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ABSTRACT

This thesis explores the solutions of difference equation systems related to well-known
sequences such as Bell and Jacobsthal. It focuses on the link between these sequences
and the dynamic behavior of nonlinear systems. Chapter 1 presents the algebraic
properties of generalized Pell and Jacobsthal sequences. Chapters 2 and 3 analyze two
nonlinear systems using these sequences to derive explicit solutions and study stability.
The methodology involves examining fixed points and long-term behavior. The aim
is to highlight the connection between special number sequences and the qualitative

dynamics of discrete systems.

Keywords: General solution, System of difference equations, (k, h)—Pell sequence,

k-Jacobsthal sequence, Stability.
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RESUME

Ce mémoire étudie les solutions des systemes d’équations aux différences liés a des
suites célebres telles que celles de Bell et de Jacobsthal. Il met ’accent sur la relation
entre ces suites et le comportement dynamique des systemes non linéaires. Le premier
chapitre présente les propriétés algébriques des suites généralisées de Pell et de Jacob-
sthal. Les chapitres 2 et 3 analysent deux systemes non linéaires en utilisant ces suites
pour obtenir des solutions explicites et étudier la stabilité. La méthodologie repose
sur l’analyse des points d’équilibre et du comportement a long terme. L'objectif est de

montrer le lien entre suites spéciales et dynamique des systémes discrets.

Mots-clés: Solution générale, Systeme d’équations aux différences, Suite de

(k, h)—Pell, Suite de k-Jacobsthal, Stabilité.
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INTRODUCTION

ifference equations are fundamental tools for studying discrete changes, as they
describe the relationships between successive terms in a sequence. These equa-

tions are closely linked to several well-known sequences that have significant applica-
tions in various fields of mathematics and science, such as the Fibonacci sequence, the
Bell sequence, and the Jacobsthal sequence. Each of these sequences can be defined or
generated using specific types of difference equations that capture the recurrence rules
governing the progression of terms. Understanding the connection between difference
equations and such famous sequences not only simplifies their analysis but also paves
the way for generalizations and new models used to solve real-world problems in

computer science, cryptography, number theory, and other disciplines.

In this master’s thesis, we explore the intricate relationship between special nu-
merical sequences and the qualitative behavior of nonlinear difference equations. Our
primary objective is to utilize the structural and algebraic properties of generalized se-
quences specifically the generalized Pell and Jacobsthal sequences to analyze and solve
discrete dynamical systems. By integrating these mathematical tools, we derive ex-
plicit solutions, study equilibrium points, and assess the stability of nonlinear iterative

systems.



Introduction

In order to carry out this master’s thesis efficiently, the work has been divided as

follows:

In Chapter 1, we introduce and investigate fundamental numerical sequences, with
particular emphasis on generalized Pell and Jacobsthal sequences. We explore their
algebraic properties, convergence behavior, and stability characteristics, laying the

groundwork for their application in subsequent chapters.

In Chapter 2, we consider a nonlinear iterative system of the form:

n+l — 2k + hyn_[’ yn+1 - 2% + hxn_l’ = Y

where k, h, and | are fixed parameters. We employ the sequences studied in Chapter 1
to derive explicit solutions of the system, determine its equilibrium points, and conduct

a comprehensive analysis of its dynamical behavior and stability.

Chapter 3 is devoted to the analysis of a second nonlinear system given by:

1 1

= — = — > 0.
K+ 2y Yn+1 nx=0

Xn+1
" k+ 2xn_1’

Following a similar methodological approach, we construct exact solutions, identify
equilibrium configurations, and investigate the system’s long-term behavior and sta-

bility characteristics.

Through these investigations, we aim to establish a clear link between special num-

ber sequences and the qualitative behavior of nonlinear difference equations.



CHAPTER 1

GENERALIZATION OF SOME
WELL-KNOWN SEQUENCES

This chapter establishes the theory by examining Pell sequences, generalized (k, 1)-Pell
sequences, k-Jacobsthal sequences, and (k, h)-Pell-Lucas sequences and their algebraic
and numerical characteristics. We provide core definitions, recurrence relations, and
closed-form solutions, highlighting characteristics which are central to the examination

of recurrence systems in subsequent chapters.

1.1 Some generalization of the Pell sequence

1.1.1 Pell sequence

The Pell sequence is a sequence of integers defined by the recurrence relation:

3



Generalization of some well-known sequences

P, =2P, 1 +P,, (1.1)

where the initial conditions are given by:
Py=0, P;=1. (1.2)
The first few terms of the Pell sequence are:
0,1,2,5,12,29,70, 169, .... (1.3)

This sequence arises in various mathematical contexts, including continued fractions
and approximations of square roots. Specifically, the ratio of consecutive Pell numbers

approximates 1+ V2, similar to how Fibonacci numbers approximate the golden ratio.

The explicit formula for the Pell sequence is given by:

_ 1+ V2 - (1= V2"
22 '

P,

(1.4)

The Pell sequence has applications in number theory, combinatorics, and the solution
of Pell’s equation:

X =2y = +1, (1.5)

where its terms appear as solutions for x and y.

1.1.2 The (k, h)—Pell sequence

The (k, h)-Pell sequence {¢,},>0 is a generalization of the classical Pell sequence, defined

by the recurrence relation [4]:

@n = 2k@y_1 + he,—p, forn>2, (1.6)

4



Generalization of some well-known sequences

with initial conditions:

QDO = 0/ gol = Zk (17)

The characteristic equation associated with this recurrence relation is given by:
r* —2kr—h=0. (1.8)
Solving for the roots, we obtain:
a=k+ Vi2+h, B=k- VE2+h (1.9)
Thus, the general solution for ¢, can be expressed as:
Qn =c1a" +cp". (1.10)
By using the initial conditions, we solve for the constants ¢; and c»:
c1+c=0, ca+cp=2k (1.11)

Solving this system, we obtain:

2k 2k
Cl_a—ﬁ’ CZ__(X—ﬁ. (112)
Since a — = 2 Vk? + h, we can write:
Pn = (" = (.13
Y/ ' '

1.1.3 Properties of the (k, 11)-Pell Sequence

The (k, h)-Pell sequence {¢,},so satisfies several important properties, which can be

derived using its recurrence relation and characteristic equation [4].

5



Generalization of some well-known sequences

Binet formula
The (k, h)-Pell sequence is defined by the recurrence relation:
@n = 2k@,_1 + he,n, forn>2, (1.14)

with initial conditions:

=0, ¢1=2k (1.15)

The characteristic equation associated with this recurrence relation is:
*—=2kr—h=0. (1.16)
Solving for the roots, we obtain:

a=k+ Vk2+h, B=k—- VK2+h. (1.17)

Thus, the explicit formula for ¢, is:

(@" - B"). (1.18)

Summation identities

Several summation identities hold for the (k, 1)-Pell sequence:

1. The sum of the first nn terms:

n—1

_ Quthp,—2k
D o= T (1.19)

m=0

2. The sum of the product of consecutive terms:

n-1

4k>
2 PPt = o |2k = Ag + Aoy — K Agyy_3). (1.20)
= (k% + h) [ ]

6



Generalization of some well-known sequences

3. The sum of squares of the terms:

v o 4R

2 _ (h"-1)
P = @ h) '

2
Ao —As+ 2
hAZnZ AZn A7_+ 1

(1.21)

m=0

Limit of the quotient of consecutive terms

The limit of the quotient of two consecutive terms of the (k, h)-Pell sequence converges

to the largest root of the characteristic equation:

lim 2" — g =k+ VR 41 (1.22)

n—00 (Oy_1

This limit plays a crucial role in the asymptotic analysis of the sequence.

Relation to the (k, /1)-Pell-Lucas sequence

The (k, h)-Pell sequence and the (k, h)-Pell-Lucas sequence are related by:

Np=a"+B", @,= (a" = B"). (1.23)

k
VK2 +h

1.1.4 The (k, h)—Pell-Lucas sequence

The Pell-Lucas sequence {Q,} is defined by the recurrence relation [4]:
Qn = 2Qn—1 + Qn—Z/ forn > 2,

with the initial conditions:

Q=2 Qi=2

The explicit formula for the n-th term is:

Qn = 2Pn/

7



Generalization of some well-known sequences

where P, represents the n-th Pell number.

The (k, h)-Pell-Lucas sequence {A,},>0 is a generalization of the classical Pell-Lucas

sequence. It is defined by the recurrence relation [4]:

A, = 2kA,_1 + hA,—,, forn>2, (1.24)

with the initial conditions:

Ao=2, A =2k (1.25)

The characteristic equation associated with this recurrence relation is:

r?—=2kr—h=0. (1.26)
Solving for the roots, we obtain:
a=k+ Vk>+h, B=k- Vk>+h. (1.27)

Thus, the general formula for A, is given by:

A, =o'+ B (1.28)

1.1.5 Properties of the (k, h)-Pell-Lucas sequence

The (k, h)-Pell-Lucas sequence {A,},>o satisfies several important properties, which can

be derived using its recurrence relation and characteristic equation [4].

Binet formula
The (k, h)-Pell-Lucas sequence is defined by the recurrence relation:

A, = 2kA,_1 + hA,—,, forn>2, (1.29)

8



Generalization of some well-known sequences

with initial conditions:

Ao = 2, A] = 2k

The characteristic equation associated with this recurrence relation is:
r* —=2kr—h=0.
Solving for the roots, we obtain:
a=k+ Vi2+h, B=k- VE2+h
Thus, the explicit formula for A, is:

Ay =a" +p"

Summation identities

Several summation identities hold for the (k, h)-Pell-Lucas sequence:

1. The sum of the first nn terms:

n—1

A AN+ RN +2k-2
" 2k+h—1

m=0

2. The sum of the product of consecutive terms:

= 2k — Az + I’lAzn_1 — ]’lSAzn_(;
Y Aufnr = s
e —h(1 + Ay + h?)

3. The sum of squares of the terms:

= A2 2= Ay + WP Agug — Mgy
m 5 (1-hyr -
=0 1-Ar+ h? + ZW

9
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Generalization of some well-known sequences

Limit of the quotient of consecutive terms

The limit of the quotient of two consecutive terms of the (k, h)-Pell-Lucas sequence

converges to the largest root of the characteristic equation:

lim An _ a=k+ V2 +h. (1.37)

n—o0 An—l

This limit plays a crucial role in the asymptotic analysis of the sequence.

Relation to the (k, /1)-Pell sequence

The (k, h)-Pell-Lucas sequence and the (k, 1)-Pell sequence are related by:

2k
kK2+h

Ap=a"+B", ¢n= (@" - B"). (1.38)

1.2 Generalization of Jacobsthal sequence

1.2.1 The k-Jacobsthal sequence

The k-Jacobsthal sequence {Ji,},.; for any positive real number k is defined by the

recurrence relation [5]:
]k,n+1 = k]k,n + 2]k,n—1/ forn > 1/ (139)

with the initial conditions:

Jko=0, Jr1=1

The characteristic equation associated with this recurrence relation is given by:

P—kr—-2=0

10



Generalization of some well-known sequences

Solving for the roots, we obtain:

_k+ Vk2+8 k— Vk2+8

1 )

Thus, the general solution for {J; ,} can be expressed as:
Jin = 17} + ot
By using the initial conditions, we solve for the constants ¢; and c»:
c1+c =0, cr+cr,=1. (1.40)
Solving this system, we obtain:
1 -1

1 = , (= . (141)
rH—"r rH— 1

Thus, the explicit formula for {J; ,} is given by:

g
Jin = —ri — é. (1.42)

1.2.2 Properties of the k-Jacobsthal sequence

The k-Jacobsthal sequence {Ji .}, satisfies several important properties, which can be

derived using its recurrence relation and characteristic equation [5].

Binet formula

The k-Jacobsthal sequence is defined by the recurrence relation:

]k,n+1 = k]k,n + 2]k,n—1/ forn > 1/ (143)

11



Generalization of some well-known sequences

with initial conditions:

Jeo=0, Jr1=1 (1.44)

The characteristic equation associated with this recurrence relation is:
1 —kr-2=0. (1.45)

Solving for the roots, we obtain:

_k+ Vk2+8 k— VK2 +8

r > Yy = > (14:6)
Thus, the explicit formula for {Jj ,} is:
r’f -7
_hth 1.47
Jk, a— (1.47)

Explicit formula for the general term of the k-Jacobsthal sequence

Binet’s formula allows us to express the k-Jacobsthal numbers in function of the roots

r1 and r, of the following characteristic equation, associated to the recurrence (1.39)

r? =kr+2.

Summation identities

Several summation identities hold for the k-Jacobsthal sequence:

1. Catalan’s identity:
]k,n—r]k,n+r - ]Iz,n = (_1)n+1—r]ir2n—r. (148)

2. D’ocagne’s identity: If m > n then

]k,m]k,n+1 - ]k,m+1]k,n = (_Z)n]k,m—n- (149)

12



Generalization of some well-known sequences

3. Another explicit expression for calculating the general term of thek-Jacobsthal

sequence :
L2521

1

2n—1
i=0

n .
K172k + 8), (1.50)
2i+1

where |a|] is the floor of 4, that is a|] = sup{n € IN | n < a} and says the integer

partofa, fora >0

Limit of the quotient of consecutive terms

The limit of the quotient of two consecutive terms of the k-Jacobsthal sequence con-

verges to the positive root of the corresponding characteristic equation :

. ] kn
lim
n—oo ]k,?’l—l

= 7. (1.51)

This limit plays a crucial role in the asymptotic analysis of the sequence.

13



CHAPTER 2

SYSTEM OF DIFFERENCE EQUATIONS
LINKED TO THE (k, h)-PELL
SEQUENCE

This chapter investigates a higher-order difference equation system whose solutions are
expressed in terms of generalized Pell sequences. We derive closed-form solutions and
analyze the stability and asymptotic behavior of the system. Through the connection
of the solutions to this type of general sequences, the study provides new theoreti-
cal results on recursive systems. The results enhance the understanding of dynamic

processes modeled by such difference equations.

14



System of difference equations linked to the (k, h)-Pell Sequence

2.1 Introduction

We propose some theoretical explanations pertaining to the representation for the

solution of the system of the higher-order difference equations

1 1

Xp+1 = W, Yny1 = m, (2-1)

withk € Z and n,l € IN.

The initial conditions x_;, X_i41, ..., X0, Y-1, Y-1+1, - - -, Yo, are non zero real numbers
such that their solution is related to a generalized Pell sequences. We also study the

stability character and asymptotic behavior of this system.

We will present two lemmas so that the first lemma provides the solutions of two
homogeneous second order linear autonomous difference equations, which is essential
for representations the solution of system (2.1). Its proof utilizes the characteristic roots
of the caracteristic polynomial 6% +2k6 —h. On the other hand, the second lemma offers
the solution of a system of second order linear autonomous difference equations, which

plays a crucial role in solving the system (2.1).

2.2 Preliminary Results

In this section, we explore second-order linear difference equations within the frame-
work of (k, h)-Pell-Lucas sequences. From our analysis, explicit solutions to two prin-
cipal homogeneous equations are obtained prior to applying the results to coupled
systems through variable decoupling techniques. The solutions expressed in terms
of initial conditions and (k, h)-Pell-Lucas sequences reveal basic recursive forms and
expose their underlying algebraic structure. This systematic approach shows the way

complex systems can be mapped to solvable types through careful transformations.

lemma 2.2.1 Consider the two homogenous second order linear autonomous differences equa-

15



System of difference equations linked to the (k, h)-Pell Sequence

tions :
Yn+2 — 2kyn+1 - hyn =0, (22)
Znso + 2kz,01 — hz, = 0. (2.3)
Then we have for all n € Ny:
_ 1o Y1

yn - 2k (Pn—l + z_k(Pn/

(_1)n+1
2k

(_hZO(Pn—l + Zl(Pn) .

Zy =

Proof.

As is well known, the recurrence relation
Yns2 = 2kyna —hy, =0, n €Ny,
with initial conditions yo, 1 € IR, is associated with the characteristic equation:
6> —2k6 —h = 0.
Solving the characteristic equation, we obtain the roots
a=k+ Vi2+h, B=k- V2+h
Therefore, the general solution to the recurrence relation is given by
Yo =’ +cof. (2.4)

By using the initial conditions 1y and y; with some calculations we get

_YoP-W Y1~ Yoo

1 = Cy = .
1 ﬁ—a s 2 ‘B—a

16




System of difference equations linked to the (k, h)-Pell Sequence

By compensation in the equation (2.4) we get

_ aﬁ(oz”‘l _ ‘Bn—l) a* — ‘Bn
AR Py IRy

hyo - W1

— _(an 1 _ n1)+_(an_ n)
p 4 p f
LTI

TR
By the same argument, we get

-1 n+1
Zy = ( 23{ (—zoh@u-1 + z19s) -

lemma 2.2.2 Consider the linear system of second order linear autonomous differences equa-

tions
Upio — 2kVp1 —hu, =0, 0,0 — 2kt —hv, =0, n € Ny. (2.5)
Then
1
Upy = % (huo(Pzn—l + 01§02n),
Uppy1 = 1 (ho +u )
2+l = ok 0P2n 1P2n+1) »
Uy = 1 (ho + U1Q2n)
o = ok 0P2n-1 1P21) ,
Vsl = 1 (hu +v )
2n+l = ok 0P2n 1P2n+1) -
Proof.

Through the combination of addition and subtraction of equations, we get

Upso + Upyo = 2k (Upyq + Upyr) + H(u, + 0,), (2.6)

Upy2 — Opg2 = —2k (un+1 - vn+1) + h(un - Un) . (27)

17



System of difference equations linked to the (k, h)-Pell Sequence

By posing the following changes of variables
R,=u,+v, S,=u,—uv,. (2.8)
The equations (2.6) and (2.7) becomes
Rys2 = 2kRyi1 + hR,,

Su+2 = =2kS,11 + RS,

which are in the form of equations (2.2) and (2.3). Then it follows from Lemma (2.2.1)

that
hR R hR R
Ry, = 2—k0§02n_1 + 2—;@2,1, Rop1 = 2_k0§02n + Z_Ii(PZIHl/

1 1
Son = ok (—hso@zn—l + Sl(PZn)/ Son+1 = % (—hSO(PZn + 51(P2n+1)-
And we have from (2.8) that

1 1
un—E(Rn‘i'Sn)/ vn—E(Rn_Sn)/

1 1
Uoy = = (Ron + Sau),  Uonr1 = = (Rops1 + Sons1),

2 2
1 1
Uy = E (RZn - SZn) ;7 Ol = E (R2n+1 - S2n+1)-

By substitution, we get

_1(hRo R hS S
Uy = AT P2n-1 2k(P2n ok P2n-1 2k§02n ’

yo = Lf(hRo Ry - hS S

n+l = AT P2n 2k§02n+1 o7 ©P2n zk(P2n+1 ’
o o Lf(hRo ~Ri__ hS 51

o = A P21 Zk(Pzn ok P21 zk(PZn ’
po _L(MRo  Ri B S

2+l = AT ©O2n 2k§02n+1 ok ©O2n 2k(P2n+1 .

18



System of difference equations linked to the (k, h)-Pell Sequence

So
1
Upy = & (huO(PZn—l + Ulfpzn),
Uy = 1 (ho, +u )
o+l = o7 0P2n 1P2n+1)
- L + 111¢)
Uoy = ok 00Pon-1 + U1P24),
L — )
Uops1 = ok UoQP2n T U1P20+1) -
[ ]

2.3 Closed-form solution of system (2.1)

In this section, we begin by reformulating the original system through a valid vari-
able change. This new variable transformation leads us to a simpler equivalent system,
which we then study in detail. Through recursive relations and exploiting known infor-
mation from previous lemmas, we obtain closed-form solutions of the system. We then
express these solutions in an explicit form involving (k, h)-Pell-Lucas sequences. Fi-
nally, we summarize our findings in a main theorem and provide a corollary providing

the complete solution to the provided system.

From (2.1) we can write

X(+1)(n+1)—-j = m, Yorymen-j = m
By using the following change of variables:
x,(f) =(+1)n—js yff) = Yu+1n—js
in system (2.1) we get
x(]il = ;, .1/211 = ;, n € IN,. (2.9)



System of difference equations linked to the (k, h)-Pell Sequence

Hence we can use the change of variables

£ = W () _ _Un
" un+1 ’ ! Wn+1 ’
in (2.9) and obtain
i _ Wan ¢ _ Unn
n+1 un+2 4 n+1 Wn+2 :
So,
Wn+l _ 1
un+2 B hu” '
2k +
Wn+1
B 1
 2kW,q + RU,’
Wn+l
— Wn+1
2kWn+1 + hlln '
And
un+1 _ 1
Wn+2 B hwn ’
2k +
un+1
_ 1
o 2kU,q + W,
un+1
un+l

2kU,41 + BW,,

So the system (2.9) becomes
Uy = 2kvvn+l + hun/

Wiio = 2kU,41 + hW,,.

20



System of difference equations linked to the (k, h)-Pell Sequence

Then it follows from Lemma (2.2.2) that

1
U, = % (hUO(PZn—l + Wl(f)Zn)/

Uzpi1 =

1
Wy, = % (hWO(Pzn—l + ul(PZn)/

W2n+1 =

So,

()
2n+1

0)]
2n+1

As well as

0)
x2n

0 _

2n

1
% (hWO(PZn + ul(P2n+1)/

1
% (hUo@2n + Wi@ans1) -

Wonn

u2n+2 ’

Wi@2n41 + hUp@ay,
hUo@an41 + Wl(P2n+2’

Wl
W1 (PZn P2n+1

W
Wi Pon+1 T Poant2

)]

B hyo ©Oon + Popt1

hy(()])(Pan + QP2n+2

WZn

u2n+1 ’
hWo@an-1 + U1,
hWopa, + ul(P2n+1,

Wo .
ul (PZn—l (P2n

4

hW N
_Lh ©Oon + P2n+1

hx(()])(PZH—l + Qo

hxé’)(pZn + Qon+1
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From the above,

y2n+1

)]
y 2n+1

Also,

)
y 2n

M _
2n

Theorem 2.3.1 Let {x, yn NV us0 be the solution to system (2.9) then forn € N and j = 0,

0
MO Iy $an + Panna NO-

u2n+1

W2n+2’
hWo@a, + Uiy

hWo(P2n+1 + Uy @op+2 ’

hWo
U Pon T P2n+1

hW, N !
u, 7 Pon+1 T Pons2

()

_ hxo ©Oon + P21

hxg])§02n+1 + (P2n+2

uZn
W2n+1 ’
hUypan-1 + Wig2,
hUo@on + Wi@ani’

hto
W, O2n-1 T P2n

7

0
Wl(PZn + Qon+1

h}/O ©Qop-1 t (P2n

hyé])§02n + (P2n+1

hx(])§02n 1+ (Pzn

2n+1

()
() _ hxo (PZn + (PZn+1 (j)

()

i ’ 2n
hyé’)(pzm + Q2n42 hxo Qo + (P2n+1

hyo Qop-1 + 902;1

y2n+1

The following corollory is our main result wich gives the explicit formula of solution

to system

hxg)§02n+1 + QP2n+2
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Corollary 2.3.1 Let {x,, Yu}n=0 be the solution to system (2.1) then forn € Nand j =0,1, ..., 1

hy—j§02n + Qon+1 N B hx_j(p2n_1 + Qo
’ (+1@n)—-j — hx_j(p2n n (P2n+1/

X =
D@y h]/—j(Pzn+1 + Qo2

hx—j(P2n T P21 o h]/—j(Pzn—l + Qo
hx—j(P2n+1 + (P2n+2’ Y- hy—jpan + §02n+1.

Yaryensn-j =

Proof.
We have
Y = ;=011
Xy = x(l+l)(n)—]/ ]=9Y,1,..,L
So
()
Xopi1 = X(+1)@n+1)-js
and
oM _
XO = x_j
Then
)] _
Xopr1 = X+1)@n+1)-jr
_ hy-j@an + Pann1
hy_i@ans + Pons2’
and
n _
Xy, = Xa+1)@n)-js
_ hx—j(PZn—1 + Qo
hx—j(PZn + (P2n+1'
We have

yﬁl]) = ]/(l+1)(n)—j,j = O/ 1/ eees Z
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So
n  _ )
You1 = Yarnen+1)-j,
and
j_
Yo = Y-j-
Hence
() _ )
Yous1 = Yurv@n+1)-js
_ hx—j(PZn + Q2n+1
hx—j(Pzn+1 + 902n+2l
Also
o _
Yo, = Ye+v2nh)-js
hy—j§02n—1 + Qo
hy—j(Pzn + QP2n+1 .
]

2.4 Global stability of the solutions to system (2.1)

In this section, we investigate the global stability of the solutions of system of non-
linear difference equations (2.1). By finding the equilibrium points of the system, we
apply linearization techniques and Rouche’s Theorem to determine local and global

asymptotic stability.

The equilibrium points of the system are given by

—k+ V2 +h —k+ Vk2+h

M:(x/y): h ]’l
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M:m):(_k_xml_k_;/m].

Theorem 2.4.1 The equilibrium point

— —k+ VK2+h —k+ VK2+h
M=(x,y)= p , p ,

is locally asymptotically stable.

Proof.

We linearize the system around the equilibrium point M = (%, ) = (_k+ Ve th ke y k2+h).

The resulting linear system can be written as :
Xpy1 = X,
where the state vector is defined by

t
Xn = (xn/ Xn-1, ", Xn-ly yn/ yn_y Tty yn—l) s

and the matrix | is given as

00 0 0 0 (k+m)2
10 - 0O 0 --0 0
J=10 0 (k+m)2 0 0 0
00 - 0 1 -0 0
00 0 0 1 0
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The characteristic polynomial of matrix | is:

2

h
P(A) = (A" - | ———| .
(W=D ((k+m)2]

Let us define the functions :

2
h
(3A=—/\21+2, N=|—" 1.
(A) =(=4) d(A) ((k+ \/lm)2]
It holds that
lp(A)] < [6(A)l, foralll € C, with|A| =1.

By Rouche’s Theorem the function P = 6 + ¢ has the same number of zeros as ¢ within
the unit disc |p(1)| < 1, and since 6 has a root of multiplicity 2(I+1) at A = 0, then all the
roots of P are in the disc |¢p(A)| < 1. Thus, the equilibrium point is locally asymptotically

stable. m
Corollary 2.4.1 The equilibrium point M is globaly asymptotically stable.

Proof.

According to Theorem (2.4.1), M is globally asymptotically stable. To demonstrate
global asymptotic stability, we utilize Corollary (2.3.1). Consider the following limit.

'(PZH—I
) L hx_jpan-1+ Q2n s hx o T 1
lim X+1)2n)—j = lim = um Pons1 *
n—s00 n—oo hx_]‘(Pzn + QP2n+1 n—oo hx_j + P

Using the known limits

i (2) <, 1 (222) L=,

n=eo\ oy oo\ oy
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we get

hx_ip +1

hx_j+a’

hx_j(k— ViZ +h) + 1
hx_j+k+ Vie+h

—k+ VK2 +h
h 4

)}1_1)1; X(i+1)@n)—j

= X

However, we have

Pan
lim x fim Y Pt Pt MY-jp t 1 hy p+1
im X(1y2ne1)-; = lim = lim = .
e e hy-jQane1 + Pans2 moe hy_j+ 222 hy_ ;i +a

Pon+1

Using the following two limits

lim ((Pzn_l) =a, lim ((P2n+1) = % =B,

n—oo (pzn n—00 (PZn
we get
) —k+ VK2+h _
lim X+npene)-j = —— = X.
n—00 h
So,

lim x _i=X.
e (+1)2n+1)—j

Similarly, it can proven that

lim ygannn-j = Y-

Hence, the solution converges globally to the equilibrium point

7111_1)1010 (x(l+1)(2n+1)—j; y(l+1)(2n+1)_j) = (x, ).
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2.5 Rate of convergence

In this section, we analyze the convergence rate of the solution to the equilibrium
point (X, y) for the given nonlinear difference system (2.1). Linearization around the

equilibrium and expression of the dynamics as
Apin =M+ B,) Ay, (2.10)

where A, is a vector of dimensions 2/, M € C%*? is a constant matrix and B : Z+ — C2*2

is a matrix function satisfying
[IB,]| — 0, when n — oo, (2.11)

where ||.|| indicates any matrix norm which is associated with the vector norm ||.||. We
determine the convergence rate via the spectral radius of M. The parameters k, i, and
delay I explicitly influence this rate, providing insights into the system’s stability and

asymptotic behavior.

Theorem 2.5.1 [10] (Perron’s first Theorem)

Suppose that condition (2.11) holds. If A, is a solution of (2.10), then either A, = 0 for all

largen or

_ i Mul
= A

exists and is equal to the modulus of one of the eigenvalues of matrix M.

Theorem 2.5.2 [10] (Perron’s second Theorem)

Suppose that condition (2.11) holds. If A, is a solution of (2.10), then either A, = 0 for all

largen or
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1

p = lim (I4,al)7,

exists and is equal to the modulus of one of the eigenvalues of matrix M.

Theorem 2.5.3 [10] Let the solution {(x,, Yu)}us—1 0f system (2.1) converges to the equilibrium
point (x,y) wich is globally asymptotically stable. So the error vector

1 =
e,g) X, — X
M =

e’ Xp_1 — X

1 -
6‘1(1_)1 Xp—1 — X

en = =

2 o
€n Yn Y
2 —
€1 Yn1—Y
2 —
€. Yn-1—Y

of any solution of system (2.1) satisfies both of the following asymptotic behaviors

]

n—oo|ley|

= AMJr(E ), i=1,2,..,1

1
lim (lexall)? = AJE((E D), i=1,2,.1,
where |AiJr((X, )| corresponds to the absolute value of one of the eigenvalues of the Jacobian
matrix evaluated at the equilibrium (%, 7).

Proof.

To establish the desired result, we start by formulating a system that governs the

evolution of the error terms. These error termes are defined as follows :

X1 =% = Yig Ciloni = ®) + Lieg Diyui — 9)  for i=1,2,...,1,

Yot = J = Y org Gitnei = %) + Y g Hi(Yuoi = §)  for i=1,2,...,1.

(2.12)
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Set

1 = 2 -
eﬁl):xn—x, e,i):yn—y

Then, the system (2.12) become

O _ y! ) ! @ .
e =2i0Ce  +YigDe” for i=1,2,..1,

(2)
en+1

=Y Ge + YL He®.  for i=1,2,..,1

n—i

where

—h

D;=0 i=1,2,...,1-1, Dj= ———
0 ' 2+ )
Gi=0 i=12,..,1-1 G—_—h
/— - J ey ey 7 l_ (2k+hxn_l)2

As the system approaches equilibrium, it becomes clear that

limC=0 i=1,2,..,1

n—00

—h
I Di: ‘:1,2,....,1—1, li D, = _—
=0 e T 2kt hp?
limG; =0 i=1,2,..1-1 limG——_h
w0 T S BTN 2k + )2
imH;=0 i=1,2,..,1
So, that means
__h __h

D, G

= @rampe T O Gamp TP

We can now express the system in the form

Chn+1 = (M + B,) ey,
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t
where e, = (eff), 61(11_)1, ’ 3,(11_)1, 61(12)/ 6512_)1/ T 61(12—)1) and
00 0 0 -+ 0 ay
10 0 0 - 0 0
01 0O 0 - 0 0
B,=10 0 -+ B, 0 -=- 0 0
00 0 0 - 0 0
00 0o 1 - 0 0
00 0 0 1 0
0 0 00 0 vy
10 --- 0 0 --- 0 0
01 --- 0 0 --- 0 0
M: f’_ = P _—h e
]F( y) 00 (k+\/m)2 0 0 0
00 - 0 0O --- 0 0
00 --- 0 1 --- 0 0
00 0 0 1 0
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|B,|l = 0 when n — oo. As a result, the asymptotic error system can be expressed as

00 0 0 0 (k+\/lm)2 o

en

1o 0000 |l
01 --- 0 0 --- 0 0 e

h 61(11—)1

(o = - ,

+1=(0 0 (V) 0 0 0 g
00 0 0 - 0 0 ei—l

0 0 0 1 0 0 :

o

00 0 0 1 0

and ||B,]| — 0 when n — oo. Clearly, this system corresponds to the linear approxi-
mation of equation (2.1) near (%, ) the equilibrium point. Thus, the result is a direct

consequence of Perron’s Theorems. m

2.6 Numerical Examples

In this section, we studied a system of nonlinear difference equations with the use
of exact numerical techniques. We performed iterative calculations and documented
the findings in detailed tables and graphical plots that illustrate the dynamics of the
system and its convergence towards equilibrium points. The study was conducted in
an attempt to trace the evolution of variables with extremely high numerical accuracy
using advanced computational techniques as a foundation for subsequent theoretical

analysis and practical application.

example 2.6.1 Let the following system of difference equations

1 1
1= e\ Ya = ———, 10, 2.1
Tl = op hy, Y = v, " 0 (2.13)
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where the parameters and initial conditions are chosen as follows:
e k=1h=2andl = 3.
e [nitial conditions for x: xo = 0.2, x =09, x =01, x3=07,
e [nitial conditions for y: yo = 0.8, vy1 =0.05 1y, =06, y;3=0.3.

The following table presents the computed values of the sequences (x,) and (y,) generated by
the system of difference equations with the given initial conditions and parameters. The values

are displayed for n =1 ton = 30.

n 1 2 3 4 5 6 7 8 9 10
x, | 0.9000 | 0.1000 | 0.7000 | 0.3571 | 0.3030 | 0.3226 | 0.3469 | 0.3603 | 0.3639 | 0.3644
Y, [ 0.0500 | 0.6000 | 0.3000 | 0.3125 | 0.4545 | 0.3448 | 0.3309 | 0.3262 | 0.3247 | 0.3245

n| 11 12 13 14 15 16 17 18 19 20
X, | 0.3645 | 0.3645 | 0.3645 | 0.3645 | 0.3645 | 0.3645 | 0.3645 | 0.3645 | 0.3645 | 0.3645
Yn|0.3244|0.3244 | 0.3244 | 0.3244 | 0.3244 | 0.3244 | 0.3244 | 0.3244 | 0.3244 | 0.3244

n| 21 22 23 24 25 26 27 28 29 30
x, | 0.3645 | 0.3645 | 0.3645 | 0.3645 | 0.3645 | 0.3645 | 0.3645 | 0.3645 | 0.3645 | 0.3645
Yn | 0.3244 | 0.3244 | 0.3244 | 0.3244 | 0.3244 | 0.3244 | 0.3244 | 0.3244 | 0.3244 | 0.3244

Table 2.1: Computed Values of x,, and y, for n = 1 to 30 from the Difference Equation
System

— xn
—_— y.n

0.8

0.6

values

0.4

0.2

n

Figure 2.1: Plot of the numerical solution of the system (2.13)
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Figure 2.2: 3D phase surface plot of the system (2.13)

example 2.6.2 Let the following system of difference equations

Xps1 = 1 1 nx>0
M okt by YT 2k b

where the parameters and initial conditions are chosen as follows:

e k=1,h=2andl =12.

e [nitial conditions for x: xo = 0.5488, x; =0.7152, x, =0.6028,
xy = 04237, x5 =0.6459, xs=0.4376, x;=0.8918,

xs = 09637, x9=0.3834, x0=0.7917, x3;7=0.5289, x1, =0.5680,

e [nitial conditions for y: yo = 0.9256, y; = 0.0710, y, =0.0871,

34

(2.14)
X3 = 0.5449,
ys = 0.0202,
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ys =0.8326, y5=0.7782, y,=0.8700, y;=10.9786,
ys = 0.7992, y9 =0.4615, 1y10=0.7805 y;; =0.1183, 1y, = 0.6399.

The following table presents the computed values of the sequences (x,) and (y,) generated by
the system of difference equations with the given initial conditions and parameters. The values

are displayed for n =1 ton = 100.
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n 1 2 3 4 5 6 7 8 9 10
x, | 0.7152 ] 0.6028 | 0.5449 | 0.4237 | 0.6459 | 0.4376 | 0.8918 | 0.9637 | 0.3834 | 0.7917
yn [ 0.0710|0.0871 | 0.0202 | 0.8326 | 0.7782 | 0.8700 | 0.9786 | 0.7992 | 0.4615 | 0.7805

n| 11 12 13 14 15 16 17 18 19 20
x, | 0.5289 1 0.5680 | 0.4668 | 0.4599 | 0.4901 | 0.2728 | 0.2812 | 0.2674 | 0.2527 | 0.2779
Yn | 0.1183]0.6399 | 0.2915 | 0.3120 | 0.3236 | 0.3512 | 0.3038 | 0.3478 | 0.2643 | 0.2546

n| 21 22 23 24 25 26 27 28 29 30
x, | 0.3421 | 0.2808 | 0.4471 | 0.3049 | 0.3871 | 0.3811 | 0.3777 | 0.3700 | 0.3835 | 0.3710
yn [ 0.3614 | 0.2791 | 0.3270 | 0.3189 | 0.3409 | 0.3425 | 0.3355 | 0.3928 | 0.3903 | 0.3945

n| 31 32 33 34 35 36 37 38 39 40
x, [ 0.3955|0.3985 | 0.3673 | 0.3909 | 0.3768 | 0.3791 | 0.3729 | 0.3724 | 0.3744 | 0.3590
Yo [0.3991|0.3913 | 0.3725 | 0.3904 | 0.3455 | 0.3832 | 0.3605 | 0.3620 | 0.3629 | 0.3650

n| 41 42 43 44 45 46 47 48 49 50
X, | 0.3596 | 0.3585 | 0.3574 | 0.3594 | 0.3643 | 0.3596 | 0.3716 | 0.3615 | 0.3675 | 0.3671
Yn | 0.3614 | 0.3647 | 0.3583 | 0.3575 | 0.3657 | 0.3595 | 0.3632 | 0.3626 | 0.3642 | 0.3643

n| 51 52 53 54 55 56 57 58 59 60
x, | 0.3669 | 0.3663 | 0.3673 | 0.3664 | 0.3681 | 0.3683 | 0.3661 | 0.3678 | 0.3668 | 0.3670
Yn | 0.3638 | 0.3679 | 0.3677 | 0.3680 | 0.3684 | 0.3678 | 0.3665 | 0.3678 | 0.3645 | 0.3672

n| 61 62 63 64 65 66 67 68 69 70
x, | 0.3665 | 0.3665 | 0.3666 | 0.3655 | 0.3656 | 0.3655 | 0.3654 | 0.3655 | 0.3659 | 0.3656
Yn | 0.3656 | 0.3657 | 0.3658 | 0.3659 | 0.3657 | 0.3659 | 0.3655 | 0.3654 | 0.3660 | 0.3656

n| 71 72 73 74 75 76 77 78 79 80
x, | 0.3664 | 0.3657 | 0.3661 | 0.3661 | 0.3661 | 0.3660 | 0.3661 | 0.3661 | 0.3662 | 0.3662
Yn | 0.3658 | 0.3658 | 0.3659 | 0.3659 | 0.3659 | 0.3662 | 0.3661 | 0.3662 | 0.3662 | 0.3662

n| 81 82 83 84 85 86 87 88 89 90
x, | 0.3660 | 0.3662 | 0.3661 | 0.3661 | 0.3661 | 0.3661 | 0.3661 | 0.3660 | 0.3660 | 0.3660
yn | 0.3661 | 0.3661 | 0.3659 | 0.3661 | 0.3660 | 0.3660 | 0.3660 | 0.3660 | 0.3660 | 0.3660

n| 91 92 93 94 95 96 97 98 99 100
x, | 0.3660 | 0.3660 | 0.3660 | 0.3660 | 0.3661 | 0.3660 | 0.3660 | 0.3660 | 0.3660 | 0.3660
yn | 0.3660 | 0.3660 | 0.3660 | 0.3660 | 0.3660 | 0.3660 | 0.3660 | 0.3660 | 0.3660 | 0.3660

Table 2.2: Computed Values of x, and y, for n = 1 to 100 and [ = 12 from the difference
equation system 36
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10} =

0.8

-l

0.2}

Value

0.0

n

Figure 2.3: Plot of the numerical solution of the system (2.14)

x (X, ¥Yn, N)

100
80
60
40

20

Figure 2.4: 3D phase surface plot of the system (2.14)
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CHAPTER 3

SYSTEM OF DIFFERENCE EQUATIONS
LINKED TO THE k-JACOBSTHAL
SEQUENCE

This chapter investigates a higher-order difference equation system whose solutions
are expressed in terms of k—Jacobsthal sequences. We derive closed-form solutions and
analyze the stability and asymptotic behavior of the system. Through the connection
of the solutions to this type of general sequences, the study provides new theoreti-
cal results on recursive systems. The results enhance the understanding of dynamic

processes modeled by such difference equations.
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3.1 Introduction

We propose some theoretical explanations pertaining to the representation for the

solution of the system of the higher-order difference equations

1 1

m, Yn+1 = m, (3.1)

Xn+1 =

withk € Z and n,1 € N.

The initial conditions x_;, x_j41, ..., X0, Y-1, Y-1+1, - - ., Yo, are non zero real numbers
such that their solution is related to a generalized Jacobsthal sequences. We also study

the stability character and asymptotic behavior of this system.

We will present two lemmas so that the first lemma provides the solutions of two
homogeneous second order linear autonomous difference equations, which is essential
for representations the solution of system (3.1). Its proof utilizes the characteristic roots
of the characteristic polynomial 62 + k6 — 2. On the other hand, the second lemma
offers the solution of a system of second order linear autonomous difference equations,

which plays a crucial role in solving the system (3.1).

3.2 Preliminary Results

In this section, we explore second-order linear difference equations within the frame-
work of k—Jacobsthal sequences. From our analysis, explicit solutions to two principal
homogeneous equations are obtained prior to applying the results to coupled systems
through variable decoupling techniques. The solutions expressed in terms of initial
conditions and k—Jacobsthal sequences reveal basic recursive forms and expose their
underlying algebraic structure. This systematic approach shows the way complex

systems can be mapped to solvable types through careful transformations.

lemma 3.2.1 Consider the two homogeneous second order linear autonomous differences equa-

39



System of difference equations linked to the k-Jacobsthal sequence

tions :

B — kBk,n+1 - 2B, =0,
P+ kpn+1 - 2P, =0.

Then we have for all n € Ny:

Bn = 2B0]k,n—1 + Bl]k,n/

Pn = (_1)n (ZPO]k,n—l - Pl]k,n) .

Proof.

As is well-known, the recurrence relation

B2 — an+1 - 2Bk,n =0, n€Ny,

with inial conditions By, B; € IR, is associated with the characteristic equation:

6> —kO-2=0.

Solving the characteristic equation, we obtain the roots:

_k+ V2 +38 k- vV +8

1 > Ty = 5
Thus, the formulas of general solution is:

— n n
B, = c11] + cory.

By using the initial conditions By and B; with some calculations we get:

_ Bor, — By 0y = By — By

1
h—h’ T —1

40
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By compensation in the equation (3.4) we get

My n no__ N
1’11’2 1’11’2 +B 1’2 7‘1

Bn = 1 7
[ r, —1
rlrz(r¥‘1 —-rg‘l) —
2 1
= Bo +B1 ,
r,—n 2 —n
—rir (P = Py
1 2 1 2
= BQ +B—,
rn —r r =71
-1 n—1 n n
e —r r—r
1 2 1 2
= 2B0 +B1 ,
r =71 r —r

= 2BoJin-1+ B1Jin-

By the same argument, we get

Pn = (_1)11 (2P0]n—1 - Pl]k,n) .

lemma 3.2.2 Consider the linear systam of second order linear autonomous differences equa-

tions
Un+2 — kvn+1 - 2[Jk,n =0, Vp2-— k‘un+1 - 2Vk,n =0, n €Ny (35)
Then
Hon = 240 Jk2n-1 + V1 k20,
M2nt1 = 2Vokon + t1Jk2n+1,
Vo = 2VoJikon-1 + p1fk2n,
Vons1 = 2poJk2n + ViJk2n+1-
Proof.
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Through the combination of addition and subtraction of equations, we get
Un+2 + Vpyo = k (Vn+1 + mun+1) +2 (‘un + Vn) 7 (36)

Pns2 = Vg2 = =k (‘Un+1 — Vps1) +2 (Hn - V). (3.7)

By posing the following changes of variables :
Ry=pn+vy, Sp=py—vy (3.8)
The equations (3.6) and (3.7) becomes:
Ry = kRyp1 + 2R,

Sn+2 = _kSn+1 + zsn;

wich are in the form of equations (3.2) and (3.3) Then it follows from Lemma (3.2.1)
that
Ron = 2RoJk2n-1 + RiJkoan,  Ronsr = 2RoJk2n + RiJkon+1,

Son = 250Jkon-1 — S1Jkan,  San+1 = — (2SoJk2n + S1Jk2n+1) -
And we have from (3.8) that

1 1
[v‘n—E(Rn+Sn)/ Vn—E(Rn_Sn)/

1 1
Von = = (Ron + S2u), Va1 = = (Rons1 + Sons1) ,

2 2
1 1
Vo = E (Rzn - SZn) ; Vo1 = E (R2n+1 - 52n+1) .

By substitution, we get

1
Uon = 5 (2RoJk2n-1 + RiJion + 2S0Jk2n-1 — S1Jk2n)
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1
Hans1 = 5 (2RoJk2n + R1Jk2ns1 — 2S0Jkon + S1Jk2n+1)
1
Vo = > (2R0]k,2n—1 + Ri1Jikon — 2S0Jkon-1 + S1Jk2n)

1
Voptl = 5 (2R0]k,2n + RiJkon+1 + 250]kon — 51]k,2n+1)-

So
Hon = 210 fk2n-1 + ViJk2n,
Mons1 = 2VoJkon + H1Jk2n+1,
Vo = 2VoJk2n-1 + t1Jk2ns
Vonse1 = 2poJk2n + ViJk2n+-
n

3.3 Closed-form solution of system (3.1)

In this section, we begin by reformulating the original system through a valid variable
change. This new variable transformation leads us to a simpler equivalent system,
which we then study in detail. Through recursive relations and exploiting known in-
formation from previous lemmas, we obtain closed-form solutions of the system. We
then express these solutions in an explicit form involving k—Jacobsthal sequences. Fi-
nally, we summarize our findings in a main theorem and provide a corollary providing

the complete solution to the provided system.

From (3.1) we can write

1 1

X(+1)(n+1)-j = ‘k n 2]/(I+1)n—j’ Yorymen-j =

K+ 2X(ayn—j
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By using the following change of variables
xﬁf) = X(+1)n—jr ]/51]) = Ya+1)n—js

in system (3.1) we get

x(]) )

1
= yn+1 =—-:\. nec NQ.

" kv 2y) k+2x)

Hence we can use the change of variables

o = W O = U,
n 7 n 4
un+1 Wn+1

in (3.9) and obtain
0 _Wanr ) _ Unn
n+1 un+2 4 yn+1 Wn+2 :

So,

Wn+1 _ 1
un+2 - zuﬂ '
k +
Wn+1
1

kWn+1 + 2I«Ik,n ’
Wn+1
Wn+1
kWn+1 +2U, ’
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And

un+1 _ 1
Wn+2 "t 2W,,’
un+1
v
un+1
un+1
kU, 1 +2W,, "

So the system (3.9) becomes:
Upr = kWn+1 +2U,,
Wi = kU1 + 2W,,.

Then it follows from lemma (3.2.2) that:
Uz, = 2UoJ2u-1 + Wikou,

Uops1 = 2WoJkon + Ui Jk2n+1,
Won = 2WoJkon-1 + Ui Jk2n,

Wans1 = 2UoJkon + Wik on+1-

So

G Wau
2n+1 u2n+2 4
2UoJon + Wik 2n+1
2UoJkon1 + Wi ]k,2n+2’
2U,y
lek,Zn + Jkon+1

2U, ’
—_— +
Wl ] k2n+1 ] k2n+2
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0 _ 2}/8)]k,2n+]k,zn+1

2n+1 —

2]/8])] k2n+1 + Jk2n+2

As well as

A = Won
2n u2n+1
2WoJkon-1 + UiJkon

2Wolkon + Ui Jians1’

2W

7 n— + n

0 Jion-1 + Ji2
T O2W, !

Tl()]k,Zn + ]k,2n+1

0 _ fo)])]k,zn—l + Jkon
zxf)])] k2n + ] k2n+1

And we have

G Ui
y2n+1 - W2n+2 ’
2WoJkon + UiJans

2WoJons1 + Ui Ji2n+2 ’

2W,
— +
ul ]k,2n ]k,2n+1
T2, ¢
— Jkon+1 + Jron2
Uk

G0 zx(()])]k,Zn + Jans1
Yon1 =

2x(()]) Jk2n+1 + Jxon+2
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Also

W = Uy,

2n W2n+1’
2UoJion-1 + WiJkon
2UoJkon + Wilkans1
2U, )

AT n— + n
W Ji2n-1 + Ji2

2Uy !
- +
Wk,l ] k.2n ] k2n+1

0 _ Zyéj)]k,zn—l + Jk2n
Y = o0 .
2y Jkon + Jk2ne

Theorem 3.3.1 Let {x, yilj)}nzo be the solution to system (3.9) then forn € Nand j =0, ..., 1

6) ny)])]k,zn + Jean+1 () ZxE)])]k,zn_l + Jkon
Yon1 = 50 ) '
2y Jeons1 + Jr2n+2 2xy" Jkon + Jran+1
g oy
M _ _“Y Jian + Jonnt G _  “Yo Jkon + Jan+a
You1 = o

zxé])]k,2n+1 + Jkon+2 Zyg)]krz'“l + Jkane2

The following corollory is our main result wich gives the explicit formula of solution

to system

Corollary 3.3.1 Let {x,, Yu}ns0 be the solution to system (3.1) then forn € Nand j = 0,1, ..., 1.

2y—j]k,2n + ]k,2n+1 X 2x_j]k,2n_1 + ]k,2n
+1)(2n)—-j —
2y-iJkan+1 + J2n+2” (hen-=y 2x_jJan + Jrons1’

X@+1)2n+1)-j =

zx—j]k,Zn + ]2n+1 y Zy—j]k,Zn + ]2n+1
= I+1)@2n)-j = .
2x_j]k,2n+1 + ]k,2n+2’ (G- 2y—j]k,2n+l + ]k,2n+2

Ya+ens)-j

Proof.
We have
xf’l]) = x(l+1)(1’l)—j/ ] = O/ 1/ Y L.
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So
xg;iﬂ = X(+1)@n+1)—js
and
0 _
XO = x_]'.
Then
MO 2y_iJkon + Jx2ns
= X(+1)@n+1)—j = ,
2l (Fen@nd) 2y—j]k,2n+1 + Jion+2
and
Y9 = 2% iJkon-1 + Jk2n
= X(+1)2n)-j = .
2 (b= 2x—j]k,2n + Jron+1
We have
() .
Yi = Yasym-i, J=0,1,..,L
So
0 ‘
Yone1 = Yu+n@n+)—js
and
N _
Yo = Y-
Hence
() 2x_iJkon + Jons1
= Yu+nen+n-j = ,
Yaner = Y@t 2x—j]k,2n+l + Jkon+2
Also
y(f) =y _ 2y—j]k,2n + ]2n+1
= Yn)@2nt)—j = .
2n (I+1)(2n+)—j 2]/—j]k,2n+1 n ]k,2n+2
]

3.4 Global stability of the solution to system (3.1)

In this section, we investigate the global stability of the solutions of a system of non-
linear difference equations (3.1). By finding the equilibrium points of the system, we

apply linearization techniques and Rouche’s Theorem to determine local and global
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asymptotic stability.

The equilibrium points of the system are given by :

— ~k+ VK2+8 —k+ VK2 +8
M:('x’y): 4 4 4 ¢
— —k— Vk*+8 —k— Vk*>+38
M=(xy)= 1 , 1 :

Theorem 3.4.1 The equilibrium point

—k+ VK2 +8 —k+ Vk2+8

M:(x,y)z 4 4

is locally asymptotically stable.

Proof.

—k+Vi2+8 —k+ \/k2+8)
4 4 4 :

We linearize the system around the equilibrium point M = (x, ) = (

The resulting linear system can be written as :
X1 = X,

where the state vector is defined by

t
X” = (xn/ Xn-1, "7 Xn=ly, Ynr Y,.o0n s ]/n—l) s
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and the matrix | is given as

. 8

00 0 0 (k+ VEZ+8)’
10 - 0 o - 0 0
o1 - 0 0o - 0 0
J=10 0 v 0 0 0
00 --- 0 0 --- 0 0
00 - 0 1 -+ 0 0
00 0 0 1 0

The characteristic polynomial of matrix | is:
g 2
P(/\) — (_A)21+2 _ (—) .
(k+ Vk? +8)2

Let us define the functions :

2

-8
A) = (=1)2*2) N=| —M | .
p) = (A7, () [(k+ k2+8)2)

It holds that
lp(A) < lp(A)l, foralll e C, foralllA] = 1.

By Rouche’s Theorem, the function P = ¢ + ¢ has the same number of zeros as ¢ within
the unit disc |p(A)| < 1. since ¢ has a root of multiplicity 2(/ + 1) at A = 0, then all the
roots of P are in the disc |p(A)| < 1. Thus, the equilibrium point is locally asymptotically
stable.

n
Corollary 3.4.1 The equilibrium point M is globally asymptotically stable.

Proof.
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According to Theorem (3.4.1), the point M is locally stable. To demonstrate global
asymptotic stability, we utilize Corollary (3.3.1). Consider the following limit

Jean-1
i ~ lim 2x_iJkon-1+ Jeon lim 20 +1
+1)@en)-j = = B
n—eo T 2x_jJkon + Jrane1  moe 2x_ i+ —]k]f’;”
Using the known limits
. ] k2n—1 1 . ] k2n+1
lim =—=r, lim =1,
n—eo \ Jion 8] n—oo \ Jon
we get
2x_]-r2 +1

lim x i =
n—oo (Fr1)@m)=j 2x_]' + 1 ’

2x_ (A8 4 g
ke VE2ss
2x_: + %

—k+ Vk?> +8
4 7

= X

However,we have

]k,2n
lim x i 2Y-ifkon + Jann1 . 2y 2+l o+l
I+1)2n+1)-j — — _ '
n—co (+1D(2n+1)—j n—oo 2y—j]k,2n+1 +]k,2n+2 n—oo 2]/—]‘ + ;',;z,ﬂj hy—j +

Using the following two limits

. (Jken) 1 . (Jkane1)
lim =— =1y lim =71,

n—eo \ " Jrop 7 n—eo \" Jrop

we get

—k+ VK> +8

%I_I)I.}o X(41)2nt1)-j = 1 =X,

So

lim x _i=X.
e (+1)(2n+1)—j

51



System of difference equations linked to the k-Jacobsthal sequence

Similarly, it can be proven that

lm ygnyenen-j = -

Hence, the solution converges globally to the equilibrium point

rlll_f){}o (x(l+1)(2n+1)—j/ ]/(l+1)(2n+1)—j) = (%, y)-

3.5 Rate of convergence

In this section, we analyze the rate of convergence of solutions to the equilibrium
point (x, y) for the given nonlinear difference system (3.1). By linearizing around the

equilibrium and expressing the dynamics as
Ap = (M +Z,) Ay, (3.10)

where A, is a 2I-dimensional vector, M € C**? is a constant matrix and Z : Z+ — C*¥

is a matrix function satisfying
|Z,l| — 0, when n — oo, (3.11)

where ||.|| indicates any matrix norm which is associated with the vector norm ||.||. We
determine the convergence rate via the spectral radius of M. The parameter k, and
delay [ explicitly influence this rate, providing insights into the system’s stability and

asymptotic behavior.

Theorem 3.5.1 [10] (Perron’s first Theorem)

Suppose that condition (3.11) holds. If A, is a solution of (3.10), then either A,, = 0 for all

largen or
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_ i Ml
= VW

exists and is equal to the modulus of one of the eigenvalues of matrix M.

Theorem 3.5.2 [10] (Perron’s second Theorem)

Suppose that condition (3.11) holds. If A, is a solution of (3.10), then either A, = O for all

largen or
1

p = lim (14.al)7,
exists and is equal to the modulus of one of the eigenvalues of matrix M.

Theorem 3.5.3 [10] Let the solution {(x,, Yu)}us—1 0f system (3.1) converges to the equilibrium
point (X,y) wich is globally asymptotically stable. So the error vector

1 _
851) Xy —X
(1) =

en_l Xp—1 — X

1 —

61(1_)1 Xp—1 — X
e, = =

] sy
en y" y
2 —_
€, 1 Yna1—-Y
2 —
€l Yn1—Y

of any solution of system (3.1) satisfies both of the following asymptotic behaviors

tim 1l @, =12,

oo |leyl|

1
1’111—1;](110 (”en+1||)n = |AZ]F((X-I y))ll l = ]-/ 2/"'/ l/

where |AiJr((X, )| corresponds to the absolute value of one of the eigenvalues of the Jacobian

matrix evaluated at the equilibrium (%, 7).
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Proof.

To establish the desired result, we start by formulating a system that governs the

evolution of the error terms. These error termes are defined as follows :

Xt =X = Yoo Ciltusi = ) + Lisg Dilyuei = §)  for i=1,2,...1,

Yor1 = 7= Yoo Giltui = X) + Lo Hi(yui — §)  for i=1,2,....,1L

(3.12)

Set

1 _ 2 _
) =x,-% =y, -7

Then, the system (3.12) become

n+1 i

e? = Zi’:o Gieff_)l. + Zﬁ:o H,e® for i=1,2,..1,

n+l — n—i

where

-2
Di: ':1,2,....,1—1, D= ——

0 "= k2P
Gi=0 i=12..1-1 G=—22_
T T et P ket 22,02

As the system approaches equilibrium, it becomes clear that

IimC =0 i=1,2,..,1]

n—-oo

. . ) -2
]11_1;1(;10Di:0 l:1,2,....,l—1, %l—%loDl:W
HmGi =0 i=12,..,/-1, limG = ——2—
I 00 i— = 1,4,...y ’ e l_(k+2x)2

limH; =0 i=1,2,..,1

n—-oo
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So, that means
Die—"2 o0 G-_—2
T k22 T T (k4 2x) P

We can now express the system in the form

€n+1 = (M + Zn) ()

t
where ¢, :(eff), 6511_)1, " 3,(11_)11 61(12)/ 6512_)11 T 61(42—)1) and
00 00 - 0 ay
10 0 0 - 0 0
01 0 0 - 0 0
B,=|0 0 -+ B, 0 --- 0 0
00 0 0 - 0 0
00 0 1 - 0 0
00 0 0 1 0
00 0 0 0
10 --- 0 0 --- 0 0
01 --- 0 0O --- 0 0
M= _’)Z',_ = =8
]F( ]/) 00 (k+m)2 0 0 0
00 --- 0 0 --- 0 0
00 - 0 1 -+ 0 0
00 0 0 1 0
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IZ,]| — 0 when n — oco. As a result, the asymptotic error system can be expressed as

.- __ =8
00 0 0 (ke NIE8) | ()
en
1o 0 00 0 |lg
01 --- 0 0 --- 0 0 o
e(l)l
(4 = _—8 = ,
n+1 00 (k+m)2 0 0 0 2
00 - 0 0 --- 0 0 &
00 - 0 1 ... 0 0 )
e
—
00 0 0 1 0

and ||Z,]| = 0 when n — oo. Clearly, this system coressponds to the linear approxi-
mation of equation (3.1) near (%, ) the equilibrium point. Thus, the result is a direct

consequence of Perron’s Theorems. m

3.6 Numerical Examples

In this section, we studied a system of nonlinear difference equations with the use
of exact numerical techniques. We performed iterative calculations and documented
the findings in detailed tables and graphical plots that illustrate the dynamics of the
system and its convergence towards equilibrium points. The study was conducted in
an attempt to trace the evolution of variables with extremely high numerical accuracy
using advanced computational techniques as a foundation for subsequent theoretical

analysis and practical application.

example 3.6.1 Let the following system of difference equations

1 1

= A n = T A Z 7 ]-
k+ zyn—l, Yni1 k+ 2X,-1 nz0 (3 3)

Xn+1
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where the parameters and initial conditions are chosen as follows:
o k=1,1=3.
e [nitial conditions for x: xo =0.1, x; =25, x=03, x3=5.0,
e [nitial conditions for y: yo =3.0, y1 =02, y, =17, y;=0.05

The following table presents the computed values of the sequences (x,) and (y,) generated by
the system of difference equations with the given initial conditions and parameters. The values

are displayed for n = 1 to n = 30.

n 1 2 3 4 5 6 7 8 9 10
x, [ 2.5000 | 0.3000 | 5.0000 | 0.7143 | 0.2273 | 0.9091 | 0.7500 | 0.4444 | 0.8462 | 0.5484
y» | 0.2000 | 1.7000 | 0.0500 | 0.1667 | 0.6250 | 0.0909 | 0.4118 | 0.6875 | 0.3548 | 0.4000

n| 11 12 13 14 15 16 17 18 19 20
x, | 0.4211 | 0.5849 | 0.5556 | 0.4857 | 0.5738 | 0.5118 | 0.4795 | 0.5204 | 0.5135 | 0.4964
Yn [0.5294|0.3714 | 0.4769 | 0.5429 | 0.4609 | 0.4737 | 0.5072 | 0.4656 | 0.4942 | 0.5105

n| 21 22 23 24 25 26 27 28 29 30
x, | 0.517810.5029 | 0.4948 | 0.5050 | 0.5034 | 0.4991 | 0.5044 | 0.5007 | 0.4987 | 0.4987
Yn [ 0.4900 | 0.4933 | 0.5018 | 0.4913 | 0.4985 | 0.5026 | 0.4975 | 0.4983 | 0.5005 | 0.5005

Table 3.1: Computed Values of x, and y, for n = 1 to 30 from the difference equation
system

5F —_— XN
—yn

n

Figure 3.1: Plot of the numerical solution of the system (3.13)

57



System of difference equations linked to the k-Jacobsthal sequence

Figure 3.2: 3D phase surface plot of the system (3.13)

example 3.6.2 Let the following system of difference equations

1 1

= —/ n = —/ > O/
k + 2yn—l Yt k+2x,_ &

Xn+1
where the parameters and initial conditions are chosen as follows:

e k=1,1=12.

e [nitial conditions for x: xo = 0.5488, x; =0.7152, x, =0.6028,
xy = 04237, x5 =0.6459, xs=0.4376, x;=0.8918,

xs = 09637, x9=0.3834, x0=0.7917, x3;7=0.5289, x1, =0.5680,

e [nitial conditions for y: yo = 0.9256, y; = 0.0710, y, =0.0871,
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ys =0.8326, y5=0.7782, y,=0.8700, y;=10.9786,
ys = 0.7992, y9 =0.4615, 1y10=0.7805 y;; =0.1183, 1y, = 0.6399.

The following table presents the computed values of the sequences (x,) and (y,) generated by
the system of difference equations with the given initial conditions and parameters. The values

are displayed forn =1 ton = 120.
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4

10

0.7152

0.6028

0.5449

0.4237

0.6459

0.4376

0.8918

0.9637

0.3834

0.7917

0.0710

0.0871

0.0202

0.8326

0.7782

0.8700

0.9786

0.7992

0.4615

0.7805

11

12

13

14

15

16

17

18

19

20

0.5289

0.5680

0.8757

0.8516

0.9612

0.3752

0.3912

0.3650

0.3382

0.3849

0.1183

0.6399

0.4115

0.4534

0.4785

0.5413

0.4363

0.5333

0.3592

0.3416

21

22

23

24

25

26

27

28

29

30

0.5200

0.3905

0.8087

0.4386

0.5486

0.5244

0.5110

0.4802

0.5340

0.4839

0.5660

0.3871

0.4860

0.4682

0.3635

0.3699

0.3422

0.5713

0.5611

0.5781

31

32

33

34

35

36

37

38

39

40

0.5819

0.5941

0.4690

0.5636

0.5071

0.5164

0.5791

0.5748

0.5937

0.4667

0.5965

0.5651

0.4902

0.5615

0.3821

0.5327

0.4768

0.4881

0.4946

0.5101

41

42

43

44

45

46

47

48

49

50

0.4712

0.4638

0.4560

0.4695

0.5050

0.4710

0.5668

0.4842

0.5119

0.5060

0.4836

0.5082

0.4621

0.4570

0.5160

0.4701

0.4965

0.4919

0.4634

0.4652

51

52

53

54

55

56

57

58

59

60

0.5027

0.4950

0.5084

0.4959

0.5197

0.5225

0.4921

0.5154

0.5018

0.5041

0.4572

0.5172

0.5148

0.5188

0.5230

0.5158

0.4975

0.5149

0.4687

0.5080

61

62

63

64

65

66

67

68

69

70

0.5190

0.5180

0.5224

0.4915

0.4927

0.4908

0.4887

0.4922

0.5012

0.4927

0.4941

0.4970

0.4986

0.5025

0.4959

0.5020

0.4904

0.4890

0.5040

0.4924

71

72

73

74

75

76

77

78

79

80

0.5162

0.4960

0.5029

0.5015

0.5007

0.4987

0.5021

0.4990

0.5049

0.5056

0.4991

0.4980

0.4907

0.4912

0.4891

0.5043

0.5037

0.5047

0.5057

0.5039

81

82

83

84

85

86

87

88

89

90

0.4980

0.5038

0.5004

0.5010

0.5047

0.5045

0.5055

0.4979

0.4982

0.4977

0.4994

0.5037

0.4920

0.5020

0.4985

0.4992

0.4997

0.5006

0.4990

0.5005

91

92

93

94

95

96

97

98

99

100

0.4972

0.4981

0.5003

0.4982

0.5040

0.4990

0.5007

0.5004

0.5002

0.4997

0.4976

0.4972

0.5010

0.4981

0.4998

0.4995

0.4977

0.4978

0.4972

0.5011

101

102

103

104

105

106

107

108

109

110

0.5005

0.4997

0.5012

0.5014

0.498g

0.5010

0.5001

0.5003

0.5012

0.5011

0.5009

0.5012

0.5014

0.5010

0.4998

0.5009

0.4980

0.5005

0.4996

0.4998

111

112

113

114

115

116

117

118

119

120

0.5014

0.4995

0.4995

0.4994

0.4993

0.4995

0.5001

0.4995

0.5010

0.4998

0.4999

0.5002

0.4997

0.5001

0.4994

0.4993

0.5002

0.4995

0.4999

0.4999
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values

1.0

0.8

0.6

0.4

0.2

0.0

— xn
— yn

0 25 50 75 100 125 150 175
n

200

Figure 3.3: Plot of the numerical solution of the system (3.14))

Figure 3.4: 3D phase surface plot of the system (3.14)
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CONCLUSION

In conclusion, this master’s thesis has highlighted the strong relationship between
the solutions of nonlinear systems of difference equations and well-known numeri-
cal sequences, particularly the generalized Bell and Jacobsthal sequences. The results
demonstrate that these sequences play a fundamental role in characterizing the behav-
ior of such systems, both in deriving explicit solutions and in analyzing equilibrium
and stability. The structural and algebraic properties of the sequences provide valuable
insights into the dynamics of discrete systems, offering a powerful framework for un-
derstanding their long-term behavior. This connection underscores the theoretical and
practical significance of using classical number sequences in the study and modeling

of nonlinear difference equations across various mathematical and applied disciplines.
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