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Foreword

This handout is intended for students in the first year of the Bachelor’s degree in

Mathematics. It is composed of five chapters. The first chapter contains the body

of real and complex numbers, while the second chapter is devoted to numerical

sequences. The third chapter gives the functions of a real variable with a real value.

The fourth chapter contains the real derivable functions. The last chapter is devoted

to the study of elementary functions (cosine, sine, arc cosine, ...).
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Chapter 1

Exercises in: The Field of Real

and Complex Numbers

Exercise 1

Let A and B be two non-empty and bounded sets. We define:

−A = {−x | x ∈ A}, A+B = {x = a+ b | a ∈ A, b ∈ B} and

A−B = {x = a− b | a ∈ A, b ∈ B}

1. Show that: sup(−A) = − inf(A) and inf(−A) = − sup(A).

2. Show that if for all a ∈ A and b ∈ B we have a ≤ b, then sup(A) ≤ inf(B).

3. Show that A ∪B is a bounded subset of R and:

• sup(A ∪B) = max(sup(A), sup(B)).

• inf(A ∪B) = min(inf(A), inf(B)). (*)

4. Show that sup(A) + sup(B) is an upper bound of A+B and:

• sup(A+B) = sup(A) + sup(B).

• inf(A+B) = inf(A) + inf(B).

Exercise 2

1. Show that if r ∈ Q and x /∈ Q then r + x /∈ Q and if r 6= 0 then r.x /∈ Q.
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2. Show that
√

2 /∈ Q.

3. Show that
ln3

ln2
is irrational.

4. Let a and b be two positive rationals such that
√
a and

√
b are irrational. show

that
√
a+
√
b is irrational. (*)

Exercise 3

Let A and B be two subsets of R such that B ⊂ A. Show that:

1. A is bounded =⇒ B is bounded .

2. inf(A) ≤ inf(B), and sup(A) ≥ sup(B).

Exercise 4

Let A = {an ∈ R | an =
n+ 3
n

4
+ 1

; n ∈ N} and B = {bn ∈ R | bn = 1
n2 +

2

n
+ 4; n ∈

N∗} .

1. Show that A and B are bounded in R and that sup(A) = inf(B).

2. Determine sup(A) and inf(B).

Exercise 5

Determine the supremum (the upper bound) and infimum (the lower bound), if

they exist of the following sets:

A = {ax+ b | x ∈ [−2, 1] and a, b ∈ R}, B = {2− 1

n
; n ∈ N};

C = {sin 2nΠ
7

; n ∈ Z}. (*)



6

Exercise 6

1. Write the following numbers in the form a+ ib,(a, b ∈ R):

z1 =
5 + 2i

1− 2i
, z2 = − 2

1− i
√

3
, z3 =

2 + 5i

1− i
+

2− 5i

1 + i
(*)

2. Let the complex number z = 5 + 12i.

(a) Verify that |z| = 13.

(b) Determine the square roots of z.

(c) Deduce the complex solutions of the equation (1 + i)z2 + z − 2− i = 0.

Exercise 7

Using complex numbers, calculate cos(5θ) and sin(5θ) in terms of cos(θ) and

sin(θ).

Exercise 8

1. Calculate the modulus and the argument of u =

√
6− i

√
2

2
and v = 1− i.

2. Deduce the modulus and the argement of
u

v
.

Exercise 9

(Supplementary)

1. Let z be an nth root of -1, so zn = −1 with n > 2 and z 6= −1.

2. calculate Sn =
∑n−1

k=0 z
2k = 1 + z2 + z4 + .....+ z2(n−1).
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Remark 1.0.1. Exercises marked with (*) are left to students.
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Chapter 2

Solutions to exercises in: The

Field of Real and Complex

Numbers

Solution 1

1. a) Let’s show that: sup(−A) = − inf(A) and inf(−A) = − sup(A).

we have: ∀x ∈ A, x ≥ inf(A) =⇒ −x ≤ − inf(A). So ”− inf(A)” is an upper

bound of −A, and since sup(−A) is the smallest upper bound of −A then:

sup(−A) ≤ − inf(A) · · · (1).

On the other hand: ∀ − x ∈ −A, −x ≤ sup(−A) =⇒ x > − sup(−A), so

− sup(−A) is a lower bound of A, and since inf(A) is the greatest lower bound

of A then inf(A) ≥ − sup(−A), therefore: − inf(A) ≤ sup(−A) · · · (2) .

From (1) and (2) we get: sup(−A) = − inf(A).

b) inf(−A) = − sup(A) :

I We have: ∀x ∈ A, x ≤ sup(A) =⇒ −x ≥ − sup(A), so − sup(A) is a

lower bound of −A, since inf(−A) is the greatest lower bound of -A then

− sup(A) ≤ inf(−A) · · · (1).

On the other hand: ∀ − x ∈ −A, −x ≥ inf(−A) =⇒ x ≤ − inf(−A), so

− inf(−A) ≥ sup(A) =⇒ inf(−A) ≤ − sup(A) · · · (2).
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From (1) and (2) we get: − sup(A) = inf(−A).

2. We show that sup(A) ≤ inf(A).

We have ∀a ∈ A, b ∈ B : a ≤ b =⇒ a ≤ inf(B), so inf(B) is an upper bound

of A, but sup(A) is the smallest upper bound of A then: sup(A) ≤ inf(B).

3. We show that A ∪ B is a bounded subset of R: let x ∈ A ∪ B, then: x ∈ A

or x ∈ B, therefore inf(A) ≤ x ≤ sup(A) and inf(B) ≤ x ≤ sup(B), So

min (inf(A), inf(B)) ≤ x ≤ max (sup(A), sup(B)).

a) We have:


sup(A ∪B) ≤ max(sup(A), sup(B)) · · · · · · (1)

inf(A ∪B) ≥ min(inf(A), inf(B)) · · · · · · (2)

On the other hand we have: A ⊂ A ∪B and B ⊂ A ∪B, so

sup(A) ≤ sup(A ∪B)

sup(B) ≤ sup(A ∪B)

then: max(sup(A), sup(B)) ≤ sup(A ∪ B) · · · · · · (1∗), so from (1) and (1∗)

we get: sup(A ∪ B) = max(sup(A), sup(B)). In the same way we show that

inf(A ∪B) = min(inf(A), inf(B)).

4. We show that sup(A+B) = sup(A)+sup(B): we have ∀x ∈ A : inf(A) ≤ x ≤

sup(A), and ∀y ∈ B : inf(B) ≤ y ≤ sup(B), thus: inf(A) + inf(B) ≤ x+ y ≤

sup(A)+sup(B), so inf(A)+inf(B) is a lower bound of A+B, but inf(A+B) is

the greatest lower bound of A+B, then: inf(A+B) ≥ inf(A) + inf(B) · · · (1).

and also sup(A+B) ≤ sup(A) + sup(B) · · · (2).

On the other hand: ∀x ∈ A : x ≤ sup(A+B)− y, then sup(A+B)− y is an

apper bound of A



10

=⇒ sup(A) ≤ sup(A+B)− y, ∀y ∈ B,

=⇒ y ≤ sup(A+B)− sup(A), ∀y ∈ B,

=⇒ sup(B) ≤ sup(A+B)− sup(A),

=⇒ sup(A) + sup(B) ≤ sup(A+B) · · · (1∗).

From (1) and (1∗) we get: sup(A+B) = sup(A) + sup(B). The same to show

that inf(A+B) = inf(A) + inf(B).

Solution 2

1. a) We show that if r ∈ Q, and x /∈ Q, then r + x /∈ Q. we suppose that

x+ r ∈ Q, we have: r ∈ Q so ∃ p, q ∈ Z such that r =
p

q
, q 6= 0.

And x+ r ∈ Q =⇒ ∃ p′, q′ ∈ Z such that: x+ r =
p′

q′
, q′ 6= 0.

So: x =
p′

q′
− p

q
=

p′q − pq′

q′q
, q′q 6= 0 =⇒ x ∈ Q. This is a contradiction

because x /∈ Q, then x+ r /∈ Q.

b) We show that if x /∈ Q and r ∈ Q then x.r /∈ Q:

We have r ∈ Q =⇒ r =
p

q
, q 6= 0, and p 6= 0 (r 6= 0). We assume that

x.r ∈ Q, then x.r =
p′

q′
, q′ 6= 0 =⇒ x =

p′

q′
.
q

p
=
p′q

q′p
, q′p 6= 0, thus x ∈ Q.

Contradiction, then x.r /∈ Q.

2. We show that
√

2 /∈ Q. Suppose that
√

2 ∈ Q =⇒ ∃ p. q ∈ Z such that

√
2 =

p

q
, q 6= 0.

suppose that p and q are prime, then
√

2 =
p

q
=⇒ q

√
2 = p =⇒ 2q2 = p2,

therefore p2 is even =⇒ p is even, then p = 2p′, p′ ∈ Z.

So 2q2 = (2p′)2 = 4p′2 =⇒ q2 = 2p′2, therefore q2 is even =⇒ q is even.

Contradiction, then
√

2 /∈ Q.
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3. We show that
ln 3

ln 2
is irrational. Assume that

ln 3

ln 2
∈ Q =⇒ ∃ p, q ∈ Z, q 6= 0

such that
ln 3

ln 2
=
p

q
=⇒ q ln 3 = p ln 2 =⇒ eq ln 3 = ep ln 2 =⇒ 3q = 2p.

• If p = 0, then 3q = 20 = 1 =⇒ q = 0 (contradiction because q 6= 0).

• If p > 0, then 3q is odd and 2p is even. (contradiction), then
ln 3

ln 2
/∈ Q.

Solution 3

1. We show that if A is bounded then B is bounded. A is bounded⇐⇒ ∃m, M ∈

R, ∀x ∈ A : m ≤ x ≤M .

We have B ⊂ A⇐⇒ ∀x ∈ B, x ∈ A, and A is bounded so m ≤ x ≤ M , then

B is bounded.

2. a) Show that inf(A) ≤ inf(B). We have B ⊂ A =⇒ ∀x ∈ B : x ≥ inf(A),

therefore inf(A) is an upper bound of B, then inf(A) ≤ inf(B) because inf(B)

is the greatest upper bound of B.

b) Show that sup(A) ≥ sup(B). We have B ⊂ A, then ∀x ∈ B : inf(A) ≤

x ≤ sup(A), therefore sup(A) is an upper bound of B, and since sup(B) is the

smallest upper bound of B then sup(B) ≤ sup(A).

Solution 4

1. A =

an ∈ R | an =
n+ 3
n

4
+ 1

, n ∈ N

. We show thatA is bounded, i.e: ∃m, M ∈

R| ∀an ∈ A : m ≤ an ≤M . We have: ∀n ∈ N
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n+ 3
n

4
+ 1

= 4

(
n+ 3

n+ 4

)

= 4

(
n+ 4− 1

n+ 4

)
= 4

(
1− 1

n+ 4

)
= 4− 4

n+ 4

.

∀n ≥ 0, n + 4 ≥ 4 =⇒ 1

n+ 4
≤ 1

4
, therfore − 4

n+ 4
≥ −1 =⇒ 4 − 4

n+ 4
≥

3 =⇒ an ≥ 3 · · · · · · (1).

∀n ≥ 0 : n+ 4 ≥ 4 > 0 =⇒ 1

n+ 4
> 0, so − 4

n+ 4
< 0 =⇒ 4− 4

n+ 4
< 4 =⇒

an < 4 · · · · · · (2).

Then from (1) and (2), we get 3 ≤ an ≤ 4. So inf(A) = 3, and since 3 ∈ A,

then: inf(A) = min(A) = 3, (a0 = 3 ∈ A), and sup(A) = 4.

Now let’s show that sup(A) = 4.

sup(A) = 4⇐⇒


∀ an ∈ A : an < 4,

∀ε > 0, ∃ nε ∈ N : an > 4− ε.

We have: an < 4, ∀an ∈ A verify: ∀ ε > 0, an > 4 − ε =⇒ 4 − 4

n+ 4
>

4− ε =⇒ 4

n+ 4
< ε, therfore:

n+ 4

4
>

1

ε
=⇒ n+ 4 >

4

ε
=⇒ n >

4

ε
− 4. Just

take nε =

[
4

ε
− 4

]
+ 1, then sup(A) = 4.

2. B =

{
bn ∈ R | bn =

1

n2
+

2

n
+ 4

}
. We show that B is bounded, for all n ≥

1 =⇒ 2

n
≤ 2, and

1

n2
≤ 1, therfore

2

n
+

1

n2
≤ 3 =⇒ 2

n
+

1

n2
+ 4 ≤ 7, then

bn ≤ 7 · · · · · · (1).

On the other hand:
2

n
> 0, and

1

n2
> 0, then

2

n
+

1

n2
> 0 =⇒ 2

n
+

1

n2
+ 4 > 4,

so bn > 4 · · · · · · (2).

From (1), and (2), we get: ∀n ∈ N, 4 < bn ≤ 7, then B is bounded in R,

such that sup(B) = max(B) = 7, and inf(B) = 4. Now we must to prove that

inf(B) = 4.
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inf(B) = 4⇐⇒


∀ bn ∈ B, bn > 4,

∀ ε > 0, ∃ nε ∈ N∗ : bn < 4 + ε.

We have bn < 4 + ε =⇒ 1

n2
+

2

n
+ 4 < 4 + ε =⇒ 1

n2
+

2

n
< ε, also: n2 ≥ n =⇒

1

n2
≤ 1

n
, and

1

n2
+

2

n
≤ 3

n
.

We are only looking for a nε such that
3

n
< ε, i.e, n >

3

ε
, therfore we just take

nε =

[
3

ε

]
+ 1, then inf(B) = 4 = sup(A).

Solution 5

1. A = {ax+ b | x ∈ [−2, 1], a, b ∈ R}. Assume that:

f : R −→ R

x −→ f(x) = ax+ b

• If a = 0 =⇒ f(x) = b, then f is constant, and A = {b} is bounded such

that sup(A) = inf(A) = b.

• If a > 0 =⇒ f(x) is increasing, so for all −2 ≤ x ≤ 1, we have:

f(−2) ≤ f(x) ≤ f(1) =⇒ −2a + b ≤ f(x) ≤ a + b, then ∀x ∈ [−2, 1],

A is bounded such that: inf(A) = min(A) = −2a + b, and sup(A) =

max(A) = a+ b.

• If a < 0 =⇒ f(x) is decreasing, then A is bounded and inf(A) = a + b,

sup(A) = −2a+ b.

2. B =

{
2− 1

n
, n ∈ N∗

}
. For n = 1 =⇒ B = 1, and for n −→ ∞ =⇒ B = 2,

so B = [1, 2[. The set of upper bounds of B is [2,+∞[ therefore sup(B) = 2,

and the set of lower bounds of B is ]−∞, 1], therfore inf(B) = 1, since 1 ∈ B,

then inf(B) = min(B) = 1, and max(B) does not exist because 2 /∈ B.
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Solution 6

1. z1 =
5 + 2i

1− 2i
=

(5 + 2i)(1 + 2i)

(1− 2i)(1 + 2i)
=

1 + 12i

5
=

1

5
+

12

5
i.

z2 =
−2

1− i
√

3
=
−2(1 + i

√
3)

12 + (−
√

3)2
=
−2(1 + i

√
3)

4
=
−1

2
− i
√

3

2
.

2. We have z = 5 + 12i.

(a) |z| = |5 + 12i| =
√

25 + 144 =
√

169 = 13.

(b) Let w ∈ C such that w = a+ ib,

w2 = z ⇐⇒ a2 − b2 + 2abi = 5 + 12i⇐⇒


a2 − b2 = 5, · · ·L1

2ab = 12, · · ·L2

We add the equality of the modules

a2 + b2 =
√

52 + 122 =
√

169 = 13, · · ·L1

L1 + L2 ⇐⇒ 2a2 = 18, then a2 = 9⇐⇒ a = ±3, and

L1 − L2 ⇐⇒ 2b2 = 8, then a2 = 4⇐⇒ a = ±2. According to L2: a and

b have the same sign, hence the square roots of z are

• z1 = 3 + 2i

• z2 = −3− 2i

(c) We calculate the discriminant of the equation ∆ = 5 + 12i = z, and we

deduce from the previous question that the equation admits two distinct

complex solutions

w1 =
−1 + 3 + 2i

2(1 + i)
= 1

w2 =
−1− 3− 2i

2(1 + i)
=
−2− i
1 + i

=
(−2− i)(1− i)
(1 + i)(1− i)

=
−3

2
+
i

2
.
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Solution 7

Calculate cos 5θ, and sin 5θ. We have by the Moivre’s formula:

cos 5θ + i sin 5θ = ei5θ = (eiθ)5 = (cos θ + i sin θ)5.

Using Newton’s binomial formula:

(cos θ + i sin θ)5 =

cos5 θ + 5i cos4 θ sin θ − 10 cos3 θ sin2 θ − 10i cos2 θ sin3 θ + 5 cos θ sin4 θ + i sin5 θ

So: cos 5θ = cos5 θ − 10 cos3 θ sin2 θ + 5 cos θ sin4 θ,

and sin 5θ = 5 cos4 θ sin θ − 10 cos2 θ sin3 θ + sin5 θ.

Solution 8

1. a) |u| =

∣∣∣∣∣
√

6− i
√

2

2

∣∣∣∣∣ =

√
6 + 2

2
=

√
8

2
=

2
√

2

2
=
√

2.

u =

√
6− i

√
2

2
=
√

2

(√
2×
√

3− i
√

2

2
√

2

)
=
√

2

(√
3− i
2

)
=
√

2 e
−i
π

6 .

Then |u| =
√

2, and arg(u) = −π
6

.

b) |v| =
√

12 + (−1)2 =
√

2.

v =
√

2

(√
2

2
− i
√

2

2

)
=
√

2 e
−i
π

4 .

Then |v| =
√

2, and arg(v) = −π
4

.

2.
u

v
=

√
2 e
−i
π

6

√
2 e
−i
π

4

= e
i(−
π

6
+
π

4
)

= e
i
π

12 .

Then:
∣∣∣u
v

∣∣∣ = 1, and arg(
u

v
=

π

12
).
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Chapter 3

Exercises in: The Numerical

Sequences

Exercise 1

Show by induction that:

1. 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

2. 12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

Exercise 2

Determine, by justifying your answers, if the following sequences are convergent:

1. Un =
cosn− 2

n4
, ∀n ∈ N∗.

2. Vn =
3n+ 5(−1)n

2n+ 1
, ∀n ∈ N.

3. Wn = (−1)n(
n+ 1

n
), ∀n ∈ N∗.

4. Zn =
√

2n+ 1−
√

2n− 1, ∀n ∈ N∗.(*)

Exercise 3

Let (un)n∈N be the sequence of real numbers defined by u0 ∈ ]0.1], and by the

recurrence relation
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un+1 =
un
2

+
(un)2

4

1. Show that: ∀n ∈ N, un > 0.

2. Show that: ∀n ∈ N, un ≤ 1.

3. Show that the sequence is monotonic. Deduce that the sequence is convergent.

4. Determine the limit of the sequence (un)n∈N.

Exercise 4

Prove that the following two sequences are adjacent

∀n ∈ N, un =
n∑
k=1

1

k2
, vn = un +

1

n
.

Exercise 5

1. Let un =
E(
√
n)

n
, for all n ∈ N∗, show that

limn→+∞ un = 0.

2. Let vn =
E(
√
n)2

n
, for all n ∈ N∗, show that the sequence (vn)n∈N∗ converges

and determine its limit. (*)

Exercise 6

Calculate the following limits, if they exist, of the following sequences:

1. un =
1

2.3
+

1

3.4
+ · · ·+ 1

(n+ 1)(n+ 2)
.
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2. vn =
1

n2
+

2

n2
+ · · ·+ n− 1

n2
.

3. wn =
ln(n+ 1)

lnn
.

4. zn =
√
n2 + n+ 1−

√
n2 − n+ 1. (*)

Exercise 7

We consider the sequence (un)n≥1 given by: un = 1 +
1

22
+

1

32
+ · · ·+ 1

n2
.

1. Show that
1

n2
≤ 1

n− 1
− 1

n
.

2. Show that the sequence (un)n≥1 is bounded above by 2.

3. Show that the sequence (un)n≥1 is increasing.

4. Deduce that (un)n≥1 is converges.

Exercise 8

We consider the sequence (un)n∈N defined by u0 = 0 and by the recurrence

relation

un+1 =
1

6
u2
n +

3

2

1. Show that for all n ∈ N∗, un > 0.

2. Calculate the limit of the sequence (un)n∈N.

3. Show that for all n ∈ N, un < 3.

4. Show that the sequence is increasing, what can we conclude from this?
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Exercise 9

(Supplementary)

We consider the sequence (un)n∈N∗ defined by

un =
1

3 + |sin(1)|
√

1
+

1

3 + |sin(2)|
√

2
+ · · ·+ 1

3 |sin(n)|
√
n

Show that limn→+∞ un = +∞.
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Chapter 4

Solutions ti exercises in: The

Numerical Sequences

Solution 1

1. 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
· · · · · ·P (n)

For n = 1 =⇒ 1 =
1.(1 + 1)

2
is true.

For n ≥ 2 : assume that P (n) is true, and show that P (n + 1) is true, this

means showing that if 1+2+3+· · ·+n =
n(n+ 1)

2
then 1+2+3+· · ·+(n+1) =

(n+ 1)(n+ 2)

2
.

We have: 1+2+3+· · ·+n+n+1 =
n(n+ 1)

2
+(n+1) =

n(n+ 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)

2
.

Then P (n) is true, therfore 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2
.

2. 12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

For n = 1 =⇒ 1 =
1.(2)(3)

6
is true.

For n ≥ 2 : assume that 12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
, and show

that 12 + 22 + 32 + · · ·+ (n+ 1)2 =
(n+ 1)(n+ 2)(2n+ 3)

6
.

We have:
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12 + 22 + · · ·+ n2 + (n+ 1)2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
n(n+ 1)(2n+ 1) + 6(n+ 1)2

6

=
(n+ 1)[2n2 + n+ 6n+ 6]

6

=
(n+ 1)[2n2 + 7n+ 6]

6

=
(n+ 1)(n+ 2)(2n+ 3)

6
.

Then: 12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
.

Solution 2

1. Un =
cosn− 2

n4
, ∀n ∈ N∗.

For all n ∈ N∗:

−1 ≤ cosn ≤ 1

−3 ≤ cosn− 2 ≤ −1

−3

n4
≤ cosn− 2

n4
≤ −1

n4

Since lim
n→∞

−3

n4
= lim

n→∞

−1

n4
= 0, then lim

n→∞
Un = 0.

2. Vn =
3n+ 5(−1)n

2n+ 1
, ∀n ∈ N.

For all n ∈ N, we have

3n+ 5(−1)n

2n+ 1
=

3n

2n+ 1
+

5(−1)n

2n+ 1
=

3

2(1 +
1

n
)

+
5(−1)n

2n+ 1
.

On the one hand since lim
n→∞

1 +
1

n
= 1, then lim

n→∞

3

2(1 +
1

n
)

=
3

2
. On the

other hand since (−1)n is bounded, and lim
n→∞

5

2n+ 1
= 0. We deduce that

lim
n→∞

5(−1)n

2n+ 1
= 0. So lim

n→∞
Vn =

3

2
.
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3. Wn = (−1)n(
n+ 1

n
), ∀n ∈ N∗.

We have: Wn = (−1)n(
n+ 1

n
) = (−1)n +

(−1)n

n
, since (−1)n is bounded and

lim
n→∞

1

n
= 0, then lim

n→∞

(−1)n

n
= 0. Also (−1)n does not admit a limits, therfore

we consider the subsequences of even and odd ranks respectively (W2n)n∈N∗ ,

and (W2n+1)n∈N∗ , so for all n ∈ N∗ we have:

W2n = (−1)2n +
(−1)2n

2n
= 1 +

1

2n
−→
n→∞

1

W2n+1 = (−1)2n+1 +
(−1)2n+1

2n+ 1
= −1− 1

2n+ 1
−→
n→∞

−1.

So the sequence (Wn)n∈N∗ admits two subsequences that converge to different

limits, and therefore it is not convergent.

Solution 3


u0 ∈ ]0, 1],

un+1 =
un
2

+
(un)2

4
.

1. We show that: ∀n ∈ N, un > 0. (reasoning by induction)

For n = 0, we have u0 ∈ ]0, 1], then un > 0.

For n ≥ 1, we assume that un > 0 and we show that un+1 > 0. We have

un > 0, so:
un
2
> 0, and

(un)2

4
> 0, therfore: un+1 =

un
2

+
(un)2

4
> 0. Then

∀n ∈ N, un > 0.

2. We show that: ∀n ∈ N, un ≤ 1:

For n = 0, we have u0 ∈ ]0, 1], then un ≤ 1.

For n ≥ 1, we assume that un ≤ 1 and we show that un+1 ≤ 1.

We have 0 < un ≤ 1, then

un+1 =
un
2

+
(un)2

4
≤ 1

2
+

1

4
=

3

2
≤ 1.
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So ∀n ∈ N, un ≤ 1.

3. We calculate:

un+1 − un =
un
2

+
(un)2

4
− un = −un

2
+

(un)2

4
=
un
4

(−2 + un).

Since 0 < un ≤ 1, we get −2 + un < 0, then un+1 − un < 0. It shows that the

sequence is strictly decreasing.

4. The sequence is strictly decreasing and bounded below by 0, so it converges

to a limit noted l and verified

l =
l

2
+
l2

4
⇐⇒ 0 = − l

2
+
l2

4

⇐⇒ −2l + l2 = 0

⇐⇒ l(−2 + l) = 0

so l = 0 or l = 2. Therefore l = 0.

Solution 4

∀n ∈ N∗, we have: un =
n∑
k=1

1

k2
, and vn = un +

1

n
, we show that (un)n∈N∗ , and

(vn)n∈N∗ are adjacent:

1.
un+1 − un =

n+1∑
k=1

1

k2
−

n∑
k=1

1

k2

=
1

(n+ 1)2
> 0

therfore (un)n∈N∗ is increasing.

2.

vn+1 − vn = un+1 +
1

n+ 1
− un −

1

n

=
1

(n+ 1)2
+

1

n+ 1
− 1

n

=
n+ n(n+ 1)− (n+ 1)2

n(n+ 1)2

=
−1

n(n+ 1)2
< 0

therfore (vn)n∈N∗ is decreasing.
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3. lim
n→∞

un − vn = lim
n→∞

un − un −
1

n
= lim

n→∞

−1

n
= 0.

So (un)n∈N∗ , and (vn)n∈N∗ are adjacent.

Solution 5

∀n ∈ N∗ we have: un =
E(
√
n)

n
, we show that lim

n→∞
un = 0.

Assume that P = E(
√
n), then ∀n ∈ N∗ we have:

P ≤
√
n < P + 1 =⇒ P 2 ≤ n < (P + 1)2,

therfore:
1

(P + 1)2
<

1

n
≤ 1

P 2
· · · · · · (∗).

We multiply (∗) by P = E(
√
n) > 0 (because n ≥ 1), we get:

P

(P + 1)2
<
P

n
≤ P

P 2
=⇒ E(

√
n)

(E(
√
n) + 1)2

<
E(
√
n)

n
≤ 1

E(
√
n)

.

When n −→ +∞, E(
√
n) −→ +∞, then lim

n→∞

E(
√
n)

n
= 0.

Solution 6

1. un =
1

2.3
+

1

3.4
+ · · ·+ 1

(n+ 1)(n+ 2)
.

lim
n→+∞

un = lim
n→+∞

[(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ · · ·+

(
1

n+ 1
− 1

n+ 2

)]
= lim

n→+∞

(
1

2
− 1

n+ 2

)
=

1

2
.

2. vn =
1

n2
+

2

n2
+ · · ·+ n− 1

n2
.

lim
n→+∞

vn = lim
n→+∞

1

n2
(1 + 2 + · · ·+ n− 1)

= lim
n→+∞

1

n2

n(n− 1)

2

=
1

2
.
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3. wn =
ln(n+ 1)

lnn
.

lim
n→+∞

wn = lim
n→+∞

ln

[
n(1 +

1

n
)

]
ln n

= lim
n→+∞

ln n+ ln (1 +
1

n
)

n

= lim
n→+∞

1 +
ln(1 +

1

n
)

ln n
= 1.

Solution 7

∀n ∈ N∗ : un = 1 +
1

22
+

1

32
+ · · ·+ 1

n2
.

1. We show that
1

n2
≤ 1

n− 1
− 1

n
=

1

n(n− 1)
:

we have: ∀n ∈ N∗ : n ≥ n− 1 =⇒ n2 ≥ n(n− 1), so

1

n2
≤ 1

n(n− 1)
=

1

n− 1
− 1

n
.

2. We show that (un)n≥1 is bounded above by 2:

we have:
1

n2
≤ 1

n− 1
− 1

n
, then

1

22
≤ 1− 1

2
,

1

32
≤ 1

2
− 1

3
, · · · , 1

n2
≤ 1

n− 1
− 1

n

therefore:

1 +
1

22
+

1

32
+ · · ·+ 1

n2
≤ 1 + 1− 1

2
+

1

2
− 1

3
+ · · ·+ 1

n− 1
− 1

n

un ≤ 2− 1

n
< 2

.

So (un)n≥1 is bounded above by 2.

3. We show that (un)n≥1 is increasing:

un+1 − un = 1 +
1

22
+ · · ·+ 1

(n+ 1)2
− 1− 1

22
− · · · − 1

n2

=
1

(n+ 1)2
> 0.
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Then (un)n≥1 is increasing.

4. (un)n≥1 is increasing and bounded above by 2, so (un)n≥1 is convergent.

Solution 8


u0 = 0

un+1 =
1

6
u2
n +

3

2

1. We show that ∀n ∈ N∗, un > 0.

• For n = 1 =⇒ u1 =
1

6
u2

0 +
3

2
=

3

2
> 0.

• For n ≥ 2 =⇒, we assume that un > 0 and we prove that un+1 > 0.

We have un > 0, then
1

6
u2
n > 0, therefore:

1

6
u2
n +

3

2
>

3

2
> 0, so

un+1 > 0 =⇒ ∀n ∈ N∗, un > 0.

2. If the sequence un admits a limit l then:

l =
1

6
l2 +

3

2
⇐⇒ l2 − 6l + 9 = 0

⇐⇒ (l − 3)2 = 0

⇐⇒ l = 3.

3. We show that ∀n ∈ N, un < 3: (reasoning by induction)

• For n = 0, we have u0 = 0 < 3.

• For n ≥ 1, we assume that un < 3, and we prove that un+1 < 3. We have

un < 3 =⇒ u2
n < 9

=⇒ 1

6
u2
n +

3

2
< 3.

So ∀n ∈ N, un < 3.
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4. un+1 − un =
1

6
(un − 3)2 > 0, the sequence (un)n∈N is strictly increasing, and

since it is bounded by 3, it therefore converges to a limit l, such that

l =
1

6
l2 +

3

2
=⇒ l = 3.
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Chapter 5

Exercises in: The Real-Valued

Functions of a Real Variable

Exercise 1

Determine the definition domains of the following functions:

1. f(x) =

√
x+ 1

x− 1
.

2. g(x) =
√
x2 + x− 2.

3. h(x) = ln

(
2 + x

2− x

)
4. k(x) =

sinx− cosx

x− π
.

5. p(x) = (1 + x)
1
x .

6. φ(x) =


sinx. cosx

x− π
if x 6= π

1 Otherwise

Exercise 2

Let the function f be defined on ]− 1, 1[ by: f(x) =
x

1 + |x|
.

Show that f is strictly increasing.
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Exercise 3

Calculate the following limits:

1. lim
x→+∞

ex−sinx.

2. lim
x→0

(tanx)2

cos(2x)− 1
.

3. lim
x→0+

x

b

[
c
x

]
.

4. lim
x→0

ln(1 + x2)

sin2 x
.

5. lim
x→0

√
1 + x−

√
1− x

x
.

6. lim
x→+∞

x lnx+ 5

x2 + 4
.

Exercise 4

Determine the values a and b so that the functions f , and g are continuous on R

f(x) =



sin(ax)

x
, x < 0

1, x = 0

2bex − x, x < 0

, g(x) =



√
x− 1

x
, x ≥ 4

(x+ a)2, x < 4

Exercise 5

Are the following functions continuous at the point x0 = 0?

f(x) =


x+

√
x2

x
: x 6= 0

0 : x = 0

, g(x) =


1 + x cos(

1

x
) : x 6= 0

0 : x = 0

.
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Exercise 6

1. Show that the following functions are continuous over their defined domains:

f(x) =
x3 + 2x+ 3

x3 + 1
, g(x) =

(1 + x)n − 1

x
.

2. Study the existence of extension by continuity over R.

Exercise 7

1. Show that any periodic and non-constant function does not admit a limit in

+∞.

2. Let f : [0,+∞[ −→ R be a function such that f(0) > 0. We assume that

lim
x→+∞

f(x)

x
= a < 1.

Show that there exists x0 ∈ [0,+∞[ such that f(x0) = x0.
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Chapter 6

Solutions to exercises in:

Real-Valued Functions of a Real

Variable

Solution 1

1. f(x) =

√
x+ 1

x− 1
.

Df =

{
x ∈ R| x+ 1

x− 1
≥ 0, and x− 1 6= 0

}
x+ 1

x− 1
≥ 0 =⇒ x ∈ ]−∞,−1] ∪ [1,+∞[, and x − 1 6= 0 =⇒ x 6= 1, so

Df = ]−∞,−1] ∪ ]1,+∞[.

2. g(x) =
√
x2 + x− 2.

Dg = {x ∈ R| x2 + x− 2 ≥ 0} = ]−∞,−2] ∪ [1,+∞[.

3. h(x) = ln

(
2 + x

2− x

)
.

Dh =

{
x ∈ R| 2 + x

2− x
> 0, and 2− x 6= 0

}
, so Dh = ]−2, 2[.

4. k(x) =
sinx− cosx

x− π
.

Dk = {x ∈ R| x 6= π} = ]−∞, π[ ∪ ]π,+∞[.

5. p(x) = (1 + x)
1
x = e

1
x

ln(1+x).

Dp = {x ∈ R| x 6= 0, and 1 + x > 0} = ]−1, 0[ ∪ ]0,+∞[.
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6. φ(x) =


sinx. cosx

x− π
if x 6= π

1 Otherwise

Dφ = R.

Solution 2

It is necessary to show that x1 < x2 =⇒ f(x1) < f(x2).

We have

f(x) =


x

1 + x
if x ≥ 0

x

1− x
if x < 0

• If x1 < 0 < x2, then it is obvious that f(x1) < 0 < f(x2) (if one of the two is

zero it is also obvious).

• If 0 < x1 < x2, we note that: f(x) =
x

x+ 1
= 1− 1

1 + x
, so:

x1 < x2 =⇒ x1 + 1 < x2 + 1

=⇒ −1

x1 + 1
<

−1

x2 + 1

=⇒ 1− 1

x1 + 1
< 1− 1

x2 + 1

Therefore, f(x1) < f(x2), and f is strictly increasing.

• If x1 < x2 < 0, in the same way and take f(x) =
x

1− x
= −1 +

1

1− x
.

Solution 3

1. lim
x→+∞

ex−sinx, we have:
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∀x ∈ R, −1 ≤ sinx ≤ 1

=⇒ −1 ≤ − sinx ≤ 1

=⇒ x− 1 ≤ x− sinx ≤ x+ 1

therefore: x− sinx ≥ x− 1 =⇒ ex−sinx ≥ ex−1, and because lim
x→+∞

ex−1 = +∞

then lim
x→+∞

ex−sinx = +∞.

2. lim
x→0

(tanx)2

cos(2x)− 1
.

We have cos(2x) = 2 cos2 x− 1, then

cos(2x)− 1 = 2 cos2 x− 2 = −2(1− cos2 x) = −2 sin2 x.

So

(tanx)2

cos(2x)− 1
=

sin2 x

cos2 x
−2 sin2 x

=
− sin2 x

2 cos2 x sin2 x
=

−1

2 cos2 x

whene x −→ 0 then cos2 x −→ 1, therefore, lim
x→0

tan2 x

cos(2x)− 1
=
−1

2
.

3. lim
x→0+

x

b

[ c
x

]
. We have:

[ c
x

]
≤ c

x
≤
[ c
x

]
+ 1

=⇒ x

b

[ c
x

]
≤ x

b

c

x
≤ x

b

[ c
x

]
+
x

b

=⇒ 0 ≤ c

b
− x

b

[ c
x

]
≤ x

b

lim
x→0

x

b
= 0 =⇒ lim

x→0+

c

b
− x

b

[ c
x

]
= 0, so lim

x→0+

x

b

[ c
x

]
=
c

b
.

4. lim
x→0

ln(1 + x2)

sin2 x
. We use the L’Hpital’s rule, we set f(x) = ln(1 + x2), and

g(x) = sin2 x, then: f ′(x) =
2x

1 + x2
, and g′(x) = 2 sinx cosx.

f ′(x)

g′(x)
=

x

sinx
.

1

cosx(1 + x2)
, we note that lim

x→0

x

sinx
= 1

(
lim
x→0

sinx

x
= 1

)
, and

lim
x→0

1

(1 + x2) cosx
= 1, so lim

x→0

ln(1 + x2)

sin2 x
= 1.
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5. lim
x→0

√
1 + x−

√
1− x

x
. we have:

lim
x→0

√
1 + x−

√
1− x

x
= lim

x→0

(1 + x)− (1− x)

x(
√

1 + x−
√

1− x)

= lim
x→0

2x

x(
√

1 + x−
√

1− x)

= 1.

6. lim
x→+∞

x lnx+ 5

x2 + 4
= lim

x→+∞

x lnx

(
1 +

5

x lnx

)
x2

(
1 +

4

x2

) = lim
x→+∞

lnx

x

1 +
5

x lnx

1 +
4

x2

 = 0.

Solution 4

1. We have:

f : R −→ R

x −→ f(x) =



sin ax

x
: x < 0

1 : x = 0

2bex − x : x > 0

we note that for x > 0, and x < 0 the function f is continuous. For f to be

continuous on R, it must be continuous on the right and left of 0.

we have lim
x→0+

f(x) = lim
x→0+

2bex − x = 2b = f(0) = 1, so b =
1

2
.

And lim
x→0−

f(x) = lim
x→0−

sin ax

x
= a lim

x→0−

sin ax

ax
= a = f(0) = 1, so a = 1.

2. g(x) =


√
x− 1

x
, x ≥ 4

(x+ a)2, x < 4

For the function g to be continuous on R, it is enough to study the continuity

at point 4.

lim
x→4+

g(x) = lim
x→4+

√
x− 1

x
=

7

4
.
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lim
x→4−

g(x) = lim
x→4−

(x+ a)2 = (4 + a)2.

g is continuous in 4, i.e.

lim
x→4+

g(x) = lim
x→4−

g(x)⇔ (4 + a)2 =
7

4
⇔ |4 + a| =

√
7

2
.

⇐⇒


4 + a =

√
7

2

−4− a =

√
7

2

⇐⇒


a =

√
7

2
− 4

a =
−
√

7

2
− 4

Solution 5

1. f(x) =


x+

√
x2

x
: x 6= 0

0 : x = 0

We note that the function f is continuous on R∗, for the continuity at 0 we

have:

lim
x→0+

f(x) = lim
x→0+

(x+ 1) = 1.

lim
x→0−

f(x) = lim
x→0−

(x− 1) = −1.

lim
x→0+

f(x) 6= lim
x→0−

f(x), so f is not continuous at 0.

2. g(x) =


1 + x cos

(
1

x

)
: x 6= 0

0 : x = 0

the function g is continuous on R∗.

lim
x→0

g(x) = lim
x→0

(
1 + x cos

(
1

x

))
= 1.

because lim
x→0

x cos

(
1

x

)
= 0

(
0 <

∣∣∣∣x cos

(
1

x

)∣∣∣∣ < |x|). Since lim
x→0

f(x) = 1 6=

0 = f(0), then g is not continuous at 0.
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Solution 6

1. f(x) =
x3 + 2x+ 3

x3 + 1
, Df = R− {−1}.

f is continuous on Df , as f is a quotient of two continuous polynoms. We

note that (−1) is a root of the numerator too so on Df we have

f(x) =
(x+ 1)(x2 − x+ 3)

(x+ 1)(x2 − x+ 1)
=

(x2 − x+ 3)

(x2 − x+ 1)

so lim
x→−1

f(x) = lim
x→−1

x2 − x+ 3

x2 − x+ 1
= 3 (exist), then f admits an extension by

continuity at the point (−1) given by:

∼
f(x) =


f(x) : x 6= −1

3 : x = −1

2. g(x) =
(1 + x)n − 1

x
, Dg = R|{0}.

• If n = 0, then g(x) = 0, so lim
x→0

g(x) = 0, and g admits an extension by

continuity on R given by
∼
g = 0.

• If n ≥ 1, we use the Newton binomial formula

(1 + x)n =
n∑
k=0

Ck
nx

k 1n−k = 1 + C1
nx+ C2

nx
2 + · · ·+ Cn

nx
n.

such that Ck
n =

n!

k!(n− k)!
, C1

n = n, C2
n =

n(n− 1)

n
, · · · , Cn

n = 1.

So g(x) =
1

x
[C1

nx+ C2
nx

2 + · · ·+ Cn
nx

n] = C1
nx + C2

nx + · · · + Cn
nx

n−1,

and lim
x→0

g(x) = C1
n = n (exist), then g admits extension by continuity on

R given by:

∼
g(x) =


g(x) =

n∑
k=1

Ck
nx

k−1 : x 6= 0

n : x = 0
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Solution 7

1. Let p > 0 such that ∀x ∈ R, f(x+ p) = f(x). By induction we can show

∀n ∈ N : ∀x ∈ R f(x+ np) = f(x).

since f is not constant, then ∃ a, b ∈ R such that f(a) 6= f(b). We denote

xn = a+np and yn = b+np, assume that f has a limit in +∞, since xn −→∞

then f(xn) −→ l, but f(xn) = f(a+ np) = f(a), so l = f(a).

Likewise with the sequence (yn), yn −→ ∞ then f(yn) −→ l, and f(yn) =

f(b+ np) = f(b), so l = f(b).

Because f(a) 6= f(b) we get a contradiction.

2. We consider the function g(x) = f(x) − x on [0,+∞[. g is continuous, and

g(0) = f(0) > 0.

lim
x→+∞

g(x) = lim
x→+∞

(f(x)−x) = lim
x→+∞

x

(
f(x)

x
− 1

)
= −∞. (because lim

x→+∞

(
f(x)

x

)
=

a, and a− 1 < 0).

So ∃ b ∈ R∗+ such that g(b) < 0 (also g(x) < 0 if x ≥ b) on [0, b]. We have

g is continuous and g(0) > 0, g(b) < 0, according to the intermediate value

theorem: ∃ x0 ∈ [0, b] such that g(x0) = 0, so f(x0) = x0.
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Chapter 7

Exercises in: The Differentiable

Functions

Exercise 1

Study the differentiability of the function f at the point x0 in the following cases:

1. f(x) =


x2 cos

1

x
, x 6= 0

0, x = 0

, x0 = 0.

2. f(x) =


sinx sin

1

x
, x 6= 0

0, x = 0

, x0 = 0.

3. f(x) =


exp( 1

x2−a2 ), |x| < a

0, |x| ≥ a

, |x0| = a, a ∈ R+

Exercise 2

Let the function f be defined on R+ by:

f(x) =


ax2 + bx+ 1, 0 ≤ x ≤ 1

√
x, x > 1

Determine the real numbers a and b so that f is differentiable on R+. Calculate

f ′(x).
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Exercise 3

1. Calculate the derivatives of the following functions:

(a) y1(x) =
√

lnx+ 1 + ln(
√
x+ 1).

(b) y2(x) =

√
cosx

1− ex
.

(c) y3(x) = ecos
√
x.

2. Calculate the n− th derivatives of the following functions:

(a) y1(x) = ln(1 + x).

(b) y2(x) =
1 + x

1− x
.

(c) y3(x) = (x+ 1)3e−x.

(d) y4(x) = x2 sin 3x.

Exercise 4

Determine the extrema of the following functions:

1. f(x) = sinx2, on [0, π].

2. g(x) = x4 − x3 + 1, on R.

Exercise 5

1. Can we apply Rolle’s theorem to the following functions?

(a) f(x) = sin2 x, on [0, π].



40

(b) g(x) =
sinx

2x
, on [−π

2
,
π

2
].

2. Show that ∀x, y ∈ R∗+, 0 < x < y : x <
y − x

ln y − lnx
< y

Exercise 6

Using l’Hopital’s theorem, calculate the following limits:

1. lim
x→0

1− cosx

ex − 1
.

2. lim
x→π

sinx

x2 − π2
.

3. lim
x→1

ex
2+x − e2x

cos(
π

2
x)

.
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Chapter 8

Solution to exercises in: The

Differentiable Functions

Solution 1

1. f(x) =


x2 cos

1

x
, x 6= 0

0, x = 0

, x0 = 0.

we have:

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

x2 cos 1
x

x− 0
= lim

x→0
x cos

1

x
= 0

because

(
−x ≤ x cos

1

x
≤ x, and lim

x→0
x = 0

)
. So the function f is differen-

tiable in x0 and f ′(0) = 0.

2. f(x) =


sinx sin

1

x
, x 6= 0

0, x = 0

, x0 = 0. we have:

lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

sinx sin 1
x

x− 0
= lim

x→0

sinx

x
sin

1

x
= lim

x→0
sin

1

x
, does not exist.

(
lim
x→0

sinx

x
= 1

)
, therefore f is not differentiable at x0 = 0.

3. f(x) =


exp( 1

x2−a2 ), |x| < a

0, |x| ≥ a

, |x0| = a, a ∈ R+.

We have

f(x) =


exp( 1

x2−a2 ), −a < x < a

0, x ∈ ]−∞,−a] ∪ [a,+∞[
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the differentiability of f in x0=a: lim
x→a+

f(x)− f(a)

x− a
= lim

x→a+

0− 0

x− a
= 0 = f ′r(a)

lim
x→a−

f(x)− f(a)

x− a
= lim

x→a−

exp( 1
x2−a2 )− 0

x− a
= 0 = f ′l (a)

We have f ′r(a) = f ′l (a), then f is differentiable at x0 = a, and f ′(a) = 0.

The differentiability of f in x0 = −a:

lim
x→−a−

=
f(x)− f(−a)

x+ a
= lim

x→−a−

0− 0

x+ a
= 0 = f ′r(−a).

lim
x→−a+

=
f(x)− f(−a)

x+ a
= lim

x→−a+

exp( 1
x2−a2 )− a
x+ a

= 0 = f ′l (−a).

We have: f ′r(−a) = f ′l (−a), then f is differentiable at x0 = −a, and f ′(−a) =

0.

Solution 2

f(x) =


ax2 + bx+ 1, 0 ≤ x ≤ 1

√
x, x > 1

We determine a and b such that f is differentiable on R∗+, we have
√
x is differentiable

on ]0, 1[, and ax2 + bx + 1 is differentiable on ]1,+∞[, so f is differentiable on

]0, 1[∪]1,+∞[.

The differentiability of f in x0 = 1: (f(1) = 1)

lim
x→1+

f(x) = lim
x→1+

√
x = 1 = f(1)

lim
x→1−

f(x) = lim
x→1−

ax2 + bx+ 1 = a+ b+ 1.

f is continuous at x0 = 1⇐⇒ lim
x→1+

f(x) = lim
x→1−

f(x) = f(1) =⇒ a + b + 1 = 1⇐⇒

a = −b. Therefore f is continuous for a = −b.

lim
x→1+

f(x)− f(1)

x− 1
= lim

x→1+

√
x− 1

x− 1
= lim

x→1+

√
x− 1

(
√
x− 1)(

√
x+ 1)

= lim
x→1+

1√
x+ 1

=
1

2
=

f ′r(1).
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lim
x→1−

f(x)− f(1)

x− 1
= lim

x→1−

ax2 + bx+ 1− 1

x− 1
= lim

x→1−

ax2 − ax
x− 1

= lim
x→1−

ax(x− 1)

x− 1
= a =

f ′l (1).

f is differentiable on x0 = 1⇔ f ′r(1) = f ′l (1)⇒ a =
1

2
, and b = −a = −1

2
. So f is

differentiable on x0 = 1 for a =
1

2
, and b = −1

2
.

Calculate: f ′(x):

f ′(x) =


1

2
√
x

: 0 < x ≤ 1,

x− 1

2
: x > 1.

Solution 3

1. Calculate derivatives:

• y1(x) =
√

lnx+ 1 + ln(
√
x+ 1) =⇒ y′1 =

1

2x
√

lnx+ 1
+

1

2(x+
√
x)

.

• y2(x) =

√
cosx

1− ex
=⇒ y′2 =

− sinx+ sinxe−x −
√

cosxe−x

(1− e−x)2
.

• y3(x) = ecos
√
x =⇒ y′3 =

−1

2
√
x

sin(
√
x)ecos

√
x.

2. Calculate n− th derivatives:

• y1(x) = ln(1 + x)

y′1(x) =
1

1 + x
y′′1(x) =

−1

(1 + x)2

y
(3)
1 (x) =

2

(1 + x)3
y

(4)
1 (x) = − 2× 3

(1 + x)4

y
(5)
1 (x) =

2× 3× 4

(1 + x)5
y

(6)
1 (x) = −2× 3× 4× 5

(1 + x)6

...

y
(n)
1 (x) =

(−1)n−1(n− 1)!

(1 + x)n

.

• y2(x) =
1 + x

1− x
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y′2 =
2

(1− x)2
y′′2 =

2× 2

(1− x)3

y
(3)
2 =

2× 2× 3

(1− x)4
y

(4)
2 =

2× 2× 3× 4

(1− x)5

...

y
(n)
2 =

2n!

(1− x)n+1

• y3(x) = (x+ 1)3e−x

Assume that g(x) = (x+ 1)3, and f(x) = e−x, so

g′(x) = 3(x+ 1)2, g′′(x) = 6(x+ 1), g(3)(x) = 6, g(n)(x) = 0, ∀n ≥ 4

f ′(x) = −e−x, f ′′(x) = e−x, f (n)(x) = (−1)ne−x, ∀n ∈ N

then,

(y3)(n) =
∑3

k=0 C
k
n (e−x)

(n−k)
(1 + x)(k)

=
∑3

k=0 C
k
n (−1)n−k e−x.

3!

(3− k)!
(1 + x)(3−k)

• y4(x) = x2 sin 3x, according to Leibniz

f (n) =
∑n

k=0 C
k
n (sin 3x)(n−k) (x2)

(k)

= 3nx2 sin
(
3x+ nπ

2

)
+2xn3n−1 sin

(
3x+ (n−1)π

2

)
+n (n− 1) 3n−2 sin

(
3x+ (n−2)π

2

)

Solution 4

Determine the extrema:

x0 is extremum ⇐⇒ f ′(x0) = 0 and f ′′(x0) 6= 0.

1. f(x) = sinx2, on [0, π], f ′(x) = 2x cosx2 the critical points are:

f ′(x) = 0⇐⇒ 2x cosx2 = 0⇐⇒


x = 0

cosx2 = 0
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therefore,


x = 0

x2 =
π

2
+ kπ

⇐⇒


x = 0

x =

√
π

2
+ kπ

f ′′(x) = 2 cosx2 − 4x2 sinx2, so:

• Four x = 0, f ′′(0) = 2 > 0, then 0 is an extremum (minimum).

• Four x =

√
π

2
+ kπ, f ′′(

√
π

2
+ kπ) = −4

(π
2

+ kπ
)

sin
(π

2
+ kπ

)
6= 0.

– if k is even: sin
(π

2
+ kπ

)
= 1, and f ′′(

√
π

2
+ kπ) = −4

(π
2

+ kπ
)
<

0, so

√
π

2
+ kπ is an extremum (maximum).

– if k is odd sin
(π

2
+ kπ

)
= −1, and f ′′(

√
sin

π

2
+ kπ) = 4

(√
π

2
+ kπ

)
>

0, so

√
π

2
+ kπ is an extremum (minimum).

2. g(x) = x4 − x3 + 1, on R

g′(x) = 4x3 − 3x2, the critical points are:

g′(x) = 0⇐⇒ 4x3 − 3x2 = 0⇐⇒ x2(4x− 3) = 0⇐⇒


x = 0

x =
3

4

g′′(x) = 12x2 − 6x

• For x =
3

4
, g′′(

3

4
) =

9

4
> 0, so

3

4
is an extremum (minimum).

• For x = 0, g′′(0) = 0 =⇒ f (3)(x) = 24x − 6 =⇒ f (3)(0) 6= 0, so 0 is not

an extremum.

Solution 5

1. (a) f(x) = sin2 x, on [0, π]

we have f is continunous on R, so it is continuous on [0, π], and differen-

tiable on ]0, π[.
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f(0) = 0, and f(π) = 0 =⇒ f(0) = f(π), so we can apply Rolle’s theorem

on f .

(b) the same for g(x) =
sinx

2x
, on [−π

2
,
π

2
].

2. We show that x <
y − x

ln y − lnx
< y. ∀x, y ∈ R∗+, we apply the Mean value

theorem on the function f(t) = ln t on the iterval [x, y] such that 0 < x < y.

f(t) = ln t is continuous on [x, y], and differentiable on ]x, y[, then according

to the Mean value theorem:

∃ x ∈]x, y[: f ′(c) =
f(y)− f(x)

y − x
so

1

c
=

ln y − lnx

y − x
=⇒ c =

y − x
ln y − lnx

, and

c ∈]x, y[, then x <
y − x

ln y − lnx
< y.

Solution 6

1. lim
x→0

1− cosx

ex − 1
=

0

0

lim
x→0

1− cosx

ex − 1
= lim

x→0

(1− cosx)′

(ex − 1)′
= lim

x→0

sinx

ex
= 0.

2. lim
x→π

sinx

x2 − π2
=

0

0

lim
x→π

sinx

x2 − π2
= lim

x→π

(sinx)′

(x2 − π2)′
= lim

x→π

cosx

2x
=
−1

2π
.
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Chapter 9

Exercises in: Elementary

Functions

Exercise 1

Consider the function f defined by

f(x) = xx

1. On what set is this function defined and continuous?

2. Show that f is extendable by continuity on [0,∞[.

3. Calculating the derivative of f wherever it is not a problem. On what set is f

differentiable, what can we deduce about the graph of f at 0?

4. Study the variations of f on [0,∞[. Then calculate the limit of f in ∞.

5. Sketch the graph of f .

Exercise 2

1. Let a and b be two real numbers, show that:

ch(a)ch(b) =
1

2
(ch(a+ b) + ch(a− b)).

2. Show that ∀t ∈ R

cos(2t) =
1− tan2(t)

1 + tan2(t)
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Exercise 3

Soit a ∈ R, a > 0. Solve:

ln(ch(x)) = a.

Exercise 4

Calculate limits:

1. limx→+∞ e
−x(ch3(x)− sh3(x)).

2. limx→+∞ x− ln(ch(x)).
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Chapter 10

Solutions to exercises in:

Elementary Functions

Solution 1

1. We have f(x) = xx = ex lnx. so f is defined and continuous on Df =]0,+∞[.

2. We have lim
x→0+

x lnx = 0, then lim
x→0+

f(x) = e0 = 1.

In other words f is extendable by continuity to 0 by f(0) = 1.

3. f ′(x) =

(
lnx+ x× 1

x

)
ex lnx = (lnx+ 1) ex lnx. f is differentiable on ]0,+∞[.

We have lim
x→0+

f ′(x) = −∞. Therefore f is not differentiable at 0 and the graph

of f admits a vertical half-tangent at 0.

4. The sign of the derivative is the same as that of ln(x) + 1.

ln(x) + 1 = 0 ⇐⇒ ln(x) = −1⇐⇒ x = e−1 =
1

e

0 < x <
1

e
⇐⇒ ln(x) < ln

(
1

e

)
= −1⇐⇒ ln(x) + 1 < 0.

The same for:

x >
1

e
=⇒ ln(x) + 1 > 0.

So f is decreasing on

]
0,

1

e

[
, and it is increasing on

]
1

e
,+∞

[
.

It is clear that lim
x→+∞

f(x) = +∞.

5. The graphe of f
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Solution 2

1. we have, in development

ch(a) ch(b) =
1

4
(ea + e−a)

(
eb + e−b

)
=

1

4

(
ea+b + e−(a+b) + ea−b + e−(a−b))

=
1

2
(ch(a+ b) + ch(a− b)) .

2. We have

1− tan2(t)

1 + tan2(t)
=

1− sin2(t)

cos2(t)

1 +
sin2(t)

cos2(t)

=
cos2(t)− sin2(t)

cos2(t) + sin2(t)
= cos2(t)− sin2(t) = cos(2t).

Solution 3

ln(ch(x)) = a ⇐⇒ ch(x) = ea

⇐⇒ ex + e−x

2
= ea ⇐⇒ ex +

1

ex
= 2ea

We pose: X = ex, so
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X +
1

X
= 2ea ⇐⇒ X2 + 1 = 2Xea

⇐⇒ X2 − 2Xea + 1 = 0

∆ = 4e2a − 4 = 4 (e2a − 1) > 0, the roots are

X1 =
2ea − 2

√
e2a − 1

2
= ea −

√
e2a − 1 and X2 = ea +

√
e2a − 1

We note that e2a > e2a − 1, hence ea >
√
e2a − 1, which shows that X1 > 0, for X2

it’s obvious. so the solutions of ln(ch(x)) = a are x1 = ln
(
ea −

√
e2a − 1

)
and x2 =

ln
(
ea +

√
e2a − 1

)
.

Solution 4

1. lim
x→+∞

e−x (ch3(x)− sh3(x)). We have

e−x (ch3(x)− sh3(x)) = e−x

[(
ex + e−x

2

)3

−
(
ex − e−x

2

)3
]

=
e−x

8
[e3x + 3ex + 3e−x + e−3x − (e3x − 3ex + 3e−x − e−3x)]

=
e−x

8
(6ex + 2e−3x) =

3

4
+

1

4
e−4x

so lim
x→+∞

e−x (ch3(x)− sh3(x)) = lim
x→+∞

3

4
+

1

4
e−4x =

3

4
.

2.

lim
x→+∞

x ln(ch(x)) = lim
x→+∞

x ln

(
ex + e−x

2

)
= lim

x→+∞
x ln

(
ex.

1 + e−2x

2

)

= lim
x→+∞

[
x− ln(ex)− ln

(
1 + e−2x

2

)]
= lim

x→+∞

[
− ln

(
1 + e−2x

2

)]
.

We have lim
x→+∞

1 + e−2x

2
=

1

2
. Hence lim

x→+∞
x ln(ch(x)) = − ln

(
1

2

)
= ln(2).



52

Bibliography

[1] J. Wieslawa; M. Kaczor; T. Nowak. PROBLMES D’ANALYSE I Nombres rels,

suites et sries. 17, avenue du Hoggar Parc dactivits de Courtaboeuf, BP 112-

91944 Les Ulis Cedex A, France.

[2] S.Belhaj; A. Ben Assa. Mathmatiques pour l’informatique.

WWW.VUIBERT.FR

[3] D. JUNGHENN. A COURSE IN REAL ANALYSIS. CRC Press 2015 by Taylor

and Francis Group, LLC. International Standard Book Number-13: 978-1-4822-

1928-9 (eBook - PDF).

[4] W. Knapp. Basic Real Analysis. Published by the Author East Setauket, New

York 2016.

[5] J. Lebl. Basic Analysis I. Copyright July 11, 2023 (version 6.0).

[6] B. Lafferriere; G. Lafferriere, and N. Mau Nam. Introduction to Mathematical

Analysis I (Second Edition). Published by Portland State University Library

Portland, OR 97207–1151 (2016).

[7] E. Zakon. Mathematical Analysis. University of Windsor.

[8] V. Liskevich; M. Rudnev. Analysis 1. Lecture Notes 2013–2014, University of

Bristol.


	List of Tables
	Exercises in: The Field of Real and Complex Numbers
	 Solutions to exercises in: The Field of Real and Complex Numbers 
	Exercises in: The Numerical Sequences
	Solutions ti exercises in: The Numerical Sequences
	Exercises in: The Real-Valued Functions of a Real Variable
	Solutions to exercises in: Real-Valued Functions of a Real Variable
	Exercises in: The Differentiable Functions
	Solution to exercises in: The Differentiable Functions
	Exercises in: Elementary Functions
	Solutions to exercises in: Elementary Functions
	Bibliography

