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Introduction
The understanding of results and notions for a student in mathematics requires solving

exercises. The exercises are also meant to test the reader’s understanding of the text material,

and to enhance the skill in doing calculations. The goal of this collection of exercises is to

help the student understand much better the basic facts which are usually presented in an

introductory course in normed vector spaces, by providing various exercises, from different

topics, from simple ones to, perhaps, more difficult ones, in order to help him to understand

the richness of ideas and techniques which Banach spaces in general and Hilbert ones in par-

ticular offer.

These exercises are related to a course given to students in the 5th semester of mathematics

study. We will practice on two chapters in normed vector spaces, wich are Banach spaces in

general and Hilbert spaces as a particular case of them.

For the first, we start by familiarizing the student with the norm through elementary cal-

culations, and various spaces, while showing the topological aspect of normed spaces. Then

Cauchy sequences are introduced in order to clarify the concept of completeness, and sub-

sequently practice on Banach spaces. Next comes the continuous linear applications which

define another normed vector space, among others the dual space.

The second one, we first practice the scalar product, by memorizing basic results, then

Hilbert spaces with the Riesz Theorem , after which we move on to the projection theorem

and finish with Fourier series by training on particular trigonometric systems.

we first set the exercises, then give the solution with many details, and finaly propose some

non solved exercises left to the student, in order to push him to work and investigate.

I hope that some of the exercises herein can be of some help to the teacher of Normed

vector spaces as seminar tools; and to anyone who is interested in seeing some applications

of normed vector spaces.
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CHAPTER 1

BANACH SPACES

Series of exercises 1

1.1 Normed spaces

Exercise 1 Let E be a normed vector space, and x, y, z, t four vectors of E. Show that,

‖x − t‖ + ‖y − z‖ ≤ ‖x − y‖ + ‖y − t‖ + ‖t − z‖ + ‖z − x‖

Solution We apply the triangular inequality four times:

‖x − t‖ ≤ ‖x − y‖ + ‖y − t‖

‖y − z‖ ≤ ‖y − t‖ + ‖t − z‖

‖x − t‖ ≤ ‖x − z‖ + ‖z − t‖

‖y − z‖ ≤ ‖y − x‖ + ‖x − z‖

We add these inequalities and we obtain the result by simplifying by 2:

‖x − t‖ + ‖y − z‖ ≤ ‖x − y‖ + ‖y − t‖ + ‖t − z‖ + ‖z − x‖

Exercise 2

1. Let a and b be two real numbers with the property that a ≤ b + ϵ for ever ϵ. Show that
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CHAPTER 1. BANACH SPACES

a ≤ b.

2. Let I = [0, 1]. Show that the fellowing is a norm on C[0, 1]: ‖f‖ = sup|f(x)|.

Solution

1. Supose a > b. Then a = b + δ where δ > 0. Set ϵ = 1
2 .

Now a > b + 1
2 = b + ϵ where ϵ > 0.

But this contradicts the hypothesis; so a ≤ b.

2. We know thet a real continuous function on a closed intervall is bounded; so f is well

defined.

1- Since |f ′x)| ≥ 0 for every x ∈ [0, 1]; ‖ − f‖ ≥ 0.

also ‖f‖ = 0 iff f(x) = 0 for every x ∈ [0, 1] i,e; iff f = 0.

2-Let k ∈ R. Then

‖kf‖ = sup|(kf)(x)| = sup|kf(x)| = sup (|k||f(x)|) = |k|sup|f(x)| = |k|‖f‖

3- Now, let ϵ > 0. Then ∃x0 ∈ I such that:

‖f + g‖ = sup (|f(x) + g(x)|)

≤ |f(x0) + g(x0)| + ϵ

≤ |f(x0)| + |g(x0)| + ϵ

≤ sup|f(x)| + sup|g(x)| + ϵ

= ‖f‖ + ‖g‖ + ϵ

Hence, ‖f + g‖ ≤ ‖f‖ + ‖g‖

Exercise 3

1. Show that N : R2 → R, defined for u = (x, y) by N(u) = sup0≤t≤1 |x + ty| is a norm.
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CHAPTER 1. BANACH SPACES

2. Represent the closed unit ball with center 0.

Solution In this question u = (x, y) and v = (x′, y′) are any two elements of R2 .

- The upper bound N(u) exists because it represents the maximum (reached at least for a

value t0 ) of the map t → |x + ty|, defined and continued on [0, 1].

- We obviously have the inequality N(x, y) ≥ 0.

On the other hand N(x, y) = 0 ⇒ ∀t ∈ [0, 1], x + ty = 0 ⇒ x = y = 0 (choose t = 0 and

t = 1).

- For any real λ:

N(λu) = sup
0≤t≤1

|(λx) + t(λy)| = sup
0≤t≤1

|λ||x + ty| = |λ| sup
0≤t≤1

|x + ty| = |λ|N(u)

- For any real t of [0, 1], |(x + x′) + t (y + y′)| ≤ |x + ty| + |x′ + ty′| ≤ N(u) + N(v). We can

then pass to the upper bound in |(x + x′) + t (y + y′)| and write:

N(u + v) ≤ N(u) + N(v)

The map u → N(u) is therefore a norm on R2.

Let u = (x, y) be any element of R2, and let φ be defined on [0, 1] by φ(t) = |x + ty|.

The positive map φ2 is convex on [0, 1] (its second derivative is positive or zero).

The application φ2 therefore reaches its maximum at t = 0 or at t = 1.

The same is true for φ. We therefore have:

N(u) ≤ 1 ⇐⇒


φ(0) ≤ 1

φ(1) ≤ 1
⇐⇒


|x| ≤ 1

|x + y| ≤ 1
⇐⇒


−1 ≤ x ≤ 1

−x − 1 ≤ y ≤ −x + 1

We deduce the shape of the closed unit ball:
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CHAPTER 1. BANACH SPACES

Exercise 4 Let C 1([0, 1]) be the (real) vector space of the continuously differentiable

functions f : [0, 1] → R. We set, for f ∈ C 1([0, 1]) : ‖f‖ =
(
[f(0)]2 +

∫ 1
0 |f ′(t)|2 dt

)1/2
.

1. Show that we thus define a norm on C 1([0, 1]).

2. We set fn(t) = tn(1 − t), n ⩾ 1. Calculate ‖fn‖.

Solution

1. The mappings N0 : f 7→ |f(0)| and N2 : f 7→
(∫ 1

0 |f ′(t)|2 dt
)1/2

are semi-norms on

C 1([0, 1]) (it is clear for the first; for the second, it is the composite of the norm ‖ with

the linear form f 7→ f ′).

So ‖f‖ =
[
N0(f)2 + N2(f)2]1/2 defines a semi-norm on C 1([0.1]). In fact, this is a

norm because if ‖f‖ = 0, on a f(0) = 0 et
∫ 1

0 |f ′(t)|2 dt = 0.

Then f ′ is zero almost everywhere, therefore everywhere because it is continuous (we

can of course also use the elementary result saying that the inegral of a non-zero positive

continuous function is strictly positive).

So f is constant on [0, 1], and since f(0) = 0, f = 0.

|fn(t) − f(t)| ⩽ |fn(0) − f(0)| +
(∫ 1

0

∣∣f ′
n(u) − f ′(u)

∣∣2 du

)1/2

8



CHAPTER 1. BANACH SPACES

2. We have fn(0) = 0 et f ′
n(t) = tn−1[n − (n + 1)t],

hence, squaring, [f ′
n(t)]2 = n2t2n−2 − 2n(n + 1)t + (n + 1)2t2 and (barring a calculation

error!)
∫ 1

0 [f ′
n(t)]2 dt = n

[
n

2n−1 − n+1
2n+1

]
, which gives ‖fn‖ =

√
n

4n2−1 .

Non solved exercises

Exercise 1 We equip E = R[X] with the norm ‖‖∞ defined by:

∀P ∈ E, ‖P‖∞ = Sup
{∣∣∣P (n)(0)

n!

∣∣∣ , n ∈ N
}

.

Check that ‖‖∞ is a norm on E.

Exercise 2 Let in Rn, x = (xi)n
i=1 and y = (yi)n

i=1 ∈ Rn, and we define the standard:

‖x‖2 =

√√√√ n∑
i=1

x2
i

Using the Cauchy-Schwarz inequality,

∣∣∣∣∣
n∑

i=1
xiyi

∣∣∣∣∣ ≤ ‖x‖2 · ‖y‖2

Show that ‖‖2 is a norm.

Exercise 3 We consider in the space C([0, 1],R) continuous real functions on [0, 1], the

norms

‖f‖1 =
∫ 1

0
|f(t)|dt et ‖f‖2 =

(∫ 1

0
|f(t)|2

) 1
2

1. Check that for f ∈ C([0, 1],R) we have ‖f‖1 ≤ ‖f‖2.

9



CHAPTER 1. BANACH SPACES

2. Consider the sequence of functions (fn)n of C([0, 1],R):

f((t) =



3n2t si 0 ≤ t ≤ 1
3n

n si 1
3n ≤ t ≤ 2

3n

−3n2
(
t − 1

n

)
si 2

3n ≤ t ≤ 1
n

0 si 1
n ≤ t ≤ 1

a- Check that ‖fn‖1 ≤ 1 for each n

b- Check that ‖fn‖2 tends towards infinity.

3. Are the two norms equivalent?

Exercise 4 Frobenius NormFor A ∈ Mn(R), we set ‖A‖ =
√

tr(
((AA

)
.

1. Show that it is a norm.

2. Show that: ∀A, B ∈ Mn(R), ‖AB‖ ⩽ ‖A‖ × ‖B‖.
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CHAPTER 1. BANACH SPACES

Series of exercises 2

1.2 Complet Spaces

Exercise 1 Let E be a normed vector space and (xn)noN a sequence of elements of E.

Supose that (xn) is a Cauchy sequence.

Show that it converges if and only if it has a convergent subsequence.

Solution A convergent sequence always admits a convergent subsequence. Conversely, if

( un ) admits a subsequence ( uφ(n) ) which converges to ell, we set ε > 0. Since (un) is

Cauchy, there exists N1 such that

n, p ≥ N1 =⇒ ‖un − up‖ ≤ ε

We then fix n0 such that φ (n0) > N1 and
∥∥∥uφ(n0) − l

∥∥∥ ≤ ε. For n ≥ φ (n0) ≥ N1, we have

according to the triangular inequality:

‖un − l‖ ≤
∥∥∥un − uφ(n0)

∥∥∥+
∥∥∥uφ(n0) − l

∥∥∥ ≤ 2ε

Exercise 2 Let be X =]0, ∞[. For x, y ∈ X, denote

δ(x, y) =
∣∣∣∣1x − 1

y

∣∣∣∣
Show that δ is a distance on X. Is the metric space (X, d) complet?

Solution δ is a distance. In fact, we have:

δ(x, y) = δ(y, x).

δ(x, z) =
∣∣∣ 1

x − 1
z

∣∣∣ ≤
∣∣∣ 1

x − 1
y

∣∣∣+ ∣∣∣ 1y − 1
z

∣∣∣ = δ(x, y) + δ(y, z).

δ(x, y) = 0 if and only if x = y.

11



CHAPTER 1. BANACH SPACES

The space (X, δ) is therefore a metric space. It is not complete. Let us indeed take the

sequence un = n. This sequence (un) is of Cauchy. Indeed,

δ (un, un+p) ≤ 1
n

+ 1
n + p

≤ 2
n

This sequence is therefore a Cauchy sequence. It can not converge, because if its limit

was ℓ, we would have: ∣∣∣∣ 1n − 1
ℓ

∣∣∣∣ → 0

which results in 1/ℓ = 0 which is of course impossible.

Exercise 3 Let E be the vectorial space of R valued continuous functions on [−1, 1]. Define

a norm on E by

‖f‖1 =
∫ 1

−1
|f(t)|dt

We want to show that E endowed with this norm is not complet. To show that we define a

sequence of functions (fn)n∈N∗ by

fn(t) =


−1 if − 1 ≤ t ≤ − 1

n

nt if − 1
n ≤ t ≤ 1

n

1 if 1
n ≤ t ≤ 1

1- verify that fn ∈ E, ∀n ≥ 1. 2- Show that

‖fn − fp‖ ≤ sup
( 2

n
,
2
p

)

and deduce that (fn)n∈N∗ is a Cauchy sequence.

3- Supose that there exists a function f ∈ E so that (fn) converges to f in (E, ‖‖1). Then

12



CHAPTER 1. BANACH SPACES

show that we have:

lim
n→+∞

∫ −a

−1
|fn(t) − f(t)| dt = 0 and lim

n→+∞

∫ 1

a
|fn(t) − f(t)| dt = 0

for all 0 < α < 1.

4- therefore show that

lim
n→+∞

∫ −a

−1
|fn(t) + 1| dt = 0 and lim

n→+∞

∫ 1

a
|fn(t) − 1| dt = 0

for all 0 < α < 1.

Deduce that
f(t) = 1 for all − 1 ≤ t < 0

f(t) = −1 for all 0 < t ≤ 1

- Conclude.

Solution

1. Just check the continuity in 1/n and −1/n. But if t tends to 1/n, then nt tends to 1,

which proves continuity in 1/n. Likewise in −1/n.

2. We assume n ≤ p. We then have:

‖fn − fp‖ ≤
∫ 1/n

−1/n
|fn(t) − fp(t)| dt.

Now, fn and fp are always of the same sign, and therefore:

|fn(t) − fp(t)| ≤ |fn(t)| = 1

By integrating, we obtain the result.

3. The integral of a positive function over part of a segment is less than or equal to the

13



CHAPTER 1. BANACH SPACES

integral of that function over the entire segment. In particular, we have:

∫ 1

α
|f(t) − fn(t)| ≤

∫ 1

−1
|f(t) − fn(t)| = ‖f − fn‖ → 0.

Likewise for the integral between −α and 1.

4. It’s even stronger than that! Indeed, if n is large enough for 1/n < α, we have exactly:

∫ 1

α
|fn(t) − 1| dt = 0

Now let’s set α > 0. We have, by the triangular inequality:

∫ 1

α
|f(t) − 1|dt ≤

∫ 1

α
|f(t) − fn(t)| dt +

∫ 1

α
|fn(t) − 1| dt

Making n tend towards +∞, we finally prove that:

∫ 1

α
|f(t) − 1|dt = 0

Since t 7→ |f(t) − 1| is continuous on [α, 1] and it is a positive function, the nullity

of its integral implies that this function is itself identically zero on [α, 1]. Since α is

arbitrary, we finally obtain that f(t) = 1 on ]0, 1].

The reasoning is the same on the interval [−1, 0[. We then obtain an absurdity, since

such a function f cannot be continuous at 0. The space is not complete!

Exercise 4 Let E be a normed vector space and F be a subspace of E.

We denote by F̄ the set of adherent points of F .

- Show that F̄ is a subspace of E.

14



CHAPTER 1. BANACH SPACES

Solution Let x and y be two elements of F̄ . Let λ and µ be two scalars.

By definition, there exist two sequences (xn) , (yn) of F such that:

lim
n→∞

xn = x and lim
n→∞

yn = y

. For any integer n, the vector zn = λxn + µyn is an element of F .

On the other hand, the general term sequence (zn) converges to z = λx + µy.

We deduce that z is an element of F̄ , which was what had to be demonstrated.

Exercise 5 Let X be a Banach space, Y a normed vectorial space and T : X → Y a

continuous linear mapping. Supose that there exists a constante c > 0 so that:

‖Tx‖ ≥ c‖x‖ for all x ∈ X

1. Show that Im(T ) is closed in Y .

2. Show that T is an isomorphism from X to Im(T ).

Solution

1. Let be (yn)n⩾1 a sequence of elements of Im(T ) such that:

yn → y (y ∈ y).

So,

∃ (xn)n⩾1 ∈ X/ T (xn) = yn

We have for all p, k ⩾ 1, ‖yp − yk‖ = ‖T (xp) − T (xk)‖ = ‖T (xp − xk)‖ ⩾ C ‖xp − xk‖1

.

On the other hand,

15



CHAPTER 1. BANACH SPACES

(yn)n convergente ⇒ (yn)n de Cauchy

⇒ ∀ε > 0, ∃N ⩾ 1 : ‖yp − yk‖ ⩽ ε (∀p, k ⩾ N)

⇒ ε ⩾ ‖yp − yε‖ ⩾ c ‖xp − xk‖

⇒ ‖xp − xk‖ ≤ ε

c
(∀ε > 0)

So, (x)n, is a Cauchy sequence in X.

Hence(xn)n converges in X, because X is complet: lim xn = x.

-Now, since T is continuous, limn(Txn) = Tx then limn yn = Tx.

We have lim yn = y, so, y = Tx hence y ∈ Im(T ) therfore T is closed.

2. T is injective, so T is an isomorphism.

Non solved exercises

Exercise 1 In X =] − 1, +1[, check that
(
1 − 1

n

)
n

is a Cauchy sequence .

Is it convergent? What to deduce?

Exercise 2 Same question for the following ( xn ) defined by xn = E
(
2n

√
2
)

/2n In Q

provided with the usual distance in R.

Exercise 3 In the space C([0, 1],R) provided with the norm ‖‖1 we consider the sequence

of continuous functions

fn(t) =


2ntn si t ∈ [0, 1/2]

1 si t ∈ [1/2, 1]

1. Check that the sequence is from Cauchy

2. Is the space (C([0, 1],R), ‖‖1 ) complete?

Exercise 4 Let X be a normed space. Prove that the following assertions are equivalent:

1. X is finite-dimensional;

16
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2. Any linear functional on X is continuous;

3. Any linear subspace of X is closed.

17



CHAPTER 1. BANACH SPACES

Series of Exercises 3

1.3 Linear mapping

Exercise 1 We provide E = Mn(R) with one of the three usual norms: For any matrix

A = (aij) : ‖A‖1 =
∑

|aij | , ‖A‖2 =
√∑

a2
ij , ‖A‖∞ = sup |aij |.

In each case, calculate the norm of the linear map "trace".

Solution We should find the positive real minimum λ such that, for any matrix A, we

have: | tr(A)| ≤ λ‖A‖.

- With the norm A → ‖A‖1:

| tr(A)| =
∣∣∣∣∣

n∑
i=1

aii

∣∣∣∣∣ ≤
n∑

i=1
|aii| ≤

n∑
i,j

|aij | = ‖A‖1. We deduce the inequality | tr(A)| ≤ ‖A‖1.

This result cannot be improved because there is equality for example if A = In.

So ‖ tr ‖ = 1.

- With the norm A → ‖A‖2: We apply Cauchy-Schwarz:

tr(A)2 =
∣∣∣∣∣

n∑
i=1

aii

∣∣∣∣∣
2

=
∣∣∣∣∣

n∑
i=1

(1 · aii)
∣∣∣∣∣
2

≤
n∑

i=1
12

n∑
i=1

a2
ii

We deduce
∗ tr(A)2 ≤ n

n∑
i=1

a2
ii

≤ n
n∑

i,j=1
a2

ij .

In other words | tr(A)| ≤
√

n‖A‖2.

This inequality cannot be improved because it is an equality for example if A = In. We

deduce ‖ tr ‖ =
√

n.

18
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- With the norm A → ‖A‖∞:

∗| tr(A)| =
∣∣∣∣∣

n∑
i=1

aii

∣∣∣∣∣
≤

n∑
i=1

|aii|

≤ n sup {|aii| , i = 1 · · · n}

≤ n sup {|aij | , i, j = 1 · · · n}

∗

We deduce the inequality | tr(A)| ≤ n‖A‖∞.

This inequality cannot be improved because it is an equality for example if A = In. We

deduce ‖ tr ‖ = n.

Exercise 2 Let be E the vectorial space of C valued continuous functions on [−1, 1],

endowed with the norm sup : ‖f‖∞ = Sup |f(t)|

t ∈ [−1, 1]

Let F be the vectorial space of 2π-périodique continuous functions on R, endowed with the

norm N2 so that N2(f) = 1
2π

√∫ π
−π |f(t)|2dt, or the norm sup N∞ : N∞(f) = Supt∈R f(t).

Let be L : E → F the mapping defined by L(f)(t) = f(cos t).

1- Show that L is well defined, is linear and injective.

2- Show that L is continuous for both of the norms N2 and N∞ of F , and calculate for both

of them, ‖L‖2 and ‖L‖∞.

Solution E = {f/f : [−1, 1] −→ C} and f continuous.

Assum f ∈ E. L(f) is continuous on R because:

-f is continuous and t −→ cost continuous, therefore the composition of the two applications

is continuous. L(f) ∈ E.

-Moreover t −→ cost is 2π−periodic, so L(f)(t) is 2π− periodic.

19
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We have L(f) ∈ F therfore L is well defined. Let’s show that L is linear;

∀f, g ∈ E, ∀α, β ∈ K :

L(αf + βg) = (αf + βg)(cost) = αf(cost) + βg(cost)

= αL(f) + βL(g)

- Now, let’s show that KerL = {0}. We have:

L(f) = 0 ⇒ f( cos t) = 0 ∀t ∈ R

⇒ f( cost ) = 0 ∀t ∈ [0, π]

Since the function t −→ cost is bijective from [0, π] to [−1, 1] then

f(cos t) = 0 ∀t ∈ [0, π] ⇔ f(u) = 0 ∀u ∈ [−1, 1]

⇒ f = 0

then L is injective.

2)We have:

L : (E, ‖‖∞) −→ (F, N2)

f 7→ L(f)

where, N2(f) = 1
2π

√∫ π
−π |f(t)|2 dt

N2(L(f))2 = 1
4π2

∫ π

−π
|L(f)(t)|2dt

= 1
4π2

∫ π

−π
|f(cost)|2dt

≤ 1
4π2

∫ π

−π
‖f‖2

∞dt

= 1
2π

‖f‖2
∞

So N2(L(f)) ≤ 1√
2π

‖‖∞. Hence L is contiuous for the norm N2 in F , and we have:

‖L‖2 ≤ 1√
2π

· · · (1).

20
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-Now, assum that f = 1 on [−1, 1]. then f is continuous, f ∈ E and ‖f‖∞ = 1.

N2(L(f))2 = 1
4π2

∫ π

−π
1dt = 1

2π

so, N2(L(f)) = 1√
2π

N2(L(f)) ≤ ‖L‖2‖f‖∞

1√
2π

≤ ‖L‖2 · 1 · · · (2)

from (1) and (2), ‖L‖2 = 1√
2π

- For the norme ‖.‖∞ we have,

N∞(L(f)) = supt∈R |f(cost)|

= supt∈[0,π] |f(cost)|

= supu∈[−1,1] |f(u)|

= ‖f‖∞

So L is continuous for the norm N∞ et ‖L‖∞ = 1.

Exercise 3 Consider in L2(R) the operator Q defined by

Qf(x) = xf(x),

with

D(Q) =
{

f ∈ L2(R) | Qf ∈ L2(R)
}

1- Show that Q is linear but not bounded, i,e; not continuous.

2- Show that D(Q) is dense in L2(R).

In quantum mechanics Q is called the position operator.
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Solution Let λ ∈ C and f ∈ D(Q). Then trivially, λf ∈ D(Q). If f, g ∈ D(Q), then it

follows from the inequality

|f(x) + g(x)|2 ≤ 2
{

2|f(x)|2 + |g(x)|2
}

that

∫ +∞

−∞
x2|f(x) + g(x)|2dx ≤ 2

∫ +∞

−∞
x2|f(x)|2dx + 2

∫ +∞

−∞
x2|g(x)|2dx < +∞

and we conclude that f + g ∈ D(Q), thus D(Q) is a subspace of L2(R).

If f, g ∈ L2(R) and λ ∈ C, then,

Q(f + λg) = x · {f(x) + λg(x)} = x · f(x) + λ · x · g(x) = Qf(x) + λQg(x)

thus

Q(f + λg) = Qf + λQg

and we have proved that Q is linear.

Let fn = 1[0,n]. Then,

‖fn‖2
2 =

∫ n

0
1dx = n, thus ‖fn‖2 =

√
n

and

‖Qfn‖2
2 =

∫ n

0
x2dx = n3

3
, thus ‖Qfn‖2 = n√

3
·
√

n = n√
3

· ‖fn‖2

We conclude that,

- fn ∈ D(Q) for every n ∈ N, and - ‖Q‖ ≥ n√
3 for every n ∈ N, hence Q is unbounded, i,e;

not continuous. Finally, let f ∈ L2(R), i.e.
∫+∞

−∞ |f(x)|2dx < +∞.

Then to every ε > 0 there is an N ∈ N, such that

∫ −N

−∞
|f(x)|2dx +

∫ +∞

N
|f(x)|2dx < ε2

22



CHAPTER 1. BANACH SPACES

If we put

fN (x) =


f(x) for |x| ≤ N

0 for |x| > N

then it follows that ‖f − fn‖2 < ε.

It only remains to prove that fN ∈ D(Q). This follows from

‖QfN ‖2
2 =

∫ N

−N
x2|f(x)|2dx ≤ N2

∫ N

−N
|f(x)|2dx ≤ N2

∫ +∞

−∞
|f(x)|2dx = N2‖f‖2

2

hence,

‖QfN ‖2 ≤ N‖f‖2 < +∞

and the last claim is proved.

Exercise 4 Consider in L2(R) the operator P defined by

Pf = −i
df

dx

with

D(P ) =
{

f ∈ L2(R) | Pf ∈ L2(R)
}

1. Show that P is linear but not bounded.

2. Show that D(P ) is dense in L2(R).

In quantum mechanics P is called the momentum operator.

Solution

1. Let f ∈ D(P ) and λ ∈ C. Then clearly, λf ∈ D(P ). If f, g ∈ D(P ), then f and g are

differentiable almost everywhere, hence f + g is also differentiable almost everywhere.

From f ′′, g′ ∈ L2(R), follows that also f ′ +g′ ∈ L2(R), so D(P ) is a vector space. Then
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clearly, Pf(x) = −i df
dx(x) is linear. Then we shall show that P is not bounded. Let

fn(x) =


sin nx for x ∈ [0, 2π]

0 otherwise.

Then

‖fn‖2
2 =

∫ 2π

0
sin2 nxdx =

∫ 2π

0
cos2 nxdx = 1

2

∫ 2π

0

{
sin2 nx + cos2 nx

}
dx = π

thus ‖fn‖2 =
√

π for every n ∈ N. It follows that

f ′
n(x) =


n · cos nx for x ∈]0, 2π[

not definod for x ∈ {0, 2π}

0 otherwise.

where {0, 2π} clearly is a null-set. Then

‖Pfn‖2
2 =

∥∥−if ′
n(x)

∥∥2
2 =

∫ 2π

0
n2 · cos2 nxdx = · · · = n2π = n2 ‖fn‖2

2

so ‖Pfn‖2 = n ‖fn‖2, and it follows that P is not bounded.

2. Finally, we shall show that D(P ) is dense in L2(R). Chocee any f ∈ L2(R), thus∫+∞
−∞ |f(x)|2dx < +∞. There exists to every ε > 0 an N ∈ N, such that

∫ −N

−∞
|f(x)|2dx +

∫ +∞

N
|f(x)|2dx <

(
ε

3

)2

If we therefore put

fN (x) =


f(x) for x ≤ N,

0 otherwise,

then f ∈ L2(R) and ‖f − fN ‖2 < ε
3 . Furthermore, there exists a continuous function

g on R, such that g(x) = 0 for |x| ≥ N , and such that ‖fN − g‖2 < ε
3 . It follows
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from Weierstrab’s Approximation Theorem that there exists a polynomial P (x) with

P (−N) = P (N) = 0, such that

max
v∈[−N,N ]

|g(x) − P (x)| <
ε

3
,

1√
2N

If we put

h(x) =


P (x) for |x| ≤ N

0 otherwise.

then

‖g − h‖2
2 =

∫ N

−N
|g(x) − P (x)|2dx <

(
ε

3

)2
· 1

2N

∫ N

−N
dx =

(
ε

3

)2
,

and we infer that

‖f − h‖2 ≤ ‖f − fN ‖2 + ‖fN − g‖2 + ‖g − h‖2 <
ε

3
+ ε

3
+ ε

3
= ε.

The function h is differentiable, if only x 6= ±N , and since h is continuous at ±N , we

conclude that

h′(x) =


P ′(x) for |x| < N,

not defined for x = ±N

0 otherwise

which of course belongs to L2(R), because {−N, N} is a null-set- This proves that

h ∈ D(P ), and D(P ) is therefore dense in L2(R).

Exercise 5 (Continuity, null space).

Let T be a bounded linear operator. Show that:

1. xn −→ x [ implies Txn −→ Tx.

2. The null space N (T ) is closed.

Solution
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1. We have, as n −→ ∞,

‖Txn − Tx‖ = ‖T (xn − x)‖ ≦ ‖T‖ ‖xn − x‖ −→ 0

2. For every x ∈ N (T ) there is a sequence (xn) in N (T ) such that xn −→ x.

Hence Txn −→ Tx by part ( a ) of this exercise.

Also Tx = 0 since Txn = 0, so that x ∈ N (T ).

Since x ∈ N (T ) was arbitrary, N (T ) is closed.

Non solved exercises

Exercise 1 For any n ∈ N, let: Un : C[0, 1] → C[0, 1], (Unf) (x) = f
(
x1+1/n

)
.

1. Prove that Unf → f in C[0, 1]∀f ∈ C[0, 1].

2. Prove that ‖Un − I‖ = 2 for all n ∈ N, and therefore Un does not converge towards I

in the norm topology, but Un converges pointwise towards I.

Exercise 2

1. Let φ(x, t) : [0, 1]× [0, 1] → [0, ∞) be a continuous function such that ∂φ/∂x : [0, 1]×

[0, 1] → [0, ∞) exists and is continuous. Prove that the operator U : C[0, 1] →

C[0, 1], (Uf)(x) =
∫ 1

0 φ(x, t)f(t)dt is linear and continuous, with ‖U‖ =
∫ 1

0 φ(1, t)dt.

2. Using (i) prove that the operator U : C[0, 1] → C[0, 1], (Uf)(x) =
∫ 1

0 extf(t)dt is linear

and continuous, and ‖U‖ = e − 1.

Exercise 3 Let (X, d) be a metric space. We denote by Lip(X) the set of Lipschitz

functions, with real values, on X. For f ∈ Lip(X), we note Lip(f) the Lipschitz constant of

f , namely Lip(f) = sup
{

|f(x)−f(y)|
d(x,y) ; x, y ∈ X, x 6= y

}
.

1. Show that Lip(X) is a vector space.
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2. Let a ∈ X. For f ∈ Lip(X), we set ‖f‖Lip, a = |f(a)| + Lip(f). a- Show that ‖‖Lip,a

is a norm on Lip(X). b- Show that if b is another point of X, then the norm ‖‖Lip,b

is equivalent to the norm ‖ |Lip,a .

c- We assume that X is a norm vector space (and that d is the distance associated

with the norm of X ). Show that every continuous linear form on X is in Lip(X), and

that we have ‖φ‖Lip,0 = ‖φ‖X · for all φ ∈ X∗.

3. We return to the case of any metric space ( X, d ). Show that Lip(X) is complete for

any norm ‖f‖Lip,a .

Exercise 4 Let E, F be two evn of finite dimensions and φ : E → F linear. Show that φ is continuous.

Exercise 5 Show that The dual space X ′ of a normed space X is a Banach space (whether

or not X is).
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HILBERT SPACES

Exercises series 4

2.1 Inner product

Exercise1 Prove that in a real vector space with inner product we have :

〈x/y〉 = 1/4(‖x + y‖2 − ‖x − y‖2)

and in a complex vector space with inner product we have

〈x/y〉 = 1/4(‖x + y‖2 − ‖x − y‖2 + i‖x + iy‖2 − i‖x − iy‖2)

These are the so-called polar identities. They tell us that in a Hilbert space, the inner product

is determined by the norm.
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Solution Let V be a real vector space with an inner product. It follows straightforward

that
1
4

{
‖x + y‖2 − ‖x − y‖2

}
= 1

4
{〈x + y, x + y〉 − 〈x − y, x − y〉}

= 1
4

{〈x, x〉 + 〈y, x〉 + 〈x, y〉 + 〈y, y〉 − 〈x, x〉 + 〈y, x〉 + 〈x, y〉 − 〈y, y〉}

= 1
4

{2〈y, x〉 + 2〈x, y〉} = 1
2

{〈x, y〉 + 〈y, x〉} = 〈x, y〉

and we have proved the claim concerning real vector spaces. Let V be a complex vector space

with an inner product. Then we get analogously,

1
4

{ ‖x + y‖2 − ‖x − y‖2 + i‖x + iy‖2 − i‖x − iy‖2
}

=1
4

{〈x + y, x + y〉 − 〈x − y, x − y〉 + i〈x + iy, x + iy〉 − i〈x − iy, x − iy〉}

=1
4

{[〈x, x〉 + 〈x, y〉 + 〈y, x〉 + 〈y, y〉] − [〈x, x〉 − 〈x, y〉 − 〈y, x〉 + 〈y, y〉]

+ i[〈x, x〉 + 〈x, iy〉 + 〈iy, x〉 + 〈iy, iy〉] − i[〈x, x〉 − 〈x, iy〉 − 〈iy, x〉 + 〈iy, iy〉]}

=1
4

{2〈x, y〉 + 2〈y, x〉 + 2i〈x, iy〉 + 2i〈iy, x〉}

=1
2

{〈x, y〉 + 〈y, x〉 + i · (−i)〈x, y〉 + i · i〈y, x〉}

=1
2

{〈x, y〉 + 〈y, x〉 + 〈x, y〉 − 〈y, x〉}

=1
2

· 2〈x, y〉 = 〈x, y〉

and the claim is proved in the complex case.

Exercise 2 E = M(m,n)(R) is the real vector space of matrices with m rows and n columns.

For a ∈ E, b ∈ E, we put

〈a, b〉 = tr(at.b).

- Show that we define an inner product on E.

Solution E = Mm,n(R)

a, b ∈ E, 〈a, b〉 = tr
(
at, b

)
At first , let’s see if tr

(
at, b

)
exists.

We have: am×n → at
n×m
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So, at
n×mbm×n = Anxn, then the trace of this product has a meaning, therfore the inner

product is well defined.

1. ∀a, b, c ∈ Mm×n(R), ∀λ, µ ∈ C :

〈λa + µb, c〉 = tr(λa + µb)t · c = tr
(
(λa)t + (µb)t · c

)
= tr

(
(λa)t · c

)
+ tr(µb)t · c

)
= tr

(
λat · c

)
+ tr

(
µbt · c

)
= λtr

(
at · c

)
+ µtr

(
bt · c

)
= λ〈a · c〉 + µ〈b · c〉

2. Since tr
(
M t
)

= tr(M), we have,

〈a · b〉 = tr
(
at · b

)
= tr

(
bt · a

)t

= tr
(
bt · a

)
= 〈b · a〉

3. 〈a, a〉 = tr
(
at · a

)
= ‖a2

2,2‖.

So, 〈a, a〉 ⩾ 0

4. If 〈a, a〉 = 0 then ‖a2
2,2‖ = 0, so a = 0

We conclude that tr
(
at · b

)
is an inner product on E.

Exercise 3 Show that the sup-norm on C[a, b] the vector space of all C−valued continuous

functions on [a, b], is not induced by an inner product.

-Recall,

‖f‖ = maxt∈[a,b]|f(t)|.
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Solution We know already that if a norm is defined by an inner product, then we the law

of parallelograms holds,

‖f + g‖2 + ‖f − g‖2 = 2
{

‖f‖2 + ‖g‖2
}

.

Hence, it suffices to prove that the law of parallelograms does not hold for

‖f‖ = sup{|f(t)| | t ∈ [a, b]} in C([a, b]).

We may assume that [a, b] = [0, 1]. Choose f(t) = 1 and g(t) = t for t ∈ [0, 1]. Then ‖f‖ = 1

and ‖g‖ = 1, and

‖f + g‖ = sup
t∈[0,1]

|1 + t| = 2, ‖f − g‖ = sup
t∈[0,1]

|1 − t| = 1.

Hence,

‖f + g‖2 + ‖f − g‖2 = 4 + 1 = 5

and,

2
(
‖f‖2 + ‖g‖2

)
= 2(1 + 1) = 4.

It follows from,

‖f + g‖2 + ‖f − g‖2 = 5 6= 4 = 2
(
‖f‖2 + ‖g‖2

)
,

that the law of parallelograms is not satisfied, so the sup-norm is not defined by an inner

product.

Exercise 4 Let H be an inner product space. Describe all pairs of vectors x, y for which

‖x + y‖ = ‖x‖ + ‖y‖

Solution We have,

‖x + y‖2 = ‖x‖2 + 2‖x‖ · ‖y‖ + ‖y‖2.
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Since

‖x + y‖2 = 〈x + y, x + y〉 = ‖x‖2 + 2 Re〈x, y〉 + ‖y‖2,

we obtain Re〈x, y〉 = ‖x‖ · ‖y‖.

By the Cauchy-Schwarz inequality we now get,

‖x‖ · ‖y‖ = Re〈x, y〉 ≤ |〈x, y〉| ≤ ‖x‖ · ‖y‖

i.e.,

Re〈x, y〉 = |〈x, y〉| = ‖x‖ · ‖y‖.

The equality |〈x, y〉| = ‖x‖ · ‖y‖ means that y = 0 or that x = λy for some λ ∈ C.

- In the case x = λy we obtain Re〈λy, y〉 = ‖λy‖ · ‖y‖, i.e., Re λ = |λ|.

Hence x = λy with λ ≥ 0. Therfore,

y = 0 or x = λy with λ ≥ 0

Non solved exercises

Exercise 1 On R3[X] we consider the following bilinear forms. Say which ones are inner

products.

ϕ(P, Q) =
∫ 1

−1
P (t)Q(t)dt

ϕ(P, Q) =
∫ 1

−1
P ′(t)Q(t) + P ′(t)Q(t)dt

ϕ(P, Q) =
∫ 1

−1
P ′(t)Q′(t)dt + P (0)Q(0)

Exercise 2 Let E = {f : R → R continue 2π-periodic }.

- Show that 〈f | g〉 =
∫ 2π

0 f(t)g(t)dt is an inner product on E.

Exercise 3 Let E be an Euclidean space of dimension n and x1, . . . , xp be vectors of E

such that if i 6= j then 〈xi | xj〉 <0.

- Show by induction on n that p ⩽ n + 1.
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Exercises series 5

2.2 Hilbert spaces, Riesz Theorem

Exercise 1 Let [a, b] be a finite interval. Show that L2 ([a, b]) ⊂ L1 ([a, b]) .

Solution The interval [a, b] is bounded, so the constant 1 ∈ L2(|a, b|). In fact,

‖1‖2
2 =

∫ b

0
12dt = b − a < +∞

Let f ∈ L2([a, b]). Then we get by the Cauchy-Schwarz inequality

∫ b

a
|f(t)|dt =

∫ b

a
|f(t)| · 1dt ≤ ‖f‖2 · ‖1‖2 =

√
b − a · ‖f‖2 < +∞

proving that f ∈ L1([a, b]), and thus

L2([a, b]) ≦ L1([a, b]) with ‖f‖1 ≤
√

b − a · ‖f‖2

Remark 1.5 We can find f ∈ L1([a, b]), which does not lie in L2([a, b]). An example is

f(x) =


1√
x

for x ∈]0, 1]

0 for x = 0

In fact,

∥∥∥∥ 1√
x‖1

∥∥∥∥1

0

1√
x

dx = [2
√

x]10 = 2

hence f ∈ L1([0, 1]). On the other hand,

∫ 1

0

{ 1√
x

}2
dx =

∫ 1

0

1
x

dx = ∞
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hence f /∈ L2([0, 1]).

Exercise 2 We consider the space of sequences ℓp, where p ≥ 1. Let y ∈ ℓq, where

1
p + 1

q = 1. (If p = 1 then y ∈ ℓ∞, the space of bounded sequences).

Show that

x 7→
∞∑

i=1
xiȳi

defines an element y⋆ ∈ (ℓp)∗ with norm
∥∥∥y⋆|

∥∥∥⋆
= ‖y‖q.

Solution If y ∈ ℓq, where 1
p + 1

q = 1, then by Hölder’s inequality

∣∣∣∣∣
+∞∑
i=1

xiȳi

∣∣∣∣∣ ≤ ‖x‖p · ‖y‖q

for every x ∈ ℓp, proving that the linear mapping

y⋆(x) =
+∞∑
i=1

xiȳi

is bounded, y⋆ ∈ (y⋆), and that ‖y⋆‖⋆ ≤ ‖y‖q. Then choosing x ∈ ℓp by xi = sign yi · |yi|
2
p ,

we get

y⋆(x) =
+∞∑
i=1

|yi|1+ q
p =

+∞∑
i=1

|yi|
(

1
q

+ 1
p

)
q =

+∞∑
i=1

|yi|q = ‖y‖q
q = ‖y‖

q
(

1
p

+ 1
q

)
q = ‖y‖q · ‖y‖

q
p
q

Notice that

‖x‖p =
{+∞∑

i=1
|xi|p

} 1
p

=
{+∞∑

i=1
|yi|q

} 1
p

=
{

‖y‖q
q

} 1
p = ‖y‖

q
p
q ,

from which follows that

y⋆(x) = |y⋆(x)| = ‖y‖q · ‖x‖p

and we conclude that ‖y⋆‖⋆ ≥ ‖y‖q. When this is combined with the previous estimate, then

‖y⋆‖⋆ = ‖y‖q, as required.
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Exercise 3 (Riesz Theorem) Let E be the inner product space of complex sequences

(un)n∈N satisfying :

∃ N ∈ N, ∀n ≥ N, un = 0

with the inner product 〈u/v〉 =
∑+∞

n=0 unvn.

1 - Show that the mapping φ(u) : E 7→ C defined by φ(u) =
∑+∞

n=1
un
n is a linear continuous

map on E.

2 - Is there an element a ∈ E such that for all u in E, we have φ(u) = 〈u/a〉?

3 - What can we deduce about E ?

Solution

1. Simply apply the Cauchy-Schwarz inequality. Indeed:

∣∣∣∣∣
+∞∑
n=1

un

n

∣∣∣∣∣ ≤
(+∞∑

n=1
|un|2

)1/2(+∞∑
n=1

1
n2

)1/2

.

This implies that ϕ is continuous (it is clearly linear) and that

‖ϕ‖ ≤
(+∞∑

n=1

1
n2

)1/2

.

2. Suppose there exists such an element a = (an). Applying ϕ to the k-th element of the

canonical basis of ℓ2, ek = (0, . . . , 0, 1, 0, . . .), we obtain ak = 1
k for k ≥ 1.

This sequence is not in E.

3. E is not complete, because the answer to the previous question goes against Riesz’s

representation theorem in Hilbert spaces.
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Non solved exercises

Exercise 1 We denote by l20 =
{
(xn)n∈N ⊆ C | xn 6= 0 only for a finite number of n}, and

define 〈··〉 : l20 × l20 → C by
〈
(xn)n∈ V , (yn)n∈H

〉
=
∑∞

n=1 xnyn.

Prove that
(
l20, 〈· · ·〉

)
is an inner product space but not a Hilbert space.

Exercise 2 Let H be a Hilbert space, (en)n∈ V is an orthonormal basis, and x∗ : H → K

is a linear and continuous functional.

Prove that y =
∑∞

n=1 x∗ (ϵn)ϵn is the unique element in H with the property that x∗(x) =

〈x, y〉∀x ∈ H.
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Exercise series 6

2.3 Projection, Orthogonality

Exercise 1

1. Let H be a Hilbert space, and let B be the closed unit ball of H.

(a) Show that ∀x ∈ H B, ∀z ∈ B:
〈
z − x

‖x‖ , x − x
‖x‖

〉
= (‖x‖ − 1)

(〈
z, x

‖x‖

〉
− 1

)
(b) Show that

〈
z, x

‖x‖

〉
− 1 ≤ 0

(c) Deduce that Re
〈
z − x

‖x‖ , x − x
‖x‖

〉
≤ 0.

2.Can we define a projection from H to B? If yes, then give an expression of the

projection onto B, the closed unit ball.

2. We consider in the space of periodic functions L2 [−π, π], the subspace F = vect
{
e−int, ..., eint

}
.

(a) Find the projection of f on F

(b) Deduce the distance from f to the subspace F.

Solution (Projection on a ball)

We denote by B the closed unit ball of H.

1. a) We have Since x /∈ B, we have ‖x‖ − 1 ≥ 0:

〈
z − x

‖x‖
, x − x

‖x‖

〉
.

〈
z − x

‖x‖
, x − x

‖x‖

〉
= 〈z, x〉 − ‖x‖ −

〈
z,

x

‖x‖

〉
+ 1

= (‖x‖ − 1)
(〈

z,
x

‖x‖

〉
− 1

)

b) Since z ∈ B we have ‖z‖ ≤ 1 so
∣∣∣〈z, x

‖x‖

〉∣∣∣ ≤ 1, by the Cauchy Schwartz inequality.
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c- Since
〈
z − x

‖x‖ , x − x
‖x‖

〉
≤ 0, then Re

〈
z − x

‖x‖ , x − x
‖x‖

〉
≤ ()it’s a real number)

2-We have proved that ∀z ∈ B, we have:〈
z − x

‖x‖ , x − x
‖x‖

〉
≤ 0

We deduce that If x /∈ B, then, P (x) = x/‖x‖

2. It is easy to check that the vectors eint/2π are orthonormal. Thus

Proj f =
n∑

m=−n

〈
f, eint/2π

〉
eimt/2π = 1

2π

n∑
m=−n

f̂(m)eimt,

where f̂(m) is the m-th Fourier coefficient. The distance is

dist
(

f, span
(
eint

)n

−n

)
= ‖f − Proj f‖.

Exercise 2 Let be H = ℓ2(N,R) (the real Hilbert space). We denote

C = {x = (xn) ∈ H; ∀n ∈ N, xn ≥ 0}.

1 – Prove that C is a closed convex set.

2 – Determine the projection on this convex C.

3 – Resume the previous question with H = ℓ2(N,C)

Solution

1. Simply apply the definition to show that C is convex.

C is convex if:

∀x, y ∈ C, ∀t ∈ [0, 1] , x + (1 − t)y ∈ c.

Assum x, y ∈ C then we have: ∀n ∈ N : xn ⩾ 0 and yn ⩾ 0

So, txn + (1 − t)yn ⩾ 0. Therfore C is convex.

On the other hand, C is closed: if ( xp ) is a sequence of C that converges to x ∈ H,
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and if xp
n ≥ 0, we clearly have by passing to the limit xn ≥ 0, and therefore x ∈ C.

2. Assum x ∈ ℓ2. Guess the formula for PC(x). The only way out is to make a

−dimensional drawing and try to guess what the formula for PC(x) is. In dimen-

sion 2, C simply corresponds to the top left-hand quarter. There are 4 different cases

to determine the projection of x, depending on its position in either half-plane. This

is how we are led to ask PC(x) = (yn), where yn = xn if xn ≥ 0, and yn = 0 otherwise.

To prove that this is the projection of x on C, it is sufficient to verify that for all z of

C, we have:

< x − y, z − y >≤ 0.

But,

< x − y, z − y >=
∑
n≥0

(xn − yn) (zn − yn) .

Two cases are possible:

- Let us say xn ≥ 0, and in this case xn − yn = 0.

- Lets say xn ≤ 0, but then yn = 0, and therefore (xn − yn) (zn − yn) ≤ 0. In all cases,

we have (xn − yn) (zn − yn) ≤ 0, which proves that

< x − y, z − y >≤ 0

.

3. Slightly adapt for the complex case. It is necessary and sufficient this time that y =

PC(x) checks for all z of C

Re(< x − y, z − y >) = Re

∑
n≥0

(xn − yn) (zn − yn)

 ≤ 0.

In all cases, zn − yn is real, and therefore

Re(< x − y, z − y >) =
∑
n≥0

(zn − yn) (Re (xn) − yn) .
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One is then led to ask yn = Re (xn) if Re (xn) ≥ 0 and yn = 0 otherwise. We get a

negative quantity.

Exercise 3 For all N ∈ N, note by MN the vector subspace of ℓ2(N,C) formed with

sequences (xn)(n∈N) such that
∑N

n=0 xn = 0.

1 - Show that the mapping (xn)n 7→
∑N

k=0 xk is linear continuous from ℓ2(N,C) to C.

What can we deduce about MN ? Conclude that ℓ2(N,C) = MN ⊕ M⊥.
N

2 - Let be E = {(yn)n such that, for all 0 ≤ i ≤ j ≤ N , we have yi = yj and yn = 0 for

n > N}

3 - Show that the orthogonal M⊥.
N of MN contains E.

4 - Show that M⊥.
N = E (note that, for 0 ≤ i ≤ j ≤ N , the sequence (xn)such that

xi = 1, xj = −1 and xn = 0 if n 6= i and n 6= j belongs to MN

Solution

1. Let us note T for this application. We have

|T (x)| ≤
N∑

n=0
|xn| ≤ ‖x‖2

(
N∑

n=0
12
)1/2

≤ N1/2‖x‖2

where the crucial point is the Cauchy-Schwarz inequality. T is therefore continuous,

and MN is a closed subspace of the Hilbert space ℓ2(N, C). We deduce the requested

result.

2. (a) For any x ∈ MN and y ∈ E. We have,

〈x, y〉 =
N∑

k=0
xkyk = y0

N∑
k=0

xk = 0

(b) It is necessary to show the opposite inclusion. Let us therefore take y ∈ M⊥
N , and let

x be the sequence given by the statement, member of MN , with i = 0 and 0 < j ≤ N .
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We have,

〈x, y〉 = y0 − yj = 0,

which proves that yj = y0 for j = 0, . . . , N .

On the other hand, for j > N , we consider the sequence x such that xj = 1 and xk = 0

for k 6= i.

The inner product of y with this sequence gives yj = 0, which proves that y ∈ E.

Exercise 4 Let H be a Hilbert space and P : H −→ H a projector, that is to say a linear

mapping such that P 2 = P .

1. Show that imP = ker(IdH − P ) and that H is the direct algebraic sum of kerP and

imP .

We assume in the following P continuous and not zero.

2. a) Show that ‖P‖ ≥ 1.

b) Show that the adjoint operator P ⋆ is also a projector.

3. We assume in this question that P is self-adjoint.

a) Show that ‖P‖ = 1. b) Show that P is the orthogonal projection on imP . 4)

We assume in this question that ‖P‖ = 1.. a) Expand ‖x − P ⋆x‖2, and deduce that

ker(IdH − P ) ⊂ ker(IdH − P ⋆), then thatker(IdH − P ) = ker(IdH − P ⋆).

b) Show that P is self-adjoint.

Solution

1. Let y ∈ imP ; then, ∃x ∈ H such that y = Px.

So, y − Py = Px − p2x = P (x − Px) = 0 =; Therfore y ∈ ker(IdH − P ).

Conversely, if y ∈ ker(IdH − P ), we have y − Py = 0, therefore y = Py ∈ imP .
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As imP = ker(IdH −P ), we have, if y ∈ imP ∩kerP , we have Py = 0 and y −Py = 0;

therefore y = 0.

On the other hand, all x ∈ H is written x = Px + (x − Px) ∈ imP + kerP (because

P (x − Px) = Px − p2x = 0). i; e, x − Px ∈ kerP So H = imp ⊕ kerP , algebraically.

2. For all A, B ∈ L(H), we have ‖AB‖ ≤ ‖A‖‖B‖; therefore ‖P‖ = ‖P 2‖ ≤ ‖P‖2;

Since P 6= 0 causes‖P‖ > 0, we obtain..‖P‖ ≥ 1.

b) For x ∈ H, we have (p∗2x, y) = (P ∗x, Py) = (x, p2y) = (x, Py) = (P ∗x, y), for all

y ∈ H; so p∗2x = P ∗x then P ∗ is a projector.

3. 3) a) If P is self-adjoint, we have,

for all x ∈ H : 〈Px, x〉 =
〈
P 2x, x

〉
= 〈Px, P ⋆x〉 = 〈Px, Px〉 = ‖Px‖2 .

As, by the Cauchy-Schwarz inequality, we have

‖Px‖2 = 〈Px, x〉 ≤ ‖Px‖‖x‖, we obtain ‖Px‖ ≤ ‖x‖. So ‖P‖ ≤ 1.

As we saw that ‖P‖ ≥ 1, we finally have ‖P‖ = 1.

b)Let us show that kerP and imP are orthogonal. Let x ∈ kerP and y ∈ imP ;

there exists u ∈ H such that y = Pu. Then 〈x, y〉 = 〈x, Pu〉 = 〈P ⋆x, u〉 = 〈Px, u〉 = 0.

4) a) We have ‖x − P ∗x‖2 = ‖x‖2 + ‖P ∗x‖2 − 2Re 〈x, P ∗x〉.

If x ∈ ker(IdH − P ), we have x = Px;

Therefore 〈x, P ∗x〉 = 〈Px, x〉 = 〈x, x〉 = ‖x‖2.

On the other hand,‖P ∗‖ = ‖P‖ = 1;

So, ‖P ∗x‖2 ≤ (‖P ∗‖‖x‖)2 = (‖P‖‖x‖)2 = ‖x‖2,

Consequently, ‖x − P ∗x‖2 ≤ ‖x‖2 + ‖x‖2 − 2‖x‖2 = 0,

then x − P ∗x = 0 and x ∈ ker(IdH − P ∗).

So ker(IdH − P ) ⊂ ker(IdH − P ∗).

We do the same by expanding ‖x−Px‖2 (or, we exchange the roles of P and P ∗, which

is possible because P ∗ is a projector of norm ‖P ∗‖ = 1, and because P ∗∗ = P ), we

obtain reverse inclusion, and therefore equality.
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b) For all x ∈ H, if Px ∈ ker(IdH − P ); then Px ∈ ker(IdH − P ∗).

Tthat is to say that Px − P ∗Px = 0. Therefore P = P ∗P .

Taking the adjoint, this results in P ∗ = (P ∗P )∗ = P ∗P ∗∗ = P ∗P = P .

Remarque: As the orthogonal projection on any closed subspace not reduced to 0 is

of norm 1, we obtain that there is equivalence, for a non-zero projector P of a Hilbert

space, between:

a)‖P‖ = 1; b) P is self-adjoint; c) P is an orthogonal projector.

Non solved exrcises

Exercise 1

Exercise 2

Exercise 3
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Exercises series 7

2.4 Fourier series

Exercise 1 Find the Fourier coefficients of the following functions:

(a)f (t) = t

(b) f (t) = t2

(c) cos at t ∈ R\Z (Z is the set of integers)

(d) f (t) = |t|

Use the Parseval equality to prove that
∑∞

n=1
1

n2 = π2

6

Find
∑∞

n=1
1

n4

Solution (a) Since f(t) = t is odd, we obtain a0 = 0, ak = 0, and for n = 1, 2, . . .

bn = 2√
π

∫ π

0
t sin(nt)dt = 2(−1)n+1√

π

n
.

(b) Here bn = 0 since f(t) = t2 is even, and

a0 = 1√
2π

∫ π

−π
t2dt = π2√

2π

3

an = 2√
π

∫ π

0
t3 cos(nt)dt = (−1)n 4

√
π

n2

(c) bn = 0,

a0 = 2√
2π

∫ π

0
cos(at)dt =

√
2

a
√

π
sin(aπ)

an = 2√
π

∫ π

0
cos(nt) cos(at)dt = 1√

π

[sin(n − a)π
n − a

+ sin(n + a)π
n + a

]

(d) a0 = an = 0,

bn = 2√
π

∫ π

0
sin(nt)dt = 2

nπ
(1 − (−1)n) .
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(e) bn = 0,

a0 = 2√
2π

∫ π

0
tdt = π

√
π√
2

,

an = 2√
π

∫ π

0
t cos(nt)dt = − 2√

n2π
(1 − (−1)n) .

The Parseval equality has the form

‖f‖2 = |a0|2 +
∞∑

n=1

(
|an|2 + |bn|2

)
.

Taking f(t) = t, we obtain

π
∞∑

n=1

4
n2 =

∫ π

−π
t2dt,

which after integration gives

∞∑
n=1

1
n2 = π2

6

Using the Parseval equality for the function f(t) = t2, we obtain

|a0|2 +
∞∑

n=1
|ak|2 =

∫ π

−π
t4dt.

Hence

2π5

9
+

∞∑
n=1

16π

n4 = 2π5

5

and hence
∑∞

n=1 1/n4 = π4/90.

Exercise 2 Let f (x) be a ditferentiable 2π−periodic function in [−π, π] with derivative

f ′ (x) ∈ L2 [−π, π]. Let fn for n ∈ Z be the Fourier coefficients of f (x) in the system{
einx/

√
2π
}

.

Prove that
∑

n∈Z |fn| < ∞.
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Solution For differentiable periodic functions we have

fn = 1√
2π

∫ π

−π
f(x)e−inxdx

= 1√
2π

(
f(x)e−inx

−in

∣∣∣∣∣
π

−π

+ 1
in

∫ π

−π
f ′(x)e−inxdx

)

= 1
in

√
2π

∫ π

−π
f ′(x)e−inxdx

= 1
in

(
f ′)

n .

From the Cauchy-Schwarz and the Bessel inequalities we obtain

N∑
n=−M

n6=0

|fn| =
N∑

n=−M
n 6=0

1
|n|
∣∣(f ′)

n

∣∣

≤

√√√√√√√
N∑

n=−M
n 6=0

1
|n|2

√√√√√√
N∑

n=−M
n 6=0

|(f ′)n|2

≤
∥∥f ′∥∥

L2[−n,n]

√√√√ ∑
n∈Z\(0)

1
|n|2

.

Hence the series converges.

Exercise3 Consider the sequence of functions fn : R → C given by

fn(x) = π−1/2 (x − i)n

(x + i)n+1 .

Prove that the family {f1, f2 . . .} is orthonormal in L2(R), that is,

∫ ∞

−x
fm(x)fn(x)dx =


1, m = n.

0, m 6= n.

Solution We have,
∫∞

−x fm(x)fn(x)dx = 1
π

∫∞
−∞

(x−i)m

(x+i)m+1
(x+i)n

(x−i)n+1 dx = 1
π

∫∞
−x

(x−i)(m−n)−1

(x+i)(m−n)+1 dx.

For m and n we have the following cases: a) m − n ≥ 1. We consider then the function

f : C\{−i} → C given by f(z) = (z − i〉(m−n)−1/(z + i)(m−n)+1 and the domain in the
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complex plane delimited by Ox and the upper half of the circle of center 0 and radius R

(denoted by Γ(R) ). On this domain f is a holomorphic function, and therefore

1
π

∫ R

−R

(x − i)(m−n)−1

(x + i)(m−n)+1 dx +
∫

Γ(R)
f(z)dz = 0

for any R > 0. But lim|z|→∞ |zf(z)| = 0 and therefore limR→∞
∫

Y Y (R) f(z)dz = 0. We

obtain that

∫ ∞

−∞

(x − i)(m−n)−1

(x + i)(m−n)+1 dx = 0

b) m − n ≤ −1. We obtain that

∫ ∞

−∞

(x − i)(m−n)−1

(x + i)(m−n)+1 dx =
∫ ∞

−∞

(x + i)(n−m)−1

(x − i)(n−m)+1 dx =
∫ ∞

−∞

(−t + i)(n−m)−1

(−t − i)(n−m)+1 dt

=
∫ ∞

−∞

(t − i)(n−m)−1

(t + i)(n−m)+1 dt = 0

by (a), since n − m ≥ 1. c) m − n = 0. Then

∫ ∞

−∞
fm(x)fm(x)dx = 1

π

∫ ∞

−∞

1
1 + x2 dx = 1

π
arctan x

∣∣∣∣∞
−∞

= 1

Exercise 4 Example 1.27 Show that the Legendre polynomials are orthogonat in L2([−1, 1]),

and show that even normalived Legendre functions (pn) , n = 0, 2, 4, . . . is an orthonormal ba-

sis for the closed subspace of even functions in L2([−1, 1]). By the way, why is this subspace

closed?

Solution We note that

Pm(t) = 1
2mm!

dm

dtm

((
t2 − 1

)m)

is a polynomial of degree m,
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Pm(t) = a0 + a1t + · · · + amtm

Then clearly the Legendre polynomials are orthogonal, if we can prove that

∫ 1

−1
tkPn(t)dt = 0, for k = 0, 1, . . . , m and m < n

We get by partial integration for k ≤ m < n,

∫ 1

−1
tkPn(t)dt = 1

2nn!

∫ 1

−1
tk dn

dtn

((
t2 − 1

))
dt

=
[

1
2nn

tk dn−1

dtn−1

((
t2 − 1

)2
)]1

−1
− k

2nn!

∫ 1

−1
tk−1 dn−1

dtn−1

((
t2 − 1

)n)
dt

= · · · = (−1)k k!
2nn!

∫ 1

−1
1 · dn−k

dtn−k

((
t2 − 1

)n)
dt

= (−1)k · k!
2nn!

[
dn−k−1

dtn−k−1

((
t2 − 1

)n)]1

−1
= 0

In fact, from k < n, follows that n − k − 1 ≥ 0, so

dn−k−1

dtn−k−1

((
t2 − 1

)n)

is a polynomial, which at least contains the factor t2 − 1, hence the boundary values are

0 . Combining this result with Example 1.26 we obtain that the Legendre polynomials form

an orthogonal system.

Denote by U ⊆ L2([−1, 1]) the closed subspace of all even functions. We have proved

above that
√

2n+1
2 Pn(t) is an orthonormal sequence, and since we get thern from 1, t, t2, . . . by

Gram-Schmidt’s orthogonalizing method, they form an orthonormal basis for all of L2([−1, 1]).

Every function from L2([−1, 1]) can uniquely be written as a sum of an even and an odd

function. Thus the next claim will be solved if we can prove that Pn(t) is an even function,

when n is even, and an odd function for n odd.
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Non solved exrcises

Exercise 1 Using the following identities and by integration:

2 cos nx cos mx = cos(n + m)x + cos(n − m)x

2 sin nx sin mx = cos(n − m)x − cos(n + m)x

2 cos nx sin mx = sin(n + m)x − sin(n − m)x

Show that the sequence of functions

1√
2π

,
cos x√

π
,
sin x√

π
,
cos 2x√

π
,
sin 2x√

π
, . . .

is a complete orthonormal system in L2([−π, π]).

Exercise 2 Find the Fourier series corresponding to the function

f(x) = x2, 0 < x < 2π

, where f(x) has period 2π outside of the interval (0, 2π).

Exercise 3

1. Find the Fourier coefficients corresponding to the function

f(x) =


0 −5 < x < 0

3 0 < x < 5
Period = 10

2. Write the corresponding Fourier series.

3. How should f(x) be defined at x = −5, x = 0 and x = 5 in order that the Fourier series

will converge to f(x) for −5 ≦ x ≦ 5 ?
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