y@, r); (@ r) e R, xR,.

Proof. For F € T} (L*(dv,)), there exists a function f € L?*(dv,) such that

F(a,r) = Ty(f)(a,7).

Then, from Corollary 2.2.1, we have

F(a,r) Ty(f)a,r)

= {f 1Yz

- Ci¢<Tg<f>|Tz<¢;‘,r>>ya
(04 1 [0 o

= (TP 5T

= (Ty() T kp((@, 7); (2 ))ua-

This shows that ky((a,7); (@', 1")) = C%Ti(l,bg‘m)(a’, 1) is a reproducing kernel of the
Hilbert space T, (L*(dvy))-

48



“*CHAPTER 2. HANKEL WAVELET TRANSFORM

Finally, for all (a,7), (a’, ") € R} xR}, we have from Cauchy-Schwarz inequality

and relation (2.9) that

e,

<
Cy

1
lky((a, 7); (@, 7))] = c w2, 198 ),
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Chapter

Heisenberg-type uncertainty principle for Tf;

The term uncertainty principle appeared in 1927 by Werner Heisenberg [18] play
an important role in harmonic analysis. For the Hankel wavelet transform several
uncertainty principles are proved.

The goal of this chapter is to prove a Heisenberg-type inequalities for this transform.

3.1 Heisenberg uncertainty principle for 7,

The Heisenberg-type uncertainty principle for the Hankel transform has been

proved by Rosler and Voit [31], it states that for every function f € L*(dv,)

17 fll2 NS (Ollo, 2 (@ + DI, 3.1)

In [25], Ma extended the previous inequality to a general form of the Heisenberg’s
uncertainty principle: for s, t > 0, there exists a constant C > 0 such that for every
f € L*(dv,), we have

1P AT IV A(DIE > Cllflly,. (32)

Later, in his paper [35], Soltani gave explicitly the constant C in the case s > 1 and
t > 1. More precisely, he established the following theorem (a similar result had

been first given by Rassias [30] for the classical Fourier transform).
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Theorem 3.1.1. Assume s > 1and t > 1, then for every function f € L*(dv,),

IIrSfIIS” ISP > (@ + D) flla,, (3.3)

with equality if and only if s = t = 1 and f(r) = de™""/? for some d € C and b > 0.

3.2 Heisenberg uncertainty principle for Tf;

In [39], the author has established Heisenberg-type inequalities for the usual
wavelet transform. These results are inspired from [34]. With a more general
setting, we investigate in the following similar Heisenberg-type inequalities for

the Hankel wavelet transform.

Proposition 3.2.1. Assumes,t > 0 and let 1 be an admissible Hankel wavelet in
L*(dv,). Then, there exists a constant C = C(a, s, t) > 0, such that for every function
f € L3 (dv,).

IPTSOIES, NI, = C (o)™ Wflln (34)

In particular, if s,t > 1 the constant C is given by C = (a + 1),

Proof. Let us assume the non-trivial case that both integrals on the left-hand side
of (3.4) are finite. Applying the Heisenberg-type inequality (3.2) for the Hankel

transform to the function r = Ty (f)(a,r), we get for alla € R},

I T3(f) II”’ A" «%”(T“(f))ll”’ > ClITy (N2, -
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So

ryoe | dV“OO)t (Ll:+m'%%|5%3(7ﬁ(f)ﬁb'))(A)r dva<A>)ﬁh

+00
zczf
0

Thus, integrating the relation (3.5) over a, and applying Holder’s inequality and

e

T3(f)(a, r)r dva().  (35)

Plancherel’s theorem for the Hankel wavelet transform given by the relation (2.14),

we obtain

+00 ~+00
0 0

>c [T [ o] an@ino

= CITH (NI, = C*CyllfIl5,

On the other hand, by the relation (2.18) and the admissibility condition (2.10), we

get

[ [ (o) @f aei.o
[ laonf (o [ Paw @) %) s

CyllA° (NI, - 3.7)

Then, the result follows by replacing the last equality (3.7) into (3.6).
For the case s,t > 1, we apply the Heisenberg-type uncertainty principle given by
relation (3.3) to the function r Tf; (f)(a,r), and the remainder of the proof is the

same. ]
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Proposition 3.2.2. Assume s,t > 0 and let 1 be an admissible Hankel wavelet in
L*(dv,). Then, there exists a constant C = C(a, s, t) such that for every function

f € L*(dv,)

I FIE I TSNS, >c(\/caM(|%¢|2)(2t)) flo,  38)

where M denotes the classical Mellin transform defined by

MO = f ) 4

In particular, if s,t > 1, then C = (a + 1)5 and we have equality if and only if

s=t=1and f(r) = de*"/? for some d € C and b > 0.

Proof. Let us assume the non-trivial case that both integrals on the left-hand side
of (3.8) are finite.
Using Fubini’s theorem, relation (2.18) and Plancherel’s theorem for the Hankel

transform (1.17), we have

f - f 2T (), N Pdva(@dva(n)

dv,(r) | dv,
foa(f |T(f)ar)| v(r))v(a)

e 2t o 2
fo a ( fo [ A(T (@, )W) dva(A))dvm)

Ca f PP ( f T A

#W)(5)
By a change of variables in the inner integral, we get

TSI,

d“) dva(A).

TP, = c f A”%(f)@)ﬁ( f PRGN zm)dvam
M(A)P)(2t) TN APIB,. (3.9)
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Thus,

I TGS, = (e (R @) I IS NP

We get the result by applying the Heisenberg-type inequality for the Hankel
transform (3.2).
For the case s,t > 1, we apply the Heisenberg-type inequality for the Hankel

transform given by the relation(3.3). ]

In [12], the authors have proved Heisenberg-type uncertainty principle for the
windowed Hankel transform involving time and frequency variables. In this part,
we investigate similar results for T} with a different approach and more general

settings.

Theorem 3.2.1. Let s, t > 0 and ¢ be an admissible Hankel wavelet in L*(dv,). Then,
there exists a constant C = C(a, s, t) > 0 such that for every function f € L*(dv,), we

have

PTIE ITSNE, > (e MuampE) (Y] 1k, 610

Moreover, if s,t > 1, then the constant C is given by C = (a + 1) .

Proof. From the relation (3.9),

T TN, = (e MUa@RED) IPTSOIEL IAIE,

The result follows from the relation (3.4). [

In the following Corollary, we give Heisenberg-type uncertainty inequality

involving a single condition on the simultaneous time-frequency behaviour.

54



“*CHAPTER 3. HEISENBERG-TYPE UNCERTAINTY PRINCIPLE FOR Tﬁj

Corollary 3.2.1. Assume s,t > 0 and let 1 be anadmissible Hankel wavelet in
L*(dv,). Then, there exists a constant C = C(a, s, t) > 0 such that for every function
f € L*(dv,), we get

§+t

G (%MM%@%wfw$@$MMQm

[@nrrsnlf); e nrrol;

Moreover, if s, > 1, the constant C is given by C = (a + 1),

Proof. The result follows from Theorem 3.2.1 and the fact that

(@, r)I'T (f)ll;[la llGa, NI'T, (f)ll”‘ > ||IrTy( f)llg*[[ la* T“(f)lls”

As a consequence of this corollary, we have the following local-type uncertainty

principle.[28, 29]

Corollary 3.2.2. Let s > 0 and 1 be an admissible Hankel wavelet in L*(dv,). Then,
there exists a constant C = C(s, &) > 0 such that for every subset L. of R, X R, with

finite measure 0 < (L) < +oco and for every function f € L*(dv,), we have

(2 Va
VB Wy, NPT Pl
C (caMUAWIPES)C,)’

=Ty (N2 <

Moreover, if s > 1, the constant C is given by C = (a + 1)2.

Proof. From the relation (2.13), we have

”XZTg;(f)”Z,‘ua < \/‘ua(z ” (f ”ooya
VDNl fll2v,-
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Y
According to Corollary 3.2.1 with s = ¢, we get
116, PFT (2,
11l < . ,
C(caM(A(W)P)(25)Cy )"
thus,
) Vi@, -
=TS (Pllg, < @ DFT Al

CleaMUAWIPS)Cy)’
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