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RÉSUMÉ

L’objectif de cette mémoire est de définir et d’étudier une nouvelle transformation

appelée transformation de Hankel-Stockwell. On établit toute l’analyse harmonique

associée à cette transformation, en particulier on démontre une formule de Plancherel,

une propriété d’orthogonalité et une formule de reconstruction. Un autre objectif de

cette mémoire est de définir les opérateurs de localisation, d’étudier leur bornitude et

leur compacité. On montre également que ces opérateurs appartiennent à la classe de

Schatten-von Neumann.

Mots clés: Transformation de Hankel, Transformation de Hankel-Stockwell , opéra-

teurs de localisation.
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ABSTRACT

Our objective in this thesis is to define and study a new transform called the Hankel-

Stockwell transform. We will prove all the harmonic analysis associated to this trans-

form, in particular a Plancherel’s formula, an orthogonality property and a reconstruc-

tion formula.

Another main purpose of this thesis is to define the localization operators and to study

their boundedness and compactness, we will also show that these operators belong to

the so-called Schatten-von Neumann class.

Keywords: Hankel transform, Hankel-Stockwell transform, Localization operators.
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INTRODUCTION

Many non-stationnary signals as seismic signal, genomic signal, electrocardiograms,

and speech are gaining more attentions as they intervene in the real life. So, during the

last decades, many methods of determining local spectra have been investigated. In

fact, in signal theory, the Fourier transform of a given signal was firstly introduced by

Joseph Fourier in 1822, defined for an integrable function f (stable signal) by

f̂ (λ) =

∫
R

f (x)e−iλx dx
√

2π
; ∀λ ∈ R,

represents the set of frequencies that compose the signal with their respective ampli-

tudes that called the spectrum of the signal.

One of the major problems with the Fourier Transform consists of the fact that the

frequency representation is global and does not give any temporal localization.

1



Introduction

Figure 1: Loss of temporal localization of the Fourier transform

The notion of time-frequency representations was therefore introduced in order to

overcome this problem, the basic idea concerning the time-frequency analysis is to

introduce into the Fourier analysis, which is a purely spectral analysis, a notion of

spatial or temporal locality by replacing the analyzed function f with the product of f

by a function ψ suitably chosen having good localization properties, then we apply the

Fourier transform to them.

The most famous time-frequency representation was introduced by Denis Gabor [16]

called the Short-time Fourier transform (STFT).

Let us consider a non-zero function ψ ∈ L2(R) called window. Then, for every f ∈ L2(R),

the Short-time Fourier transform of f is defined by

Vψ( f )(a, r) =

∫
R

f (x)ψ(x − a)e−irx dx
√

2π
; a, r ∈ R.

Example of two musical notes played one after the other: time-frequency analysis

2



Introduction

makes it possible to find both the frequencies (the notes) and the temporal information

(the order in which they are played). But quickly, this transform showed many disad-

Figure 2: Time frequency localization

vantages like its inability to detect low frequencies and poor time resolution of high

frequency events due to the fixed width of the window function this means that the

short-time Fourier transform supposes a certain stationary of the signal and it might

be unsuitable to non-stationary signals.

In contrast with the STFT, the wavelet transform (WT), introduced by Morlet [20] pro-

posed to use a window of size depending on the analyzed frequency but with a fixed

number of oscillations.

A non-zero function ψ ∈ L2(R) is said to be a mother wavelet if

∫ +∞

0
|ψ̂(a)|2

da
a
< +∞.

The wavelet transform Wψ with respect to the mother ψ is defined on L2(R) by

Wψ( f )(a, r) =
1
√

a

∫
R

f (x)ψ
(x − r

a

) dx
√

2π
; a, r ∈ R∗+ × R,

3



Introduction

but this transform produces time-scale plots that are unsuitable for intuitive visual

analysis. To circumvent the limitation of the STFT and the WT, a hybrid transform has

been introduced which enjoys the advantages of both STFT and WT called S-transform

often known as the Stockwell transform.

The S-transform was introduced firstly by Stockwell, Mansinha and Lowe [31], it is a

strong new time-frequency approach that has been described in the scientific literature

as a considerable advance over current techniques for localizing spectral information in

a range of signal processing settings. it employs a scalable and variable window length

and provides many information about spectra, thereby, it does not lose any valuable

information and it can reverse back easily.

The S-transform has found many applications in a variety of signal analysis tasks,

as geophysics, medical image processing, oceanography and mechanical engineering

[1, 6, 9, 15, 26].

Recently, many authors have been interested to extend the classical S-transform to

higher dimensional signals as [25, 29]. As the STFT and WT were extended in different

settings like the Dunkl [17], the Jacobi [27] and the Hankel settings [2, 18, 22]. In the

second chapter of this thesis, The Hankel-Stockwell transform Sαψ is a new transform ,

4



Introduction

whereψ is a window function and α ≥ −1
2 , that extends the S-transform usually defined

with the usual Fourier transform to the Hankel settings that is

Sαψ( f )(a, r) =

∫ +∞

0
f (s)ψαa,r(s)

s2α+1

2αΓ(α + 1)
ds, (a, r) ∈ R∗+ × R+,

where ψαa,r is given by relation (2.11).

The Hankel transform also known as the Fourier-Bessel transform arises as a general-

ization of the Fourier transform of a radial integrable function in the euclidean space

Rd. More precisely, let f ∈ L1(Rd) it is well known that if

f (x) = F(‖x‖) is radial function on Rd, then f̂ is also radial on Rd and we have

∀λ ∈ Rd, f̂ (λ) =

∫ +∞

0
F(x) j d

2−1(x‖λ‖)
xd−1

2 d
2−1Γ(d

2 )
dx = H d

2−1(F)(‖λ‖),

where j d
2−1 is the modified Bessel function of index d

2 − 1 and H d
2−1 is the Hankel

transform of index d
2 − 1, defined on L1(dνα) by

Hα( f )(λ) =

∫ +∞

0
f (r) jα(λr)dνα(r), ∀λ ∈ R.

The Hankel transform Hα satisfies the following results:

• Inversion formula: Let f ∈ L1(dνα) such that Hα( f ) ∈ L1(dνα), then we have

f (r) =

∫ +∞

0
Hα( f )(λ) jα(λr)dνα(λ), a.e.

• Plancherel’s formula: The Hankel transform Hα can be extended to an isometric

isomorphism from L2(dνα) onto itself and we have

‖Hα( f )‖2,να = ‖ f ‖2,να .

5
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• Parseval’s formula: For all f , 1 ∈ L2(dνα), we have

∫ +∞

0
f (r)1(r) dνα(r) =

∫ +∞

0
Hα( f )(λ)Hα(1)(λ) dνα(λ).

As the harmonic analysis associated to the Hankel transform has shown remarkable

development, it is a natural question to ask whether there exists the equivalent of the

theory of time-frequency analysis for the Stockwell transform in the Hankel setting.

In fact, many results for the Hankel-Stockwell transform have been established in

particular, let ψ be an admissible window function in L2(dνα). Then, we have:

• Plancherel’s formula: For every f in L2(dνα), the function Sαψ( f ) belongs to L2(dµα)

and we have

‖Sαψ( f )‖2,µα =
√

Cψ‖ f ‖2,να .

• Parseval’s formula: For all f and 1 in L2(dνα), we have

∫ +∞

0

∫ +∞

0
Sαψ( f )(a, r)Sαψ(1)(a, r)dµα(a, r) = Cψ

∫ +∞

0
f (s)1(s)dνα(s).

• Reconstruction formula: If |ψ| is an admissible window function. Then, for every

f ∈ L2(dνα), we have

f (.) =
1

Cψ

∫ +∞

0

∫ +∞

0
Sαψ( f )(a, r)ψαa,r(.)dνα(a)dνα(r),

weakly in L2(dνα).

Chapter 3 is devoted to the time-frequency localization operators that were introduced

firstly by Daubechies [10, 11, 12]. She pointed out the role of this kind of operators to

localize a signal simultaneously in time and frequency.

In the literature, they are also known as anti-Wick operators, wave packets, Toeplitz

6



Introduction

operators or Gabor multipliers [3, 7, 13]. These operators have many applications to

time-frequency analysis, for example, in the theory of differential equations, quantum

mechanics, and signal processing [8, 14, 19].

Let σ ∈ Lp(dµα), p ∈ [1,+∞]. The localization operators for the Hankel-Stockwell

transform Lψ1,ψ2(σ) is defined for all f and 1 ∈ L2(dνα) by

〈Lψ1,ψ2(σ)( f )|1〉να =
1√

Cψ1Cψ2

∫ +∞

0

∫ +∞

0
σ(a, r)Sαψ1

( f )(a, r)Sαψ2
(1)(a, r)dµα(a, r),

where ψ1, ψ2 are two admissible window functions.

In this sense, we recover a filtered version of the signal f , that is why, the localization

operators are also called filter operators. It is also common to define Lψ1,ψ2(σ) by means

of scalar product

〈Lψ1,ψ2(σ)( f )|1〉να =
1√

Cψ1Cψ2

〈σSαψ1
( f )|Sαψ2

(1)〉µα .

Firstly, we have shown that the localization operator Lψ1,ψ2(σ) is bounded.

• Let σ ∈ Lp(dµα), p ∈ [1,+∞]. For every f ∈ L2(dνα), the operator Lψ1,ψ2(σ) is bounded

from L2(dνα) into itself and we have

‖Lψ1,ψ2(σ)‖ ≤
( 1√

Cψ1Cψ2

) 1
p

‖σ‖p,µα .

We also studied the compactness of the localization operators and we established the

following result:

• Let σ ∈ Lp(dµα); 1 ≤ p < +∞, then the operator Lψ1,ψ2(σ) is compact.

We also show that these operators belong to the so-called Schatten-von Neumann class

and we give the formula of the trace of the localization operator when σ belongs to

7
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L1(dµα) by

Tr(Lψ1,ψ2(σ)) =
1√

Cψ1Cψ2

∫ +∞

0

∫ +∞

0
σ(a, r)〈ψα2,a,r|ψ

α
1,a,r〉ναdµα(a, r).

8



CHAPTER 1

HANKEL TRANSFORM
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Hankel Transform

The Hankel transform also called Fourier-Bessel transform is integral transformation

whose kernel is Bessel function. When we are dealing with problems that show cir-

cular symmetry, the Hankel transform may be very useful. For example, the Hankel

transform is the two-dimensional Fourier transform of a circularly symmetric function.

Moreover, the Hankel transform came for the first time by studying the Fourier trans-

form of radial functions and has been generalized later in the general case.

In this chapter, we summarize some harmonic analysis tools related to the Hankel

transform that we shall use later (for more details, one can see [21, 23, 28, 30]).

Notations

We denote by

• να is the measure defined on [0,+∞[ by

dνα(r) =
r2α+1

2αΓ(α + 1)
dr.

• Lp(dνα), p ∈ [1,+∞], is the space of measurable functions f on [0,+∞[ such that

‖ f ‖p,να =


(∫ +∞

0
| f (r) |p dνα(r)

) 1
p

< +∞, if 1 ≤ p < +∞,

ess sup
r∈[0,+∞[

| f (r) |< +∞, if p = +∞.

• 〈. | .〉να the inner product on L2(dνα) defined by

〈w|z〉να =

∫ +∞

0
w(r)z(r)dνα(r).

• C∗(R) the space of even continuous functions on R.

10



Hankel Transform

1.1 Bessel operator

In this section, we define the Bessel operator `α, the modified Bessel function jα and

we give some related results. We also define the translation operator, the convolution

product related to the Bessel operator and we recall some known inequalities which

can be useful throughout this manuscript.

Let `α be the Bessel operator defined on ]0,+∞[ by

`α =
d2

dr2 +
2α + 1

r
d
dr

=
1

r2α+1

d
dr

(
r2α+1 d

dr

)
.

Then, for all λ ∈ C, the following problem


`α(u)(r) = −λ2u(r),

u(0) = 1,

u′(0) = 0.

admits a unique solution given by the modified Bessel function jα(λ.), where

jα(r) = 2αΓ(α + 1)
Jα(r)
rα

= Γ(α + 1)
+∞∑
k=0

(−1)k

k!Γ(α + k + 1)

( r
2

)2k
, (1.1)

and Jα is the Bessel function of the first kind and index α [24, 32].

Proof. Let λ ∈ C. Then, we have

`α( jα(λr)) = j′′α (λr) +
2α + 1

r
j′α(λr).

11



Hankel Transform

Since

j′α(λr) =
(
Γ(α + 1)

+∞∑
k=0

(−1)k

k!Γ(α + k + 1)

(λr
2

)2k
)′

= Γ(α + 1)
+∞∑
k=1

(−1)kλk
k!Γ(α + k + 1)

(λr
2

)2k−1

= λΓ(α + 1)
+∞∑
k=0

(−1)k+1(k + 1)
(k + 1)!Γ(α + k + 2)

(λr
2

)2k+1

= −λ2
( r
2

)Γ(α + 2)
α + 1

+∞∑
k=0

(−1)k

k!Γ(α + k + 2)

(λr
2

)2k

=
−λ2r

2(α + 1)
jα+1(λr), (1.2)

and

j′′α (λr) =
(
−λ2r

2(α + 1)
jα+1(λr)

)′
=

−λ2

2(α + 1)
jα+1(λr) −

λ2r
2(α + 1)

j′α+1(λr)

=
−λ2

2(α + 1)
jα+1(λr) +

λ4r2

4(α + 1)(α + 2)
jα+2(λr). (1.3)

Then, by relations (1.2) and (1.3), we have

`α( jα(λr)) =
−λ2

2(α + 1)
jα+1(λr) +

λ4r2

4(α + 1)(α + 2)
jα+2(λr) −

λ2(2α + 1)
2(α + 1)

− jα+1(λr)

= −λ2
(
jα+1(λr) −

λ2r2

4(α + 1)(α + 2)
jα+2(λr)

)
.

Using the fact that (see [32])

Jα+1(r) + Jα−1(r) =
2α
r

Jα(r),

12



Hankel Transform

thus, we get

jα+1(r) =
r2

4(α + 1)(α + 2)
jα+2(r) + jα(r).

Furthermore, jα(0) = 1 and j′α(0) = 0. The proof is complete.

Proposition 1.1.1 The function jα has the following integral representation formula, for all

r ∈ R

jα(r) =


2Γ(α + 1)
√
πΓ(α + 1

2 )

∫ 1

0
(1 − t2)α−

1
2 cos(tr)dt, if α > − 1

2 ,

cos(r), if α = −1
2 .

Proof. 1) For α = −1
2 , we get

j
−

1
2
(r) = Γ

(1
2

) +∞∑
k=0

(−1)k

k!Γ(k + 1
2 )

( r
2

)2k

=
√
π

+∞∑
k=0

(−1)k

Γ(k + 1)Γ(k + 1
2 )

( r
2

)2k

=
√
π

+∞∑
k=0

(−1)k

22k−1Γ(k)Γ(k + 1
2 )

r2k

2k
.

Using the fact that

22k−1Γ(k)Γ(k +
1
2

) =
√
πΓ(2k).

Then, we obtain

j
−

1
2
(r) =

+∞∑
k=0

(−1)k

2kΓ(2k)
r2k

=

+∞∑
k=0

(−1)k

Γ(2k + 1)
r2k

=

+∞∑
k=0

(−1)k r2k

(2k)!
= cos(r).

2) For α > − 1
2 , we have

13



Hankel Transform

∫ 1

0
(1 − t2)α−

1
2 cos(tr)dt =

∫ 1

0
(1 − t2)α−

1
2

( +∞∑
k=0

(−1)k (tr)2k

(2k)!

)
dt

=

+∞∑
k=0

(−1)k r2k

(2k)!

∫ 1

0
(1 − t2)α−

1
2 t2kdt,

by the change of variable u = 1 − t2, we get∫ 1

0
(1 − t2)α−

1
2 cos(tr)dt =

1
2

+∞∑
k=0

(−1)k

2kΓ(2k)
r2k

∫ 1

0
uα−

1
2 (1 − u)k− 1

2 du

=

√
π

2

+∞∑
k=0

(−1)k

2k22k−1Γ(k)Γ(k + 1
2 )

r2kB
(
α +

1
2
, k +

1
2

)
=

√
πΓ(α + 1

2 )
2

+∞∑
k=0

(−1)k

k!Γ(α + k + 1)

( r
2

)2k

=

√
πΓ(α + 1

2 )
2Γ(α + 1)

jα(r).

Remark 1.1.1 The function jα is bounded, for all n ∈ N and r ∈ R and we have

| j(n)
α (r)| ≤ 1. (1.4)

We have also the following product formula satisfied by jα for all r, s ∈ R+,

jα(r) jα(s) =



Γ(α + 1)
√
πΓ(α + 1

2 )

∫ π

0
jα
(√

r2 + s2 + 2rs cosθ
)
(sinθ)2αdθ, if α > −1/2,

j−1/2(r + s) + j−1/2(|r − s|)
2

, if α = −1/2.

(1.5)

14



Hankel Transform

1.1.1 Translation operator associated to the Bessel operator

Definition 1.1.1 We define the Hankel translation operator ταr , r ∈ [0,+∞[, for all f ∈ C∗(R)

by

ταr ( f )(s) =



Γ(α + 1)
√
πΓ(α + 1

2 )

∫ π

0
f
(√

r2 + s2 + 2rs cosθ
)
(sinθ)2αdθ, if α > −1/2,

f (r + s) + f (|r − s|)
2

, if α = −1/2.

(1.6)

Theorem 1.1.1 Let α > − 1
2 and f ∈ C∗(R). Then, for all r, s ∈]0,+∞[, the operator ταr can be

also written as

ταr ( f )(s) =

∫ +∞

0
f (u)ωα(u, r, s)dνα(u), (1.7)

where ωα is the Hankel kernel given by

ωα(u, r, s) =


Γ2(α + 1)

√
πΓ(α + 1

2 )2α−1

[u2
− (r − s)2]α−

1
2 [(r + s)2

− u2]α−
1
2

(urs)2α , if |r − s| < u < r + s,

0, otherwise.

Proof. According to Definition 1.1.1, we have for every α > − 1
2

ταr ( f )(s) =
Γ(α + 1)
√
πΓ(α + 1

2 )

∫ π

0
f
(√

r2 + s2 + 2rs cosθ
)
(sinθ)2αdθ.

15



Hankel Transform

We put u =
√

r2 + s2 + 2rs cosθ, we obtain

ταr ( f )(s) =
Γ(α + 1)
√
πΓ(α + 1

2 )

∫ r+s

|r−s|
f (u)

[u2
− (r − s)2]α[(r + s)2

− u2]α

(2rs)2α
u
rs

[u2
− (r − s)2]−

1
2 [(r + s)2

− u2]−
1
2

(2rs)−1
du

=
Γ(α + 1)

22α−1
√
πΓ(α + 1

2 )

∫ r+s

|r−s|
u f (u)

[u2
− (r − s)2]α−

1
2 [(r + s)2

− u2]α−
1
2

(rs)2α du

=
Γ2(α + 1)

2α−1
√
πΓ(α + 1

2 )

∫ r+s

|r−s|
f (u)

[u2
− (r − s)2]α−

1
2 [(r + s)2

− u2]α−
1
2

(urs)2α
u2α+1

2αΓ(α + 1)
du

=

∫ +∞

0
f (u)ωα(u, r, s)dνα(u).

The kernel ωα is symmetric in the variables u, r, s and we have

∫ +∞

0
ωα(u, r, s)dνα(u) = 1. (1.8)

Proposition 1.1.2 For every f ∈ L1(dνα) and for r ∈ [0,+∞[, the function ταr ( f ) belongs to

L1(dνα) and we have

∫ +∞

0
ταr ( f )(s)dνα(s) =

∫ +∞

0
f (u)dνα(u). (1.9)

Proof. From relation (1.8) and using Fubini-Tonelli’s theorem, we obtain that for

f ∈ L1(dνα) and for r ∈ [0,+∞[,

∫ +∞

0
|ταr ( f )(s)|dνα(s) =

∫ +∞

0

∣∣∣∣∣ ∫ +∞

0
f (u)ωα(u, r, s)dνα(u)

∣∣∣∣∣dνα(s)

≤

∫ +∞

0
| f (u)|

( ∫ +∞

0
ωα(u, r, s)dνα(s)

)
dνα(u)

= ‖ f ‖1,να < +∞.
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This shows that ταr ( f ) belongs to L1(dνα) and

∫ +∞

0
ταr ( f )(s)dνα(s) =

∫ +∞

0

∫ +∞

0
f (u)ωα(u, r, s)dνα(u)dνα(s)

=

∫ +∞

0
f (u)

( ∫ +∞

0
ωα(u, r, s)dνα(s)

)
dνα(u)

=

∫ +∞

0
f (u)dνα(u).

corollary 1.1.1 For all r, s ∈ [0,+∞[ and for all λ ∈ C, we have

ταr ( jα(λ.))(s) = jα(λr) jα(λs). (1.10)

Proof. Let r, s ∈ [0,+∞[. Then, we get

ταr ( jα(λ.))(s) =
Γ(α + 1)
√
πΓ(α + 1

2 )

∫ π

0
jα
(
λ
√

r2 + s2 + 2rs cosθ
)
(sinθ)2αdθ

=
Γ(α + 1)
√
πΓ(α + 1

2 )

∫ π

0
jα
(√

(λr)2 + (λs)2 + 2(λr)(λs) cosθ
)
(sinθ)2αdθ

= jα(λr) jα(λs).

Proposition 1.1.3 For every f ∈ Lp(dνα), p ∈ [1,+∞] and for every r ∈ [0,+∞[, the function

ταr ( f ) belongs to Lp(dνα) and we have

‖ταr ( f )‖p,να ≤ ‖ f ‖p,να . (1.11)

Proof. Let f ∈ Lp(dνα), p ∈ [1,+∞]

• If p = +∞. Then, for all r, s ∈ [0,+∞[, we have

17



Hankel Transform

ταr ( f )(s) =
Γ(α + 1)
√
πΓ(α + 1

2 )

∫ π

0
f
(√

r2 + s2 + 2rs cosθ
)
(sinθ)2αdθ.

Then,

|ταr ( f )(s)| ≤ ‖ f ‖∞,να
Γ(α + 1)
√
πΓ(α + 1

2 )

∫ π

0
(sinθ)2αdθ

= ‖ f ‖∞,να
Γ(α + 1)
√
πΓ(α + 1

2 )
B
(
α +

1
2
,

1
2

)
= ‖ f ‖∞,να .

This shows that the function ταr ( f ) belongs to L∞(dνα) and

‖ταr ( f )‖∞,να ≤ ‖ f ‖∞,να .

• If p = 1. We know that

ταr ( f )(s) =

∫ +∞

0
f (u)ωα(u, r, s)dνα(u).

According to Fubini-Tonelli’s theorem and by relation (1.8), we have

‖ταr ( f )‖1,να ≤
∫ +∞

0
| f (u)|

( ∫ +∞

0
ωα(u, r, s)dνα(s)

)
dνα(u)

=

∫ +∞

0
| f (u)|dνα(u)

= ‖ f ‖1,να .

• If p ∈]1,+∞[ and q be the conjugate exponent of p. According to Hölder’s inequal-
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Hankel Transform

ity and relations (1.7) and (1.8), we obtain

|ταr ( f )(s)| ≤
∫ +∞

0
| f (u)|ωα(u, r, s)

1
pωα(u, r, s)

1
q dνα(u)

≤

( ∫ +∞

0
| f (u)|pωα(u, r, s)dνα(u)

) 1
p
( ∫ +∞

0
ωα(u, r, s)dνα(u)

) 1
q

=
( ∫ +∞

0
| f (u)|pωα(u, r, s)dνα(u)

) 1
p

.

Now, using Fubini-Tonelli’s theorem, we have

‖ταr ( f )‖pp,να ≤
∫ +∞

0

∫ +∞

0
| f (u)|pωα(u, r, s)dνα(s)dνα(u)

=

∫ +∞

0
| f (u)|p

( ∫ +∞

0
ωα(u, r, s)dνα(s)

)
dνα(u)

= ‖ f ‖pp,να .

1.1.2 Convolution product for the Bessel operator

Definition 1.1.2 The convolution product of f , 1 ∈ L1(dνα) is defined by

f ∗ 1(r) =

∫ +∞

0
ταr ( f )(s)1(s)dνα(s),

=

∫ +∞

0
f (s)ταr (1)(s)dνα(s).

Theorem 1.1.2 For all f , 1 ∈ L1(dνα), f ∗ 1 ∈ L1(dνα) and we have

‖ f ∗ 1‖1,να ≤ ‖ f ‖1,να‖1‖1,να .

Proof. According to Fubini-Tonnelli’s theorem and relation (1.11), we have for every
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f , 1 ∈ L1(dνα)∫ +∞

0
| f ∗ 1(r)|dνα(r) ≤

∫ +∞

0

∫ +∞

0
|ταr ( f )(s)| |1(s)|dνα(s)dνα(r)

=

∫ +∞

0
|1(s)|

( ∫ +∞

0
|ταs ( f )(r)|dνα(r)

)
dνα(s)

=

∫ +∞

0
|1(s)| ‖ταs f ‖1,ναdνα(s)

≤ ‖ f ‖1,να‖1‖1,να .

Then, the function f ∗ 1 ∈ L1(dνα) and

‖ f ∗ 1‖1,να ≤ ‖ f ‖1,να‖1‖1,να .

Theorem 1.1.3 For all f ∈ L1(dνα), 1 ∈ Lp(dνα) such that p ∈ [1,+∞[, f ∗ 1 in Lp(dνα).

Furthermore,

‖ f ∗ 1‖p,να ≤ ‖ f ‖1,να‖1‖p,να .

Proof. Let f ∈ L1(dνα), 1 ∈ Lp(dνα), p ∈ [1,+∞[ and let q be the conjugate exponent of p.

So, from Hölder’s inequality, we obtain

| f ∗ 1(r)| ≤
∫ +∞

0
| f (s)| |ταr (1)(s)|dνα(s)

=

∫ +∞

0
| f (s)|

1
q | f (s)|

1
p |ταr (1)(s)|dνα(s)

≤ ‖ f ‖
1
q

1,να

( ∫ +∞

0
| f (s)| |ταr (1)(s)|pdνα(s)

) 1
p

.

Using Fubini-Tonnelli’s theorem and relation (1.11), we get
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‖ f ∗ 1‖pp,να ≤ ‖ f ‖
p
q

1,να

∫ +∞

0
| f (s)|

( ∫ +∞

0
|ταs (1)(r)|pdνα(r)

)
dνα(s)

= ‖ f ‖
p
q

1,να

∫ +∞

0
| f (s)| ‖ταs 1‖

p
p,ναdνα(s)

≤ ‖ f ‖
p
q +1

1,να
‖1‖

p
p,να

= ‖ f ‖p1,να‖1‖
p
p,να .

Theorem 1.1.4 For all f in Lp(dνα), 1 in Lq(dνα) and for all p, q, r ∈ [1,+∞] such that
1
p

+
1
q

= 1 +
1
r

, the function f ∗1 belongs to the space Lr(dνα) and we have the followig Young’s

inequality

‖ f ∗ 1‖r,να ≤ ‖ f ‖p,να‖1‖q,να . (1.12)

1.2 Hankel transform

Definition 1.2.1 The Hankel transform Hα is defined on L1(dνα) by

Hα( f )(λ) =

∫ +∞

0
f (r) jα(λr)dνα(r), ∀λ ∈ R.

where jα is the modified Bessel function given by (1.1).

The Hankel transform Hα satisfies the following results:

Theorem 1.2.1 1. (Inversion formula for the Hankel transform) Let f ∈ L1(dνα) such that

Hα( f ) ∈ L1(dνα), then we have

f (r) =

∫ +∞

0
Hα( f )(λ) jα(λr)dνα(λ) = Hα(Hα( f ))(r), a.e. (1.13)
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Hankel Transform

2. (Plancherel’s formula) The Hankel transform Hα can be extended to an isometric isomor-

phism from L2(dνα) onto itself and we have

‖Hα( f )‖2,να = ‖ f ‖2,να . (1.14)

3. (Parseval’s formula) For all f , 1 ∈ L2(dνα), we have

∫ +∞

0
f (r)1(r) dνα(r) =

∫ +∞

0
Hα( f )(λ)Hα(1)(λ) dνα(λ).

Proposition 1.2.1 1. For every f ∈ L2(dνα) and r ∈ [0,+∞[, we have

Hα(ταr ( f ))(λ) = jα(λr)Hα( f )(λ), ∀λ ∈ R. (1.15)

2. For every f ∈ L1(dνα) and 1 ∈ L2(dνα), the function f ∗ 1 belongs to L2(dνα) and we have

Hα( f ∗ 1) = Hα( f )Hα(1). (1.16)

3. Let f , 1 ∈ L2(dνα). Then f ∗ 1 ∈ L2(dνα), if and only if Hα( f )Hα(1) ∈ L2(dνα) and we

have

Hα( f ∗ 1) = Hα( f )Hα(1), (1.17)

Moreover,

∫ +∞

0
| f ∗ 1(r)|2dνα(r) =

∫ +∞

0
|Hα( f )(λ)|2|Hα(1)(λ)|2dνα(λ).

where both integrals are finite or infinite.
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Hankel Transform

Remark 1.2.1 For every f , 1 ∈ L2(dνα) and r ∈ [0,+∞[, we have

ταr ( f ∗ 1) = ταr ( f ) ∗ 1 = f ∗ ταr (1). (1.18)
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CHAPTER 2

HANKEL-STOCKWELL TRANSFORM
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Hankel-Stockwell transform

The Stockwell transform is a time-frequency spectral localization technique that com-

bines elements of wavelet transform, which analyzes function with respect to position

and scale, and Short-Time Fourier Transform which analyzes function concerning po-

sition and frequency.

Our investigation in this chapter is to define and study a new transform called the

Hankel-Stockwell transform and we establish several basic properties for this trans-

form.

we also prove that Sαψ(L2(dνα)) is a reproducing kernel Hilbert space with kernel function

defined by

kψ ((a, r); (a′, r′)) =
1

Cψ
〈ψαa,r|ψ

α
a′,r′〉να , (a, r), (a′, r′) ∈ R∗+ × R+;

where ψαa,r is the family given by relation (2.11) and Cψ is the admissible condition for

the Hankel-Stockwell transform given by (2.13) .

In the following we denote by

• µα the measure defined on R∗+ × R+ by

dµα(a, r) = dνα(a)dνα(r). (2.1)

• Lp(dµα), 1 ≤ p ≤ +∞, the Lebesgue space on R∗+ × R+, with respect to the measure µα

with the Lp
−norm denoted by ‖ . ‖p,µα .

• 〈. | .〉µα the inner product on L2(dµα) defined by

〈 f |1〉µα =

∫ +∞

0

∫ +∞

0
f (a, r)1(a, r)dµα(a, r).
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Hankel-Stockwell transform

2.1 Dilation operator

For every a ∈ R∗+, the dilation operator Dα
a is defined for every measurable function ψ

on R+ by
Dα

a (ψ)(r) = aα+1ψ(ar), ∀r ∈ [0,+∞[.

Then, we have the following properties:

Properties 2.1.1 1. For every ψ in L2(dνα),

‖Dα
a (ψ)‖2,να = ‖ψ‖2,να . (2.2)

2. For all ψ, ϕ in L2(dνα),

〈Dα
a (ψ)|ϕ〉να = 〈ψ|Dα

1
a
(ϕ)〉να . (2.3)

3. For every ψ in L2(dνα),

|Dα
a (ψ)|2 = aα+1Dα

a |ψ|
2, (2.4)

and √
Dα

a (|ψ|) = a−
α+1

2 Dα
a (

√
|ψ|). (2.5)

4. For every ψ in L2(dνα),

ταr Dα
a (ψ) = Dα

aτ
α
ar(ψ). (2.6)

5. For every ψ in L2(dνα),

Hα(Dα
a (ψ)) = Dα

1
a
(Hα(ψ)). (2.7)

Proof.
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1. For every ψ in L2(dνα), we have

‖Dα
a (ψ)‖22,να =

∫ +∞

0
|Dα

a (ψ)(r)|2dνα(r)

= a2α+2
∫ +∞

0
|ψ(ar)|2dνα(r)

=

∫ +∞

0
|ψ(s)|2dνα(s)

= ‖ψ‖22,να .

2. For every ψ, ϕ in L2(dνα), we get

〈Dα
a (ψ)|ϕ〉να =

∫ +∞

0
Dα

a (ψ)(r)ϕ(r)dνα(r)

= aα+1
∫ +∞

0
ψ(ar)ϕ(r)dνα(r)

=

∫ +∞

0
ψ(s)

1
aα+1ϕ

( s
a

)
dνα(s)

= 〈ψ|Dα
1
a
(ϕ)〉να .

3. For every ψ in L2(dνα), we obtain

|Dα
a (ψ)(r)|2 = |aα+1ψ(ar)|2

= a2α+2
|ψ(ar)|2

= aα+1Dα
a (|ψ|2)(r),

and √
Dα

a (|ψ|)(r) =
√

aα+1|ψ(ar)|

= a
α+1

2
√
|ψ(ar)|

= a−
α+1

2 Dα
a (

√
|ψ|)(r).
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4. Let ψ ∈ L2(dνα). So, by Definition 1.1.1, we have

ταr (Dα
a (ψ))(s) =

Γ(α + 1)
√
πΓ(α + 1

2 )

∫ π

0
Dα

a (ψ)
(√

r2 + s2 + 2rs cosθ
)
(sinθ)2αdθ

= aα+1 Γ(α + 1)
√
πΓ(α + 1

2 )

∫ π

0
ψ
(√

(ar)2 + (as)2 + 2(ar)(as) cosθ
)
(sinθ)2αdθ

= aα+1ταar(ψ)(as)

= Dα
a (ταar(ψ))(s).

5. Let ψ ∈ L2(dνα), then

Hα(Dα
a (ψ))(λ) =

∫ +∞

0
Dα

a (ψ)(r) jα(λr)dνα(r)

= aα+1
∫ +∞

0
ψ(ar) jα(λr)dνα(r)

=
1

aα+1

∫ +∞

0
ψ(s) jα

(λ
a

s
)
dνα(s)

=
1

aα+1 Hα(ψ)
(λ

a

)
= Dα

1
a
(Hα(ψ))(λ).

2.2 Modulation operator

This section is devoted to define the modulation operator Mα
a and to prove that this

operator is an isometry on L2(dνα).

Definition 2.2.1 The modulation operator is defined for every function ψ in L2(dνα) by

Mα
a (ψ) = Hα

(√
ταa (|Hα(ψ)|2)

)
, ∀a > 0. (2.8)

28



Hankel-Stockwell transform

Proposition 2.2.1 1. For every ψ ∈ L2(dνα), Mα
a (ψ) belongs to L2(dνα) and we have

‖Mα
a (ψ)‖2,να = ‖ψ‖2,να . (2.9)

2. For every ψ ∈ L2(dνα), we get

Mα
a Dα

a (ψ) = Dα
a Mα

1 (ψ). (2.10)

Proof.

1. From relation (1.9) and by using Plancherel’s formula for the Hankel transform

Hα (1.14), we have∫ +∞

0

∣∣∣Hα

(√
ταa (|Hα(ψ)|2)

)
(λ)

∣∣∣2dνα(λ) =

∫ +∞

0

∣∣∣√ταa (|Hα(ψ)|2)(r)
∣∣∣2dνα(r)

=

∫ +∞

0
ταa (|Hα(ψ)|2)(r)dνα(r)

=

∫ +∞

0
|Hα(ψ)(λ)|2dνα(λ)

=

∫ +∞

0
|ψ(r)|2dνα(r)

= ‖ψ‖22,να < +∞.

Then, the function Mα
a (ψ) ∈ L2(dνα) and we have ‖Mα

a (ψ)‖2,να = ‖ψ‖2,να .

2. Let ψ ∈ L2(dνα). Then, using relations (2.4), (2.6) and (2.7) we get
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Mα
a Dα

a (ψ) = Hα

(√
ταa

∣∣∣Hα(Dα
a (ψ))

∣∣∣2)
= Hα

(√
ταa

∣∣∣Dα
1
a
(Hα(ψ))

∣∣∣2)
=

1

a α+1
2

Hα

(√
ταa Dα

1
a
(|Hα(ψ)|2)

)
=

1

a α+1
2

Hα

(√
Dα

1
a
τα1 (|Hα(ψ)|2)

)
= HαDα

1
a

(√
τα1 (|Hα(ψ)|2)

)
= Dα

a Hα

(√
τα1 (|Hα(ψ)|2)

)
= Dα

a Mα
1 (ψ).

2.3 Hankel-Stockwell transform Sαψ

The main aim of this part is to define the Hankel-Stockwell transform Sαψ and to prove

a Plancherel’s formula and a reconstruction formula for this transform. we also prove

that the function Sαψ( f ) belongs to Lp(dµα), p ∈ [2,+∞] for every f ∈ L2(dνα).

Definition 2.3.1 For every ψ ∈ L2(dνα), the family ψαa,r, (a, r) ∈ R∗+ × R+, defined by

ψαa,r(s) = ταr Mα
a Dα

aψ(s), ∀s ∈ R+. (2.11)

By relations (1.11), (2.2) and (2.9), we have

‖ψαa,r‖2,να ≤ ‖ψ‖2,να . (2.12)
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Hankel-Stockwell transform

Definition 2.3.2 A nonzero function ψ ∈ L2(dνα) is said to be an admissible window function

if

0 < Cψ = cα

∫ +∞

0
τα1

(
|Hα(ψ)|2

)
(a)

da
a
< +∞, (2.13)

where

cα =
1

2αΓ(α + 1)
.

Definition 2.3.3 Let ψ be an admissible window function. The continuous Hankel-Stockwell

transform Sαψ is defined in L2(dνα) by

Sαψ( f )(a, r) =

∫ +∞

0
f (s)ψαa,r(s)dνα(s), (a, r) ∈ R∗+ × R+.

where ψαa,r is given by relation (2.11).

The continuous Hankel-Stockwell transform can also be written as

Sαψ( f )(a, r) = f ∗Mα
a Dα

a (ψ)(r) (2.14)

= 〈 f |ψαa,r〉να . (2.15)

Proposition 2.3.1 Let ψ be an admissible window function. Then, the continuous Hankel-

Stockwell transform Sαψ is a bounded linear operator from L2(dνα) onto L∞(dµα) and we have

‖Sαψ( f )‖∞,µα ≤ ‖ψ‖2,να‖ f ‖2,να . (2.16)
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Proof. Let ψ ∈ L2(dνα) be an admissible window function. Then, from Cauchy-

Schwarz’s inequality and relation (2.12), we obtain

|Sαψ( f )(a, r)| = |〈 f |ψαa,r〉να |

≤ ‖ψαa,r‖2,να‖ f ‖2,να

≤ ‖ψ‖2,να‖ f ‖2,να .

Then

‖Sαψ( f )‖∞,µα ≤ ‖ψ‖2,να‖ f ‖2,να .

The Hankel-Stockwell transform Sαψ satisfies the following properties:

Theorem 2.3.1 (Plancherel’s formula) Let ψ be an admissible window function in L2(dνα),

then we have

‖Sαψ( f )‖2,µα =
√

Cψ‖ f ‖2,να . (2.17)

Proof. From relations (1.17) and (2.14) and using Fubini-Tonelli’s theorem, we get

∫ +∞

0

∫ +∞

0
|Sαψ( f )(a, r)|2dµα(a, r)

=

∫ +∞

0

∫ +∞

0
| f ∗Mα

a Dα
a (ψ)(r)|2dνα(a)dνα(r)

=

∫ +∞

0

∫ +∞

0
|Hα( f )(λ)|2|Hα(Mα

a Dα
a (ψ))(λ)|2dνα(a)dνα(λ)

=

∫ +∞

0
|Hα( f )(λ)|2

( ∫ +∞

0
|Hα(Mα

a Dα
a (ψ))(λ)|2dνα(a)

)
dνα(λ). (2.18)
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Now, using relations (2.4), (2.7), (2.8) and (2.10), we get

∫ +∞

0
|Hα(Mα

a Dα
a (ψ))(λ)|2dνα(a) =

∫ +∞

0
|Hα(Dα

a Mα
1 (ψ))(λ)|2dνα(a)

=

∫ +∞

0
|Dα

1
a
Hα(Mα

1 (ψ))(λ)|2dνα(a)

=

∫ +∞

0

∣∣∣∣∣Dα
1
a

(√
τα1 (|Hα(ψ)|2)

)
(λ)

∣∣∣∣∣2dνα(a)

=

∫ +∞

0

1
aα+1 Dα

1
a

(
τα1 (|Hα(ψ)|2)

)
(λ)dνα(a)

=

∫ +∞

0

1
a2α+2τ

α
1 (|Hα(ψ)|2)

(λ
a

)
dνα(a)

=
1

2αΓ(α + 1)

∫ +∞

0
τα1 (|Hα(ψ)|2)(a)

da
a
.

Then, we get

∫ +∞

0
|Hα(Mα

a Dα
a (ψ))(λ)|2dνα(a) = Cψ. (2.19)

Then, from Plancherel’s formula for the Hankel transform Hα (1.14) and by combining

relations (2.18) and (2.19), we obtain

‖Sαψ( f )‖2,µα =
√

Cψ‖Hα( f )‖2,να

=
√

Cψ‖ f ‖2,να .

corollary 2.3.1 (Parseval’s formula) Letψ be an admissible window function in L2(dνα). Then,

for all f and 1 in L2(dνα), we have

∫ +∞

0

∫ +∞

0
Sαψ( f )(a, r)Sαψ(1)(a, r)dµα(a, r) = Cψ

∫ +∞

0
f (s)1(s)dνα(s).
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Hankel-Stockwell transform

Proof. Using Polarization identity and Plancherel’s formula for the Hankel-Stockwell

transform (2.17), we have

∫ +∞

0

∫ +∞

0
Sαψ( f )(a, r)Sαψ(1)(a, r)dµα(a, r) = 〈Sαψ( f )|Sαψ(1)〉µα

=
1
4

(
‖Sαψ( f ) + Sαψ(1)‖22,µα − ‖S

α
ψ( f ) − Sαψ(1)‖22,µα + ‖Sαψ( f ) + iSαψ(1)‖22,µα − ‖S

α
ψ( f ) − iSαψ(1)‖22,µα

)
=

1
4

(
‖Sαψ( f + 1)‖22,µα − ‖S

α
ψ( f − 1)‖22,µα + ‖Sαψ( f + i1)‖22,µα − ‖S

α
ψ( f − i1)‖22,µα

)
= Cψ

(
1
4

(
‖ f + 1‖22,να − ‖ f − 1‖22,να + ‖ f + i1‖22,να − ‖ f − i1‖22,να

))
= Cψ〈 f |1〉να

= Cψ

∫ +∞

0
f (s)1(s)dνα(s).

Theorem 2.3.2 (Reconstruction formula) Let ψ be an admissible window function in L2(dνα)

such that |ψ| is an admissible window function. Then, for every

f ∈ L2(dνα), we have

f (.) =
1

Cψ

∫ +∞

0

∫ +∞

0
Sαψ( f )(a, r)ψαa,r(.)dµα(a, r),

weakly in L2(dνα).

Proof. From Corollary 2.3.1 and Fubini-Tonelli’s theorem, we have for all 1 in L2(dνα)

〈 f |1〉να =

∫ +∞

0
f (s)1(s)dνα(s)

=
1

Cψ

∫ +∞

0

∫ +∞

0
Sαψ( f )(a, r)Sαψ(1)(a, r)dµα(a, r)

=
1

Cψ

∫ +∞

0

∫ +∞

0
Sαψ( f )(a, r)〈ψαa,r|1〉ναdµα(a, r).

which gives the result.
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Hankel-Stockwell transform

Remark 2.3.1 By using the fact that Sαψ( f ) belongs to L2(dµα), for almost a ∈ R∗+, the function

r 7−→ Sαψ( f )(a, r) = f ∗Mα
a Dα

a (ψ)(r) belongs to L2(dνα). Then, by using relations (1.17), (2.7)

and (2.10), we obtain

Hα(Sαψ( f )(a, .))(λ) =
1

aα+1 Hα( f )(λ)
√
τα1

(
|Hα(ψ)|2

)(λ
a

)
. (2.20)

Theorem 2.3.3 Let ψ be an admissible window function in L2(dνα). For every f ∈ L2(dνα),

the function Sαψ( f ) belongs to Lp(dµα), p ∈ [2,+∞] and we have

‖Sαψ( f )‖p,µα ≤ C
1
p

ψ‖ψ‖
1− 2

p

2,να
‖ f ‖2,να .

Proof. For p = 2. The Plancherel’s formula for the continuous Hankel-Stockwell

transform (2.17) gives

‖Sαψ( f )‖2,µα = C
1
2
ψ‖ f ‖2,να .

For p = +∞ and by relation (2.16), we have

‖Sαψ( f )‖∞,µα ≤ ‖ψ‖2,να‖ f ‖2,να .

From Riesz-Thorin’s interpolation Theorem 3.2.3, we get for every p ∈ [2,+∞]

‖Sαψ( f )‖p,µα ≤ ‖S
α
ψ( f )‖

1− 2
p

∞,µα‖S
α
ψ( f )‖

2
p

2,µα

≤ C
1
p

ψ‖ψ‖
1− 2

p

2,να
‖ f ‖2,να .

Proposition 2.3.2 Let ψ be an admissible window function in L2(dνα). For every function f

in L2(dνα), we have
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Hankel-Stockwell transform

1. For all r0 ≥ 0,

Sαψ(ταr0
( f ))(a, r) = ταr0

(Sαψ( f )(a, .))(r), (a, r) ∈ R∗+ × R+. (2.21)

2. For λ > 0, we have

Sαψ(Dα
λ( f ))(a, r) = δλ(Sαψ( f ))(a, r), (a, r) ∈ R∗+ × R+. (2.22)

Proof.

1. From relations (1.18) and (2.14), we have

Sαψ(ταr0
( f ))(a, r) = ταr0

( f ) ∗Mα
a Dα

a (ψ)(r)

= ταr0

(
f ∗Mα

a Dα
a (ψ)

)
(r)

= ταr0
(Sαψ( f )(a, .))(r).

2. Using relations (2.3), (2.6), (2.10) and (2.15), we have

Sαψ(Dα
λ( f ))(a, r) = 〈Dα

λ f |ταr Mα
a Dα

aψ〉να

= 〈 f |Dα
1
λ
ταr Mα

a Dα
aψ〉να

= 〈 f |ταλrD
α
1
λ
Mα

a Dα
aψ〉να

= 〈 f |ταλrM
α
a
λ
Dα

a
λ
ψ〉να

= Sαψ( f )(
a
λ
, λr)

= δλ(Sαψ( f ))(a, r).
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Hankel-Stockwell transform

2.4 Reproducing kernel Hilbert space Sαψ(L2(dνα))

In this section, we prove that Sαψ(L2(dνα)) is a reproducing kernel Hilbert space with

kernel function defined by (2.23).

Definition 2.4.1 (Reproducing kernel) Let H be a Hilbert space of functions defined from

arbitrary set X into C issued with the inner product 〈. | .〉H. Let k be a function defined from

X × X into C, we say that k is a reproducing kernel for H, if

• For every y ∈ X, the function x 7→ k(x, y) ∈ H,

• For every f ∈ H and for every y ∈ X, f (y) = 〈 f |k(., y)〉H.

Definition 2.4.2 (Reproducing kernel Hilbert space) A reproducing kernel Hilbert space is a

Hilbert space H with a reproducing kernel whose span is dense in H.

Proposition 2.4.1 (Reproducing kernel) Let ψ be an admissible window function in L2(dνα)

and f ∈ L2(dνα). Then, Sαψ(L2(dνα)) is a reproducing kernel Hilbert space with kernel function

kψ ((a, r); (a′, r′)) =
1

Cψ
〈ψαa,r|ψ

α
a′,r′〉να , (a, r), (a′, r′) ∈ R∗+ × R+. (2.23)

Moreover, the kernel kψ is pointwise bounded and

|kψ ((a, r); (a′, r′)) | ≤
‖ψ‖22,να

Cψ
.

Proof. For F ∈ Sαψ(L2(dνα)), there exists a function f ∈ L2(dνα) such that

F(a, r) = Sαψ( f )(a, r).

Then, from Corollary 2.3.1, we have
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Hankel-Stockwell transform

F(a, r) = 〈 f |ψαa,r〉να

=
1

Cψ
〈Sαψ( f )|Sαψ(ψαa,r)〉µα

= 〈Sαψ( f )|kψ ((a, r); (., .))〉µα .

This shows that kψ ((a, r); (a′, r′)) =
1

Cψ
Sαψ(ψαa,r)(a

′, r′) is a reproducing kernel of the Hilbert

space Sαψ(L2(dνα)).

Finally, for all (a, r), (a′, r′) ∈ R∗+ × R+, we have from Cauchy-Schwarz’s inequality and

relation (2.12) that

|kψ ((a, r); (a′, r′)) | =
1

Cψ
|〈ψαa,r|ψ

α
a′,r′〉να | ≤

‖ψ‖22,να
Cψ

.
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Time-frequency localization operators for the Hankel-Stockwell transform

The localization operators were initiated by Daubechies in [10], she highlighted the role

of these operators to localize a signal simultaneously in time and frequency.

This class of operators occurs in various branches of mathematics and have been studied

by many authors, we cite for instance Cordero and Gröchening [8], Mari and al.[14],

Mari and Nowak [13], Gröchening [19] and Wong [33].

The aim of this chapter is to define and study the localization operators associated with

the Hankel-Stockwell transform. We prove that these operators are bounded, from a

space of square integrable functions into itself. After that, we define the Schatten-von

Neumann class Sp, p ∈ [1,+∞] and we show that the localization operators belong to

this class. In a particular case, we give also a trace formula.

3.1 Boundedness and compactness of localization opera-

tors

Our goal in this section is to define the time-frequency localization operators with

two windows for the Hankel-Stockwell transform, we prove that these operators are

bounded and compact. For this, we consider two admissible window functions ψ1 and

ψ2 in L2(dνα) such that

‖ψ1‖2,να = ‖ψ2‖2,να = 1.

• We denote by B(L2(dνα)) the Banach algebra of all bounded linear operators from

L2(dνα) into itself, equipped with the norm

‖A‖ = sup
‖ f ‖≤1
‖A( f )‖2,να .
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Time-frequency localization operators for the Hankel-Stockwell transform

Lemma 3.1.1 For every p ∈ [1,+∞] and all f , 1 ∈ L2(dνα), the function

(a, r) 7−→ Sαψ1
( f )(a, r)Sαψ2

(1)(a, r),

belongs to Lp(dµα) and we have

‖Sαψ1
( f )Sαψ2

(1)‖p,µα ≤
(√

Cψ1Cψ2

) 1
p
‖ f ‖2,να‖1‖2,να . (3.1)

Proof. From Cauchy-Schwarz’s inequality and the Plancherel’s formula (2.17) for Sαψ,

for all f , 1 ∈ L2(dνα), we have

∫ +∞

0

∫ +∞

0
|Sαψ1

( f )(a, r)Sαψ2
(1)(a, r)|dνα(a)dνα(r) ≤ ‖Sαψ1

( f )‖2,µα‖S
α
ψ1

(1)‖2,µα

=
√

Cψ1Cψ2‖ f ‖2,να‖1‖2,να .

This means that the function Sαψ1
( f )Sαψ2

(1) belongs to L1(dµα) and that

‖Sαψ1
( f )Sαψ2

(1)‖1,µα ≤
√

Cψ1Cψ2‖ f ‖2,να‖1‖2,να . (3.2)

From relation (2.16), and for every (a, r) ∈ R∗+ × R+

|Sαψ1
( f )(a, r)Sαψ2

(1)(a, r)| ≤ ‖ f ‖2,να‖1‖2,να .

Hence, the function Sαψ1
( f )Sαψ2

(1) belongs to L∞(dµα) and we have

‖Sαψ1
( f )Sαψ2

(1)‖∞,µα ≤ ‖ f ‖2,να‖1‖2,να . (3.3)
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Time-frequency localization operators for the Hankel-Stockwell transform

Using relations (3.2) and (3.3), we obtain for every p ∈ [1,+∞]

‖Sαψ1
( f )Sαψ2

(1)‖p,µα ≤ ‖S
α
ψ1

( f )Sαψ2
(1)‖

1− 1
p

∞,µα‖S
α
ψ1

( f )Sαψ2
(1)‖

1
p

1,µα

≤

(√
Cψ1Cψ2

) 1
p
‖ f ‖2,να‖1‖2,να .

Theorem 3.1.1 (Riesz’s representation Theorem).

Let H be a Hilbert space (real or complex) with the inner product 〈. | .〉H and let L be a continuous

linear form on H. Then, there exists a unique v in H such that for all u ∈ H, we have

L(u) = 〈v | u〉H.

Proposition 3.1.1 Let σ ∈ Lp(dµα), p ∈ [1,+∞]. For every f ∈ L2(dνα), there exists a unique

function in L2(dνα) denoted by Lψ1,ψ2(σ)( f ) such that for every 1 ∈ L2(dνα),

〈Lψ1,ψ2(σ)( f )|1〉να =
1√

Cψ1Cψ2

∫ +∞

0

∫ +∞

0
σ(a, r)Sαψ1

( f )(a, r)Sαψ2
(1)(a, r)dµα(a, r).

Proof. Let σ ∈ Lp(dµα), p ∈ [1,+∞]. Let q be the conjugate exponent of p. From Lemma

3.1.1, for all f , 1 ∈ L2(dνα), the function Sαψ1
( f )Sαψ2

(1) belongs to Lq(dµα). So, by Hölder’s

inequality, we get

1√
Cψ1Cψ2

∫ +∞

0

∫ +∞

0
|σ(a, r)| |Sαψ1

( f )(a, r)Sαψ2
(1)(a, r)|dµα(a, r)

≤
1√

Cψ1Cψ2

‖σ‖p,µα‖S
α
ψ1

( f )Sαψ2
(1)‖q,µα

≤

(√
Cψ1Cψ2

) 1
q−1
‖ f ‖2,να‖1‖2,να‖σ‖p,µα

=
( 1√

Cψ1Cψ2

) 1
p

‖ f ‖2,να‖1‖2,να‖σ‖p,µα .
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Hence

1 7−→
1√

Cψ1Cψ2

∫ +∞

0

∫ +∞

0
σ(a, r)Sαψ1

( f )(a, r)Sαψ2
(1)(a, r)dµα(a, r),

is a continuous anti-linear form on the Hilbert space L2(dνα). From Riesz’s representa-

tion Theorem 3.1.1, there exists a unique Lψ1,ψ2(σ)( f ) ∈ L2(dνα) such that

〈Lψ1,ψ2(σ)( f )|1〉να =
1√

Cψ1Cψ2

∫ +∞

0

∫ +∞

0
σ(a, r)Sαψ1

( f )(a, r)Sαψ2
(1)(a, r)dµα(a, r).

Moreover, for every σ ∈ Lp(dµα), p ∈ [1,+∞], the operator

Lψ1,ψ2(σ) : L2(dνα) −→ L2(dνα)

is a linear bounded operator and for every f ∈ L2(dνα)

‖Lψ1,ψ2(σ)( f )‖2,να ≤
( 1√

Cψ1Cψ2

) 1
p

‖ f ‖2,να‖σ‖p,µα . (3.4)

Definition 3.1.1 Let σ ∈ Lp(dµα), p ∈ [1,+∞]. The localization operator for the Hankel-

Stockwell transform Lψ1,ψ2(σ) is defined for all f and 1 ∈ L2(dνα) by

〈Lψ1,ψ2(σ)( f )|1〉να =
1√

Cψ1Cψ2

∫ +∞

0

∫ +∞

0
σ(a, r)Sαψ1

( f )(a, r)Sαψ2
(1)(a, r)dµα(a, r).

From relation (3.4), we deduce that Lψ1,ψ2(σ) belongs to B(L2(dνα)) and

‖Lψ1,ψ2(σ)‖ ≤
( 1√

Cψ1Cψ2

) 1
p

‖σ‖p,µα . (3.5)

Theorem 3.1.2 Let σ ∈ Lp(dµα); 1 ≤ p < +∞, then the operator Lψ1,ψ2(σ) is compact.
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Proof. Let σ in L1(dµα) and let (υk)k be an orthonormal basis of L2(dνα), then for every

k ∈ N, we get

‖Lψ1,ψ2(σ)(υk)‖22,να = 〈Lψ1,ψ2(σ)(υk)|Lψ1,ψ2(σ)(υk)〉να

=
1√

Cψ1Cψ2

∫ +∞

0

∫ +∞

0
σ(a, r)Sαψ1

(υk)(a, r)Sαψ2
(Lψ1,ψ2(σ)(υk))(a, r)dµα(a, r)

=
1√

Cψ1Cψ2

∫ +∞

0

∫ +∞

0
σ(a, r)〈υk|ψ

α
1,a,r〉να〈ψ

α
2,a,r|Lψ1,ψ2(σ)(υk)〉ναdµα(a, r)

=
1√

Cψ1Cψ2

∫ +∞

0

∫ +∞

0
σ(a, r)〈υk|ψ

α
1,a,r〉να〈L

∗

ψ1,ψ2
(σ)(ψα2,a,r)|υk〉ναdµα(a, r).

Thus,

+∞∑
k=0

‖Lψ1,ψ2(σ)(υk)‖22,να =
1√

Cψ1Cψ2

+∞∑
k=0

∫ +∞

0

∫ +∞

0
σ(a, r)〈υk|ψ

α
1,a,r〉να〈L

∗

ψ1,ψ2
(σ)(ψα2,a,r)|υk〉ναdµα(a, r)

=
1√

Cψ1Cψ2

∫ +∞

0

∫ +∞

0
σ(a, r)〈L∗ψ1,ψ2

(σ)(ψα2,a,r)|ψ
α
1,a,r〉ναdµα(a, r)

≤
1√

Cψ1Cψ2

∫ +∞

0

∫ +∞

0
|σ(a, r)| ‖L∗ψ1,ψ2

(σ)(ψα2,a,r)‖2,να‖ψ
α
1,a,r‖2,ναdµα(a, r).

From relations (2.12) and (3.4), we get

+∞∑
k=0

‖Lψ1,ψ2(σ)(υk)‖22,να ≤
‖σ‖21,µα
Cψ1Cψ2

.

This shows that the localization operator Lψ1,ψ2(σ) is in S2 and that

‖Lψ1,ψ2(σ)‖HS ≤
‖σ‖1,µα√
Cψ1Cψ2

.

In particular, Lψ1,ψ2(σ) is a compact operator.

Now, let σ ∈ Lp(dµα), 1 ≤ p < +∞. Since L1(dµα)
⋂

Lp(dµα) is dense in Lp(dµα), there
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exists (σk)k ⊂ L1(dµα) such that

lim
k→+∞

‖σk − σ‖p,µα = 0.

By relation (3.5), we have

‖Lψ1,ψ2(σk) − Lψ1,ψ2(σ)‖ ≤
( 1√

Cψ1Cψ2

) 1
p

‖σk − σ‖p,µα .

Thus, lim
k→+∞

Lψ1,ψ2(σk) = Lψ1,ψ2(σ) in B(L2(dνα)).

Since the set of compact operators is a closed ideal of B(L2(dνα)), we deduce that the

operator Lψ1,ψ2(σ) is compact.

3.2 Schatten-von Neumann class of localization operators

In this section, we will introduce the Schatten-von Neumann class Sp and we will prove

that the localization operator for the Hankel-Stockwell transform Lψ1,ψ2(σ) is in Sp. Prior

to that, we set the following natation:

• `p(N), 1 ≤ p ≤ +∞, the set of all infinite sequences of real (or complex) numbers

x = (x j) j∈N, such that

‖x‖p =



 +∞∑
j=0

| x j |
p


1
p

< +∞, if 1 ≤ p < +∞,

sup
j∈N

| x j |< +∞, if p = +∞.

• The singular values
(
sk(A)

)
k∈N

of a compact operator A in B(L2(dνα)) are the eigenval-

ues of the positive compact self-adjoint operator |A| =
√

A∗A.

• Let A be a compact operator on a separable Hilbert space H . We say that A belongs
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to the Schatten-von Neumann class Sp, p ∈ [1,+∞[ if the sequence
(
sk(A)

)
k∈N

of the

singular values of A belongs to `p(N). Sp is equipped with the norm

‖A‖Sp =
( +∞∑

k=1

|sk|
p
) 1

p

.

•We denote by S∞ the C∗-algebra B(H ) of all bounded linear operators on H , S∞ is

equipped with the norm ‖A‖S∞ = ‖A‖, A ∈ S∞.

• The trace of an operator A in S1 is defined by

Tr(A) =

+∞∑
k=1

〈Aυk|υk〉H , (3.6)

where (υk)k is an orthonormal basis of H . Tr(A) is independent of the choice of the

orthonormal basis. Moreover, if A is nonnegative, then

Tr(A) = ‖A‖S1 .

S1 is also known to be the trace class (see[4, 5]).

To prove that the localization operator Lψ1,ψ2(σ) belongs to the class S1, we need the

following Bessel’s inequality.

Theorem 3.2.1 Let H be a Hilbert space with the inner product 〈. | .〉H and let (ek)k∈N be an

orthonormal family of H. Then, for all x in H, we have the followig Bessel’s inequality

∑
k

∣∣∣〈x | ek〉H

∣∣∣2 ≤ ||x||2.
Theorem 3.2.2 Let σ ∈ L1(dµα), then the bounded linear operator Lψ1,ψ2(σ) belongs to the class
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S1 and

‖Lψ1,ψ2(σ)‖S1 ≤
1√

Cψ1Cψ2

‖σ‖1,µα . (3.7)

Proof. Let σ ∈ L1(dµα) and let (υk)k, (ωk)k be two orthonormal basis in L2(dνα). Then, for

every k ∈ N, we get

|〈Lψ1,ψ2(σ)υk|ωk〉να | ≤
1√

Cψ1Cψ2

∫ +∞

0

∫ +∞

0
|σ(a, r)| |〈υk|ψ

α
1,a,r〉να | |〈ωk|ψ

α
2,a,r〉να |dµα(a, r)

≤
1√

Cψ1Cψ2

∫ +∞

0

∫ +∞

0
|σ(a, r)|

1
2

(
|〈υk|ψ

α
1,a,r〉να |

2 + |〈ωk|ψ
α
2,a,r〉να |

2
)
dµα(a, r).

Thus, by applying Bessel’s inequality, we get

+∞∑
k=1

|〈Lψ1,ψ2(σ)υk|ωk〉να | ≤
1√

Cψ1Cψ2

∫ +∞

0

∫ +∞

0
|σ(a, r)|

1
2

( +∞∑
k=1

|〈υk|ψ
α
1,a,r〉να |

2 +

+∞∑
k=1

|〈ωk|ψ
α
2,a,r〉να |

2
)
dµα(a, r)

≤
1√

Cψ1Cψ2

∫ +∞

0

∫ +∞

0
|σ(a, r)|

1
2

(
‖ψα1,a,r‖

2
2,να + ‖ψα2,a,r‖

2
2,να

)
dµα(a, r)

≤
1√

Cψ1Cψ2

‖σ‖1,µα < +∞.

From [34], the operator Lψ1,ψ2(σ) belongs to S1 and

‖Lψ1,ψ2(σ)‖S1 ≤
1√

Cψ1Cψ2

‖σ‖1,µα .

To prove that the localization operator Lψ1,ψ2(σ) belongs to the class Sp, we need the

following Riesz-Thorin’s interpolation theorem.
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Theorem 3.2.3 (Riesz-Thorin) Let p0, p1, q0, q1 ∈ [1,+∞] and let

A : Lp0(Rd) + Lp1(Rd) −→ Lq0(Rd) + Lq1(Rd),

be a linear operator. If A : Lp0(Rd) −→ Lq0(Rd) is bounded of norm N0 and

A : Lp1(Rd) −→ Lq1(Rd) is bounded of norm N1, then for every θ ∈ [0, 1] the operator A is

bounded from Lp(Rd) −→ Lq(Rd) of norm N ≤ N1−θ
0 Nθ

1 , where


1
p = 1−θ

p0
+ θ

p1
,

1
q = 1−θ

q0
+ θ

q1
.

Theorem 3.2.4 For every σ ∈ Lp(dµα), p ∈ [1,+∞], the localization operator Lψ1,ψ2(σ) :

L2(dνα)→ L2(dνα) is in Sp and

‖Lψ1,ψ2(σ)‖Sp ≤

( 1√
Cψ1Cψ2

) 1
p

‖σ‖p,µα . (3.8)

Proof. For every σ ∈ L1(dµα), Lψ1,ψ2(σ) belongs to S1 and

‖Lψ1,ψ2(σ)‖S1 ≤
1√

Cψ1Cψ2

‖σ‖1,µα .

For every σ ∈ L∞(dµα), Lψ1,ψ2(σ) belongs to S∞ and

‖Lψ1,ψ2(σ)‖S∞ ≤ ‖σ‖∞,µα .

From Theorem 3.2.3, the localization operator Lψ1,ψ2(σ) ∈ Sp and we have

‖Lψ1,ψ2(σ)‖Sp ≤

( 1√
Cψ1Cψ2

) 1
p

‖σ‖p,µα .
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Theorem 3.2.5 Let σ in L1(dµα), then

Tr(Lψ1,ψ2(σ)) =
1√

Cψ1Cψ2

∫ +∞

0

∫ +∞

0
σ(a, r)〈ψα2,a,r|ψ

α
1,a,r〉ναdµα(a, r).

Proof. Let (υk)k be an orthonormal basis in L2(dνα). For every k ∈ N, we get

Tr(Lψ1,ψ2(σ)(υk)) =

+∞∑
k=1

〈Lψ1,ψ2(σ)υk|υk〉να

=
1√

Cψ1Cψ2

+∞∑
k=1

∫ +∞

0

∫ +∞

0
σ(a, r)Sαψ1

(υk)(a, r)Sαψ2
(υk)(a, r)dµα(a, r)

=
1√

Cψ1Cψ2

+∞∑
k=1

∫ +∞

0

∫ +∞

0
σ(a, r)〈υk|ψ

α
1,a,r〉να〈ψ

α
2,a,r|υk〉ναdµα(a, r).

Since

1√
Cψ1Cψ2

+∞∑
k=1

∫ +∞

0

∫ +∞

0
|σ(a, r)| |〈υk|ψ

α
1,a,r〉να | |〈ψ

α
2,a,r|υk〉να |dµα(a, r) ≤

1√
Cψ1Cψ2

‖σ‖1,µα < +∞.

We conclude that

Tr(Lψ1,ψ2(σ)) =
1√

Cψ1Cψ2

∫ +∞

0

∫ +∞

0
σ(a, r)〈ψα2,a,r|ψ

α
1,a,r〉ναdµα(a, r).

The proof is complete.
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