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ABSTRACT

This thesis explores the solutions of difference equation systems related to well-known

sequences such as Bell and Jacobsthal. It focuses on the link between these sequences

and the dynamic behavior of nonlinear systems. Chapter 1 presents the algebraic

properties of generalized Pell and Jacobsthal sequences. Chapters 2 and 3 analyze two

nonlinear systems using these sequences to derive explicit solutions and study stability.

The methodology involves examining fixed points and long-term behavior. The aim

is to highlight the connection between special number sequences and the qualitative

dynamics of discrete systems.

Keywords: General solution, System of difference equations, (k, h)−Pell sequence,

k-Jacobsthal sequence, Stability.
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 ملـخــص 
 

 

ة،   تهدف هذه المذكرة إلى دراسة حلول أنظمة معادلات الفروق المرتبطة بمتتاليات عددية شهير

ي  
َ ن هذه السلاسل     Jacobsthalو   Pell  مثل متتاليت  كز الاهتمام على استكشاف العلاقة بير ويي 

ية للنسخ العددية والسلوك الديناميكي للأنظمة غير   الخطية. يتناول الفصل الأول الخصائص الجير

ي 
َ ن     Jacobsthal   و  Pell المعممة من متتاليت  ي والثالث، فيُخصصان لدراسة نظامير

أما الفصلان الثانن

ستخدم هذه المتتاليات لاشتقاق حلول صريحة وتحليل خصائص الاستقرار.  
ُ
، حيث ت ن غير خطيير

تحويل هذه الأنظمة غير الخطية إلى أنظمة خطية ترتبط بشكل وتعتمد المنهجية المتبعة على  

 .مباشر بهذه المتتاليات المعروفة

 

متتالية بال المعممة، متتالية    جمل معادلات الفروق،   الحل العام،  الكلمات الأساسية: 

 . قرار الاست  جاكوبستال المعممة،
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RÉSUMÉ

Ce mémoire étudie les solutions des systèmes d’équations aux différences liés à des

suites célèbres telles que celles de Bell et de Jacobsthal. Il met l’accent sur la relation

entre ces suites et le comportement dynamique des systèmes non linéaires. Le premier

chapitre présente les propriétés algébriques des suites généralisées de Pell et de Jacob-

sthal. Les chapitres 2 et 3 analysent deux systèmes non linéaires en utilisant ces suites

pour obtenir des solutions explicites et étudier la stabilité. La méthodologie repose

sur l’analyse des points d’équilibre et du comportement à long terme. L’objectif est de

montrer le lien entre suites spéciales et dynamique des systèmes discrets.

Mots-clés: Solution générale, Système d’équations aux différences, Suite de

(k, h)−Pell, Suite de k-Jacobsthal, Stabilité.
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INTRODUCTION

Difference equations are fundamental tools for studying discrete changes, as they

describe the relationships between successive terms in a sequence. These equa-

tions are closely linked to several well-known sequences that have significant applica-

tions in various fields of mathematics and science, such as the Fibonacci sequence, the

Bell sequence, and the Jacobsthal sequence. Each of these sequences can be defined or

generated using specific types of difference equations that capture the recurrence rules

governing the progression of terms. Understanding the connection between difference

equations and such famous sequences not only simplifies their analysis but also paves

the way for generalizations and new models used to solve real-world problems in

computer science, cryptography, number theory, and other disciplines.

In this master’s thesis, we explore the intricate relationship between special nu-

merical sequences and the qualitative behavior of nonlinear difference equations. Our

primary objective is to utilize the structural and algebraic properties of generalized se-

quences specifically the generalized Pell and Jacobsthal sequences to analyze and solve

discrete dynamical systems. By integrating these mathematical tools, we derive ex-

plicit solutions, study equilibrium points, and assess the stability of nonlinear iterative

systems.
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Introduction

In order to carry out this master’s thesis efficiently, the work has been divided as

follows:

In Chapter 1, we introduce and investigate fundamental numerical sequences, with

particular emphasis on generalized Pell and Jacobsthal sequences. We explore their

algebraic properties, convergence behavior, and stability characteristics, laying the

groundwork for their application in subsequent chapters.

In Chapter 2, we consider a nonlinear iterative system of the form:

xn+1 =
1

2k + hyn−l
, yn+1 =

1
2k + hxn−l

, n ≥ 0,

where k, h, and l are fixed parameters. We employ the sequences studied in Chapter 1

to derive explicit solutions of the system, determine its equilibrium points, and conduct

a comprehensive analysis of its dynamical behavior and stability.

Chapter 3 is devoted to the analysis of a second nonlinear system given by:

xn+1 =
1

k + 2yn−l
, yn+1 =

1
k + 2xn−l

, n ≥ 0.

Following a similar methodological approach, we construct exact solutions, identify

equilibrium configurations, and investigate the system’s long-term behavior and sta-

bility characteristics.

Through these investigations, we aim to establish a clear link between special num-

ber sequences and the qualitative behavior of nonlinear difference equations.
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CHAPTER 1

GENERALIZATION OF SOME

WELL-KNOWN SEQUENCES

This chapter establishes the theory by examining Pell sequences, generalized (k, h)-Pell

sequences, k-Jacobsthal sequences, and (k, h)-Pell-Lucas sequences and their algebraic

and numerical characteristics. We provide core definitions, recurrence relations, and

closed-form solutions, highlighting characteristics which are central to the examination

of recurrence systems in subsequent chapters.

1.1 Some generalization of the Pell sequence

1.1.1 Pell sequence

The Pell sequence is a sequence of integers defined by the recurrence relation:

3



Generalization of some well-known sequences

Pn = 2Pn−1 + Pn−2, (1.1)

where the initial conditions are given by:

P0 = 0, P1 = 1. (1.2)

The first few terms of the Pell sequence are:

0, 1, 2, 5, 12, 29, 70, 169, . . . . (1.3)

This sequence arises in various mathematical contexts, including continued fractions

and approximations of square roots. Specifically, the ratio of consecutive Pell numbers

approximates 1+
√

2, similar to how Fibonacci numbers approximate the golden ratio.

The explicit formula for the Pell sequence is given by:

Pn =
(1 +

√
2)n − (1 −

√
2)n

2
√

2
. (1.4)

The Pell sequence has applications in number theory, combinatorics, and the solution

of Pell’s equation:

x2 − 2y2 = ±1, (1.5)

where its terms appear as solutions for x and y.

1.1.2 The (k, h)−Pell sequence

The (k, h)-Pell sequence {φn}n≥0 is a generalization of the classical Pell sequence, defined

by the recurrence relation [4]:

φn = 2kφn−1 + hφn−2, for n ≥ 2, (1.6)

4



Generalization of some well-known sequences

with initial conditions:

φ0 = 0, φ1 = 2k. (1.7)

The characteristic equation associated with this recurrence relation is given by:

r2 − 2kr − h = 0. (1.8)

Solving for the roots, we obtain:

α = k +
√

k2 + h, β = k −
√

k2 + h. (1.9)

Thus, the general solution for φn can be expressed as:

φn = c1α
n + c2β

n. (1.10)

By using the initial conditions, we solve for the constants c1 and c2:

c1 + c2 = 0, c1α + c2β = 2k. (1.11)

Solving this system, we obtain:

c1 =
2k
α − β, c2 = −

2k
α − β. (1.12)

Since α − β = 2
√

k2 + h, we can write:

φn =
k√

k2 + h
(αn − βn). (1.13)

1.1.3 Properties of the (k, h)-Pell Sequence

The (k, h)-Pell sequence {φn}n≥0 satisfies several important properties, which can be

derived using its recurrence relation and characteristic equation [4].

5



Generalization of some well-known sequences

Binet formula

The (k, h)-Pell sequence is defined by the recurrence relation:

φn = 2kφn−1 + hφn−2, for n ≥ 2, (1.14)

with initial conditions:

φ0 = 0, φ1 = 2k. (1.15)

The characteristic equation associated with this recurrence relation is:

r2 − 2kr − h = 0. (1.16)

Solving for the roots, we obtain:

α = k +
√

k2 + h, β = k −
√

k2 + h. (1.17)

Thus, the explicit formula for φn is:

φn =
k√

k2 + h
(αn − βn). (1.18)

Summation identities

Several summation identities hold for the (k, h)-Pell sequence:

1. The sum of the first n terms:

n−1∑
m=0

φm =
φn + hφn−1 − 2k

2k + h − 1
. (1.19)

2. The sum of the product of consecutive terms:

n−1∑
m=0

φmφm−1 =
4k2

(k2 + h)

[
2k −Λ3 + hΛ2n−1 − h3Λ2n−3

]
. (1.20)

6



Generalization of some well-known sequences

3. The sum of squares of the terms:

n−1∑
m=0

φ2
m =

4k2

(k2 + h)

[
h2Λ2n−2 −Λ2n −Λ2 + 2 − (hn − 1)

h + 1

]
. (1.21)

Limit of the quotient of consecutive terms

The limit of the quotient of two consecutive terms of the (k, h)-Pell sequence converges

to the largest root of the characteristic equation:

lim
n→∞

φn

φn−1
= α = k +

√
k2 + h. (1.22)

This limit plays a crucial role in the asymptotic analysis of the sequence.

Relation to the (k, h)-Pell-Lucas sequence

The (k, h)-Pell sequence and the (k, h)-Pell-Lucas sequence are related by:

Λn = α
n + βn, φn =

k√
k2 + h

(αn − βn). (1.23)

1.1.4 The (k, h)−Pell-Lucas sequence

The Pell-Lucas sequence {Qn} is defined by the recurrence relation [4]:

Qn = 2Qn−1 +Qn−2, for n ≥ 2,

with the initial conditions:

Q0 = 2, Q1 = 2.

The explicit formula for the n-th term is:

Qn = 2Pn,

7



Generalization of some well-known sequences

where Pn represents the n-th Pell number.

The (k, h)-Pell-Lucas sequence {Λn}n≥0 is a generalization of the classical Pell-Lucas

sequence. It is defined by the recurrence relation [4]:

Λn = 2kΛn−1 + hΛn−2, for n ≥ 2, (1.24)

with the initial conditions:

Λ0 = 2, Λ1 = 2k. (1.25)

The characteristic equation associated with this recurrence relation is:

r2 − 2kr − h = 0. (1.26)

Solving for the roots, we obtain:

α = k +
√

k2 + h, β = k −
√

k2 + h. (1.27)

Thus, the general formula for Λn is given by:

Λn = α
n + βn. (1.28)

1.1.5 Properties of the (k, h)-Pell-Lucas sequence

The (k, h)-Pell-Lucas sequence {Λn}n≥0 satisfies several important properties, which can

be derived using its recurrence relation and characteristic equation [4].

Binet formula

The (k, h)-Pell-Lucas sequence is defined by the recurrence relation:

Λn = 2kΛn−1 + hΛn−2, for n ≥ 2, (1.29)

8



Generalization of some well-known sequences

with initial conditions:

Λ0 = 2, Λ1 = 2k. (1.30)

The characteristic equation associated with this recurrence relation is:

r2 − 2kr − h = 0. (1.31)

Solving for the roots, we obtain:

α = k +
√

k2 + h, β = k −
√

k2 + h. (1.32)

Thus, the explicit formula for Λn is:

Λn = α
n + βn. (1.33)

Summation identities

Several summation identities hold for the (k, h)-Pell-Lucas sequence:

1. The sum of the first n terms:

n−1∑
m=0

Λm =
Λn + hΛn−1 + 2k − 2

2k + h − 1
. (1.34)

2. The sum of the product of consecutive terms:

n−1∑
m=0

ΛmΛm−1 =
2k −Λ3 + hΛ2n−1 − h3Λ2n−3

−h(1 + Λ2 + h2)
. (1.35)

3. The sum of squares of the terms:

n−1∑
m=0

Λ2
m =

2 −Λ2 + h2Λ2n−2 −Λ2n

1 −Λ2 + h2 + 2 (1−h)n

1+h

. (1.36)

9



Generalization of some well-known sequences

Limit of the quotient of consecutive terms

The limit of the quotient of two consecutive terms of the (k, h)-Pell-Lucas sequence

converges to the largest root of the characteristic equation:

lim
n→∞

Λn

Λn−1
= α = k +

√
k2 + h. (1.37)

This limit plays a crucial role in the asymptotic analysis of the sequence.

Relation to the (k, h)-Pell sequence

The (k, h)-Pell-Lucas sequence and the (k, h)-Pell sequence are related by:

Λn = α
n + βn, φn =

2k√
k2 + h

(αn − βn). (1.38)

1.2 Generalization of Jacobsthal sequence

1.2.1 The k-Jacobsthal sequence

The k-Jacobsthal sequence
{
Jk,n

}
n≥1 for any positive real number k is defined by the

recurrence relation [5]:

Jk,n+1 = kJk,n + 2Jk,n−1, for n ≥ 1, (1.39)

with the initial conditions:

Jk,0 = 0, Jk,1 = 1

The characteristic equation associated with this recurrence relation is given by:

r2 − kr − 2 = 0

10



Generalization of some well-known sequences

Solving for the roots, we obtain:

r1 =
k +
√

k2 + 8
2

, r2 =
k −
√

k2 + 8
2

.

Thus, the general solution for
{
Jk,n

}
can be expressed as:

Jk,n = c1rn
1 + c2rn

2 .

By using the initial conditions, we solve for the constants c1 and c2:

c1 + c2 = 0, c1r1 + c2r2 = 1. (1.40)

Solving this system, we obtain:

c1 =
1

r1 − r2
, c2 =

−1
r1 − r2

. (1.41)

Thus, the explicit formula for
{
Jk,n

}
is given by:

Jk,n =
rn

1 − rn
2

r1 − r2
. (1.42)

1.2.2 Properties of the k-Jacobsthal sequence

The k-Jacobsthal sequence
{
Jk,n

}
n≥1 satisfies several important properties, which can be

derived using its recurrence relation and characteristic equation [5].

Binet formula

The k-Jacobsthal sequence is defined by the recurrence relation:

Jk,n+1 = kJk,n + 2Jk,n−1, for n ≥ 1, (1.43)

11



Generalization of some well-known sequences

with initial conditions:

Jk,0 = 0, Jk,1 = 1. (1.44)

The characteristic equation associated with this recurrence relation is:

r2 − kr − 2 = 0. (1.45)

Solving for the roots, we obtain:

r1 =
k +
√

k2 + 8
2

, r2 =
k −
√

k2 + 8
2

. (1.46)

Thus, the explicit formula for
{
Jk,n

}
is:

Jk,n =
rn

1 − rn
2

r1 − r2
. (1.47)

Explicit formula for the general term of the k-Jacobsthal sequence

Binet’s formula allows us to express the k-Jacobsthal numbers in function of the roots

r1 and r2 of the following characteristic equation, associated to the recurrence (1.39)

r2 = kr + 2.

Summation identities

Several summation identities hold for the k-Jacobsthal sequence:

1. Catalan’s identity:

Jk,n−rJk,n+r − J2
k,n = (−1)n+1−rJ2

k,r2
n−r. (1.48)

2. D’ocagne’s identity: If m > n then

Jk,mJk,n+1 − Jk,m+1Jk,n = (−2)nJk,m−n. (1.49)

12



Generalization of some well-known sequences

3. Another explicit expression for calculating the general term of thek-Jacobsthal

sequence :

Jk,n =
1

2n−1

⌊ n−1
2 |⌋∑

i=0

 n

2i + 1

 kn−1−2i(k2 + 8), (1.50)

where ⌊a|⌋ is the floor of a, that is ⌊a|⌋ = sup{n ∈ N | n ≤ a} and says the integer

part of a, for a ≥ 0

Limit of the quotient of consecutive terms

The limit of the quotient of two consecutive terms of the k-Jacobsthal sequence con-

verges to the positive root of the corresponding characteristic equation :

lim
n→∞

Jk,n

Jk,n−1
= r1. (1.51)

This limit plays a crucial role in the asymptotic analysis of the sequence.

13



CHAPTER 2

SYSTEM OF DIFFERENCE EQUATIONS

LINKED TO THE (k, h)-PELL

SEQUENCE

This chapter investigates a higher-order difference equation system whose solutions are

expressed in terms of generalized Pell sequences. We derive closed-form solutions and

analyze the stability and asymptotic behavior of the system. Through the connection

of the solutions to this type of general sequences, the study provides new theoreti-

cal results on recursive systems. The results enhance the understanding of dynamic

processes modeled by such difference equations.

14



System of difference equations linked to the (k, h)-Pell Sequence

2.1 Introduction

We propose some theoretical explanations pertaining to the representation for the

solution of the system of the higher-order difference equations

xn+1 =
1

2k + hyn−l
, yn+1 =

1
2k + hxn−l

, (2.1)

with k ∈ Z and n, l ∈N.

The initial conditions x−l, x−l+1, . . . , x0, y−l, y−l+1, . . . , y0, are non zero real numbers

such that their solution is related to a generalized Pell sequences. We also study the

stability character and asymptotic behavior of this system.

We will present two lemmas so that the first lemma provides the solutions of two

homogeneous second order linear autonomous difference equations, which is essential

for representations the solution of system (2.1). Its proof utilizes the characteristic roots

of the caracteristic polynomial θ2±2kθ−h. On the other hand, the second lemma offers

the solution of a system of second order linear autonomous difference equations, which

plays a crucial role in solving the system (2.1).

2.2 Preliminary Results

In this section, we explore second-order linear difference equations within the frame-

work of (k, h)-Pell-Lucas sequences. From our analysis, explicit solutions to two prin-

cipal homogeneous equations are obtained prior to applying the results to coupled

systems through variable decoupling techniques. The solutions expressed in terms

of initial conditions and (k, h)-Pell-Lucas sequences reveal basic recursive forms and

expose their underlying algebraic structure. This systematic approach shows the way

complex systems can be mapped to solvable types through careful transformations.

lemma 2.2.1 Consider the two homogenous second order linear autonomous differences equa-

15



System of difference equations linked to the (k, h)-Pell Sequence

tions :

yn+2 − 2kyn+1 − hyn = 0, (2.2)

zn+2 + 2kzn+1 − hzn = 0. (2.3)

Then we have for all n ∈N0:

yn =
hy0

2k
φn−1 +

y1

2k
φn,

zn =
(−1)n+1

2k
(−hz0φn−1 + z1φn

)
.

Proof.

As is well known, the recurrence relation

yn+2 − 2kyn+1 − hyn = 0, n ∈N0,

with initial conditions y0, y1 ∈ R, is associated with the characteristic equation:

θ2 − 2kθ − h = 0.

Solving the characteristic equation, we obtain the roots

α = k +
√

k2 + h, β = k −
√

k2 + h.

Therefore, the general solution to the recurrence relation is given by

yn = c1α
n + c2β

n. (2.4)

By using the initial conditions y0 and y1 with some calculations we get

c1 =
y0β − y1

β − α , c2 =
y1 − y0α

β − α .

16



System of difference equations linked to the (k, h)-Pell Sequence

By compensation in the equation (2.4) we get

yn = y0
αβ(αn−1 − βn−1)
−(α − β) + y1

αn − βn

α − β

=
hy0

p
(αn−1 − βn−1) +

y1

p
(αn − βn)

=
hy0

2k
yn−1 +

y1

2k
yn.

By the same argument, we get

zn =
(−1)n+1

2k
(−z0hφn−1 + z1φn

)
.

lemma 2.2.2 Consider the linear system of second order linear autonomous differences equa-

tions

un+2 − 2kvn+1 − hun = 0, vn+2 − 2kun+1 − hvn = 0, n ∈N0. (2.5)

Then

u2n =
1
2k

(
hu0φ2n−1 + v1φ2n

)
,

u2n+1 =
1
2k

(
hv0φ2n + u1φ2n+1

)
,

v2n =
1
2k

(
hv0φ2n−1 + u1φ2n

)
,

v2n+1 =
1
2k

(
hu0φ2n + v1φ2n+1

)
.

Proof.

Through the combination of addition and subtraction of equations, we get

un+2 + vn+2 = 2k (un+1 + vn+1) + h(un + vn) , (2.6)

un+2 − vn+2 = −2k (un+1 − vn+1) + h(un − vn) . (2.7)
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By posing the following changes of variables

Rn = un + vn, Sn=un − vn. (2.8)

The equations (2.6) and (2.7) becomes

Rn+2 = 2kRn+1 + hRn,

Sn+2 = −2kSn+1 + hSn,

which are in the form of equations (2.2) and (2.3). Then it follows from Lemma (2.2.1)

that

R2n =
hR0

2k
φ2n−1 +

R1

2k
φ2n, R2n+1 =

hR0

2k
φ2n +

R1

2k
φ2n+1,

S2n = −
1
2k

(−hS0φ2n−1 + S1φ2n
)
, S2n+1 =

1
2k

(−hS0φ2n + S1φ2n+1
)
.

And we have from (2.8) that

un =
1
2

(Rn + Sn) , vn =
1
2

(Rn − Sn) ,

u2n =
1
2

(R2n + S2n) , u2n+1 =
1
2

(R2n+1 + S2n+1) ,

v2n =
1
2

(R2n − S2n) , v2n+1 =
1
2

(R2n+1 − S2n+1) .

By substitution, we get

u2n =
1
2

(
hR0

2k
φ2n−1 +

R1

2k
φ2n +

hS0

2k
φ2n−1 −

S1

2k
φ2n

)
,

u2n+1 =
1
2

(
hR0

2k
φ2n +

R1

2k
φ2n+1 −

hS0

2k
φ2n +

S1

2k
φ2n+1

)
,

v2n =
1
2

(
hR0

2k
φ2n−1 +

R1

2k
φ2n −

hS0

2k
φ2n−1 +

S1

2k
φ2n

)
,

v2n+1 =
1
2

(
hR0

2k
φ2n +

R1

2k
φ2n+1 +

hS0

2k
φ2n −

S1

2k
φ2n+1

)
.
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So

u2n =
1
2k

(
hu0φ2n−1 + v1φ2n

)
,

u2n+1 =
1
2k

(
hv0φ2n + u1φ2n+1

)
,

v2n =
1
2k

(
hv0φ2n−1 + u1φ2n

)
,

v2n+1 =
1
2k

(
hu0φ2n + v1φ2n+1

)
.

2.3 Closed-form solution of system (2.1)

In this section, we begin by reformulating the original system through a valid vari-

able change. This new variable transformation leads us to a simpler equivalent system,

which we then study in detail. Through recursive relations and exploiting known infor-

mation from previous lemmas, we obtain closed-form solutions of the system. We then

express these solutions in an explicit form involving (k, h)-Pell-Lucas sequences. Fi-

nally, we summarize our findings in a main theorem and provide a corollary providing

the complete solution to the provided system.

From (2.1) we can write

x(l+1)(n+1)− j =
1

2k + hy(l+1)n− j
, y(l+1)(n+1)− j =

1
2k + hx(l+1)n− j

.

By using the following change of variables:

x( j)
n =(l+1)n− j, y( j)

n = y(l+1)n− j,

in system (2.1) we get

x( j)
n+1 =

1

2k + hy j
n

, y( j)
n+1 =

1

2k + hx j
n

, n ∈N0. (2.9)
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Hence we can use the change of variables

x( j)
n =

Wn

Un+1
, y( j)

n =
Un

Wn+1
,

in (2.9) and obtain

x( j)
n+1 =

Wn+1

Un+2
, y( j)

n+1 =
Un+1

Wn+2
.

So,

Wn+1

Un+2
=

1

2k +
hUn

Wn+1

,

=
1

2kWn+1 + hUn

Wn+1

,

=
Wn+1

2kWn+1 + hUn
.

And

Un+1

Wn+2
=

1

2k +
hWn

Un+1

,

=
1

2kUn+1 + hWn

Un+1

,

=
Un+1

2kUn+1 + hWn
.

So the system (2.9) becomes

Un+2 = 2kWn+1 + hUn,

Wn+2 = 2kUn+1 + hWn.
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Then it follows from Lemma (2.2.2) that

U2n =
1
2k

(
hU0φ2n−1 +W1φ2n

)
,

U2n+1 =
1
2k

(
hW0φ2n +U1φ2n+1

)
,

W2n =
1
2k

(
hW0φ2n−1 +U1φ2n

)
,

W2n+1 =
1
2k

(
hU0φ2n +W1φ2n+1

)
.

So,

x( j)
2n+1 =

W2n+1

U2n+2
,

=
W1φ2n+1 + hU0φ2n

hU0φ2n+1 +W1φ2n+2
,

=

hU0

W1
φ2n + φ2n+1

hU0

W1
φ2n+1 + φ2n+2

,

x( j)
2n+1 =

hy( j)
0 φ2n + φ2n+1

hy( j)
0 φ2n+1 + φ2n+2

.

As well as

x( j)
2n =

W2n

U2n+1
,

=
hW0φ2n−1 +U1φ2n

hW0φ2n +U1φ2n+1
,

=

hW0

U1
φ2n−1 + φ2n

hW0

U1
φ2n + φ2n+1

,

x( j)
2n =

hx( j)
0 φ2n−1 + φ2n

hx( j)
0 φ2n + φ2n+1

.
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From the above,

y( j)
2n+1 =

U2n+1

W2n+2
,

=
hW0φ2n +U1φ2n+1

hW0φ2n+1 +U1φ2n+2
,

=

hW0

U1
φ2n + φ2n+1

hW0

U1
φ2n+1 + φ2n+2

,

y( j)
2n+1 =

hx( j)
0 φ2n + φ2n+1

hx( j)
0 φ2n+1 + φ2n+2

.

Also,

y( j)
2n =

U2n

W2n+1
,

=
hU0φ2n−1 +W1φ2n

hU0φ2n +W1φ2n+1
,

=

hU0

W1
φ2n−1 + φ2n

hU0

W1
φ2n + φ2n+1

,

y( j)
2n =

hy( j)
0 φ2n−1 + φ2n

hy( j)
0 φ2n + φ2n+1

.

Theorem 2.3.1 Let {x( j)
n , y

( j)
n }n≥0 be the solution to system (2.9) then for n ∈N and j = 0, ..., l

x( j)
2n+1 =

hy( j)
0 φ2n + φ2n+1

hy( j)
0 φ2n+1 + φ2n+2

, x( j)
2n =

hx( j)
0 φ2n−1 + φ2n

hx( j)
0 φ2n + φ2n+1

,

y( j)
2n+1 =

hx( j)
0 ϕ2n + φ2n+1

hx( j)
0 φ2n+1 + φ2n+2

, y( j)
2n =

hy( j)
0 φ2n−1 + φ2n

hy( j)
0 φ2n + φ2n+1

.

The following corollory is our main result wich gives the explicit formula of solution

to system
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Corollary 2.3.1 Let {xn, yn}n≥0 be the solution to system (2.1) then for n ∈N and j = 0, 1, ..., l

x(l+1)(2n+1)− j =
hy− jφ2n + φ2n+1

hy− jφ2n+1 + φ2n+2
, x(l+1)(2n)− j =

hx− jφ2n−1 + φ2n

hx− jφ2n + φ2n+1
,

y(l+1)(2n+1)− j =
hx− jφ2n + φ2n+1

hx− jφ2n+1 + φ2n+2
, y(l+1)(2n)− j =

hy− jφ2n−1 + φ2n

hy− jφ2n + φ2n+1
.

Proof.

We have

x( j)
n = x(l+1)(n)− j, j = 0, 1, ..., l.

So

x( j)
2n+1 = x(l+1)(2n+1)− j,

and

x( j)
0 = x− j.

Then

x( j)
2n+1 = x(l+1)(2n+1)− j,

=
hy− jφ2n + φ2n+1

hy− jφ2n+1 + φ2n+2
,

and

x( j)
2n = x(l+1)(2n)− j,

=
hx− jφ2n−1 + φ2n

hx− jφ2n + φ2n+1
.

We have

y( j)
n = y(l+1)(n)− j, j = 0, 1, ..., l.
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So

y( j)
2n+1 = y(l+1)(2n+1)− j,

and

y j
0 = y− j.

Hence

y( j)
2n+1 = y(l+1)(2n+1)− j,

=
hx− jφ2n + φ2n+1

hx− jφ2n+1 + φ2n+2
,

Also

y( j)
2n = y(l+1)(2n+)− j,

=
hy− jφ2n−1 + φ2n

hy− jφ2n + φ2n+1
.

2.4 Global stability of the solutions to system (2.1)

In this section, we investigate the global stability of the solutions of system of non-

linear difference equations (2.1). By finding the equilibrium points of the system, we

apply linearization techniques and Rouche’s Theorem to determine local and global

asymptotic stability.

The equilibrium points of the system are given by

M =
(
x, y

)
=

−k +
√

k2 + h
h

,
−k +

√
k2 + h

h

 ,
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M =
(
x, y

)
=

−k −
√

k2 + h
h

,
−k −

√
k2 + h

h

 .

Theorem 2.4.1 The equilibrium point

M =
(
x, y

)
=

−k +
√

k2 + h
h

,
−k +

√
k2 + h

h

 ,
is locally asymptotically stable.

Proof.

We linearize the system around the equilibrium point M =
(
x, y

)
=

(
−k+
√

k2+h
h , −k+

√
k2+h

h

)
.

The resulting linear system can be written as :

Xn+1 = JXn,

where the state vector is defined by

Xn =
(
xn, xn−1, · · · , xn−l, yn, yn−1 , · · · , yn−l

)t
,

and the matrix J is given as

J =



0 0 · · · 0 0 · · · 0 −h

(k+
√

k2+h)2

1 0 · · · 0 0 · · · 0 0

0 1 · · · 0 0 · · · 0 0
...
...
. . .

...
...
. . .

...
...

0 0 · · · −h

(k+
√

k2+h)2 0 · · · 0 0

0 0 · · · 0 0 · · · 0 0

0 0 · · · 0 1 · · · 0 0
...
... · · · ...

...
. . .

...
...

0 0 · · · 0 0 · · · 1 0



.
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The characteristic polynomial of matrix J is:

P(λ) = (−λ)2l+2 −
 h

(k +
√

k2 + h)2

2

.

Let us define the functions :

δ(λ) = (−λ)2l+2, ϕ(λ) =

 h

(k +
√

k2 + h)2

2

.

It holds that

|ϕ(λ)| < |δ(λ)|, for allλ ∈ C, with|λ| = 1.

By Rouche’s Theorem the function P = δ+ϕ has the same number of zeros as φwithin

the unit disc |ϕ(λ)| < 1, and since δ has a root of multiplicity 2(l+1) at λ = 0, then all the

roots of P are in the disc |ϕ(λ)| < 1. Thus, the equilibrium point is locally asymptotically

stable.

Corollary 2.4.1 The equilibrium point M is globaly asymptotically stable.

Proof.

According to Theorem (2.4.1), M is globally asymptotically stable. To demonstrate

global asymptotic stability, we utilize Corollary (2.3.1). Consider the following limit.

lim
n→∞

x(l+1)(2n)− j = lim
n→∞

hx− jφ2n−1 + φ2n

hx− jφ2n + φ2n+1
= lim

n→∞

hx− j
φ2n−1

φ2n
+ 1

hx− j +
φ2n+1

φ2n

.

Using the known limits

lim
n→∞

(
φ2n−1

φ2n

)
= α, lim

n→∞

(
φ2n+1

φ2n

)
=

1
α
= β,
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we get

lim
n→∞

x(l+1)(2n)− j =
hx− jβ + 1
hx− j + α

,

=
hx− j(k −

√
k2 + h) + 1

hx− j + k +
√

k2 + h
,

=
−k +

√
k2 + h

h
,

= x.

However, we have

lim
n→∞

x(l+1)(2n+1)− j = lim
n→∞

hy− jφ2n + φ2n+1

hy− jφ2n+1 + φ2n+2
= lim

n→∞

hy− j
φ2n

φ2n+1
+ 1

hy− j +
φ2n+2

φ2n+1

=
hy− jβ + 1
hy− j + α

.

Using the following two limits

lim
n→∞

(
φ2n−1

φ2n

)
= α, lim

n→∞

(
φ2n+1

φ2n

)
=

1
α
= β,

we get

lim
n→∞

x(l+1)(2n+1)− j =
−k +

√
k2 + h

h
= x.

So,

lim
n→∞

x(l+1)(2n+1)− j = x.

Similarly, it can proven that

lim
n→∞

y(l+1)(2n+1)− j = y.

Hence, the solution converges globally to the equilibrium point

lim
n→∞

(
x(l+1)(2n+1)− j, y(l+1)(2n+1)− j

)
= (x, y).
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2.5 Rate of convergence

In this section, we analyze the convergence rate of the solution to the equilibrium

point
(
x, y

)
for the given nonlinear difference system (2.1). Linearization around the

equilibrium and expression of the dynamics as

An+1 = (M + Bn) An, (2.10)

where An is a vector of dimensions 2l, M ∈ C2l×2l is a constant matrix and B : Z+ → C2l×2l

is a matrix function satisfying

∥Bn∥ −→ 0, when n→∞, (2.11)

where ∥.∥ indicates any matrix norm which is associated with the vector norm ∥.∥. We

determine the convergence rate via the spectral radius of M. The parameters k, h, and

delay l explicitly influence this rate, providing insights into the system’s stability and

asymptotic behavior.

Theorem 2.5.1 [10] (Perron’s first Theorem)

Suppose that condition (2.11) holds. If An is a solution of (2.10), then either An = 0 for all

largen or

ρ = lim
n→∞

∥An+1∥
∥An∥

,

exists and is equal to the modulus of one of the eigenvalues of matrix M.

Theorem 2.5.2 [10] (Perron’s second Theorem)

Suppose that condition (2.11) holds. If An is a solution of (2.10), then either An = 0 for all

largen or
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ρ = lim
n→∞

(∥An+1∥)
1
n ,

exists and is equal to the modulus of one of the eigenvalues of matrix M.

Theorem 2.5.3 [10] Let the solution {(xn, yn
)}n≥−1 of system (2.1) converges to the equilibrium

point
(
x, y

)
wich is globally asymptotically stable. So the error vector

en =



e(1)
n

e(1)
n−1
...

e(1)
n−l

e2
n

e2
n−1
...

e2
n−l



=



xn − x̄

xn−1 − x̄
...

xn−l − x̄

yn − ȳ

yn−1 − ȳ
...

yn−l − ȳ


of any solution of system (2.1) satisfies both of the following asymptotic behaviors

lim
n→∞

∥en+1∥
∥en∥

= |λiJF((x̄, ȳ))|, i = 1, 2, ..., l.

lim
n→∞

(∥en+1∥)
1
n = |λiJF((x̄, ȳ))|, i = 1, 2, ..., l,

where |λiJF((x̄, ȳ))| corresponds to the absolute value of one of the eigenvalues of the Jacobian

matrix evaluated at the equilibrium
(
x̄, ȳ

)
.

Proof.

To establish the desired result, we start by formulating a system that governs the

evolution of the error terms. These error termes are defined as follows :
xn+1 − x̄ =

∑l
i=0 Ci(xn−i − x̄) +

∑l
i=0 Di(yn−i − ȳ) f or i = 1, 2, ...., l,

yn+1 − ȳ =
∑l

i=0 Gi(xn−i − x̄) +
∑l

i=0 Hi(yn−i − ȳ) f or i = 1, 2, ...., l.
(2.12)
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Set

e(1)
n = xn − x̄, e(2)

n = yn − ȳ

Then, the system (2.12) become


e(1)

n+1 =
∑l

i=0 Cie
(1)
n−i +

∑l
i=0 Die

(2)
n−i f or i = 1, 2, ...., l,

e(2)
n+1 =

∑l
i=0 Gie

(1)
n−i +

∑l
i=0 Hie

(2)
n−i f or i = 1, 2, ...., l,

where

Ci = 0 i = 1, 2, ...., l

Di = 0 i = 1, 2, ...., l − 1, Dl =
−h

(2k + hyn−l)2

Gi = 0 i = 1, 2, ...., l − 1, Gl =
−h

(2k + hxn−l)2

Hi = 0 i = 1, 2, ...., l

As the system approaches equilibrium, it becomes clear that

lim
n→∞

Ci = 0 i = 1, 2, ...., l

lim
n→∞

Di = 0 i = 1, 2, ...., l − 1, lim
n→∞

Dl =
−h

(2k + hȳ)2

lim
n→∞

Gi = 0 i = 1, 2, ...., l − 1, lim
n→∞

Gl =
−h

(2k + hx̄)2

lim
n→∞

Hi = 0 i = 1, 2, ...., l

So, that means

Dl =
−h

(2k + hȳ)2 + αn, Gl =
−h

(2k + hx̄)2 + βn.

We can now express the system in the form

en+1 = (M + Bn) en,
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where en =
(
e(1)

n , e(1)
n−1, · · · , e(1)

n−l, e(2)
n , e(2)

n−1, · · · , e(2)
n−l

)t
and

Bn =



0 0 · · · 0 0 · · · 0 αn

1 0 · · · 0 0 · · · 0 0

0 1 · · · 0 0 · · · 0 0
...
...
. . .

...
...
. . .

...
...

0 0 · · · βn 0 · · · 0 0

0 0 · · · 0 0 · · · 0 0

0 0 · · · 0 1 · · · 0 0
...
... · · · ...

...
. . .

...
...

0 0 · · · 0 0 · · · 1 0



.

M = JF(x̄, ȳ) =



0 0 · · · 0 0 · · · 0 −h

(k+
√

k2+h)2

1 0 · · · 0 0 · · · 0 0

0 1 · · · 0 0 · · · 0 0
...
...
. . .

...
...
. . .

...
...

0 0 · · · −h

(k+
√

k2+h)2 0 · · · 0 0

0 0 · · · 0 0 · · · 0 0

0 0 · · · 0 1 · · · 0 0
...
... · · · ...

...
. . .

...
...

0 0 · · · 0 0 · · · 1 0



.
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∥Bn∥ → 0 when n→∞. As a result, the asymptotic error system can be expressed as

en+1 =



0 0 · · · 0 0 · · · 0 −h

(k+
√

k2+h)2

1 0 · · · 0 0 · · · 0 0

0 1 · · · 0 0 · · · 0 0
...
...
. . .

...
...
. . .

...
...

0 0 · · · −h

(k+
√

k2+h)2 0 · · · 0 0

0 0 · · · 0 0 · · · 0 0

0 0 · · · 0 1 · · · 0 0
...
... · · · ...

...
. . .

...
...

0 0 · · · 0 0 · · · 1 0





e(1)
n

e(1)
n−1
...

e(1)
n−l

e2
n

e2
n−1
...

e2
n−l



,

and ∥Bn∥ → 0 when n → ∞. Clearly, this system corresponds to the linear approxi-

mation of equation (2.1) near
(
x̄, ȳ

)
the equilibrium point. Thus, the result is a direct

consequence of Perron’s Theorems.

2.6 Numerical Examples

In this section, we studied a system of nonlinear difference equations with the use

of exact numerical techniques. We performed iterative calculations and documented

the findings in detailed tables and graphical plots that illustrate the dynamics of the

system and its convergence towards equilibrium points. The study was conducted in

an attempt to trace the evolution of variables with extremely high numerical accuracy

using advanced computational techniques as a foundation for subsequent theoretical

analysis and practical application.

example 2.6.1 Let the following system of difference equations

xn+1 =
1

2k + hyn−l
, yn+1 =

1
2k + hxn−l

, n ≥ 0, (2.13)
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where the parameters and initial conditions are chosen as follows:

• k = 1, h = 2 and l = 3.

• Initial conditions for x: x0 = 0.2, x1 = 0.9, x2 = 0.1, x3 = 0.7,

• Initial conditions for y: y0 = 0.8, y1 = 0.05, y2 = 0.6, y3 = 0.3.

The following table presents the computed values of the sequences (xn) and (yn) generated by

the system of difference equations with the given initial conditions and parameters. The values

are displayed for n = 1 to n = 30.

n 1 2 3 4 5 6 7 8 9 10
xn 0.9000 0.1000 0.7000 0.3571 0.3030 0.3226 0.3469 0.3603 0.3639 0.3644
yn 0.0500 0.6000 0.3000 0.3125 0.4545 0.3448 0.3309 0.3262 0.3247 0.3245

n 11 12 13 14 15 16 17 18 19 20
xn 0.3645 0.3645 0.3645 0.3645 0.3645 0.3645 0.3645 0.3645 0.3645 0.3645
yn 0.3244 0.3244 0.3244 0.3244 0.3244 0.3244 0.3244 0.3244 0.3244 0.3244

n 21 22 23 24 25 26 27 28 29 30
xn 0.3645 0.3645 0.3645 0.3645 0.3645 0.3645 0.3645 0.3645 0.3645 0.3645
yn 0.3244 0.3244 0.3244 0.3244 0.3244 0.3244 0.3244 0.3244 0.3244 0.3244

Table 2.1: Computed Values of xn and yn for n = 1 to 30 from the Difference Equation
System

Figure 2.1: Plot of the numerical solution of the system (2.13)
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Figure 2.2: 3D phase surface plot of the system (2.13)

example 2.6.2 Let the following system of difference equations

xn+1 =
1

2k + hyn−l
, yn+1 =

1
2k + hxn−l

, n ≥ 0, (2.14)

where the parameters and initial conditions are chosen as follows:

• k = 1, h = 2 and l = 12.

• Initial conditions for x: x0 = 0.5488, x1 = 0.7152, x2 = 0.6028, x3 = 0.5449,

x4 = 0.4237, x5 = 0.6459, x6 = 0.4376, x7 = 0.8918,

x8 = 0.9637, x9 = 0.3834, x10 = 0.7917, x11 = 0.5289, x12 = 0.5680,

• Initial conditions for y: y0 = 0.9256, y1 = 0.0710, y2 = 0.0871, y3 = 0.0202,
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y4 = 0.8326, y5 = 0.7782, y6 = 0.8700, y7 = 0.9786,

y8 = 0.7992, y9 = 0.4615, y10 = 0.7805, y11 = 0.1183, y12 = 0.6399.

The following table presents the computed values of the sequences (xn) and (yn) generated by

the system of difference equations with the given initial conditions and parameters. The values

are displayed for n = 1 to n = 100.
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n 1 2 3 4 5 6 7 8 9 10
xn 0.7152 0.6028 0.5449 0.4237 0.6459 0.4376 0.8918 0.9637 0.3834 0.7917
yn 0.0710 0.0871 0.0202 0.8326 0.7782 0.8700 0.9786 0.7992 0.4615 0.7805

n 11 12 13 14 15 16 17 18 19 20
xn 0.5289 0.5680 0.4668 0.4599 0.4901 0.2728 0.2812 0.2674 0.2527 0.2779
yn 0.1183 0.6399 0.2915 0.3120 0.3236 0.3512 0.3038 0.3478 0.2643 0.2546

n 21 22 23 24 25 26 27 28 29 30
xn 0.3421 0.2808 0.4471 0.3049 0.3871 0.3811 0.3777 0.3700 0.3835 0.3710
yn 0.3614 0.2791 0.3270 0.3189 0.3409 0.3425 0.3355 0.3928 0.3903 0.3945

n 31 32 33 34 35 36 37 38 39 40
xn 0.3955 0.3985 0.3673 0.3909 0.3768 0.3791 0.3729 0.3724 0.3744 0.3590
yn 0.3991 0.3913 0.3725 0.3904 0.3455 0.3832 0.3605 0.3620 0.3629 0.3650

n 41 42 43 44 45 46 47 48 49 50
xn 0.3596 0.3585 0.3574 0.3594 0.3643 0.3596 0.3716 0.3615 0.3675 0.3671
yn 0.3614 0.3647 0.3583 0.3575 0.3657 0.3595 0.3632 0.3626 0.3642 0.3643

n 51 52 53 54 55 56 57 58 59 60
xn 0.3669 0.3663 0.3673 0.3664 0.3681 0.3683 0.3661 0.3678 0.3668 0.3670
yn 0.3638 0.3679 0.3677 0.3680 0.3684 0.3678 0.3665 0.3678 0.3645 0.3672

n 61 62 63 64 65 66 67 68 69 70
xn 0.3665 0.3665 0.3666 0.3655 0.3656 0.3655 0.3654 0.3655 0.3659 0.3656
yn 0.3656 0.3657 0.3658 0.3659 0.3657 0.3659 0.3655 0.3654 0.3660 0.3656

n 71 72 73 74 75 76 77 78 79 80
xn 0.3664 0.3657 0.3661 0.3661 0.3661 0.3660 0.3661 0.3661 0.3662 0.3662
yn 0.3658 0.3658 0.3659 0.3659 0.3659 0.3662 0.3661 0.3662 0.3662 0.3662

n 81 82 83 84 85 86 87 88 89 90
xn 0.3660 0.3662 0.3661 0.3661 0.3661 0.3661 0.3661 0.3660 0.3660 0.3660
yn 0.3661 0.3661 0.3659 0.3661 0.3660 0.3660 0.3660 0.3660 0.3660 0.3660

n 91 92 93 94 95 96 97 98 99 100
xn 0.3660 0.3660 0.3660 0.3660 0.3661 0.3660 0.3660 0.3660 0.3660 0.3660
yn 0.3660 0.3660 0.3660 0.3660 0.3660 0.3660 0.3660 0.3660 0.3660 0.3660

Table 2.2: Computed Values of xn and yn for n = 1 to 100 and l = 12 from the difference
equation system 36
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Figure 2.3: Plot of the numerical solution of the system (2.14)

Figure 2.4: 3D phase surface plot of the system (2.14)
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CHAPTER 3

SYSTEM OF DIFFERENCE EQUATIONS

LINKED TO THE k-JACOBSTHAL

SEQUENCE

This chapter investigates a higher-order difference equation system whose solutions

are expressed in terms of k−Jacobsthal sequences. We derive closed-form solutions and

analyze the stability and asymptotic behavior of the system. Through the connection

of the solutions to this type of general sequences, the study provides new theoreti-

cal results on recursive systems. The results enhance the understanding of dynamic

processes modeled by such difference equations.
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3.1 Introduction

We propose some theoretical explanations pertaining to the representation for the

solution of the system of the higher-order difference equations

xn+1 =
1

k + 2yn−l
, yn+1 =

1
k + 2xn−l

, (3.1)

with k ∈ Z and n, l ∈N.

The initial conditions x−l, x−l+1, . . . , x0, y−l, y−l+1, . . . , y0, are non zero real numbers

such that their solution is related to a generalized Jacobsthal sequences. We also study

the stability character and asymptotic behavior of this system.

We will present two lemmas so that the first lemma provides the solutions of two

homogeneous second order linear autonomous difference equations, which is essential

for representations the solution of system (3.1). Its proof utilizes the characteristic roots

of the characteristic polynomial θ2 ± kθ − 2. On the other hand, the second lemma

offers the solution of a system of second order linear autonomous difference equations,

which plays a crucial role in solving the system (3.1).

3.2 Preliminary Results

In this section, we explore second-order linear difference equations within the frame-

work of k−Jacobsthal sequences. From our analysis, explicit solutions to two principal

homogeneous equations are obtained prior to applying the results to coupled systems

through variable decoupling techniques. The solutions expressed in terms of initial

conditions and k−Jacobsthal sequences reveal basic recursive forms and expose their

underlying algebraic structure. This systematic approach shows the way complex

systems can be mapped to solvable types through careful transformations.

lemma 3.2.1 Consider the two homogeneous second order linear autonomous differences equa-
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tions :

Bn+2 − kBk,n+1 − 2Bn = 0, (3.2)

Pn+2 + kPn+1 − 2Pn = 0. (3.3)

Then we have for all n ∈N0:

Bn = 2B0Jk,n−1 + B1Jk,n,

Pn = (−1)n (
2P0Jk,n−1 − P1Jk,n

)
.

Proof.

As is well-known, the recurrence relation

Bn+2 − kBn+1 − 2Bk,n = 0, n ∈N0,

with inial conditions B0, B1 ∈ R, is associated with the characteristic equation:

θ2 − kθ − 2 = 0.

Solving the characteristic equation, we obtain the roots:

r1 =
k +
√

k2 + 8
2

, r2 =
k −
√

k2 + 8
2

.

Thus, the formulas of general solution is:

Bn = c1rn
1 + c2rn

2 . (3.4)

By using the initial conditions B0 and B1 with some calculations we get:

c1 =
B0r2 − B1

r2 − r1
, c2 =

B1 − r1B0

r2 − r1
.
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By compensation in the equation (3.4) we get

Bn = B0
rn

1r2 − r1rn
2

r2 − r1
+ B1

rn
2 − rn

1

r2 − r1
,

= B0

r1r2

(
rn−1

1 − rn−1
2

)
r2 − r1

+ B1
rn

2 − rn
1

r2 − r1
,

= B0

−r1r2

(
rn−1

1 − rn−1
2

)
r1 − r2

+ B1
rn

1 − rn
2

r1 − r2
,

= 2B0
rn−1

1 − rn−1
2

r1 − r2
+ B1

rn
1 − rn

2

r1 − r2
,

= 2B0Jk,n−1 + B1Jk,n.

By the same argument, we get

Pn = (−1)n (
2P0Jn−1 − P1Jk,n

)
.

lemma 3.2.2 Consider the linear systam of second order linear autonomous differences equa-

tions

µn+2 − kνn+1 − 2µk,n = 0, νn+2 − kµn+1 − 2νk,n = 0, n ∈N0. (3.5)

Then

µ2n = 2µ0Jk,2n−1 + ν1Jk,2n,

µ2n+1 = 2ν0Jk,2n + µ1Jk,2n+1,

ν2n = 2ν0Jk,2n−1 + µ1Jk,2n,

ν2n+1 = 2µ0Jk,2n + ν1Jk,2n+1.

Proof.
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Through the combination of addition and subtraction of equations, we get

µn+2 + νn+2 = k (νn+1 +mun+1) + 2
(
µn + νn

)
, (3.6)

µn+2 − νn+2 = −k
(
µn+1 − νn+1

)
+ 2

(
µn − νn

)
. (3.7)

By posing the following changes of variables :

Rn = µn + νn, Sn = µn − νn. (3.8)

The equations (3.6) and (3.7) becomes:

Rn+2 = kRn+1 + 2Rn,

Sn+2 = −kSn+1 + 2Sn,

wich are in the form of equations (3.2) and (3.3) Then it follows from Lemma (3.2.1)

that

R2n = 2R0Jk,2n−1 + R1Jk,2n, R2n+1 = 2R0Jk,2n + R1Jk,2n+1,

S2n = 2S0Jk,2n−1 − S1Jk,2n, S2n+1 = −
(
2S0Jk,2n + S1Jk,2n+1

)
.

And we have from (3.8) that

µn =
1
2

(Rn + Sn) , νn =
1
2

(Rn − Sn) ,

ν2n =
1
2

(R2n + S2n) , ν2n+1 =
1
2

(R2n+1 + S2n+1) ,

ν2n =
1
2

(R2n − S2n) , ν2n+1 =
1
2

(R2n+1 − S2n+1) .

By substitution, we get

µ2n =
1
2
(
2R0Jk,2n−1 + R1Jk,2n + 2S0Jk,2n−1 − S1Jk,2n

)
,
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µ2n+1 =
1
2
(
2R0Jk,2n + R1Jk,2n+1 − 2S0Jk,2n + S1Jk,2n+1

)
,

ν2n =
1
2
(
2R0Jk,2n−1 + R1Jk,2n − 2S0Jk,2n−1 + S1Jk,2n

)
,

ν2n+1 =
1
2
(
2R0Jk,2n + R1Jk,2n+1 + 2S0Jk,2n − S1Jk,2n+1

)
.

So

µ2n = 2µ0Jk,2n−1 + ν1Jk,2n,

µ2n+1 = 2ν0Jk,2n + µ1Jk,2n+1,

ν2n = 2ν0Jk,2n−1 + µ1Jk,2n,

ν2n+1 = 2µ0Jk,2n + ν1Jk,2n+1.

3.3 Closed-form solution of system (3.1)

In this section, we begin by reformulating the original system through a valid variable

change. This new variable transformation leads us to a simpler equivalent system,

which we then study in detail. Through recursive relations and exploiting known in-

formation from previous lemmas, we obtain closed-form solutions of the system. We

then express these solutions in an explicit form involving k−Jacobsthal sequences. Fi-

nally, we summarize our findings in a main theorem and provide a corollary providing

the complete solution to the provided system.

From (3.1) we can write

x(l+1)(n+1)− j =
1

k + 2y(l+1)n− j
, y(l+1)(n+1)− j =

1
k + 2x(l+1)n− j

.
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By using the following change of variables

x( j)
n = x(l+1)n− j, y( j)

n = y(l+1)n− j,

in system (3.1) we get

x( j)
n+1 =

1

k + 2y j
n

, y( j)
n+1 =

1

k + 2x j
n

. n ∈N0. (3.9)

Hence we can use the change of variables

x( j)
n =

Wn

Un+1
, y( j)

n =
Un

Wn+1
,

in (3.9) and obtain

x( j)
n+1 =

Wn+1

Un+2
, y( j)

n+1 =
Un+1

Wn+2
.

So,

Wn+1

Un+2
=

1

k +
2Un

Wn+1

,

=
1

kWn+1 + 2Uk,n

Wn+1

,

=
Wn+1

kWn+1 + 2Un
.
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And

Un+1

Wn + 2
=

1

k +
2Wn

Un+1

,

=
1

kUn+1 + 2Wn

Un+1

,

=
Un+1

kUn+1 + 2Wn
.

So the system (3.9) becomes:

Un+2 = kWn+1 + 2Un,

Wn+2 = kUn+1 + 2Wn.

Then it follows from lemma (3.2.2) that:

U2n = 2U0J2n−1 +W1Jk,2n,

U2n+1 = 2W0Jk,2n +U1Jk,2n+1,

W2n = 2W0Jk,2n−1 +U1Jk,2n,

W2n+1 = 2U0Jk,2n +W1Jk,2n+1.

So

x( j)
2n+1 =

W2n+1

U2n+2
,

=
2U0J2n +W1Jk,2n+1

2U0Jk,2n+1 +W1Jk,2n+2
,

=

2U0

W1
Jk,2n + Jk,2n+1

2U0

W1
Jk,2n+1 + Jk,2n+2

,
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x( j)
2n+1 =

2y( j)
0 Jk,2n + Jk,2n+1

2y( j)
0 Jk,2n+1 + Jk,2n+2

.

As well as

x( j)
2n =

W2n

U2n+1
,

=
2W0Jk,2n−1 +U1Jk,2n

2W0Jk,2n +U1Jk,2n+1
,

=

2W0

U1
Jk,2n−1 + Jk,2n

2W0

U1
Jk,2n + Jk,2n+1

,

x( j)
2n =

2x( j)
0 Jk,2n−1 + Jk,2n

2x( j)
0 Jk,2n + Jk,2n+1

.

And we have

y( j)
2n+1 =

U2n+1

W2n+2
,

=
2W0Jk,2n +U1J2n+1

2W0J2n+1 +U1Jk,2n+2
,

=

2W0

U1
Jk,2n + Jk,2n+1

2W0

Uk,1
Jk,2n+1 + Jk,2n+2

,

y( j)
2n+1 =

2x( j)
0 Jk,2n + J2n+1

2x( j)
0 Jk,2n+1 + Jk,2n+2

.
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Also

y( j)
2n =

U2n

W2n+1
,

=
2U0Jk,2n−1 +W1Jk,2n

2U0Jk,2n +W1Jk,2n+1
,

=

2U0

W1
Jk,2n−1 + jk,2n

2U0

Wk,1
Jk,2n + Jk,2n+1

,

y( j)
2n =

2y( j)
0 Jk,2n−1 + Jk,2n

2y( j)
0 Jk,2n + Jk,2n+1

.

Theorem 3.3.1 Let {x( j)
n , y

( j)
n }n≥0 be the solution to system (3.9) then for n ∈N and j = 0, ..., l

x( j)
2n+1 =

2y( j)
0 Jk,2n + Jk,2n+1

2y( j)
0 Jk,2n+1 + Jk,2n+2

, x( j)
2n =

2x( j)
0 Jk,2n−1 + Jk,2n

2x( j)
0 Jk,2n + Jk,2n+1

,

y( j)
2n+1 =

2x( j)
0 Jk,2n + J2n+1

2x( j)
0 Jk,2n+1 + Jk,2n+2

, y( j)
2n =

2y( j)
0 Jk,2n + J2n+1

2y( j)
0 Jk,2n+1 + Jk,2n+2

.

The following corollory is our main result wich gives the explicit formula of solution

to system

Corollary 3.3.1 Let {xn, yn}n≥0 be the solution to system (3.1) then for n ∈N and j = 0, 1, ..., l.

x(l+1)(2n+1)− j =
2y− jJk,2n + Jk,2n+1

2y− jJk,2n+1 + Jk,2n+2
, x(l+1)(2n)− j =

2x− jJk,2n−1 + Jk,2n

2x− jJk,2n + Jk,2n+1
,

y(l+1)(2n+1)− j =
2x− jJk,2n + J2n+1

2x− jJk,2n+1 + Jk,2n+2
, y(l+1)(2n)− j =

2y− jJk,2n + J2n+1

2y− jJk,2n+1 + Jk,2n+2
.

Proof.

We have

x( j)
n = x(l+1)(n)− j, j = 0, 1, ..., l.
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So

x( j)
2n+1 = x(l+1)(2n+1)− j,

and

x( j)
0 = x− j.

Then

x( j)
2n+1 = x(l+1)(2n+1)− j =

2y− jJk,2n + Jk,2n+1

2y− jJk,2n+1 + Jk,2n+2
,

and

x( j)
2n = x(l+1)(2n)− j =

2x− jJk,2n−1 + Jk,2n

2x− jJk,2n + Jk,2n+1
.

We have

y( j)
n = y(l+1)(n)− j, j = 0, 1, ..., l.

So

y( j)
2n+1 = y(l+1)(2n+1)− j,

and

y( j)
0 = y− j.

Hence

y( j)
2n+1 = y(l+1)(2n+1)− j =

2x− jJk,2n + J2n+1

2x− jJk,2n+1 + Jk,2n+2
,

Also

y( j)
2n = y(l+1)(2n+)− j =

2y− jJk,2n + J2n+1

2y− jJk,2n+1 + Jk,2n+2
.

3.4 Global stability of the solution to system (3.1)

In this section, we investigate the global stability of the solutions of a system of non-

linear difference equations (3.1). By finding the equilibrium points of the system, we

apply linearization techniques and Rouche’s Theorem to determine local and global
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asymptotic stability.

The equilibrium points of the system are given by :

M =
(
x, y

)
=

−k +
√

k2 + 8
4

,
−k +

√
k2 + 8

4

 ,
M =

(
x, y

)
=

−k −
√

k2 + 8
4

,
−k −

√
k2 + 8

4

 .

Theorem 3.4.1 The equilibrium point

M =
(
x, y

)
=

−k +
√

k2 + 8
4

,
−k +

√
k2 + 8

4

 ,
is locally asymptotically stable.

Proof.

We linearize the system around the equilibrium point M =
(
x, y

)
=

(
−k+
√

k2+8
4 , −k+

√
k2+8

4

)
.

The resulting linear system can be written as :

Xn+1 = JXn,

where the state vector is defined by

Xn =
(
xn, xn−1, · · · , xn−l, yn, yn−1 , · · · , yn−l

)t
,
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and the matrix J is given as

J =



0 0 · · · 0 0 · · · 0 −8

(k+
√

k2+8)2

1 0 · · · 0 0 · · · 0 0

0 1 · · · 0 0 · · · 0 0
...
...
. . .

...
...
. . .

...
...

0 0 · · · −8

(k+
√

k2+8)2 0 · · · 0 0

0 0 · · · 0 0 · · · 0 0

0 0 · · · 0 1 · · · 0 0
...
... · · · ...

...
. . .

...
...

0 0 · · · 0 0 · · · 1 0



.

The characteristic polynomial of matrix J is:

P(λ) = (−λ)2l+2 −
 −8

(k +
√

k2 + 8)2

2

.

Let us define the functions :

φ(λ) = (−λ)2l+2, ϕ(λ) =

 −8

(k +
√

k2 + 8)2

2

.

It holds that

|ϕ(λ)| < |φ(λ)|, for allλ ∈ C, for all|λ| = 1.

By Rouche’s Theorem, the function P = φ+ϕ has the same number of zeros as φwithin

the unit disc |ϕ(λ)| < 1. since φ has a root of multiplicity 2(l + 1) at λ = 0, then all the

roots of P are in the disc |ϕ(λ)| < 1. Thus, the equilibrium point is locally asymptotically

stable.

Corollary 3.4.1 The equilibrium point M is globally asymptotically stable.

Proof.
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According to Theorem (3.4.1), the point M is locally stable. To demonstrate global

asymptotic stability, we utilize Corollary (3.3.1). Consider the following limit

lim
n→∞

x(l+1)(2n)− j = lim
n→∞

2x− jJk,2n−1 + Jk,2n

2x− jJk,2n + Jk,2n+1
= lim

n→∞

2x− j
Jk,2n−1

Jk,2n
+ 1

2x− j +
Jk,2n+1

Jk,2n

.

Using the known limits

lim
n→∞

(
Jk,2n−1

Jk,2n

)
=

1
r1
= r2, lim

n→∞

(
Jk,2n+1

Jk,2n

)
= r1,

we get

lim
n→∞

x(l+1)(2n)− j =
2x− jr2 + 1
2x− j + r1

,

=
2x− j( k−

√
k2+8
2 ) + 1

2x− j +
k+
√

k2+8
2

,

=
−k +

√
k2 + 8

4
,

= x.

However,we have

lim
n→∞

x(l+1)(2n+1)− j = lim
n→∞

2y− jJk,2n + Jk,2n+1

2y− jJk,2n+1 + Jk,2n+2
= lim

n→∞

2y− j
Jk,2n

Jk,2n+1
+ 1

2y− j +
Jk,2n+2

Jk,2n+1

=
hy− jr2 + 1
hy− j + r1

.

Using the following two limits

lim
n→∞

(
Jk,2n−1

Jk,2n

)
=

1
r1
= r2, lim

n→∞

(
Jk,2n+1

Jk,2n

)
= r1,

we get

lim
n→∞

x(l+1)(2n+1)− j =
−k +

√
k2 + 8

4
= x,

So

lim
n→∞

x(l+1)(2n+1)− j = x.
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Similarly, it can be proven that

lim
n→∞

y(l+1)(2n+1)− j = y.

Hence, the solution converges globally to the equilibrium point

lim
n→∞

(
x(l+1)(2n+1)− j, y(l+1)(2n+1)− j

)
= (x, y).

3.5 Rate of convergence

In this section, we analyze the rate of convergence of solutions to the equilibrium

point
(
x, y

)
for the given nonlinear difference system (3.1). By linearizing around the

equilibrium and expressing the dynamics as

An+1 = (M + Zn) An, (3.10)

where An is a 2l-dimensional vector, M ∈ C2l×2l is a constant matrix and Z : Z+ → C2l×2l

is a matrix function satisfying

∥Zn∥ −→ 0, when n→∞, (3.11)

where ∥.∥ indicates any matrix norm which is associated with the vector norm ∥.∥. We

determine the convergence rate via the spectral radius of M. The parameter k, and

delay l explicitly influence this rate, providing insights into the system’s stability and

asymptotic behavior.

Theorem 3.5.1 [10] (Perron’s first Theorem)

Suppose that condition (3.11) holds. If An is a solution of (3.10), then either An = 0 for all

largen or
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ρ = lim
n→∞

∥An+1∥
∥An∥

,

exists and is equal to the modulus of one of the eigenvalues of matrix M.

Theorem 3.5.2 [10] (Perron’s second Theorem)

Suppose that condition (3.11) holds. If An is a solution of (3.10), then either An = 0 for all

largen or

ρ = lim
n→∞

(∥An+1∥)
1
n ,

exists and is equal to the modulus of one of the eigenvalues of matrix M.

Theorem 3.5.3 [10] Let the solution {(xn, yn
)}n≥−1 of system (3.1) converges to the equilibrium

point
(
x, y

)
wich is globally asymptotically stable. So the error vector

en =



e(1)
n

e(1)
n−1
...

e(1)
n−l

e2
n

e2
n−1
...

e2
n−l



=



xn − x̄

xn−1 − x̄
...

xn−l − x̄

yn − ȳ

yn−1 − ȳ
...

yn−l − ȳ


of any solution of system (3.1) satisfies both of the following asymptotic behaviors

lim
n→∞

∥en+1∥
∥en∥

= |λiJF((x̄, ȳ))|, i = 1, 2, ..., l,

lim
n→∞

(∥en+1∥)
1
n = |λiJF((x̄, ȳ))|, i = 1, 2, ..., l,

where |λiJF((x̄, ȳ))| corresponds to the absolute value of one of the eigenvalues of the Jacobian

matrix evaluated at the equilibrium
(
x̄, ȳ

)
.
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Proof.

To establish the desired result, we start by formulating a system that governs the

evolution of the error terms. These error termes are defined as follows :
xn+1 − x̄ =

∑l
i=0 Ci(xn−i − x̄) +

∑l
i=0 Di(yn−i − ȳ) f or i = 1, 2, ...., l,

yn+1 − ȳ =
∑l

i=0 Gi(xn−i − x̄) +
∑l

i=0 Hi(yn−i − ȳ) f or i = 1, 2, ...., l.
(3.12)

Set

e(1)
n = xn − x̄, e(2)

n = yn − ȳ,

Then, the system (3.12) become


e(1)

n+1 =
∑l

i=0 Cie
(1)
n−i +

∑l
i=0 Die

(2)
n−i f or i = 1, 2, ...., l,

e(2)
n+1 =

∑l
i=0 Gie

(1)
n−i +

∑l
i=0 Hie

(2)
n−i f or i = 1, 2, ...., l,

where

Ci = 0 i = 1, 2, ...., l

Di = 0 i = 1, 2, ...., l − 1, Dl =
−2

(k + 2yn−l)2

Gi = 0 i = 1, 2, ...., l − 1, Gl =
−2

(k + 2xn−l)2

Hi = 0 i = 1, 2, ...., l

As the system approaches equilibrium, it becomes clear that

lim
n→∞

Ci = 0 i = 1, 2, ...., l

lim
n→∞

Di = 0 i = 1, 2, ...., l − 1, lim
n→∞

Dl =
−2

(k + 2ȳ)2

lim
n→∞

Gi = 0 i = 1, 2, ...., l − 1, lim
n→∞

Gl =
−2

(k + 2x̄)2

lim
n→∞

Hi = 0 i = 1, 2, ...., l
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So, that means

Dl =
−2

(k + 2ȳ)2 + αn, Gl =
−2

(k + 2x̄)2 + βn.

We can now express the system in the form

en+1 = (M + Zn) en,

where en =
(
e(1)

n , e(1)
n−1, · · · , e(1)

n−l, e(2)
n , e(2)

n−1, · · · , e(2)
n−l

)t
and

Bn =



0 0 · · · 0 0 · · · 0 αn

1 0 · · · 0 0 · · · 0 0

0 1 · · · 0 0 · · · 0 0
...
...
. . .

...
...
. . .

...
...

0 0 · · · βn 0 · · · 0 0

0 0 · · · 0 0 · · · 0 0

0 0 · · · 0 1 · · · 0 0
...
... · · · ...

...
. . .

...
...

0 0 · · · 0 0 · · · 1 0



.

M = JF(x̄, ȳ) =



0 0 · · · 0 0 · · · 0 −8

(k+
√

k2+8)2

1 0 · · · 0 0 · · · 0 0

0 1 · · · 0 0 · · · 0 0
...
...
. . .

...
...
. . .

...
...

0 0 · · · −8

(k+
√

k2+8)2 0 · · · 0 0

0 0 · · · 0 0 · · · 0 0

0 0 · · · 0 1 · · · 0 0
...
... · · · ...

...
. . .

...
...

0 0 · · · 0 0 · · · 1 0



.
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∥Zn∥ → 0 when n→∞. As a result, the asymptotic error system can be expressed as

en+1 =



0 0 · · · 0 0 · · · 0 −8

(k+
√

k2+8)2

1 0 · · · 0 0 · · · 0 0

0 1 · · · 0 0 · · · 0 0
...
...
. . .

...
...
. . .

...
...

0 0 · · · −8

(k+
√

k2+8)2 0 · · · 0 0

0 0 · · · 0 0 · · · 0 0

0 0 · · · 0 1 · · · 0 0
...
... · · · ...

...
. . .

...
...

0 0 · · · 0 0 · · · 1 0





e(1)
n

e(1)
n−1
...

e(1)
n−l

e2
n

e2
n−1
...

e2
n−l



,

and ∥Zn∥ → 0 when n → ∞. Clearly, this system coressponds to the linear approxi-

mation of equation (3.1) near
(
x̄, ȳ

)
the equilibrium point. Thus, the result is a direct

consequence of Perron’s Theorems.

3.6 Numerical Examples

In this section, we studied a system of nonlinear difference equations with the use

of exact numerical techniques. We performed iterative calculations and documented

the findings in detailed tables and graphical plots that illustrate the dynamics of the

system and its convergence towards equilibrium points. The study was conducted in

an attempt to trace the evolution of variables with extremely high numerical accuracy

using advanced computational techniques as a foundation for subsequent theoretical

analysis and practical application.

example 3.6.1 Let the following system of difference equations

xn+1 =
1

k + 2yn−l
, yn+1 =

1
k + 2xn−l

, n ≥ 0, (3.13)
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where the parameters and initial conditions are chosen as follows:

• k = 1, l = 3.

• Initial conditions for x: x0 = 0.1, x1 = 2.5, x2 = 0.3, x3 = 5.0,

• Initial conditions for y: y0 = 3.0, y1 = 0.2, y2 = 1.7, y3 = 0.05.

The following table presents the computed values of the sequences (xn) and (yn) generated by

the system of difference equations with the given initial conditions and parameters. The values

are displayed for n = 1 to n = 30.

n 1 2 3 4 5 6 7 8 9 10
xn 2.5000 0.3000 5.0000 0.7143 0.2273 0.9091 0.7500 0.4444 0.8462 0.5484
yn 0.2000 1.7000 0.0500 0.1667 0.6250 0.0909 0.4118 0.6875 0.3548 0.4000

n 11 12 13 14 15 16 17 18 19 20
xn 0.4211 0.5849 0.5556 0.4857 0.5738 0.5118 0.4795 0.5204 0.5135 0.4964
yn 0.5294 0.3714 0.4769 0.5429 0.4609 0.4737 0.5072 0.4656 0.4942 0.5105

n 21 22 23 24 25 26 27 28 29 30
xn 0.5178 0.5029 0.4948 0.5050 0.5034 0.4991 0.5044 0.5007 0.4987 0.4987
yn 0.4900 0.4933 0.5018 0.4913 0.4985 0.5026 0.4975 0.4983 0.5005 0.5005

Table 3.1: Computed Values of xn and yn for n = 1 to 30 from the difference equation
system

Figure 3.1: Plot of the numerical solution of the system (3.13)

57



System of difference equations linked to the k-Jacobsthal sequence

Figure 3.2: 3D phase surface plot of the system (3.13)

example 3.6.2 Let the following system of difference equations

xn+1 =
1

k + 2yn−l
, yn+1 =

1
k + 2xn−l

, n ≥ 0, (3.14)

where the parameters and initial conditions are chosen as follows:

• k = 1, l = 12.

• Initial conditions for x: x0 = 0.5488, x1 = 0.7152, x2 = 0.6028, x3 = 0.5449,

x4 = 0.4237, x5 = 0.6459, x6 = 0.4376, x7 = 0.8918,

x8 = 0.9637, x9 = 0.3834, x10 = 0.7917, x11 = 0.5289, x12 = 0.5680,

• Initial conditions for y: y0 = 0.9256, y1 = 0.0710, y2 = 0.0871, y3 = 0.0202,
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y4 = 0.8326, y5 = 0.7782, y6 = 0.8700, y7 = 0.9786,

y8 = 0.7992, y9 = 0.4615, y10 = 0.7805, y11 = 0.1183, y12 = 0.6399.

The following table presents the computed values of the sequences (xn) and (yn) generated by

the system of difference equations with the given initial conditions and parameters. The values

are displayed for n = 1 to n = 120.
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n 1 2 3 4 5 6 7 8 9 10
xn 0.7152 0.6028 0.5449 0.4237 0.6459 0.4376 0.8918 0.9637 0.3834 0.7917
yn 0.0710 0.0871 0.0202 0.8326 0.7782 0.8700 0.9786 0.7992 0.4615 0.7805

n 11 12 13 14 15 16 17 18 19 20
xn 0.5289 0.5680 0.8757 0.8516 0.9612 0.3752 0.3912 0.3650 0.3382 0.3849
yn 0.1183 0.6399 0.4115 0.4534 0.4785 0.5413 0.4363 0.5333 0.3592 0.3416

n 21 22 23 24 25 26 27 28 29 30
xn 0.5200 0.3905 0.8087 0.4386 0.5486 0.5244 0.5110 0.4802 0.5340 0.4839
yn 0.5660 0.3871 0.4860 0.4682 0.3635 0.3699 0.3422 0.5713 0.5611 0.5781

n 31 32 33 34 35 36 37 38 39 40
xn 0.5819 0.5941 0.4690 0.5636 0.5071 0.5164 0.5791 0.5748 0.5937 0.4667
yn 0.5965 0.5651 0.4902 0.5615 0.3821 0.5327 0.4768 0.4881 0.4946 0.5101

n 41 42 43 44 45 46 47 48 49 50
xn 0.4712 0.4638 0.4560 0.4695 0.5050 0.4710 0.5668 0.4842 0.5119 0.5060
yn 0.4836 0.5082 0.4621 0.4570 0.5160 0.4701 0.4965 0.4919 0.4634 0.4652

n 51 52 53 54 55 56 57 58 59 60
xn 0.5027 0.4950 0.5084 0.4959 0.5197 0.5225 0.4921 0.5154 0.5018 0.5041
yn 0.4572 0.5172 0.5148 0.5188 0.5230 0.5158 0.4975 0.5149 0.4687 0.5080

n 61 62 63 64 65 66 67 68 69 70
xn 0.5190 0.5180 0.5224 0.4915 0.4927 0.4908 0.4887 0.4922 0.5012 0.4927
yn 0.4941 0.4970 0.4986 0.5025 0.4959 0.5020 0.4904 0.4890 0.5040 0.4924

n 71 72 73 74 75 76 77 78 79 80
xn 0.5162 0.4960 0.5029 0.5015 0.5007 0.4987 0.5021 0.4990 0.5049 0.5056
yn 0.4991 0.4980 0.4907 0.4912 0.4891 0.5043 0.5037 0.5047 0.5057 0.5039

n 81 82 83 84 85 86 87 88 89 90
xn 0.4980 0.5038 0.5004 0.5010 0.5047 0.5045 0.5055 0.4979 0.4982 0.4977
yn 0.4994 0.5037 0.4920 0.5020 0.4985 0.4992 0.4997 0.5006 0.4990 0.5005

n 91 92 93 94 95 96 97 98 99 100
xn 0.4972 0.4981 0.5003 0.4982 0.5040 0.4990 0.5007 0.5004 0.5002 0.4997
yn 0.4976 0.4972 0.5010 0.4981 0.4998 0.4995 0.4977 0.4978 0.4972 0.5011

n 101 102 103 104 105 106 107 108 109 110
xn 0.5005 0.4997 0.5012 0.5014 0.4995 0.5010 0.5001 0.5003 0.5012 0.5011
yn 0.5009 0.5012 0.5014 0.5010 0.4998 0.5009 0.4980 0.5005 0.4996 0.4998

n 111 112 113 114 115 116 117 118 119 120
xn 0.5014 0.4995 0.4995 0.4994 0.4993 0.4995 0.5001 0.4995 0.5010 0.4998
yn 0.4999 0.5002 0.4997 0.5001 0.4994 0.4993 0.5002 0.4995 0.4999 0.4999

n 121 122 123 124 125 126 127 128 129 130
xn 0.5002 0.5001 0.5000 0.4999 0.5001 0.4999 0.5003 0.5003 0.4999 0.5002
yn 0.4994 0.4994 0.4993 0.5003 0.5002 0.5003 0.5004 0.5002 0.5000 0.5002

Table 3.2: Computed Values of xn and yn for n = 1 to 130 and l = 12 from the difference
equation system
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Figure 3.3: Plot of the numerical solution of the system (3.14))

Figure 3.4: 3D phase surface plot of the system (3.14)
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CONCLUSION

In conclusion, this master’s thesis has highlighted the strong relationship between

the solutions of nonlinear systems of difference equations and well-known numeri-

cal sequences, particularly the generalized Bell and Jacobsthal sequences. The results

demonstrate that these sequences play a fundamental role in characterizing the behav-

ior of such systems, both in deriving explicit solutions and in analyzing equilibrium

and stability. The structural and algebraic properties of the sequences provide valuable

insights into the dynamics of discrete systems, offering a powerful framework for un-

derstanding their long-term behavior. This connection underscores the theoretical and

practical significance of using classical number sequences in the study and modeling

of nonlinear difference equations across various mathematical and applied disciplines.
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