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ABSTRACT

In this work, we present the behaviour dynamics of a fractional-order chaotic satellite
system, including phase portraits, equilibrium points, dissipative measurements and
Lyapunov exponents. These tools confirm the presence of chaos and provide insight
into the dynamic behavior of the system under consideration. Furthermore, we con-
struct a feedback control to ensure the stability of this system. Finally, we present the
complete synchronization of two identical fractional-order satellite systems using an
adaptive control technique. Numerical simulations are used to test and validate the

proposed control and synchronization methods.

Keywords: Chaotic satellite system, feedback control,adaptive control, Lyapunov

function, fractional derivative.
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RESUME

Dans ce travail de ce mémoire, on va étudier le comportement dynamique d'un systéme
satellitaire chaotique d’ordre fractionnaire a savoir les portraits de phases, les points
d’équilibre, les mesures dissipatives et les exposants de Lyapunov . Ces méthodes
confirment la présence de chaos et offrent un apercu du comportement dynamique du
systeme considéré. De plus, nous construisons un feedback controle pour garantir la
stabilité de ce systeme. En fin, nous présentons la synchronisation compléte de deux
systemes de satellites identiques fractionnaire grace a la technique de controle adapta-
tive. Des simulations numériques sont illustrés pour tester et validité les méthodes de

controle et de la synchronisation proposées.

Mots clés : Systeme chaotique satellitaire, feedback controle, controle adaptative

Fonction de Lyapunov, dérivée fractionnaire.
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GENERAL INTRODUCTION

Recently, study on the dynamics of fractional differential systems has attracted interest
of many researchers. Many dynamical systems have been described using fractional
order differential equations, which often exhibit chaotic or hyper-chaotic behavior such
as : Chua circuit [1], Duffing system [2], Chen system [3], Lii system [4] and Rossler
system [5].

Chaos control and synchronization in fractional-order systems start to attract in-
creasing attentiondue to its many practical applications in several fields such as secure
communication and control processing [6, 7].

Satellite systems play a very important role in the development of space technologies
and scientific research, telecommunications and their applications in civil and military
states.

Recently, the study of chaotic satellite systems has attracted considerable interest
with notable contributions from researchers [8, 9, 10, 11, 12]. For example, in ref
[13], Kumar et all studied synchronization of chaotic satellite systems with fractional
derivatives analysis using feedback active control techniques

In this work, we will mainly focus on the research paper of Kumar et all [13], we
will present the chaotic behavior of a fractional-order satellite system. First, we present
the mathematical model that describes this system and its characteristic tools, such

as the chaotic attractor, equilibrium points, dissipativity and Lyapunov exponents.

1



Introduction

In addition, we use feedback and adaptive control techniques to control chaos and
synchronize these systems.
This work is structured as follows:

The first chapter presents some basic definitions of dynamical systems.

The second chapter is devoted to fractional calculus.

In the third chapter, we present the description of the fractional satellite system and
its chaotic behavior, the control of chaos in this system, and finally the synchronization
of two identical satellite systems using numerical simulations.

Finally, a general conclusion is presented at the end of this work.



CHAPTER 1

CHAOTIC DYNAMICAL SYSTEMS

In this chapter, we recall some general concepts regarding chaotic or hyperchaotic phe-
nomena that appear in deterministic dynamical systems. We will begin by defining
the concept of dynamical systems, then discuss other mathematical notions, including
attractors, the basin of attraction, stationary points, the Poincaré section, and some
stability concepts. Finally, we will present the main characteristics of chaotic or hyper-

chaotic behavior

1.1 Introduction to the Theory of Dynamical Systems

There are several systems studied in sciences such as physics, chemistry, biology, etc.,
which are deterministic systems because their evolution over time can be calculated
and is entirely determined by their state at a given moment.

For example, we can mention population growth, the evolution of reactant con-
centration in a chemical reaction, etc. The description of these systems is done using
numerical quantities, often called variables or observables.

Thus, a dynamical system can be defined as a description of a physical phenomenon

that evolves over time (continuous systems) or concerning another variable (discrete

3



Chaotic Dynamical Systems

system).

This description requires a graphical representation: each state of the system is
associated with a vector x in a vector space called phase space.

From a mathematical perspective, dynamical systems are classified into two cate-

gories:
e Continuous dynamical systems.

e Discrete dynamical systems.

1.1.1 Continuous Dynamical Systems

A dynamical system has two aspects: its state and its dynamics, that is, its evolution
over time. A continuous dynamical system is defined as any system of first-order

differential equations given by

x=%=F(x,t,v), xeUCRY, veVCR. (1.1)

The system (1.1) is called a dynamic system. U is the phase space, R? is the parameter

space and x is called the state vector.

Example 1.1.1 The Lotka-Volterra equations describe the interaction between a prey population

x and a predator population y:

E:ax—ﬁxy
W sy -

where:

e x represents the prey population,

o y represents the predator population,

e « is the natural growth rate of the prey,

e [ is the predation rate,
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e v is the natural death rate of the predator,
e 0 is the efficiency of converting consumed prey into predator reproduction.

These equations lead to oscillatory dynamics, where the populations of both species fluctuate

over time.

1.1.2 Descret dynamical systems

A discrete dynamic system is defined as any system of recurrent algebraic equations
given by:
Xk+l = F(Xk/ [U), Xk eUC ]Rn/ (12)

where F is the recurrence function, X; € U C IR" is the state vector at time #, u is the

parameter vector, and k € IN.

Example 1.1.2 A discrete-time version of the Lotka-Volterra predator-prey model is given by

the recurrence equations:
Xns1 = Xn(L + a = Byn),
Y1 = Yn(1 =y + Oxy).

where:

o x, represents the prey population at time step n,

Y, represents the predator population at time step n,

a is the natural growth rate of the prey,

B is the rate at which predators consume prey,

y is the natural death rate of the predators,

0 is the efficiency of converting consumed prey into predator reproduction.
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1.1.3 Autonomous or non-autonomous systems

Definition 1.1.1 A differential system is said to be autonomous if its evolution law does not

depend on time.

Example 1.1.3 As an utonomous system, we take the following system:

i _
5’

ay _ _

ar -

x(to) =1, y(ty). =0

On the other hand, the differential system is non-autonomous if its evolution law de-

pends on time

Example 1.1.4 The following system:

X et
5
y__

ar -

x(to) = 1, y(to) = 0.

is a non-autonomous system.

1.2 Flow

Consider the autonomous dynamical system:

Z_’; = f(x) xeUCR" (1.3)

The flow of the differential system (1.3) is called the one-parameter family of mappings

{(Pt}te]R from U into itself, defined by:

Pi(x0) = Pi(t, x0) = x(t, xp). (1.4)

6
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where t € R and x(t, x¢) is the unique solution of the Cauchy problem.
The following theorem states that the solutions of a differential system depend dif-
ferentiably on the initial conditions and that the flow is a one-parameter group of

diffeomorphisms.

Theorem 1.2.1 The mapping ¢ is differentiable on U. The flow {cpf} x satisfies the following

te

properties:

1. ¢ = Id, (1d is the identity of U ).

2. ¢y 0Py, = Ppy4p,, Forall t, 1, € R (Composition law).

From the previous theorem, we deduce that for each t € R, ¢ is a diffeomorphism of

U and that:
(P = Pt (1.5)

1.3 Attractors and basin of attraction

1.3.1 Attractors

An attractor is a geometric object which all trajectories of points in the phase space

converge. Mathematically, the set A is saud to be an attractor if:
1. Ais a compact and invariant set under the flow ¢, i.e; ¢(A) = A, for all ¢.

2. For every neighborhood U of A, there exists a neighborhood V of A such that
every solution X(t, Xy) = ¢(Xp) will remainin Uif Xy € V

3. NPpi(V) = A, fort > 0.

4. There exists a dense orbit in A.

1.3.2 Different Types of Attractors
There are two types of attractors: regular attractors and strange (chaotic) attractors.

7
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1. Regular attractors: Regular attractors characterize the evolution of non-chaotic

systems and can be of three types:

e Fixed point: It is the simplest attractor.
e Periodic limit cycle: It is a closed trajectory that attracts all nearby orbits.

e Quasi-periodic: represents motions resulting from two or more frequencies,

sometimes referred to as a "torus’

_+_
| pariody
Cycle limite Tore

Figure 1.1: Fixed point, Periodic limit cycle and Torus.

2. Strange attractors: Strange attractors are complex geometric structures that char-

acterize the evolution of chaotic systems.

A chaotic attractor is characterized by:

1. Sensitivity to initial conditions : Two initially close trajectories on the attractor
always diverge over time, indicating chaotic behavior.

2. Fractal and non-integer dimension : The attractor has a fractal structure, which
explains why it is called "strange."

3. Zero volume in phase space : The attractor occupies no volume in the phase

space.
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Figure 1.2: Chaotic attractors of Finance system.

1.3.3 Basin of attraction

Definition 1.3.1 The basin of attraction B(A) of an attractor A is the set of points whose

trajectories asymptotically converge to A; i.e;

B(A) = [ oW, (1.6)

t<0

1.4 Equilibrium points

In general, nonlinear differential systems cannot be solved explicitly. Therefore, we
perform a qualitative analysis of their solutions. This study begins with finding the
equilibrium points of differential equation (1.1). At these equilibrium points, the ve-

locity is zero.

x=0. (1.7)

The equilibrium points, which we denote as xsatisty the following equation:

F(xe) = 0. (1.8)

In the phase space, an equilibrium point is represented by a single point. Its value is
determined by the chosen initial condition. Moreover, for different initial conditions,

we may find multiple equilibrium points. Additionally, these points can be either stable

9
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or unstable, depending on whether nearby trajectories converge or diverge.
Example 1.4.1 Consider the following differential equation:

d’x _dx
ﬁ + 3a +2x = 0.
S . . dx
We rewrite this as a first-order system by defining y = e

So
& _
ar Y
dy_

pri —2x — 3y.

An equilibrium point E(x.q, Ye,) satisfies:

The only equilibrium point is E(0, 0).

1.5 Stability of equilibrium points

The notion of stability in a dynamical system characterizes the behavior of its trajectories
near equilibrium points. Analyzing the stability of a dynamical system allows us to
study the evolution of its state trajectory when the initial state is very close to an
equilibrium point. Lyapunov’s stability theory applies to any differential equation.
This concept implies that the solution of a differential equation, when initialized near

an equilibrium point, always remains sufficiently close to it.

Definition 1.5.1 (Stability) The equilibrium point x., of system (1.1) is stable in the sense of
Lyapunov if and only if:

Ve > 0,36 > 0, such that ||xo — x|l < 6 = [Ix(t; x0) — xell <€, VYt 2> to. (1.9)

Definition 1.5.2 (Attractivity) The equilibrium point x,., of system (1.1) is attractive if and

10
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only if:
Ve > 0,46 > 0, such that ||xg — xell < 6 = tlim |Ix(t, x0) — Xeqll = 0. (1.10)
—+00
Definition 1.5.3 (Asymptotic stability) The equilibrium point x., of system (1.1) is asymptot-
ically stable if it is both stable and attractive.

Definition 1.5.4 (Exponential stability) The equilibrium point x,, of system (1.1) is exponen-
tially stable if there exist two strictly positive constants a and b, and if there exists ty > 0 such
that:

llx(t; x0) — Xeqll < ae™"such that t > ty > 0. (1.11)

Example 1.5.1 According to the example (1.4.1), we have (0.0) is the only equlibrem point.

To study stability, we use the Jacobian matrix of the system.

dx 0 1

qt| X
-7 -2 -3

dt Y

The eigenvalues of the jacobien matrix are given by
A =-1, A = 2. (1.12)

Both eigenvalues are negatives (A1, A, < 0).

Therefore, E(0, 0) is an asymptotically stable equilibrium point.

Remark 1.5.1 Note that using the previous definitions to establish the stability of (1.1) in the
neighborhood of its equilibrium point requires the explicit solution of equation (1.1), which is
often very difficult in most cases. Therefore, the following two Lyapunov methods allow us to

overcome this obstacle.)

1.5.1 Direct method

Lyapunov’s direct method allows us to locally analyze the stability of system (1.1)
without explicitly solving it. The stability problem is then reduced to finding such a
function (called a Lyapunov function), which provides information about the stability

of the system. The following theorem summarizes this method.

11
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Theorem 1.5.2 The equilibrium point x., of system (1.1) is said to be stable (respectively
asymptotically stable) in the sense of Lyapunov if there exists a neighborhood D of x.,) and a
function V : D — R (called a Lyapunov function) of class C' satisfying the following properties:

1. V(xey) =0, and V(x) > V(xy), forall x # x. in D
2. V(x) < 0 ( respectively V(x) < 0), for all x # xq.

Example 1.5.2 We analyze the stability of the following dynamical system:

—x——x+x
5
4 _
dt_ y—Xx.

Consider the Lyapubov function:

1 1
Vix,y) = Exz + Eyz.

This function is positive definite because:
e V(0,0)=0,
e V(x,y) >0 forall (x,y) # (0,0).
On the other hand

) dVdx JVdy
Vny) = o-7 + Syt

Thus
Vix,y) = = = .

Since V(x,y)) is strictly negative for all (x,y) # (0,0), we conclude that the origin (0,0) is
asymptotically stable.

1.5.2 Indirect method

Lyapunov’s second method is based on examining the linearization in the neighborhood

of the equilibrium point x,, of system (1.1). More precisely, the eigenvalues x,, of the

12
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Jacobian matrix associated with this equilibrium point are analyzed. Linearization
consists of assuming:

X = X + 0X, (1.13)

Where 6x is a small perturbation applied in the neighborhood of the equilibrium point

Xeg-
We then have:
X = Ko + O (1.14)
The system (1.1) then becomes:
Xeg + 0x = f(xeg + Ox), (1.15)

Using a first-order Taylor expansion of f in the neighborhood of x,, we obtain:

f(xeg +0x) = f(Xeg) + J(Xeg)(x = Xep), (1.16)

Where |, represents the Jacobian matrix of f. Thus:
0x = J(xeq)Ox. (1.17)

This equation shows the evolution of the perturbation dx in the vicinity of the equilib-

rium point. We therefore have the following theorem:

Theorem 1.5.3 (Hartman-Grobman Theorem) [14] If the Jacobian matrix [¢(x.,) has no zero
or purely imaginary eigenvalues, then there exists a homeomorphism that maps the trajectories

of the nonlinear flow to those of the linear flow in a certain neighborhood of x.; .

Remark 1.5.4 This theorem allows us to relate the dynamics of the nonlinear system (1.1) to

the dynamics of the linearized system (1.17) .

The extension of the theorem on linearization is then:

Theorem 1.5.5 Let x,, be an equilibrium point of system (1.1).

13



Chaotic Dynamical Systems

1. If all the eigenvalues of the Jacobian matrix | ¢(x.,) have strictly negative real parts, then

Xeq 15 said to be exponentially stable.

2. If the Jacobian matrix has at least one eigenvalue with a strictly positive real part, the

equilibrium point x,, is said to be unstable.

Example 1.5.3 We analyze the stability of the following dynamical system:

d—x——x+x
dt Yr

dy )
E——y—x.

We find the equilibrium points by solving:

-x+xy=0

—y—-x*=0

The only real equilibrium point is E(0,0). The jacobian matrix at the equilibrium point E is

-1 0
o2
0 -1

A1 = —1, Az = —1

given by

The eigenvalues of the matrix are:

Since both eigenvalues are negative real numbers, the system is asymptotically stable at the

equilibrium point (0, 0).

1.6 The chaos

The objective of this section is to provide a better understanding of the characteristics
that allow us to recognize chaotic behavior. As a first approach, we present the main

characteristics of the chaotic behavior of a deterministic dynamic system. We also

14
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mention some scenarios of transition to chaos. Finally, we conclude this section with

an application on chaotic systems.

1.6.1 Main characteristics of chaotic behavior

Below, we recall some characteristics that help us better understand the key features of
a chaotic system.

Non-linearity

Non-linearity is one of the fundamental characteristics of chaotic systems. In fact, any
linear system cannot be chaotic.

Determinism

A chaotic system is deterministic (rather than probabilistic), meaning that it follows
laws that completely describe its motion. The concept of determinism thus implies the
ability to predict the future state of a phenomenon based on a past event. However, in
random phenomena, it is impossible to predict the trajectories of any given particle.
Random Aspects

If the motion is random, the system’s points fill the phase space randomly: no structure
appears. When the motion is chaotic, the points may initially appear random. However,
upon observing the system for a sufficiently long time, one notices that the points trace

a particular shape. Figure 1.3 illustrates the random aspect of a chaotic Rossler system.

oo IM _______ il i
- Aeallh i q ‘M NINTRIN
oLl AR A | I
o ”JU"J\U“ Li fm JU/\J/\/JJJE'UJ | M

Figure 1.3: Random aspect of the Rossler system.

Chaotic attractors
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The particular geometric figure that represents the attractor of a chaotic system in phase
space over time is called a chaotic attractor. This attractor emerges through two simul-
taneous operations: stretching, which is responsible for sensitivity to initial conditions
and instability, and folding, which gives the system its "strange" nature. Furthermore,
an attractor is considered chaotic when its dimension is fractal. Due to this unique frac-
tal property, these attractors are classified as strange (chaotic) attractors. They serve as
the signature of chaos, allowing us to identify and authenticate chaotic behavior.
Sensitivity to initialcConditions

Chaotic systems are extremely sensitive to initial conditions. Even very small pertur-
bations in the initial state of a system can eventually lead to a completely different final
state.

Lyapunov Exponents

The rate of divergence of two initially close trajectories can be analyzed using Lyapunov
exponents, which help characterize the nature of the detected chaos.The Lyapunov ex-
ponent measures the rate at which two trajectories diverge over time. As an example,
consider a four-dimensional dynamical system with Lyapunov exponents A1, A3, A3, A4

satisfying the condition: A1 > A, > A3 > As.

o If A4 < A3 < Ay < Ay < 0: The system is an asymptotically stable equilibrium

point.

If Ay =0and A4 < A3 < A; < 0: The system has a stable limit cycle.

If Ay = A, =0and A4 < A3 < 0: The system has a stable torus.

4
If A1 >0,1, =0,A3 <Ay <0,and } A; < 0: The system is chaotic.

i=1

4
If A1,A; > 0,43 =0, 14 <0, and } A; < 0: The system is hyperchaotic.

i=1

Remark 1.6.1 e A negative Lyapunov exponent in a given direction indicates that trajec-
tories converge, leading to a loss of information about initial conditions. The orbit thus
becomes attractive towards a periodic orbit or a fixed point, characterizing dissipative

systems, which exhibit **asymptotic stability**.
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e A positive Lyapunov exponent in a given direction indicates that the divergence between
two nearby trajectories increases exponentially over time. As a result, the trajectories
diverge, and the orbit becomes chaotic. Intuitively, this represents sensitivity to initial

conditions.

e A zero Lyapunov exponent means that trajectories originating from different initial con-
ditions maintain a constant separation, neither converging nor diverging. In this case,

the system is considered conservative.

Remark 1.6.2 There are several algorithms for computing Lyapunov exponents, one of the
most well-known being Wolf’s algorithm [15]. This algorithm allows us to calculate Lyapunov
exponents by effectively measuring the divergence of two trajectories in response to an introduced

perturbation.

Bifurcation diagram

A bifurcation is said to occur when such a qualitative change in the structure of a system
happens due to the quantitative variation of one of its parameters (which is called the
bifurcation value). The graphs that represent these bifurcations are called bifurcation
diagrams.Thus, the bifurcation diagram is a very important tool for evaluating the pos-
sible behaviors of a system depending on the bifurcation values. Figure 1.6 illustrates

the bifurcation diagram of the logistic map, defined on the segment [0, 1] by:

dx
i rx(1 —x), (1.18)

where r € [0,4] is a control parameter.
According to Figure 1.4, we can observe three different states of the system depending
on the value of the parameter r: stable regime, a periodic regime with multiple states

and finally a chaotic regime.

1.6.2 Route to Chaos

There are several scenarios that describe the transition from a fixed point to chaos. In

all cases, the evolution from the fixed point to chaos is not gradual but marked by
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Figure 1.4: Bifurcation diagram of the logistic map.

discontinuous changes called "bifurcations.” A bifurcation signifies the sudden shift
from one dynamic regime to another, qualitatively different. Three main scenarios of
transition to chaos can be identified:

Period doubling

This transition scenario is undoubtedly the most well-known. As the control parameter
of the experiment increases, the frequency of the periodic regime doubles, then quadru-
ples, then multiplies by 8, 16, and so on. These doublings occur at increasingly shorter
intervals, leading to an accumulation point where, hypothetically, the frequency would
become infinite. At this moment, the system enters a chaotic state.

Quasi-periodicity

In a dynamical system with periodic behavior at a single frequency, if we change a
parameter, a second frequency appears. If the ratio between the two frequencies is
rational, the behavior remains periodic. However, if the ratio is irrational, the behavior
becomes quasi-periodic. By changing the parameter again, a third frequency appears,
and this process continues until the system eventually reaches chaos.

Intermittency

This transition scenario via intermittency is characterized by the erratic appearance
of chaotic bursts in a system that otherwise oscillates regularly. The system remains
in a periodic or nearly periodic state for a certain period, maintaining a degree of

"regularity,”" before suddenly destabilizing, leading to a kind of chaotic explosion.
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1.7 Example of chaotic system

As an example of a continuous chaotic system, we consider the Lorenz system, given

by the following equations:

x=o0(y—x),
y=rx—y-xz, (1.19)
Z=xy—bz.

where, x, y, and z are the state variables of the system, o, b and r are positif constants,

1.7.1 Chaotic attractor

The system (1.19) exhibits chaotic behaviour, as shown in Figure(1.5), where the sys-

tem’s parameters are as follows
8
oc=10b = gandr:ZS,
and the initial values of the Lorenz system (1.19) are selected as

x(0) = y(0) = z(0) = 50 (1.20)

Figure 1.5: Chaotic attractor of the Lorenz system (1.19).
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1.7.2 Equilibrium points

The equilibrium point (x, y, z) satisfies the condition
x=y=2=0.

For r < 1, there is only one equilibrium point E((0, 0, 0).

For r > 1, there are two other points

Ei(Vb(r=1), Vb(r=1),r=1); Ep(=~b(r—1), - \b(r—1),r-1).
The Jacobian matrix of the system is given by

o o 0
Jx,y,2)=|r-z -1 —x
y x =b

At the point E((0, 0, 0), the jacobian matrix is:

o o 0
J=1|r 1 0
0 0 -b

So, the eigenvalues are

& = -b

—0—-1—-+/(c-1)*+4ro

2

—0 -1+ /(6 —1)>+4rc

2
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We substitute the values of 0 = 10 and b = %, we obtain:

b - S
& = %(\/40r+81—11)
& = %(—\/40r+81—11)

1. For example, when r < 1; the three real roots are negative, {3 < &, < &1 < 0. Therefore
the equilibrium is a stable node.

For r > 1, One of the eigenvalues is positive &3 : the equilibrium is therefore point.
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CHAPTER 2

SOME CONCEPTS ABOUT
FRACTIONNAL CALCULUS

In this chapter, some basic concepts related to fractional differentiation are presented.

2.1 Spicial functions

2.1.1 Gamma function

The Euler’s gamma function [16] is one of the basic functions in the fractional calculus
that generalize the factorial (m!) from integer to take non-integer and also complex

numbers.

Definition 2.1.1 For all C € C where Re(C) > 0 Euler’s Gamma function noted by I'(C) is
defined by:
INOE f et dt. (2.1)
0

Remark 2.1.1 We take Re(C) > 0 due to the integral in (2.1) is absolutely converge on the
complex half-plan.
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2.1.2 Beta function

Sometimes we encounter values that are combinations of the values of the gamma func-

tion. It is preferable to use the beta function instead of the complicated combination.

Definition 2.1.2 The function  [16] is defined by:

1
B(C, 0) = fo 111 =% dt, Re(C) > 0,Re(0) > 0. (2.2)

1. The Beta function has the symmetric property, i.e: B(C, 0) = p(6, 0).

2. There is a link between the two Euler functions, Gamma and Beta. This link is given by:

r(Oro)
r(c+0)’

B(C,0) = V(0 #-1,-2,-3,... (2.3)

2.1.3 Mittag-Leffler functions

The exponential function { + ¢¢ play an important role in resolution of ordinary
differential equations. As a consequence, we need to generalize trigonometric and
exponential functions and use them in the process of resolution, this is the main role
of Mittag-Leffler function. This function is used to give an explicit expression of the
solution. Also, this function has been introduced by Mittag-Leffler and it is considered

as a generalization of one parameter of the exponential function.

Definition 2.1.3 The function of Mittag-Leffler [16] of one parameter is defined by

o k
E.(Q) = %, CeC, Re(a)>0. (2.4)
k=0
Indeed, for o = 1, we have:
E1(C) = ¢, (2.5)
and for a = 1, we have:
Ex(C) = cosh(~/0). (2.6)
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Definition 2.1.4 The mettag-Leffler function of two parameters is given by

v &
E.5(0) = kE:O T(ak+B)’ C,BeC, Re(a)>0. (2.7)
For p =1, we get
v &
E.1(C) = L Tak+1) E.(C), CeC, Re(a)>0. (2.8)

Some particular cases can be result as follows

_ v v &
Ei(Q) = kzz(; S kz:(; == (2.9)
_ s Ck ~ x Ck _ 1 b Ck+1 _ eC,_l
F1a0) = kZ:;‘r(kJrz) B kzz;‘ k+D)! T k+D T
1 m—2 Ck
En@ = ==Y =|.
¢t [ k=0 !
and
5 i Czk ® CZk
E>1(T9) L Tk D) - L o0 cosh(Q), (2.10)
E»x(Q) = sinh(+/C0),
s C2k b 1 C2k+1 sinh(C)
2 _ _ _ —
E22(0) = Tk +2)  &C@k+1 €

2.2 The Riemann-Liouville fractional derivatives

We begin by the Riemann-Liouville integral operator [17]. The Riemann-Liouville

integral operator XD is an extension of Cauchy’s integral :

1 t
£ = s f (t - oy (o) de, 2.11)
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By remplacing the integer n by a > 0, we get

Drf(t) = ﬁ f (t— 1) f(7) dr. (2.12)

In (2.11) the integer n must satisfy the condition n > 1. The corresponding condition

for a is weaker. For the existence of the integral in (2.12), we must have a > 0.

Example 2.2.1 Let consider the power function

f(t)=(t-ay, (2.13)

where B is a real number.

We have t
D7) = ﬁ f (t — 1)* Yt —a)Pdr. (2.14)

By using the variable change © = a + x(t — a), and then using the definition of the beta function,

we obtain

L t — 7)Y — )P = — “*ﬁi ' _ a-1.8

F(a)‘fa(t )% (1 — a)Pdt (t—a) T(a)fo(l x)* " xPdx (2.15)
1
@ﬁ(%ﬁﬂ)
rg+1)
Fla+p+1)

= (t—a)**P

(t _ a)a+ﬁ

For f(t) = K, we get
ey t—a)’K
DK = Ta+1) (2.16)
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2.2.1 The Riemann-Liouville fractional derivative

Leta € R* and n = [a] ([a] = min{z € Z : z > a}). The Riemann-Liouville fractional

derivative of a function f(¢) is defined by

SDUO = e ) ¢ o 217)
)
= gD fO)

If @ = n — 1, then we obtain a conventional integer order derivative of order n — 1:

DI = D;Lf(1) = F (). (2.18)

dt”

Example 2.2.2 Let consider the function f(t) = (t—a)f,n—-1<a <n.

We have
B () = D (). 2.19)
Thus
D) = ;:” ((t a)"” Mﬁr(n I;(ﬁ J_r i)+ D (2.20)
For f(t) = K, we get
NDIK = (t - a)‘“ﬁ. (2.21)

2.2.2 Caputo’s fractional derivative

It was proposed by M. Caputo in 1967.

Definition 2.2.1 Let f € C"([a,b]), @ > 0. The Caputo’s fractional derivative of the function
f [18] is defined by

1 fOd
F(n a) J, (t—7)an+l =D, (dt”f(t))

EDYf(b) (2.22)
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Wheren —1 <a <nandt > a.

Lemma 2.2.1 Let a > 0 and n = [a]. Assume that f is a function, such that both SD® and

RLD% exist. Then

n—1
. B . (i’ _ a)—a+k
th ft) = gLDt f@) - ;f(k)(a)m. (2.23)
Example 2.2.3 Let consider the function f(t) = (t — a)f, such that B > n and n = [a]. We
have
Dy = D - ¥ 0 .24
T e o Tk—a+1) '
and
fP@ =0, Vk=0,1,...,n—-1, (2.25)
then
DYt —a)f =KDt —a)f = %(t —a)f?, (2.26)
Ifp=0,1,...,n—1, then
DXt —a)f = 0. (2.27)
Lemma 2.2.2 Let a > 0. We have
1. If f € C([a, b]), then
DI D f(1) = f(b). (2.28)
2. If f € C'([a, b)), then
n-1 (%)
DDy = £ - Y o 229
k=0 )
In particular, if 0 < @ < 1 and f € C([a, b]), then
D (D) = (1) — f(a). (2.30)

Some properties of the Caputo’s derivative
Letn—1<a<mnand f € C"([a,b]):

Propertie 1: The fractional derivative of a constant function in the sense of Caputo is
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zero.

Proof. Let f(t) = c. Since f™ = 0, we have:

L AN, (2.31)

CD% = =
attC In—a), (t-7)rn+l t

m Propertie 2: The fractional derivative of the function f(t) = (t — a)f is given by:

r 1
D= 0) = gy = for > 2:32)

Proof. It is reminded that the fractional derivative in the sense of Caputo and that of

Riemann-Liouville are related by the formula:

n-1 k
s = Foif - Y L

k—a
- m(t - a) . (233)

If a > B, we have: f®(a) =0, forallk =0,1,...,n — 1, which implies:
EDY(t —a)f = RD(t — a)f. (2.34)
Let’s now calculate XDétF.

Letn -1 < a <n, then for all § > a, we have:

1

—(n-a) — t _ \n—a—
DR = s [ -0 e (235)

1 ' .
— _ n—a—-1_p
F(n—a)ﬁ(t T) ™ drt.
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Using the change of variables: T = xt, equation (2.36) becomes:

D Vf(1)

By applying relation
ADEf(b)
We get:
RDEf(#)
Finally

Di(t—a) =

1 1
1= n—a—ltn—a—l ﬁtﬁ+1d
T J, 09

pr—a+p 1 »
1-x)xd
ey J, (10

tn—a+ﬁ

I'(n—a)

B(n—a;p+1)

rg+1)
Tm—a+B+1)

tn—a+ﬁ

o (50500

1 d t n—a—
—F(n—a)ﬁj;(t_ﬂ Yf(7)dr,

% (D, " F(1))
rg+1)

2Dt —a) = m(f —a),
rg+1) a
Hﬁ—a+DG_®ﬁ'

(2.36)

(2.37)

In particular, if 8 = 2 and a = 0, the fractional derivative in the Caputo sense of f(t) = >

is given by:

2
Cryayg2 2—a
D%t = .
0 I'3-a)

m Propertie 3: For every m € N*and n — 1 < @ < n, we have:

$DY (DI f(1) = SDE™£(1).
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Proof. By definition, we have:

DY D' f(t)) = .D;".Dr(.Dyf(b)
= aDt_(n_a)aD?+mf(t)
= SDI™f(1).

2.2.3 Griinwald-Letnikov fractional derivative

As well known, the classical derivatives can be expressed as differential quotients, i.e.,
as limits of difference quotients. For example, the n-th order derivative of a function

f(t) € C*([a, b]) is defined by

a" a
£Or) = dtf = lim Z(—D"(Z)f(t ~ kh), (2.40)
k=0

where

n\ nn-1)n-2)...n-k+1)
(k)" k! ’

is the usual notation for the binomial coefficients.
The previous equality may be used to define a fractional derivative of Griinwald-

Letnikov by replacing n by a € R™:
1 Zn a
GLa _1; 1\ _
a Dt f(t) - }}ir(} he kzo( 1) (k)f(t kh)

Since a € R¥, the binomial coefficient is given by

ay  T(a+1)
k] KT(a—-k+1)
Hence, )
DR () = lim ) (1) g (- .41)

k=0
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wherenh =t—a

2.3 Fractional differential equations in the Caputo sense

Consider the following initial value problem:

“Dy(t) = f(t, y(®)),
“Diy(0) = y(0), j=0,1,...,n—1.

(2.42)

where “D? denotes the Caputo derivative operator, and n — 1 < a < n. The following
theorem allows us to assert the existence and uniqueness of the solution to the initial

value problem.

Theorem 2.3.1 [19]
Let K> 0,h" > 0,and y(0i) € Rfori =0,1,...,n—=1. Let f : G=[0,h"] X R = Rbea

continuous function that satisfies the Lipschitz condition with respect to y.

[ft,y) = f(t, y2)| <L|y1 =2, (2.43)
and let: )
. . (KT(a +1)\¢
h = min {h , (—M ) }, (2.44)
thus

) (2.45)

M = sup |f(t,z)

t,zeG

Then, the problem admits a unique solution y € C[0, h].

Theorem 2.3.2 [19] Under the assumptions of the previous theorem, the initial value problem

(2.42) is equivalent to the Volterra integral equation:

n-1 tk ® 1 t .
y(t):kzz;‘ﬁyo T j; (t— 1) f(1, y(7)) dr. (2.46)
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2.4 Fractional chaotic systems

Chaos can not be realized in continuous autonomous dynamic systems of order less
than three. The model of a chaotic system can be reorganized into three differential
equations containing fractional derivatives. Now, let us consider a nonlinear system
with a fractional derivative.

D% = f(x), (2.47)

where, x € R", 0 < a <1 and D“ is the Caputo fractional derivative operator.
The equilibrium points of the system (2.47) are calculated by solving the following
equation:

D% =0, (2.48)

2.4.1 Stability theorem of linear fractional system

In the theory of stability for linear systems of integer order, it is well known that a
system is stable if all the roots of the characteristic polynomial have strictly negative
real parts, i.e., they are located on the left half of the complex plane. However, in the
case of fractional linear systems, the definition of stability is strictly different from that
of classical systems. Indeed, in fractional systems, it is possible to have roots in the
right half of the complex plane and still be stable. The following theorems allow us to

assert the necessary and sufficient conditions for the stability of fractional systems.

Theorem 2.4.1 [20, 21]

Consider the fractional nonlinear system described by the following model:

Dix = J), (2.49)

x(0) = xo.

where x € R", 0 < a < 1, and f € R" is a continuous nonlinear function. Let A1, Ay,..., A,

be the eigenvalues of the Jacobian matrix P associated with f at the equilibrium point. Then,
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system (2.49) is asymptotically stable if and only if:
MQ%MH>ag foralli=1,2,...,n. (2.50)

Remark 2.4.2 If the system under study is linear, the stability conditions in the previous

theorems remain true, simply by replacing the Jacobian matrix of f with its linear part.

Example 2.4.1 Consider the following fractional nonlinear system:

D% = —x + 3y,
(2.51)
D%y = —x + 2y — x1?,
where D* is the Caputo derivative operator.
The equilibrium points of the system satisfie
-x+3y =0,
(2.52)
—x + 2y —xy? = 0.

The only equilibrium point of the system is E(0, 0).

The jacobian matrix of the system, associated of E is given by:

-1 3
(2.53)
-1 2
The corresponding characteristic polynomial is:

P(A) =A% =A+1. (2.54)

The eigenvalues of the jacobian matrix of the system are given by:

1 V3. 1 3.
A= E + 71 and Ay = E - TZ. (255)

It is easy to see that in the integer case, the equilibrium point E is unstable. However, in the
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fractional cases, when a = 0.6, we get
larg(A1, A,)| = 1.04 > a% = 1.02.

which ensure the stability of the equilibrium point E.

Theorem 2.4.3 [22] (Fractional Lyapunov)

If there exists a positive Lyapunov function V(x), such that
D*(V(x)) <0, Vt>t,,

then the solution of the system
Dx(t) = f(x(#)),

is asymptotically stable.

Lemma 2.4.1 [22]
Let x(t) € R be a differentiable function in the sense of Caputo. Then, for all t > t,,

%D“xz(t) < x(t)D%(t), a€(0,1).
Remark 2.4.4 The previous lemma remains true if x(t) € R", and in this case:
%D“xT(t)x(t) <xT(HD*x(t), VYa €(0,1).
Example 2.4.2 Consider the following fractional system:

D% = —V2x + y* + vz,

D%y = —y(1 + x) + 22,

D% = —z(1+y) — xy.
Also consider the following Lyapunov function:

V(x,y,z) = %(xz +y7+ zz).
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When Lemma 2.7.1 is used, the fractional derivative of the Lyapunov function (2.62) satisfies:

D*V(x,y,z) = %Dax2 + %D"‘yz + %D“ZZ (2.63)
< xD% +yD"y +zD"z
= x(—V2x+ ¥ + yz)
+ Y-y —xy+2°)

+ z(-z—-yz—xy)

IA

—V2x* — 2 =22 <0, forall (x,v,2) # (0,0,0).

which shows the asymptotic stability of the system (2.61),
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CHAPTER 3

DYNAMICAL ANALYSIS OF A
SATELLITE CHAOTIC SYSTEMS
MODEL

In this chapter, we discuss some behavior dynamics related to satellite chaotic systems

model with fractional-order derivative.

3.1 Description of satellite systems

The attitude dynamics of the satellite are described in the inertial coordinate system as
[23, 24]:
T=T,+Ty+T.. (3.1)

The total momentum acting on the satellite is T. The flywheel torques, gravitational
torques, and disturbance torques are represented by T,, T; and T, respectively. The
overall momentum T is calculated as follows:

T = lw. (3.2)
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where w is the angular velocity and I is the inertia matrix. The total momentum

derivatives T are represented as

T=Iov+wXlw. (3.3)

The cross-product of the vectors is denoted by the symbol X. When we combine these

equations, we get

lo+wXIlw=T,+T,+T,. (3.4)
Let I = diag(l,,1,,I.). So
Tax Tbx TCX
Ta = Tay , Tb = Tby and TC = TC]/
Taz sz TCZ

The satellite system [23, 24, 25] is written as.

Ly, = wyw, (I, — L) + hy + uy,

Lo, = ww,(I, = L) + hy + uy, (3.5)

Lo, = wyw, (I, = 1) + h; + u..
where
Iy =To + Top + Tcx] , [hy = Toy + Ty + Tcy] , [hz =Ty + Ty + TCZ] (3.6)

Here, u,,u, and u, are three control torques, while h,, hy and h, are perturbing distur-
bance torques.

We suppose that I, > 1, >, =11, =3,I,=2and [, = 1.
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The perturbing torques [12] is defined as

V6 (,.

x -1.2 0 >
y|=| 0 035 0 |[|@y
z -v6 0 -04]|\@:

(3.7)

S

The following is the formula for the chaotic satellite system:
x=axyz—%x+2—‘§gz

y=oyxz+ 58y, (3.8)

. _ V6. _ 04
Z=0XY — rx— IZ,

I-I _ LT
where 0, = 4~ :%,oy:% =-lando, = 7+ =1.

So, the 3D chaotic satellite system becomes

| 1
X=3zyz—ax+ \/;z,

= —xz+by, (3.9)

Z=Xxy—- Véx — cz.

wherea =0.4,b =0.175 and c = 0.4.

The 3D fractional derivative satellite system model is represented as [13]

D% = jyz —ax + \/%z,

D%y = —xz + by, (3.10)

D%z = xy — Véx — cz.

where D* is the Caputo differentiel operator and « €]0, 1] is the fractional-order.
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3.1.1 Attractors of the chaotic satellite system

When the initial values of the fractional-order chaotic sarelitte system (3.10) are selected
as

x(0) = y(0) = x3(0) = 0.01 (3.11)

and the parameter values are taken as
a=04,b=0.175and c =04, (3.12)

the chaotic attractors of the system (3.10) are represented in Figure 3.1 in various

coordinate planes.

LR J
RO /

,
i v
1
e T
3 A

Figure 3.1: Different attractors of the fractional-order chaotic satellite system (3.10).
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3

e
>
—
=}

=~

Figure 3.2: Temporel evolution of the state x;.

10

i } 10

Figure 3.3: Temporel evolution of the state x,.

3.1.2 Equilibrium points

By solving the following system of equations

1 1
5yz—ax+%z:0,

-xz+by =0, (3.13)

xy — Véx —cz =0,
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Figure 3.4: Temporel evolution of the state x3.

the equilibrium points of the satellite system (3.10) can be found as:

0 1.1910 0.1582 —-0.1582 -1.1910
Py =10|,P1 =(25766|,P> = [-1.3641|,P; = |-1.3641| and P, = | 2.5766
0 0.3785 —-1.5086 1.5086 —-0.3785

The Jacobian matrix of the system is
—a 0.33xz 0.33y+
(y—-V6)  «x —c.
At the equilibrium point Py, the eigenvalues of system are

A =-044+099, A, =-0.4+0.99 and A3 = 0.175.

Since,

unstable point.
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3.1.3 Lyapunov Exponents

In this section, we assume that the parameters b, c remain constant and 4 is varied in
[0,0.5]. By using Wolf algorithm [15], the Lyapunov exponents spectrum of system
(3.10) with b = 0.175 and c = 0.4 is represented in Figure 3.5.

—L]—L2 L3
OJ%\’ZWQ
_5 | | | |

0 0.2 04 0.6 0.8

Figure 3.5: The three lyapunov exponents of the system (3.10) versus a.

In particular, for the parameter values are taken as in case (3.1.1), the values of

Lyapunov exponents of non-linear system (3.10) are given by

L, = 0557,
L, =0, (3.17)
Ly = -1.168.

Since L + L, + L3 < 0 and L; > 0O, then the proposed system is dissipative and chaotic.

The Kaplan-Yorke dimension of the chaotic system is obtained as:

Li+L
DKy:2+1 2

|L3|
2.476,

which is a fractal dimension.
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3.1.4 Dissipative system

The system (3.10) can be written in vector notation as
D*X = F(x) (3.18)
where, X(t) = (x, y,z) and

Fi(x,v,2) lyz—ax+ V16z
F(X) = F(x,y,2) = |Fa(x, y,2)| = —xz + by (3.19)
Fi(x,y,2) Xy — Véx —cz

where a = 0.4,b = 0.175andc = 0.4.. We assume any smooth boundary area A(t) € R?,
with A(t) = ©4(A) where ©; displayed the flow of F.
Let V(t) be the volume of A(t). We get through Liouville’s theorem

V(t) = f;\()(V-P)dxdydz. (3.20)

The divergence of the satellite system (3.20) is calculated as:

I S N Y _
V.f_[ax+ay+&Zl_—a+b—c_—0.625. (3.21)

From (3.20) and (3.21), the first derivatives ordinary differential equation can be written
as follows:

V(t) = —0.625V (1). (3.22)

By integrating the equation (3.22), we get
V(t) = V(0) exp(—0.625¢). (3.23)

So, when t — oo, V(t) — 0, which is demonstrates the dissipative character of the

satellite system (3.23).
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3.2 Control of fractional-order chaotic satellite system

Consider the controlled chaotic system as follows

1
D =1lyz—ax+ —z
Sy \/6
D%y = —xz+by—ky, (3.24)
D% =xy— Véx —cz.
where k is the positive feedback control gains. We have the following result.
Theorem 3.2.1 The controlled chaotic system (3.24) is asymptotically stable if b < k
Proof. Defne the Lyapunov functional as
1
Vix,y,z) = §(6x2 +3y* +2%). (3.25)

We have

D'V < (6xD"x +3yD"y +zD"z)
= 6[%xyz —ax? + %xz] + 3[—xyz + by* — ky*] + [xyz — Véxz — cz?]
= —6ax® + 3by* — 3ky* — cz*
= —6ax* — y*(-3b + 3k) — cz* < 0.

According to Theorem 2.4.3, it can be remarked that the controlled system (3.24) asymp-
totically converges to 0, which means that the controlled system is stable. m The
Adams-Bashforth-Moulton method [26] is used to solve this system. The initial con-
ditions of the system are taken as as x(0) = 0.1, y(0) = 0.1 and z(0) = 0.2. To ensure the
stability of the controlled system, we take k = 0.7. The fractional-order is selected as
a=097.

Figure 3.6 shows the time-history of the controlled chaotic system ( 3.24). Obviously,
all solutions of the this system approach to the origine values, which confirm that the

controlled chaotic system (3.24) is asymptotically stable.
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0.2
Xy z
0 L
_02 1 1 1
0 5 10 15 20

Figure 3.6: Time-history of the controlled satellite system ( 3.24).

3.3 Adaptive synchronization of fractional-order chaotic

satellite systems

In this section, we construct an adaptive synchronizer for global synchronization of
fractional-order chaotic satellite systems. The adaptive synchronizer design is carried
out using Lyapunov stability theory.

As the master system, we take the chaotic of fractional-order chaotic satellite system.

1 1
D% = =xox3 —ax; + %xlx&

3

D%, = —x1x3 + bxy, (3.26)

D%x3 = x1% — \/gxl — CX3.
Where x3, x, x5 are state variables and 4, b, c are unknown, constant, parameters.
As the slave system, we take also the fractional-order chaotic satellite system.

D%y 1y}/ ay + : nys+U
1= 3Y2Y3 —ayr + —=11Ys3 1
3 V6
(3.27)

D%y, = =1y1y5 + by, + Uy,

D%y3 = y1y2 — \/Eyl —cys + Us.
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Where y1, 12, y3 are state variables and U;, U, Us are adaptive controls. The complete

synchronization error between the systems (3.26) and (3.27) is defined as:

€1 = Y1 — Xy,

er =12 — X, (3.28)

€3 = Y3 — X3.

The error dynamics is easily obtained as:

1 1
D = —ae; + z(y2y3 — xoX3) + —6(y1y3 —x1x3) + Uy,

3 G

D%e, = bey — (113 — x1x3) + Uy, (3.29)
D3 = — \/8(31 —ce3 t+ Y1l — X1Xp + Us.
We consider the adaptive controller defined by
U—ﬁe—l( —xx)—i( — x1x3) — Kqe
1 1 3 Y23 2X3 \/E 1y3 1X3 1€1,
U, = —Eez + (1y3 — x1x3) — Koo, (3:30)

U3 = \/gel + 663 — Y1lY2 + X1Xp — K383/

where Kj, Ky, K5 are positive gain constants, and 4, b, ¢ are estimates of the unknown
parameters a4, b, ¢ respectively.

Substituting (3.30) into (3.29), we get

D“el = —(El — ﬁ)€1 - Klel,

Da€2 = (b - ?))62 - K2€2, (331)

D“eg = —(C - 6)63 - K3€3.
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The parameter estimation errors are defined by

e, =a—4d,
eb = b—l;l (332)
e.=c—C.

Substituting (3.32) into the error dynamics (3.31), we get

D%y = —ee; — Kyey,

DaEQ = €pey — K2€2, (333)

Da€3 = —€.63 — K3€3.

Differentiating (3.32) with respect to t, we get

D%, = —D“4,
D¢, = —-D%D, (3.34)
D%, = —D*¢.

Consider the quadratic Lyapunov function defined by
V= Lo o 2. 2. 2. 2
= E(e1 +e, tes+e; +e, +ep), (3.35)

Which is positive definite on R°.

Differentiating V along the trajectories of (3.33) and (3.34), we get

D*V

IA

e1D%q + e;D%, + e3D%es + ¢,D%, + e,D%, + e.D"e. (3.36)
= —eae% - kle% + ebeg — kzeg - ece§ - k3e§ —¢,D%G — ¢, Db — e,.D“¢

= —[kle% + kzeg + k3e§] + ea[—ef - D% + eb[eé — D] + ec[—eg — D*¢].
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In view of (3.37), we take the parameter update law as:

D4 = —e2,
Db = ¢, (3.37)
D¢ = —e3.

Next, we shall establish the main result of this section.

Theorem 3.3.1 The systems (3.26) and (3.27) are globally and exponentially synchronized by
the adaptive control law (3.30) and the parameter update law (3.37), for all initial conditions,

where ki, ky, k3, are positive gain constants.

Proof. We prove this result using Lyapunov stability theory.

For this purpose, we consider the quadratic Lyapunov function V' defined by (3.37),
which is positive definite on R®.

Substituting the parameter update law (3.37) into (3.37), we obtain the fractional deriva-
tive of V as:

D*V— < kie} — koe5 — kse5 < 0. (3.38)

According to Theorem 2.4.3, it can be remarked that the error system (3.33) asymptoti-
cally converges to 0, which means that the synchronization between the systems (3.26)

and (3.27) is achieved. m

In the numerical simulation, we take the initial conditions of the master system as
x1(0) = 0.1, x,(0) = 0.1 and x3(0) = 0.1,
the initial conditions of the slave system are taken as
11(0) = 0.2, y»(0) = 0.3 and y3(0) = —-0.1.
thus the initial conditions of the error system are taken as

(1(0), e2(0), e5(0))" = (0.1,0.2, —0.2)".
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We take the gain constants as

K;=0.5, foralli=1,2,3.

Regarding the initial values for the parameter estimates, we take
(a(0), b(0), b(0)) = (0.3, 0.2, 0.3).

We take also the fractional-order a = 0.97. Figure 3.7 shows the synchronization error
between the master system (3.26) and the slave system (3.27).
From the Figure 3.7, one can see that all solutions of the error system (3.33) approachs

to zero, which shows that the synchronization between the systems is achieved.

0.2
2 —e —e —e¢
0.1 e, 1 2 3H
0,
0.1+ 1
€3
_0.2 L L L L
0 0.2 0.4 0.6 0.8 1

Figure 3.7: Temporal evolution of the synchronization error (3.33).
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GENERAL CONCLUSION

In this work, we analyzed the chaotic behavior of fractional-order satellite systems.
Specifically, we used phase portrait analysis, equilibrium point determination, and
calculation of the Jacobian matrix eigenvalues at these points, as well as dissipability
and Lyapunov exponents to study the chaotic behavior of this system. We also im-
plemented a feedback control approach to control chaos in this system to ensure its
asymptotic stability. We also successfully synchronized two identical fractional-order

satellite systems using an adaptive control technique.
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