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INTRODUCTION

Functional Analysis studies the functions, as elements of certain spaces, called functional. It

has been developed based mainly on the study of normed vector spaces; and, more particularly,

complete normed vector spaces (Banach spaces). The benefit of having complete normed

spaces is that we have properties of existence within them: for any sequence of Cauchy, there

is an element which is its limit. This course is aimed to 3rd year mathematics students, during

semester 5. It requires a good knowledge of general Topology. Having some knowledge of

complex variable functions, integrals, series, linear algebra,..etc. will also be useful.
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CHAPTER 1

BANACH SPACES

In this chapter, we will give some generalities about abstract normed spaces, with examples,

and we will treat the case of finite-dimensional spaces. Some topological notions are added

in order to simplify comprehension and resolution of exercises in fifth and sixth semesters.

This will also be an opportunity to set certain notations.

1.1 Normed vector spaces

1.1.1 Norm

Definition 1.1.1. Let E be a real or complex vector space. A norm on E is an application,

most often denoted ‖.‖:

‖ · ‖ : E −→ R+ = [0, +∞[

having the following three properties:

1. a) ‖x‖ ≥ 0 for all x ∈ E and b) ‖x‖ = 0 ⇐⇒ x = 0 ;

2. ‖λx‖ = |λ|‖x‖ , ∀x ∈ E, ∀λ ∈ K (homogeneity);

3. ‖x + y‖ ⩽ ‖x‖ + ‖y‖, ∀x, y ∈ E (triangular inequality).
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CHAPTER 1. BANACH SPACES

If we delete 1) b), we say that ‖.‖ is a semi-norm. Note that then 2) nevertheless results

in ‖0‖ = 0.

1.1.2 Norm proprieties

Proposition 1.1.1. The function x ∈ E 7→ ‖x‖ ∈ R+ is continuous

Proof. Just use inequality
∣∣ ‖x‖ − ‖y‖

∣∣ ≤ ‖x − y‖ .

From a norm, we obtain a distance on E by setting d(x, y) = ‖x − y‖ .

We then define the :

• Open balls :
◦
B (x, r) = {y ∈ E; ‖x − y‖ < r};

• Closed balls : B(x, r) = {y ∈ E; ‖x − y‖ ⩽ r},

which makes it possible to define a topology on E; a part A of E is open (and we also say

that A is an open set of E) if for all x ∈ A there exists a ball centered at x, of radius

r = rx > 0, contained in A. There is no need to specify whether it is an open ball or a closed

ball. Indeed, if A contains the closed ball B(x, r), it contains a fortiori the open ball
◦
B (x, r);

and, conversely, if A contains the open ball
◦
B (x, r), it contains the closed ball B(x, r′), for

all r′ < r. Note that the empty set ∅ is an open set (since there is no x in A, the property

defining open set is trivially verified). The entire space E is clearly an open space. It follows

from the definition that any union of open parts is an open set. Any intersection of a finite

number of open sets is an open one. If x ∈ A = A1 ∩ · · · ∩ An, and
0
B (x, rk) ⊆ Ak, then

◦
B (x, r) ⊆ A, with r = min (r1, . . . , rn)

A part V containing the point x0 ∈ E is a neighborhood of x0 if it contains a ball (open

or closed) with center x0, and with radius r > 0.

A part is closed (we also say that it is closed set) if its complement is open. By comple-

mentarity, we obtain that ∅ and E are closed, that the intersection of any family of closed

sets is still closed one, as well as any union of a finite number of closed sets. If A ⊆ E is a

part of E, we call interior of A, and we write
◦
A, or int(A), the largest open set contained in
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CHAPTER 1. BANACH SPACES

A (it is the union of all the open sets contained in A), and we call closure, of A the smallest

closed set containing A (it is the intersection of all closed sets containing A). We denote by Ā

the closure of A. We recall (it’s easy to see) that x ∈ Ā if, and only if, there exists a sequence

of elements of A converging to x. We say that A is dense in E if Ā = E.

Proposition 1.1.2. Any open ball is an open set and any closed ball is a closed set.

Proof. 1) Let x ∈
◦
B (x0, r0) and let 0 < r < r0 − ‖x − x0‖ > 0. For ‖x − y‖ ⩽ r, we have

‖y − x0‖ ≤ ‖y − x‖ + ‖x − x0‖ ≤ r + ‖x − x0‖ < r0; therefore B(x, r) ⊆
◦
B (x0, r0).

2) Let x /∈ B(x0, r0) and let 0 < r < ‖x − x0‖ − r0 . Since, if ‖y − x‖ ≤ r, we have

‖y − x0‖ ≥ ‖x0 − x‖ − ‖x − y‖ ≥ ‖x0 − x‖ − r > r0, then B(x, r) ⊆ [B(x0, r0)]c.

Remarks.

(i) Closed subsets are important while studying the solution of equation, where one looks

for approximate solutions by constructing sequences of approximations, of all which belong

to a set Y of functions with certain properties. If Y is a closed set and if the sequence is

convergent, the limit also belongs to Y , giving a convergent sequence of approximations in

the solution set Y .

(ii) It is clear that Y ⊂ Ȳ , and Y = Ȳ if and only if Y is closed.

All the preceding topological notions do not involve the fact that E is a vector space, nor

that the distance is defined from a norm; they are therefore valid in any metric space. On

the other hand, we have a specific property in normed spaces, which justifies the notation of

open balls: the interior of B(r, r) is the open ball
◦
B (x, r) and the closure of the open ball

◦
B (x, r) is the closed ball B(x, r) (see below).

Definition 1.1.2. When a vector space E is endowed with a norm and the topology associated

with this norm, ws say that it is a normed vector space, or, more simply, a normed space.

Notation. We will denote by BE the closed ball B(0, 1) with center 0 and radius 1.

We will say that it is the unit ball of E.
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CHAPTER 1. BANACH SPACES

Proposition 1.1.3. If E is a normed space, then the mapping:

+ : E × E → E and K × E → E

(x, y) 7→ x + y (λ, x) 7→ λx

are continuous.

Definition 1.1.3. Let E be a real or complex vector space, provided with a topology. We say

that E is a topological vector space (t.v.s) if the maps:

+ : E × E → E and K × E → E

(x, y) 7→ x + y (λ, x) 7→ λx

are continuous.

We say that a topological vector space is locally convex space (l.c.s), if every point has a

base of convex neighborhoods.

Balls are convex, and any normed space is a (t.v.s) locally convex.

Corollary 1.1.1. The translations:

τa : E −→ E (a ∈ E)

x 7−→ x + a

and the dilations:
hλ : E −→ E (λ ∈ K)

x 7−→ λx

are continuous. These are homeomorphisms (if λ 6= 0 for dilations).

Corollary 1.1.2. All closed balls of radius r > 0 are homeomorphic to each other, therefore

to BE. All open balls of radius r > 0 are homeomorphic to each other.
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CHAPTER 1. BANACH SPACES

Corollary 1.1.3. The closure of the open ball
◦
B (x, r) is the closed ball B(x, r) and the

interior of the closed ball B(x, r) is the open ball
◦
B (x, r) .

Proof. 1) The closure of the open ball is obviously contained in the closed ball, since the

latter is closed in E. Conversely, if y ∈ B(x, r), we have

yn = 1
nx +

(
1 − 1

n

)
y ∈

◦
B (x, r) car

∥∥∥x −
[

1
nx +

(
1 − 1

n

)
y
]∥∥∥ =

(
1 − 1

n

)
‖x − y‖ < r; as

y = limn→∞ yn, we obtain y ∈
◦
B (x, r).

2) Being open in E, the open ball is contained in the interior of the closed ball. To show

the reverse inclusion, show that if y is not in the open ball, then no ball B(y, ρ) of center y

and radius ρ > 0 is contained in B(x, r). But if y is not in
◦
B (x, r), then we have ‖y − x‖ ≥ r.

For all ρ > 0, the vector z = y + ρ
‖y−x‖(y −x) is in B(y, ρ), since ‖z − y‖ = ρ

‖y−x‖ ‖y − x‖ = ρ,

but is not in B(x, r), because ‖z − x‖ =
∥∥∥y + ρ

‖y−x‖(y − x) − x
∣∣∣ =

(
1 + ρ

‖y−x‖

)
‖y − x‖ ≥(

1 + ρ
|y−x|

)
r > r. So y is not in the interior of B(x, r).

Corollary 1.1.4. If F is a vector subspace of E, then its closure F̄ is a vector subspace too.

Proof. Let be x, y ∈ F̄ and a, b ∈ K. There exist xn, yn ∈ F such that xn −→
n→∞

x and

yn −→
n→∞

y. By Proposition 1.4.1, we have ax+by = limn→∞ (axn + byn); and as axn+byn ∈ F ,

we obtain ax + by ∈ F̄ .

1.1.3 Some common examples

Spaces of sequences

1) a) It is immediate to see that if we put, for x = (x1, . . . , n) ∈ Kn :


‖x‖1 = |x1| + · · · + |xn|

‖x‖∞ = max {|x1| , . . . , |xn|}

Then ‖.‖1 and ‖.‖∞ are two norms on Kn.

9



CHAPTER 1. BANACH SPACES

We note ℓn
1 = (Kn, |.|1) and ℓn

∞ = (Kn, |.|∞).

b) If p is an real number that satifies 1 < p < ∞, a norm on Rn is obtained when we put:

‖x‖p =
(

n∑
k=1

|xk|p
)1/p

We note ℓn
p = (Kn, |.|p). Only triangular inequality:

(
n∑

k=1
|xk + yk|p

)1/p

⩽
(

n∑
k=1

|xk|p
)1/p

+
(

n∑
k=1

|yk|p
)1/p

,

called Minkowski inequality, is not obvious; it can be demonstrated as follows: By convexity

of the function t ∈ R+ 7→ tp, we have [αu + (1 − α)v]p ⩽ αup + (1 − α)vp if 0 ⩽ α ⩽ 1 and

u, v ⩾ 0. Take α = ‖x‖p

‖x‖p+‖y‖p
(such that 1 − α = ‖y‖p

‖x‖p+‖y‖p
),u = |xk|

‖x‖p
and v = |yk|

‖y‖p
(if

‖x‖p = 0 or ‖y‖p = 0, the result is abvious). By summing, we get

1
(‖x‖p + ‖y‖p)p

n∑
k=1

(|xk| + |yk|)p ⩽ 1,

which gives the result, since |xk + yk| ⩽ |xk| + |yk| for all k = 1, . . . , n.

A very useful inequality is the Hölder’s inequality . Recall that if 1 < p < ∞, the

conjugate exponent of p is the number q satisfying 1
p + 1

q = 1 . Explicitly, q = p
p−1 . We

have 1 < q < ∞, and p is the conjugate exponent of q. They are also linked by the equality

(p − 1)(q − 1) = 1 . Hölder’s inequality is then stated as follows if 1 < p < ∞ and q is the

conjugate exponent of p, then, for all x1, ..., xn, y1, ..., yn ∈ K, we have:

n∑
k=1

|xkyk| ⩽
(

n∑
k=1

|xk|p
)1/p( n∑

k=1
|yk|q

)1/q

If p = 2, then q = 2: this is the Cauchy-Schwarz inequality (due, in this form, to Cauchy

in 1821).

To show Hölder’s inequality, we start from the inequality ab ≤ ap

p + bq

q , for a, b ≥ 0 (this is

10



CHAPTER 1. BANACH SPACES

a consequence of the convexity of the function t ∈ R+ 7→ tp

p and of the fact that its derivative

t 7→ tP −1 is the reciprocal (or inverse) of the derivative t 7→ tq−1 of t 7→ tq

q , as we can see it

just as simply, for example by studying the variations of the function t 7→ tp

p + bq

q − bt); we

apply it with a = |xk|
‖x‖p

and b = |yk|
‖y‖q

(we can assume ‖x‖p > 0 and ‖y‖q > 0 ), and we add

up. We obtain 1
‖x‖p‖y‖q

∑n
k=1 |xkyk| ≤ 1

p + 1
q = 1, hence Hölder’s inequality.

2) These examples generalize to infinite dimension.

a)Let:

c0 =
{

x = (xn)n⩾1 ∈ KN∗ ; limn→∞ xn = 0
}

,

and:

ℓ∞ =
{

x = (xn)n⩾1 ∈ KN∗ ; (xn)n is bounded
}

;

we provide them with the norm defined by:

‖x‖∞ = supn≥1 |xn| .

b) for 1 ≤ p < ∞, we set:

ℓp =
{

x = (xn)n⩾1 ∈ KN∗ ;
∞∑

n=1
|xn|p < +∞

}
;

it is provided with the norm defined by:

‖x‖p =
( ∞∑

n=1
|xn|p

) 1
p .

The fact that ℓp is a vector subspace of the space of sequences, and that ‖.‖p , i.e. a norm

on ℓp is deduced from the Minkowski inequality (obvious when p = 1) generalized as follows:

( ∞∑
n=1

|xn + yn|p
)1/p

⩽
( ∞∑

n=1
|xn|p

)1/p

+
( ∞∑

n=1
|yn|p

)1/p

,

For all x1, x2, . . . , y1, y2, . . . ∈ K. We obtain it from the previous one by making the

number of terms tend towards infinity: for all N ⩾ 1, we have:
(∑N

n=1 |xn + yn|p
)1/p

⩽

11
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(∑N
n=1 |xn|p

)1/p
+
(∑N

n=1 |yn|p
)1/p

⩽ (
∑∞

n=1 |xn|p)1/p + (
∑∞

n=1 |yn|p)1/p

Hölder’s inequality is generalized in the same way. If 1 < p < ∞ and if q is the conjugate

exponent of p, we have:

∞∑
n=1

|xnyn| ⩽
( ∞∑

n=1
|xn|p

)1/p( ∞∑
n=1

|yn|q
)1/q

.

In particular, when x = (xn)n ∈ ℓp and y = (yn)n ∈ ℓq, we have xy ∈ ℓ1 and ‖xy‖1 ≤ ‖x‖p‖y‖q

.

The spaces ℓp are in fact special cases of the Lebesgue spaces Lp(m), whose definition we

will recall below, corresponding to the counting measure on N∗ .

Function spaces

1) a) Let A be a set and let the space Fb(A) be the space (which we also note ℓ∞(A) If we

want to focus on the ’family of elements’ aspect) of functions bounded on A, with values in

K = R or C. If we set:

‖f‖∞ = supx∈A |f(x)| ,

Then we have a norm, called the uniform norm. The topology associated with this norm is

the topology of uniform convergence; indeed, it is clear that ‖fn − f‖∞ −→
n→∞

0 if and only if

(fn)n converges uniformly on A to f .

b) Let K be a compact space and C (K) the space of continuous functions on K (with

scalar values). Any continuous function on a compact being bounded, C (K) is a vector

subspace of Fb(K). It is usually provided with the induced norm ‖f‖∞ = supx∈k |f(x)|.

Note that, when K = [0, 1], for example, we can also provide C ([0, 1]) with the norm

defined by:

‖f‖1 =
∫ 1

0
|f(t)|dt,

that verifies |f |1 ≤ |f |∞ .

c) On the space C ([0, 1]) of functions k times continuously derivable on [0, 1], the norm

12
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can be set as fellown:

‖f‖(k) = max
{

‖f‖∞,
∥∥f ′∥∥

∞ , . . . ,
∥∥∥f (k)

∥∥∥
∞

}

2) Lebesgue spaces.

Let (S, F , m) be a measured space; for 1 < p < ∞, we denote L p(m) the space of all

measurable functions f : S 7→ K = R or C such that :

∫
S

|f(t)|pdm(t) < +∞,

and we put:

‖f‖p =
( ∫

S
|f(t)|pdm(t)

) 1
p

.

Note that ‖f‖p = 0 if and only f = 0 m-almost everywhere.

Theorem 1.1.1 ( Minkowki Inequality ). Set 1 ≤ p < ∞. for f, g ∈ L p(m), we have the

Minkowki Inequality :

(∫
S

|f + g|pdm

)1/p

⩽
(∫

S
|f |pdm

)1/p

+
(∫

S
|g|pdm

)1/p

It follows that L p(m) is a vector subspace of the space of measurable functions and that ‖.‖p,

is a semi-norm on L p(m). For p = 1, the inequality is obvious.

Proof. The proof is the same as for the sequences. We place ourselves in the case p > 1.

We can assume ‖f‖p > 0 and ‖g‖p > 0(because otherwise f = 0 m-a.e. and then f + g =

g m-a.e, or g = 0 m-a.e and then f + g = m-a.e). We apply the convexity inequality

[αu+(1−α)v]p ⩽ αup +(1−α)vp with α = ‖f‖p/ (‖f‖p + ‖g‖p) ∈ [0, 1], u = |f(t)|/‖f‖p and

v = |g(t)|/‖g‖p. Since α/‖f‖p = (1 − α)/‖g‖p = 1/ (‖f‖p + ‖g‖p), we have
(

|f(t)|+|g(t)|
‖f‖p+‖g‖p

)p
⩽

13
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α
‖f‖p

p
|f(t)|p + 1−α

‖g‖p
p
|g(t)|p, hence, by integrating:

∫
S

(|f(t)| + |g(t)|)p

(‖f‖p + ‖g‖p)p dm(t) ⩽ α

‖f‖p
p

∫
S

|f(t)|pdm(t) + 1 − α

‖g‖p
p

∫
S

|g(t)|pdm(t)

= α + (1 − α) = 1

this gives the result since |f(t) + g(t)| ≤ |f(t)| + |g(t)|.

We saw that ‖.‖p , is not a norm in general, since ‖f‖p = 0 if and only f = 0 m-almost

everywhere. IfN denotes the space of measurable functions f : S 7→ K null m-almost every-

where, the quotient space Lp(m) = L p(m)/N is then normed if we set ‖f̃‖p = ‖f‖p.

In practice, we will not distinguish between the function and its m-equivalence class almost

everywhere f̃ , and we will therefore write f ∈ Lp(m) instead of f ∈ L p(m). However, some-

times one have to be careful, especially when handling non-countable quantities of functions.

This distinction may already occur for questions of measurability. We can also see this in the

following example:

Let F be the set of all finite parts of [0, 1]; for all A ∈ F , we have, in terms of the Lebesgue

measure, 1A = 0 a.e.; so 1̃A = 0̃. But, on the other hand, supA∈F 1A(x) = 1 for all x ∈ [0, 1];

so (supA∈F 1̃A) = 1̃.

As mentionned for sequences, Hölder’s inequality is very useful.

Theorem 1.1.2 (Hölder Inequality). If 1 < p < ∞ and if q is the conjugate exponent of p,

then we have, for f ∈ L P (m)and g ∈ mathscrLq(m), Hölder’s inequality:

∫
S

|fg|pdm ⩽
(∫

S
|f |pdm

)1/p (∫
S

|g|pdm

)1/p

For p = q = 2, we call it Cauchy-Schwarz inequality:

∫
S

|fg|2dm ⩽
(∫

S
|f |2dm

)1/2 (∫
S

|g|2dm

)1/2
,

if f, g ∈ L 2(m). (It was demonstrated by Bouniakowski in 1859 and re-proven by Schwarz

in 1885; it generalizes the inequality for sums demonstrated by Cauchy). It is demonstrated
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in the same way as for sums, by integrating instead of adding.

Proof. We can assume ‖f‖p > 0 et ‖g‖q > 0 because otherwise f = 0 m − a.e. or g = 0

m − a.e., and then fg = 0m − a.e. We use the inequality ab ⩽ ap

p + bq

q with a = |f(t)|/‖f‖p

and b = |g(t)|/‖g‖q. By integrating, we obtain:

∫
S

|f(t)g(t)|
‖f‖p‖g‖q

dm(t) ⩽ 1
p

∫
S

|f(t)|p

‖f‖p
p

dm(t) + 1
q

∫
S

|g(t)|q

‖g‖q
q

dm(t) = 1
p

+ 1
q

= 1

hence the result.

As an application we have the following result.

Proposition 1.1.4. Let (S, F , m)be a measured space of finite measure. Then, for

1 < p1 < p2 < ∞, we have L p2(m) ⊆ L p1(m) ⊆ L (1(m). Moreover if m(S) = 1 (i.e. m is

a probability measure), then ‖f‖1 < ‖f‖p1 < ‖f‖p2 for all f ∈ L p2(m).

Proof. We can assume p1 < p2 Let p = p2
p1

. As p > 1, we can use Hölder’s inequality:

∫
S

|f |p1dm ⩽
(∫

S
1qdm

)1/q (∫
S

(|f |p1)p dm

)1/p

= [m(S)]1/q
(∫

S
|f |p2dm

)1/p

;

hence ‖f‖p1 ≤ [m(S)]
1

p1
− 1

p2 ‖f‖p2 .

The second inclusion is obtained by replacing p2 by p1 and taking p1 = 1 .

Remark 1. On the contrary, for spaces ℓp, we have the opposite inclusions;

for 1 < p1 < p2 < ∞:

ℓ1 ⊆ ℓp1 ⊆ ℓp2 ⊆ c0 ⊆ ℓ∞.

In addition, ‖x‖∞ ≤ ‖x‖p2 ≤ ‖x‖p1 ≤ ‖x‖1 for all x ∈ ℓ1 .

Indeed, if x ∈ ℓp2 ,
∑∞

n=1 |xn|p2 < +∞ ; so xn −→
n→∞

0 .

Moreover, for all n ≥ 1, |xn| ⩽ (
∑∞

n=1 |xn|p2)1/p2 = ‖x‖p2 ; therefore

‖x‖∞ = supn⩾1 |xn| ⩽ ‖x‖p2. Now, if x ∈ ℓp1 is not zero, let’s set x′ = x/‖x‖p1. We

have ‖x′‖p1
= 1, that is to say

∑∞
n=1 |x′

n|p1 = 1. It follows that |x′
n|p1 ⩽ 1, and therefore

15
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|x′
n| ⩽ 1, for all n ⩾ 1. Then, for all n ⩾ 1, |x′

n|p2 ⩽ |x′
n|p1, since p2 ⩾ p1. It follows that∑

n=1 |x′
n|p2 ⩽∑

n=1 |x′
n|p1 = 1, that is,

∑
n=1 |xn|p2 ⩽ ‖x‖p2

p1. So x ∈ ℓp2 and ‖x‖p2 ⩽ ‖x‖p1.

Remark 2. On the other hand, it is important to note that L p1(R) ⊈ L p2(R) for all

p1 /∈ p2 .

Indeed, if p1 < p2, the function defined by f(t) = 1/t1/p2 for 0 < t ⩽ 1, and by f(t) = 0

elsewhere, is in L p1(R) because p1/p2 < 1, but not in L p2(R). If p1 > p2, then the function

defined by f(t) = 1/t1/p2 for t ⩾ 1, and f(t) = 0 for t < 1, is in L p1(R) because this time

p1/p2 > 1, but is not in L p2(R).

1.1.4 Equivalent norms

Definition 1.1.4. Let E be a vector space with two norms ‖.‖ and ‖|.‖| . We say that ‖|.‖|is

finer than ‖.‖( and that ‖.‖ is less fine than ‖|.‖|) if it exists a constant K > 0 such that:

‖x‖ ≤ K‖|x‖|, ∀x ∈ E.

This is equivalent to saying that the identity application:

idE : (E, ‖|.‖|) → (E, ‖.‖)

is continuous.

This is still equivalent to saying that:

B‖|.‖|(0, r/K) ⊆ B‖.‖(0, r);

the balls for ‖|.‖| are therefore "smaller" than the balls for ‖.‖: they separate the points better;

more precisely, the topology defined by ‖|.‖| is finer than that defined by ‖.‖ (there are more

open sets).

Exemple. In C ([0, 1]), the norm ‖.‖∞ is finer than the norm ‖.‖1.

16
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Definition 1.1.5. We say that two norms ‖.‖ and ‖|.‖| on the vector space E are equivalent

if there exist two constants K1, K2 > 0 such that:

K1‖x‖ ≤ ‖|x‖| ≤ K2‖x‖, ∀x ∈ E.

In other words, each is thinner than the other.

This amounts to saying that the identity application Id carries out an isomorphism

of E on itself (or rather of E equipped with ‖.‖ on E equipped with ‖|.‖| ). This also means

that ‖.‖and ‖|.‖|. define the same topology on E.

Exemples.

1) In Kn the norms ‖.‖p for 1 ≤ p ≤ ∞ are equivalent:

‖x‖∞ ≤ ‖x‖p ≤ ‖x‖1 ≤ n‖x‖∞.

We will see that in fact all the norms on Kn are equivalent to each other.

2) In C ([0, 1]), the norms ‖.‖∞ and ‖x‖1 are not equivalent.

1.2 Banach spaces

1.2.1 Cauchy sequences

Definition 1.2.1. A sequence (xk)k of elements of a normed space E is called a Cauchy

sequence if:

(∀ε > 0) (∃N ⩾ 1) k, l ⩾ N =⇒ ‖xk − xl‖ ⩽ ε.

Any convergent sequence is Cauchy sequence.

Definition 1.2.2. We say that a normed space is complete if every Cauchy

sequence is convergent. We call Banach space any complete normed space.
Exemples.
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a) It is immediate to see that ℓn
p = ((K)n, ‖.‖p) is complete for 1 ≤ p ≤ infty.

b) The spaces c0 and ℓp, for 1 ≤ p ≤ ∞ are complete .

c) (C (K), ‖.‖∞) is complete: any uniformly Cauchy sequence is uniformly convergent,

and if they are continuous, the limit is continuous too.

On the other hand, (C ([0, 1]), ‖.‖1) is not complete.

d) (C k([0, 1]), ‖.‖∞) is not complete for k ≥ 1, but (C k([0, 1]), ‖.‖(k)) is complete.

e) Lebesgue spaces are complete. This is the subject of the following theorem.

Theorem 1.2.1 (Riesz-Fisher theorem ). For any measured space (S, T , m), and

for 1 ≤ p < ∞, the space Lp(m) is a Banach space.

E. Fisher et. F. Riesz actually demonstrated, independently, in 1907 that L2([0, 1]) is

isomorphic to ℓ2; this essentially relies on the fact that L2([0, 1]) is complete (see Chapter 2

on Hilbert spaces); this is why we give the name Riesz-Fisher to this theorem, proven in fact,

for Lp([0, 1]) and 1 < p < ∞, by F. Riesz in 1910 (and to distinguish it from the many other

theorems due to F. Riesz).

proof of lemma. Let (Fn)n be a Cauchy sequence in LP (m). Let’s choose a representative

fn ∈ L p(m) de Fn.

a) As the sequence is Cauchy, we can construct a subsequence (fnk
)j with (n1 < n2 < . . .)

such that: ∥∥fnk+1 − fnk

∥∥
p
⩽ 1

2k
∀k ⩾ 1.

Let’s put: 
gk =

∑k
j=1

∣∣∣fnj+1 − fnj

∣∣∣
g =

∑∞
j=1

∣∣∣fnj+1 − fnj

∣∣∣
These functions are measurable and we have:

‖gk‖p ⩽
k∑

j=1

∥∥∥∣∣∣fnj+1 − fnj

∣∣∣∥∥∥
p

=
k∑

j=1

∥∥∥fnj+1 − fnj

∥∥∥
p
⩽

k∑
j=1

1
2j

⩽ 1.

18



CHAPTER 1. BANACH SPACES

Fatou’s Lemma, applied to the sequence
(
gp

k

)
k⩾1, gives:

∫
S

gpdm ⩽ lim inf
k→∞

∫
S

gp
kdm = lim inf

k→∞
‖gk‖p

p ⩽ 1.

The function gp is therefore integrable. In particular it is finished almost everywhere;

so g too. This means that the series
∑

k≥1(fnk+1(t) − fnk
(t)) converges absolutely, for

almost all t ∈ S.

Hence, let’s put:

f(t) =


fn1(t) +

∑∞
k=1

(
fnk+1(t) − fnk

(t)
)

si g(t) < +∞

0 otherwise

Then f is measurable and:

f(t) = lim
k→∞

fnk
(t) ∀t ∈ S almost everywhere .

b) It remains to be seen that the sequence is from cauchy, there exists an integer N ≥ 1

such that:

n, k ⩾ N =⇒ ‖fn − fk‖p ⩽ ε.

For k ⩾ N , Fatou’s Lemma gives:

∫
S

|f − fk|p dm ⩽ lim inf
j→∞

∫
S

∣∣∣fnj − fk

∣∣∣p dm ⩽ εp.

We first deduce that (f − fk) ∈ L p(m), therefore that f = (f − fk) + fk ∈ L p(m);

and then, since ε > 0 is arbitrary, that limk→∞ ‖f − fk‖p = 0.

c) Finally, if we write F ∈ Lp(m) for the m-almost everywhere equivalence class of f , we

have limk→∞ ‖F − Fk‖p = limk→∞ ‖f − fk‖p = 0.

Remark. It is worth mentioning that the following underlined and very important result
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has been demonstrated (we will no longer make a distinction between a function and its

equivalence class almost everywhere ):
Theorem 1.2.2. If fn

n→∞
7→ f in Lp(m), with 1 ⩽ p < ∞, then we can extract a

sub- sequence (fnk
)k which converges almost everywhere to f .

Remarks. a) It’s possible that the sequence itself will not converge anywhere. For example,

on S =]0, 1], i.e. fn = I ] 1
2k , l+1

2k

] when n = 2k + l, 0 ⩽ l ⩽ 2k − 1:

Hence, ‖fn‖p = 1
2k/p for 2k ⩽ n ⩽ 2k+1 − 1; it fellows that, fn −→

n→∞
0 in Lp([0, 1]), but

for no t ∈]0.1 [ , the sequence (fn(t))n is convergent. However, the sub-sequence (f2k)k⩾0, for

example, pointwise convergences a.e.

b) It may be noted that C [−1, 1] is not a closed subspace in L2[−1, 1].

c) The space C (Ω) is a dense subspace of L2(Ω).

d) The set of all polynomials is dense in L2(Ω).

1.3 Normed finite-dimensional vector spaces

1.3.1 Equivalence of norms

Theorem 1.3.1. On a finite-dimensional vector space, all norms are equivalent to

each other.

Proof. 1) Let ‖.‖ be an arbitrary norm on E. We will show that it is equivalent to a

particular norm on E, so that, by transitivity, two arbitrary norms will be equivalent.

2) Let {e1, . . . , en} be a base of E. If x =
∑n

k=1 ξkek, we set:

|‖x | ‖ = max {|ξ1| , . . . , |ξn|} .
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Thus, (E, ‖| · |‖) is isometric to (Kn, ‖ · ‖∞) = ℓn
∞(K), by the application

V : Kn 7−→ E

a = (a1, . . . , an) 7−→ V (ξ) =
n∑

k=1
akek.

We also have:

‖x‖ ⩽
n∑

k=1
|ξk| ‖ek‖ ⩽

(
n∑

k=1
‖ek‖

)
· max

1⩽k⩽n
|ξk| = K‖|x‖|.

3) This means that the identity mapping idE : (E, ‖|.‖|) → (E, ‖ · ‖) is continuous . So,

the application:

N : (E, |‖ · ‖|) −→ R+

x 7−→ ‖x‖

is also continuous, by the Proposition 1.1.1

4) Or:

Sn = {a = (a1, . . . , an) ∈ Kn; ‖a‖∞ = 1} .

It is a closed and bounded, therefore compact, part of Kn (note that the norm ‖ · ‖∞

defines the usual topology on Kn ). so :

S = {x ∈ E; ‖|x‖| = 1}

is a compact part of (E, ‖|.‖|) (by isometry: S = V (S∞) ).

5) It follows that there exists x0 ∈ S such that ‖x0‖ = N (x0) = infx∈S N(x) = infx∈S ‖x‖.

Since x0 6= 0 (since ‖‖x0‖ = 1), we have c = ‖x0‖ > 0. It means that :

(∀x ∈ S) ‖x‖ ⩾ c.
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By homogeneity (for all x 6= 0, x′ = x/‖|x‖ ∈ S), we obtain:

(∀x ∈ E) ‖x‖ ⩾ c‖|x‖|,

This was to be demonstrated.

Remark. In passing, we showed:
Corollary 1.3.1. Any finite-dimensional normed space n is isomorphic to Kn,

equiped with one of its usual norms.

It follows:
Corollary 1.3.2. If E is a finite-dimensional normed space, its bounded closed parts

are compact.

Corollary 1.3.3. 1) Any finite-dimensional normed space is complete.

2) Any vector subspace of finite dimension in a normed space is closed in this

space.

3) If E is a finite-dimensional normed space, then any linear mapping T : E → F

in an arbitrary normed space F is continuous.

Proof. 1) follows immediately from the Corollary 1.3.1, and 2) from the fact that everything

under complete space is closed. For 3), it suffices to notice that if e1, . . . , en is a base of E, and

‖|.‖| the associated norm as in the proof of the Theorem 1.3.1, then, for x =
∑n

k=1 akek ∈ E,

we have:

‖T (x)‖F ⩽
(

n∑
k=1

‖T (ek)‖F

)
max
k⩽n

|ak| = C | ‖x‖ ⩽ CK‖x‖E

since ‖|.‖| and ‖.‖E are equivalent.

We will be careful, on the other hand, that if it is the arrival space which is of finite

dimension, continuity is not automatic (since there exist non-continuous linear forms, if E is

of infinite dimension.
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1.3.2 Compactness of the balls

We have seen in the proof of Theorem 1.3.1 that the essential point (via the Corollary 1.3.2)

is that the closed bounded parts of a finite-dimensional normed space are compact. Note

that it is equivalent to saying that all closed balls are compact. We will see that this actually

only happens in finite dimension.

Theorem 1.3.2 (Riesz Theorem, 1918). If a normed space E has a compact ball

B(xo, r), of radius r > 0, then it is of finite dimension.

We deduce that in an infinite dimensional space, the compacts are "very thin":

Corollary 1.3.4. If E is a normed space of infinite dimension, then every compact

of E has an empty interior.
Indeed, if K is a non-empty interior compact, it contains a closed ball of radius r > 0,

which is therefore compact, and therefore E is of finite dimension.

Note that if a ball is compact, it is necessarily a closed ball. On the other hand, if a ball,

of radius r > 0, is compact, then all closed balls are, since they are homeomorphic to each

other (those of zero radius being compact anyway). It is therefore sufficient to show that if

E is of infinite dimension, then its unit ball BE is not compact. To do this, we will use a

lemma.

Lemma 1.3.1 (Riesz’s lemma). Let F be a closed vector subspace of a normed space E,

which is not an entire E. Then, for any number δ such that 0 < δ < 1, there exists x ∈ E

such that: 
‖x‖ = 1

dist(x, F ) ⩾ 1 − δ

Let’s remember that :

dist(x, F ) = inf
y∈F

‖x − y‖.

If F is of finite dimension, an argument of compactness makes it possible to show that in fact

we can choose such a x ∈ E, of norm 1, with dist (x, F ) = 1, but we won’t need it. In the
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case of the Euclidean space (Rn, ‖ · ‖2), it suffices to take x of norm 1 and orthogonal a F

(because then, for all y ∈ F , we have ‖x − y‖2
2 = ‖x‖2

2 + ‖y‖2
2, by the Pythagorean Theorem;

therefore dist (x, F ) ⩾ ‖x‖2 = 1, hence the equality because |x‖ ⩾ dist (x, F ), since 0 ∈ F ).

This is why this lemma is sometimes called the Quasi-Perpendicular Lemma.

proof of Riesz Theorem. Let E be a normed space of infinite dimension. Let’s set a

number δ ∈]0, 1[,; for example δ = 1
2 .

Let us start from a x1 ∈ E, of norm 1, and take for F the vector subspace F1 generated by

x1. As it is of dimension 1, it is closed, and is not equal to E, since E is of infinite dimension.

The lemma gives a x2 ∈ E, of norm 1 such that:

‖x2 − x1‖ ≥ dist(x2, F1) ≥ 1
2

.

Let us then take for F the vector subspace F2 generated by x1 and x2 . It is of dimension 2

(because x2 /∈ F1), and is therefore closed, and different from E; there therefore exists x3 ∈ E,

of norm 1 such that:

‖x3 − x1‖et‖x3 − x2‖ ≥ dist(x3, F2) ≥ 1
2

.

As E is of infinite dimension, we can iterate the process indefinitely. We obtain a sequence

(xk)k≥1 of vectors of norm 1 such that:

‖xk − xl‖ ≥ 1
2

, ∀k 6= l.

This sequence cannot have any convergent subsequence. As it is contained in the unit ball of

E, this ball is not compact.

Remark. We have in fact demonstrated a little more than what was stated, namely that if

E is of infinite dimension, its unit sphere SE is not compact (note that SE is closed in BE ;

so if BE is compact, so is SE).

proof of lemma. Like F 6= E , we can find x0 ∈ E such that x0 /∈ F . As F is closed, we
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have:

d = dist(x0, F ) > 0.

As 0 < δ < 1, we have d
1−δ > d and we can therefore find a y0 ∈ F such that ‖x0 −y0‖ ≤ d

(1−δ) .

All that remains is to "correct" xo by y0 and to normalize this vector: let x = x0−y0
‖x0−y0‖ ; it is

indeed a vector of norm 1 and, like y0 + ‖x0 − y‖y ∈ F ,

we have :
‖x − y‖ = 1

‖x0 − y0‖
‖(x0 − y0) −‖ x0 − y0‖y‖

⩾ 1
‖x0 − y0‖

dist (x0, F ) = d

‖x0 − y0‖
⩾ 1 − δ,

for all y ∈ F .

1.4 Linear mappings

For linear mapings, we have a very simple and very useful criterion of continuity.
Proposition 1.4.1. Let (E, ‖.‖E) and (F, ‖.‖F ) be two normed spaces and let T :

E 7→ F be a linear map. Then T is continuous if and only if there exists a constant

K ≥ 0 such that:

‖T (x)‖F ≤ K‖x‖E , ∀x ∈ E.

Proof. It is clear that this property causes the continuity of T because we have, thanks to

linearity:

‖T (x) − T (y)‖F ≤ K‖x − y‖E , ∀x, y ∈ E;

T is therefore even Lipschitzian.

Conversely, if T is continuous at 0, we have, by definition:

(∃K > 0) ‖y − 0‖E = ‖y‖E ⩽ 1/K =⇒ ‖T (y)‖F = ‖T (y) − T (0)‖F ⩽ 1

For all x ∈ E, non-zero, let y = 1
K‖x‖E

x; we have ‖y‖E = 1/K and the implication above

25



CHAPTER 1. BANACH SPACES

gives, thanks to the homogeneity of T and the norm:

1
K‖x‖E

‖T (x)‖F ⩽ 1,

hence ‖T (x)‖F ⩽ K‖x‖E . As this inequality is obviously true for x = 0, this shows Proposi-

tion 1.4.1 .

We therefore have supx 6=0
‖T (x)‖F

‖x‖E
< +∞. The following proposition is then obvious:

Proposition 1.4.2. Let T : E → F be a continuous linear mapping. If we put

‖T‖ = supx 6=0
‖T (x)‖F

‖x‖E
, then:

‖T (x)‖F ⩽ ‖T‖‖x‖E , ∀x ∈ E

‖T‖ is therefore the smallest constant K ⩾ 0 appearing in the Proposition1.4.1.

Proposition 1.4.3. We also have

‖T‖ = sup‖x‖E≤1 ‖T (x)‖F = sup‖x‖E=1 ‖T (x)‖F .

Proof. Let’s call S the first expression and S1 the next one. We of course have S1 ≤ S, and

also S ≤ ‖T‖ , since ‖T (x)‖F ≤ ‖T‖ if ‖x‖E ≤ 1 , by definition of ‖T‖ . It remains to be

seen that ‖T‖ ≤ S1; but :

‖T‖ = sup
x/∈1

‖T (x)‖F

‖x‖E
= sup

x/∈1

∥∥T ( x

‖x‖E

)∥∥
F

≤ S1,

Because x
‖x‖E

is of norm 1.

Proposition 1.4.4. Let L (E, F ) be the space of all continuous linear mappings of E in F .

The mapping T 7→ ‖T‖ is a norm on L (E, F ), called the operator norm.

If F is complete, so is L (E, F ).

Proof. The fact that this is a norm is easy to verify.

Let F be complete, and let (Tn)n be a Cauchy sequence in L (E, F ). Then, for all x ∈ E,
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the sequence (Tn(x))n, is Cauchy in F , by virtue of the inequality:

‖Tn(x) − Tk(x)‖F ⩽ ‖Tn − Tk‖‖x‖E , (1.1)

It therefore converges to an element T (x) ∈ F . It is easy to see that then T : E → F is linear.

It is continuous because:

‖Tx‖F = lim
n→∞

‖Tnx‖F ⩽ lim sup
n→∞

‖Tn‖ ‖x‖E ⩽
(

sup
n⩾1

‖Tn‖
)

‖x‖E

and because
(
supn⩾1 ‖Tn‖

)
< +∞ since any Cauchy sequence is bounded. Finally, by making

k tend towards infinity in 1.1, we obtain:

‖Tn(x) − T (x)‖F ⩽
(

lim sup
k→∞

‖Tn − Tk‖
)

‖x‖E

when n tends to infinity, since (Tn)n is Cauchy. So (Tn)n converges to T for the operator

norm.

In particular, if F = K, L (E,K) is always complete.

Definition 1.4.1. If the linear mapping T : E 7→ F is bijective continuous and if

T −1 : F 7→ E is continuous, we say that T is an isomorphism (of normed spaces) between E

and F .

We say that E and F are isomorphic if there exists an isomorphism between E and F ;

we says that they are isometric if there exists an isometric isomorphism T : E → F .

Note that saying that a mapping T : E → F is isometric means that we have ‖T (x1) −

T (x2)‖F = ‖x1 − x2‖E for all x1, x2 ∈ E. When T is linear, this is expressed by ‖T (x)‖F =

‖xe‖E for all x ∈ E;T is therefore in particular of norm ‖T‖ =1. All isometry is injective;

to say that it is bijective is therefore equivalent to saying that it is surjective. In this case,

T −1 is also an isometry; it is therefore automatically continuous.

Saying that T is an isomorphim means that T is bijective linear and that there exist two
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constants 0 < α < β < ∞ such that:

α‖x‖E ≤ ‖Tx‖F ≤ β‖x‖E for all x ∈ E

Indeed, if T is an isomorphism, the continuity of T −1 allows us to write:

‖T −1y‖E ≤ ‖T −1‖‖y‖F for all y ∈ F , i.e. ‖x‖E ≤ ‖T −1‖‖Tx‖F for all x ∈ E. We therefore

have the double inequality, with α = 1
‖T −1‖ and β = ‖T‖ . Conversely, if we have this double

inequality, then T is continuous and ‖T‖ ≤ β and T −1 is continuous and ‖T −1‖ ≤ 1
α , since

α‖T −1y‖E ≤ ‖y‖E for all y ∈ F .

We can also notice that the left inequality results in the injectivity of T .

1.5 Dual of vector normed space

Definition 1.5.1. L (E,K) is denoted by E∗ and is called the dual of E. It is still

a Banach space.
Note that E∗ is the topological dual of E, and is strictly smaller than the algebraic dual

- the space of all linear functionals -, of E, at least if E is infinite dimension. The norm of

φ ∈ E∗ is therefore defined by:

‖φ‖ = ‖φ‖E∗ = supx 6=0
|φ(x)|
‖x‖ = sup‖x‖⩽1 |φ(x)| = sup‖x‖=1 |φ(x)|.

Notation. We often use the notation 〈φ, x〉 = φ(x) .

Theorem 1.5.1. The dual space X ′ of a normed space X is a Banach space (whether or not

X is).

Remark.

- Other terms are dual, adjoint space and conjugate space.

- Algebraic dual space X⋆ of X is the vector space of all linear functionals on X.

Example 1.1. • Space Rn: The dual space of Rn is Rn.
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• Space ℓ1. The dual space of ℓ1 is ℓ∞.

• Space ℓp. The dual space of ℓp is ℓq; here, 1 ≤ p ≤ +∞ and q is the conjugate of p,

that is, 1
p + 1

q = 1.
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HILBERT SPACES

The concept of Hilbert space extends the methods of linear algebra by generalizing notions of

Euclidean space. These spaces owe their name to the German mathematician David Hilbert.

Hilbert spaces are a special case of Banach spaces. In this chapter, we generally take K = C.

2.1 Inner product

2.1.1 Definitions

Definition 2.1.1. Let H be a real vector space, resp. complex. We call inner product

on H any symmetric bilinear form, resp. hermitian, which is positive-definite.

We will denote by < x|y > the inner product of the vectors x, y ∈ H.
This means that the application:

< .|. >: H × H −→ K = R or C

(x, y) 7−→< x | y >

fulfilled the conditions:

1) for all y ∈ H, the map x ∈ H 7→< x | y >∈ K is a linear form;
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2) for all x, y ∈ H, we have:


< y | x >=< x | y > if the space is real

< y | x >= < x | y > (complex conjugation), if the space is complex;

3) for all x ∈ H, we have < x | x >⩾ 0 and < x | x >= 0 if and only if x = 0.

Remark 3. 1) This means that, in the complex case, we therefore have, for x, y ∈ H and

λ ∈ C:
(a) 〈αx + βy, z〉 = α〈x, z〉 + β〈y, z〉

(b) 〈x, αy + βz〉 = ᾱ〈x, y〉 + β̄〈x, z〉

2) (a) shows that the inner product is linear in the first factor. Since in (c) we have complex

conjugates ᾱ and β̄ on the right, we say that the inner product is conjugate linear in the second

factor. Expressing both properties together, we say that the inner product is sesquilinear. This

means "11
2 times linear".

Definition 2.1.2. If the vector space H is endowed with an inner product, we say

that it is an inner product space pre-Hilbert space.
Exemples. 1) a) The usual inner product of Rn is defined by:

< x|y >= x1y1 + . . . + xnyn

for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn.

The usual inner product of Cn is defined by:

< x|y >= x1ȳ1 + . . . + xnȳn

for x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Cn.

b) We can define other inner products on Kn by giving weights, that is to say numbers
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w1, . . . , wn > 0, and by setting:


< x|y >=

∑n
k=1 wkxkyk, if K = R

< x | y >=
∑n

k=1 wkxkȳk, if K = VS

2) Si(S, T , m) is a measured space, we provide H = L2(m) with a inner product (which we

will call of natural) by setting, for f, g ∈ L2(m):

< (f | g >=
∫

S
fgdm in the real case,

And :

< f | g >=
∫

S fḡdm in the complex case.

In particular, on ℓ2, we have the natural inner product defined by:

< x | y >=
∑∞

n=1 xnyn in the real case,

And :

< x | y >=
∑∞

n=1 xnȳn in the complex case.

for x = (xn)n⩾1 , y = (yn)n⩾1 ∈ ℓ2. Consider the sequences

x = (1, 1, 1, . . .) and y =
(

1,
1
2

,
1
4

,
1
8

, . . .

)

Since 12 + 12 + · · · does not converge, x does not belong to in ℓ2. On the other hand, the

series 12 +
(

1
2

)2
+
(

1
4

)2
+ · · · does converge; hence y belongs to ℓ2.
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2.2 Elementary properties

Notation. since < x|x >≥ 0 , we can put:

‖x‖ =
√

(x|x).

Proposition 2.2.1. for all x, y ∈ H:

a) ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2 < x|y > (real case);

b) ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2Re < x|y > (complex case).

Proof. Just expand:

‖x + y‖2 =< x + y | x + y >=< x | x > + < y | y > + < x | y > + < y | x >,

and use the fact that < x | y > + < y | x >=< x | y > +< x | y > = 2 < x | y > in the real

case , and = 2 Re < x | y > in the complex case.

2.2.1 Cauchy-Schwarz inequality

Theorem 2.2.1 (Cauchy-Schwarz inequality). For all x, y ∈ H:

| < x | y > | ⩽ ‖x‖‖y‖.

Exemple. In the case where H = L2(m), it is equivalent to the Cauchy-Schwarz inequal-

ity for integrals:

∣∣∣∣∫
S

fgdm

∣∣∣∣ ⩽ ∫
S

|fg|dm ⩽
(∫

S
|f |2dm

)1/2 (∫
S

|g|2dm

)1/2

Proof. We will only do it in the complex case; it’s a little easier in the real case (we consider

the sign of the inner product instead of its argument). In fact the proof is valid even for

inner semi-products, that is to say if the symmetric bilinear form (resp. Hermitian) is only
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positive (that is to say that we do not ask that (x|x) = 0 implies x = 0).

Let θ ∈ R such that: (
e−iθx | y

)
= e−iθ < x | y >∈ R+

(if < x | y > 6= 0, θ is the argument of the complex number < x | y > ). Let x′ = e−iθx. For

all t ∈ R, we have, by the Proposition 2.2.1:

∥∥x′∥∥2 + 2 Re
(
x′ | y

)
t + ‖y‖2t2 =

∥∥x′ + ty
∥∥2 ⩾ 0.

If ‖y‖ = 0, we have ‖x′‖2+2 Re (x′ | y) t ⩾ 0 for all t ∈ R; this is only possible if Re (x′ | y) = 0.

If ‖y‖ 6= 0, we have a second degree trinomial in t, which is always positive or zero; its

discriminant must be negative or zero:

Re
(
x′ | y

)
−
∥∥x′∥∥2 ‖y‖2 ⩽ 0.

As : (
x′ | y

)
= e−iθ < x | y >= | < x | y > | ∈ R+

we have :

Re
(
x′ | y

)
=
(
x′ | y

)
= | < x | y > |.

Since, in addition, ‖x′‖ = ‖x‖, we obtain the announced inequality.

Corollary 2.2.1. The expression ‖x‖ =
√

(x|x) defines a norm on H, called the

Hilbert norm.

Proof. Just check the triangle inequality:

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2Re(x|y) ≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖ + ‖y‖)2,

thanks to the Cauchy-Schwarz inequality.
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Corollary 2.2.2. for each y ∈ H , the linear form:

Φy : H −→ K = R or C

x 7−→ < x | y >

is continue. Its norm in H∗ is ‖Φy‖ = ‖y‖ .

Proof. We can assume y 6= 0. The Cauchy-Schwarz inequality says that:

|Φy(x)| = | < x | y > | ⩽ ‖y‖‖x‖;

this proves that Φy is continuous and that ‖Φy‖ ⩽ ‖y‖.

Since Φy(y) = ‖y‖2, we have ‖Φy‖ ⩾ |Φy(y)|
‖y‖ = ‖y‖.

important Remark . Case of equality in the Cauchy-Schwarz inequality. When we

look at the proof of the inequality (in the case of a dot product), we see that we have

|(x|y)| = ‖x‖‖y‖ if and only if y = 0 or if y 6= 0 and the discriminant of the second degree

trinomial at t is zero; this means that this trinomial has a (double) root: there exists t0 ∈ R

such that ‖x′ + t0y‖ = 0; in other words e−iθx + t0y = 0: the vectors x and y are linearly

related.

Conversely, if x and y are linearly dependent, it is clear that we have equality.

2.2.2 Parallelogram equality

Lemma 2.2.1 (parallelogram identity). For all u, v ∈ H:

‖u + v‖2 + ‖u − v‖2 = 2(‖u‖2 + ‖v‖2) . (2.1)

The proof is immediate, with the Proposition 2.2.1. This means that the sum of the

squares of the diagonals of a parallelogram is equal to the sum of the squares of the four
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sides.

We conclude that if a norm does not satisfy 2.1, it cannot be obtained from an inner

product. Such norms do exist; We conclude that, not all normed spaces are inner product

spaces.

2.2.3 Orthogonality

Definition 2.2.1. We say that two vectors x and y of a pre-Hilbert space H are orthogonal

if (x|y) = 0. We note x ⊥ y .

Exemple. In H = R2 , for the usual inner product, we have (−1, 1) ⊥ (1, 1).

Note that the orthogonality relation is symmetric: if x ⊥ y, then y ⊥ x (because (y|x) =

¯(x|y)).

According to Proposition 2.2.1, we have, in the real case:

x ⊥ y ⇐⇒ ‖x + y‖2 = ‖x‖2 + ‖y‖2 ,

what we can call the Pythagorean Theorem.

In the complex case:

x ⊥ y ⇐⇒
[
‖x + y‖2 = ‖x‖2 + ‖y‖2 and ‖x + iy‖2 = ‖x‖2 + ‖y‖2].

Indeed, for any complex number a, we have Im(a) = Re(−ia) and consequently Im(x|y) =

Re(x|iy).
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Parts A, B ⊆ H are called orthogonal if all x ∈ A is orthogonal to all y ∈ B:

x ⊥ y, ∀x ∈ A, ∀y ∈ B.

We also say that one is orthogonal to the other.

Definition 2.2.2. The orthogonal of a part A ⊆ H is the set:

A⊥ = {y ∈ H; y ⊥ x, ∀x ∈ A}

We have B⊥ ⊆ A⊥ if A ⊆ B; therefore in particular (Ā)⊥ ⊆ A⊥; but the continuity of

applications Φy : x 7→< x | y > leads to that (Ā)⊥ = A⊥.

Proposition 2.2.2. For any part A of H, A⊥ is orthogonal to A; it is the largest orthogonal

part to A. Moreover A⊥ is a closed vector subspace of H.

Proof. The beginning is clear. For the rest, note that:

A⊥ =
⋂

x∈A ker Φx

and that each vector subspace ker Φx = Φ−1
x ({0}) is closed since Φx is continuous.

2.2.4 Hilbert spaces

Definition 2.2.3. If a pre-Hilbert space is complete, for the norm induced by its

inner product, we say that it is a Hilbert space.
It is therefore a special case of Banach space.

Exemples.

1 Any pre-Hilbert space of finite dimension is a Hilbert space. When it is a R− vector

space, we say that it is an Euclidean space.

2 For any positive measure m, L2(m) is a Hilbert space , by virtue of the Riesz-Fisher
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theorem, since the norm ‖.‖2:

‖f‖2 =
(∫

S
|f(t)|2dm(t)

)1/2

is associated with the usual inner product:

(f | g) =
∫

S
f(t)g(t)dm(t).

In particular, ℓ2 is a Hilbert space .

2.3 The Projection Theorem and its consequences

2.3.1 Projection Theorem

It is thanks to this theorem that we obtain all the good properties of Hilbert spaces.

Let us first recall that a part C of a vector space is said to be convex if the segment [x, y]

is contained in C since x, y ∈ C:

x, y ∈ C =⇒ [x, y] ⊆ C,

where [x, y] = tx + (1 − t)y; t ∈ [0, 1] .

vector subspace is convex; every ball is convex.
Theorem 2.3.1 (Projection theorem). Let H be a Hilbert space and let C be a

non-empty convex and closed part of H. Then, for all x ∈ H, there exists a unique

y ∈ C such that:

‖x − y‖ = dist(x, C).

We say that y = PC(x) is the projection of x onto C. It is characterized by the

property:

y ∈ C and Re(x − y|z − y) ≤ 0, ∀z ∈ C. (*)
Note that the completeness of H is not absolutely essential: we can remove it, but assuming
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that it is C which is complete.

Proof. 1) Existence.

Let d = dist(x, C) = infx∈C‖x − z‖.

Note that if d = 0, then x ∈ C (because C is closed), and y = x is the unique point of C such

that ‖x − y‖ = d.

For all n > 1, there exists zn ∈ C such that:

‖x − zn‖2 ⩽ d2 + 1
n

Let us then apply, for n, p ⩾ 1, the identity of the parallelogram to u = x−zn and v = x−zp;

we obtain :

4
∥∥∥∥x − zn + zp

2

∥∥∥∥2
+ ‖zn − zp‖2 = 2

(
‖x − zn‖2 + ‖x − zp‖2

)
.

But, C being convex, we have zn+zp

2 ∈ C; therefore:

∥∥∥∥x − zn + zp

2

∥∥∥∥ ⩾ d

so that we obtain:

‖zn − zp‖2 ⩽ 2
(

d2 + 1
n

+ d2 + 1
p

)
− 4d2 = 2

( 1
n

+ 1
p

)
.

The sequence (zn)n is therefore a Cauchy sequence. As H is complete, it therefore converges

to an element y ∈ H. But since C is closed, we have in fact, since the zn are in C, y ∈ C.

Moreover, the fact that ‖x − zn‖2 ⩽ d2 +1/n leads, passing to the limit, that ‖x−y‖ ⩽ d.

We therefore have ‖x − y‖ = d, since y ∈ C.

2) Uniqueness. If ‖x − y1‖ = ‖x − y2‖ = d, with y1, y2 ∈ C , then, as above, the identity
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of the parallelogram gives:

4d2 + ‖y1 − y2‖2 ⩽ 4
∥∥∥∥x − y1 + y2

2

∥∥∥∥2
+ ‖y1 − y2‖2

= 2
(
‖x − y1‖2 + ‖x − y2‖2

)
= 2

(
d2 + d2

)

hence ‖y1 − y2‖2 ⩽ 0, which is only possible if y1 = y2.

3) Proof of (∗).

a) If z ∈ C, we have (1 − t)y + tz ∈ C for 0 ⩽ t ⩽ 1, by the convexity of C; SO :

‖x − (1 − t)y − tz‖2 ⩾ ‖x − y‖2,

or by expanding ‖x − (1 − t)y − tz‖2 = ‖(x − y) + t(y − z)‖2 with Proposition 2.2.1:

t2‖y − z‖2 + 2t Re(x − y | y − z) ⩾ 0.

For t 6= 0, divide by t, then let t tend to 0; it comes Re(x − y | y − z) ⩾ 0, or:

Re(x − y | z − y) ⩽ 0.

b) Conversely, if y satisfies (∗), we have, for all z ∈ C:

‖x − z‖2 = ‖
(
x − y + (y − z)

∥∥∥2 =
∥∥∥x − y

∥∥∥2+
∥∥∥ y − z‖2 + 2 Re(x − y | y − z)

= ‖x − y‖2 + ‖y − z‖2 − 2 Re(x − y | z − y) ⩾ ‖x − y‖2;

therefore y = PC(x), by uniqueness.

2.3.2 Consequences

Proposition 2.3.1. The map PC : H → C is continuous; more precisely, we have, for all

x1, x2 ∈ H:

‖PC (x1) − PC (x2)‖ ⩽ ‖x1 − x2‖ .
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Proof. Let y1 = PC (x1) and y2 = PC (x2); the condition (∗) gives:


Re (x1 − y1 | z − y1) ⩽ 0 ∀z ∈ C;

Re (x2 − y2 | z′ − y2) ⩽ 0 ∀z′ ∈ C.

Taking z = y2 and z′ = y1, and adding, it comes:

Re ([x1 − y1] − [x2 − y2] | y2 − y1) ⩽ 0.

We therefore obtain:

‖y1 − y2‖2 = Re ‖y1 − y2‖2 = Re ([y2 − x2] + [x2 − x1] + [x1 − y1] | y2 − y1)

= Re ([x1 − y1] − [x2 − y2] | y2 − y1) + Re (x2 − x1 | y2 − y1)

⩽ Re (x2 − x1 | y2 − y1)

⩽ |(x2 − x1 | y2 − y1)| ⩽ ‖x2 − x1‖ ‖y2 − y1‖

by the Cauchy-Schwarz inequality. It follows, by dividing by ‖y2 − y1‖ (which we can assume

is not zero, because otherwise the result is obvious), that we have indeed

‖y1 − y2‖ ⩽ ‖x2 − x1‖

In the case where the convex C is a vector subspace, we have better properties.
Theorem 2.3.2. If F is a closed vector subspace of the Hilbert space H, then the

mapping PF : H → F is a continuous linear mapping, and PF (x) is the unique point

y ∈ F such that:

y ∈ F et x − y ∈ F ⊥ .

Proof. First, if y ∈ F et x − y ∈ F ⊥, then we have:

dist(x, F )2 = inf
z∈F

‖x − z‖2 = inf
z∈F

[
‖x − y‖2 + ‖y − z‖2

]
= ‖x − y‖2;

so ‖x − y‖ = dist(x, F ) et y = PF (x). The converse results from the condition (*):

Re < x − y | z − y >⩽ 0, ∀z ∈ F ;
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in fact, as F is a vector subspace, we have:

z = y + λw ∈ F, ∀w ∈ F et ∀λ ∈ K.

When H is real, we therefore have, for all w ∈ F :

λ < x − y | w >=< x − y | λw >⩽ 0, ∀λ ∈ R

which is only possible if < x − y | w >> 0. When the space H is complex, we have, in the

same way, for all w ∈ F :

λ Re < x − y | w >= Re < x − y | λw >⩽ 0, ∀λ ∈ R,

and, with z = y + iλw :

λ Im < x − y | w >= Re < x − y | iλw) >⩽ 0, ∀λ ∈ R

which, again, is only possible if < x − y | w >= 0. The linearity of PF is then easy to see,

thanks to the uniqueness; indeed, if

y1 = PF (x1),y2 = PF (x2), then (x1 − y1) , (x2 − y2) ∈ F ⊥; so, for a1, a2 ∈ K, (a1x1 + a2x2) −

(a1y1 + a2y2) ∈ F ⊥;

hence PF (a1x1 + a2x2) = a1y1 + a2y2.

Note that continuity was seen in Proposition 2.3.1, and that by taking x2 = 0 in this

proposition, we have: ‖PF (x)‖ ⩽ ‖x‖ for all x ∈ H; the norm of PF is therefore ⩽ 1. But

since PF (x) = x for all x ∈ F , we obtain, if F 6= {0}, that ‖PF ‖ = 1 .

As an exercise, we can show that, for a closed convex C, PC is linear if and only if C is a

vector subspace.
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Theorem 2.3.3. If H is a Hilbert space, then, for any closed vector space, we

have:

H = F ⊕ F ⊥ ,

and the projection onto F parallel to the associated F ⊥ is PF . It is therefore con-

tinuous, so that the direct sum is a direct topological sum.

We say that PF is the orthogonal projection on F .

The fact that H is the direct sum of F and F ⊥ means that all x ∈ H is uniquely written

as x = y + z , with y ∈ F, z ∈ F ⊥ . Note that, since F and F ⊥ are orthogonal, we have:

‖x‖2 = ‖y‖2 + ‖z‖2; in other words:

‖x‖2 = ‖PF (x)‖2 + ‖x − PF (x)‖2 .

We find the fact that PF is continuous and of norm 1, if F 6= {0}. We also see that

‖IdH − PF ‖ = 1, if F ⊥ 6= {0}; but we will see just after that in fact IdH − PF is the

orthogonal projection on F ⊥.

Proof. We have x = PF (x) + (x − PF (x)), with x − PF (x) ∈ F ⊥ , by Theorem 2.3.2.

On the other hand, if x ∈ F ∩ F ⊥, we have, in particular, < x | x >= 0; so x = 0.

Remark. The Theorem 2.3.3 is really specific to Hilbert spaces.

The following result can be shown directly, but it is easily obtained from Theorem 2.3.3

Corollary 2.3.1. We have F ⊥⊥ = F̄ for every vector subspace F of the Hilbert space H.

Proof. As F ⊥ is a closed vector subspace, by Proposition 2.2.2, we can apply Theorem 2.3.3:

H = F ⊥ ⊕ F ⊥⊥, which can also be written: H = F ⊥⊥ ⊕ F ⊥

On the other hand, we can also apply this theorem to the closed vector subspace F̄ : H =

F̄ ⊕ (F̄ )⊥ = F̄ ⊕ F ⊥. It follows, since we know that F̄ ⊆ F ⊥⊥, that F ⊥⊥ = F̄ .

Note that in general a vector subspace has an infinity of supplementaries; but it only has

one orthogonal supplement.
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We deduce, since H⊥ = {0} and 0⊥ = H , the following very practical density criterion.
Corollary 2.3.2. Let H be a Hilbert space, and F be a vector subspace of H. Then

F is dense in H if and only if F ⊥ = 0.
Thus, to show that an vector subspace F is dense in H, it suffices to verify that:

[(x|y) = 0, ∀x ∈ F ] =⇒ y = 0 .

Let’s see an example application. Recall that the support of f : R → C, denoted suppf , is

the adhesion of {x ∈ R; f(x) 6= 0} .
Theorem 2.3.4. The space K (R) of continuous functions on R with compact sup-

port is dense in L2(R).
This theorem is demonstrated, in a more general form, in any Integration course (see also

Theorem III.1.2); but it is a question here, even if the result is important in itself, of seeing

how to apply the Corollary 2.3.2

Note that K (R) is not really contained in L2(R), since the latter is a space of equivalence

classes of functions, but, as two continuous maps which are equal almost everywhere, for the

Lebesgue measure, are in fact everywhere, the canonical map j : K (R) → L2(R), which

associates each function with its equivalence class, is injective; we can therefore identify each

f ∈ K (R) with its equivalence class j(f), that is to say K (R) with j[K (R)].

Proof. Let g ∈ L2(R) such that:

< f | g >=
∫
R

fḡdλ = 0, ∀f ∈ K (R).

We want to show that g = 0.

Taking the real and imaginary parts, we can assume that g is real-valued, and we write

g = g+ − g−. We have, for all f ∈ K (R):

∫
R

f(t)g+(t)dt =
∫
R

f(t)g−(t)dt.
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Let a < b. There exist fn ∈ K (R) such that:


0 ⩽ fn ⩽ 1]a,b|

fn(t) −→
n→∞

1]a,b[(t) for t ∈ R,

and such that the sequence (fn)n is increasing.

The Monotone Convergence Theorem gives:

∫ b

a
g+(t)dt = lim

n→∞
↑
∫
R

fn(t)g+(t)dt = lim
n→∞

↑
∫
R

fn(t)g−(t)dt =
∫ b

a
g−(t)dt.

This means that positive measures µ = g+.λ and ν = g−.λ are equal on all intervals ]a, b[

and take finite values there:

∫ b

a
g+(t)dt ⩽

∫ b

a
|g(t)|dt =

∫
R

|g(t)|1]a,b|(t)dt ⩽
√

b − a‖g‖2 < +∞,

by the Cauchy-Schwarz inequality. The Uniqueness of Measures Theorem then says that

µ = ν. This means that g+ = g− almost everywhere, i.e. g = 0 in L2(R).

Corollary 2.3.3. C ([0, 1]) is dense in L2(0, 1).

Proof. Let f ∈ L2(0, 1). Let’s extend it to f̃ on R by 0 outside [0, 1]. We have f̃ ∈ L2(R).

For all ε > 0, there exists g ∈ K (R) such that ‖f − g‖L2(R) ⩽ ε. Let h = g|[0,1] be the

restriction of g to [0, 1]. We have, on the one hand, h ∈ C ([0, 1]) and, on the other hand,

‖f − h‖L2(0,1) ⩽ ‖f̃ − g‖L2(R) ⩽ ε.
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2.3.3 Representation of the dual

Recall that the dual is:

H∗ = {Φ : H → K; Φ continuous linear},

where K = R or C is the coordinate space .

Knowing how to give a concrete representation of the dual of a functional space often allows

us to solve problems about the space itself. In the case of Hilbert spaces, it is particularly

simple.

Let us first recall that we have seen that, for all y ∈ H , the linear form Φy : x ∈ H → (x|y)

is continuous, i.e. say is an element of the dual H∗, and that ‖Φy‖ = ‖y‖. It turns out that

all elements of the dual are of this form.
Theorem 2.3.5 (Fréchet-Riesz representation theorem). Let H be a Hilbert space.

For all Φ ∈ H∗, there exists a (unique) y ∈ H such that Φ(x) = (x|y) for all x inH.

This theorem was independently proven by M . Fréchet and F . Riesz in 1907, for H =

L2(0, 1); both articles were published, coincidentally, in the same issue of Notes aux Comptes

de l’Académie des Sciences. Another way to see this theorem is to say that the application:

J : H −→ H∗

y 7−→ Φy = J(y)

is surjective. It is therefore bijective because it is an isometry (in the sense of metric spaces):

‖J(y) − J (y′)‖ =
∥∥Φy − Φy′

∥∥ =
∥∥Φy−y′

∥∥ = ‖y − y′‖.

Note that in the real case, J is linear, but that in the complex case, it is only semi-linear.

Proof. We already know that J is a metric isometry; this proves uniqueness. What we need

to see is surjectivity.

Let Φ ∈ H∗ be non-zero. As Φ is continuous, the vector subspace F = ker Φ is closed.

So:

H = (ker Φ) ⊕ (ker Φ)⊥.
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But since Φ is a non-zero linear form, ker Φ is of codimension 1; therefore (ker Φ)⊥ is of

dimension 1.

Let u ∈ (ker Φ)⊥, of norm 1, and let y = Φ(u)u. Then, like y ∈ (ker Φ)⊥, Φy is zero on

ker Φ; but, on the other hand:

Φy(u) =< u | y >= Φ(u) < u | u >= Φ(u)‖u‖2 = Φ(u)

Thus we have Φ = Φy.

Remark. The value y = ¯Φ(u)u may seem to "fall from the sky". In fact, if we want to

have Φ(x) = (x|y) for all x ∈ H , we must have it for x ∈ kerΦ; so y must be in (kerΦ)⊥.

Thus y = cu, and the equality Φ(u) = (u|y) results in Φ(u) = c̄(u|u) = c̄‖u‖2 = c̄ . We

therefore necessarily have y = ¯Φ(u)u.

2.3.4 Adjoint of an operator

We call an operator on H any continuous linear map T : H → H.

Proposition 2.3.2. Let H be a Hilbert space. For all T ∈ L (H), there exists another

operator, denoted T ∗, and called the adjoint of T , such that:

(Tx|y) = (x|T ∗y) , ∀x, y ∈ H.

Moreover, ‖T ∗‖ = ‖T‖.

Proof. Let y ∈ H. The mapping:

Φy ◦ T : H −→ K

x 7−→< Tx | y >

is a continuous linear form on H; there therefore exists, by the FréchetRiesz Theorem, a
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unique element of H, which we will denote T ∗y, such that:

〈x | T ∗y〉 =< Tx | y >, ∀x ∈ H.

Because of uniqueness, the map T ∗ : y ∈ H 7→ T ∗y ∈ H is clearly linear: if y1, y2 ∈ H and

a1, a2 ∈ K, we have, for all x ∈ H:

〈x | T ∗ (a1y1 + a2y2〉) = 〈Tx | a1y1 + a2y2〉 = ā1 〈Tx | y1〉 + ā2 〈Tx | y2〉

= ā1 〈x | T ∗y1〉 + ā2 〈x | T ∗y2〉 = 〈x | a1T ∗y1 + a2T ∗y2〉

therefore T ∗ (a1y1 + a2y2) = a1T ∗y1 + a2T ∗y2.

On the other hand, the Cauchy-Schwarz inequality gives:

|(Φy ◦ T ) (x)| = | < Tx | y > | ⩽ ‖Tx‖‖y‖ ⩽ ‖T‖‖x‖‖y‖;

therefore ‖T ∗y‖ = ‖Φy ◦ T‖ ⩽ ‖T‖‖y‖. This proves that the linear map T ∗ is continuous and

that ‖T ∗‖ ⩽ ‖T‖.

To see that ‖T‖ ⩽ ‖T ∗‖, notice that T ∗ itself has an adjoint T ∗∗, and that we have

T ∗∗ = T :

〈y | T ∗∗x〉 = 〈T ∗y | x〉 =< y | Tx >

for all x, y ∈ H; this implies that T ∗∗x = Tx for all x ∈ H. Then ‖T‖ = ‖T ∗∗‖ ⩽ ‖T ∗‖

2.4 Orthonormal bases

2.4.1 Separable spaces

Definition 2.4.1. A topological space E is said to be separable if there exists a part D ⊆ E

which is countable and dense in E : D̄ = E .

In the case of normed spaces, we have an equivalent notion.
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Proposition 2.4.1. Let E be a normed vector space. For E to be separable, it is necessary

and sufficient that there exists in E a part ∆ which is countable and total in E.

We say that a part ∆ of a normed vector space E is total when the vector subspace vect

(∆) generated by this part is dense.

Proof. The Q-vector subspace (respectively the (Q+ iQ)-vector subspace) generated by ∆ is

countable and its adherence is the same as that of vect (∆).

Exemples. 1) Any vector space of finite dimension is separable.

2) The spaces c0 and ℓp, for 1 ≤ p < ∞, are separable, because if

en = (0, . . . , 0, 1, 0, . . .)

↑

nth position

then ∆ = {en; n ⩾ 1} is totale, since, for all x = (ξ1, ξ2, . . .) ∈ ℓp, we have:

‖x − (ξ1e1 + · · · + ξnen)‖p =
∞∑

k=n+1
|ξk|p −→

n→∞
0

and when x ∈ c0 :

‖x − (ξ1e1 + · · · + ξnen)‖∞ = sup
k⩾n+1

|ξk| −→
n→∞

0.

It can be shown that ℓ∞ is not separable.

Proposition 2.4.2. Any subspace of a separable metric space is separable.

Proof. Let E be a separable metric space, D = {xn; n ⩾ 1} a part of dense countable E, and

F ⊆ E. For any pair of integers n, k ⩾ such that F ∩ B (xn, 1/k) is not empty, let us choose

an element yn,k inF ∩B (xn, 1/k); otherwise (for notational purposes), let yn,k = y0, where y0

is a given fixed element of F (we can assume F not empty) . Then DF = {yn,k; n, k ⩾ 1} is a

countable part of F , and it is dense in F : let y ∈ F ; there exists, for all k ⩾ 1, an integer n ⩾ 1

such that d (y, xn) ⩽ 1/k; we therefore have y ∈ B (xn, 1/k); therefore F ∩ B (xn, 1/k) 6= ∅,
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and yn,k ∈ F ∩ B (xn, 1/k) ; then d (y, yn,k) ⩽ d (y, xn) + d (xn, yn,k) ⩽ 2/k.

2.4.2 Orthonormal systems

We will assume in the following that H is a pre-Hilbert space, of infinite dimension.

Definition 2.4.2. Let (ui)i∈I be a family of elements of H, indexed by an arbitrary set I,

non-empty. We say that it is an orthonormal family, or an orthonored system, if:

1)‖ui‖ = 1, ∀i ∈ I;

2)ui ⊥ uj , ∀i 6= j.

Note that every subsystem (ui)i∈J (J ⊆ I) of an orthonormal system (ui)i∈I is still

orthonormal.

Exemples. 1) In ℓ2, the sequence (en)n≥1 is orthonormal.

2) In L2(0, 1), we put:

en(t) = e2πint , n ∈ Z;

the system (en)n∈Z is orthonormal; we say that it is the trigonometric system.

Proposition 2.4.3. If the finite system (u1, ..., un) is orthonormal, then, for all a1, ..., an ∈

K: ∥∥∥∥∥
n∑

k=1
akuk

∥∥∥∥∥
2

=
n∑

k=1
|ak|2

Proof. Just develop using Proposition II.1.3:

∥∥∥∥∥
n∑

k=1
akuk

∥∥∥∥∥
2

=
n∑

k=1
‖akuk‖2 +

∑
k 6=j

〈akuk | ajuj〉 ,

and use that ‖akuk‖ = |ak| ‖uk‖ = |ak| and that, for k 6= j, 〈akuk | ajuj〉 = akāj 〈uk | uj〉 =

0

Corollary 2.4.1. Any orthonormal family is free (that is to say that the vectors composing

it are linearly independent).
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Proposition 2.4.4 (Bessel inequality). Let H be a pre-Hilbert space. For any orthonormal

family (ui)i∈I in H, we have, for all x ∈ H:

∑
i∈I |〈x | ui〉|2 ⩽ ‖x‖2.

In the inequality above, the sum on the first member is defined as follows: if (ai)i∈I is a

family of positive real numbers, then:

∑
i∈I

ai
def= sup

J⊆I,J finite

∑
i∈J

ai

If ℓ2(I) =
{

(ai)i∈I ∈ KI ;
∑

i∈I |ai|2 < +∞
}

, Bessel’s inequality leads to an application:

S : H −→ ℓ2(I)

x 7−→ (< x|ui >)i∈I

it is linear, and Bessel’s inequality further says that it is continuous, and of norm ⩽ 1.

Proof. If ξi = 〈x | ui〉, we have, since the family is orthonormal, for any finite part J of I:

0 ⩽
∥∥∥∥∥x −

∑
i∈J

ξiui

∥∥∥∥∥
2

= ‖x‖2 − 2
∑
i∈J

Re 〈x | ξiui〉 +
∑
i∈J

|ξi|2

which gives the result car 〈x | ξiui〉 = ξ̄i 〈x | ui〉 = ξ̄iξi = |ξi|2.

Proposition 2.4.5. Let H be a pre-Hilbert space and let (un)n≥1 be an orthonormal se-

quence in H. If a vector x ∈ H can be written x =
∑∞

n=1 ξnun , then we necessarily have

ξn =< x|un > for all n ≥ 1.

Here sequence means countable family.

Proof. For each k ⩾ 1, the linear form Φuk
is continuous; So :

〈x | uk〉 = Φuk
(x) =

∞∑
n=1

Φuk
(ξnun) =

∞∑
n=1

ξn 〈un | uk〉 = ξk.
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Proposition 2.4.6. Let (un)n⩾1 be an orthonormal sequence and x =
∑∞

n=1 ξnun. Let Fn be

the vector subspace generated by u1, . . . , un. So :

PFn(x) =
n∑

k=1
ξkuk

Proof. As we have ξk = 〈x | uk〉, by the previous proposition, we obtain that 〈x −
∑n

k=1 ξkuk | uj〉 =

0 for all j ⩽ n; so if yn =
∑n

k=1 ξkuk, we have x−yn ∈ F ⊥
n . Like yn ∈ Fn, the characterization

of Theorem II.2.4 says that yn = PFn(x).

Proposition 2.4.7. If H is un Hilbert space, and (un)n⩾1 is an orthonormal sequence in H,

then, for every sequence (ξn)n⩾1 ∈ ℓ2, the series
∑∞

n=1 ξnun converges in H.

In other words (using Proposition 2.4.5), the linear map continues:

S : H −→ ℓ2

x 7−→ (< x|un >)n≥1

is surjective.

Proof. Just note note that the series satisfies the Cauchy criterion, because the Proposition

2.4.3 gives:

‖
n+p∑
k=n

ξkuk‖2 =
n+p∑
k=n

|ξn|2 −→
n→∞

0,

uniformly in p

2.4.3 Orthonormal bases

Definition 2.4.3. We say that an orthonormal sequence (un)n≥1 in a pre-Hilbert

space H is an orthonormal basis of H if the set un; n ≥ 1 is total in H. We also

say that (un)n≥1 is a Hilbert basis.
Note that, as we have restricted ourselves to taking countable families, the space H will

necessarily be separable.
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On the other hand, it should be noted that this notion of orthonormal base is, in infinite

dimension, different from the notion of base, in the algebraic sense of the term: a family of

vectors of a vector space is a base if any vector can s ’write, uniquely, as a linear combination

of an finite number of terms of the family; but the following theorem says that, for an

orthonormal base, any element is written as the sum of an series, which involves all the terms

of the orthonormal base.
Theorem 2.4.1. Let H be a pre-Hilbert space and let (un)n≥1 be an orthonormal

basis of H. Then, any element x ∈ H is written:

x =
∞∑

n=1
ξnun , with ξn = 〈x | un〉

Moreover, for all x, y ∈ H, we have the Parseval formulas:

1) ‖x‖2 =
∞∑

n=1
|〈x | un〉|2 ;

2) < x | y >=
∞∑

n=1
〈x | un〉 〈y | un〉 , the series absolutely converges.

Proof. Let Fn denote the vector subspace generated by u1, . . . , un, and let xn = PFn(x) .

The set un; n ≥ 1 being total, the subspace ∪n≥1Fn is dense in H; then, the sequence

(Fn)n≥1 being increasing, we have:

‖x − xn‖ = dist (x, Fn) −→
n→∞

0.

On the other hand, according to the Corollary 2.4.1, {u1, . . . , un} is a base, in the usual sense,

of Fn; and, by Proposition 2.4.5, we therefore have:

xn =
n∑

k=1
〈xn | uk〉 uk.
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But (x − xn) ∈ F ⊥
n ; therefore, for k ⩽ n, 〈xn | uk〉 = 〈x | uk〉 = ξk does not depend on n. We

therefore have:

x = lim
n→∞

n∑
k=1

ξkuk =
∞∑

k=1
ξkuk.

Likewise y =
∑∞

k=1 ζkuk, with ζk = 〈y | uk〉 . Then, by continuity (Corollary 2.2.2):

< x | y >=
〈 ∞∑

k=1
ξkuk | y

〉
=

∞∑
k=1

ξk 〈uk | y〉 =
∞∑

k=1
ξkζk,

which gives the other identity when y = x.

It follows from Theorem 2.4.1 and Proposition 2.4.7 that we have:
Corollary 2.4.2. Let H be a separable Hilbert space, and let (un)n≥1 be an orthonor-

mal basis of H. Then the linear map:

S : H −→ ℓ2

x 7−→ (< x|un >)n≥1

is an isomorphism of Hilbert spaces, that is to say an isomorphism preserving the

inner product:(S(ξ)|S(ζ)) = (ξ|ζ) for all ξ, ζ ∈ ℓ2.
It is in particular an isometry ‖S(x)‖ = ‖x‖ for all x ∈ H . When H is not complete, we

always have an isometry preserving the inner product, but it is not surjective.

The reciprocal isomorphism is:

S−1 : ℓ2 −→ H

(ξn)n≥1 7−→
∞∑

n=1
ξnun

We will see that in fact every separable Hilbert space has orthonormal bases, and therefore

the previous corollary applies to all separable Hilbert spaces.

2.4.4 Existence of orthonormal bases

Theorem 2.4.2. Every separable Hilbert space has orthonormal bases.

54



CHAPTER 2. HILBERT SPACES

In fact, completeness is not useful here (because at each step, we only work in vector

subspaces of finite dimension, therefore complete).

We obtain, as a consequence of Theorem 2.4.2 and of the Corollary 2.4.2, the following

essential result, in which, this time the hypothesis of completeness cannot be omitted.
Theorem 2.4.3. All separable Hilbert spaces, of infinite dimension, are isomorphic

to each other, and in particular to ℓ2 .

Proof of the Theorem 2.4.2 . We simply use the Gram-Schmidt orthonormalization

process.

Consider a countable part {vn; n ≥ 1} total. We can assume that the vn, n ≥ 1, are

linearly independent (by removing those which are a linear combination of the previous

ones).

Let Fn be the vector subspace generated by v1, . . . , vn. We set u1 = v1
‖v1‖ , and

u′
n+1 = PF ⊥

n
(vn+1) , un+1 =

u′
n+1∥∥u′
n+1

∥∥
Then the sequence (un)n⩾1 is orthonormal, and the set {un; n ⩾ 1} is total because the vector

subspace generated by u1, . . . , un is Fn. Indeed, by Theorem 2.3.2, for 2 ⩽ k ⩽ n, we have

u′
k − vk ∈ F ⊥⊥

k−1 = Fk−1, and therefore u′
k ∈ Fk since vk ∈ Fk and Fk−1 ⊆ Fk.

2.5 Separability of L2(0, 1)

2.5.1 Stone-Weierstrass theorem

It is a density theorem in the space CR(K) or CC(K) of functions continues f : K → R or C,

where K is a compact space. Depending on whether the space is real or complex, it is not

stated in the same way: a hypothesis must be added in the complex case.
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Real case

Theorem 2.5.1 (Stone-Weierstrass theorem, real case). Let K be an compact space

and A be a subalgebra of the real Banach algebra CR(K).

We further assume that:

a) A separates the points of K;

b) A contains constants.

Then A is dense in CR(K).
Remarks.

1) A subalgebra of C (K) is a multiplication-stable vector subspace.

2) Saying that A separates the points of K means that if x, y ∈ K are distinct, then there

exists f ∈ A such that f(x) 6= f(y) .

3) The assumption that A contains constant functions is only made to eliminate the case

of subalgebras A = {f ∈ C (K); f(a) = 0} for a given a ∈ K.

Note that, A being a vector subspace, A contains the constants if and only if 1 ∈ A . We

obtain the following immediate consequence.

Theorem 2.5.2. Let K be a compact part of Rd; then the set PR(K) of all real

polynomials with d variables, restricted to K, is dense in CR(K) .

Theorem 2.5.3. The real space L2
R(0, 1) is separable.

Proof. We know that CR([0, 1]) is dense in L2
R(0, 1). On the other hand, Theorem II.4.2 tells

us that PR([0, 1]) is dense in CR([0, 1]). So PR([0, 1]) is dense in L2
R(0, 1), because the norm

uniform on CR([0, 1]) is finer than the norm of L2
R(0, 1) : for all f ∈ L2

R(0, 1) and all ε > 0,

there exists g ∈ CR([0, 1]) such that ‖f − g‖2 ⩽ ε/2; then there exists p ∈ PR([0, 1]) such

that ‖g − p‖∞ ⩽ ε/2; but then ‖g − p‖2 ⩽ ‖g − p‖∞ ⩽ ε/2, and therefore ‖f − p‖2 ⩽ ε.

It only remains to notice that PR([0, 1]) is generated by the sequence defined by:

p0(t) = 1, p1(t) = t, p2(t) = t2, , pn(t) = tn,
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to obtain the separability of L2
R(0, 1).

Note by the way that, we have proven the separability of CmathbbR([0, 1]).

Corollary 2.5.1. L2
R(0, 1) is isomorphic to the real space ℓ2 .

This is the theorem demonstrated by Fisher and Riesz in 1907. The essential point being

the fact that L2
R(0, 1) is complete.

Proof of the Stone-Weierstrass Theorem.

It is done in several stages.

Step 1. There exists a sequence of real polynomials (rn)n⩾0 which converges uniformly on

[0, 1] to the square root function r : t 7→
√

t.

Proof. We define (rn)n⩾0 by induction, starting from r0 = 0 and setting, for all n ⩾0:

rn+1(t) = rn(t) + 1
2

(
t − [rn(t)]2

)
.

It is clear, by induction, that the rn are polynomials. Moreover, for all n ⩾ 0, we have

0 ⩽ rn(t) ⩽
√

t; indeed, by induction: we have, on the one hand, t − [rn(t)]2 ⩾ 0 and

therefore rn+1(t) ⩾ rn(t) ⩾ 0, and on the other hand:

√
t − rn+1(t) =

[√
t − rn(t)

] [
1 − 1

2

(√
t + rn(t)

)]
⩾ 0

because
√

t + rn(t) ⩽
√

t +
√

t = 2
√

t ⩽ 2. Note that in passing, we saw that the sequence

(rn)n⩾0 is increasing.

Being increasing and increasing, it converges towards a limit r(t). The recurrence relation

shows that r(t) =
√

t. It remains to be seen that there is uniform convergence. First method:

by hand. Let us set εn(t) =
√

t − rn(t). We saw above, since rn(t) ⩾ 0, that:

0 ⩽ εn+1(t) = εn(t)
[
1 − 1

2

(√
t + rn(t)

)]
⩽ εn(t)

(
1 −

√
t

2

)
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SO :

0 ⩽ εn(t) ⩽ ε0(t)
(

1 −
√

t

2

)n

=
√

t

(
1 −

√
t

2

)n

⩽ sup
0⩽x⩽1/2

2(1 − x)xn ( pose x = 1 −
√

t/2)

= 2xn (1 − xn) xn
n with xn = n/(n + 1)

= 2
n + 1

xn
n ⩽ 2

n + 1
.

Second method. Just use the following theorem.

Theorem 2.5.4 (Dini’s theorem ). Let K be a compact space.

If (un)n≥1 is an increasing sequence of continuous functions un : K → R which simply

converges to a continuous function u : K → R, the convergence is uniform.

This is of course obviously false if we do not assume the continuous limit.

Proof. Let ε > 0 .

For each x ∈ K , there exists an integer N(x) such that:

n ⩾ N(x) =⇒ 0 ⩽ u(x) − un(x) ⩽ ε/3.

As u and uN(x) are continuous, there exists a neighborhood of x, which can be taken to be

open, such that:

x′ ∈ V (x) =⇒


|u(x) − u (x′)| ⩽ ε/3∣∣∣uN(x) (x′) − uN(x)(x)

∣∣∣ ⩽ ε/3.

As K is compact, there exists x1, . . . , xm ∈ K such that:

K =
m⋃

i=1
V (xi) .

If N = max {N (x1) , . . . , N (xm)}, we have, for n ⩾ N :

0 ⩽ u(x) − un(x) ⩽ ε, ∀x ∈ K,
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because x belongs to one of V (xi) and n ⩾ N (xi); So :

0 ⩽ u(x)−un(x) ⩽ u(x) − uN(xi)(x)

⩽ (u(x) − u (xi)) +
(
u (xi) − uN(xi) (xi)

)
+
(
uN(xi) (xi) − uN(xi)(x)

)
⩽ ε

3
+ ε

3
+ ε

3
= ε.

2nd step. If f ∈ A, then |f | ∈ Ā.

Proof. Indeed, we can assume f 6= 0. Let a = ‖f‖∞. We have [f(x)]2/a2 ∈ [0, 1] for all

x ∈ K. But, since rn is a polynomial, and A is an algebra, we have rn
(
f2/a2) ∈ A if f ∈ A.

Passing to the limit, we obtain:

|f | = a lim
n→∞

rn

(
f2/a2

)
∈ Ā

the limit being uniform, that is to say taken for the norm of CR(K).

Step 3. If f, g ∈ A, then max{f, g}, min{f, g} ∈ Ā.

Proof. It is enough to note that:


max{f, g} = 1

2
(f + g + |f − g|)

min{f, g} = 1
2

(f + g − |f − g|)

and use Step 2 (as well as the fact that Ā is a vector subspace).

Step 3a. If f, g ∈ Ā, then max{f, g}, min{f, g} ∈ Ā.

Proof. This results from the fact that Ā satisfies the conditions required for A: it remains a

subalgebra (recall that the convergence in C (K) is the uniform convergence), and, since A

contains the constants and separates the points of K, it is a fortiori the same for Ā.
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Of course, by recurrence:

f1, . . . , fn ∈ Ā =⇒ max {f1, . . . , fn} ∈ barA and min {f1, . . . , fn} ∈ Ā.

Step 4 . If x, y ∈ K and x 6= y, then:

(∀α, β ∈ R) (∃h ∈ A) h(x) = α and h(y) = beta

This is the first step in the approximation: we can obtain with a function of A values given

at two given points distinct from K.

Proof. As A separates the points, there exists g ∈ A such that g(x) 6= g(y). Assume:

h = αI + β − α

g(y) − g(x)
(g − g(x)I).

We have h(x) = α, h(y) = β, and h ∈ A, because g ∈ A, I ∈ A, and A is a vector subspace.

Step 5. For all f ∈ C (K), for all x ∈ K, and all ε > 0, there exists g ∈ Ā such that:

g(x) = f(x) and g(y) ⩽ f(y) + ε, ∀y ∈ K.

Proof. For all z ∈ K such that z 6= x, it exists, by Step 4, taking α = f(x) and β = f(z), a

hz ∈ A such that hz(x) = f(x) and hz(z) = f(z).

Let hx denote the constant function equal to f(x) I. Then:

(∀z ∈ K) hz(x) = f(x) and hz(z) = f(z).

The continuity of f and that of hz give a neighborhood, which can be taken to be open, Vz

of z such that:

y ∈ V (z) =⇒ hz(y) ⩽ f(y) + ε.
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As K is compact, there exists a finite number of elements z1, . . . , zm ∈ K such that:

K = V (z1) ∪ · · · ∪ V (zm) .

Then g = inf {hz1 , . . . , hzm} ∈ Ā, by Step 3a, and l ’we have, for all y ∈ K: g(y) ⩽ f(y) + ε,

since y belongs to one of V (zi).

Step 6. We have Ā = CR(K).

Proof. Let f ∈ CR(K), and let ε ≥ 0.

For all x ∈ K, there exists gx ∈ Ā satisfying the conditions given in Step 5.

The continuity of f and that of gx give a neighborhood, which we can choose to be open,

U(x) of x such that:

y ∈ U(x) =⇒ gx(y) ⩾ f(y) − ε.

The compactness of K makes it possible to find a finite number of elements x1, . . . , xp ∈ K

such that:

K = U (x1) ∪ · · · ∪ U (xp) .

Then φ = max
{
gx1 , . . . , gxp

}
∈ Ā, thanks to Step 3a; and she checks:

f(y) − ε ⩽ φ(y) ⩽ f(y) + ε, ∀y ∈ K,

because each y ∈ K is in one of U (xj).

This means that ‖f − φ‖∞ ⩽ ε.

As ε > 0 was arbitrary, we have f ∈ (Ā) = Ā.

This completes the proof of Theorem 2.5.1.

Bernstein’s proof for a compact interval of R

The general form of the Stone-Weierstrass Theorem was given by Stone in 1948. Orig-

inally, Weierstrass had shown, in 1885, that any continuous function on a closed bounded
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interval of R could be approximated there. uniformly by polynomials. To do this, he used a

convolution product.

In 1913, Bernstein gave a beautiful probabilistic proof, which we will present below. Let

us first note that, by changing the variable, we can assume that the interval in question is [0,

1]. The initial idea is as follows: we fix t ∈ [0, 1] (also, if we want, we can take only 0 < t < 1),

and we consider independent random variables X1, . . . , Xn all following Bernoulli’s law with

parameter t. Then Sn = X1 + · · · + Xn follows the binomial law B(n, t) with parameters n

and t. The weak law of large numbers says that Sn
n −→

n→∞
t = E (X1) in probability. Then,

for any function f continuous on [0, 1], we have E
[
f
(

Sn
n

)]
−→

n→∞
f(t). Indeed, if ε > 0

is given, the uniform continuity of f on [0, 1] makes it possible to find δ > 0 such that

|f(x) − f (x′)| ⩽ ε for |x − x′| ⩽ δ; convergence in probability then gives a N ⩾ 1 such that

P
(∣∣∣Sn

n − t
∣∣∣ > δ

)
leqslantε if n ⩾ N . Then, for n ⩾ N , we have:

∣∣∣∣E [f (Sn

n

)]
− f(t)

∣∣∣∣ =
∫
{| sn

n
−t|>δ}

∣∣∣∣f [Sn(ω)
n

]
− f(t)

∣∣∣∣ dP(ω)

+
∫
{| sn

n
−t|⩽δ}

∣∣∣∣f [Sn(ω)
n

]
− f(t)

∣∣∣∣ dP(ω)

⩽ 2‖f‖∞ε + ε

Or E
[
f
(

Sn
n

)]
=
∑n

k=0 Ck
ntk(1 − t)n−kf

(
k
n

)
. We set:

[Bn(f)] (t) =
n∑

k=0
Ck

ntk(1 − t)n−kf

(
k

n

)
;

It is a polynomial of degree n. It is called the nth Bernstein polynomial of f .

We have just seen that we have a simple convergence of Bn(f) to f .

We will see that, thanks to a uniform estimation of the variance of Bernoulli variables, the

proof of the weak law of large numbers for these variables allows to obtain the uniform

convergence of Bn(f) towards f .

Let us first recall that if X is a random variable following Bernoulli’s law

of parameter t, then its variance is V ar(X) = t(1 − t). We have, by the Bienaymé-
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Tchebychev inequality, for all δ > 0:

P
(∣∣∣∣Sn

n
− t

∣∣∣∣ > δ

)
= P

(∣∣∣∣Sn

n
− E(X)

∣∣∣∣ > δ

)
= P

(∣∣∣∣Sn

n
− mathbbE

(
Sn

n

)∣∣∣∣ > δ

)
⩽ 1

δ2 Var
(

Sn

n

)
= 1

n2δ2 Var (Sn)

= 1
n2δ2

n∑
j=1

Var (Xj) (by independence)

= Var(X)
nδ2 = t(1 − t)

nδ2 ⩽ frac1/4nδ2.

Consider the continuity modulus of f , defined by:

ωf (h) = sup
{∣∣f(t) − f

(
t′)∣∣ ; ∣∣t − t′∣∣ ⩽ h

}
.

Saying that f is uniformly continuous means that ωf (h) −→
h→0

0. Let’s set a δ > 0, which we

will specify later. We have, for all t ∈ [0, 1] (we will be careful to differentiate the occurrence

ω ∈ Ω from the continuity module ωf ; we could have modified these notations , but these are

the ones usually used!):

|f(t) − [Bn(f)] (t)| =
∣∣∣∣E [f(t) − f

(
Sn

n

)]∣∣∣∣
⩽ E

(∣∣∣∣f(t) − f

(
Sn

n

)∣∣∣∣) =
∫

Ω

∣∣∣∣f(t) − f

(
Sn(ω)

n

)∣∣∣∣ dP(ω)

=
∫{∣∣t− sn(ω)

n

∣∣⩽δ
}+

∫{∣∣t− sn(ω)
n

∣∣>δ
}

⩽ ωf (δ) + 2‖f‖∞P
(∣∣∣∣t − Sn

n

∣∣∣∣ > δ

)
⩽ ωf (δ) + 2‖f‖∞

1
4nδ2

For any given ε > 0, let’s now choose δ so that ωf (δ) ⩽ ε/2, then N ⩾ 1 such that ‖f‖∞
1

2Nδ2 ⩽

ε/2. We will have, for n ⩾ N, | f(t) − [Bn(f)] t) |⩽ ε for all t ∈ [0, 1], which proves that Bn(f)

tends uniformly towards f .
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2.5.2 Complex case

As it stands, the statement of Theorem 2.5.1 is false for complex-valued function spaces. For

example, if K is the closed unit disk D̄ of the complex plane, any uniform limit on K of

polynomials pn, is holomorphic in the open disk D, thanks to the Weierstrass Theorem on

the uniform convergence of sequences of holomorphic functions. The adherence of the algebra

of polynomials is therefore not CC(K) for example, the function z → z̄ n It’s not in there. In

fact, this example is essentially the only case that needs to be considered; in fact, we have:
Theorem 2.5.5 (Stone-Weierstrass theorem, complex case). Let K be a compact

space and let A be a complex subalgebra of the complex Banach space CC(K) . If:

a) A separates the points of K;

b) A contains constant functions;

c) A is stable by conjugation: f ∈ A =⇒ f̄ ∈ A,

then A is dense in CC(K) .

Note that here f̄ denotes the function t ∈ K 7→ ¯f(t) ∈ C, where ¯f(t) is the conjugate

complex number of f(t).

Proof. Condition c) allows us to say that:

f ∈ A =⇒ Ref = f + f̄

2
∈ A and Imf = f − f̄

2i
∈ A.

Either :

AR = {f ∈ A; f(t) ∈ R, ∀t ∈ K}.

The above remark allows us to say that:

A = AR + iAR.

Furthermore, AR is a subalgebra of CR(K), which contains the constant (real) functions, and
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separates the points of K : if u 6= v, there exists f ∈ A such that f(u) 6= f(v); but then

Re f(u) 6= Re f(v) or Im f(u) 6= Im f(v), and Re f, Im f ∈ AR. It follows from the real case

that AR is dense in CR(K). But then, A = AR+iAR is dense in CC(K) = CR(K)+iCR(K).

Exemple. Let K be a compact part of C. The set of polynomials, with complex coeffi-

cients, in the two variables z and z̄ is dense in CC(K).

Note that it is also, by identifying C with R2, the set of polynomials, with complex

coefficients, in the two real variables x and y, by identifying z = x + iy ∈ C with(x, y) ∈ R2.

2.5.3 The trigonometric system

We will consider here functions f : R → C periodic, with period 1 on R.

The surjective application:

e1 : R −→ U = {z ∈ C; |z| = 1}

t 7−→ e2πit = u

allows them to be identified with functions defined on U. We can also identify them with the

functions defined on the torus T = R/Z.

Furthermore, we know that for any continuous function f on R of period 1, there exists

a unique continuous function f̃ : U → C such that f = f̃ ◦ e1 (resp. f̈ : T → C such

that f(x) = ddotf(x + Z)). The space C1(R) of continuous functions on R of period 1,

provided with the norm ‖f‖∞ = supx∈R |f(x)|, is therefore identified with the space C (U)

of continuous functions on the compact U. It is also identified with the subspace C̃ = {f ∈

C ([0, 1]); f(0) = f(1)}. These identifications are isometric since:

sup
x∈R

|f(x)| = sup
x∈[0,1]

|f(x)| = sup
u∈U

|f̃(u)| = sup
ξ∈T

|f̈(ξ)|.
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Definition 2.5.1. We call any finite sum a trigonometric polynomial.

N2∑
n=N1

ane2πint

with an ∈ C and N1, N2 ∈ Z, N1 ⩽ N2.
Note that by adding zero coefficients if necessary, we can always write a trigonometric

polynomial in the symmetric form:

N∑
n=−N

ane2πint,

where N is a positive integer.

We will note, for all n ∈ Z:

en(t) = e2πint , t ∈ R

The set en; n ∈ Z is called the trigonometric system.

Trigonometric polynomials are identified with the usual polynomials in u and ū on U,

since all u ∈ U is written in the form u = e1(t) = e2πit , and then une2πint = en(t) , and that

ū = e−2πint = e−n(t) . The complex Stone-Weierstrass theorem applied to CC(U) therefore

gives:
Theorem 2.5.6. The set of trigonometric polynomials is dense in the space of

continuous functions of period 1 on R .
Now consider the space of measurable functions f : R → C of period 1 as :

∫ 1

0
|f(t)|2dt < +∞.

When quotiented by the subspace of negligible functions, this quotient is identified as L2(0, 1) =
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L2
C(0, 1) ; indeed, for any measurable function g : [0, 1] → C, the measurable function:

g̃ : [0, 1] −→ C

t 7→


g(t) if 0 ⩽ t < 1;

g(0) if t = 1

extends by periodicity into a measurable function f : R → C of period 1, and
∫ 1

0 |g(t)|2dt =∫ 1
0 |f(t)|2dt.

These identifications having been made, we can state:

Theorem 2.5.7. The trigonometric system is an orthonormal base of L2
C(0, 1)

Corollary 2.5.2. The real space L2
R(0, 1) has an orthonormal basis formed by the

functions:

1,
√

2 cos(2πt),
√

2 cos(4πt), . . . ,
√

2 cos(2πnt), . . .

√
2 sin(2πt),

√
2 sin(4πt), . . . ,

√
2 sin(2πnt), . . .

Remarks 1) Z being countable, we could re-index the trigonometric system with positive

integers.

2) The theorem means that, for all f ∈ L2
C(0, 1), we have:

lim
N→∞

∥∥∥∥∥∥f −
N∑

n=−N

f̂(n)en

∥∥∥∥∥∥
2

= 0

where the inner products:

f̂(n) = 〈f | en〉 =
∫ 1

0 f(t)en(t)dt = int1
0f(t)e−2πintdt ,

for n ∈ Z, are called the Fourier coefficients of f . Parseval’s formula is then written∫ 1
0 |f(x)|2dx =

∑
n∈Z |f̂(n)|2 .

67



CHAPTER 2. HILBERT SPACES

We know that exists then a strictly increasing sequence of integers (ln)n≥1 such as :

lim
n→∞

ln∑
k=−ln

f̂(k)e2πikt = f(t)

for almost all t ∈ [0, 1].

Proof of theorem 2.5.7 It is first easy to see that {en; n ∈ Z} is orthonormal:

〈en | ep〉 =
∫ 1

0
e2πinte−2πiptdt = int1

0e2πi(n−p)tdt =


1 if n = p

0 if n 6= p

It is total because the trigonometric polynomials are dense in C (U) and ‖ · ‖∞ ⩾ ‖ · ‖2 , using

the following lemma:

Lemma 2.5.1. The set C1(R) of continuous functions on R of period 1, identified ȧC̃ =

{f ∈ C ([0, 1]); f(0) = f(1)}, is dense in L2(0, 1).

Indeed, if f ∈ L2(0, 1), then there exists, for all ε > 0, g ∈ C̃ ∼= C (U) such that ‖f −

g‖2 ⩽ ε/2; there then exists a trigonometric polynomial p such that ‖g − p‖∞ ⩽ ε/2; but

‖g − p‖2 ⩽ ‖g − p‖∞ ⩽ ε/2; therefore ‖f − p‖2 ⩽ ε.

Proof of the lemma. Let f ∈ L2(0, 1) and let ε > 0. We know (Corollary II.2.9) that

there exists h ∈ C ([0, 1]) such that ‖f − h‖2 ⩽ ε/2. Let M > 0 such that |h(t)| ⩽ M for all

t ∈ [0, 1], and let us note a = 1 −
(

ε
4M

)2.

We will modify h on [a, 1] by setting h1(1) = h(0) and taking h1 affine between a and 1 .

Then h1 ∈ C̃ , ‖h1‖∞ ⩽ M , and:

68



CHAPTER 2. HILBERT SPACES

‖h − h1‖2 =
(∫ 1

a
|h(t) − h1(t)|2 dt

)1/2

⩽ (1 − a)1/2 sup
a⩽t⩽1

(|h(t)| + |h1(t)|)

⩽ ε

4M
× (M + M) = ε

2
.

We therefore have ‖f − h1‖2 ≤ ε .

Application example. Let f : R → R be the function defined by f(t) = t for 0 ≤ t < 1,

and extended by periodicity on R .

Then f ∈ L2(0, 1) and:

‖f‖2
2 =

∫ 1

0
t2dt = 1

3
.

The Fourier coefficients of f are:

f̂(n) =
∫ 1

0
te−2πintdt, n ∈ Z

For n = 0 :
∫ 1

0 tdt = 1/2; for n 6= 0:

f̂(n) =
[

te−2πint

−2πin

]1

0
− int1

0
e−2πint

−2πin
dt = 1

−2πin
= i

2πn
.

Parseval’s formula ‖f‖2
2 =

∑
n∈Z |f̂(n)|2 therefore gives:

1
3

= 1
4

+
∑
n6=0

1
4π2n2 = 1

4
+ 1

2π2

∞∑
n=1

1
n2 ;

from where :
∞∑

n=1

1
n2 = 2π2

(1
3

− 1
4

)
= π2

6
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Fourier coefficient of functions of L1(0, 1)

For any measurable f : [0, 1] → C, the Cauchy-Schwarz inequality:

∫ 1

0
|f(t)|dt ⩽

(∫ 1

0
12dt

)1/2 (∫ 1

0
|f(t)|2dt

)1/2
=
(∫ 1

0
|f(t)|2dt

)1/2

says that L 2([0, 1]) ⊆ L 1([0, 1]). We therefore have a natural injection of L2(0, 1) into

L1(0, 1). By identifying L2(0, 1) with its image in L1(0, 1), we will write: L2(0, 1) subseteqL1(0, 1)

For any f ∈ L1(0, 1), we can define the Fourier coefficients:

f̂(n) =
∫ 1

0
f(t)e−2πintdt, n ∈ Z

since
∣∣e−2πint

∣∣ = 1. We have |f̂(n)| ⩽ ‖f‖1 for all n ∈ Z. Moreover :

Theorem 2.5.8 (Riemann-Lebesgue Lemma). For any function f ∈ L1(0, 1), its

Fourier coefficients tend to 0 when |n|tends to infinity:

f̂(n) −→
|n|→∞

0

Proof. If g ∈ L2(0, 1), Parseval’s formula:

‖g‖2
2 =

∑
n∈Z

|ĝ(n)|2

shows that we have, in particular, ĝ(n) −→
|n|→∞

0.

Now, if f ∈ L1(0, 1), there exists, for all ε > 0, a function g ∈ L2(0, 1) (by example g

stepped, or g continuous) such that ‖f − g‖1 ⩽ ε. As we have |f̂(n) − ĝ(n)| ⩽ ‖f − g‖1 ⩽ ε,

we obtain |f̂(n)| ⩽ |ĝ(n)| + ε; SO :

lim sup
|n|→∞

|f̂(n)| ⩽ lim sup
|n|→∞

|ĝ(n)| + ε = ε

Hilbert space exhibits two phenomena (not occurring in Euclidean m-space) described in
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the examples below:

Example 2.1. Consider the sequence 〈pn〉 of points in Hilbert space where pk = 〈a1k, a2k, . . .〉

is defined by aik = δik; i.e. aik = 1 if i = k, and aik = 0 if i 6= k. Observe, as illustrated

below, that the projection 〈πi (pn)〉 of 〈pn〉 into each coordinate space converges to zero:

p1 =〈1, 0, 0, 0, . . .〉

p2 =〈0, 1, 0, 0, . . .〉

p3 =〈0, 0, 1, 0, . . .〉

p4 =〈0, 0, 0, 1, . . .〉

· · · · ·

· · · · ·

· ↓̇ ↓

0 =〈0, 0, 0, 0, . . .〉

But the sequence 〈pn〉 does not converge to 0, since d (pk, 0) = 1 for every k ∈ N; in fact,

〈pn〉 has no convergent subsequence.

Example 2.2. Let H denote the proper subspace of H which consists of all points in H whose

first coordinate is zero. Observe that the function f : H → H defined by f (〈a1, a2, . . .〉) =

〈0, a1, a2, . . .〉 is one-one, onto and preserves distances. Hence Hilbert space is isometric to a

proper subspace of itself.
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