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Foreword

This handout is intended for students in the first year of the Bachelor’s degree in
Mathematics. It is composed of five chapters. The first chapter contains the body
of real and complex numbers, while the second chapter is devoted to numerical
sequences. The third chapter gives the functions of a real variable with a real value.
The fourth chapter contains the real derivable functions. The last chapter is devoted

to the study of elementary functions (cosine, sine, arc cosine, ...).



CHAPTER 1

Exercises in: The Field of Real
and Complex Numbers

Exercise 1

Let A and B be two non-empty and bounded sets. We define:

—A={—z|zxe€ A}, A+ B={r=a+b|ac Abe B} and

A-B={x=a—-b|a€ Abe B}
1. Show that: sup(—A) = —inf(A) and inf(—A) = —sup(A).
2. Show that if for all @ € A and b € B we have a < b, then sup(A4) < inf(B).
3. Show that AU B is a bounded subset of R and:

e sup(A U B) = max(sup(A),sup(B)).

e inf(AU B) = min(inf(A), inf(B)). (¥)
4. Show that sup(A) + sup(B) is an upper bound of A + B and:

e sup(A + B) = sup(A) + sup(B).

o inf(A+ B) = inf(A) + inf(B).

Exercise 2

1. Show that if r € Q and = ¢ Q then r + 2 ¢ Q and if r # 0 then r.x ¢ Q.



2. Show that v/2 ¢ Q.
3. Show that ln_3 is irrational.
n2

4. Let a and b be two positive rationals such that v/a and v/b are irrational. show

that \/a + Vb is irrational. (*)

Exercise 3

Let A and B be two subsets of R such that B C A. Show that:

1. A is bounded = B is bounded .

2. inf(A) <inf(B), and sup(A) > sup(B).

Exercise 4

3 2
Let A={a, €R | ay = o> neN}and B={b, €R | by = L+~ +4; ne
2 n
1

N*} .
1. Show that A and B are bounded in R and that sup(A) = inf(B).

2. Determine sup(A) and inf(B).

Exercise 5

Determine the supremum (the upper bound) and infimum (the lower bound), if

they exist of the following sets:

1
A={ax+b|ze[-2,1] and a,bER},B:{Z—E; n € N};

C = {sin2; neZ} (¥



Exercise 6

1. Write the following numbers in the form a + ib,(a, b € R):

5+ 2i 2 2+5i+2—5z’(*)
21 = , R = ——————=, k3 = - -
P20 13T =i 1+

2. Let the complex number z = 5 4 12:.

(a) Verify that |z| = 13.
(b) Determine the square roots of z.

(c) Deduce the complex solutions of the equation (1+i)2*+ 2z —2 —i=0.

Exercise 7

Using complex numbers, calculate cos(50) and sin(56) in terms of cos(f) and

sin(0).

Exercise 8

V6 —iv2

1. Calculate the modulus and the argument of u = — s and v =1 — .

2. Deduce the modulus and the argement of L
v

Exercise 9

(Supplementary)
1. Let z be an n'* root of -1, so 2" = —1 with n > 2 and z # —1.

2. calculate S, = 2070 22 = 14 22 4 24 4 4 220D,



Remark 1.0.1. Exercises marked with (*) are left to students.



CHAPTER 2
Solutions to exercises in: The
Field of Real and Complex
Numbers

Solution 1

1. a) Let’s show that: sup(—A) = —inf(A) and inf(—A) = —sup(A).
we have: Vo € A, © > inf(A) = —x < —inf(A). So ”—inf(A)” is an upper
bound of —A, and since sup(—A) is the smallest upper bound of —A then:
sup(—A) < —inf(A)--- (1).
On the other hand: V-2 € —A, —z < sup(—A) = = > —sup(—A), so
—sup(—A) is a lower bound of A, and since inf(A) is the greatest lower bound
of A then inf(A) > —sup(—A), therefore: —inf(A) < sup(—A4)--- (2) .
From (1) and (2) we get: sup(—A) = —inf(A).
b) inf(—A) = —sup(A) :
» We have: Vo € A, = < sup(A) = —x > —sup(4), so —sup(A4) is a
lower bound of —A, since inf(—A) is the greatest lower bound of -A then
—sup(A) < inf(—A)--- (1).
On the other hand: V— 2 € —A, —x > inf(—A) = x < —inf(—A), so

—inf(—A) > sup(A) = inf(—A) < —sup(A4)--- (2).



From (1) and (2) we get: —sup(A) = inf(—A).

. We show that sup(A) < inf(A).
We have Va € A, b€ B: a < b= a < inf(B), so inf(B) is an upper bound

of A, but sup(A) is the smallest upper bound of A then: sup(A) < inf(B).

. We show that AU B is a bounded subset of R: let x € AU B, then: z € A
or x € B, therefore inf(A) < x < sup(A4) and inf(B) < z < sup(B), So

min (inf(A), inf(B)) < 2z < max (sup(A), sup(B)).

a) We have: sup(AU B) < max(sup(A),sup(B))------ (1)

inf(AU B) > min(inf(A),inf(B))------ (2)

On the other hand we have: A C AUB and B C AU B, so

sup(4) < sup(AUB)

sup(B) < sup(AU B)

then: max(sup(A),sup(B)) < sup(AUB)------ (1), so from (1) and (1%)
we get: sup(A U B) = max(sup(A),sup(B)). In the same way we show that

inf(AU B) = min(inf(A), inf(B)).

. We show that sup(A+ B) = sup(A)+sup(B): we have Vx € A: inf(4) <z <
sup(4), and Yy € B : inf(B) <y < sup(B), thus: inf(A) +inf(B) <z +y <
sup(A)+sup(B), so inf(A)+inf(B) is a lower bound of A+ B, but inf(A+B) is
the greatest lower bound of A+ B, then: inf(A+ B) > inf(A) +inf(B)--- (1).
and also sup(A + B) < sup(A) +sup(B)---(2).

On the other hand: Vo € A: = <sup(A+ B) —y, then sup(A+ B) —y is an

apper bound of A
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= sup(A) < sup(A+B)—vy, Yy € B,
— y < sup(A+ B) — sup(A), Vy € B,
= sup(B) < sup(A+ B) —sup(A),

= sup(A) +sup(B) < sup(4A+ B)---(1%).

From (1) and (1*) we get: sup(A+ B) = sup(A) +sup(B). The same to show

that inf(A + B) = inf(A) + inf(B).

Solution 2

1. a) We show that if r € Q, and = ¢ Q, then r + x ¢ Q. we suppose that

r+reQ, we have: r € Q so d p, qezsuchthatrzz_j’ q# 0.
q

/
Andz4+re Q= 3y, q’EZsuChthat:x—i—r:g/, q # 0.
q
/ Lo
So: x = ]i/ P u, ¢dq # 0 = x € Q. This is a contradiction
q q qq
because x ¢ Q, then x + 1 ¢ Q.

b) We show that if ¢ Q and r € Q then z.r ¢ Q:

Wehavere@:>r:]—9,q#O,andp#O(r;«éO). We assume that
q

/ / /
x.rEQ,thenm.r:g, q’%O:ng.gzg, ¢p # 0, thus z € Q.
q

¢p qp
Contradiction, then z.r ¢ Q.
2. We show that /2 ¢ Q. Suppose that v/2 € Q = 3 p. ¢ € Z such that
V2= g, q # 0.
suppose that p and ¢ are prime, then /2 = S = V2 = p = 2¢® = p?,
therefore p? is even = p is even, then p = 2p', p’ € Z.

So 2¢* = (2p/)?* = 4p* = ¢*> = 29, therefore ¢* is even = ¢ is even.

Contradiction, then v/2 ¢ Q.
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In3 In3
3. We show that 1n_2 is irrational. Assume that 111_2 €EQ=3dp,qeZ, q#0
n n

In3
such that ln_2 S N qln3 =pln2 = I3 = PIN2 —; 37 = 27
n q

o If p =0, then 37 =2 = 1 = ¢ = 0 (contradiction because ¢q # 0).

In3
e If p >0, then 3% is odd and 2” is even. (contradiction), then 111_2 ¢ Q.
n

Solution 3

1. We show that if A is bounded then B is bounded. A is bounded <= dm, M €
R, Vie A: m<z <M.
We have BC A<= Vx e B, x € A, and A is bounded so m < x < M, then

B is bounded.

2. a) Show that inf(A) < inf(B). We have B C A = Vo € B : z > inf(A),
therefore inf(A) is an upper bound of B, then inf(A) < inf(B) because inf(B)
is the greatest upper bound of B.
b) Show that sup(A) > sup(B). We have B C A, then Vx € B : inf(A) <
x < sup(A), therefore sup(A) is an upper bound of B, and since sup(B) is the

smallest upper bound of B then sup(B) < sup(A).

Solution 4

3
1. A= an€R|an:ZL, n € N ». We show that A is bounded, i.e: 3m, M €
—+1
4
R| Va, € A: m <a, <M. We have: Vn € N
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n+3 4<n+3)
__|_1 a n+4
n+4—-1
= 4L
< n+4 )
= 41— 1 =4 — 4
n-+4 n+4

1
< —. therf — > -1 =4 —
ntd g e T S nt4

B~ 3

Vn>0 n+4>4—=

>

1 4 4
mn>0: n+4>4>0— ——>0,50 ——<0=—=4—- — <4 =
n+4 n-+4 n-+4

Then from (1) and (2), we get 3 < a,, < 4. So inf(A) = 3, and since 3 € A,

then: inf(A) = min(A) =3, (ap =3 € A), and sup(A) = 4.

Now let’s show that sup(A) = 4.

Va, € A: a, <4,
sup(4) =4 —

Ve >0, dn.eN: q, >4 —¢.

We have: a, < 4, Va, € A verify: Ve >0, a, >4 —¢ = 4 — 1 >
n
4 1 4 4
4—c—= <5,therf0re:n+ >—-—=n+4>-=—=mn>-—4. Just
n—+4 4 € € €

4
take n. = {— — 4] + 1, then sup(A) = 4.
€

1 2
. B= {bn eER|b, = 3 —|—5+4}. We show that B is bounded, for all n >

2 1 2 1 2 1
1:>—§2,and—2§1,therfore—+—2§3:>—+—2+4§7,then
non

n n n n

2 1 2 1 2 1
On the other hand: — > 0, and — > 0, then — 4+ — >0 = —+ — +4 > 4,
n n? n n? n n?

From (1), and (2), we get: Vn € N, 4 < b, < 7, then B is bounded in R,
such that sup(B) = max(B) = 7, and inf(B) = 4. Now we must to prove that

inf(B) = 4.
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Vb, €B, b, >4,
inf(B) =4 <

Ve>0,dn.eN": b, <4+e.

1 2
Wehave b, <44+ec= —+ - +4<4+e= —+ = <¢, also: n? >n—=
n? n n? n

1 1 1 2 3
— < —,and -+ — < —
n? — n n2 n - n

3 3
We are only looking for a n. such that — < ¢, i.e, n > —, therfore we just take
n €

Ne = E] + 1, then inf(B) = 4 = sup(A).

Solution 5

I. A={ax+b |z e€[-21], a, b € R}. Assume that:

f*R — R
r — f(r)=ax+Db
e If a =0= f(x) = b, then f is constant, and A = {b} is bounded such
that sup(A) = inf(A) = b.
e If a > 0= f(x) is increasing, so for all —2 < x < 1, we have:
f(=2) < f(z) < f(1) = —2a+b < f(z) < a+b, then Vz € [-2,1],
A is bounded such that: inf(A) = min(A) = —2a + b, and sup(A) =

max(A) = a+b.

o If a < 0= f(x) is decreasing, then A is bounded and inf(A) = a + b,

sup(A) = —2a + b.

1
2. B:{2——, neN*}. Forn=1= B =1, and forn — oo = B = 2,
n
so B =[1,2[. The set of upper bounds of B is [2,4o00[ therefore sup(B) = 2,
and the set of lower bounds of B is | — 0o, 1], therfore inf(B) = 1, since 1 € B,

then inf(B) = min(B) = 1, and max(B) does not exist because 2 ¢ B.
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Solution 6

' 542 _ (5+20)(1+2) _1+12i 1, 12,
.21 = = = = -4 —1.
YT 2i 0 (1—20)(1 + 20) 5 5 5

—2 —2(1+iV/3) —200+iV/3) -1 V3

T1-iV3 12+ (—v3) 1 S

22
2. We have z =5 + 12:.

(a) |2 = |5 + 12i| = /25 1 144 = /169 = 13.
(b) Let w € C such that w = a + ib,

a? - =51
w? =z <= a®> —b>+ 2abi =5+ 12 <—

2ab =12, Ly

We add the equality of the modules

a?+ b =52 +122 =169 =13, --- L,

Ly + Ly <= 2a®> = 18, then a?> = 9 <= a = £3, and
Ly — Ly <= 2b* = 8, then a®> = 4 <= a = £2. According to Ls: a and
b have the same sign, hence the square roots of z are
e 21 =3+21
e 2o =—-3—2
(¢) We calculate the discriminant of the equation A =5+ 12i = z, and we

deduce from the previous question that the equation admits two distinct

complex solutions

—14+3+2 1
w = — =
! 2(1 + 1)

1-3-2 —2-i (=2-9)(1-i) -3 i
0y = i 2:( i)( 2):_4_1'

2(1+ 1) 1+i  (I+0(1—4) 2 2
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Solution 7

Calculate cos 56, and sin 50. We have by the Moivre’s formula:
cos b + isin 50 = ¢ = ()5 = (cos @ + isinH)°.
Using Newton’s binomial formula:

(cos @ + isin )’ =

cos® 0 + 5icos*@sinf — 10 cos® A sin? @ — 10i cos? fsin® 0 + 5 cosOsin® 6 + i sin® 0

So: cos bl = cos® § — 10 cos® @ sin® @ + 5 cos O sin* 6,

and sin 50 = 5 cos? Osin 6 — 10 cos? @ sin® 6 + sin® 6.

Solution 8

2 2 2

u:\/_ Z\/_ \/‘(\/_ \/_ \/_):\/5<\/§_i):\/§@_ig.

:\/64—2_@_2\/5:\/5‘

1. a) |u| =

V6 —iv2
2

2 2\/_
Then |u| = /2, and arg(u) = —~.

6
b) lol = I (<17 = V2.
\/_<£_ i) \/ﬁe_lz.

Then |v] = v/2, and arg(v) = —

Z.
7r

—i— T T

6 i(——+— i—

9. E:&W:e( 671 — 12,
v I
V2e 4

u T
Then: |%| =1, and
en: |~ an arg(v 12)
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CHAPTER 3
Exercises in: The Numerical
Sequences

Exercise 1

Show by induction that:

1
1. 1+2—|-3_|_..._|_n:n(n2+ )

1)(2 1

Exercise 2

Determine, by justifying your answers, if the following sequences are convergent:

_9
1 U, = 2072 yp e N
n
_1)»
2' ‘/;L:M, VneN
2n+1
1
3. W, = (=1)"(202), v e N

4. Z, =2n+1—+2n—1, Vn € N*.(*)

Exercise 3

Let (un)nen be the sequence of real numbers defined by wy € ]0.1], and by the

recurrence relation



Upp1 = -+

1. Show that: Vn € N, u,, > 0.

2. Show that: Vn € N, u, <1.

3. Show that the sequence is monotonic. Deduce that the sequence is convergent.

4. Determine the limit of the sequence (uy,)nen.

Exercise 4

Prove that the following two sequences are adjacent

noo1
\4 N n — 7o Unp = Up -
neN, u 121 13 Un = U + -
Exercise 5
E
1. Let u, = (\/ﬁ), for all n € N*, show that

n
lim,, 4o u, = 0.

E 2
2. Let v, = (vn) , for all n € N*, show that the sequence (v,,)nen+ converges
n

and determine its limit. (*)

Exercise 6

Calculate the following limits, if they exist, of the following sequences:

1 1 1
23 34 T i Dm+2)

1. u, =
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1 2 n—1
2 Un_ﬁ—l-ﬁ + n2
| 1
5 wn_n(n—i—)
Inn

4 zp=vVn2Z4+n+1—vn2—n+1. (%

Exercise 7

1 1
We consider the sequence (uy,),>1 given by: u, = 1+ 2 + 32 + -+ ol

1 1

1

1. Show that — < )
n n—1 n

2. Show that the sequence (u,,),>1 is bounded above by 2.

3. Show that the sequence (uy,),>1 is increasing.

4. Deduce that (u,),>1 is converges.

Exercise 8

We consider the sequence (uy)nen defined by ug = 0 and by the recurrence

relation

_ 2
un—i—l — _un + §

1. Show that for all n € N*, u,, > 0.

\)

. Calculate the limit of the sequence (uy,)nen-

3. Show that for all n € N, u,, < 3.

4. Show that the sequence is increasing, what can we conclude from this?
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Exercise 9

(Supplementary)
We consider the sequence (u,),en+ defined by

1 1
3+ Jsin(1)| V1 e Isin(2)] v/2

Un

Show that lim,, . u, = +00.

3[sin(n)| v/n
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CHAPTER 4
Solutions ti exercises in: The
Numerical Sequences

Solution 1

1
1.1+2+3+...+n:@ ...... P(n)
1.(1+1
Fornzlilz%istrue.
For n > 2 : assume that P(n) is true, and show that P(n + 1) is true, this
1

means showing that if 14+2+34---+n = nin+1) then 14243+ - -+(n+1) =
(n+1)(n+2)

5 :

1 1)+ 2 1

(n+1)(n+2)
5 :
Then P(n) is true, therfore 1 +2+3+---+n =

n(n+1)
—

1)(2n+1
2. 12+22+32+~-+n2:n(%L )@n + ).

6
1.(2
Forn=1=—1= ()<3) is true.
1)(2 1
For n > 2 : assume that 12+22+32+---+n2:n(n+ )6< n ),andshow
(n+1)(n+2)(2n + 3)

that 12422 +32 4 ... 4+ (n+1)2 = y '

We have:
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12+22 4+ 40+ (n+1)?

Then: 124+22 4+ 324 ... +n?

nn+1)2n+1)

5 + (n+1)?
nn+1)(2n+1) +6(n+1)?

6
(n+1)[2n* + n + 6n + 6]

6
(n+1)[2n* 4+ Tn + 6]

6
(n+1)(n+2)(2n+3)

5 .

nn+1)2n+1)

Solution 2

cosn — 2
4

1. U, = , Vn € N*,

n

For all n € N*;

IN

IN

IN

cosn

cosn — 2

cosn — 2

n4

6

Since lim —> — lim —» — 0, then lim U, = 0.

4 4

n—oo M, n—oo M,

3n +5(—1)"

2.V, =
2n—+1

, Vn e N.

For all n € N, we have

3n+5(-1)"  3n

n—oo

5(—1)" 3

5(—1)"

om+1  2n+1

1
On the one hand since lim1 4+ — = 1, then lim

n—00 n

other hand since (—1)" is bounded, and lim

5(—1)"
im
n—oo 21 + 1

=0. So limV, = §

n—o00 2

m+1 1

2(1+_) 2n+1
n

1 § On the

n

o 7 = 0. We deduce that

n—oo2n
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1
3. W, = (—1)"(2), Vi e N,
1 —1)"
We have: W,, = (—1)”(n il )= (—=1)"+ u, since (—1)™ is bounded and
n n

lim — =0, then lim (=1)

= 0. Also (—1)" does not admit a limits, therfore
n—oon, n—oo M

we consider the subsequences of even and odd ranks respectively (Way,)nen+,

and (Way,11)nens, so for all n € N* we have:

(=™

Wy, = (1) =1+— —1
2 ( ) + 2n + 2n n—oo
_1)2n+1 1
Wann = (—1yz 4 CU0 B
2l (=1)™ + on + 1 21 + 1 n—soo

So the sequence (W,),en+ admits two subsequences that converge to different

limits, and therefore it is not convergent.

Solution 3

Uup € ]07 1]7
U (un)?
Up+1 = 9 + 4

1. We show that: Vn € N, u, > 0. (reasoning by induction)
For n = 0, we have vy € ]0, 1], then w, > 0.
For n > 1, we assume that u, > 0 and we show that u,,; > 0. We have
(un)? up | (un)?

u, > 0, so: % > 0, and - > 0, therfore: u,,, = 5 + 1 > 0. Then

vn €N, u, > 0.
2. We show that: Vvn € N, u,, <1:
For n = 0, we have vy € ]0,1], then u,, <1.
For n > 1, we assume that u,, < 1 and we show that u,.; < 1.

We have 0 < u,, <1, then

[\

I

N | —
=] =
DO W
VAN
—



3.

23
Sovn eN, u, <1.

We calculate:

Up  (up)? U (up)? up
g, = g, = tn _ U oqu).
Upyp1 — U 5 1 u 5t 4( + up)

Since 0 < u, <1, we get —2 4+ u,, < 0, then u,+; —u, < 0. It shows that the

sequence is strictly decreasing.

. The sequence is strictly decreasing and bounded below by 0, so it converges

to a limit noted ! and verified

l—£+E @#0——£+E
24 2 4

— 2+0%=0
— [(-2+1)=0

sol =0 or ! =2. Therefore!l = 0.

Solution 4

n

1
Vn € N*, we have: u, = > —, and v, = u, + —, we show that (u,)nen+, and
n

(Un)nen+ are adjacent:

1.

I
Upy1 — Up = 7o T
= RS R
= ! >0
- (n+1)?
therfore (u,)nen+ is increasing.
n 1 1
Unpl — Up = Uy —_— — Uy — —
+1 1t -

1 1 1
(n+1)2+n+1 n
n+nn+1)—(n+1)>2

n(n+ 1)

—1

- n(n+ 1)? =0
therfore (v, )nen+ is decreasing.
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1 -1
3. limu, —v, = limu, —u, — — = lim — = 0.
n—o00 n—o00 n n—oo M

SO (Up)nen+, and (v, )nen+ are adjacent.

Solution 5

E
Vn € N* we have: u, = <\/ﬁ>, we show that lim u,, = 0.
n n—r00

Assume that P = E(y/n), then Vn € N* we have:

P<yn<P+1= P><n<(P+1)?

1 1 1
therfore: m < - < Sy (%).

We multiply (x) by P = E(y/n) > 0 (because n > 1), we get:

P __P_P B(A) _B(m _ 1

<<= =

P+1p “n=-P  (EGm+1? a "B

E
When n — +o0, E(y/n) — 400, then lim Evn)

n—00 n

=0.

Solution 6

i 1 1
n+1 n+2

1
2
1 2 n—1
2 Un_ﬁ+ﬁ++ 2 .
1
lim v, = lim —(1+2+---+n-1)
n—-+oo n—-+oomn,
. 1nn-1)
= lim ————~
nﬁ+oon2 2
1
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3w, — 2 +1)
Inn .
In {n(l + —)}
. . n
lim w, = lm ———=
n—-+oo n—-+oo ln n 1
In n+In (1+-)
= lim n
n—-+oo n 1
In(1+ —)
= lim 14+ ——01 =1.
n—-+00 In n
Solution 7
1 1 1
1 1 1

1
1. We show that — < —— — ~ = — .
€ SNow a 2 S - n(n_l)

we have: Vn e N*: n>n—1=n?>n(n—1), so

1 1 1

1
< iy
n

n? " nn—-1) n-1

2. We show that (u,),>1 is bounded above by 2:

1 1 1
we have: — < — —, then
n2 " n—-1 n

1 1 1 1 1 1 1 1
<, <D =< _ =
22 — 2732 —2 3 n?2 " n—1 n
therefore:
LI ISR T OV S U P N
22 32 n2 - 2 2 3 n—1 n

1
U, < 2——<2
n

S0 (un)n>1 is bounded above by 2.
3. We show that (u,)n>1 is increasing:

1
il — Uy = 1+ — 41— — — e — -
Upt1 — U +22—|- +(n+1)2 92 oy
= 1 >0
(1) '
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Then (uy),>1 is increasing.

4. (up)n>1 is increasing and bounded above by 2, so (u,),>1 is convergent.

Solution 8

Ug = 0
P
UTL = — —
1. We show that Vn € N*, u,, > 0.

_2s0

Y 2

DO W

2+

=

eforn=1=—= u; =

e For n > 2 —, we assume that u, > 0 and we prove that u,,; > 0.

1 1 3 3
We have u, > 0, then Eui > 0, therefore: éu% + 5 > 3 > 0, so

Upry > 0= Vn € N*, u, > 0.
2. If the sequence u,, admits a limit [ then:
1 3
l==-P+- < ?-614+9=0
s g -
— (1-3)3?%=0
— [ =3.

3. We show that Vn € N, u,, < 3: (reasoning by induction)

e For n =0, we have ug =0 < 3.

e For n > 1, we assume that u,, < 3, and we prove that u,; < 3. We have

u, <3 = u:<9

1 3
— —ul+—-<3.
R

SoVn eN, u, < 3.
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1
4 Upip — Up = 6 (u, — 3)2 > 0, the sequence (uy)nen is strictly increasing, and

since it is bounded by 3, it therefore converges to a limit [, such that

1, 3
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CHAPTER b

Exercises in: The Real-Valued

Functions of a Real Variable

Exercise 1

Determine the definition domains of the following functions:

z+1

2. g(z) =va?+x—2.

3. h(z) = In (2 + x)

2—x

4 h(y) = ST COST

Tr—T

5. p(z) = (1+2)s.

Sin . cosx
6. ¢(x) = ren
1 Otherwise

if v#w

Exercise 2

Let the function f be defined on | — 1, 1[ by: f(z) =

Show that f is strictly increasing.
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Exercise 3

Calculate the following limits:

1 lim exfsin T
T—+00

(tan z)?

o—=0 cos(2z) — 1

o V1ldr—V1—x
5. lim .

x—0 x

rlnz 45
m —-7-
z—+oo 2 +4

Exercise 4

Determine the values a and b so that the functions f, and g are continuous on R

sin(ax) 1
<0 - = >4
N NG T2
f(z) = 1, =0  9(x)=
20e —x, w<0 (r+a)? xz<4
\ \

Exercise 5

Are the following functions continuous at the point xg = 07

x+£ cx#0 l—i-xcos(l) cx#0
fx) = v , g(x) = .
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Exercise 6

1. Show that the following functions are continuous over their defined domains:

_5173+2:L‘~|—3

3+ 1 T

2. Study the existence of extension by continuity over R.

Exercise 7

1. Show that any periodic and non-constant function does not admit a limit in

“+o0.

2. Let f :]0,+00] — R be a function such that f(0) > 0. We assume that

lim M:a<1.

rz—+o0

Show that there exists x¢ € [0, 4o00[ such that f(xq) = .
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CHAPTER 6

Solutions to exercises in:
Real-Valued Functions of a Real

Variable

Solution 1

6= T

1
Df:{x€R|$—+1207 andx—lsé()}
x_

1
$+1 >0 =z € |-00,—1]JU[l,+o0[, and . — 1 # 0 = = # 1, so

Dy =]—o0,—1] U1, +o0].

2. g(x) =va?+x—2.

D,={z €R|2*+2—2>0}=]—00,—2] U[l,+o0].

3. h(z) = In (2”).

2—x
2
Dh:{xeR];—x>O, and2—x7é0},soDh:]—2,2[.
-

n k(x) _ sinx —cosx.

r — T

Dy={z eR|x#7}=]—00,m[U]m, +o0l.

5. p(z) = (1 + 2)r = exn0+),

D,={rxeR|z#0, and 14+ 2 >0} =]-1,0[U]0, +o0.
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Sinx.cosx

6. o(x)={ T
1 Otherwise

if v#w

Dy =R.

Solution 2

It is necessary to show that z1 < 3 = f(x1) < f(22).

We have
T ife>0
flz) = 1+z
1fx if ©<0

o If 71 < 0 < z9, then it is obvious that f(z1) < 0 < f(xs) (if one of the two is
zero it is also obvious).

1
e If 0 < z; < my, we note that: f(z) = i1:1_1+ , SO:
x x

1 < Tog — 1+ 1 < x9+1

< 1
T+ 1 o+ 1

Therefore, f(x1) < f(z2), and f is strictly increasing.

o If 1 < x93 <0, in the same way and take f(z) = . =-1+ 7 :
-z -z

Solution 3

1. lim e* "% we have:
T—r+00
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Vr € R, —1<sinzx <1
= —1<-—sinz <1

— r—1<z—sinz<zx+1

therefore: x —sinz > o — 1 = €51 > ¢~ and because lim e*~! = 400

T—r+00
then lim e "% = 400,
T—+00
T LK)
=0 cos(2x) — 1
We have cos(2x) = 2cos?z — 1, then
cos(2z) — 1 =2cos’x — 2 = —2(1 — cos? x) = —2sin’ z.
S0
sin? x
(tanz)? o2y —sinz -1
cos(2r) —1  —2sin’z  2coswxsin’z  2cosw
tan’ -1
whene  — 0 then cos?x — 1, therefore, lim& = —.
z—0cos(2z) — 1 2
. lim © [E] We have:
z—0t x
c c c
FEFIFRE
x x x
. x[0}<xc<x[0}+
blzxl — bz~ blx b
. 0<t_ ¢ [c] P
—b blzl T
x c zfc T e c
lim> =0 = 1 ———H = 0,50 li —H _
xll}%)b xir(r)l+b b lx i ar:lgle b lx b
In(1 + 22
. lim n(_—i;:v) We use the L’Hpital’s rule, we set f(z) = In(1 + 2z?), and
=0 SN x
2
g(z) = sin® z, then: f'(x) = rﬂjﬁ’ and ¢'(z) = 2sinz cos .

/ 1 3
f'(z) = .x . , we note that lim 'x =1 hmsmx =1, and
g (z) sinz cosz(l+ x?) z—08in =0

In(1 + 2?%)

=1, so lim 5 =1.

T 2% oz -
=0 (1 + 22) cosx =0 sin®x
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1 — /1 -
5. lim Vite—v J;. we have:
x—0 x
. Vit —V1—x . (I4+2)—(1-2)
lim = lim
. 2
= lim
e=0z(y/1+ 2 — /1 —1x)
= 1.
5 5
| 1
zlnx +5 . xnx( +xlnx> Inzx +xlna:
6 = lim = lim = 0.
T—r+00 J}2+4 T—+00 9 4 rz—+o00 I 4
T 1+—2 1+—2
T €T
Solution 4
1. We have:
f:R — R
sin ax 2 <0
T
r — f(z)= 1 s x=0

2be* —x x>0

\

we note that for x > 0, and x < 0 the function f is continuous. For f to be

continuous on R, it must be continuous on the right and left of 0.

1
we have lim f(z) = lim 2be” —x =2b= f(0) =1,s0 b= —.

z—0t z—0t 2

And lim f(z) = lim PROT _ tim Y — g = f(0)=1,s0a=1.
x—0— r—0~ s x—0— ax
1
Vr——, x>4
2. g(x) = v

(x+a)? z<4

For the function g to be continuous on R, it is enough to study the continuity

at point 4.

1
lim g(x) = lim \/_——:5
x

r—4t r—4t
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lim g(z) = lim (z +a)? = (4 + a)*

r—4- T—4-

g is continuous in 4, i.e.

7 7
lim g(z) = lim g(x) & (4+a)> =~ & |4 +a| = g

z—4t T—4- 4

N
PR A x#0
T

0 =0

We note that the function f is continuous on R*, for the continuity at 0 we

have:

lim f(z) = lim (x +1) = 1.

z—07F z—07F
lim f(x) = lim (z — 1) = —1.
z—0~ z—0~

lim f(x) # lim f(z), so f is not continuous at 0.
z—0t z—0~

o) 1+xcos(é) C 2 #£0

0 s x=0

the function g is continuous on R*.

. . 1
ilg(l]g(x) = QICILI(I) (1 + x cos (E)) =

1
because lim z cos <—> =0 (0 <

x—0 x

T €O (l)‘ < |x]) Since lin%f(x) =1+#
T T—

0 = f(0), then g is not continuous at 0.
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Solution 6

23 +2x+ 3
L f(lj'):x:))—“, Dy =R—{-1}.

f is continuous on Dy, as f is a quotient of two continuous polynoms. We

note that (—1) is a root of the numerator too so on Dy we have

(+1)(2*—2+3) (2*—2x+3)

@) = )@ —at D)~ @ st D)
: _a'—x+3 : : :
SO :cli>H—11 flz) = xll>II—I1:E2——JZ—|—1 = 3 (exist), then f admits an extension by

continuity at the point (—1) given by:

(1+z)"—1

2. g(a) = . D, = R|{0}.

o If n =0, then g(z) =0, so lir%g(av) = 0, and g admits an extension by
x>

continuity on R given by ¢ = 0.
e If n > 1, we use the Newton binomial formula

(14+x)" =

Chab 1"k =14 Clo + C22? + - - + Cla™.
=0
n! n(n —1)
_ 1 = 2 = — ... n —
kl(n — k)’ Co=n, G n Cn =1

1
So g(x) = = [Cla+ C22? + -+ Cla"] = Cla + C%2x + -+ + Cla™
x

such that C* =

and lin%g(x) = C! = n (exist), then g admits extension by continuity on
xT—r

R given by:
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Solution 7

1. Let p > 0 such that Vz € R, f(x + p) = f(z). By induction we can show
VneN: Ve eR f(x+np) = f(x).

since f is not constant, then 3 a, b € R such that f(a) # f(b). We denote
T, = a+np and y, = b+np, assume that f has a limit in +o0, since x,, — 00
then f(z,) — [, but f(z,) = f(a +np) = f(a), so l = f(a).

Likewise with the sequence (y,), y, — oo then f(y,) — [, and f(y,) =
f(b+mnp) = f(b), so L = f(b).

Because f(a) # f(b) we get a contradiction.

2. We consider the function g(x) = f(z) — 2 on [0,4+00[. g is continuous, and

| o w0 ()
xll)rlloog(x) = ngoo(f(x) r) = zgrfoox ( ” 1) = —o0. (because J;ETOO

a, and a — 1 < 0).

So 3 b € R¥ such that g(b) < 0 (also g(x) < 0 if > b) on [0,b]. We have

g is continuous and ¢(0) > 0, ¢(b) < 0, according to the intermediate value

theorem: 3 xg € [0,b] such that g(zg) =0, so f(xg) = .
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CHAPTER 7
Exercises in: The Differentiable
Functions

Exercise 1

Study the differentiability of the function f at the point z( in the following cases:

( ) 1
x“cos—, x#0

1. f(z) = x , xog = 0.

0, =10

1
sinzsin—, x#0
x

exp(ztz), |zl <a

3. fla) = , |wol =a, a € Ry
0, lz| > a

Exercise 2

Let the function f be defined on Ry by:

ar’+br+1, 0<z<1

Ve, x>1

Determine the real numbers a and b so that f is differentiable on R,. Calculate

f'().
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Exercise 3

1. Calculate the derivatives of the following functions:

(a) y1(z) =+vVInz+1+1In(y/z +1).
(b) o) = T

1=’

() ya(x) = eV,
2. Calculate the n — th derivatives of the following functions:

(a) yi(z) = In(1 + ).

1+

(b) pale) = 1

(c) y3(x) = (x + 1)%e™.

(d) ys4(x) = 2?sin 3z.

Exercise 4

Determine the extrema of the following functions:
1. f(z) =sinz? on [0, 7].

2. g(z) =a2*—2>+1, on R.

Exercise 5

1. Can we apply Rolle’s theorem to the following functions?

(a) f(x)=sin®x, on [0, 7).
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sin x s
(b) gla) = - on [, 7]
y—x
2. Show that Vo,y e R}, 0 <o <y: o < ———7— <y
Iny —Inz

Exercise 6

Using I’Hopital’s theorem, calculate the following limits:

1. hml_ﬂ.
z—0 e* — 1

. sin x
2. lim——.
x—)7rx2 — 7'['2

€z2 +x 6235

3. lim————
el cos(gx)
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CHAPTER 8

Solution to exercises in: The

Differentiable Functions

Solution 1

_ 2 1
limM = limm Oy limx cos— =0
z—0 x—0 =0 I — z—0 T

1
because (—m <zcos— <z, and limx = 0). So the function f is differen-

Xz z—0

tiable in zy and f'(0) = 0.

: 1
sinxsin—, x#0

2. f(x) = X , To = 0. we have:
0, r =0
. 1 .
xz)— f(0 sin x sin = sinx 1
limM = lim——F = lim sin — = lim sin —, does not exist.
z—=0 1 —0 z—=0 1 —0 =0 I T z—0 x

(lim S 1), therefore f is not differentiable at zy = 0.

exp(ﬁ), |‘/E’ <a
3. flx) = , |zl = a, a€Ry.

0, 2| > a
We have

exp(z=s), —a<z<a

fx) =

0, r € |—00, —a] U [a, +00]
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the differentiability of f in zp=a: lim M = lim 0-0
z—at Tr—a z—atT — a

0= fifa)

L f@) = fla) _

r—a~ xr —a r—a~ r —a

We have f/(a) = f/(a), then f is differentiable at zy = a, and f’(a) = 0.

The differentiability of f in xqg = —a:

1. = —-— = e I(—
x;g* T+ a z—=—a~ T+ Q fr( &)
— f(— exp(—=+=) — a
lim = J@) = f(za) = lim Ple—z) =0= f/(—a).
r——at T+ a rz——aT T+ a

We have: f/(—a) = f/(—a), then f is differentiable at zy = —a, and f'(—a) =

0.

Solution 2

ar’ +br+1, 0<z<1
Vv, x>1
We determine a and b such that f is differentiable on R , we have y/x is differentiable
on ]0,1[, and ax® + bx + 1 is differentiable on ]1,+oc[, so f is differentiable on
10, 1[U]1, +o0l.
The differentiability of f in xy = 1: (f(1) =1)
lim f(2) = lim V& = 1= £(1)

r—1t

lim f(z) = limaz* +br+1=a+b+ 1.

r—1— r—1—

f is continuous at g = 1 <= lim f(z) = lim f(z) = f(1) = a+b+1 =1

z—1+ z—1—
a = —b. Therefore f is continuous for a = —b.
— f(1 -1 -1 1 1
lim M = lim \/E— = lim Ve = lim = - =
et x—1 es1t x — 1 =1t (e — 1) (Ve +1)  as1vy/z+1 2

fr (D).



. flxe) = f(1) . art+br+1-1 . ar’—ax . ax(x—1)
lim ————~ = lim = lim —— = lim ———=a=
r—1— r—1 Tz—1~ r—1 z—1- x —1 z—1- x—1
f(1).

L . , , 1 1 .
f is differentiable on 2o =1 < f/(1) = f/(1) = a = 2 and b= —a = —5 So fis

1 1
differentiable on g = 1 for a = =, and b = — .
Calculate: f'(x):
L 0<x<1
— x <1,
fly=4 2VF
1
T — 5 z>1
Solution 3
1. Calculate derivatives:
o )= VETFI+In(VE+1) = pf = — b o
Yogylnr+1 0 2+ V7)
\/cosx , —sinx+sinze * —/cosxe
= —— =
* nlw) =g = (1— )
-1
o y3(7) = VT = yh = NG sin(y/z)ec* Ve,
2. Calculate n — th derivatives:
e yi(x) =1In(l+x)
1 -1
/ _ /! —
2 2x3
(3 _ @y _
(5) :2><3><4 (6) :_2><3><4><5.
S () = (=1)"*(n—1)!
! (1+x)"
1+2
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;L 2 o 2X2

Yo = (1_:):)2 Yo = (1 —1’)3

3 2%X2x3 4  2xX2x3x4
S T
(n)_ 2n!

=
o y3(z) = (z+1)%®

Assume that g(z) = (z +1)%, and f(z) =%, so

(y3)™ = S, CF (e=)" ™™ (1 4 2)W
= Yo Ch (=1t e_x'(?)i—!k)! (1+z)5
e y4(r) = 2%sin 3x, according to Leibniz
F =30 CF (sin 32)" P (22)®)
= 3722 ¢in (31: + ”7”)+2xn3"—1 sin (31; + M>+n (n — 1)3"2sin <3m n @)

2

Solution 4

Determine the extremas

o is extremum <= f'(zo) = 0 and f"(zo) # 0.

1. f(z) =sinz? on [0,7], f'(x) = 2z cos z? the critical points are:

f(z) =0 <= 2zcosa? =0 <
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therefore, —

:L’ng—i-k?'r xr = §+/€7T

f"(x) = 2 cos x* — 42? sin 22, so:

e Four z =0, f”(0) =2 > 0, then 0 is an extremum (minimum).

/T i | _ 4(r in (Z
e Four z = §+/<:7r,f( 2+k7r)— 4(2+k7r>sm(2+k7r>7é0.
. . o z _ " ™ — T
if k& is even: sm<2 —I—k‘?T) 1, and f (1/2 + k) 4(2 —i—k:7r> <

0, s0 4/ = + k7 is an extremum (maximum).

— if kis odd sin (g —|—k7r> = —1,andf”(,/sing + km) =4 (,/gjtlm) >

T , .
0, so 5 + km is an extremum (minimum).

ﬁ

2. g(z)=a*—2>+1,on R

g'(x) = 423 — 322, the critical points are:

J@)=0<= 42> -3 =0 <= 2?(dr — 3) = 0 <=

Sl O

g"'(z) = 1222 — 62

3 3 9

3
e For z = 7 g”(Z) =1 0, so 1 is an extremum (minimum).

e Forz =0, ¢"(0) = 0 = fO® (1) =242 — 6 = f®(0) # 0, so 0 is not,

an extremum.

Solution 5

1. (a) f(z)=sin’z, on [0, ]

we have f is continunous on R, so it is continuous on [0, 7], and differen-

tiable on |0, 7[.
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f(0) =0, and f(7m) =0 = f(0) = f(m), so we can apply Rolle’s theorem

on f.
(b) the same for g(z) = S;nxx, on [—5, 5]
y—

2. We show that z < < y. Vx, y € R%, we apply the Mean value

Iny —Inxz +

theorem on the function f(¢) = Int on the iterval [z, y] such that 0 < z < y.
f(t) = Int is continuous on [z,y], and differentiable on |z, y|[, then according

to the Mean value theorem:

— 1 Iny-—1 —
Jx €|z, yl: fllc) = Fy) = f(z) so- =47 MT_ . Y7L , and
Yy—x c y—x Iny —Inzx
y—x
¢ €]z, y[, then r < —— <y
Iny —Inzx
Solution 6
Il l st Y
z—0 e — 1 0
. 1l—cosx . (1—cosz) . sinx
lim—— = lim—— -~ = lim = 0.
=0 % — 1] =0 (e* — 1)’ z—0 ¥
. sinzx 0
2 il—lgrx? —m2 0
sin x (sinz)’ __cosz  —1

o2 — w2 aon(r? —w2)  aom 2 27
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CHAPTER 9
Exercises in: Elementary
Functions

Exercise 1

Consider the function f defined by

1. On what set is this function defined and continuous?
2. Show that f is extendable by continuity on [0, ool.

3. Calculating the derivative of f wherever it is not a problem. On what set is f

differentiable, what can we deduce about the graph of f at 07
4. Study the variations of f on [0, 00[. Then calculate the limit of f in co.

5. Sketch the graph of f.

Exercise 2

1. Let a and b be two real numbers, show that:
1
ch(a)ch(b) = §(ch(a +b) + ch(a —D)).

2. Show that Vt € R

1 — tan?(t)

COS(Qt) = m
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Exercise 3

Soit a € R, a > 0. Solve:

In(ch(x)) = a.

Exercise 4

Calculate limits:

1. lim, oo e %(ch®(x) — sh3(x)).

2. lim, 4o — In(ch(x)).
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CHAPTER 10
Solutions to exercises in:
Elementary Functions

Solution 1

1. We have f(z) = 2% = e*™*. so f is defined and continuous on D; =]0, +o0|.

2. We have lim zlnz = 0, then lim f(z) =% = 1.

z—0t z—0t

In other words f is extendable by continuity to 0 by f(0) = 1.

1
3. fl(x) = (lnx + 1z X 5) e = (Inx + 1) e*®. f is differentiable on |0, +o0.

We have lim f'(x) = —oo. Therefore f is not differentiable at 0 and the graph

z—0t

of f admits a vertical half-tangent at 0.

4. The sign of the derivative is the same as that of In(x) + 1.

1
In(z)+1=0 < ln(x):—1<:>x:e_125
1 1
O<x<g = ln(x)<ln(g>:—1<:>ln(x)+1<0.

The same for:
1
r>—-=1In(z)+1>0.
e

1 1
So f is decreasing on } 0,— [, and it is increasing on } —, 400 {
e e

It is clear that lim f(x) = +o0.

T——+00

5. The graphe of f



20

Solution 2

1. we have, in development

1 1
ch(a) ch(b) = 1 (e* +e %) (eb + 6_b) =1 (e“+b + e~ (atb) 4 pa—b 4 e_(“_b))
1
=5 (ch(a +b) +ch(a—1)).
2. We have

- sin?(t)
1 —tan?(t) cos?(t)
1+tan?(t) L+ sin?(t)
cos?(t)

= M) _ cos?(t) — sin(t) = cos(2t).

Solution 3

In(ch(z)) =a <= ch(x)=e¢"
e’ +e " 1

——— =el <= "+ — =2
2 er

We pose: X = €%, so
p )
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1
X+X = 2% <= X?4+1=2Xe"

— X?2-92Xe"+1=0

A =4e* — 4 =4(e** — 1) > 0, the roots are

2 —2v/e2 — 1
> —

X = e —+ve2e —1 and Xy = e + Ve2e — 1

We note that e?* > e2* — 1, hence e > v/e2¢ — 1, which shows that X; > 0, for X5

it’s obvious. so the solutions of In(ch(z)) = a are z; = In (e” — Ve>* — 1) and x5 =

In (e“ + Ve2a — 1).

Solution 4

1.

lim e~ (ch3(x) — sh3(z)). We have
T—>+00
e (ch3(x) —sh®(z)) = e@ c e Y
2 2
- _68 (€37 + 3e® 4 3¢ + 737 — (e37 — 3e” + 3e7% — e737)]
e 3 1
— T 2 =3z — = ~ 4z
3 (6e” + 2e7°7) 1 7e
3 1 3
: —x 3 _ 3 — : = T4 _ T
SO xgrilooe (ch3(x) — sh3(x)) xEIEoozl + e 1
: : e’ e ” : L l4+e™
mgriloo:c In(ch(z)) = $Erfoox In (T) = zl_l}gloox In (e T)

. z 1 —+ 6_2:0 . 1 + e—?m
= e - ()| = i - (S5 )

1 | 1
We have lim e —. Hence lim zIn(ch(z)) = —1In <—> = In(2).

r—+00 2 2 r—+00 2
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