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Field of Real Numbers

We recall the usual notation for sets of numbers:

N={0,1,2,-,n,---}:1is the set of natural numbers.

Z={- -1,0,1,2,---} : is the set of relative integers.

Q= {§ p € Z, g € N*} : is the set of rationals.

D={r= k €Q, peZ, keNj}:is the set of decimal numbers.

R : the set of real numbers.

The sets without O are respectively denoted by N*, Z*, Q*, D*, R*.

Remark 1.0.1. NcZcDcQcR.

1.1 Properties of the real numbers

The set of real numbers R has the following two operations:

Vx,yeR: (x,y) — x+y (Addition)
Vx,yeR: (x,y) — xXy (Multiplication)

with an ordering relation (x < y) or (y < x) satisfying the following axioms :

1. Axiom 1: R is a commutative field. For all x, y, z€e R

1



« CHAPTER 1. FIELD OF REAL NUMBERS 2 YCHELLOUF

e x+y)+z=x+(Q+2 (Associative Law for Addition).
e xX+y=y+x (Commutative Law for Addition).

e x+0=0 (Identity Law for Addition).

e x+(—x)=0 (Inverses Law for Addition).

o (xy)z=x(y2) (Associative Law for Multiplication).

® Xy =yx (Commutative Law for Multiplication).

o x.1=x (Identity Law for Multiplication).

o Ifx #0,then xx' =1 (Inverses Law for Multiplication).
o x(y+2)=xy+xz (Distributivity).

2. Axiom 2: R is a totally ordered field. For all x, y, z€ R

o x<x (Reflexive Law ).

e [fx<yandy<x,thenx=y (Antisymmetric Law).

e [fx<yandy<gzthenx <z (Transitive Law).

o [fx<ythenx+z<y+z (Addition Law for Order).

o If x<yandz>0,then xz <yz (Multiplication Law for Order).
3. Axiom 3:

e For every non-empty subset A of R and bounded above, has an upper bound that we

denote by sup(A).

e For every non-empty subset A of R and bounded below, has a lower bound that we

denote by inf(A).

Remark 1.1.1. Let A be a non-empty subset of R, then:

e A={xeR|xeAl

o _A={xeR| —xeA}l

«2)
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Proposition 1.1.1. Newton’s binomial formula

Let x, y € R, and n € N*, we have

no_ C k k  n—k k _ n! _ _
(x+y) —kZ(;Cnx y ,whereCn——k!(n_k)!, 1'=1and 0! = 1.

1.2 Intervalsin R

We now define various types of intervals in the real numbers. you most likely encountered
the use of intervals in previous mathematics courses, for example, precalculus and calculus, but
their importance might not have been evident in those courses. By contrast, the various types of

intervals play a fundamental role in real analysis.

Definition 1.2.1. e An open bounded interval is a set of the form
(a,b)={xeR|a<x<b},

where a, b e R and a < b.

o A closed bounded interval is a set of the form
[a,b] ={xeR|a<x<b},
where a, be Rand a < b.
o A half-open interval is a set of the form
[a,b) ={xeR|a< x<b}, or (a,b] ={xeR|a<x<b}

where a, b € R and a < b.

e An open unbounded interval is a set of the form
(a,00) ={xeR|a < x}, or (—oo,b)={xeR|x<b}, or (—00,00) = R,

where a, b e Rand a < b.

«3)
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e A closed unbounded interval is a set of the form
[a,0) ={xeR|a< x}, or (—oo,b] ={xeR|x< Db},

where a, b € R and a < b.

Notation:
R ={xeR, x>0}, R ={xeR, x<0}, R*=R-{0},

R,={xeR, x>0}, R.={xeR, x<0}.
1.3 Completed number line R: (Extension of R)

Definition 1.3.1. We denote by R the set R U {—co, +oo}. This set is called a completed number

line.

Order relation in R

R is provided with a total order < extending that of R and further defined by:

VxeR, —o0o < x < 400, (in fact —o0 < x < 4+00).

operations in R

Similarly, the laws + and . of R are "extended" (always commutatively) by posing

1) (+00) + (+00) = (+00)  ; (-00) + (=00) = (—00).

2)VxeR, x+(+0) = +00 ; x+ (—00) = —00.

3) (+00)(+00) = +00 i (-00)(—00) = 400 ; (+00)(—00) = —oo.
4)Vx e R, x(+00) = —00 ; x(—00) = +00.
S)Vx e R:, x(+0) =400 ; x(—00) = —o00.

«4)
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Indeterminate forms

The following expressions are called indeterminate forms:

. 0 0
H 10070100-

9

ol o

(+00) + (=00); 0(—00); O(+00);

818

1.4 Archimedean property
R R satisfies the following Archimedean property:
VxeR, AneN suchthat : n> x

In other words the set N is not bounded in R.

1.5 Rational and irrational numbers
Definition 1.5.1. The set of rational numbers, denoted Q, is defined by
Q:{xERIx: gforsomep, qusuchthatin}

The elements of R|Q are called irrational numbers.

1.6 Density of Q in R

Theorem 1.6.1. Between every two distinct real numbers x, y there exists a rational number g,

Le.:

Vx,yeR, x<y=d1qgeQsuchthatx<q<y

Proof 1. Let (x, y) € R, assume that x < y. We can introduce n € N* such that ny — nx > 1

1 1
(take for example n = 1 + [——]). So, n > ——.
xX—y - X

«5)
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Since ny — nx > 1, there exists p € Z such that nx < p < ny (for example p = [nx] + 1, since

[nx]Snx<[nx]+1Snx+1<ny).Sox<£<y, andEZQEQ.
[ n n
P

1.7 Absolute value

Definition 1.7.1. The absolute value of a real x, denoted by |x|, is defined as follows:

x x>0
x| = 0O :x=0

-x :x<0

y=|ﬂ

< > X

-5 —4 -3 -2 -1 0 1 2 3 4 5

Figure 1.1: graphical presentation of y = |x|

Absolute Value Properties
The absolute value verify the following properties:
1. VxeR: |x >0
2. Vx, yeR: |xy| = |x|.]yl
3.Vx, yeR: [x+y < x|+ [yl

€6)
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4. ¥Vx, yeR: |lx| =l < |x +y

5.V¥e>0,¥xeR: [x—dl<eoa-e<x<e+a

1.8 Integer part of a real number)

Definition 1.8.1. Let x € R, there exists a relative integer denoted E(x) such that: E(x) < x <
E(x)+ 1.

Is the greatest integer less than or equal to x.

Figure 1.2: graphical presentation of y = E(x)

Example 1.8.1.

1) E(0.3) =0, 0<03<0+1=1).

2) E(3.3) =3, 3<33<3+1=4).

3) E(-4) = -4, E(5) =5.

4)E(-15)=-2, (-2<-15<-2+1=-1).

Properties

1. the integer part is an increasing map.

«7)
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2. ¥xeR, x=E(Xx) o xeZ.

3. V(x,n) € RXZ): E(x+n)=E(x)+n.

1.9 OrderinR

In order to distinguish the real numbers from all other ordered fields, we will need one
additional axiom, to which we now turn. This axiom uses the concepts of upper bounds and least
upper bounds, while we are at it, we will also define the related concepts of lower bounds and

greatest lower bounds.

Upper and lower bounds of a set)

Definition 1.9.1. Let A be a non-empty subset of R, we say that:

1. The set A is bounded form above if there is some M € R such that x < M for all x € A.

The number M is called an upper bound of A.

2. The set A is bounded from below if there is some m € R such that x > m for all x € A.

The number m is called a lower bound of A.
3. The set A is bounded iff there exists m and M such that: for any x € A, m < x < M.

4. Let M € R. The number M is the least upper bound (also called a supremum) of A if M
is an upper bound of A, and if M < M’ for all upper bounds M’ of A.

5. Let m € R. The number m is the greatest lower bound (also called an infimum) of A if m

is a lower bound of A, and if m > m’ for all lower bounds m’ of A.

Maximum, Minimum

Definition 1.9.2. Let A be a non-empty subset of R, we say that:

1. M € R is a maximum of A and we denote max A if M € A and M is an upper bound of A.

8)
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2. m € R is a minimum of A and we denote min A if m € A and m is a lower bound of A.

Example 1.9.1. /. Let A =]0, 1, A is bounded from above by 1 and bounded from below by
0.

o The set of upper bounds is [1,+oo[, this one admits the smallest upper bound which

is 1 ¢ A. So sup(A) = 1 and max(A) does not exist.

o | — 00,0] is the set of lower bounds, this one admits the largest of the lower bounds

which is 0 ¢ A. So inf(A) = 0 and min(A) does not exist.
2. LetB={xeZ: x* <49} = {-7,-6,-5.--- ,5,6,7}.

o The set of upper bounds is: M = [7,+oco[ and 7 € B. So sup(B) = max(B) = 7.

e The set of lower bounds is: m =] — oo, —7] and —7 € B. So inf(B) = min(B) = -7.

3. C =]—o00,1]. So C is bounded above by [1, co[, and not bounded below. Then, max(C) =
sup(C) = 1 and inf(C), min(C) do not exist.

1.10 The upper and lower bounds characterization

Proposition 1.10.1. Let A be a non empty subset of R.

1. If M € R is an upper bound of A, then:

VxeA: x< M,

M = sup(A) &
Ve>0,dx"€eA: M—-e<x*.

2. If m € Ris a lower bound of A, then:

YxeA: x>m,
m = inf(4) o
Ve>0,dx"eA: x* <m+e.

Exercise 1.10.1. Let A = {xn =1+54,n¢€ N}.

1. Show that: Vx, € A, % <x, <l

9)



¢ CHAPTER 1. FIELD OF REAL NUMBERS10 YCHELLOUF

2. Find sup(A), and inf(A).

3. Show that: sup(A) = 1.
Solution:

1. We show thatVx, € A, %an<1. We have Yn € N : x,,:%+ . So

2n+1
VneN: 0<2n<2n+1 = 0<:2 <1,

1 2n 1
= 0< 2 2n+1 2

=

1 n
< 2 +-2n+1 <l

[N L

2. We have % < x, < 1, then A is bounded, i.e: inf(A) and sup(A) are exists.
% is a lower bound of A, and % € A = min(A) = inf(A) = % And 1 is the smallest upper

bound of A, so sup(A) = 1.

3. Let’s show that: sup(A) = 1

We use the characteristic property of the upper bound.

1 is an upper bound of A,
Ve>0,dx,€AneN), x,>1-=¢.

sup(Ad) = 1 &

Assume that: x, = % +

n
2n+1

> 1 — g, and find n as a function of ¢.

+ 5= > —g,

1 n _ _1
Xn =3 *F >1-¢ 27 2sl

2n+1

1 n

3 el <6
I
20n+1)

<&,

=
=
=
= 2n+1> 5,
£
=

n>

1 _1
4 2"

Sodn = E(x— 1)+ 1, thus sup(A) = 1.

«10)»



Field of Complex Numbers

We know that the square of a real number is always non-negative e.g. (4)> = 16 and
(—4)? = 16. Therefore, the square root of 16 is (+4). What about the square root of a negative
number? It is clear that a negative number can not have a real square root. So we need to extend
the system of real numbers to a system in which we can find out the square roots of negative
numbers. Euler (1707 - 1783) was the first mathematician to introduce the symbol i (iota) for the

positive square root of —1 1i.e., i = V-1.

2.1 Definitions and notations

Definition 2.1.1. A number which can be written in the form a + ib, where a, b are real numbers

and i = V-1 is called a complex number.

e [fz = a+ ib is the complex number, then a and b are called real and imaginary parts,

respectively, of the complex number and written as Re(z) = a, Im(z) = b.
o We denote the set of all complex numbers by C.

e Order relations ”greater than” and "less than” are not defined for complex numbers.

11
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e [fthe imaginary part of a complex number is zero, then the complex number is known as
purely real number and if the real part is zero, then it is called purely imaginary number.
For example, 2 is a purely real number because its imaginary part is zero and 3i is a purely

imaginary number because its real part is zero.

o Two complex numbers 7, = a + ib and 7, = ¢ + id are said to be equal if a = c and b = d.

2.2 The complex plane

Just as real numbers can be visualized as points on a line, complex numbers can be

visualized as points in a plane: plot z = a + ib at the point (a, b).

Imaginary axis Imaginary axis

; 2+ 30
bi a+ bi 3 M
Real | Re.al
a axis 2 axis

Figure 2.1: Plotting points in the complex plane

2.3 Operations on complex numbers

Addition

e Letz; =a+ibandz, = ¢+ id be two complex numbers then z; + z, = (a + ¢) + i(b + d).

e Addition of complex numbers is commutative i.e. (z; + 2o = 2> + z1), and it is also

associative i.e. ((z) +z2) + 73 = 71 + (22 + 23)).

e The identity element for additionis 0 (Vz=a+ib € C: 30 =0+0i € C such that z+0 =

0+z=2).

«12)
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e The additive inverse of zis —z (Vz=a+ib e C: A —z=—a—ib € C such that 7+ (-z) =

(=2)+2z=0).

Multiplication

e lLetzy =a+ibandz, = c+idbe two complex numbers then z;.2, = (ac — bd) + i(ad + bc).

Multiplication of complex numbers is commutative i.e. (2.2 = z2.z1), and it is also

associative i.e. ((z1.22).23 = 21.(22.23)).

The identity element for multiplicationis 1 (Vz € C, 31 = 1 +1i0 € C such that z.1 =

l.z=2).

The multiplicative inverse of z is %

For complex numbers, multiplication is distributive over addition.

Division

Let z; = a + ib and 25(# 0) = ¢ + id. Then

. _ a+ib _ (act+bd) - (bc—ad)
U727 Gid = ard c2+d?

Conjugate of a complex number

Definition 2.3.1. In complex numbers, we define something called the conjugate of a complex
number which is given by 7 = a — ib. The conjugate is therefore simply a change the sign of the

imaginary part, i.e., (Re(z) = Re(z), and Im(z) = —Im(z)).

For example, if z; =3 +2ithenz; =3 -2i,ifzp = -4 —ithenz; = -4 +i,if z3 =5 -3
thenzz = 5 + 3i.

properties:

—

Il
I

™

«13)
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2. z+7=2Re(z), z—7 = 2ilm(z).

3. z=7 & zis purely real.

4. 74+ 7 =0 < zis purely imaginary.
5. 2Z = {Re(@)} + {Im(2)}".

6. M +2)=2u+2, @1 -22)=u-2

7. Ga) =0 (D=2, &G #0).

Modulus of a complex number

Definition 2.3.2. For any complex number z = a + ib, the real number r = |z, defined by:
r=lad = Va2 + b2
is called the modulus of z.
Properties:

L |2l =2x%, [ =2, 122l = [zl Jzal.
2. |zl =0 z=0,1i.e., Re(z) =0, and Im(z) =0.
3. lz1 + 22l <zl + |z2],  (Triangle inequality).

4. 12 =5, 5 #0.

|z2I”

5. |l|=|—;|,z¢0.

Z
6. |Re(z) < Izl, and |Im(2)| < [z].

Proof 2. (of Triangle inequality)

lz1+ 2P = (@ +22)@ +22)

U+ +un+u

z1* + 1z2l* + 2Re(z122)

IA

z1* + |22* + 2|z122]

IA

(21l + lzal)?

14
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Argument

Definition 2.3.3. For any z € C, a number 0 € R such that z = |z| (cos 8 + isin ) is called an
argument of z and denoted by 0 = arg(z) = tan™! Z.
the relationship connecting r and @ to a and b is: a =rcosd and b =rsiné. ie.,

cosf =2,
-

arg@)=1
sinf = %.

properties:

1. arg (z1.22) = arg (z1) + arg (22).
2. arg (") = narg (2).
3. arg (1) = — arg (2).
4. arg ) = — arg (2).

5. arg (2) = arg (2)) - arg (22).

2.4 Trigonometric form
Letz=a+ib, r =zl = Va* + b? and 0 = arg (7). We have a = r cos @, b = r sin#, so:
z=a+ib=rcos@+irsinf =r(cos@+isinb) = re®.

This is the trigonometric form of z. This representation is very useful for the multiplication and

division of complex numbers:

o 71 X2 = 1@ X rye®” = ry.re @+,

o I — rle’_gl — r_1€i((-)|—92)
2 rpel® r :

«15)»



¢ CHAPTER 2. FIELD OF COMPLEX NUMBBRS YCHELLOUF

2.5 Inverse Euler formula

Euler’s formula gives a complex exponential in terms of sines and cosines. We can turn
this around to get the inverse Euler formulas.
Euler’s formula says:
e’ =cos(t) +isin(f) and e = cos(f) — isin(¢).
By adding and subtracting we get:
—it —it

cos(t) = et% and sin(?) = "’t‘z—f

2.6 Moivre’s formula

For positive integers n we have the Moivre’s formula:

(cos 8 + isin )" = cos(nd) + i sin(nb)

Proof 3. This is a simple consequence of Euler’s formula:
(cos @ + isin@)" = ()" = e = cos(nb) + i sin(né).

Application:

By developing the Moivre formula using the Newton binomial formula:

(cos @+ isinf)" = 3}_, Ck(cos 6)"*(isin H)*.

Where Ct = ﬁik),, C, = #(',). =1, and C; = o;?r!z)! =L

We have

(cos 6 +isin6)" = Cy(cos 0)'(isin )" + C)(cos )" (isin6)' + - - + Cy(cos )" *(isinO) + - - +
C"(cos 6)°(i sin §)".

So, we get

The real part:
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(cosnf) = (cos O)" — C>(cos )" 2(sin )% + C(cos )" *(sinO)* + - - -
and
The imaginary part:

(sinnf) = Cl(cos @) !(sin@)' — C3(cos )" 3(sin )’ + - - -
Example 2.6.1. Forn = 3:

(cos(8) + isin(6))?

Sico CX(cos(8))* (i sin())
cos>(0) + 3i cos2(0) sin(d) — 3 cos(0) sin’(§) — i sin’(6).

By identifying the real and imaginary parts, we deduce that:

cos(36) = cos>(0) — 3 cos(0) sin®(f), and sin(36) = 3 cos?(6) sin(d) — sin’(0).

2.7 n-th root of a Complex Number

Definition 2.7.1. A complex number w is an n — th root of z if:

We use the Moivre’s Theorem to develop a general formula for finding the n—th roots of a nonzero
complex number. Suppose that w = p(cos(6’) +isin(8")) is an n—th root of z = r(cos(6) + i sin(9)).

Then

Wn_Z pl’l:r
. ’ . =
pletn? = re? nd =0+2kn, 0<k<n-1.
So

{p= "\r

=22 0<k<n-1

thus, if 7 = r(cos(0) + i sin(0)), then the n distinct complex numbers

n

”W(cos%+isinw), 0<k<n-1
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are the n — th roots of the complex number z.

Particular case:

If z =1, the n — throots of 1 are

cos(%) + isin(ZkT”), 0<k<n-1.

Exercise 2.7.1. Write the following numbers in algebraic form:

1+i)’
1. 74 = .
“ (3+2i)

-2+ 2i
2 = (i 2
3—1i
Solution:
| (1+10)? 20 2i(5 — 12i) 24 N 10 .
. = = = = L.
AT G202 T 5412 169 169 * 169
. o 2i3+0) 11 7.
2. 0=2i+1-3-4i+ (10 :—?—gl.
2003
1 3
Exercise 2.7.2. Calculate [—5 - l%) .

Solution:

_ ——

2003
1.3 (08 s ngron i 2 1 V3

Exercise 2.7.3. Using exponential notation, find the formulas:

cos(@+8) = cosfOcosd —sinfsiné’.
sin(0+ @) = sinfcos® —cosfsinf'.
Solution:
We have €@ = ¢ = (cosf+isinf)(cos® +isin@), hence ) = cosfcost —

sinfsin @ + i(cos@sinf + sinfcos ') by taking the real parts and the imaginary parts, we

obtain the results.

18



The Numerical Sequences

3.1 The general concept of a sequence

3.1.1 Definition

Definition 3.1.1. A sequence of real numbers is a real-valued function whose domain is the set

of natural numbers N to the real numbers R i.e:

u: N—0R,

n— u,.

The elements of a sequence are called the terms. The n — th term u, or u(n) is called the

general term of the sequence.

Example 3.1.1. 1. (\n)uso is the sequence of terms: 0,1, \/E, \/5, cee

2. ((=D)")uso is the sequence of terms that are alternated: +1,—-1,+1,—1,---

19
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3.1.2 Explicit definition

By an explicit definition of the general term of the sequence (u,) i.e.: Express u, in terms

of n. For example: u, =3n+ 1, v, = sin(nr/6), w, = (1/2)".

3.1.3 Definition by recurrence

By a recurrence formula, i.e. a relationship that links any term in the sequence to the one
that precedes it. In this case, to calculate u,, you need to calculate all the terms that precede it.

For example

u = 1,

Upyp = 2u,+3, neN.

3.2 Qualitative features of sequences

3.2.1 Monotonicity

Definition 3.2.1. A sequence u, is called increasing (or strictly increasing) if u, < u,,, (or
U, < Uyy1), foralln € N.

Similarly a sequence u, is decreasing (or strictly decreasing) if u,, > u, (or u, > u,,,), for all
neN.

If a sequence is increasing (or strictly increasing), decreasing (or strictly decreasing ), it is said
to be monotonic (or strictly monotonic).

Example 3.2.1. The sequence u,, = 2';1 which starts

5

7
) 67”'

Al

b

=
_

is increasing. On the other hand, the sequence v, = % which starts

—1N

[\S][%}

wis
-

Al
”

is decreasing.
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3.2.2 Boundedness

Definition 3.2.2. Let (u,),cn be a real sequence.

o A sequence (U,)nen is bounded from above if AM € R, ¥ n, u, < M.
o A sequence (U,),en is bounded from below if Am € R, ¥ n, u, > m.

o A sequence (U,)qen is bounded iff: it is bounded from above and bounded from below

which means: AM € R,, Y n, |u,| <M

Remark 3.2.1. If a sequence {u,}’ , is increasing, then it is bounded from below by uy, and if it

is decreasing, then it is bounded from above by u.
Theorem 3.2.1. If the sequence (u,) is bounded and monotonic, then lim,_,, u, exists.

Proof 4. Suppose that (u,) is increasing sequence, and sup u,, = M. then for given € > 0, there
neN

exists ng such that M — € < u,,. Since (u,) is increasing, we have u,, < u, for all n > ny. This
implies that

M—-e<u,<M<M+eg, VYn> n,.

That is u,, — M. For decreasing sequences we have u,, — m such that m = in£ u, and its proof
ne.

is similar.

3.3 Convergent Sequences

Definition 3.3.1. We say that the sequence u,, converges to the scalar l iff
Ve>0,dnyeN: Vu>ny: lu,— Il <e.

In this case we write lim,,_,, u,, = I, (I finite). If there is no finite value [ so that lim,_,., u, =1,

then we say that the limit does not exist, or equivalently that the sequence diverges.

Remark 3.3.1. Any open interval with center | contains all the terms of the sequence from a

certain rank.
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Example 3.3.1. /. u, = (%)n
im0 tt, = lim,, 1 (%)n = 1liMyo 100 €™(3) = 0. So (u,) converges to 0.
2. v, = (=" v, is a divergent sequence.

3. w, = sin(n). The limit of w, does not exist, so w, is divergent.

Example 3.3.2. Consider:

n

* The sequence u, = converges to |

n-+1

Using the definition of convergence, we show that lim u, = |

RN—r—+o0
Let € > 0 we have:
n
& | —1|<e
n+1
n
& | —1|<e
;H—%
&1 — —1|<e
;‘Hl—l
& <eg
n+1
|
& ——1<n

: 1 1 :
By setting nop = | —| > — — 1, we obtain :
e” &€

1
Ve > 0,dng € N(ng = LEJ) VneNin2>ng = |up—1|<e

= (uy)pen converges to [ = 1

Proposition 3.3.1. If the sequence a, is convergent then it has a unique limit.

Proof 5. Assume that lim,_,, . u,, = [, and lim,_, ., u,, = ', we need to show thatl =1'.

o lim, o, =l = V¥e>0,AneN:VYn>ny: |u,— 1| <3

and

«22)



% CHAPTER 3. THE NUMERICAL SEQUENCES YCHELLOUF

o lim, o, =l' = VY¥e>0, A eN:Vn=n;: |u, -I'|<%.

We have |l = Ul = |l —u, + u, = U] < |l —sty| + |, = U] < 5 +

[=1.

£=e 80V¥e>0: |[Il-I|<g, then

Proposition 3.3.2. If the sequence u, converges to I, then |u,| converges to |l|.
Proposition 3.3.3. any convergent sequence is bounded.

Proof 6. Suppose a sequence (u,) converges to u. Then, for € = 1, there exist N such that

lu, —u| <1, Vn > N.

This implies |u,| < |u| + 1 for all n > N. If we let

M = max {|uy|, |us|, - ,lun-1l},

then |u,| < M + |u| + 1 for all n. Hence (u,) is a bounded sequence.

Remark 3.3.2. o [f (u,)nen is increasing and bounded from above, then (u,),cn converges to

[ = sup u,.

o [f (u,)nen is decreasing and bounded from below, then (u,),cy is converges to | = inf u,.

3.4 The usual rules of limits

If (u,) and (v,) are convergent sequences to / and [’ respectively, and « is any real constant

then:
1) lim,_,eo(u, +v,) =1+ 1, 5) lim,_, e ui = }, [+0,
2) lim, oot X v,) = [ X, 6)if u, <vy, thenl <,
3) lim,.o(au,) = al, Tifl=10, and u, <w, <v,, then lim,_,,,w, =1L
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3.5 Adjacent sequences

Definition 3.5.1. We say that two real sequences (u,), and (v,) are adjacent if they satisfy the

following properties:

1. (u,) is increasing, and (v,) is decreasing,
2. lim,_o(u, —v,) = 0.

Theorem 3.5.1. If (u,) and (v,) are adjacent sequences, then they converge to the same limit.

Proof. We assume that (u,) is increasing and (v,) is decreasing. Let w,, = u, — v,, then

Wpel =Wy = Upyl — Vsl — Uy T Vy,

= (Ups1 — Up) — (Vps1 — V1),

> 0.

and lim,_,., w, = lim,_,(u, — v,,) = 0. Since (w,) is an increasing sequence and lim,,_,., w, = 0,
thenVneN: w, <0=u, <v,.
Therefore, Vn € N : uy < u, <v, <. the sequence (u,) is convergent since it is increasing and

bounded from above by v, also the sequence (v,) is convergent, and since lim,, (¢, — v,) =0

we deduce that lim,,_, 1, = lim,_, V. O
Exercise 3.5.1. Show that the two sequences (u,) and (v,) are adjacent:

oun:1+$, and v, = 2.

2

—_yn 1 —
® u, =iz and v, =u, +

3.6 Subsequences

It is useful to sometimes consider only some terms of a sequence. A subsequence of

{u, )7, is a sequence that contains only some of the numbers from {u,},., in the same order.
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Definition 3.6.1. The sequence (iy))nen IS a subsequence of the sequence (i, )pen if ¢ : N — N

is a strictly increasing sequence of natural numbers.

Example 3.6.1. Consider the sequence

then letting ny = 2k yields the subsequence

1\®
= (50), =

and letting n;, = 2k + 1 yields the subsequence

b

=
B
-
-
)
»l"
s
-

BRRRE T ERR b

W=

b

[SST

L \®
Uk+1 = (2k+])k:1 = {

Proposition 3.6.1. If {u,},-, is a convergent sequence, then every subsequence {u,,}:-, is also

convergent, and

limy, o0 Uty = liMy, o0 Uy,

Proof 7. Let u,, denote a subsequence of u,. Note that n; > i for all i. This easy to prove by
induction: in fact, ny > 1 and n; > i implies that n;,; > n; > i and hence n;j;1 > i+ 1.

Let limu, = u, and let € > 0. There exists N so that n > N implies |u, — u| < &. Now

I>N—=>n>N— uni—u|<s.

therefore limu,,, = u.
1—00

Corollary 3.6.1. Let (u,) be a sequence, if it admits a divergent subsequence, or if it admits two

subsequences converging to distinct limits, then (u,) is diverges.

Theorem 3.6.1. (Bolzano-Weierstrass)

Every bounded sequence has a convergent subsequence.

To prove the Bolzano-Weierstrass theorem, we will first need two lemmas.

Lemma 3.6.1. All bounded monotone sequences converge.
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Proof 8. Let (u,) be a bounded, nondecreasing sequence. Let U denote the set u,, n € N. Then
let b = sup U (the supremum of U ).

Choose some € > 0. Then there is a corresponding N such that uy > b — €. Since (u,) is
nondecreasing, for alln > N, u,, > b — &. But (u,) is bounded, so we have b — &€ < u, < b. But
this implies |u, — b| < &, so limu, = b.

(The proof for nonincreasing sequences is analogous.)
Lemma 3.6.2. Every sequence has a monotonic subsequence.

Proof 9. First a definition: call the nth term of a sequence dominant if it is greater than every
term following it. For the proof, note that a sequence (u,) may have finitely many or infinitely
many dominant terms.

First we suppose that (u,) has infinitely many dominant terms. Form a subsequence (u,,) solely of
dominant terms of (u,). Then u,,,, < u,k by definition of SdominantT, hence (u,,) is a decreasing
(monotone) subsequence of (u,).

For the second case, assume that our sequence (u,) has only finitely many dominant terms. Select
ny such that ny is beyond the last dominant term. But since n, is not dominant, there must be
some m > n; such that u,, > u,,. Select this m and call it n,. However, n, is still not dominant,
so there must be an n3 > ny with u,, > u,,, and so on, inductively. The resulting sequence

uy, Uy, us,--- is monotonic (nondecreasing).

Proof 10. (of Bolzano-Weierstrass)
The proof of the Bolzano-Weierstrass theorem is now simple: let (u,) be a bounded sequence. By

Lemma (3.6.2) it has a monotonic subsequence. By Lemma (3.6.1), the subsequence converges.

3.7 Cauchy Sequences

Definition 3.7.1. A real sequence (u,) is called a Cauchy sequence if for every € > 0, there

exists an N € N such that Ym,n € N, if m,n > N then

|y — unl < &
Proposition 3.7.1. If a sequence is Cauchy, then it is bounded.
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Proof 11. we have a Cauchy sequence:
Ye>0, AN stV n, m>N, |u,—u,| <e.

we want to prove: this sequence is bounded: VY n, |u,| < C. Note that |u,| = |u, — u,, + u,,| <
|, — | + |uy| by the Triangle Inequality set € = 1, because this sequence is Cauchy, 1 N such
thatY m, n> N, |u, —u,,| < 1. Set m = N + 1. Combined with our initial note, we can rewrite
the following: |u,| < 1 + |uy41l, and this is true for ¥ n > N.

This bounds all the terms beyond the Nth. Looking at the terms before the Nth term, we can find

the maximum of them and note that this bounds that part of the sequence:
|| < max (lul, |uaf, -, lunl)

and this is true for n < N. By choosing the maximum of either 1 + |uy1| or the maximum of
the aforementioned set, we can find our C which bounds all the terms in the sequence. We have

shown the sequence is bounded.
Proposition 3.7.2. (u,),en is a Cauchy sequence < (u,)qen is convergent.

Proof 12. Suppose (x,) is a convergent sequence, and lim(x,) = x. Let € > 0. We can find
N € N such that for alln > N, |x, — x| < g Therefore, by the triangle inequality, for all
m, n >N, | X, — x| < |x — x|+ |x— x| < g + g = ¢&. So (x,) is Cauchy.

Conversely, suppose (x,) is Cauchy. Let € > 0. By a result proved in class, (x,) is bounded. By

Bolzano-Weierstrass, it has a convergent subsequence (x,,) with lim(x,,) = x for some x. We

can find K € N such that for all k > K,

Xp — x| < g We can also find M such that for all
m, n>M, |x, — x,| < g Let N = sup K, M. Then since ny > k for all k, if k > N, we have that

k, ny > M and n; > K. Therefore, for all k > N, |x, — x| < X — x| < g + £ eby

+
2 2

Xn — xnk

the Triangle Inequality. Therefore, (x,) is Cauchy.
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3.8 Arithmetic sequences

3.8.1 Definition

A simple way to generate a sequence is to start with a number u,, and add to it a fixed

constant r, over and over again. This type of sequence is called an arithmetic sequence.

Definition 3.8.1. the sequence (u,) is an arithmetic sequence with first term uy and common

difference r if and only if for any integer n € N we have
Uyl = Uy + 1, (u, = ug + n.r).

More generally: u, = u, + (n — p).r.

3.8.2 Sum of n terms

For the arithmetic sequence

uotin—1

Sp=up+u+ - +u, =n="=

3.9 Geometric sequences

3.9.1 Definition

Another simple way of generating a sequence is to start with a number v, and repeatedly

multiply it by a fixed nonzero constant g. This type of sequence is called a geometric sequence.

Definition 3.9.1. the sequence (v,) is a geometric sequence with first term vy and common ratio

q € R* if and only if for any integer n € N we have
Vel = q.Vy, (Vn = vo.q").
More generally: v, = v,.q"".
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3.9.2 Sum of n terms
For a geometric sequence, if S, = 1 + ¢+ ¢* + --- + ¢", then

n+1 si g=1,
l_qn+l
1]

si q# 1.

Exercise 3.9.1. Let (a,), be a sequence defined by:

ay = ‘/Z
ane1 = Va, +2, forn>1.

1. Prove that a, <2 for all n € N.

2. Prove that {a,} is an increasing sequence.

3. Prove that lima, = 2.

n—oo

Solution:
1. Clearly, a; < 2. Suppose that a; < 2 for k € N. Then
A1 = V2 +ap, < V2+2=2.

By induction, a, < 2 for all n € N.

2. Clearly, a; = V2 < \2+ V2 = a,. Suppose that a; < a1 fork € N. Then

ap+2 < agy +2

which implies

\/Clk +2< \/ak+1 + 2.

Thus, a1 < ais2. By induction, a, < a,4; for all n € N. Therefore, {a,} is an increasing

sequence.
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3. By the monotone convergence theorem, lima, exists. Let [ = lima,, since a,.; = V2 +a,

n—o0o n—oo

and lima,.; = [, we have

n—oo

I=VN2+1 or P=2+1.

Solving this quadratic equation yields / = —1 or [ = 2. Therefore, lima, = 2.

n—oo

Exercise 3.9.2. Let a and b be two positive real numbers with a < b. Define a; = a, by = b, and

a,+1 = Va,b,, and b, = , forn > 1.

Show that {a,} and {b,} are convergent to the same limit.

Solution:

Observe that

bt = a”;b" > Vb, = ayey forall n €N,
Thus
A+ = Vapb, > +faya, = a, forall neN.
Hence

a,+b, b,+b,
<

b, = ) = b, forall neN.

It follows that {a,} is monotone increasing and bounded above by by, and {b,} is decreasing and

bounded below by a;. Let x = lima,, and y = limb,,. Then

+
x= Xy and y:¥.

Therefore, x = y.
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Real-Valued Functions of a Real Variable

4.1 Basics

4.1.1 Definition

Definition 4.1.1. Let D C R. A function f from D into R is a rule which associates with each

x € D one and only one y € R. We denote

D is called the domain of the function. If x € D, then the element y € R which is associated with

x is called the value of f at x or the image of x under f, y is denoted by f(x).

4.1.2 Graph of a function

Definition 4.1.2. Each couple (x, f(x)) corresponds to a point in the xy—plane. The set of all

these points forms a curve called the graph of the function f.

Gr={(x,»lxeD, y= f(x)
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N\

Figure 4.1: Graph of function f(x) = 1/3x® — x in interval [-2, 2].

4.1.3 Operations on functions

Arithmetic

Let f,g : D — R be tow functions, then:

I. (f £ 2)(x) = f(x) £ g(x), Vx €D,

2. (f.9)x) = f(x).g(x), Vx € D,

3. (f)@c) I w20, vxeD,
g g(x)

4 (L)) = Af(x), ¥xe D, 1€R.

Composition
Letf: D — Randletg: E — R, if f(D) C E, then g composed with f is the function
gof: D — Rdefined by go f = g[f(x)].
Restriction
We say that g is a restriction of the function f if:
g(x) = f(x) and D(g) € D(f).
Example 4.1.1. f(x) =In|x|, and g(x) = Inx, Yx €]0, +oo[: g(x) = f(x), and D(g) C D(f).
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4.1.4 Bounded functions

Definition 4.1.3. Let f : D — R be a function, then:
o We say that f is bounded from below on its domain D(f) if
Yxe D(f), Am e R : m < f(x).
o We say that f is bounded from above on its domain D(f) if
Yxe D(f), AM eR: f(x)> M.

e Function is bounded if it is bounded from below and above.

Definition 4.1.4. Let f,g : D — R be two functions, then:

o f>gsiVxeD: f(x)=g).

e f>0siVxeD: f(x)>0.

e f>0siVxeD: f(x)>0.

e fis said to be constant over D if da € R, Vxe D : f(x) = a.

e fis said to be zero over D ifVx € D : f(x) =0.

4.1.5 Monotone functions

Definition 4.1.5. Consider f : D(f) CR — R. For all x,y € D, we have:

e f isincreasing ( or strictly increasing) over D if: x <y = f(x) < f(y), (orx <y =

Jx) < fO)).

e f is decreasing ( or strictly decreasing) over D if: x <y = f(x) > f(y), (or x <y =

fx) > f)).
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e f is monotone (or strictly monotone) over D if f is increasing or decreasing (strictly

increasing or strictly decreasing).

Proposition 4.1.1. A sum of two increasing (decreasing) functions is an increasing (decreasing)

function.
Proof 13. By induction on N > 1, for any reals a,, a,, --- , ay, by, ba, -+, by with a; < by for
alli=1,---,N, we have:

N N
2.a; < )b

i=1 i=1

Assume first that the f; are all monotone increasing (and that this means strictly). In any case we
assume that they’re all "the same kind of monotone".

Given reals x, y with x <y, letting a; = fi(x), and b; = fi(y), we have a; < b; for all i, so:

N N
g(x) = Zlai < Zlbi =gy,
i= i=
so g is monotone increasing too. Similarly if the f; are monotone decreasing.

Corollary 4.1.1. If f is strictly monotone on D, then f is injective.

Indeed.:
S < f(»)
XFYy
= or = f(x) # f().
x <
S > f)

Example 4.1.2. Consider the function f = 2x + 1. We have
Vx, yER, x<y=2x<2y = 2x+1<2y+ 1 = f(x) < f(y)

so f is strictly increasing then f is injective.

4.1.6 Even and odd functions

Definition 4.1.6. o We say that function f : D(f) — R is even if
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VxeD(f): f(=x) = f(x).
e We say that function f : D(f) — R is odd if

Vxe D(f): f(=x) = —f(x).
Remark 4.1.1. 1. Graph of an even function is symmetric with, respect to the y axis.
2. Graph of an odd function is symmetric with, respect to the origin.

3. Domain of an even or odd function is always symmetric with respect to the origin.

4.1.7 Periodic functions

Definition 4.1.7. A function f : D(f) — R is called periodic if 3T € R, such that:

1. xe D(f) = x+T € D(f),
2. xeD(f): f(xxT) = f(x).

Number T is called a period of f.

35)



% CHAPTER 4. REAL-VALUED FUNCTIONSG®F A REAL VARIABLE YCHELLOUF

4.2 Limits of Functions

4.2.1 Definition

Definition 4.2.1. A set U C R is a neighborhood of a point x € R if:
Jx=90,x+9d[Cc U,

for some 6 > 0. The open interval |x — 9, x + 6[ is called a 5—neighborhood of x.

Example 4.2.1. If a < x < b then the closed interval |a, b] is a neighborhood of x, since it
contains the interval |x — 6, x + [ for sufficiently small 6 > 0. On the other hand, [a, b] is not a

neighborhood of the endpoints a, b since no open interval about a or b is contained in [a, b].

Definition 4.2.2. Let f be a function defined in the neighborhood of x, except perhaps at xy. A

number | € R is the limit of [ at x if:

Ve>0,3d6>0, Vx#£xp: [x—x| <= |f(x)- I <e
Notation: lim,_,,, f(x) =L
Example 4.2.2. Let

f:R — R

x — 5x-3

Show that lim,_,; f(x) = 2.
By definition: Ve >0, 36 >0, Vx# 1: [x—-1|<d = |f(x) - [| < & So we have:

Ve>0, |5x-3-2|<e=>5x-5|<e=>5x-1|<e

Then: |x—1| < g sod6 = g > 0 such that lim,_,; f(x) = 2.
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4.2.2 Right and left limits

Definition 4.2.3. Let f be a function defined in the neighborhood of x.
o We say that f has a limit [ to the right of x if:
Ve>0,d6>0, Vxo<x<xg+0=|f(x) - <e

We write limx_mg f(x) = limx;m f(x) =1

e We say that f has a limit [ to the left of x if:
Ve>0,d6>0,Vxo—-d<x<xy=|fx) - <e
We write limx_m(; f(x) = limx;m fx) =1L
o [f f admits a limit at the point x, then:

lim, 5, f(x) = lim, e f(x) = lime o f(x) = L

Example 4.2.3. Consider the integer part function at the point x = 2.

T S R Apy e
e s S e e
e o NI ST
R RS S} R R S
A L a*
-3 -2 -1 1z 3 4
IRty = SINE SN SRR S
R T SR
o ieafb
— - eiog L

Figure 4.2: Graph of function f(x) = E(x).

e Since x €]2,3[, we have: E(x) = 2, and lim,_,,+ E(x) = 2.

e Since x €]1,2[, we have: E(x) =1, and lim,_,,- E(x) = 1.
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Since these two limits are different, we deduce that the function f(x) = E(x) has no limit at x = 2.
Theorem 4.2.1. Iflim,_,,, f(x) exists, then it is unique. That is, f can have only one limit at x,.

Proof 14. We assume that f has two different limits at point xo; land l' (1 #I"). We have

mf(x)=1 & VYe>0,36, >0, Vx#x x—x|<6 = |fx) -1 <2

X=X 2
limf(x)=l' & Ve>0,36,>0, Vx#xp, |x—x0|<52=>|f(x)—l’|<§
X—XQ

We pose 6 = min(0,, 0,), and € < |l = I'|, then

&
e -l<2

Ve>0,36>0, Vx#xo, [x—x)| <=1 and
e
<2
e -r<:

we have

=1 = =T+ f®) - f
< @ —1+1fx) -1
< 8.5,
-2 2

Hence the contradiction withe < |l =1'|. Sol =1.

Proposition 4.2.1. Iflim,_,,, f(x) = [, and lim,_,,, g(x) =l', [, I' € R, then:

1. lim,,, (A.f)(x) = A lim,,,, f(x) = AL V1R

2. limys o (f + 9)(x) = 1+ I, and lim,_,, (f X g)(x) = [ x I"

1

. 1

3. If1 # 0, then lim,_,,, (%) = =
4. lim,,,, go f=1.

i JE) _ Ly
5. lim,_y, (g(x) = 10
6. lim,y, |/ ()] = |I.
7. If f<g thenl <.
8. If f(x) < g(x) < h(x), and lim,_,,, f(x) = lim,_,,, h(x) = [ € R, then lim,_,,, g(x) = L
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4.2.3 Relationship with limits of sequences

Let f: D c R — R, and x; € R so we have:

lim f(x) = [l &< V a sequence (x,) of D, x,, # xo, and limx, = xp = lim f(x,) = L

X—X( n—oo

4.2.4 Infinite limits

Definition 4.2.4. (Limits as x — +0)

e lim o f(X) =l Ve>0,FA>0, VxeR: x>A=|f(x) - <e

e lim_, o f(x) =l Ve>0,dA>0,VxeR: x<-A=|fx) - <e

e lim, ., f(x) = +oo (resp: lim, ;o f(x) = —0) & VA>0,dB>0,VxeR: x>B=

f(x)> A, (resp: YVA>0,AB>0,VxeR: x> B = f(x) <-A).

e lim,, o f(x) = +oco (resp: lim,,_, f(x) = —0) & VA >0, AB>0,VxeR: x<

-B= f(x)> A, (respxYA>0, dB>0, VxeR: x<-B= f(x) <-A).

4.2.5 Indeterminate forms

When the limits are not finite, the previous results remain true whenever the operations

on the limits make sense.

In the case where we cannot calculate, we say that we are in the presence of an indeterminate

form. If x — xy.

1. f(x) — +o0 and g(x) — —oo then f + g is in the indeterminate form +oo — co.

0
2. f(x) — 0 and g(x) — then ]—C is in the indeterminate form o
8

3. f(x) — oo and g(x) — oo then ]—C is in the indeterminate form f.
g [e.0]
4. f(x) — oo and g(x) — 0 then f X g is in the indeterminate form co X 0.

There are other cases of indeterminate forms of type: 1%, 0%, o0,
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4.3 Continuous Functions

4.3.1 Continuity at a point

Definition 4.3.1. Let f : I — R, where I C R, and suppose that xy € 1. Then f is continuous

at xg if:
Ve>0,d6>0,Vxel: [x—xo <d=|f(x) = f(xo)| < é&.

In another word: lim,_,,, f(x) = f(xo).

Figure 4.3: For |x — x¢| < 9, the graph of f(x) should be within the gray region.

A function f : I — R is continuous on a set J C 1 if it is continuous at every point in J,

and continuous if it is continuous at every point of its domain 1.

4.3.2 Left and right continuity

Definition 4.3.2. Let f : | — R, we say that:

e fis continuous on the right of xo € I if: limx;x0 J(x) = f(xo).

e fis continuous on the left of xy € I if: limx;m f(x) = f(xo).

e fis continuous on x, € I if: limx;x0 f(x) = limx;)CO f(x) = f(xo).
Example 4.3.1. Let
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f:RT — R,
x — f)=Vx

We show that f is continuous at every point xy € R}, i.e.
Ve>0,36>0, VxeR: |[x—xo| <0 =[f(x) = f(x)| <&

then, Ye > 0 we have:

D= ool <e = |Vi- yE|<e

Al U PP
Vx + +/Xo
lx — xol
= —<8=>|X—X0|<8(\/_—\/)C0).
Vx - vxo

So3d6 = 8(\/_ - \/x_o) such that: | f(x) — f(x0)| < &, then f is continous at x,.

4.3.3 Properties of continuous functions

Theorem 4.3.1. If f,g : [ — R are continuous function at x, € I and k € R, then k.f, f + g,

and f.g are continuous at xy. Moreover, if g(xo) # 0 then f/g is continuous at xy.

Theorem 4.3.2. Let f : I — Rand g : J — R where f(I) C J. If f is continuous at xy € 1

and g is continuous at f(xy) € J, then g o f : [ — R is continuous at x.

Proof 15. Fix € > 0. Since g is continuous at b = f(xy),
d6>0,VyeJ: |y-bl<o=|g(y) —gb)| < e
Fix this 6 > 0. From the continuity of f at x,
dy>0,Vxel: |x—x|<y=|f(x)— f(xo)] <.

From the above, it follows that
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Ve>0, dy>0,Vxel: |x—x <y=|g(f(x) —g(f(x0))| < &.

This proves continuity of g o f at x,.

Proposition 4.3.1. Let f : [ — R and x, € I, then:

f is continuous at x, = for any sequence (u,) that converges to x,, the sequence (f(xp))

converges to f(xo).

4.3.4 Continuous extension to a point

Definition 4.3.3. Let f be a function defined in the neighborhood of x, except at xo (xo &€ Dy),
and lim,_,,, f(x) = [. Then the function which is defined by

]~C: f(x)  x# xo,

I x=x.

is continuous at xy. f is the continuous extension of f at x.

Example 4.3.2. Show that:

P+x-6
f(X):ﬁ, X #2.

has a continuous extension to x = 2, and find that extension.

Solution:

. 2+x-6 -)x+3) 5 . : :
lim,_,; f(x) = }CI_I)IZI al = f4 = }(1_1)1’21 g - Z;Ei - 2; =7 exists. So f has a continuous extension at
x = 2 defined by
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4.3.5 Discontinuous functions

When f is not continuous at x,, we say f is discontinuous at xy, or that it has a disconti-
nuity at x.

We say that the function f is not continuous in the following cases:

1. If f is not defined at xy, then f is discontinuous at xj.

2. If f defined in the neighborhood of xj, then f is discontinuous at x if
Ae>0,V6>0, Axel: |x—xy| <96, and |f(x)— f(xo)| = &.

3. If limx; f(x) # limx; f(x), then f is discontinuous at xj, and x, is a discontinuous

X0 X0

point of the first kind.

4. If one of the two limits limx;xO f(x), limx;m f(x) or both limits does not exist or are not

finite, then f is discontinuous at xj, and X, is a discontinuous point of the second kind.

5. If limx;x0 f(x) = th;,XO f(x) # f(xo), then f is discontinuous at x.

4.3.6 Uniform continuity

Definition 4.3.4. Let f : [ — R. Then f is uniformly continuous on I if:

Ve>0,36>0, VX, x"€l: X =x"|<d=|f(X) - f(x")| <e

Remark 4.3.1. 1. Uniform continuity is a property of the interval form, whereas continuity

can be defined at a point.
2. The number 6 does not depend on € whereas for continuity 6 depends on & and xy.
3. Let f : I — R be a function. If f is uniformly continuous, then f is continuous.

Example 4.3.3. f(x) = x and g(x) = sin x are uniformly continuous on R (we find 6 = &).
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4.3.7 The intermediate value theorem

Theorem 4.3.3. Suppose that f : [a,b] — R is a continuous function on a closed bounded

interval. Then for every d strictly between f(a) and f(b) there is a point a < ¢ < b such that

f(c) =d.

W) g,
X \ /i
o .
d « 'f'{;l X
f(a) f---o ;
a t; b

Corollary 4.3.1. Suppose that f : [a,b] — R is a continuous function on a closed bounded

interval. If f(a).f(b) < 0, then there is a point a < ¢ < b such that f(c) = 0.

Corollary 4.3.2. Let f : D — R is a continuous function and I C D is an interval, then f(I) is

an interval.

Theorem 4.3.4. Let I = [a, b] be a closed interval, and f : [a,b] — R be a continuous function.

Then f is uniformly continuous.
Theorem 4.3.5. Any continuous function on a closed interval [a, b] is bounded on [a,b], i.e:

sup | f(x)] < +oo.
[a.b]

Remark 4.3.2. 1. The image by a continuous function of a closed interval of R is a closed

interval.

2. If I is not closed then the interval f(I) is not necessarily of the nature of 1. For example:
f(x) = x% then f(]-1,1]) = [0, 1[.
4.3.8 Fixed point theorem

Definition 4.3.5. Let f : I — [ and let x € I, we say that x € I is a fixed point of f if: f(x) = x.
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Theorem 4.3.6. Let f : [a,b] — [a, b] be a continuous function, then f admits at least one

fixed point in [a, b] i.e: Ax € [a, b] such that f(x) = x.

Exercise 4.3.1. Let f be a continuous function on [a, b] and x,, x,, -+ , x, € |a, b]. Prove that

there exists ¢ € [a, b] with

f(x1)+f(x2)+"'+f(xn).

n

flo) =

Solution:

Let @ = min{f(x) : x € [a, b]}, and B = max{f(x) : x € [a, b]}. Then

fon) + SO+ f0) B _ g
n n

Similarly,

SO+ f(x2) + -+ f(x) -

n

Then the conclusion follows from the Intermediate Value Theorem.

Exercise 4.3.2. Consider k distinct points x, x2,--- ,x; € R, k > 1. Find a function defined on

R that is continuous at each x;, i = 1,--- , k and discontinuous at all other points.

Solution: Consider

(x—a)x—ay)---(x—a), if xe€Q,
fx) =
0, if xe€ Q-
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Differentiable Functions

5.1 The Derivative

5.1.1 Definition and basic properties

Definition 5.1.1. Let I be an interval, and c € I, let f : I — R be a function defined in the

neighborhood of c. If the limit

= i T @ 1©
x—c¢ XxX—-cC
exists in R, then we say that f is differentiable at c. When this limit exists, it is denoted by f’(c)
and called the derivative of f at c.
If f is differentiable at all ¢ € I, then we simply say that f is differentiable. The derivative

d _
is sometimes written as d_f or —(f(x)). The expression M
X

is called the difference
dx xX—c

quotient.

The graphical interpretation of the derivative is depicted in Figure 5.1. The left-hand plot

gives the line through (¢, f(c)) and (x, f(x)) with slope M, that is, the so-called secant
xX—c

line. When we take the limit as x goes to ¢, we get the right-hand plot, where we see that the

47



% CHAPTER 5. DIFFERENTIABLE FUNCTI4®VS YCHELLOUF

derivative of the function at the point c is the slope of the line tangent to the graph of f at the

point (c, f(c)).

fx)—f(c)

slope = ——;

Figure 5.1: Graphical interpretation of the derivative

Example 5.1.1. Let f(x) = x* defined on the whole real line, and let ¢ € R be arbitrary. We find

that if x # c,
- (x+o)(x—-0)
= =X+ c.
xX—c xX—c
Therefore,
2 _ 2
F(e) = lim =% = lim(x + ¢) = 2¢.

x—c¢c X —C X—>C

Example 5.1.2. The function f(x) = +/x is differentiable for x > 0. To see this fact, fix ¢ > 0,

and suppose x # ¢ and x > 0. Compute

Vi-ye_  NE-Ne 1
¥—e o (Vx= NO(VEF VO Vx+ Ve

Therefore,

f(c) = im Y Ve ! !

im = .
¥—e X—C r—eqlx+ e 24/

f(X)—f(C)b fle+h) - f(o)
———~— = becomes . So
xX—c h

Remark 5.1.1. If we put x — ¢ = h, the quantity

we

can define the notion of differentiability of f at c in the following way:
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f is differentiable at ¢ & lim fleth) = f(©)

exists in R.
h—0 h

Proposition 5.1.1. Let f : [ — R be differentiable at c € I, then it is continuous at c.
Proof 16. We know the limits

lim M = f'(c), and lim(x-c¢) =

X—>C

exists. Furthermore,

(x—o),

f(x)—f(c)—(f( x) — f(c ))

Therefore, the limit of f(x) — f(c) exists and

lim (/) - f(c)) = ( l M)(

lim (x - c)) — £(6).0 =0,
Hence lim f(x) = f(c), and f is continuous at c.

Proposition 5.1.2. If f is differentiable over I, then f is continuous over I.

Proposition 5.1.3. Let I be an interval, let f : | — R and g : I — R be a differentiable

functions at ¢ € I, and let a € R, then:

1. The linearity:

e Define h: I — R by h(x) = a.f(x). Then h is differentiable at ¢ and h'(c) = a.f"(c).

e Define h : I — R by h(x) = f(x) + g(x). Then h is differentiable at ¢ and
h(c) = f(c)+ g'(o)

2. Product rule:
If h : I — R is defined by h(x) = g(x)f(x), then h is differentiable at ¢ and

W (c) = f(c)g'(c) + f(c)g(o).
Proof 17. We have:
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lim S8 e +h) — (f.8) () i €t -gle+h)— fo).g(c)

=0 h h—0 h

= i | L Plgle+ 1) = g()] | Lfle+ ) = f(o)]g(e)
= 1m +

h—0 h h
o . gle+h)—gle) . fle+h) - flo).
L e e
= fl(o)glo) + f(0)g' (o).
3. Quotient rule:
Ifg(x) #0forall x € I, and if h : I — R is defined by h(x) = %, then h is differentiable
g(x

at ¢ and

S (©)8(c) = fle)g'(e)

I (c) =
(©) (80

5.1.2 Chain rule

Proposition 5.1.4. Let I, and J be an intervals, let g : | — J be a differentiable at c € I, and
[ J — R be differentiable at g(c). If h : I — R is defined by

h(x) = (f o &)(x) = f(g(x)),

then h is differentiable at c and

W (c) = f(g(c))g (o).

5.1.3 Inverse function

Proposition 5.1.5. Let I C R be an interval, and let f be an injective and continuous function
on L. If f is differentiable at a point c with f'(c) # 0, then the inverse function: f~': f(I) — R
is differentiable at f(c) and

—1 ’ _ 1
(ST ) = 1205}
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5.2 Left and Right Derivatives

Definition 5.2.1. Let f : [a,b] — R be a function, we say that f is right-differentiable at
a < ¢ < b with right derivative f'(c*) if

o S0 = f©)

> X—cC

X—>C

= f(c),
exists, and f is left-differentiable at a < ¢ < b with left derivative f'(c7) if

i ) = f©)

< X—cC

X—>C

= f'(c7) exists.

A function is differentiable at a < ¢ < b if and only if the left and right derivatives exist at ¢ and

are equal.

Remark 5.2.1. If f'(c*) and f'(c™) exist but f'(c*) # f'(c”) then f is not differentiable at c and

point (c, f(c)) is an angular point.

Example 5.2.1. The absolute value function f(x) = |x| is left and right differentiable at 0 with

left and right derivatives
f/O0H=1 and f(07)=-1.

These are not equal, and f is not differentiable at 0.

5.3 Successive Derivatives and Leibnitz’s Rule

5.3.1 Successive derivatives

Let f be a function differentiable on /, then f” is called the first order derivative of f, if f”
is differentiable on 7, then its derivative is called the second order derivative of f and is denoted by

£ or f@. Recursively, we define the derivative of order n of f as follows: f™(x) = (f" D(x))".

Example 5.3.1. ). Let f(x) = sin(x). Calculate f™(x). We have:
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O =
fo =
o =
@ =
O =

o =

sin(x),

FD(x) = cos(x) = sin(x + g),
—sin(x) = sin(x + ),
—cos(x) = sin(x + 37”),

sin(x) = sin(x + 27),

) nm
sin(x + —).

2). f(x) = Inx. Calculate f™(x). We have:

fOx) =Inx,
-1
f(z)(x) = 2’
o = 22,
0 = iyt 82
xn

1
f,(x) =
X
2
f(3)(-x) = 30
X
2 4 4!
f(s)(x) = . 35X =5
X X

, n €N,

Definition 5.3.1. (Class Functions: C")

Let n be a non-zero natural number. A function f defined on I is said to be of class C" or n times

continuously differentiable if it is n times differentiable and f™ is continuous on I, and we note

fe .

Remark 5.3.1. A function f is said to be Tof class C°T if it is continuous on I.

Definition 5.3.2. (Class Functions: C*)

A function f is said to be of class C* on I if it is in the class C". ¥Yn € N. For example f(x) = e”.

5.3.2 Leibnitz formula

Theorem 5.3.1. Let f and g be two functions n times differentiable on I, then f X g is n—times

differentiable on I, and we have:
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n!

) — s ok pn-k) Gk —

Example 5.3.2. Forn = 2, we have:

(fxg? = Cif'g+Crf's' +C3fg"

= frg2re + £y
Forn = 6, we have:

(f x g)(6) = Cgf(@g + Céf(S)g/ + Céf(4)g" + Cgf(3)g(3) + Cgf”g(4) + Cgf/g(5) + Cgfg@

— f(6)g + 6f(5)g’ + 15f(4)g~ + 20f(3)g(3) + 15f”g(4) + 6f’g(5) + fg(6>_

If h(x) = (x3 +5x+ l) e’ = f(x)g(x), then:

f/(x) =3x* +5, ¢'(x) = e,

f7(x) = 6x, ¢ (x) = ¢,
O =6, 2(x) = e,
@) =0, 2(x) = e,
P =0, Yn>4,  g"x) = e

So:

HO(x) = COfg™ + Clfrgh-D 4+ C2 g 4 O3 fOgn=3) 4 4 f@gln—) 4 ...

n(nz— D 6xyer 4 0= 16)(n -2 .

(X3 +5x+ De* + n(3x> +5)e* +

5.4 The Mean Value Theorem

5.4.1 Extreme values

Definition 5.4.1. A critical point of a function f(x), is a value c in the domain of f where f is

not differentiable or its derivative is O (i.e. f'(c) =0).
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Definition 5.4.2. A function f is said to have a local maximum (local minimum) at c if f is
defined on an open interval I containing c and f(x) < f(c) (f(x) = f(c)) for all x € 1. In either

case, f is said to have a local extremum at c.

f

A

(& Co

Figure 5.2: Local extrema of f

5.4.2 Local extremum theorem
Theorem 5.4.1. If f has a local extremum at c and if f is differentiable at c, then f’(c) = 0.

Proof. Suppose that f has a local maximum at c¢. Let I be an open interval containing ¢ such

that f(x) < f(c) for all x € I. Then:

X—C

f(x)—f(c)_{ZO, if xeland x < c,

<0,ifxeland x> c.

It follows that the left-hand derivative of f at ¢ is > 0 and the right-hand derivative is < 0, hence

f'(c) = 0. The proof for the local minimum case is similar. O

5.4.3 Rolle’s theorem

Theorem 5.4.2. Let f be a continuous function on |a, b] and differentiable on la, b[. If f(a) =

f(b), then there exists a point ¢ €]a, b| such that f'(c) = 0.

Proof. By the extreme value theorem there exist x,,, x); € [a, b] such that f(x,,) < f(x) < f(xy)

for all x € [a, b]. If f(x,,) = f(xu), then f is a constant function and the assertion of the theorem
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holds trivially. If f(x,,) # f(xx), then either x,, €]a, b[ or x); €]a, b[, and the conclusion follows

from the local extremum theorem. O

5.4.4 Mean value theorem

Theorem 5.4.3. If f is continuous on [a, b] and differentiable on la, b|, then there exists ¢ €]a, b|

such that:

f() - f (a)

L - r.

Proof. The function g : [a,b] — R defined by:

fb) = mﬂ(_x

g(X)=f(X)—f(a)—[ b

is continuous on [a, b] and differentiable on Ja, b[ with

f) - f(a)
—

g0 = f1(x) =

Moreover, g(a) = g(b) = 0. Rolle’s theorem implies that there exists a < ¢ < b such that

g'(c) = 0, which proves the result. O

5.4.5 Mean value inequality

Let f be a continuous function on [a, b], and differentiable on ]a, b[. If there exists a

constant M such that: ¥V x €]a, b[: |f'(x)| < M, then
Vx, yelab]: [f(x)—fO)l<Mlx-yl

According to the Mean value theorem on [x,y], A ¢ €]x,y[: f'(c) = M

|f(c)|<M=>'f( )~ f(y)‘<M=>M|x—y|.

«55)



% CHAPTER 5. DIFFERENTIABLE FUNCTIB®&NS YCHELLOUF

5.5 Variation of a Functions
Let f be a continuous function on [a, b], and differentiable on ]a, b[ then:

1. Vx€la,bl: f'(x) >0 < fisstrictly increasing on [a, b].
2. Vx€la,bl: f'(x) <0< fisstrictly decreasing on [a, b].

3. Vx€la,bl: f'(x) =0 fisaconstant.

5.6 L’Hopital’s Rule

Let f and g be two continuous functions on / (I is a neighborhood of ¢), differentiable on

I — {c}, and satisfying the following conditions:

. lim.f(x) = limg(x) = 0 or +oo.
e 2'(x)#0, Vxel—-{c}.

then:

if im LW =) —, jim £ _

= =
x—c g'(X) x—c g(X)

Example 5.6.1. Using L’Hopital’s rule:

1. hmm - 1jm3_ﬂ =2
x—0 X x—0 1
1
2 fim A e b
x—0 X —0 1 2

Remark 5.6.1. The converse is generally false. For example: f(x) = x* cos(%), and g(x) = x, so

we have 1im 2% — fim x cos(1) = 0 while lim ARG
x—0 g(x x—0 X x—0g’ (X)

because (1im sin(2) does not exists).
x—0 X

= lirr%) (2x cos(}c) + sin(}c)) does not exists
X—>
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5.7 Convex Functions

Definition 5.7.1. A function f is said to be convex on an interval I if

ftx+ (A -ty)<tf(x)+1-0f(Q), Yte[0.1], x, ye L

f is concave if —f is convex.

Example 5.7.1. . The function x — |x| is convex on R because |tx + (1 + t)y| < t|x| + (1 —

Iyl

2. The affine functions f : x — ax + 3 are both convex and concave on R, because they
indeed satisfy f(xt+ (1 —1t)y) = tf(x)+ (1 —1)f(y). Conversely, if a function is both convex

and concave then it is affine.

Theorem 5.7.1. If f :]a, b|— R has an increasing derivative, then f is convex. In particular, f

is convex if ' > 0.

Example 5.7.2. Consider the function f : R — R given by f(x) = Vx> + 1. We have

X 1
f(x) = ,and f"(x) = ————. Since f”(x) > 0 for all x, it follows from the corollary
Va2 +1 (X2 + 1)2

that f is convex.

Remark 5.7.1. If f : I — R is convex then:

o f differentiable on the left and right (therefore continues) and f] < f;.

The functions f/, f; are increasing.

f is continuous at every interior point of 1.

Let f : I — R a differentiable function. Then f is convex < f’ is increasing on I.

A concave function on I is continuous at all points interior to I.

If f is differentiable and concave < f is decreasing.
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Elementary Functions

In our calculus course, we are going to deal mostly with elementary functions. They

are

: ) 1
Power functions (x , VX, x3,--'),

Exponential functions (2*, e*, n*,--+),

Logarithmic functions (In x, log, x, - -),

Trigonometric functions (sin x, cos x, tanx,---),

Inverse trigonometric functions (arcsin x, arccos x, arctanx,---),

Hyperbolic functions (chx, shx, thx,---),

and their sums, differences, products, quotients, and compositions. For example

arcsin Vxz -3

" In(x* + 3) — tan e°o5*

J)

is an elementary function.
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6.1 Power functions

6.1.1 Review of exponents

We start at the beginning. For a number a and a positive integer n,

a=a.a.a. - .a.
[ s——

n times

6.1.2 Basic laws of exponents

I _ , b = nbn, (g)n:a_n’
a =a (a )m a 5 b
a

m+n m—n (am)n — amn

IOk

6.1.3 Definition of power functions

Definition 6.1.1. Let a € R, we name power function of exponent a, the function defined by
Vx €]0, +oof, x* = "W,

4 2 .
For example, y = x, y = x*, y = x3 are power functions.
In a power function f(x) = x“, the base x is a variable, and the exponent a is a constant.

The appearance of the graph of a power function depends on the constant a .

Figure 6.1: Power function with real exponents.
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Definition 6.1.2. ( Power functions y = x" )
If n is an integer greater than 1, then the overall shape of the graph of y = x" is determined by

the parity of n (whether n is even or odd).

e Ifn is even, then the graph has a shape similar to the parabola y = x.

e Ifn is odd, then the graph has a shape similar to the cubic parabola y = x°.

Figure 6.2: Power function with integer exponents.

Figure 6.3: The graphs of y = x" for some rational n and x > 0.

Proposition 6.1.1. /. Fora € R*, the power function with exponent a is a continuous function
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on 10, +oo[, and strictly monotonic (strictly increasing if a > 0 and strictly decreasing if

a<0).

2. It is differentiable on 10, +oo[ with derivative: (x*)’ = ax*~!, ¥x €]0, +ool.

3. We have:
0 :a<0 +o00 :a<0
lim x* = 1 :a=0 andlir(l)lx“: 1 a=0
X—+00 x—0+
+o0 :a>0 0O :a>0

6.2 Logarithm and Exponential Functions

6.2.1 Logarithm

Definition 6.2.1. The function that satisfies the following two conditions is called the neperian

logarithm function and is denoted by In

1
o VxeR:, In'(x) = —.
X

e In(1) =0.

Inx

Figure 6.4: Logarithm function
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Remark 6.2.1. (Properties of derivatives)

1. According to the previous definition, the function In(x) is differentiable on R, and Vx € R’}
, 1
(In(x))" = —.
X

1
2. The function In(|x|) is differentiable on R* and ¥x € R* (In|x])" = —.
X

3. Let g be a function differentiable and non-zero on I then the function In (|g(x)|) is differen-
tiable on I and its derivative: In (|g(x)])" = g (x).

8(x)
Proposition 6.2.1. (Algebraic properties of the function In(x))

The logarithm function satisfies the following properties: ( for all a, b > 0 ):
1. In(ax b)=Ina+Inb,
a
2. In(=) =1Ina—1nb,
b
1
3. In(-) = -Ina,
a
4. In(a") = nlna, foralln € N.

Proposition 6.2.2. (Limits and classical inequalities)

1. lim In(x) = 400, and lirgl+ In(x) = —c0.

X—+00
2 lim 2 _ g,

x—+00 X

C In(o )
3. lim == =0, peR;.

In(x + 1
4 lim2*tD
x—0* X

5. lirgl+ xIn(x) = 0.
6. Yxe]—1,+oo[, In(x+1) < x.

Remark 6.2.2. Let a €]0, 1{U]1, +oo[, we call the logarithm function with base a and denote

log,, the function defined by:
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1
log, = ——~, Vx> 0.
Ina

o We have: In(x) = log,(x) i.e., the neperian logarithm function is the logarithm function

with base e.

e log,(a) = 1.

Figure 6.5: Graphical representation of the logarithmic functions and logarithms with base a for

,a=72

=

a =

6.2.2 Exponential

Definition 6.2.2. The inverse function of the function In(x) is called the exponential function

and is denoted by: exp(x) or e, and satisfies the following properties:

1. Yx >0, x = "™,

2. YyeR, y=In(e).
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expx
Wy i

Figure 6.6: Exponential function

Proposition 6.2.3. . The function e* is continuous and strictly increasing on R.
2. The function e* is differentiable on R and we have: ¥x € R, (e*) = e".

3. If u is differentiable on I then: the function "™ is differentiable on I and its derivative

defined by: Vx € I, (") = u'(x).e"™.

Proposition 6.2.4. (Algebraic properties of the function e*):

1. &Y =e"*xe’, ¥V, yeR

1
2. e =—V¥xek
X

3. e = E, Vx, yeR
y
4. "™ =(e"),

Proposition 6.2.5. (Limits and inequalities):

1. lime*=0.

X——00

2. lim e* = +oco.
X—+00
x X
3. limxe* =0, lim & = 400, lim = =0, a € R.

X—+00 x—+4o00 x4 x—+4o00 X

X _ 1
4. lim$
x—0 X

= 1.
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5. VxeR, e >1+x

Remark 6.2.3. Let a €]0, 1[{U]1, +oo[. The inverse function of the function log,(x) is called the
exponential function with base a and is denoted a*:
o VxeR, g =@,
ln(exln(a)) B

e VxeR, log,(a") = loga(e“n(“)) = 7 _x
In(a)

6.3 Trigonometric Functions

6.3.1 Sine function

Definition 6.3.1. The sine function y = sin x is defined as follows

sin: R — [-1,1]

X —> sinx.

y=sinx

ol

I..:l:-l

Figure 6.7: Sine function

6.3.2 Cosine function

Definition 6.3.2. The cosine function y = cos x is defined as follows

cos: R —[-1,1]

X —> COSX.
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SN N
—2m \—n/ 0 \n/ 2n

Figure 6.8: Cosine function

Properties: For all x, € R, we have

e |cos(x)| <1, and |sin(x)| < 1.
e sinx+cos?x=1.

e cos(x) and sin(x) are 2r—periodic, and
cos(x + 2m) = cos(x)
sin(x + 2m) = sin(x)

e The function cos(x) is even and the function sin(x) is odd.

e The functions cos(x) and sin(x) belong to C**(R) and we have:

(cos(x))" = —sin(x)
VxeR, { and

(sin(x))” = cos(x)

cos(x)™ = cos(x + %)

VxeR, Vne N, and

sin(x)™ = sin(x + %)
Properties: For all (x,y) € R?, we have the following formulas:

e cos(x + y) = cos(x) cos(y) — sin(x) sin(y).

e cos(x —y) = cos(x) cos(y) + sin(x) sin(y).
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e sin(x + y) = sin(x) cos(y) + cos(x) sin(y).
e sin(x — y) = sin(x) cos(y) — cos(x) sin(y).
e cos(2x) = cos?(x) — sin®(x) = 2cos?(x) = 1 = 1 — 2sin®(x).

e sin(2x) = 2 sin(x) cos(x).

e sin(x) + sin(y) = 2sin(x—2|_y)cos(x;y).
e sin(x) — sin(y) = 2cos(x;y)sin(x;y).
X+y

e cos(x) +cos(y) =2 cos(

Jeos(557)

e cos(x) —cos(y) = -2 sin(x;y)sin(x;y).

6.3.3 Tangent function

Definition 6.3.3. The tangent function is one of the main trigonometric functions and defined

by:

tan : R|{g+kﬂ} — R

sinx ° keZ
X —> tanx =
COS X
AY )
| y=tgx
3 T T 3n
2 2 2l 2 X
n ~TT 0 Ei T 2
i
i
i

Figure 6.9: Tangent function

Proposition 6.3.1. The function tan(x) checks the following properties:
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e The function tan(x) is differentiable on R| {g + kn} , k € Z and we have:

(tan(x))’ = =1 + tan?(x).

cos?(x)

e The function tan(x) is m—periodic i.e: tan(x + m) = tan(x).
Vs

e foranyx, y € R| {5 + kﬂ} , k € Zwe have:

tan(x) + tan(y)

t =
an(x +y) 1 — tan(x) tan(y)
and
_ tan(x) — tan(y)
tan(x - y) = 7— tan(x) tan(y)
2t
e xeR| {g + kﬂ}’ k € Z, we have tan(2x) = #n(;())
— tan“(x

Proposition 6.3.2. (Some usual limits)

sin(x)

1. lim 1.
x-0 X
1 _
2 fimi = S95® _ 1
x—0 x2 2
5 im0l
x—0 X

5. lim tan(x) = +oo0.

s
X—)z

6. 1im2Y _

x—0 X

L.

6.3.4 Cotangent function
Definition 6.3.4. The cotangent function y = cot x is defined by:

cot: R|{kr} — R
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AY

=

|
b | A
b | H

2T

Figure 6.10: Cotangent function

6.4 Inverse Trigonometric Functions

6.4.1 The function arc-sinus

According to the variation table below, we have: the function sin(x) is continuous and
strictly increasing on [—7, 7], then the function sin(x) represents a bijection from [-7, 5] to

[-1,1].

+
e

0

ST

T

sin(x)" = cos(x)

sin(x) 0

Definition 6.4.1. The inverse function of the restriction of sin(x) on [-%, 7] is called the arcsine

function and is denoted by arcsin(x) or sin~! (x):

o
in: [-1,1 -, =
arcsin : [ ] — | 5 2]

x — arcsin(x)
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YA

ra | A

»
>
X

y=arcsinx

Ml.‘—l

Figure 6.11: Arcsine function

Proposition 6.4.1. The function arcsin(x) has the following properties:

1. The function arcsin(x) is continuous and strictly increasing on [—1, 1].

o

2. in(si =X, €l-=,=|
arcsin(sinx) = x, X [ > 2]
3. sin(arcsin(x)) = x, xe€[-1,1].

4. The function arcsin(x) is odd.

5. Thehe arcsin function is indefinitely differentiable on | — 1, 1|, and

1
arcsin’(x) = .
V1 — x?
More general
arcsin’(f(x)) = G

Ny

Remark 6.4.1. some usual values for the function arcsin(x):

arcsin(—1) = —g arcsin(0) =0 arcsin(1) = g
rinl—ﬂ rinl—ﬂ rin\/i—ﬂ
arcs 5= "% acsz—6 arcs > 1=72
T
4

)

arcsin arcsin V3 il arcsin V3 dl
n|— m|-——_|=-= resin| — | = =
i ) i B 3 M) 73
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6.4.2 The Arccosine Function

In the variation table below, we have, the function cos(x) is continuous and strictly

decreasing on [0, 7], so the function cos(x) makes a bijection from [0, 7] into [—1, 1].

(cos(z))’

— sin(xz)

cos(x) T

Definition 6.4.2. The inverse function of the restriction of cos(x) on [0, ] is called the arccosine
function and is denoted by arccos(x) or cos™!(x):

arccos : [-1,1] — [0, 7]

x —> arccos(x)

y=arccosx

[\J‘H

Figure 6.12: Arccosine function

Proposition 6.4.2. The function arccos(x) has the following properties:

1. The function arccos(x) is continuous and strictly decreasing on [—1, 1].
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2. arccos(cosx) =x, x€[0,m].

3. cos(arccos(x)) =x, xe€][-1,1].

4. The function arccos(x) is neither even nor odd.

5. The arccos function is indefinitely differentiable on | — 1, 1], and

1
arccos’(x) = — .
V1 — x2
More general
arccos’(f(x)) = — f)

V1= f?

Remark 6.4.2. some usual values for the function arccos(x):

arccos(—1) =nm arccos(0) = g arccos(1) =0
1\ o2n 1\ = V2)
arccos 51=73 arccos 5= 3 arccos =

AN _,;|§J

arcco \/5 = il arccos \/g = Sﬂ arccos \/g
1277 3 2 176 2

6.4.3 The Arctangent function

sin(x)
cos(x)
differentiable on its domain of definition and for all x € D we have:

The function tan(x) =

is defined on D = RI{%r + kr, k € Z}. It is continuous and

(tan(x))’ = =1 + tan®(x)

cosZ(x)

. . L. . . T T . L.
Consider the restriction of the function tan(x) on the interval ] — ) [, from the table of variation
) ) ) ) ) ) Vi
below we have: the function tan(x) is continuous and strictly increasing on | — > 5[, then the

function tan(x) makes a bijection from ] — g, 7_2r[ into R.
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T _

(SIE|

IE]

1

(tan(z)) = +

2

COS

tan(x) —

Definition 6.4.3. We call the arctangent function arctan(x) or tan™'(x) the inverse of the tangent

o

. n
function on | — >

[ defined by:

nn
2’2
x — arctan(x)

arctan : | — oo, +oo[ — ]

YA

*  y=arctgx

Figure 6.13: Arctan function

Proposition 6.4.3. The function arctan(x) has the following properties:

1. The function arctan(x) is continuous and strictly increasing on R, with values in | — =, =[.

T
2. arctan(tan x) = x, e[__,_].
arctan(tanx) = x, x 73
3. tan(arctan(x)) = x, xé€R.

4. The function arctan(x) is odd.

«74)
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5. The function arctan € C*(R), and we have

More general

|
arctan’(x) = T+ 2
arctan’(f(x)) = %

Remark 6.4.3. The table below shows some usual values for the function arctan(x)

an(0) =0 arctan(0) = 0
tan(g) = \/g arctan(%) =%
tan(7) =1 || arctan(l) = @
tan(g) = V3 || arctan(y/3) = 3

6.4.4 The Arccotangent function

k'R — [0, 7]

Valid:

\\

(3%

y=arcctgx

0

»
|

X

Figure 6.14: Arcctan function
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e arcctan(cotx) =x, x¢€[0,n].

e cot(arcctan(x)) = x, x€R.

The function arcctan € C*(R), and we have

arcctan’(x) = — e
X

More general

()

arcctan’(f(x)) = —m.

We have

arcctan (0) = =, lim arcctan (x) = n, lim arcctan (x) = 0.
X——00 X—+00

TS

It can easily be shown that:

Vi

arctan x + arcctan x = 5 YxeR
1 n

arctan x + arctan — = 3 Yx > 0.

arctanx + arctan — = ——, Yx <0
X

6.5 Hyperbolic Functions

6.5.1 Hyperbolic cosine

Definition 6.5.1. We call the hyperbolic cosine function and denoted (ch or cosh), the even part

of the exponential function defined by:

ef+e™*

ch(x) = 5
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6.5.2 Hyperbolic sine

Definition 6.5.2. The hyperbolic sine function, denoted by (sh or sinh), is the odd part of the

exponential function defined by:

6.5.3 Hpyperbolic tangent

Definition 6.5.3. The hyperbolic tangent function, denoted by (th or tanh), is the quotient of the

hyperbolic sine function with the hyperbolic cosine function and defined by:

sh(x) e —e™

th (x) = ch(x) e +e*

6.5.4 Hpyperbolic cotangent

Definition 6.5.4. The hyperbolic tangent function, denoted by (cth or ctanh), is the quotient of

the hyperbolic cosine function with the hyperbolic sine function and defined by:

ch(x) e +e
sh(x) eX—e™

cth (x) =

X

1 1
Graphs of these functions are obtained from graphics: y = e*andy = e7, (y = Eex, andy = 58_
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Proposition 6.5.1.

The function sh (x) is a function defined on R, continuous and odd.

VL

y=cthx

b

Figure 6.15: Hyperbolic functions

>y

o The function ch (x) is a function defined on R, continuous and even.

The function th (x) is a function defined on R, continuous and odd.

The function cth (x) is a function defined on R, continuous and odd.

The functions ch (x), sh(x), th(x) and cth (x) are differentiable on R and their derivatives

are defined by:
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(ch (x))" = sh (x)
(sh (x))" = ch (x)

Y xeR; , 1 4
(th (x)) = e (x? =1-th*(x)
(cth () = =<

Remark 6.5.1. The hyperbolic functions have the following properties:

1. ch(0) =1, sh(0) =0, th(0) =0.

2. lim ch (x) = +oo, lim sh (x) = —co, lim th(x) = -1, lim cth (x) = -1.

X——00

X—+00

3. lim ch (x) = +oo, xl_i,rflooSh (x) = 400, xl_iﬁoth x =1, xl_i>r+noocth (x) =1
Proposition 6.5.2. For every real x, we have:

e ch(x)+ sh(x) = e,

e ch(x)—sh(x)=e",

o ch’(x)— sh*(x) =1,

o sh (2x) = 2.5h (x).ch (x),

o ch (2x) = ch’(x) + sh*(x).

Proposition 6.5.3. (Addition formulas):

For all (x,y) € R?, we have the following formulas:

o ch(x+Yy)=ch(x).ch(y)+ sh(x).sh(y),

ch(x —y) = ch (x).ch (y) — sh (x).sh (y),

sh(x +y) = sh (x).ch (y) + ch (x).sh (y),

sh(x —y) = sh (x).ch (y) — ch (x).sh (y),

th (x) +th (y)
1 +th (x).th (y)’

th(x+y) =
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o th(x—y)=

Proposition 6.5.4. (Some usual limits of hyperbolic functions):

4. lim

Solution:

th (x) — th (y)

1 —th (x).th ()’

Let x, y € R, we have:

Exercise 6.5.2. According to the values of x, find the limits of x" when n — +co.

Solution:

Let x € R, then if:

X 1\2 xty
(eZ—eZ) >0 = e+ -2-¢e72 >0

x+y s
= 2-e7 <e'+é

Xty X4,y
= e7 <5

I. x < -1 = x" diverges.
2. -l<x<1=>x"-0.
3.x=1=x"-1.

4. x > 1 = x" diverges.

Exercise 6.5.3. 1. Compute: ch (% In(3)), and sh (% In(3)).

2. Show that: ch (a + b) = ch(a)ch(b) + sh(a)sh(b).

3. Deduce the solutions of the equation: 2ch(x) + sh(x) = \/gch(Sx).
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