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عز و جل المعين العظيم على توفيقه لي في كل خطوة في هذا العمل،  الشكر أولا لله

.فلك الحمد كما ينبغي لجلال وجهك و لعظيم سلطانك  

)صلى الله عليه وسلم(: "مَنْ صَنَعَ إلَِيْكُمْ مَعْرُوفاً فَكَافئِوُهُ، فَإنِْ لَمْ تجَِدُوا  رسول اللهقال 

وا لهَُ حَتَّى ترََوْا أنََّكُمْ قَدْ كَافَأتْمُُوهُ". )رواه أبو داوود( أخيرًا، أتقدم مَا تكَُافئِوُنهَُ فَادْعُ 

بجزيل شكري إلى كل من مدوا لي يد العون والمساعدة في إخراج هذه الدراسة على 

.أكمل وجه  

تتسابق عبارات الحب ويتزاحم الكلام الرقيق لقول أسمى عبارات الشكر و العرفان 

.هثر في حياتي كل بإسمه و مقاملمن كان له أ  

ثانيا أتقدم بالشكر لعائلتي، أثمن جهودكم الكبيرة في جميع أوقات الدراسة التي مرت 

.علي  

، بكل الحب أتقدم إليك بالشكر على وجودك بقربي، فالحياة كانت مظلمة لولا  أبي

.وجودك، ومهما شكرتك لن أوفيك حقك  

ي الحياة ،لا أعرف كيف أشكرك يا أمي، ، لا يسعني الشكر فأنت من قدمت لأمي

فكلمة شكرًا هي لا شيء مقارنة بسخائك وعطائك، إني أود حقاً أن أرد لكِ الجميل، 

.وليتني أعرف كيف السبيل  

، لك جزيل الشكر يا اختي الغالية على ما قدمتيه لي ومشاعرك النبيلة الغير أختي

.مستغربة وهذا من نبلك وأصلك  

كبيرة،  إن قلت شكراً فشكري لن يوفيكم، حقاً سعيتم فكان السعي و أيضا عائلتي ال

.مشكوراً، إن جف حبري عن التعبير يكتبكم قلب به صفاء الحب تعبيراً   

أرسل الطيور برسائل شكري وعرفاني لك، تتطير  نجلاءو أخيرا و ليس آخرا 

لنجوم عدداً. بالفضاء اللامع بين ملايين النجوم، لتوصل لك كلمات شكري التي تفوق ا

شكرا على عملك الدؤوب طيلة إنجاز هذا العمل و تشجيعك المتواصل عند التعثر، و 

.أعتذر عن أي تقصير بدر مني  

.أشكر ريان جامع على عطاءها و مساعدتها بكل ما تستطيع تقديمه و لم تبخل  

 و شيماء ادة،غ ، زهرة، رميساء،وفاء :مريم، منار،صديقاتيو أخص بالذكر أيضا 

لاا . مهما أوتيت من بلاغة وأفنيت بحر النطق في النظم لما كنت بعد القول إجاةن

 مقصراً، ومعترفاً بالعجز عن واجب الشكر، شكرا على مساندتكم و دعمكم الدائم.

 تقوى



 

 

 

 

 

 

 

 على إنجاز هذا العمل الذي أعانني الحمد لله

 أما بعد أهدي ثمرة جهدي المتواضع إلى من وهبوني الحياة 

و  أبي العزيزو الأمل و النشأة على شغف الإطلاع و المعرفة، 

 ... الغالية أمي

 ...سندسو أختي صهيب إلى من وهبني الله نعمة وجودهما أخي 

 ...عليها رحمة الله  أبرارإلى حبيبة قلبي 

 ...رونقإلى من كنت محظوظة بصداقتها 

ا و النجاح في مسيرتنحكاتفتني و نحن نشق الطريق معا ن إلى من

 ...العلمية 

 ... تقوىإلى رفيقة دربي 

 …أساتذتيو  صديقاتيالكبيرة و كل  عائلتيإلى 
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ABSTRACT

In this work, we explored some fundamental concepts for studying a discrete dynamical

system (equilibrium points, bifurcations, chaos, chaotic attractor, Lyapunov exponents,

and some methods for controlling chaos).

As an application, we studied a system consisting of two recursive equations (differ-

ence equations), each representing a population known as the Rosenzweig-MacArthur

system. We explored the stability, bifurcation, and chaos of the system. We also ex-

amined the existence of bifurcations at equilibrium solutions (Flip and Neimark) when

parameters traverse certain curves. Notably, the fold bifurcation does not exist in this

system. We studied these bifurcations using the center manifold theorem and bifur-

cation theory. Chaos was analyzed through two methods: Feedback and OGY. The

theoretical results were confirmed numerically.

Keywords: Rosenzweig-MacArthur system, stability, bifurcation (Flip and Neimark-

Sacker), center manifold, Lyapunov exponent, control (Feedback and OGY).
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RÉSUMÉ

Dans ce travail, nous avons exploré certains concepts fondamentaux pour l’étude d’un

système dynamique discret (points d’équilibre, bifurcations, chaos, attracteur chao-

tique, exposants de Lyapunov, et quelques méthodes pour contrôler le chaos).

À titre d’application, nous avons étudié un système composé de deux équations récur-

sives (équations aux différences), chacune représentant une population connue sous

le nom de système de Rosenzweig-MacArthur. Nous y avons exploré la stabilité, les

bifurcations et le chaos du système. Nous avons également étudié l’existence de bi-

furcations aux solutions d’équilibre (Flip, Neimark) lorsque les paramètres traversent

certaines courbes, et nous avons constaté qu’il n’existe pas de bifurcation en pli. Nous

avons étudié ces bifurcations à l’aide du théorème de la variété centrale et de la théorie

des bifurcations. Nous avons aussi étudié le chaos en utilisant deux méthodes (Feed-

back et OGY). Les résultats théoriques ont été confirmés numériquement.

Mots-clés: système de Rosenzweig-MacArthur, stabilité, bifurcation (Flip et Neimark-

Sacker), variété centrale, exposant de Lyapunov, contrôle (Feedback et OGY).
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شعبات، نقاط التوازن، الت) بعض المفاهيم الأساسية لدراسة نظام ديناميكي متقطع إستعرضنافي هذا العمل، 

بيق، . كجزء من التط(الفوضوي، مؤشرات ليابونوف، وبعض طرق التحكم في الفوضى الفوضى، الجاذب

، كل منهما يمثل مجموعة تعرف بنظام (معادلتين فروق) درسنا نظاما يتكون من معادلتين تراجعيتين

النظام. كما درسنا وجود  ماكارثر. حيث قمنا بدراسة الاستقرار، التشعب والفوضى في-روزنزاويغ

 عندما تمر المعلمات عبر منحنيات معينة، ولا يوجد تشعب (، نيمارك  فليب) التشعبات عند حلول التوازن

متعددات الحدود المركزية ونظرية التشعب. كما درسنا  الطي. ودرسنا هذه التشعبات باستخدام نظرية

 .اتم تأكيد النتائج النظرية عددي (أوجيو  جعيةالتغذية الر) الفوضى باستخدام طريقتين

 

ساكر(،المتعدد -نيمارك و ماك آرثر،الاستقرار،التشعب)فليب-نظام روزنزوايغ الكلمات المفتاحية:

 ة و أوجي(.يجعالرالمركزي،أسس ليابونوف،التحكم)التغذية 
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INTRODUCTION

Dynamical system is the mathematical formalization of the general scientific concept

of a deterministic process. They describe the future and past states of many physical,

chemical, biological, ecological, economical [23].

Differential equations were invented by Isaac Newton in the late 17th century, and

their various properties were discovered over time. Subsequent generations attempted

to develop them further, but faced some difficulties [41].

In the 19th century; Henri Poincare introduced a new perspective focusing on the

qualitative aspects of the question.One of the questions he posed was whether the

solar system is stable forever, or if some planets will eventually become unstable,

highlighting the sensitivity to initial conditions [41].

In 1975; Li and York published a paper titled "Period three implies chaos," demon-

strating the existence of periodic orbits of period 3 for a dynamical system defined by

a continuous function F : I 7→ I. This implies the existence of countless non-periodic

and unstable orbits [30, 25].

The term "chaos" appeared for the first time in this research to indicate the complexity

studied by Li and York [30]. And Devaney has defined fundamental definitions for

chaos in "The field of dynamical systems and especially the study of chaotic systems

has been hailed as one of the important breakthroughs in science in this centry " [24].

1



Introduction

A chaotic system is a simple and complex in it bihavior system sensitive to initial con-

ditions, exhibiting properties of recurrence and high complexity. Small disturbances

can lead to non-repetition or biased imbalance, making long-term predictability impos-

sible [24]. Since then, chaos theory has become important, especially in control systems,

where Li and York’s contributions to chaos control have been significant. Many tech-

niques have been developed to control chaos, most of which are variations of the OGY

(Ott-Grebogi-Yorke) and PRC (Pyragas) approaches. The notion of population is based

on the existence of an intermediate structure between the individual and the species.

The definitions of population proposed by geneticists and population biologists have

followed quite parallel paths since the beginning of the century [6].

The first definitions of population date back to Wright (1931).They are defined it

a group of individuals sharing the same gene pool.Population geneticists have also

introduced the concept of local populations, neighborhoods, or communities, which

are entities relatively isolated from other entities in terms of reproduction and the

dispersion of individuals [6]. Local populations are interpreted as demographic units

in which the main population processes take place, such as reproduction, competition,

and predation [6].

Population dynamics lies at the heart of the interface between dynamical systems

and biology [3].

Population dynamics is a crucial research area for understanding the evolution and

interaction of species within an ecosystem. Since the work of Thomas Robert Malthus,

several models have been developed to describe variations in the size and structure of

populations. Among these models, the most well-known are the Malthusian model,

the Verhulst model, and the Lotka-Volterra model.

Our dissertation is composed of an introduction and four chapters organized as

follows:

- In the first chapter: we present some essential concepts on discrete dynamical systems.

- In the second chapter: we present the important notions of stability and bifurcation

with their types.

- In the third chapter: we focus on the notions of chaos.

- In the fourth chapter: we discuss the two different types of chaos control in dynamical

2



Introduction

systems, which are OGY and Feedback.

- Finally, we conclude the work with a chapter dedicated to applying the basic no-

tions (fixed point, stability, bifurcation, Lyapunov exponent, OGY, Feedback, Center-

Manifold).
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CHAPTER 1

GENERALITIES ABOUT DISCRETE

DYNAMICAL SYSTEM

Dynamics is a process that evolves over time, which can be either deterministic or

stochastic.Dynamical systems are generally described by differential or difference equa-

tions. They are used to model a wide range of natural phenomena in different fields

such as: (physics, chemical, electromechanical, biological, economic, etc) [26].

In this chapter, we discuss the definitions and types of dynamic systems, especially

the discrete dynamic system and its theories (flow, phase portrait, fixed point, periodic

point).

1.1 Discrete dynamical systems

Definition 1.1.1 [23]

A dynamical system is defined as a triplet (T,X, ϕ), where T is a time x ∈ X, X a state space,

ϕ : T × X → X a family of evolution operators parametrized by t ∈ T; x ∈ X and satisfying

the properties ϕ(0, x) = Id and ϕ(ϕ(t, x), s) = ϕ(t + s, x) ∀t, s > 0 we distinguish two types of

dynamic systems.

4



• Continous-time systems if T = R+ or R .

• Discrete-time systems if T =N or Z .

1.1.1 Types of dynamical systems

a) Continuous-time dynamical systems:

Definition 1.1.2 [26]

In continuous time a dynamical system is represented by differential equations :

ẋ = f (x, t, p), (1.1)

where x ∈ Rn , p ∈ Rm, t ∈ R.

f : R+ ×Rn
→ Rn : an application representing the dynamics of the system .

If we associate an initial state with this dynamic:

x0 = x(t0).

For each chosen pair (t0, x0), we can identify a unique solution :

ϕ(., t0, x0) : R+ ×Rn
→ Rn.

Such as :

ϕ f (t0, t0, x0) = x0;

ϕ̇ f (t, t0, x0) = f (ϕ f (t, t0, x0), t).

This solution provides the successive states occupied by the system at each time t.

When the function x is continuous within a certain interval I ⊂ R of the variable

x there is existence and uniqueness of the solution for any initial condition x ∈ I

more precisely we have the following theorem.

Theorem 1.1.1 [12]
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We consider a differential equation:

dx
dt
= f (t, x, λ),

and we suppose that the second member of the equation is given by a function f which is

Lipschitzian with ratio λ with respect to x uniformly with respect to a parameter λ and

with respect to t ∈ [−a,+a]. There is only one solution maximum ϕ = ϕ(t, t0, x0) such

that ϕ(t0, t0, x0) = x0.

Example 1.1.1 The Lorenz map represented by:
ẋ = σ(y − x),

ẏ = −xz + rx − y,

ż = xy − bz.

b) Discrete-time dynamical systems:

Definition 1.1.3 [30]

In discrete time a dynamical system is represented by an application (iterative function)

in the form :

xk+1 = f (xk, c, k), (1.2)

xk ∈ Rn, c ∈ Rm and k = 1, 2, 3 · · ·

Where f : Rn
×Z+ → Rn indicates the dynamics of the system in discrete time .

We can also identify (x0, k0) a unique solution :

ϕ f (., x0, k0) : R+ ×Rn;

Such as:

ϕ f (k0, x0, k0) = x0,

ϕ f (k + 1, x0, k0) = f (ϕ f (k, x0, k0), c), k.

Example 1.1.2 The Henon map:
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 xk+1 = yk + 1 − ax2
k .

yk+1 = bxk.

b.1) Linear discrete systems:

Definition 1.1.4 [11]

A linear discrete dynamic system is represented by equation of the form : xn+1 = Axn,

x(0) = x0,

given by: x = (x0, x1, x2 · · · , xn) = (x0,Ax0,A2x0, · · · ,Anx0).

Where A is square matrix of dimention n × n.

b.2) Non linear discrete systems:

Definition 1.1.5 [11]

A non linear discrete dynamic system is represented by an equation of the form: xn+1 = f (xn, t),

x(0) = x0 ∈ Rn.

Where f : Rn
→ Rn is a differentiable function.

c) Autonomous or non autonomous systems:

A dynamical system is a non autonomous [26] if the variable t appears explicitly

in an expression:  xn+1 = f (xn),

x(0) = x0.

and autonomous if the variable t not appear explicitly in the expression f : xn+1 = f (xn, t),

x(0) = x0.

• Phase Space:

A dynamical system is defined by a set of state variables, each of which completely

describes the system’s state at any particular time. The system’s dynamic behavior is

7



connected to how these state variables change over time. This concept is represented

in phase space, where each point represents a state and the path associated with that

point illustrates a trajectory [39].

•Transition from continuous time to discrete time:

Euler’s method:

A simple way to obtain an equation in discrete time is to perform the Euler

approximation of a continuous time equation.

Let x(t) be a real variable depending on time t. A differential equation of first

autonomous order is written in the following general form:

dx
dt
= f (x),

where the function f depends on the variable x.

Let x(t) be the solution at time t and x(t + ∆t) be the solution at time t + ∆t.

Derivative
dx
dt

can be approximated by the following relation:

dx
dt
≈

x(t + ∆t) − x(t)
∆t

.

This Euler approximation is all the more valid as the time interval ∆t is small.

From the two previous equations we obtain a discrete time equation:

x(t + ∆t) = x(t) + f (x)∆t.

The previous equation allows, from an initial condition x0, to calculate the

solution at consecutive time intervals, ∆t , 2∆t, 3∆t , ..., n∆t, and so on.

By choosing ∆t = 1 as the unit of time, it is possible to rewrite this equation in

discrete time as follows:

x(t + 1) = 1(x(t)),

where the function 1(x(t)) = x(t) + f (x(t)) [4].

1.1.2 Flow, trajectory (orbit), phase portrait

a) Flow:
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Definition 1.1.6 [12]

The correspondence ϕt : x0 7→ x(t) which associates with each initial state value x0 the

value of the maximal solution x(t) at time t, that corresponds to this initial data is called

the flow at time t of the vector field. The flow of the vector field is the map which associates

with (t, x) the maximal solution x(t) at time t that corresponds to the initial data x:

(t, x) 7→ ϕ(t, x) = ϕt = x(t).

The flow is said to be complete when this correspondence is defined for any value of

t ∈] −∞,+∞[ .

Properties

ϕt(x0) has the following properties :

i) ϕt(x0) is of class cr.

ii) ϕ0(x0) = x0.

iii) ϕt+s(x0) = ϕt(ϕs(x0)) ∀t, s > 0.

For the demonstration of these properties in [41]

Figure 1.1: Flow representation.

Figure 1.2: Illustration of stationarity.
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b) Trajectory:

Definition 1.1.7 [5]

An orbit of the system (1.2) starting at x0 is an ordered subset of the state space X, x ∈ X.

the following:

O(x0) = {x(0) = x0, x(1) = f (x(0)), ..., x(n + 1) = f (x(n))}.

c) Phase portrait:

Phase portrait are frequently used in dynamical system to represent the dynamics

of a map graphically. A phase portrait consists of a diagram exhibiting possible

changing positions of a map function and the arrows indicate the change of

positions under iterations of the map [26].

Example 1.1.3 Consider a simple one dimensional map:

f : [0, 2π]→ [0, 2π].

Defined by f (θ) = θ + 0.3 sin (3θ). The phase portrait of this map is displayer in figure

(1.3). The figure shows that the six points satisfy the relationship f (θ) = θ. The arrows

indicate that the flow moves toward the three points π
3 ,π, 5π

3 and the flow moves away from

the other three points 0,2π
3 ,4π

3 , the points have special interest.

Figure 1.3: Phase portrait of f (θ) = θ + 0.3 sin(3θ).
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1.1.3 Fixed points, periodic points

Consider a discrete-time equation of the following general form:

xn+1 = f (xn).

1) Fixed point

Definition 1.1.8 [11]

The vector x∗ ∈ Rn is called an equilibrium point of the system if x∗ = f (x∗).

Example 1.1.4 : Consider the following discrete system:x1(k + 1) = αx1(k) + x2
2(k),

x2(k + 1) = x1(k) + βx2(k).

An equilibrium point of this system is a vector x∗ = (x1, x2) that solves the system:x1 = αx1 + x2
2,

x2 = x1 + βx2.

Which gives two equilibrium points: x∗ = (0, 0) and x∗ = ((1−α)(1− β)2, (1−α)(1− β)).

2) Periodic Point:

x is a periodic point of the system (1.2) if there exists k ≥ 1, such that f k(x) = x, the

period of a periodic point x is the smallest integer k ≥ 1 such that f k(x) = x [33].
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CHAPTER 2

STABILITY AND BIFURCATION

2.1 Stability

2.1.1 Stability of fixed points

Definition 2.1.1 [9]

Let f : I → I be a map and x∗ be a fixed point of f , where I is an interval in the set of real

numbers R. Then

(1) x∗ is said to be stable if for every ϵ > 0, there exists δ > 0 and n > 0 such that ∥x0−x∗∥ ≤ δ

implies ∥xk − x∗∥ ≤ ϵ for all k > n. Otherwise, it is said to be unstable.

(2) x∗ is said to be asymptotically stable (a.s) if it is stable and lim
k→∞
∥xk − x∗∥ = 0.

(3) x∗ is said to be globally asymptotically stable (g.a.s) if it is asymptotically stable (a.s) and

for every x∗0, lim
k→∞
∥xk − x∗∥ = 0.

Henceforth, unless otherwise stated, "stable" (asymptotically stable).

• The exisstence of a fixed point can be assured by:
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Stability and bifurcation

Theorem 2.1.1 (Brouwer’s Fixed Point Theorem) [13]

Suppose F : B → Rn is continuous, B is a compact convex subset of Rn, and F(B) ⊆ B.

Then there exists x∗ ∈ B such that F(x∗) = x∗.

A proof of this theorem can be found in Heuser [1994].

• The uniqueness of a fixed point can be assured by:

Theorem 2.1.2 (Contraction Mapping Theorem) [13]

Suppose F : B→ B where B is a closed subset of a Banach space X and F is a contraction

on B, i.e. there exists µ < 1 such that

||F(x) − F(y)|| ⩽ µ||x − y|| f orall x, y ∈ B.

Then there exists a unique fixed point x∗ and each trajectory starting in B converges

exponentially fast to it.

Linear dynamical systems

Let’s consider the autonomous systems, which are time-invariant and take the form:

xn+1 = Axn. (2.1)

The next theorem summarizes the key stability results for such linear autonomous

systems.

We make the assumption that the system (2.1) is at its equilibrium state, meaning that:

x∗ = Ax∗. Therefore:

x∗ = (0, 0, · · · , 0) i f det (I − A) , 0.

So there exists a unique fixed point (x∗ = 0) In the next theorem we summarize the main

stability results for the linear autonomous systems.

Theorem 2.1.3 (m-dimensional linear systems) [9]

The following statements hold for equation (2.1) :

(i) The zero solution of (2.1) is stable if and only if ρ(A) ≤ 1 and the eigenvalues of unit
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Stability and bifurcation

modulus are semisimple (An eigenvalue is said to be semisimple if the corresponding

Jordan block is diagonal).

(i) The zero solution of (2.1) is asymptotically stable if and only if ρ(A) < 1 .

Where:

ρ(A) = max {|λ| : λ is an eigenvalue of A } is the spectral radius of A.

Proof. The proof can be found in reference [9].

Theorem 2.1.4 (2-dimentional linear systems) [10]

The following statements hold for Equation (2.1) :

(a) If ρ(A) < 1, then the origin is asymptotically stable.

(b) If ρ(A) > 1, then the origin is unstable.

(c) If ρ(A) = 1, then the origin is unstable if the Jordan form is of the form

 λ 1

0 λ

, and

stable otherwise.

Proof. The proof can be found in reference [10].

• Trace-determinant method:

Let’s examine the two-dimensional linear dynamic system Xn+1 = AXn . The

system’s qualitative characteristics can be categorized according to the values of

tr(A) and det(A).

The eigenvalues of A are derived by solving the characteristic equation.

P(λ) = λ2
− tr(A)λ + det(A).

P(λ) = 0.

Proposition 2.1.1

Consider the two-dimensional linear dynamical system Xn+1 = AXn, and let λ1 and λ2 be the

eigenvalues of A.

1. if (tr(A))2 > 4det(A) then λ1,2 are real (λ1 > λ2), moreover
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(a) The origin is a Saddle (|λ1| > 1 and |λ2| < 1) or ( |λ1| < 1 and |λ2| > 1)

if and only if:
P(1) < 0 and P(−1) > 0,

or

P(1) > 0 and P(−1) < 0,
i.e. , if and only if:
−tr(A) − 1 < det(A) < tr(A) − 1.

or

tr(A) − 1 < det(A) < −tr(A) − 1.

(b) The origin is a sink (|λ1,2| < 1) if and only if:

P(1) > 0 and P(−1) > 0,

i.e., if and only if:

det(A) > tr(A) − 1 and det(A) > −tr(A) − 1.

(c) The origin is a Source (|λ1,2| > 1) if and only if:

P(1) < 0 and P(−1) < 0,

i.e., if and only if:

det(A) < tr(A) − 1 and det(A) < −tr(A) − 1.

2. if (tr(A))2 < 4det(A) then λ1,2 are complex, moreover

(a) The origin is a spiral sink if and only if det(A) < 1.

(b) The origin is a spiral source if and only if det(A) > 1.
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Stability and bifurcation

Type Eigenvalue Phase Portrait

Saddle λ1, λ2 ∈ R,|λ1| > 1 and |λ2| < 1 or |λ1| < 1 and |λ2| > 1

Sink λ1, λ2 ∈ R, 0 < |λ1,2| < 1

Source λ1, λ2 ∈ R, |λ1,2| > 1

Stable focus λ1, λ2 ∈ C, λ1,2 = α ± ιβ , |λ1,2| < 1 , β , 0
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Instable focus λ1, λ2 ∈ C, λ1,2 = α ± ιβ , |λ1,2| > 1 , β , 0

center λ1, λ2 ∈ C, λ1,2 = α ± ιβ , |λ1,2| = 1 , β , 0

Table 2.1: The types of fixed points for 2-dimentional linear systems and their phase
portrait.
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Stability and bifurcation

Figure 2.1: Stability by trace-determinent plane.

Non linear dynamical systems

• Indirect method (Linearization):

Definition 2.1.2

The first-order Taylor expansion of f (xk) = xk+1 around x∗ is :

xk+1 = f (x∗) +D f (x∗)(xk − x∗) +O(xk − x∗)2,

= x∗ + A(xk − x∗) +O(xk − x∗)2.

Puting Xk = xk − x∗.

We get :

Xk+1 = AXk.
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Where:

A = D f (x∗) =



∂ f1(x∗)
∂x1

∂ f1(x∗)
∂x2

· · ·
∂ f1(x∗)
∂xm

∂ f2(x∗)
∂x1

∂ f2(x∗)
∂x2

· · ·
∂ f2(x∗)
∂xm

...
...

. . .
...

∂ fn(x∗)
∂x1

∂ fn(x∗)
∂x2

· · ·
∂ fn(x∗)
∂xm


.

Since ||x−x∗|| → 0 in the vicinity of x∗, by neglecting the second-order terms, the system (1.2)

is linearized as :

xk+1 = Axk.

The mapping X → AX is called the linearization of f in the vicinity of x∗. We say that the

system (1.2) is approximated in the vicinity of the equilibrium point x∗.

Let f : Rn
→ Rn, to determine the attractivity of an equilibrium point, we need to

calculate the eigenvalues of the Jacobian matrix:

J(x∗) = D f (x∗)



∂ f1
∂x1

∂ f1
∂x2
· · ·

∂ f1
∂xm

∂ f2
∂x1

∂ f2
∂x2
· · ·

∂ f2
∂xm

...
...

. . .
...

∂ fn
∂x1

∂ fn
∂x2
· · ·

∂ fn
∂xm


.

Theorem 2.1.5 The fixed point x∗ of (1.2) is:

1. Stable if all the eigenvalues of J(x∗) = D f (x∗) are inside the unit circle (their modules are

less than 1).

2. Unstable if any of these eigenvalues of J(x∗) = D f (x∗) has module greater than 1 (outside

the unit circle).

Remark 2.1.6 [18]

Sometimes, these points are also called stationary points or equilibrium points. Let x f be a

point of the equation (1.2), and λi, 1 ≤ i ≤ n, be the eigenvalues of the Jacobian matrix D f (x)

associated with x.

1. x f is a hyperbolic point if |λi| , 1∀i ∈ [1,n].

2. x f is an elliptic point if |λi| = 1∀i ∈ [1,n].
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Stability and bifurcation

• Direct method (Lyapunov function):

The stability of the system (1.2) can be studied using a well-chosen function, called

the Lyapunov function. This is an incredible method, called direct, which is useful for

non-linear systems, with the advantage of being applicable in non-standard situations

[11].

Let’s consider the system :  xk+1 = f (xk),

x(0) = x0, x0 ∈ Rn.
(2.2)

If x∗ is an equilibrium point of this system, then we have the following definition.

Definition 2.1.3

A function V defined on a regionΩ ⊂ Rn of the state space of the discrete system (2.2) containing

x∗ is a Lyapunov function if it satisfies the following conditions:

1. V is continuous on Ω.

2. V has a unique minimum at the point x∗ on Ω.

3. The function ∆V(x) = V( f (x)) − V(x) ⩽ 0 on Ω.

Remark 2.1.7 [11]

1) Condition 3 of the definition is equivalent to saying that along the trajectory of the system

contained in Ω, the function V is decreasing. Indeed:

• If at time k, the state of the system is x, then at time k+1, the state of the system is

f(x). The values of Lyapunov function at these points are V(x) and V(f(x)), so the

variation is ∆V(x) = V( f (x)) − V(x).

• If V is a Lyapunov function on Ω, then ∆V(x) ⩽ 0 for all x ∈ Ω.

2) The geometric interpretation allows us to conclude that if a Lyapunov function exists, the

equilibrium point must be stable.

3) Condition 2 of the definition can be replaced by V(x∗) = 0 and V(x) > 0 on Ω. Indeed, it

suffices to consider the function W defined by W(x) = V(x) − V(x∗).
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Theorem 2.1.8

If there exists a Lyapunov function V(x) associated with the system (2.2) in a ball B(x∗,R0),

then the equilibrium point x∗ is stable. If, furthermore, ∆V(x) < 0 at every point (except x∗),

then x∗ is asymptotically stable.

Theorem 2.1.9 (Global asymptotic Lyapunov stability )

Let x = 0 be an equilibrium point of the autonomous system:

xk+1 = f (xk),

where f : D→ Rn is locally Lipschitz in D ⊂ Rn and 0 ∈ D .

Let V : Rn
→ Rn be a continuous function such that:

V(0) = 0, and V(x) > 0,∀x ∈ D − {0},

||x|| → ∞ ⇒ V(x)→∞,

V( f (x)) − V(x) ≤ 0,∀x ∈ D,

then x=0 is asymptotically globally stable.

•Jury’s criterion

The stability test of the jury, is directly applied to the characteristic polynomial of the

system:

P(z) = anzn + an−1zn−1 + · · · + a1z + a0.

Where a0, a1,...,an−1, an are real coefficients and an > 0 Let:

bk =

a0 an−k

an ak

, ck =

 b0 nn−1−k

bn−1 bk

, dk =

 c0 cn−2−k

cn−2 ck

,· · ·

The necessary and sufficient conditions for the polynomial P(z) to have no roots outside

or on the unit circle are as follows [11]:

P(1) > 0,

(−1)nP(−1) > 0,

|a0| < |an|,
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|b0| > |bn−1|,

|c0| > |cn−2|,

|d0| > |dn−3|.

...

Remark 2.1.10

Verify the three conditions that are easy to compute: P(1) > 0, (−1)nP(−1) > 0 and |a0| < |an|.

Stop if any of these conditions are not met.

Remark 2.1.11

If an < 0:

• First, construct another polynomial Q(z) = −P(z).

• Then, treat the new polynomial Q(z).

Example 2.1.1 Consider the characteristic polynomial:

P(λ) = λ4 +
λ3

2
−
λ2

4
−
λ
8
.

We have: P(1) =
9
8

, P(−1) =
3
8

, a4 = 0, |b4| = 1, b1 =
1
8

, |c4| =
7
8

, |c2| =
17
64

.

Therefore, the corresponding discrete system is asymptotically stable.

2.1.2 Stability of periodic points

Theorem 2.1.12 [26]

Let O(x∗) = x∗, f (x∗), ..., f k−1(x∗) be the orbit of the k-periodic point x∗, where f is a continuously

differentiable function at x∗. Then the following statements hold true:

• x∗ is asymptotically stable if

| f ′(x∗) f ′( f (x∗))... f ′( f k−1(x∗))| < 1.
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• x∗ is unstable if

| f ′(x∗) f ′( f (x∗))... f ′( f k−1(x∗))| > 1.

2.1.3 Attractors

Definition 2.1.4

An attractor is a closed subset of the phase space that draws all other trajectories towards it

[31, 1].

There are two types of attractors: regular attractors and strange or chaotic attractors.

a) Regular attractors: which characterize the evolution of non-chaotic systems, they

can be classified into three types:

i) Fixed points: points that all trajectories of nearby points are attracted to them.

Thus, they represent a constant stationary solution satisfying f (x) = x.

ii) A periodic attractor: are periodic orbits (orbits of trajectories that cycle around

a finite point set) which are attractive. Thus, it represents a periodic solution

of the system.

iii) Invariant Curve: in discrete systems, invariant curves are similar to the torus

found in continuous flows. The dynamics on a closed invariant curve can be

simplified to those of a map of the unit circle onto itself, known as a "circle

map". The behavior on these closed curves can be complex, particularly

when parameters change, causing these curves to lose their regularity and

potentially become invariant sets.

b) Strange attractor: the strange attractor is another intriguing type of attractor intro-

duced by Ruelle and Takens. Its characteristics include:

• In the phase space, the attractor occupies zero volume.

• The dimension d of the attractor is fractal (non-integer) with 0 < d < n, where

n is the dimension of the phase space.

• Sensitivity to initial conditions: two trajectories of the attractor that are

initially close to each other always diverge over time.
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Figure 2.2: Lozi attractor obtained for a = 1.7 and b = 0.5.

2.1.4 Basin of attraction

Given an attractor A, we call the basin of attraction of A the set of all initial conditions

x0, such that d(xn,A) −→ 0 as n −→ ∞.

Different basins of attraction are separated by basin boundaries. The geometry of these

boundaries is frequently as complex as the geometry of the attractors themselves.

2.1.5 Stable, unstable, and center eigenspaces

The stable and unstable eigenspaces provide an essential reference point to the local

characterization of a nonlinear dynamical system in the proximity of a steady-state

equilibrium [15].

Definition 2.1.5 (Stable, unstable, and center eigenspaces)

Let f (x) : Rn
→ Rn be a continuously differentiable single-value function, and let D f (x∗) be

the Jacobian matrix of f (x) evaluated at a steady-state equilibrium, x∗, i.e.
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D f (x∗) =



∂ f 1(x∗)
∂x1t

∂ f 1(x∗)
∂x2t

· · ·
∂ f 1(x∗)
∂xnt

∂ f 2(x∗)
∂x1t

∂ f 2(x∗)
∂x2t

· · ·
∂ f 2(x∗)
∂xnt

...
...

. . .
...

∂ f n(x∗)
∂x1t

∂ f n(x∗)
∂x2t

· · ·
∂ f n(x∗)
∂xnt


.

• The stable eigenspace Es(x∗) of the steady-state equilibrium x∗ is:

Es(x∗)=span {ei1envectors of D f (x∗) whose eigenvalues have modulus < 1} .

• The unstable eigenspace Eu(x∗) of the steady-state equilibrium x∗ is:

Eu(x∗)=span {ei1envectors of D f (x∗) whose eigenvalues have modulus > 1}.

• The center eigenspace Ec(x∗) of the steady-state equilibrium x∗ is:

Ec(x∗)=span {ei1envectors of D f (x∗) whose eigenvalues have modulus = 1}.

2.1.6 Stable and unstable manifolds

The stable and unstable manifolds provide the nonlinear counterparts for the stable

and unstable eigenspaces.

Definition 2.1.6 (Local stable and unstable manifolds)

Consider the nonlinear dynamical system:

x(t + 1) = f (xt).

• A local stable manifold, Ws
loc(x

∗), a local stable manifold, x∗:

Ws
loc(x

∗) = {x ∈ U| lim
n→∞

f {n}(x)},

= {x∗ and f {n}(x) ∈ U ∀n ∈N}.

• A local unstable manifold, Wu
loc(x

∗), A local unstable manifold,x̄,

Wu
loc(x

∗) = {x ∈ U| lim
n→∞

ϕ{−n}(x)},

= {x∗ and ϕ{n}(x∗) ∈ U ∀n ∈N}.
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where U ≡ Bε(x∗) for some ε > 0, and f {n}(x) is the nth iteration over x under the map f [15].

Bε(x∗) ≡
{
x ∈ Rn : |xi − x∗i | < ϵ∀i = 1, 2, 3, . . .n

}
Definition 2.1.7 (Globally stable and unstable manifolds)

Consider the nonlinear dynamical system:

x(t + 1) = ϕ(xt), (2.3)

and let x∗ be the steady-state equilibrium of the system (2.3), [12].

• The global stable manifold,Ws(x∗), of a steady-state equilibrium, x∗, is:

Ws(x∗) =
⋃
n∈N

{ϕ−{n}(Ws
loc(x

∗))}.

• The global unstable manifold,Wu(x∗), of a steady-state equilibrium, x∗, is:

Wu(x∗) =
⋃
n∈N

{ϕ{n}(Wu
loc(x

∗))} .

2.1.7 Cobweb diagram

One of the most effective graphical methods for iterating to determine the stability

of fixed points of the system (1.2) is the cobweb diagram. On the x-y plane, we plot

the curve y = f (x) and the diagonal line y = x. Starting from an initial point x0, we

move vertically to the graph of f at the point (x0, f (x0)). Then, we move horizontally to

intersect the line y = x at ( f (x0), f (x0)), which determines f (x0) on the x-axis.

To find f 2(x0), we repeat this process by moving vertically to the graph of f at ( f (x0), f 2(x0))

and then horizontally to ( f 2(x0), f 2(x0)).

This iterative process allows us to evaluate all points in the orbit of x0, denoted by

{x0, f (x0), f 2(x0), . . . , f n(x0), . . .} [10].

Example 2.1.2 we use the cobweb diagram to find the fixed points for the quadratic map:

fc(x) = x2 + c,
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on the interval [−2, 2] , where c ∈ [−2, 0]. Then determine the stability of all fixed points.

▶ To find the fixed point of fc(x), we solve the equation x2 + c = x or x2
− x + c = 0.

This yields the two fixed points x∗1 =
1
2 −

1
2

√
1 − 4c and x∗2 =

1
2 +

1
2

√
1 − 4c.

Since we have not developed enough machinery to treat the general case for arbitrary c, let us

examine few values of c. We begin with c = −0.5 and an initial point x0 = 1.1 . It is clear from

that the fixed point x∗1 =
1
2 −

√
3

2 ≈ −0.366 is asymptotically stable, whereas the second fixed

point x∗2 =
1
2 +

√
3

2 ≈ 1.366 is unstable.
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-1

1

2

3

y=x

y=f
c
(x)

x
0
=1.1

y

Figure 2.3: Cobweb diagram of fc(x) = x2 + c with c = −0.5.

2.2 Bifurcation

2.2.1 Bifurcation theory

A discrete dynamical systems undergo a bifurcation when its bihavior changes as

a parameter change [14]. In the following section, we explore the center manifold

theoremthe and different types of bifurcations in discrete dynamical systems. We will

discuss their conditions with examples, as well as the Center Manifold Theorem .
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Center manifold

We have seen in the second section of chapter2 the general concepts of stability of two

dimensional maps via linearization, when the fixed point is hyperbolic in other words

the eigenvalues of the Jacobian matrix are off the unit circle. But it does not give us

an exact stability in the nonhyperbolic case. So we are obligated to use the center

manifold theory, and we will discuss it later.

Center manifold is a set Mc in a lower dimensional space, where the dynamics of the

original system can be obtained by studying the dynamics on Mc [10].

Let consider the system:

F :

 x→ Ax + f (x, y),

y→ By + 1(x, y).
(2.4)

We studied in Chapter2 the stability of hyperbolic fixed points of F. We have

J = DxF(c∗, x∗), (2.5)

where J in Equation (2.5) has the form J =

A 0

0 B

.

Moreover, all of the eigenvalues of A lie on the unit circle and all of the eigenvalues of

B are off the unit circle. Furthermore,

f (0, 0) = 0,

D f (0, 0) = 0,

1(0, 0) = 0,

D1(0, 0) = 0.

Theorem 2.2.1 [10]

There is a Cr-center manifold for system (2.4) that can be represented locally as:

Mc = { (x, y) ∈ Rn
×Rs : y = h(x), |x| < δ, h(0) = 0,

Dh(0) = 0, for a sufficiently small δ }.

Furthermore, the dynamics restricted to Mc are given locally by the map

x→ Ax + f (x, h(x)), x ∈ Rn. (2.6)

This theorem asserts the existence of a center manifold, i.e., a curve y = h(x) on which the

dynamics of System (2.4) is given by Equation (2.6). The next result states that the dynamics
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on the center manifold Mc determines completely the dynamics of System (2.4).

Center manifolds depending on parameters

Suppose that system (2.4) depends on a vector of parameters, µ ∈ Rm Then, System

(2.4) takes the form:  x(n + 1) = Ax(n) + f (µ, x(n), y(n)),

y(n + 1) = By(n) + 1(µ, x(n), y(n)).
(2.7)

The center manifold Mc now takes the form:

Mc = { (µ, x, y) : y = h(x, µ)|x| < δ1, |µ| < δ2, h(0, 0) = 0,Dh(0, 0) = 0 } .

After substituting y we get the latter equations lead to the functional equation :

F(h(x, µ)) = h[Ax + f (µ, h(x, µ), x), µ] − Bh(x, µ) − 1(µ, h(x, µ), x). (2.8)

Definition 2.2.1 [33]

Consider the following nonlinear dynamical system:

xk+1 = Fµ(xk). (2.9)

Where xk ∈ Rn, µ ∈ Rm, k ∈N, and F : Rn
×Rm

→ Rn, F is continious function.

Definition 2.2.2

A bifurcation is a quantitative or qualitative change in the solution of a dynamical system

when the parameters on which it depends are modified, and more precisely, the disappearance or

change in stability or the appearance of new solutions.

Theorem 2.2.2 [14] (The bifurcation criterion)

Let fµ be a family of functions depending smoothly on the parameterµ. Suppose that fµ0(x0) = x0

and ∂ f
∂µ

∣∣∣∣∣
µ0

(x0) , 1. Then there are intervals I about x0 and J about µ0 and a smooth function

p : J→ I such that p(µ0) = x0 and fµ(p(µ)) = p(µ). Moreover, fµ has no other fixed points in I.
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Bifurcation diagram

It tracks the points of the system’s steady state according to the bifurcation parameter.

These graphs are called bifurcation diagrams.

In general, we choose the initial state x0 such that the horizontal axis represents the

values of µ and the vertical axis represents the higher iterations Fn
µ. Then we track its

limit value as a function of a single parameter.

In the discrete case, we plot the successive values of the state and the variable. It

summarizes the information about the state space, and the variation with respect to the

parameter µ can visualize the transition from a steady state to chaos.

Types of bifurcation

Consider the one-parameter family of maps:

F(u, µ) : R ×R2
−→ R.

where u = (x, y) ∈ R2, µ ∈ R and F ∈ Cr, r ⩾ 5. If (u∗, µ∗) is a fixed point, we can change

the variables so that the fixed point is at (0, 0).

Let J = DµF(0, 0).Using the center manifold theorem, we can derive a one-dimensional

map fµ(x) defined on the center manifold Mc. By Theorem (2.2.1), we can infer the

following statements.

Where λ the eigenvalues of J lies on the unit circle,meaning |λ| = 1. There are three

distinct cases in which the fixed point (0, 0) is nonhyperbolic.

I. J has an eigenvalue equal to 1. Then we havethree kinds of bifurcations:

Let f : R2
→ R be a Cr function with r ≥ 2 [10]:

(a) Saddle-node bifurcation (fold bifurcation:)

This type of bifurcation is characterized by the sudden loss or acquisition

of multiple stable or unstable equilibrium solutions when the value of a

parameter crosses a critical value. It satisfies the following conditions:

1. ∂2 f (x,µ)
∂x2 |(0,0) , 0.
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2. ∂ f (x,µ)
∂c |(0,0) , 0.

Theorem 2.2.3 (Topological normal form for the fold bifurcation) [23]

Any generic scalar one-parameter system

x 7→ f (x, µ),

having at µ = 0 the fixed point x0 = 0 with λ = fx(0, 0) = 1, is locally topologically

equivalent near the origin to one of the following normal forms:

x 7→ µ + x ± x2.

▶ Consider the map:

x 7→ f (x, µ) = x + µ ± x2, x ∈ R1, µ ∈ R1. (2.10)

We can solve for the fixed points directly as follows

f (x, µ) − x = µ ± x2 = 0.

We are interested in the nature of the fixed points for (2.10) near (x, µ) = (0, 0)

the map possesses a unique curve of fixed points in the x − µ plane passing

through the bifurcation point which locally lies on one side of µ = 0. Then

we must check the conditions (1) and (2) we have:

∂ f
∂x

(0, 0) = 1.

∂ f 2

∂x2 (0, 0) , 0.

∂ f
∂µ

(0, 0) = 1 , 0.

Thus, (2.10) can be viewed as a normal form for the saddle-node bifurcation

of maps. Notice that, with the exception of the condition
∂ f
∂x

(0, 0) = 1, the

conditions for a one-parameter family of one-dimensional maps to undergo a

saddle-node bifurcation in terms of derivatives of the map at the bifurcation

point are exactly the same as those for vector fields.
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In Figure 2.4, we show a curve of fixed points and refer to the bifurcation

occurring at (x, µ) = (0, 0) as a saddle-node bifurcation [44].
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Figure 2.4: Fold bifurcation of f (x, µ) = x + µ + x2.

(b) Pitchfork bifurcation:

In general, a Pitchfork bifurcation occurs near the bifurcation point (x0, µ0).

The model has two fixed-point curves in the (xn, µ) plane that pass through

the bifurcation point, with one of them being on both sides of the line µ = µ0.

It satisfies the following conditions:

1. ∂ f
∂µ (0, 0) = 0 , ∂

2 f
∂µ2 (0, 0) = 0.

2. ∂ f
∂x (0, 0) = 1 , ∂

2 f
∂x2 (0, 0) = 0.

Theorem 2.2.4 [44]

Consider the application xk+1 = f (xk, µ), such that f (−x, µ) = − f (x, µ) for all µ

near µ = 0. If this application has a non-hyperbolic fixed point at x∗ = 0, µ = 0 and
∂ f
∂x (0, 0) = 1, and if

∂2 f
∂x∂µ

(0, 0) , 0,
∂3 f
∂x3 (0, 0) , 0,

then in the neighborhood of (0, 0), this application is locally equivalent to one of the
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following normal forms:

xk+1 = xk + xk(±µ ± βx2
k).

▶ Consider the map:

x 7→ f (x, µ) = x + µx ± x3, x ∈ R1, µ ∈ R1, (2.11)

we can solve for the fixed points directly as follows:

f (x, µ) − x = µx ± x3.

We are interested in the nature of the fixed points for (2.11) near (x, µ) = (0, 0),

in the x − µ plane the map has two curves of fixed points passing through

the bifurcation point; one curve exists on both sides of µ = 0 and the other

lies locally to one side of µ = 0. Now we seek general conditions for a one-

parameter family of Cr(r ≥ 3) one-dimensional maps to undergo a pitchfork

bifurcation:

–
∂ f
∂µ

(0, 0) = 0,
∂2 f
∂x2 (0, 0) = 0.

–
∂ f
∂x∂µ

(0, 0) , 0,
∂3 f
∂x3 (0, 0) , 0.

l =
−
∂3 f
∂x3 (0, 0)

∂ f
∂x∂µ

(0, 0)
.

Moreover, the sign of l tells us on which side of µ = 0 that one of the curves of

fixed points lies. Thus, we can view (2.11) as a normal form for the pitchfork

bifurcation.

We end our discussion of the pitchfork bifurcation by graphically showing

the bifurcation for x 7→ x + µx ± x3 in Figure 2.5 [44].
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Figure 2.5: Pitchfork bifurcation of f (x, µ) = x + µx ± x3 a) −
∂3 f
∂x3 (0, 0)/

∂ f
∂x∂µ

(0, 0) > 0

b) −
∂3 f
∂x3 (0, 0)/

∂ f
∂x∂µ

(0, 0) < 0

(c) Transcritical bifurcation:

This type of bifurcation is characterized by an exchange of stability between

two equilibrium solutions. Initially, the system has a stable equilibrium

solution and an unstable equilibrium solution. When a parameter varies

and reaches a critical value, the stable equilibrium solution becomes unsta-

ble, while the unstable equilibrium becomes stable It satisfies the following

conditions:

1. ∂ f
∂c (0, 0) = 0.

2. ∂ f
∂x (0, 0) = 1.

3. ∂2 f
∂x2 (0, 0) , 0.

Theorem 2.2.5 [44]

Let xk+1 = f (xk, µ) = xk1(xk, µ) be a point xe that is non-hyperbolic at x∗ = 0, µ = 0

1(0, 0) = 1.
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∂1
∂x (0, 0) , 0; and ∂1

∂x (0, 0) , 0.

Then, in the neighborhood of (0, 0), the application is locally equivalent to one of the

following normal forms:

xk+1 = xk ± µxk ± x2
k .

▶ Consider the map:

x 7→ x + µx ± x2, x ∈ R1, µ ∈ R1. (2.12)

We can solve for the fixed points directly as follows:

f (x, µ) − x = µx ± x2

Hence, there are two curves of fixed points passing through the bifurcation

point:

x = 0,

and

µ = ±x2.

We are interested in the nature of the fixed points for (2.11) near (x, µ) = (0, 0),

in the x − µ plane the map has two curves of fixed points passing through

the origin and existing on both sides of µ = 0. Then we must check the

conditions (1, 2, 3) we have:

–
∂ f
∂µ

(0, 0) = (0, 0).

–
∂2 f
∂x∂µ

(0, 0) , 0.

–
∂2 f
∂x2 (0, 0) , 0.

k =
−
∂2 f
∂x2

∂2 f
∂x∂µ

. (2.13)

Moreover, the sign of (2.13) gives us the slope of the curve of fixed points

that is not x = 0.
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Figure 2.6: Transcritical bifurcation diagram for f (x, µ) = x + µx ± x2 when k > 0.

II. If J has an eigenvalue equal to −1, then we have :

• Period-doubling (flip):

This bifurcation occurs when a stable cycle of order k has a multiplier that

passes through the value λ = 1. This cycle then becomes unstable and gives

rise to a cycle of order 2k. It satisfies the following conditions:

1. ∂ f
∂x (0, 0) = −1⇒ ∂

∂x [F(x, µ) − x](0,0) , 0.

2. The derivate of ∂ f
∂x with respect to λ at the point (0, 0) is nonzero, that is:

α =
[
∂2 f
∂µ∂x +

1
2
∂ f
∂µ

∂2 f
∂x2 (0,0)

]
, 0.

3. β =
[

1
3!
∂3 f
∂x3 +

1
2!

(
∂ f
∂x

)2
]

(0,0)
, 0.

Then:

(a) There occurs a differentiable curve x(µ) of fixed points passing through

the point (x0, µ0); the stability of the fixed points changes at (x0, µ0): the

curvature changes from stable to unstable as µ increases past the value

µ0 if α < 0 while the converse occurs if α > 0.

(b) Moreover, there occurs a period-doubling bifurcation at the point (x0, µ0),

there is a differentiable curve µa = l(x) passing through the point (x0, µ0)

such that all points on the curve except the point (x0, µ0) are hyperbolic

period-2 points, f 2
µ=l(x)(x) = x; the curve λ = l(x) is tangential to µ = µ0 at

(x0, µ0); l′(x) = 0 and l”(x0) = −2β/α , 0. Finally, the period 2 orbits are
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attracting if β > 0 and are repelling if β < 0.

Theorem 2.2.6 [10] (Topological normal form for the flip bifurcation)

Any generic, scalar, one-parameter system

x 7→ f (x, µ),

having atµ = 0 the fixed point x0 = 0 withµ = fx(0, 0) = −1, is locally topologically

equivalent near the origin to one of the following normal forms:

x 7→ −(1 + µ)x ± x3.

−1 1

−1

1

µ

x

Figure 2.7: Flip bifurcation diagram for µ of f (x, µ) = −(1 + µ)x ± x3.

Example 2.2.1 Consider the following simple population model [Ricker 1954]:

xk+1 = αxke−xk .

where xk is population, k : the year,α :growt rate. The above recurrence relation

corresponds to the discrete-time dynamical system

x 7→ αxe−x
≡ f (x, a).

System has a trivial fixed point x0 = 0 for all values of the parameter α. At α0 = 1,

however, a nontrivial positive fixed point appears:

x1α = ln (α).

The multiplier of this point is given by the expression:

µ(α) = 1 − ln (α).
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Thus, x1 is stable for 1 < α < α1 and unstable for α > α1, where α1 = e2.At

the critical parameter value α = α1, the fixed point has multiplier µ(α1) = −1.

Therefore, a flip bifurcation takes place. To apply Theorem (2.2.6), one needs to verify

the corresponding nondegeneracy conditions in which all the derivatives must be

computed at the fixed point x1(α1) = 2 and at the critical parameter value al. One

can check that:

c(0) =
1
6
> 0, fxα = −

1
e2 , 0.

The Neimark-Sacker bifurcation is the birth of a closed invariant curve from a

fixed point in discrete dynamical systems, occurring when the fixed point changes

stability through a pair of complex eigenvalues with modulus equal to 1. This

bifurcation occurs only in discrete dynamical systems with dimension greater than

or equal to 2 (m <= 2) and is analogous to the Hopf bifurcation in continuous

dynamical systems (ODEs), where the complex conjugate eigenvalues are written

in the form of Euler’s complex numbers.

λ1,2(µ) = ρ(µ) exp(±iθ(µ))

If these eigenvalues cross the unit circle for µ = µ0 such that 0 < θ(µ0) < π, a

closed invariant curve appears, which is an attractor for the system’s orbits. This

phenomenon is called the Neimark-Sacker bifurcation. Note that the condition

on the angle θ(µ0) at the critical parameter value µ0 implies that the eigenvalues

must be strictly complex. In this case, defining the complex number

zn = xn + iyn.

it can be shown that as long as ρ0(µ0) , 0 and exp(ikθ(µ0)) , 0 for k = 1, 2, 3, 4, the

system is locally equivalent to:

zn+1 = (1 + ϵ) exp(iθ(ϵ))zn + c(ϵ)zn|zn|
2 +O(|zn|

4).

Where ϵ is a new parameter. The situation where exp(ikθ(µ0)) = 0 for all k ∈

{1, 2, 3, 4} is known as a strong resonance and is associated with the first four roots

of 1 on the complex unit circle.

As in the case of the Andronov-Hopf bifurcation, in the supercritical Neimark-

38



Stability and bifurcation

Sacker bifurcation, a fixed point loses stability and a closed orbit appears with an

increasing radius. There is also a subcritical case, but it will not be treated here.

To illustrate the Neimark-Sacker bifurcation, consider the following example:

• Neimark-Sacker bifurcation :

Let F(x, µ) ≡ Fµ(x): R2
→ R be a Cr function in variables x, µ with r ≥ 3. If

F(x, µ) satisfies the following conditions:

Theorem 2.2.7 [29] Consider the family of Cr maps (r ≥ 5), fµ : R2
× R → R2

such that the following conditions hold:

(1) fµ(0) = 0, i.e., the origin is a fixed point of fµ.

(2) D fµ(0) has two complex conjugate eigenvalues λ1,2(µ) = r(µ)e±iθ(µ), where

r(0) = 1, r′(0) , 0, θ(0) = θ0.

(3) eikθ0 , 1 for k ∈ {1, 2, 3, 4} (absence of strong resonances condition).

ψ = −R

(
(1 − 2λ̄)λ̄2

1 − λ
ρ11ρ20

)
−

1
2
||ρ11||

2
− ||ρ02||

2 +R(λ̄ρ21), (2.14)

ψ is called the first Lyapunov coefficient.

Where:

ρ02 =
1
8

(
∂2P
∂xt2 −

∂2P
∂yt2 + 2 ∂2Q

∂xt∂yt
+ ι

(
∂2Q
∂x2

t
−

∂2Q
∂y2

t
+ 2 ∂2P

∂xt∂yt

))
|(0,0) .

ρ11 =
1
4

(
∂2P
∂xt2 +

∂2P
∂yt2 + ι

(
∂2Q
∂x2

t
+ ∂2Q

∂y2
t

))
|(0,0) .

ρ20 =
1
8

(
∂2P
∂xt2 −

∂2P
∂yt2 + 2 ∂2Q

∂xt∂yt
+ ι

(
∂2Q
∂x2

t
−

∂2Q
∂y2

t
− 2 ∂2P

∂xt∂yt

))
|(0,0) .

ρ21 =
1

16

(
∂3P
∂x3

t
+ ∂3P

∂y3
t
+ ∂3Q

∂x2
t ∂yt
+ ∂3Q

∂y3
t
+ ι

(
∂3Q
∂x3

t
+ ∂3Q

∂xt∂y2
t
−

∂3P
∂x2

t ∂yt
−

∂3P
∂y3

t

))
|(0,0) .

Then, for sufficiently small µ and Fµ, there exists a unique invariant closed

curve enclosing that bifurcates from the origin as a passes through 0. If

ψ<0, we have a supercritical Neimark-Sacker bifurcation. If ψ>0, we have a

subcritical Neimark-Sacker bifurcation.

Theorem 2.2.8 Consider the following application: xk+1 = f (xk, yk, µ),

yk+1 = 1(xk, yk, µ).
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At a non-hyperbolic point (x, y, µ) = (0, 0, 0), the eigenvalues of the Jacobian matrix

are:

λ = |λ(c)|eiθ(c); |λ(0)| = 1.

Then, if:

∂|λ|
∂c

(0) , 0 ; λ = eikθ(0), |λ(0)| , 1 (k = 1, 2, 3, 4) ; d(0) , 0,

there is a change to polar coordinates that transforms the application into the fol-

lowing form:  γk+1 = |λ|γk + dγ3
k ,

θk+1 = θk + ϕ(c) + b(c)γ2
k .

There are two types distinguished, node-col bifurcations that give rise to fixed points

and period-doubling bifurcations that produce periodic orbits.

Remark 2.2.9 [18] :

Note that the pli bifurcation and flip bifurcation take place in systems of dimension

n ≥ 1, but for the Neimark-Sacker bifurcation it requires n ≥ 2.

Example 2.2.2 Consider the discrete dynamical system generated by the transfor-

mation F defined as follows:

F :

 Xn+1 = µXn(1 − Yn), µ > 0

Yn+1 = Xn.

This system has two fixed points: (X1,Y1) = (0, 0).

(X2,Y2) = (1 − 1
µ , 1 −

1
µ ).

The Jacobian matrix evaluated at the fixed point (X2,Y2) is:

DF(X2,Y2) =

1 1 − µ

1 0

 .
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Its characteristic equation is:

λ2
− λ + µ − 1 = 0.

From which we deduce the eigenvalues:

λ1,2 =
1
2
±

√
5
4
− µ.

If µ > 5
4 , the eigenvalues are complex with |λ1,2|

2 = µ − 1. For µ = 2, the fixed

point (X2,Y2) loses its stability. The eigenvalues are then λ1,2 = e±i π3 and the system

undergoes a Neimark bifurcation.

Let T = tr(J), D = det(J). Then the following trace-determinant diagram figure illustrate

the main bifurcation phenomena.
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Stability  region
Period-Doubling (Flip)
bifurcation

Neimark-Sacker bifurcation

D=T-1 D=-T-1

D

Saddle-Node (Fold)
bifurcation T

Figure 2.8: The occurrence of the three main types of bifurcation.
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CHAPTER 3

NOTIONS OF CHAOS

Chaos is a deterministically unpredictable phenomenon. In the evolution of chaotic

orbit there are trajectories which do not settle down to fixed points or periodic or-

bits or quasi-periodic orbits as time tends to infinity. Even a deterministic system

has no random or noisy inputs; an irregular behavior may appear due to presence of

nonlinearity, dimensionality, or nondifferentiability of the system. Although the time

evolution obeys strict deterministic laws, the system seems to behave according to its

own free will. The mathematical definition of chaos introduces two notions , the topo-

logical transitive property implying the mixing and the metrical property measuring

the distance. Chaotic orbit may be expressed by fractals. Before defining chaos under

the mathematical framework we discuss some preliminary concepts and definitions of

topological and metric spaces which are essential for chaos theory.

3.1 Definitions of chaos

There exist numerous mathematical definitions of chaos in literature; however, as

of now, there is no universally accepted mathematical definition of chaos. Prior to
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presenting a definition of chaos by Devaney [7], it is essential to establish some basic

definitions.

Let (J ⊂ R, d) designate a compact metric space (d is a distance), and let f be the function:

f : J→ J , xk+1 = f (xk) , x0 ∈ J.

Definition 3.1.1 [26]

(Dense set) In a topological space (X, τ), a subset A of X is said to be a dense set (or an everywhere

dense set) if Ā = X. In other words, A is said to be dense subset of X if for any x ∈ X, any

neighborhood of x contains at least one point of A.

Definition 3.1.2 [7]

f is said to be topologically transitive if, for any pair of open sets U,V ⊂ J, there exists k > 0

such that f k(U) ∩ V , ∅.

Definition 3.1.3 [7]

f has sensitive dependence on initial conditions on J if there exists δ > 0 such that, for any x ∈ J

and any neighborhood N of x, there exists y ∈ J and n ⩾ 0 such that | f n(x) − f n(y)| > δ.

Example 3.1.1 The logistic map µx(1− x) with µ > 2+
√

5 possesses sensitive dependence on

initial conditions on Λ.

To see this, choose δ less than the width of A0, where A0 is the gap between I0 and I1 in which

all points immediately escape from I. Let x, y ∈ Λ. If x , y, then S(x) , S(y), so the itineraries

of x and y must differ in at least one spot, say the nth. But this means that f n
µ (x) and f n

µ (y) lie

on opposite sides of A0, so that

| f n
µ (x) − f n

µ (y)| > δ.

Definition 3.1.4 (Devaney) [7]

Let V be a set. f : V → Vis said to be chaotic on V if f has the following three properties:

1. periodic points are dense in V.

2. f is topologically transitive.

3. f has sensitive dependence on initial conditions.
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3.2 Characteristics of chaos

• Sensitivity to initial conditions: sensitivity to initial conditions was first ob-

served by Poincare in the late 19th century and later rediscovered by Lorenz

in 1963 during his meteorological research. This discovery sparked significant

interest in mathematics, leading to numerous important works. This sensitivity is

responsible for the unpredictable long-term outcomes of chaotic systems, where

even small changes in initial conditions can lead to vastly different results. The

degree of sensitivity to initial conditions is a measure of the system’s chaotic

behavior [33].

• Non-linearity: if the system is linear, it cannot be chaotic.

• Determinism: a chaotic system has fundamental deterministic rules (rather than

probabilistic ones).

• Unpredictability: due to sensitivity to initial conditions, which can only be

known to a finite degree of precision.

• Irregularity: hidden order comprising an infinite number of unstable periodic

patterns (or motions). This hidden order forms the infrastructure of chaotic

systems, more simply put as "order in disorder."

3.3 Lyapunov exponents

The Lyapunov exponent is an important quantitative measure in chaos theory, used

to measure the potential difference between orbits arising from neighboring initial

conditions and to quantify the sensitivity of a chaotic system to its initial conditions.

It is also used to study the stability (or instability) of equilibrium points in nonlinear

systems.

Let the following discrete nonlinear dynamical system be given:

xk+1 = f (xk),
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with xk ∈ R, we assume that the trajectory emanating from an initial state x(0) reaches

an attractor. xk is thus bounded inside the attractor [33].

We choose two very close initial conditions, denoted x0 and x′(0), and observe how the

trajectories emanating from them behave. Assuming that the two trajectories xk and

x′(k) diverge exponentially, after k steps we have:

|x′(k) − x(k)| = |x′(0) − x(0)|eλk,

λ indicate the divergence rate per iteration of the two trajectories, whose expression is

as follows:

λ =
1
k

ln
∣∣∣∣∣ x′(k) − x(k)
x′(0) − x(0)

∣∣∣∣∣ .
For x(0) and x′(0) close, if the absolute value of the difference ε = |x′(0) − x(0)| tends to

converge to zero, we obtain:

λ = lim
k→∞

1
k

lim
ε→0

ln
∣∣∣∣∣ x′(k) − x(k)
x′(0) − x(0)

∣∣∣∣∣ .
This gives:

λ = lim
k→∞

lim
ε→0

1
k

ln
∣∣∣∣∣ x′(k) − x(k)
x′(k − 1) − x(k − 1)

×
x′(k − 1) − x(k − 1)
x′(k − 2) − x(k − 2)

× · · · ×
x′(1) − x(1)
x′(0) − x(0)

∣∣∣∣∣ .
= lim

k→∞
lim
ε→0

1
k

k−1∑
i=0

ln
∣∣∣∣∣x′(i − 1) − x(i + 1)

x′(i) − x(i)

∣∣∣∣∣ .
= lim

k→∞
lim
ε→0

1
k

k−1∑
i=0

ln
∣∣∣∣∣ f (x′(i)) − f (x(i))

x′(i) − x(i)

∣∣∣∣∣ .
Finally, we have:

λ = lim
k→∞

lim
ε→0

1
k

k−1∑
i=0

ln
∣∣∣∣∣d f (x(i))

dx(i)

∣∣∣∣∣ ,
λ the Lyapunov exponent, measures the average rate of divergence of two distinct

trajectories starting from two very close initial conditions.

In the case of a system of dimension n > 1, there exist n Lyapunov exponents Lj( j =

1, 2, · · · ,n), each of them measures the divergence rate along one of the axes of the phase

space. To calculate the Lyapunov exponent, we start from an initial point x(0) ∈ R, to

characterize the infinitesimal behavior around the point x(k), we use the first derivative
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matrix Df(x(i)).

D f (x(i)) =


∂ f1(x(i))
∂x1(i) · · ·

∂ f1(x(i))
∂xn(i)

...
. . .

...
∂ fn(x(1))
∂x1(i) · · ·

∂ fn(x(i))
∂xn(i)

 .
Let’s denote: Jk = D f (x(k − 1)) · · ·D f (x(0)), with: J0 = D f (x(0)).

The Lyapunov exponent is calculated by the following expression:

λi = lim
k→∞

1
k

ln|λi(Jk · · · J1)| , i = 1, 2, ...,n.

By analyzing the Lyapunov exponents of a system, we can conclude about the behavior

of the system as follows:

- If all Lyapunov exponents are negative, there exist asymptotically stable fixed points

or periodic points.

- If one or more Lyapunov exponents are zero, and the others are negative, the attractor

is quasi-periodic.

- If at least one of the Lyapunov exponents is positive, and the others can be negative

or zero, the attractor is chaotic.

Example 3.3.1 Lyapunov exponent for the tent map:

For the general tent map

T(x) =

 2rx, 0 ≤ x ≤ 1
2 .

2r(1 − x), 1
2 ≤ x ≤ 1.

we calculate |T′(x)| = 2r,∀x ∈ [0, 1], except at x = 1
2 , the point of non differentiability. Here

the parameter r lies in the interval 0 ⩽ r ⩽ 1.

Thus the Lyapunov exponent of the tent map is given by

λ = lim
N→∞

1
N

N−1∑
i=0

ln |T′(xi)| = lim
N→∞

1
N

N−1∑
i=0

ln 2r = lim
N→∞

1
N
.N ln 2r

= ln 2r.

Since λ > 0 for 2r > 1, that is, for r > 1
2 , the tent map is chaotic for r > 1

2 .

It is nonchaotic for r ≤ 1
2 . The transition from nonchaotic to chaotic behavior occurs at
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r = rc =
1
2 .

3.4 Fractal dimension

Our intuitive idea of dimension assigns an integer to common geometric objects. For

example, a point has dimension 0, a line segment has dimension 1, a full square

(interior and boundary) has dimension 2, a full cube (interior and boundary) has

dimension 3, etc. This intuitive idea is not sophisticated enough for complex geometric

objects, including strange attractors. More elaborate definitions of dimension have

been proposed [30], we will present some of them here :

1) Hausdorff dimension

Definition 3.4.1 (The Hausdorff outer measure of order s ∈ R+ in a separable metric

space X) [38]

Let G ⊆ X. Let’s denote by C(G, δ) the set of δ-coverings of G, i.e., the set of countable

families of open sets (Ci) with diameters less than or equal to δ such that G ⊆
⋃

i Ci. Let

Hs,δ(G) = inf
(Ci)∈C(G,δ)

∑
i

|Ci|
s.

The Hausdorff outer measure is the measure defined by:

Hs(G) = lim
δ→0

(Hs,δ(G)).

The Hausdorff dimension of G ⊆ X is defined as follows:

dimH(G) = inf{s : Hs(G) = 0} = sup{s : Hs(G) = ∞}.

2) Correlation dimension

Let’s consider O(x1) as a trajectory of a dynamical system, where the initial con-

dition is denoted by x1. The correlation dimension of the set O(x1) is calculated

as follows:

Given a positive real number r, we form the "correlation integral

C(r) = lim
n→∞

1
n2 − n

n∑
i, j

H(r − ∥xi − x j∥),
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where:

H(x) =

 0 x < 0,

1 x ⩾ 0,

is the unit-step function.

The summation counts how many pairs of vectors are closer than r when l<i, j<n,

and i , j, while n2
− n is the total number of pairs with i , j. Hence, the ration

between the two represents the fraction of pairs that are closer than r, and C(r)

measures the density of pairs of distinct vectors xi and x j that are closer than r

[30].

Definition 3.4.2 [30]

The correlation dimension DC of O(x1) is defined as:

DC = lim
r→0

ln C(r)
ln r

.

Example 3.4.1 Consider the dynamical system governed by the function

F(x) =

 x2 i f − 3 ⩽ x ⩽ 1.

4
√

x − 3 i f 1 < x ⩽ 9.

in the interval [−3, 9]. Suppose that we start from the point x0 = −2 . We have

x1 = 4, x2 = 5, x3 = 4
√

5 − 3, · · · .

And the sequence {xn} is increasing and converges to 9. For every r > 0 there is an index

n(r) such that all elements of the sequence with index larger than n(r) are closer than r.

This implies that C(r) = 1 and DC = 0.

3) Capacity dimension:

The concept of the capacity dimension works like this: imagine you have a

bounded subset A of Rn. Take a positive number ϵ and pick hypercubes (line

segments in R, squares in R2, cubes in R3, and so on) with side lengths of ϵ.

Define N(ϵ) as the smallest number of these hypercubes needed to cover A.

DC = lim
ϵ→0

N(ϵ)
− ln (ϵ)

.
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DC is called the capacity dimension of the set A [5].

4) Kaplan and Yorke dimension (Lyapunov) :

Let λ1 ⩾ λ2 ⩾ · · · ⩾ λn, the n Lyapunov exponents of an attractor of a dynamical

system, and let j be the large natural number such that: λ1+λ2+ · · ·+λ j ⩾ 0. Then

the Karlan and Yorke (Lyapunov) dimension is given by [5]:

DKY = j +

j∑
i=1

λi

|λ j+1|
.

3.5 Scenarios of transition to chaos

The study of the transition to chaos involves examining the series of bifurcations in a

system’s dynamics as its parameters change, particularly focusing on dissipative phe-

nomena and the shift towards dissipative chaos. While the chaotic behavior itself is

not the primary focus, understanding its relationship to the transition is crucial, and

this section explores three scenarios of transitioning from regular dynamics to chaotic

dynamics when a parameter is varied.

Three common paths have been identified for dissipative systems, each linked to a

specific type of bifurcation: the period-doubling route associated with the flip bifur-

cation or period doubling, the intermittency route related to the fold or saddle node

bifurcation, and the Ruelle-Takens route linked to the Neimark-Sacker bifurcation [18].

• Period-doubling cascade

This passage discusses the process by which a dynamical system transitions from

an equilibrium state (a stable fixed point) to chaos through a series of period-

doubling bifurcations. As the bifurcation increases, the stable fixed point is

replaced by a stable 2-cycle at µ = µ0 parameter µ (the fixed point still exists

for µ > µ0 but becomes unstable). Subsequently, at µ = µ1, this 2-cycle loses its

stability and is replaced by a stable 4-cycle. This pattern continues: the periodic

orbit of period 2 j−1 present for µ < µ j loses its stability at µ = µ j and is replaced

by a stable periodic orbit of period 2 j. The sequence (µ j) j⩾0 of bifurcation values

converges to a limit µC. At µ = µC, the system enters a chaotic regime. The
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bifurcation values (µ j) j⩾0 are unique to the system, as is their limit value µC.

However, the accumulation of these values at µC follows a geometric progression:

lim
j→+∞

µ j+1 − µ j

µ j+2 − µ j+1
= δ.

where δ is a universal number [5] : δ = 4.66920... . This means that the exponent

δ is identical in all systems where such a sequence of period-doubling leading to

chaos is observed: a qualitative similarity between asymptotic behaviors implies

a quantitative identity .

Figure 3.1: Bifurcation diagram of the logistic map f (x) = 1 − µx2. The parameter µ
is put in abscissa and the attractor along the other axis. This plot clearly displays an
accumulation of period doublings leading to chaos in µc = 1.4011550...

• By intermittency

The route named intermittency describes the persistence of regular and pre-

dictable phases in a globally chaotic dynamics. The key idea is that after the

disappearance of a stable fixed point x∗µ through a saddle-node bifurcation in
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Figure 3.2: Temporal intermittency. This sketch explains the slow and regular regime
displayed by the discrete evolution xn+1 = 1µ(xn) if µ is slightly larger than the value µ0

associated with the bifurcation 1′µ0
(0) = +1.

µ = 0, the dynamics remains slow in the neighborhood of x∗0, as if it were expe-

riencing the presence of a ghost fixed point. The typical example (actually, the

normal form) is the discrete evolution:

x(n+1) = 1µ(xn) = −µ + xn − Ax2
n.

In µ = 0, the fixed points ±
√
−µ/A observed for µ < 0 (respectively stable and

unstable) merge in x∗0 = 0 and for µ > 0, there is no longer fixed points. However,

1mu(x) ≈ x in the neighborhood of 0, so that the trajectory loiters a long time in

this region and a regular and slow regime is observed, that roughly follows the

evolution law x(n+1) = xn − µ as long as Axn << 1 and A2xn << 1.

• Ruelle and Takens’ scenario

The exact statement of this route is quite technical because it requires introduc-

ing a topology on the space of vector fields in order to define the proximity of

two continuous dynamical systems. An approximate formulation is as follows:

a continuous dynamical system undergoing three successive Hopf bifurcations
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generally has a strange attractor. Each Hopf bifurcation corresponds to the ap-

pearance of an unstable mode. The statement above can be reformulated as

follows: the loss of stability of 3 modes with frequencies whose pairwise ratios

are irrational leads to chaos. This result has profoundly modified scientists’ un-

derstanding of chaos: the prevailing view before, due to Landau, required the

loss of stability of an infinity of modes for the evolution to become apparently

erratic and unpredictable. Consequently, it was believed that chaos would only

occur in systems with an infinity of degrees of freedom. Landau’s scenario was

found to be much too restrictive: the nonlinear coupling of three modes with

pairwise irrational frequency ratios is sufficient to generate a strange attractor [5].
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CHAPTER 4

CONTROL OF CHAOTIC SYSTEMS

A chaotic attractor contains an infinite number of unstable periodic orbits as it evolves

over time. The system will visit a small neighborhood of each point on these periodic

orbits (which are unstable) within the attractor. This suggests that we can describe

chaotic dynamics as a sequence of irregular jumps from one periodic orbit to another,

leading to the concept of chaos control.

Chaos control is the stabilization of one of these unstable periodic orbits through

small perturbations in the system, which makes chaotic motion more stable and pre-

dictable. The disturbance should be small compared to the overall size of the system’s

attractor to avoid large alterations in the system’s natural dynamics. Several techniques

have been devised for chaos control, and we will focus on two types: The Ott, Grebo-

gie and Yorke (OGY) method and the Feedback method.

We consider the discrete model:  xk+1 = Fd(xk,uk),

yk = h(k).
(4.1)

Where xk ∈ Rn, uk ∈ Rm and yk ∈ Rl are the state vector, input vector, and output vector

at the k-th iteration, respectively. The control of a chaotic system aims to stabilize an
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unstable periodic orbit. Let x̂k be the periodic solution of period T of the system (4.1) ,

with the initial condition x̂0. If the solution xk is unstable, stability can be understood

in a certain sense, for example:

lim
k→∞

(xk − x̂k) = 0, (4.2)

or

lim
k→∞

(yk − ŷk) = 0, (4.3)

for any solution xk of equation (4.1) with x0 ∈ Rn as the initial condition, andΩ as a set

of any initial conditions. Additionally, ŷk is the desired output function. The problem

is to find a control function for both forms: non-feedback control:

uk = u(k, x0),

or in feedback form:

uk = u(xk),

which verifies equation (4.2) or equation (4.3) [45].

4.1 Chaos control methods

4.1.1 The OGY method

As previously mentioned, OGY is one of the control methods used in dynamic systems.

This method relies on a fundamental concept: that within a chaotic attractor, there are

numerous unstable periodic orbits. By perturbing a specific parameter, it becomes

possible to access and stabilize one or more of these orbits. How is this achieved ? [45].

In the case of a continuous-time dynamical system, it must first be converted into a

discrete-time system using Poincare maps or other methods [45].

n-dimensional system can be written in the form :

xi+1 = f (xi, p). (4.4)
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Where xi ∈ Rn: n dimensional state at i.

p : the accessible parameter .

p̄: nominal value.

Since the perturbation of p is assumed to be small, the value of p is restricted

|p − p̄| < δ.

In discrete-time maps with p = p̄, the fixed point satisfies x∗i+1 = x∗i . Generally, x∗i+T = x∗i .

system (4.4) can be linearized around x∗:

xi+1 − x∗ ≈ A(xi − x∗) + B(p − p̄),

where A is the Jacobian matrix and B represents the influence of the (input) p

(for j, k = 1, 2, · · · ,n) [45]:

A =
∂ f
∂x

(x∗, p̄) = Dx f (x∗, p̄), (4.5)

B =
∂ f
∂p

(x∗, p̄) = Dp f (x∗, p̄). (4.6)

Let x∗ be a given hyperbolic fixed point. The linearization of the system (4.4) around

this fixed point is given by:

∆x(i + 1) = A∆x(i) + B(p − p̄),

where:

∆x(i + 1) = x(i + 1) − xF(p),

and

A = λueu fu + λses fs.

If small changes are made to the parameter p, then the coordinate of the fixed point

is also shifted to a nearby point xF(p̄). Around this point, we can write the following

approximations:

xF(p̄) = xF(p) + (p̄ − p0)(
∂xF

∂p
)p=p0

= xF(p) + ∆p(i)B.
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where ∆p(i) = (p̄ − p0) and B = (
∂xF

∂p
)p=p0 . The expression for ∆x(i + 1) can then be

rewritten as:

∆x(i + 1) = ∆p(i)B + A[∆x(i) − ∆p(i)B].

If we want the imposed variation to correspond to the unstable fixed point, meaning

that the system trajectory follows the stable direction and that:

fu∆x(i + 1) = 0,

then:

∆p(i) =
λu

λu − 1
fu

fuB
∆x(i) = K∆x(i).

This parametric variation is activated only when x(i) is located within an interval

|∆x(i)| < ∆pmax [25].

Example 4.1.1 Control of the Henon map using the OGY method

The Henon map is described by the following equations: xn+1 = 1 − ax2
n + yn,

yn+1 = bxn,
(4.7)

where a and b represent the control parameters.

- Stability and chaos:

To determine the fixed points, we set xn+1 = xn and yn+1 = yn, yielding: x = 1 − ax2 + y,

y = bx.

This means:

x f , y f = −
(1 − b)

2
±

√
(1 − b)2

4
+ a. (4.8)

Setting: c = 1−b
2 .

We obtain: x f , y f = −c ±
√

c2 + a.

- Application of the control algorithm:

The control algorithm is applied to the system with chaotic parameter values a = 1.4 and
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b = 0.3.

Control using the OGY method consists of the following operations:

a- Identification of the fixed point to be stabilized:

Substituting a and b in equation (4.8) yields:

x f 1, y f 1 = 0.8839.

x f 2, y f 2 = −1.5839.

In our case, we choose the point x f 1 = 0.8839.

b- Calculation of the matrices A and B:

We have A = DxF(x∗, p̄) and B =
∂F
∂p

(x∗, p̄).

A =

−2x f 1 b

1 0

 ,B =
10

 .
So:

A =

−1.7678 0.3

1 0

 .
c- Calculation of the eigenvalues λu and λs:

λu and λs are defined by

λs,u = −x f 1 ±

√
x2

f 1 + b.

Thus:

λs = 0.1559 and λu = −1, 9237.

d- Calculation of the eigenvectors {vs, vu} and the covariance vectors
{
fs, fu

}
:

The eigenvectors are calculated using the following equation:

[λI − A] e = 0.

The eigenvector are chosen in the form:

e =

λ1
 With es =

λs

1

 and eu =

λu

1

 .
So:
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es =

0.1559

1

 , eu =

−1.9237

1

 .
Knowing that : fses = fueu = 1 and fseu = fues = 0. Which give :

fs =
[

1
λs−λu

λu
λs−λu

]
and fu =

[
1

λu−λs

λs
λu−λs

]
.

fs =
[
0.4808 0.9250

]
and fu =

[
−0.4787 0.0746

]
.

e- Calculation of k:

The parameter k is represented by:

k =
λu fu

fuB
=
λu

[
1

λu−λs

λs
λs−λu

]
[

1
λu−λs

λs
λs−λu

] 10

=

[
λu −λuλs

]
,

k =
[
−1.9237 0.3011

]
.

We choose δ = 0.01.
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Figure 4.1: Control of the Henon system by the OGY method

4.1.2 The closed-loop control method (Feedback)

This method consists of perturbing the systems state variables to reach the target

orbit. It has the advantage of guaranteeing robust stability and a strong noise rejection

capability, let:

xn+1 = f (xn,un). (4.9)
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where f : Rk
×Rm

→ Rk. The objective is to find a feedback control

un = h(xn). (4.10)

in such a way that the equilibrium point x∗ = 0 of the closed-loop system

xn+1 = f (xn, h(xn)), (4.11)

is asymptotically stable (locally). We make the following assumptions:

• f (0, 0) = 0,

• f is continuously differentiable, A = ∂ f
∂x (0, 0) is a k× k matrix, B = ∂ f

∂u (0, 0) is a k×m

matrix.

Under the above conditions, we have the following surprising result.

Theorem 4.1.1

If the pair {A,B} is controllable, then the nonlinear system (4.9) is stabilizable. Moreover, if K is

the gain matrix for the pair {A,B}, then the control un = −Kxn may be used to stabilize system

(4.9).

Proof.

Since the pair {A,B} is controllable, there exists a feedback control u(n) = −Kx(n) that

stabilizes the linear part of the system, namely:

yn+1 = Ay(n) + Bu(n).

We are going to use the same control on the nonlinear system. So let 1 : Rk
→ Rk be a

function defined by 1(x) = f (x,−Kx). Then system equation (4.9) becomes:

xn+1 = 1(xn). (4.12)

With:
∂1

∂x
|x=0 = A − Bk.
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Since by assumption the zero solution of the linearized system:

yn+1 = (A − Bk)yn.

is asymptotically stable, it follows by Theorem (Lyapunov stability theorem) that the

zero solution of system (4.12) is also locally asymptotically stable. This completes the

proof of the theorem.

61



CHAPTER 5

NON LINEAR DYNAMICS AND

CHAOS CONTROL OF A DISCRETE

ROSENZEIG-MACARTHUR

PREY-PREDATOR MODEL

The Rosenzweig-MacArthur model has been powerful in describing and predicting

various phenomena in ecological systems of predator-prey interactions (e.g. [32]). In

the model, the prey is a biotic or abiotic factor that promotes growth of its predator,

while the predator utilizes the prey and reduces its growth. Thus the prey is beneficial

to its predator without any harmful effect. In natural environment, the prey does not

always have only positive effects on its predator. Hence the Rosenzweig-MacArthur

model needs to be extended to characterize the interactions in which the prey has

both positive and negative effects on its predator. Indeed, this type of predator-prey

interactions has been displayed in real situations for years.

In plant-animal systems, the plant (prey) may have non-trophic, negative effect on its

predator. As shown by Stamp [36], some plants carry specific chemicals that are toxic
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to herbivores. When the plants are at low density, the herbivores may have strategies

to avoid ingestion of the toxins and the mortality rate is small. However, when the

plants are at high density, both of the ingestion and mortality rates increase. Thus

the plants have a non-trophic, harmful effect on the herbivores, while they are prey of

the herbivores [42]. The Rosenzeig-MacArthur model is a system of two differantial

equations used in population dynamics to modelise the predator-prey relationship [27].

In this chapter we will apply the hydra effect to the Rosenzweig system, in which

the effect element is of the Holling type II, shows us two types of bifurcation: Flip and

Neimark-Sacker, and we use the center manifold in this study. We will also draw region

of stability, bifurcation diagram,lyapunov exponent and phase portrait moreover we

will apply the feedback and OGY controls [42, 21, 22].
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5.1 Model formulation

To develop the continuous-time Rosenzweig-Macarthur predator-prey model, one

should follow this general framework [24]: ẋ = rx(1 − x
k ) − h(x)y,

ẏ = y(dh(x) − e).
(5.1)

where rx(1 − x
k ) is the logistic growth function, parameters k, r, d, e are all positive and

h(x) denote the per predator kill rate with the following mathematical form (type II

functional response) [24]:

h(x) =
sx

1 + sτx
, (5.2)

where 1
τ is the maximum kill rate.

With substituting (5.2) in (5.1) we find: ẋ = rx(1 − x
k ) − sxy

1+sτx ,

ẏ = y(d sx
1+sτx − e).

(5.3)

We put :  u = x
X so u̇ = ẋ

X ,

v =
y
Y so v̇ = ẏ

Y .

The model (5.3) becomes:  u̇ = ru(1 − uX
k ) − suYv

1+sτuX ,

v̇ = v( suX
1+sτuX − e).

(5.4)

By denoting c =
d
τ

, b =
1
τ

, H =
1

sτX
, Y = X, e = m and K =

k
X

, then model (5.4) becomes:

 u̇ = ru(1 − u
K ) − buv

u+H ,

v̇ = v(−m + cu
u+H ).

(5.5)

Finally, in the original variables, the model (5.5) takes the following from [24, 40]: ẋ = rx(1 − x
K ) − bxy

x+H ,

ẏ = y(−m + cx
x+H ).

(5.6)
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Using Euler’s method, setting ∆t = h we find: xt+1 = xt + h f1(xt),

yt+1 = yt + h f2(yt),
where

 f1(xt) = rxt(1 − xt
K ) − bxt yt

xt+H ,

f2(yt) = yt(−m + cxt
xt+H ).

The discrete version of model (5.6) is : xt+1 = xt(1 + hr) − hrx2
t

K −
hbxt yt

xt+H ,

yt+1 = yt + hyt(−m + cxt
xt+H ).

(5.7)

5.2 Dynamical analysis

We explore local dynamical analysis of discrete model (5.7) in the present section. For

study local dynamics, first we study the existence of equilibrium solutions of discrete

model (5.21) in R2 = {(x, y) : x, y ≥ 0}.

5.2.1 Existence of equilibrium solutions:

Lemma 5.2.1

(i) Forall b, c,m, r,H, h,K discrete model (5.7) has trivial and semitrivial equilibrium solu-

tions P1 = (0, 0) and P2 = (K, 0), respectively.

(ii) If c > max
{
m, m(H+K)

K

}
then discrete model (5.7) has positive equilibrium solution

P3 =
(

Hm
c−m ,

cHr(cK−Hm−Km)
bK(c−m)2

)
.

Proof.

The study state satisfy:

 xt+1 = x

yt+1 = y
thus:

 x = x(1 + hr) − hr
K x2
−

hbxy
x+H

y = y(1 − hm) + hcxy
x+H

then:

 hrx − hr
K x2
−

hbxy
x+H = 0,

−hmy + hcxy
x+H = 0,
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it follows: (
hr −

hr
K

x −
hby

x +H

)
x = 0. (5.8)(

−hm +
hcx

x +H

)
y = 0. (5.9)

After the calculations we find:

x1 = 0, y1 = 0.

x2 = K, y2 = 0.

x3 =
mH

c −m
, y3 =

cHr(K(c −m) −Hm)
bK(c −m)2 .

Now the Jacobian matrix of the discrete model (5.7) at an equilibrium solution P = (x, y)

under the map (5.7) is:

J |P=

1 + hr − 2hrx
K −

bhx
x+H

cHhy
(x+H)2 1 − hm + chx

x+H

 . (5.10)

5.2.2 Stability of fixed points

Stability of P1:

Theorem 5.2.1

The fixed point P1 of model (5.7) will never be a sink and it will be :

(i) a source if m > 2
h ;

(ii) a saddle if 0 < m <
2
h

;

(iii) non-hyperbolic if m = 2
h ;

Proof.

Around P1, (5.10) becomes:

J|P1 =

1 + hr 0

0 1 − hr

 .
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With eigenvalues:

λ1 = 1 + hr, λ2 = 1 − hr. (5.11)

| λ1 |=| 1 + hr |= 1 + hr > 1.

and

| λ2 |=| 1 − hm |< 1,

−1 < 1 − hm < 1,

−2 < −hm < 0,
2
h > m > 0.

By stability theory, P1 of discrete model (5.7) is a sink if | λ1,2 |< 1 but | λ1 |> 1, and

so for all allowed parametric values b, c, K, H, m, r, h, P1 is never sink. In similar way,

one can obtain that P1 is a source if m > 2
h , sadlle if 0 < m < 2

h and non-hyperbolic if

m =
2
h

.

Stability of P2:

Theorem 5.2.2

P2 of model (5.7) is:

(i) a sink if −2H+hmH
2−hm+ch < K < hmH

cH−hm and 0 < r < 2
h ;

(ii) a source if K < −2H+hmH
2−hm+ch and r > 2

h ;

(iii) a saddle if K < −2H+hmH
2−hm+ch and 0 < r < 2

h ;

(iv) non-hyperbolic if K = −2H+hmH
2−hm+ch or r = 2

h .

Proof.

Around P2, (5.10) becomes:

J |P3=

1 − hr −bhK
K+H

0 1 − hm + chK
K+H

 .
λ1 = 1 − hr, λ2 = 1 − hm +

chK
K +H

.
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• |λ1| = |1 − hr| < 1

− 1 < 1 − hr < 1

− 2 < −hr < 0
2
h > r > 0

• |λ2| = |1 − hm + chK
K+H | < 1

− 1 < 1 − hm + chK
K+H < 1

− 2 < −hm + chK
K+H < 0

− 2 < −hm + chK
K+H

− 2 < −hmK−hmH+chK
K+H

− 2K − 2H < −hmK − hmH + chK

− 2H < −hmK − hmH + chK + 2K

− 2H + hmH < (−hm + ch + 2)K
−2H+hmH
2−hm+ch < K ............(1)

−hm + chK
K+H < 0

− hm + chK
K+H < 0

−hmK−hmH+chK
K+H < 0

− hmK − hmH + chK < 0

(−hm + ch)K < hmH

K < hmH
ch−hm ..............(2)

from (1) and (2) −2H+hmH
2−hm+ch < K < hmH

ch−hm

By linear stability theory, if |λ1| = |1 − hr| < 1 and |λ2| = |1 − hm + chK
H+K | < 1, i.e, 0 < r < 2

h

and −2H+hmH
2−hm+ch < K < hmH

cH−hm then P2 of discrete model (5.7) is a sink. Similarly, its easy

to prove that P2 of discrete model (5.7) is a source if K < −2H+hmH
2−hm+ch and r > 2

h saddle

K < −2H+hmH
2−hm+ch or 0 < r < 2

h and non-hyperbolic if K = −2H+hmH
2−hm+ch or r = 2

h .

Stability of P3:

Theorem 5.2.3

If ∆ < 0 then P3 is:

(i) a stable focus if 0 < K < H(hcm+c+m−hm2)
(c−m)(1+ch−hm) with c > max

{
m, hm−1

h , hm2
−m

hm+1

}
;
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(ii) an unstable focus if K > H(hcm+c+m−hm2)
(c−m)(1+ch−hm) ;

(iii) non-hyperbolic if K = H(hcm+c+m−hm2)
(c−m)(1+ch−hm) ;

Proof.

Further at P3 , (5.10) becomes:

J|P3 =

1 − hmr(c(H−K)+m(H+K))
cK(c−m) −

bhm
c

hr(K(c−m)−Hm)
bK 1

 . (5.12)

With characteristic equation is:

λ2
− Tλ +D = 0. (5.13)

Where:

 T = 2 − hmr(c(H−K)+m(H+K))
cK(c−m) ,

D = 1 − hmr(c(H−K)+m(H+K))
cK(c−m) + h2mr(cK−m(H+K))

cK .

Finally, the roots of (5.13) are:

λ1,2 =
T ±
√
∆

2
,

where:  ∆ = T2
− 4D,

=
(
2 − hmr(c(H−K)+m(H+K))

cK(c−m)

)2
− 4

(
1 − hmr(c(H−K)+m(H+K))

cK(c−m) + h2mr(cK−m(H+K))
cK

)
.

If ∆ < 0 then the characteristics roots of J|P3 at P3 are:

λ1,2 = 2−hmr(c(H−K)+m(H+K))
cK(c−m) ±

ι
2

√(
4
(

hmr(c(H−K)+m(H+K))
cK(c−m) + h2mr(cK−m(H+K))

cK

)
−

(
hmr(c(H−K)+m(H+K))

cK(c−m)

)2
)
.

Which give that if:

|λ1,2| =
√

D =
√

1 − hmr(c(H−K)+m(H+K))
cK(c−m) + h2mr(cK−m(H+K))

cK < 1.

then:

−hmrcH + hmrcK − hm2rH − hm2rK + h2mrc2K − 2h2m2rcH − 2h2m2rcK + h2m3rH − h2m3rK
cK(c −m)

< 0
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−hmrcH+hmrcK−hm2rH−hm2rK+h2mrc2K−2h2m2rcH−2h2m2rcK+h2m3rH−h2m3rK < 0

hmrcK − hm2rK + h2mrc2K − 2h2m2rcK − h2m3rK < hmrcH + hm2rH + h2m2rcH − h2m3rH

K <
hmrcH + hm2rH + h2m2rcH − h2m3rH

hmrc − hm2r + h2mrc2 − 2h2m2rc − h2m3r

K <
hmrH(c +m + hmc − hm2)

hmr(c −m + hc2 − 2hmc − hm2)

So we find:

0 < K < H(c+m+hmc−hm2)
(c−m)(1+ch−hm)

• So P3 is stable focus if 0 < K < H(c+m+hmc−hm2)
(c−m)(1+ch−hm) , unstable focus if K > H(c+m+hmc−hm2)

(c−m)(1+ch−hm) and

non-hyperbolic if K = H(c+m+hmc−hm2)
(c−m)(1+ch−hm)

Theorem 5.2.4

If ∆ > 0 then P3 is :

(i) A stable node if mH
c−m < K < hHmr(−2c−2m−hmc+hm2)

(h2m2r−4c−h2mrc−2hmr)(c−m) with c < min
{

h2m2r−2hmr
4+h2mr , hm2

−2m
mh+2

}
and

c > m.

(ii) An unstable node if hHmr(−2c−2m−hmc+hm2)
(h2m2r−4c−h2mrc−2hmr)(c−m) < K < mH

c−m .

(iii) Non-hyperbolic if K = mH
c−m or K = hHmr(−2c−2m−hmc+hm2)

(h2m2r−4c−h2mrc−2hmr)(c−m) .

Proof.

∆ > 0 i.e |tr(J)| − 1 < det(J)

case a det(J) < tr(J) − 1

1 − hmr(c(H−K)+m(H+K))
cK(c−m) + h2mr(cK−m(H+K))

cK < 2 − hmr(c(H−K)+m(H+K))
cK(c−m) − 1

h2mr(cK−m(H+K))
cK < 0

h2mrcK − h2m2rH − h2m2rK < 0

h2m2rH < K(h2mrc − h2m2r)
h2m2rH

h2mrc−h2m2r < K
h2mr(mH)
h2mr(c−m) < K
mH
c−m < K
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case b −tr(J) − 1 < det(J)

−2 + hmr(c(H−K)+m(H+K))
cK(c−m) − 1 < 1 − hmr(c(H−K)+m(H+K))

cK(c−m) + h2mr(cK−m(H+K))
cK

−2hmrcH+2hmrcK−2hm2rH−2hm2rK+h2mrc2K−h2m2rcH−h2m2rcK−h2m2rcK+h2m3rH+h2m3rK
cK(c−m) > −4

−2hmrcH − 2hm2rH − h2m2rcH + h2m3rH
−4c2 + 4cm − 2hmrc + 2hm2r − h2mrc2 + 2h2m2rc − h2m3r

> K

hHmr(−2c − 2m − hmc + hm2)
(h2m2r − 4c − h2mrc − 2hmr)(c −m)

> K

So, P3 is a stable node if |λ1,2| < 1, i.e, mH
c−m < K < hHmr(−2c−2m−hmc+hm2)

(h2m2r−4c−h2mrc−2hmr)(c−m) . Moreover,

simple manipulation also shows that P3 is unstable node if hHmr(−2c−2m−hmc+hm2)
(h2m2r−4c−h2mrc−2hmr)(c−m) < K <

mH
c−m and non-hyperbolic if K = hHmr(−2c−2m−hmc+hm2)

(h2m2r−4c−h2mrc−2hmr)(c−m) or K = mH
c−m .

5.2.3 Bifurcation analysis

Bifurcation at P1:

The model (5.7) does undergo flip bifurcation at P1:

if non hyperbolic condition m = 2
h holds then from (5.11) one has λ2|m= 2

h
= −1 but

λ1|m= 2
h
= 1+hr , ±1. This implies that at P1 the under study model (5.7) may undergoes

a flip bifurcation when (b, c,m, r,H, h,K) passes through the region:

F|P1 =
{
(b, c,K,m, r,H, h) ∈ R∗+,m =

2
h

}
.

Proof.

1(x, y) = y + hy
(
−m +

cx
x +H

)
.

We check the flip conditions at the first fixed point P1, m = 2
h :

• ∂1
∂y = 1 + h(−m + cx

x+H ), ∂1∂y |( 2
h ,0)= −1.

• α = ∂21

∂m∂y +
1
2
∂1
∂m

∂21

∂y2 |( 2
h ,0)= −h , 0.

• β = 1
3!
∂31

∂y3 +
1
2!

(
∂1
∂y

)2
|( 2

h ,0)=
1
2 , 0.

So we have a flip bifurcation in m = 2
h if (b, c,K,m, r,H, h) ∈ F|P1 .
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Bifurcation at P2:

• If r = 2
h and hm , chK

H+K , we get λ1|r= 2
h
= −1 but λ2|r= 2

h
= 1 − hm + chK

H+K , ±1 this

implies that if (b, c,K,m, r,H, h) goes through the curve :

F1|P2 =

{
(b, c,K,m, r,H, h), r =

2
h
, hm ,

chK
H + K

}
.

then at P2 the model (5.7) may undergoes a flip bifurcation.

Theorem 5.2.5

If (b, c,K,m, r,H, h) ∈ F1|P2 then at P2 the under study model (5.7) undergoes a flip

bifurcation.

Proof.

f (x, y) = x + hrx −
hrx2

K
−

hbxy
x +H

.

We check the flip conditions at the second fixed point P2, r = 2
h :

•
∂ f
∂x = 1 + hr − 2hr

K x − hbHy
(x+H)2 , ∂ f

∂x |( 2
h ,K)= −1.

• α = ∂2 f
∂r∂x +

1
2
∂ f
∂r
∂2 f
∂x2 |( 2

h ,K)= −h , 0.

• β = 1
3!
∂3 f
∂x3 +

1
2!

(
∂ f
∂x

)2
|( 2

h ,K)=
1
2 , 0.

So we have a flip bifurcation in r = 2
h if (b, c,K,m, r,H, h) ∈ F1|P2 .

• If K = −2H+hmH
2−hm+ch so we have λ1|K=−2H+hmH

2−hm+ch
= 1 − hr , ±1 but λ2|K=−2H+hmH

2−hm+ch
= −1 ,this

implies that if (b, c,m, r,H, h,K) goes through the curve:

F2 |P2=

{
(b, c,m, r,H, h,K),K =

−2H + hmH
2 − hm + ch

}
.

then at P2 the model (5.7) may under goes a flip bifurcation .

Theorem 5.2.6

If (b, c,K,m, r,H, h) ∈ F2 |P2 then at P2 no flip bifurcation occurs.
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Proof.
∂ f
∂x
= 1 + hr − 2

hr
K

x −
hbHy

(x +H)2 ,
∂ f
∂x
|(k=−2H+hmH

2−hm+ch ,K) = −1. (5.14)

α , 0. (5.15)

and

β = 0. (5.16)

The obtained condition (5.16) violates the non-degenerate condition for its

existence, and hence at P2 no flip bifurcation occurs if (b, c,K,m, r,H, h) ∈ F|P2 .

Bifurcation at P3:

▶ If K = H(hcm+c+m−hm2)
(c−m)(1+ch−hm) (non-hyperbolic condition) |λ1,2|K=H(hcm+c+m−hm2)

(c−m)(1+ch−hm)
= 1. This implies

that if (b, c,K,m, r,H, h) passes through the following indicated curve then at P3

model (5.7) may undergoes a Neimark-Sacker bifurcation:

N|P3 =

{
(b, c,m, r,H, h,K),K =

H(hcm + c +m − hm2)
(c −m)(1 + ch − hm)

}
.

Theorem 5.2.7

If (b, c,m, r,H, h,K) ∈ N |P3 then at P3 the model (5.7) undergoes a Neimark-Sacker

bifurcation by considering K as a bifurcation parameter.

Proof.

If K varies in a small neighborhood of K∗ that is K = K∗ + ϵ where ϵ << 1 then the

discrete model (5.7) can be written as: xt+1 = xt(1 + hr) − hrx2
t

K∗+ϵ −
hbxt yt

xt+H ,

yt+1 = yt + hyt(−m + cxt
xt+H ).

(5.17)

Now the pair of complex characteristics roots of J |P3 of the discrete model (5.17)

is:

λ1,2 =
T(ϵ) ± ι

√
4D(ϵ) − T2(ϵ))

2
. (5.18)
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Where:  T(ϵ) = 2 − hmr(c(H−(K∗+ϵ))+m(H+(K∗+ϵ)))
cK(c−m) ,

D(ϵ) = 1 − hmr(c(H−(K∗+ϵ))+m(H+(K∗+ϵ)))
c(K∗+ϵ)(c−m) + h2mr(c(K∗+ϵ)−m(H+(K∗+ϵ)))

c(K∗+ϵ) .
(5.19)

From (5.18) and (5.19), we get:

d|λ1,2|

dϵ

∣∣∣∣∣
ϵ=0
=

hmr(c −m)(1 + ch − hm)2

2cH(c +m + chm − hm2)
. (5.20)

 ut = xt − x∗,

vt = vt − y∗.
(5.21)

with x∗ = mH
c−m y∗ = cHr(cK−Hm−Km)

bK(c−m)2 : ut+1 = xt+1 − x∗ = (1 + hr)(ut + x∗) − hr
K∗+ϵ (ut + x∗)2

−
hb(ut+x∗)(vt+y∗)

ut+x∗+H − x∗,

vt+1 = yt+1 − y∗ = (1 − hm)(vt + y∗) + hc(ut+x∗)(vt+y∗)
ut+x∗+H − y∗.

 ut+1 = ut + hrut + hrx∗ − hr
K∗+ϵu

2
t −

hr
K∗+ϵx

∗2
−

2hrx∗
K∗+ϵut −

hb
ut+x∗+H [utvt + y∗ut + x∗vt + x∗y∗],

vt+1 = vt − hmvt − hmy∗ + hc
ut+x∗+H [utvt + y∗ut + x∗vt + x∗y∗].

Let L(u, v) =

L1(u, v)

L2(u, v)

.

Where:

L1(u, v) =
hb

ut + x∗ +H
[utvt + y∗ut + x∗vt + x∗y∗],

L2(u, v) =
hc

ut + x∗ +H
[utvt + y∗ut + x∗vt + x∗y∗].

We limited to the Taylor development with two variables u and v :

L(u, v) = L(0, 0) + ∂L
∂u (0, 0)u + ∂L

∂v (0, 0)v + 1
2

(
∂2L
∂u2 (0, 0)u2 + 2 ∂2L

∂u∂v (0, 0)uv + ∂2L
∂v2 (0, 0)v2

)
.

We have:

L1(0, 0) =
hbx∗y∗

x∗+H ,
∂L1
∂u (u, v) =

hbHvt+hbHy∗

(ut+x∗+H)2 , ∂L1
∂u (0, 0) = hbHy∗

(x∗+H)2 ,
∂L1
∂v (u, v) = hbut

ut+x∗+H +
hbx∗

ut+x∗+H , ∂L1
∂v (0, 0) = hbx∗

x∗+H ,
∂2L1
∂u2 (u, v) = −2hbHy∗

(ut+x∗+H)3 , ∂2L1
∂u2 (0, 0) = −2hbHy∗

(x∗+H)3 ,
∂L1
∂u∂v (u, v) = hbH

(ut+x∗+H)2 , ∂L1
∂u∂v (0, 0) = hbH

(x∗+H)2 ,
∂2L1
∂v2 (u, v) = 0.
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Then:
ut+1 ≈ ut + hrut + hrx∗ − hr

K∗+ϵu
2
t −

hr
K∗+ϵx

∗2
−

2hrx∗
K∗ ut −

hb
x∗+H [x∗y∗ + x∗vt] − hb

(x∗+H)2 [Hy∗ut +Hutvt]

+
hbHy∗

(x∗+H)3 u2
t ,

vt+1 ≈ vt − hmvt − hmy∗ + hcx∗y∗

x∗+H +
hcHy∗

(x∗+H)2 ut +
hcx∗

x∗+H vt −
hcHy∗

(x∗+H)3 u2
t +

hcH
(x∗+H)2 utvt.

(5.22)

That we can be written as: ut+1 = β11ut + β12vt + β13u2
t + β14utvt,

vt+1 = β21ut + β22vt + β23u2
t + β24utvt.

With: 

β11 = 1 + hr − 2hrx∗
K −

bHhy∗

(x+H)2 ,

β12 = −
bhx∗

x∗+H ,

β13 = −
hr
K +

bhHy∗

(x∗+H)3 ,

β14 = −
bHh

(x∗+H)2 ,

β21 =
cHhy∗

(x∗+H)2 ,

β22 = 1 − hm + chx∗
x∗+H ,

β23 = −
cHhy∗

(x∗+H)3 ,

β24 =
cHh

(x∗+H)2 .

(5.23)

Using the transformation: ut = β12xt,

vt = (η − β11)xt − ζyt,

which can be written in the vectorial form :ut

vt

 = T

xt

yt

 .
Where: T =

 β12 0

η − β11 −ζ

 .
T−1 = 1

det(T) (Co(T))t = 1
−β12ζ

−ζ −η + β11

0 β12


t

= − 1
β12ζ

 −ζ 0

−η + β11 β12

 =
 1
β12

0
η−β11

β12ζ
−

1
ζ

.

So:
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xt

yt

 = T−1

ut

vt

 .
Then:  xt+1 =

1
β12

ut+1,

yt+1 =
η−β11

β12ζ
ut+1 −

1
ζvt+1.

xt+1 =
1
β12

(β11ut + β12vt + β13u2
t + β14utvt),

xt+1 =
1
β12

[β11β12xt + β12((η − β11)xt − ζyt) + β13β
2
12x2

t + β14(β12xt)((η − β11)xt − ζyt)]

=
1
β12

[β11β12xt + β12((η − β11)xt − ζyt) + β13β
2
12x2

t + β14(β12xt)((η − β11)xt − ζyt)]

= β11xt + (η − β11xt) − ζyt + β13β12x2
t + β14xt((η − β11)xt − ζyt),

xt+1 = ηxt − ζyt + β13β12x2
t + β14(η − β11)x2

t − β14ζxtyt.

yt+1 =
η − β11

β12ζ
ut+1 −

1
ζ

vt+1,

yt+1 =
η − β11

β12ζ
(β11ut + β12vt + β13u2

t + β14utvt) −
1
ζ

(β21ut + β22vt + β23u2
t + β24utvt),

yt+1 =
η − β11

β12ζ
(β12ηxt − β12ζyt + β13β

2
12x2

t + β14β12ηx2
t − β14β11β12x2

t − β14β12ζxtyt)

−
1
ζ

(β21β12xt + β22ηxt − β22β11xt − β22ζyt + β23β12x2
t + β24β12ηx2

t − β21β11β12x2
t − β24β12ζxtyt),

yt+1 =
(η − β11)η

ζ
xt − (η − β11)yt +

(η − β11)η
ζ

β13β12x2
t +

(η − β11)η
ζ

β14ηx2
t −

(η − β11)η
ζ

β14β11x2
t

− (η − β11)β14xtyt −
β21β12

ζ
xt −

β22

ζ
ηxt +

β22β11

ζ
xt + β22yt −

β23β2
12

ζ
x2

t +
β24β12

ζ
ηx2

t

+
β24β11β12

ζ
x2

t + β24β12xtyt

yt+1 =
1
ζ

(η2
− β11η − β21β12 − β22η + β22β11)xt + (−η + β11 + β22)yt

+

[
(η − β11)

ζ
β13β12 +

(η − β11)
ζ

β14η −
(η − β11)

ζ
β14β11 −

β23β12

ζ
+
β24β12

ζ
η +

β24β11β12

η

]
x2

t

+ (−(η − β11)β14 + β24β12)xtyt.
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Furthermore, (5.22) becomes the following form: xt+1 = ηxt − ζyt + P(xt, yt),

yt+1 = ζxt + ηyt +Q(xt, yt).
(5.24)

With: 
η = 1 − hmr(c(H−K)+m(H+K))

2cK(c−m) ,

ζ =

√
4
(
1− hmr(c(H−K)+m(H+K))

cK(c−m) +
h2mr(K(c−m)−Hm)

cK

)
−

(
2− hmr(c(H−K)+m(H+K))

cK(c−m)

)2

2 .

where:  P(xt, yt) = σ11x2
t + σ12xtyt,

Q(xt, yt) = σ21x2
t + σ22xtyt,

(5.25)


σ11 = β12β13 + ηβ14 − β11β14,

σ12 = −β14ζ,

σ21 =
1
ζ

[
β12β13(η − β11) + β14(η − β11)2

− β12β24(η − β11) − β23β2
12

]
,

σ22 = β12β24 − β14(η − β11).

(5.26)

Now following quantity required to be non-zero in order to answer that (5.24)

undergoes a Neimark-Sacker bifurcation:

ψ = −R

(
(1 − 2λ̄)λ̄2

1 − λ
ρ11ρ20

)
−

1
2
||ρ11||

2
− ||ρ02||

2 +R(λ̄ρ21). (5.27)

Where:

ρ02 =
1
8

(
∂2P
∂xt2 −

∂2P
∂yt2 + 2 ∂2Q

∂xt∂yt
+ ι

(
∂2Q
∂x2

t
−

∂2Q
∂y2

t
+ 2 ∂2P

∂xt∂yt

))
|(0,0),

ρ11 =
1
4

(
∂2P
∂xt2 +

∂2P
∂yt2 + ι

(
∂2Q
∂x2

t
+ ∂2Q

∂y2
t

))
|(0,0),

ρ20 =
1
8

(
∂2P
∂xt2 −

∂2P
∂yt2 + 2 ∂2Q

∂xt∂yt
+ ι

(
∂2Q
∂x2

t
−

∂2Q
∂y2

t
− 2 ∂2P

∂xt∂yt

))
|(0,0),

ρ21 =
1
16

(
∂3P
∂x3

t
+ ∂3P

∂y3
t
+ ∂3Q

∂x2
t ∂yt
+ ∂3Q

∂y3
t
+ ι

(
∂3Q
∂x3

t
+ ∂3Q

∂xt∂y2
t
−

∂3P
∂x2

t ∂yt
−

∂3P
∂y3

t

))
|(0,0) .

From (5.25), we get :
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∂2P
∂xt2 |(0,0) = 2σ11,
∂3P
∂x2

t ∂yt
|(0,0) = 0,

∂2Q
∂xt∂yt

|(0,0) = σ22,
∂3Q
∂xt∂y2

t
|(0,0) = 0,

∂3P
∂x3

t
|(0,0) = 0,

∂2P
∂xt∂yt

|(0,0) = σ12,
∂3P
∂xt∂y2

t
|(0,0) = 0,

∂2Q
∂y2

t
|(0,0) = 0,

∂3Q
∂y3

t
|(0,0) = 0,

∂2Q
∂x2

t
|(0,0) = 2σ21,

∂2P
∂y2

t
|(0,0) = 0,

∂3P
∂y3

t
|(0,0) = 0,

∂3Q
∂x3

t
|(0,0) = 0,

∂3Q
∂x2

t ∂yt
|(0,0) = 0.

After manipulation we gets:
ρ02 =

1
4 (σ11 + σ22 + ι(σ21 + σ12)),

ρ11 =
1
2 (σ11 + ισ21),

ρ20 =
1
4 (σ11 + σ22 + ι(σ21 − σ12)),

ρ21 = 0.

(5.28)

Using (5.28) in (5.27) if one obtains ψ , 0 as (b, c,m, r,H, h,K) ∈ N|P3 then at P3 the

discrete model (5.7) undergoes Neimark-Sacker bifurcation. Additionally, for its

existence, it is also necessary that λm
1,2 , 1,m = 1, ..., 4 if ϵ = 0 that corresponds to

T(0) , −2, 0, 1, 2. But if K = H(hcm+c+m−hm2)
(c−m)(1+ch−hm) holds then from (5.19), we get D(0) = 1,

and so D(0) , −2, 2. Therefore, we only require that D(0) , 0, 1, i.e.,

r , −
2(c +m + chm − hm2)

h2m(m − c)
,−

(c +m + chm − hm2)
h2m(m − c)

.

Moreover, at P3 the existence of Neimark-Sacker bifurcation also classify to su-

percritical (resp.subcritical) Neimark-Sacker bifurcation if ψ < 0 (resp. ψ > 0).

▶ If K = mH
c−m (non-hyperbolic condition), we have: λ1 |K= mH

c−m
= 1 but λ2 |K= mH

c−m
= 1−hr ,

±1. This implies that if (b, c,m, r,H, h,K) passes through the following curve then

at P3 there may exists fold bifurcation:

F3 |P3=
{
(b, c,m, r,H, h,K),K =

mH
c −m

}
.

Theorem 5.2.8

If (b, c,K,m, r,H, h) ∈ F|P3
then at the P3 discrete model (5.7) cannot undergoes the fold

bifurcation.

Proof.
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If K varies in a small neighborhood of K∗ then (5.7) will be written in the form

(5.17).

Let: L3 =
hr

K∗+ϵ .

We limited the Taylor development of L3 with one variable :

L(ϵ) = L(0) + L′(0)ϵ.  L(0) = hr
K∗ ,

L′(ϵ) = − hr
(K∗+ϵ)2 , , L′(0) = − hr

K∗2
.

So : L3(ϵ) = hr
K∗ −

hr
K∗2
ϵ.

Then:  ut+1 = (1 + hr)(ut + x∗) − ( hr
K∗ −

hr
K∗2

)(ut + x∗)2
−

hb(ut+x∗)(vt+y∗)
(ut+x∗)+H − x∗,

vt+1 = (1 − hm)(vt + y∗) + hc(ut+x∗)(vt+y∗)
(ut+x∗)+H − y∗.

Moreover, by (5.21), the discrete model (5.7) takes the form: ut+1 = β11ut + β12v + β13u2
t + β14utvt + δ01utϵ + δ02u2

t ϵ,

vt+1 = β21ut + β22vt + β23u2
t + β24utvt.

(5.29)

With: 

β11 = 1 + hr − 2hrx∗
K −

bHhy∗

(x∗+H)2 ,

β12 = −
bhx∗

x∗+H ,

β13 = −
hr
K +

bhHy∗

(x∗+H)3 ,

β14 = −
bhH

(x∗+H)2 ,

δ01 =
2hr
K∗2

x∗,

δ02 =
hr

K∗2
,

β21 =
chHy∗

(x∗+H)2 ,

β22 = 1 − hm + chx∗
x∗+H ,

β23 = −
chHy∗

(x∗+H)3 ,

β24 =
chH

(x∗+H)2 ,

(5.30)
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Using the transformation:ut

vt

 = T

xt

yt

 , T =

 1 1

−
rc
bm 0

 .
So: xt

yt

 = T−1

ut

vt

 , T−1 =

 0 rc
bm

−1 bm
rc

 . xt+1 = −
bm
rc vt+1,

yt+1 = ut+1 +
bm
rc vt+1, xt+1 = −

bm
rc (β21ut + β21vt + β23u2

t + β24utvt),

yt+1 = β11ut + β12vt + β13u2
t + β14utvt + δ01utϵ + δ02u2

t ϵ +
bm
rc (β21ut + β22vt + β23u2

t + β24utvt).
xt+1 = −

bm
rc (β21(xt + yt) + β22(− rc

bmxt) + β23(x2
t + y2

t + 2xtyt) + β24(xt + yt)(− rc
bmxt)),

yt+1 = β11(xt + yt) + β12(− rc
bmxt) + β13(x2

t + y2
t + 2xtyt) + β14(xt + yt)(− rc

bmxt) + δ01(xt + yt)ϵ

+δ02(x2
t + y2

t + 2xtyt)ϵ + bm
rc (β21(xt + yt) + β22(− rc

bmxt) + β23(x2
t + y2

t + 2xtyt)

+β24(xt + yt)(− rc
bmxt)).

System (5.29) becomes:xt+1

yt+1

 =
A 0

0 B


xt

yt

 +
P(xt, yt, ϵ)

Q(xt, yt, ϵ)

 / A = 1,B = λ2, (5.31)

where:
P(xt, yt, ϵ) = − bm

rc β23(x2
t + y2

t + 2xtyt) − bm
rc β24(xt + yt)(− rc

bmxt),

Q(xt, yt, ϵ) = (β13 +
bm
rc β23)(x2

t + y2
t + 2xtyt) + (β14 +

bm
rc β24)(xt + yt)(− rc

bmxt) + δ01(xt + yt)ϵ

+δ02(x2
t + y2

t + 2xtyt)ϵ.

It is recall here at ϵ = 0, we can check the stability of O(0, 0) by the center manifold

theory, according to the theorem of implicit functions there exists FCO.

Where FCO = y:

then:

Mc = {(x, y, ϵ) ∈ R2 : y = FCO(x, ϵ), |x| < δ1, |ϵ| < δ2,FCO(0, 0) = DFCO(0, 0) = 0}.

(5.32)

The function FCO must satisfy equation (5.32),
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we suppose that:

FCO(xt, ϵ) = b0ϵ + b1xtϵ + b2ϵ
2 + b3x2

t +O((|xt| + |yt|)3).

By (5.32):

F(FCO(xt, ϵ)) = FCO[Axt + P(x,FCO(xt, ϵ), ϵ)] + BFCO(xt, ϵ) −Q(xt,FCO(xt, ϵ), ϵ),

F(FCO(xt, ϵ)) = FCO
[
xt −

bm
rc
β23(x2

t + FCO(x, ϵ)2 + 2xtFCO(x, ϵ)) −
bm
rc
β24(xt + FCO(x, ϵ))(−

rc
bm

xt)
]

− λ2FCO(xt, ϵ) − (β13 +
bm
rc
β23)(x2

t + FCO(xt, ϵ)2 + 2xtFCO(x, ϵ)) + (β14 +
bm
rc
β24)

(xt + FCO(x, ϵ))(−
rc
bm

xt) + δ01(xt + FCO(x, ϵ))ϵ + δ02(x2
t + y2

t + 2xtyt)ϵ,

F(FCO(xt, ϵ)) = b0ϵ + b1ϵ(xt −
bm
rc
β23x2

t −
bm
rc
β23(b0ϵ + b1xtϵ + b2ϵ

2 + b3x2
t )2
− 2

bm
rc
β23xt(b0ϵ + b1xtϵ

+ b2ϵ
2 + b3x2

t )) + b2ϵ
2 + b3(xt −

bm
rc
β23x2

−
bm
rc
β23(b0ϵ + b1xtϵ + b2ϵ

2 + b3x2
t )2

− 2
bm
rc
β23xt(b0ϵ + b1xtϵ + b2ϵ

2 + b3x2
t ))2
− λ2(b0ϵ + b1xtϵ + b2ϵ

2 + b3x2
t ) − (β13 +

bm
rc
β23)(x2

t

+ (b0ϵ + b1xtϵ + b2ϵ
2 + b3x2

t )2 + 2xt(b0ϵ + b1xtϵ + b2ϵ
2 + b3x2

t )) + (β14 +
bm
rc
β24)

(xt + (b0ϵ + b1xtϵ + b2ϵ
2 + b3x2

t ))(−
rc
bm

xt) + δ01(xt + (b0ϵ + b1xtϵ + b2ϵ
2 + b3x2

t ))ϵ

+ δ02(x2
t + y2

t + 2xt(b0ϵ + b1xtϵ + b2ϵ
2 + b3x2

t ))ϵ,

F(FCO(xt, ϵ)) = b0ϵ + b1xtϵ − 2
bm
rc
β23b0xtϵ + b2ϵ

2 + b3x2
t − λ2b0ϵ − λ2b1xtϵ − λ2b2ϵ

2
− λ2b3x2

t − β13x2
t

− β13b2
0ϵ

2
− 2β13b0ϵxt −

bm
rc
β23x2

t −
bm
rc
β23b2

0ϵ
2
− 2

bm
rc
β23b0xtϵ + β14

rc
bm

x2
t + β14

rc
bm

b0xtϵ

+ β24x2
t + β24b0xtϵ − δ01xtϵ − δ01b0ϵ

2,

F(FCO(xt, ϵ)) = (b0 − λ2b0)ϵ + (b1 − 2
bm
rc
β23b0 − λ2b1 − 2β13b0 − 2

bm
rc
β23b0 + β14

rc
bm

b0 + β24b0 − δ01)xtϵ

+ (b2 − λ2b2 − β13b2
0 −

bm
rc
β23b2

0 − δ01b0)ϵ2 + (b3 − λ2b3 − β13 −
bm
rc
β23 + β14

rc
bm
+ β24)x2.

So:

b0 − λ2b0 = 0⇒ b0 = 0, b2 = 0,

b1 − λ2b1 − δ01 = 0⇒ b1 =
δ01

1 − λ2
,

b3 − λ2b3 − β13 −
bm
rc
β23 +

rc
bm
β14 + β24 = 0⇒ b3 =

β13 −
rc
bmβ14 +

bm
rc β23 − β24

1 − λ2
.
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Now, we write (5.31) restrict to FcO as:

11(xt, ϵ) = xt + d1x2
t + d2xtϵ + d3ϵ

2 + d4x2
t ϵ + d5xtϵ

2 +O((|xt| + |ϵ|)3). (5.33)

xt+1 = xt + (−
bm
rc
β23u2

t −
bm
rc
β24utvt),

= xt −
bm
rc
β23x2

t −
bm
rc
β23(b1xtϵ + b3x2

t )2
− 2

bm
rc
β23xt(b1xtϵ + b3x2

t ) + β24x2
t + β24x(b1xtϵ + b3x2

t ),

= xt −
bm
rc
β23x2

t −
bm
rc
β23b2

1x2
t ϵ

2
−

bm
rc
β23b2

3x4
t − 2

bm
rc
β23b1b3x2

t ϵ + β24x2
t + β24b1x2

t ϵ + β24b3x3
t ,

= xt +

(
−

bm
rc
β23 + β24

)
x2

t + β24b3x3
t −

bm
rc
β23b2

1x2
t ϵ

2 +

(
β24b1 − 2

bm
rc
β23b1b3

)
x2

t ϵ −
bm
rc
β23b2

t x4
t .

Where:

d1 = −
bm
rc
β23 + β24,

d2 = d3 = d5 = 0,

d4 = β24b1 − 2
bm
rc
β23b1b3.

We obtain:

11(xt, ϵ) = xt + d1x2
t + d4x2

t ϵ.

After that we discuss the conditions on fold bifurcation:

– ∂11

∂ϵ |(O)= 0.

The first condition is not satisfaied; so if (b, c,m, r,H, h,K) ∈ F3 | P3, the fold

bifurcation does not exist.

• If K = hHmr(−2c−2m−hmc+hm2)
(h2m2r−4c−h2mrc−2hmr)(c−m) λ1 |K= hHmr(−2c−2m−hmc+hm2)

(h2m2r−4c−h2mrc−2hmr)(c−m)

= −1,

λ2 |K= hHmr(−2c−2m−hmc+hm2)
(h2m2r−4c−h2mrc−2hmr)(c−m)

= c(−2+hm(−3+hr))−m(2+hm(−3+hr))
m(−2+hm)−c(2+hm) , ±1 This implies that if (b, c,m, r,H, h,K)

passes through the following curve then system(5.7) may undergoes a flip bifur-

cation at P3:

F4 |P3=

{
(b, c,m, r,H, h,K),K =

hHmr(−2c − 2m − hmc + hm2)
(h2m2r − 4c − h2mrc − 2hmr)(c −m)

}
.

Theorem 5.2.9

If (b, c,m, r,H, h,K) ∈ F4 |P3 then at P3 discrete model (5.7) undergoes a flip bifurcation.
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Proof.

By (5.21), the system (5.29) takes the form:xt+1

yt+1

 =
−1 0

0 λ2


xt

yt

 +
F(xt, yt, ϵ)

G(xt, yt, ϵ)

 . (5.34)

Where:

F(ut, vt, ϵ) =
−2m(−2 + hm) + 2c(2 + hm)

c(4 + hm(4 − hr)) +m(4 + hm(−4 + hr))
(β13u2

t + β14utvt + δ01utϵ + δ02u2
t ϵ)

−
bhm(m(2 − hm) + c(2 + hm))

−4c(c +m + chm − hm2) + ch(c −m)mr
(β23u2

t + β24utvt),

G(ut, vt, ϵ) =
h(c −m)m(−2 + hr)

c(−4 + hm(−4 + hr)) −m(4 + hm(−4 + hr))
(β13u2

t + β14utvt + δ01utϵ + δ02u2
t ϵ)

+
bhm(m(2 − hm) + c(2 + hm))

−4c(c +m + chm − hm2) + ch(c −m)mr
(β23u2

t + β24utvt),

ut = xt + yt,

vt =
c(2c − 2m − chr + hmr)
b(2c + 2m + chm − hm2)

xt −
2c

bhm
yt,

u2
t = x2

t + y2
t + 2xtyt,

utvt =
c(2c − 2m − chr + hmr)
b(2c + 2m + chm − hm2)

(x2
t + xtyt) −

2c
bhm

(ytxt + y2
t ),

utϵ = xtϵ + ytϵ, , u2
t ϵ = x2

t ϵ + y2
t ϵ + 2xtyt.

By: ut

vt

 =
1 1

A B


xt

yt

 , A =
c(2c − 2m − chr + hmr)
b(2c + 2m + chm − hm2)

, B = −
2c

bhm
.

Now from (5.34), and by (5.32) the center manifold is:

McF00(0, 0) =
{
(xt, yt) : yt = C0ϵ + C1x2

t + C2xtϵ + C3ϵ
3 +O

(
(|xt| + |ϵ|)3

)}
,
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Mc(h(x, ϵ)) = h[Ax + F(x, h(x, ϵ), ϵ), ϵ] − Bh(x, ϵ) − G(x, h(x, ϵ), ϵ),

Mc(h(x, ϵ)) = h[−x + F(x, h(x, ϵ), ϵ), ϵ] − λ2h(x, ϵ) − G(x, h(x, ϵ), ϵ),

Mc(h(x, ϵ)) = h[−x + A(β13x2
t + β14Bx2

t + β13y2
t + 2β13xtyt + β14Bxtyt −

2c
bhm

β14xtyt −
2c

bhm
β14y2

t

+ δ01xtϵ + δ01ytϵ + δ02x2
t ϵ + δ02y2

t ϵ + 2δ02xtytϵ) − C(β23(x2
t + y2

t + 2xtyt) + β24B(x2
t + xtyt)

−
2c

bhm
β24(xtyt + y2

t ))] − λ2(C0ϵ + C1x2
t + C2xtϵ + C3ϵ

3) −D(β13(x2
t + y2

t + 2xtyt))

+ β14B(x2
t + xtyt) −

2c
bhm

β14(xtyt + y2
t ) + δ01xtϵ + δ01ytϵ + δ02ϵ(x2

t + y2
t + 2xtyt),

Mc(h(ϵ, x)) = (C0 − λ2C0)ϵ + (AC1β13 + AC1β14B − CC1β23 − CC1β24 − λ2C1 −Dβ13 −Dβ14B)x2
t

+ (2AC1β14C0 + AC1β14C0 −
2CAC1C0

bhm
+ AC1δ01 − λ2C2C0 − 2Dβ14C0 −Dβ14BC0

+
2c

bhm
Dβ14C0 −Dδ01 − 2CC1β23C0 − CC1C0β24B +

2CC1C0β24

bhm
+ CC1C2)xtϵ

+ (C3 − λ2C3)ϵ3.

Suppose that:

C =
bhm(m(2 − hm) + c(2 + hm))

−4c(c +m + chm − hm2) + ch2(c −m)mr
,

D =
h(c −m)m(−2 + hr)

c(−4 + hm(−4 + hr)) −m(4 + hm(−4 + hr))
.

Where:

C0 = C3 = 0 /C1 =
1

1 − λ2
(D(β13 + Aβ14) + C(β23 + Aβ24)) /C2 =

1
1 − λ2

(Dδ01).

(5.35)

Now, we write (5.34) as:

11(xt) = −xt + h1x2
t + h2xtϵ + h3x2

t ϵ + h4xtϵ
2 + h5x3

t +O
(
(|xt| + |ϵ|)4

)
. (5.36)
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xt+1 = −xt + F(ut, vt, ϵ),

xt+1 = −xt +
−2m(−2 + hm) + 2c(2 + hm)

c(4 + hm(4 − hr)) +m(4 + hm(−4 + hr))
(β13u2

t + β14utvt + δ01utϵ + δ02u2
t ϵ)

−
bhm(m(2 − hm) + c(2 + hm))

−4c(c +m + chm − hm2) + hmrc(c −m)
(β23u2

t + β24utvt),

xt+1 = −xt −
−2m(−2 + hm) + 2c(2 + hm)

c(4 + hm(4 − hr)) +m(4 + hm(−4 + hr))
(β13(x2

t + y2
t + 2xtyt) + β14

(
c(2c − 2m − chr + hmr)
b(2c + 2m + chm − hm2)

(x2
t + xtyt) −

2c
bhm

(xtyt + y2
t )) + δ01(xt + yt) + δ02(x2

t + y2
t + 2xtyt)ϵ)

−
bhm(m(2 − hm) + c(2 + hm))

−4c(c +m + chm − hm2) + ch(c −m)mr
(β23(x2

t + y2
t + 2xtyt) + β24(

c(2c − 2m − chr + hmr)
b(2c + 2m + chm − hm2)

(x2 + xtyt) −
2c

bhm
(xtyt + y2

t )),

xt+1 = −xt −
−2m(−2 + hm) + 2c(2 + hm)

c(4 + hm(4 − hr)) +m(4 + hm(−4 + hr))
(β13(x2

t + h2(x, ϵ) + 2xth(x, ϵ) + β14

(
c(2c − 2m − chr + hmr)
b(2c + 2m + chm − hm2)

(x2
t + xth(x, ϵ)) −

2c
bhm

(xth(x, ϵ) + h2(x, ϵ))) + δ01(xt + h(x, ϵ))

+ δ02(x2
t + h2(x, ϵ) + 2xth(x, ϵ))ϵ) −

bhm(m(2 − hm) + c(2 + hm))
−4c(c +m + chm − hm2) + ch(c −m)mr

(β23(x2
t + h2(x, ϵ) + 2xth(x, ϵ))) + β24(

c(2c − 2m − chr + hmr)
b(2c + 2m + chm − hm2)

(x2 + xth(x, ϵ))

−
2c

bhm
(xth(x, ϵ) + h2(x, ϵ))),

xt+1 = −xt −
−2m(−2 + hm) + 2c(2 + hm)

c(4 + hm(4 − hr)) +m(4 + hm(−4 + hr))
(β13(x2

t + (C0ϵ + C1x2
t + C2xtϵ + C3ϵ

3)2

+ 2xt(C0ϵ + C1x2
t + C2xtϵ + C3ϵ

3) + β14(
c(2c − 2m − chr + hmr)
b(2c + 2m + chm − hm2)

(x2
t + xt(C0ϵ + C1x2

t + C2xtϵ

+ C3ϵ
3)) −

2c
bhm

(xt(C0ϵ + C1x2
t + C2xtϵ + C3ϵ

3) + (C0ϵ + C1x2
t + C2xtϵ + C3ϵ

3)2)) + δ01(xt

+ (C0ϵ + C1x2
t + C2xtϵ + C3ϵ

3)) + δ02(x2
t + (C0ϵ + C1x2

t + C2xtϵ + C3ϵ
3)2 + 2xt(C0ϵ + C1x2

t
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+ C2xtϵ + C3ϵ
3))ϵ) −

bhm(m(2 − hm) + c(2 + hm))
−4c(c +m + chm − hm2) + ch(c −m)mr

(β23(x2
t + (C0ϵ + C1x2

t + C2xtϵ

+ C3ϵ
3)2 + 2xt(C0ϵ + C1x2

t + C2xtϵ + C3ϵ
3)) + β24(

c(2c − 2m − chr + hmr)
b(2c + 2m + chm − hm2)

(x2 + xt(C0ϵ + C1x2
t

+ C2xtϵ + C3ϵ
3)) −

2c
bhm

(xt(C0ϵ + C1x2
t + C2xtϵ + C3ϵ

3) + (C0ϵ + C1x2
t + C2xtϵ + C3ϵ

3)2)),

xt+1 = −xt −
−2m(−2 + hm) + 2c(2 + hm)

c(4 + hm(4 − hr)) +m(4 + hm(−4 + hr))
(β13((x2

t + C1x2
t + 2xt(C1x2

t + C2xtϵ)

+ β14(
c(2c − 2m − chr + hmr)
b(2c + 2m + chm − hm2)

(x2
t + xt(C1x2

t + C2xtϵ)) −
2c

bhm
(xt(c1x2

t + C2xtϵ)

+ C2
1x2

t )) + δ01(xtϵ + C1x2
t + C2xtϵ)ϵ + δ02(x2

t + c21x2
t + 2xt(C1x2

t + C2xtϵ)ϵ))))

−
bhm(m(2 − hm) + c(2 + hm))

−4c(c +m + chm − hm2) + ch(c −m)mr
(β23(x2

t + C2
1x2

t + 2xt(C1x2
t + C2xtϵ))

+ β24(
c(2c − 2m − chr + hmr)
b(2c + 2m + chm − hm2)

(x2
t + xt(C1x2

t + C2xtϵ))) −
2c

bhm
(xt(C1x2

t + C2xtϵ) + C2
1x2

t )).

So we find :

h1 =

 −2m(−2+hm)+2c(2+hm)
c(4+hm(4−hr))+m(4+hm(−4+hr)) × (β13 +

c(2c−2m−chr+hmr)
b(2c+2m+chm−hm2)β14)

−
bhm(m(2−hm)+c(2+hm))

−4c(c+m+chm−hm2)+ch2(c−m)mr × (β23 +
c(2c−2m−chr+hmr)
b(2c+2m+chm−hm2)β24)

 ,
h2 =

−2m(−2m+hm)+2c(2+hm)
c(4+hm(4−hr))+m(4+hm(−4+hr))δ01,

h3 =

 −2m(−2m+hm)+2c(2+hm)
c(4+hm(4−hr))+m(4+hm(−4+hr)) × (2β13C2 + ( c(2c−2m−chr+hmr)

b(2c+2m+chm−hm2) −
2c

bhm )β14C2 + δ01C1 + δ02C1)

−
bhm(m(2−hm)+c(2+hm))

−4c(c+m+chm−hm2)+ch2(c−m)mr × (2β23C2 + ( c(2c−2m−chr+hmr)
b(2c+2m+chm−hm2) −

2c
bhm )β24C2)

 ,
h4 =

−2m(−2m+hm)+2c(2+hm)
c(4+hm(4−hr))+m(4+hm(−4+hr))δ01C2,

h5 =

 −2m(−2m+hm)+2c(2+hm)
c(4+hm(4−hr))+m(4+hm(−4+hr)) × (2β13C1 + ( c(2c−2m−chr+hmr)

b(2c+2m+chm−hm2) −
2c

bhm )β14C1)

−
bhm(m(2−hm)+c(2+hm))

−4c(c+m+chm−hm2)+ch2(c−m)mr (2β23C1 + ( c(2c−2m−chr+hmr)
b(2c+2m+chm−hm2) −

2c
bhm )β24C1)

 .
We calculate:

Γ1 =

(
∂211

∂xt∂ϵ
+

1
2
∂11

∂ϵ

∂211

∂x2
t

)∣∣∣∣∣∣
(0,0)

. (5.37)

Γ2 =

1
6
∂311

∂x3
t

+

(
1
2
∂211

∂x2
t

)2
∣∣∣∣∣∣∣
(0,0)

. (5.38)

∂11

∂ϵ = h2xt + h3x2
t + 2h4xtϵ.

∂211

∂xt∂ϵ
= h2 + 2h3xt + 2h4ϵ.

∂11

∂xt
= −1 + 2h1xt + h2ϵ + 2h3xtϵ + h4ϵ2 + 3h3x2

t .
∂211

∂x2
t
= 2h1 + 2h3ϵ + 6h5xt.

∂311

∂x3
t
= 6h5.
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In view of (5.36), (5.37) and (5.38) one gets:

Γ1 = h2 , 0, (5.39)

and

Γ2 = h5 + h2
1. (5.40)

Finally, from (5.40) if Γ1 , 0 as (b, c,H,m, r, h,K) ∈ F4 |P3 then at P3 the model (5.7)

undergoes a flip bifurcation, moreover, if Γ2 > 0 (respectively, Γ2 < 0) then the

period-2 points bifurcating from P3 are stable (respectively, unstable).

Chaos control

We will explore chaos control first by OGY control method than by Feedback method.

▶ OGY method

The first method is OGY that we first verify controllability by:

Lets consider the system:

Xn+1 = F(Xn, p) ≃ AXn + B. (5.41)

The system (5.41) is controllable if the the controllability matrix:

P = [B,AB],

has full rank 2.

Where A = ∂F
∂x

∣∣∣
x=xF(p̄)

and B = ∂F
∂p

∣∣∣∣
p=p̄

, XF = [xF, yF].

So for the system (5.7) we have:

A = ∂F
∂X

∣∣∣
(xF,yF)

=

1 + hr − 2hrxF
K −

bhxF
xF+H

cHhyF

(xF+H)2 1 − hm + chxF
xF+H

, BK =
∂F
∂K

∣∣∣
(xF,yF)

=

 hrx2
F

K2

0

.
The K controllability matrix is:

PK = [BK,ABK] =

hrx2
F

K∗
hrx2

F
(K∗)2 −

h2r2mx2
F(c(H−K)+m(H+K))

cK3(c−m)

0 h2r2(K(c−m)−Hm)
bK3 .

 .
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Then we conclude that the Rosenzeig MacArthur system can stabilize around

equilibruim point by OGY method.

▶ Feedback method

For the second method we adding control force Ut = −k1(xt − x) − k2(yt − y)

Let the system:

Xt+1 = F(Xn, p) ≃ AXt +Ut (5.42)

The system (5.42) is controllable if the controllability matrix:

P = [B,AB]

Where A = ∂F
∂x

∣∣∣
x=xF

and B = K =

k1

k2

 and xF = (x, y)

The discrete model (5.7) becomes: xt+1 = (1 + hr)xt −
hr
K x2

t −
hb

xt+H xtyt − k1(xt − x) − k2(yt − y),

yt+1 = (1 − hm)yt +
hc

xt+H xtyt.
(5.43)

where x = mH
c−m , y = cHr(cK−Hm−Km)

bK(c−m)2 , the Jackobien of (5.43) is:

Jc
|P3=

ℓ11 − k1 ℓ12 − k2

ℓ21 ℓ22

 . (5.44)

ℓ11 = 1 − hmr(c(H−K)+m(H+K))
cK(c−m) ,

ℓ12 = −
bhm

c ,
,
ℓ21 =

hr(K(c−m)−Hm)
bK ,

ℓ22 = 1.

λ1 + λ2 = ℓ11 + ℓ22 − k1, (5.45)

λ1λ2 = ℓ22(ℓ11 − k1) − ℓ21(ℓ12 − k2). (5.46)

Lemma 5.2.2

If the characteristics roots of Jc(P3) satisfying |λ1,2| < 1 then (5.43) is asymptotically stable.

Proof.

If λ1 = ±1

• If λ1λ2 = 1, from (5.46) : ℓ22(ℓ11 − k1) − ℓ21(ℓ12 − k2) = 1
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−
hmr(c(H−K)+m(H+K))

cK(c−m) − k1 −
hr(K(c−m)−Hm)

bK

(
−

bhm
c − k2

)
= 0

−hmrb(c(H−K)+m(H+K))−k1cbK(c−m)+hr(K(c−m)−Hm)(bhm(c−m))+k2hrc(K(c−m)−Hm)(c−m)
bKc(c−m) = 0

− hmrb(c(H − K) + m(H + K)) − k1cbK(c − m) + hr(K(c − m) − Hm)(bhm(c − m)) +

k2hrc(K(c −m) −Hm)(c −m) = 0

We get :

L1 :

 −hmrb(c(H − K) +m(H + K)) − k1cbK(c −m)

+hr(K(c −m) −Hm)(bhm(c −m)) + k2hrc(K(c −m) −Hm)(c −m) = 0.
(5.47)

• If λ1 = 1, by substitute λ1 in (5.45) and (5.46), they becomes:

λ2 = ℓ11 + ℓ22 − k1 − 1, (5.48)

λ2 = ℓ22(ℓ11 − k1) − ℓ21(ℓ12 − k2). (5.49)

ℓ11 + ℓ22 − k1 − 1 = ℓ22(ℓ11 − k1) − ℓ21(ℓ12 − k2)

ℓ11 + ℓ22 − k1 − 1 − ℓ22(ℓ11 − k1) + ℓ21(ℓ12 − k2) = 0
hr(K(c−m)−Hm)

bK (− bhm
c − k2) = 0

h2bmr(K(c−m)−Hm)−hrbck2(K(c−m)−Hm)
bKc = 0

h2bmr(K(c −m) −Hm) − hrk2bKc(K(c −m) −Hm) = 0

h2bmr − hrkck2 = 0

hbm − kck2 = 0

We get:

L2 :
{

hbm − kck2 = 0. (5.50)

• If λ1 = −1 by substitute it in (5.45) and (5.46) :

λ2 = ℓ11 + ℓ22 − k1 + 1, (5.51)

λ2 = −ℓ22(ℓ11 − k1) + ℓ21(ℓ12 − k2). (5.52)

ℓ11 + ℓ22 − k1 + 1 = −ℓ22(ℓ11 − k1) + ℓ21(ℓ12 − k2)

ℓ11 + ℓ22 − k1 + 1 = −ℓ11 + k1 + ℓ21(ℓ12 − k2)

ℓ11 + ℓ22 − k1 + 1 + ℓ11 − k1 − ℓ21(ℓ12 − k2) = 0

2ℓ11 + 2 − 2k1 − ℓ21(ℓ12 − k2) = 0
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2(1 − hmr(c(H−K)+m(H+K))
cK(c−m) ) + 2 − 2k1 + −

hr(K(c−m))
bK (− bhm

c − k2) = 0

4 − 2hmr(c(H−K)+m(H+K))
cK(c−m) − 2K1 +

hr(K(c−m)−Hm)
bK ( bhm

c − k2) = 0

We get:

L3 :
{

4 − 2hmr(c(H−K)+m(H+K))
cK(c−m) − 2K1 +

hr(K(c−m)−Hm)
bK ( bhm

c − k2) = 0. (5.53)

Thus from (5.47), (5.50) and (5.53) lines L1,L2 and L3 gives the conditions for the eigen-

values satisfying |λ1,2| < 1. Moreover, triangular region bounded by L1,L2 and L3

contains stable eigenvalues.

5.3 Numerical simulations

In this section, we will give some numerical simulations for the system (5.7) to support

our theoretical results.

We presente this in two cases with different values of parametres and intial conditions.

5.3.1 Case(1): Numerical simulation for the set of parametre: b = 0.55,

c = 2.05 , H = 0.8 , m = 0.15 , r = 0.7 , h = 1

If

b = 0.55, c = 2.05,H = 0.8,m = 0.15, r = 0.7, h = 1, (5.54)

and K = [0.1, 1.2]. With the initial condition (x0, y0) = (0.1, 0.1) then at K = 0.36 discrete

model (5.7) undergoes a Neimark-Sacker bifurcation. Two 2D bifurcation diagrams

are drawn in Figure 5.1. Additionally, corresponding to Figure 5.1. 2D Lyapunov

exponent is also plotted in Figure 5.2 and the positive Lyapunov exponent indicative

chaotic behavior.Further, at (b, c,H,m, r, h,K) = (0.55, 2.05, 0.8, 0.15, 0.7, 1.0, 0.36) model

(5.7) has interior equilibrium solution P3 = (0.0632, 0.9058) and, from (5.12), one gets

the Jackobien matrix:

Jc
|P3=

0.9194 −0.0402

1.9938 1

 ,
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with the characteristic equation:

λ2
− 1.9194λ + 0.9996 = 0. (5.55)

The roots of (5.55) are λ1,2 ≈ 0.9597 ± 0.2804ι with |λ1,2| ≈ 1 which implies the fact that

parametric condition:

(b, c,H,m, r, h,K) = (0.55, 2.05, 0.8, 0.15, 0.7, 1.0, 0.36) ∈ N |P3 .

Furthermore, for the set of parameter values (5.54), and varying the value of the bifurca-

tion parameter K < 0.36 then one can obtain that the respective interior equilibrium so-

lution is a stable focus. Similarly, if one varies K = 0.2965, 0.3165, 0.3355, 0.3445, 0.3575, 0.359 <

0.36 then Figure 5.4 also show that the corresponding equilibrium solution P3 =

(0.0632, 0.8646),

(0.0632, 0.8793)(0.0632, 0.8918), (0.0632, 0.8972), (0.0632, 0.9045), (0.0632, 0.9053) is also sta-

ble focus. On the other hand, if one varies the bifurcation parameter K > 0.36 then

we can conclude that respective interior equilibrium solution is unstable focus, and

meanwhile supercritical Neimark-Sacker bifurcation occurs.

For instance, for the set of parameter (5.54), then from (5.20) the nondegenerate condi-

tions, i.e, d|λ1,2|

dϵ |ϵ=0= 0.206 , 0 holds, and if K = 0.3599 then from (5.23) and (5.2.3), one

gets: 

β11 = 0.9194,

β12 = −0.0402,

β13 = −1.3253,

β14 = −0.5906,

β21 = 1.9938,

β22 = 1,

β23 = −2.3099,

β24 = 2.2012.

(5.56)

 η = 0.9597,

ζ = 0.9378.
(5.57)
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Utilizing (5.56) and (5.57) into (5.26) one gets:
σ11 = 0.0295,

σ12 = 0.5538,

σ21 = 0.0091,

σ22 = −0.0648.

(5.58)

Now in view of (5.58) and (5.28), one obtains
ρ02 = −0.0088 + 0.1407ι,

ρ11 = 0.0147 + 0.0045ι,

ρ20 = −0.0088 − 0.1361ι,

ρ21 = 0.

(5.59)

Finally, using (5.59) along with λ̄ = 0.9597 ± 0.2804ι into (5.27) one gets:

ψ = −0.1944 < 0 which give the fact closed invariant curve must exists, and hence

discrete model undergoes supercritical Neimark-Sacker bifurcation at indicated interior

fixed point P3 = (0.0632, 0.9058) (see Figure (5.5a)).

In similar manner, we can also obtain that if one varies K = 0.361, 0.366, 0.40 then stable

invariant curves also appears which are depicted in Figure (5.5c).

(a) (b)

Figure 5.1: Neimark-Sacker bifurcation of discrete system (5.7) (a) for xt and (b) for yt

for the set of (5.54) at P3 = (0.0632, 0.9058).
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Figure 5.2: Lyapunov exponent of the system (5.7) varsus k for the set of parameter
values (5.54) at P3 = (0.0632, 0.9058).
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Figure 5.3: Evolution of eigenvalues and descriminenet by k for the set of parameter
values (5.54) at P3 = (0.0632, 0.9058)

93



Non linear dynamics and chaos control of a discrete Rosenzeig-MacArthur
prey-predator model

0 0.05 0.1 0.15 0.2 0.25 0.3

x

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

y

Figure 5.4: Phase portrait of the discrete model (5.7) for the set of parameter values
(5.54) in P3 = (0.0632, 0.9058), k=0.359 and the initial condition: (0.1760, 0.5259)
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Figure 5.5: Invariant closed curves of the discrete model (5.7) for the set of parameter
values (5.54) in P3 = (0.0632, 0.9058) and the initial condition: (0.1760,0.5259)

5.3.2 Case(2): Numerical simulation for the set of parametre: b = 0.9,

c = 3.5 , H = 0.7 , m = 0.7 , r = 2.8 , h = 1

Flip bifurcation

If

b = 0.9, c = 3.5,H = 0.7,m = 0.7, r = 2.8, h = 1 (5.60)
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K ∈ [0.01, 0.55]. With (x0, y0) = (0.1760, 0.5259) then at K = 0.2168 discrete model

undergoes the flip bifurcation. The Lyapunov exponent with flip bifurcation diagrams

are drawn in figure (5.6a).

Further, at (b, c,H,m, r, h,K) = (0.9, 3.5, 0.7, 0.7, 2.8, 1, 0.2168) the discrete model (5.7) has

an equilibrium solution P3 = (0.1750, 0.5249) and the Jackobian matrix is :

Jc
|P3=

−1.1522 −0.1800

1.6795 1

 .
with the eigenvalues λ1 = −1 and λ2 = 0.8489 , ±1 and hence based on these sim-

ulations one can obtain that (b, c,H,m, r, h,K) = (0.9, 3.5, 0.7, 0.7, 2.8, 1, 0.2168) ∈ F3 |P3 .

From (5.30), (5.35), (5.2.3) one gets:

β11 = −1.1522,

β12 = −0.1800,

β13 = −12.4215,

β14 = −0.8229,

δ01 = 20.8501,

δ02 = 59.5716,

β21 = 1.6795,

β22 = 1,

β23 = −1.9195,

β24 = 3.2.

(5.61)


C0 = C3 = 0,

C1 = 0.8055,

C2 = −11.2991.

(5.62)

And: 

h1 = −15.3803,

h2 = 23.8379,

h3 = −163.5835,

h4 = −269.3474,

h5 = −144.6623.

(5.63)
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Substituting (5.63) in (5.39) and (5.40) one gets: Γ1 = 23.8379 , 0, Γ2 = 91.8928 > 0.

Since Γ2 = 91.8928 > 0 and so it can be concluded that stable period-2 points bifurcate

from P3 = (0.175, 0.5249).
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(a) Lyapunov exponents of Flip bifurcation at
P3 = (0.175, 0.5249).
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Figure 5.6: a)Lyapunov exponents of Flip bifurcation b)Evolution of eigenvalues and
descriminenet by K. c)Flip bifurcation diagram for xt at P3 = (0.175, 0.5249).
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• In this section, we explain the chaotic coexistence in the Rosenzweig-MacArthur

system. Table 5.3.2 illustrates the cases of changes in attractors and Lyapunov

exponents with the evolution of K.

Attractors K λ1,2

Chaotic [0.164, 0.2169] λ1 > 0 and λ2 < 0
Quasi-periodic 0.217 λ1 = 0 and λ2 < 0

Periodic [0.217, 0.399] λ1 < 0 and λ2 < 0
chaotic [0.3992, 0.437] λ1 > 0 and λ2 < 0

Quasi-periodic 0.438 λ1 = 0 and λ2 < 0
periodic [0.438, 0.442] λ1 < 0 and λ2 < 0

Quasi-periodic 0.457 λ1 = 0 and λ2 < 0
Periodic [0.457, 0.477] λ1 < 0 and λ2 < 0
Chaotic [0.477, 0.538] λ1 > 0 and λ2 < 0

Hyper-chaotic [0.538, 0.5816] λ1 > 0 and λ2 > 0

Table 5.1: The Lyapunov exponents and the type of attractors of the system with the
first set of parameters (5.60) at P3 = (0.175, 0.5249)

– Coexistence of attractor: In the diagram, we observe the coexistence of

different attractors for several values of k, such as k=0.2171 and k=0.47, with

different initial conditions.

* If k=0.2171 with three initial conditions for (x1, y1) = (0.1749, 0.5278) we

have a chaotic attractor, for (x2, y2) = (0.2505, 0.1405) we have(periodic

points), for (x3, y3) = (0.1931, 0) (invariant curve), where we observe two

periodic points, corresponding to two Lyapunov exponent values, both

of which are negative (periodic attractor), (see figure 5.8a,5.8b)

* If k=0.47 with three initial conditions for (x1, y1) = (0.1831, 0.9633) we

have a periodic points , for (x2, y2) = (0.1750, 1.4346) we have (periodic

points), for (x3, y3) = (0.5886, 0) (invariant curve), where observe seven

periodic points,corresponding to two Lyapunov exponent values, both

of which are negative (periodic attractor), (see figure 5.9a,5.9b)
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(a) Bifurcation diagram for xt with three condi-
tions: (x1, y1) = (0.1749, 0.5278),
(x2, y2) = (0.2505, 0.1405), (x3, y3) = (0.1931, 0) at
P3 = (0.175, 0.5249).

(b) Bifurcation diagram for yt with three condi-
tions: (x1, y1) = (0.1831, 0.9633),
(x2, y2) = (0.1750, 1.4346), (x3, y3) = (0.5886, 0) at
P3 = (0.175, 0.5249).
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Figure 5.8: a) Coexistence of a chaotic attractor and period-2 points for the set of param-
eter (5.60) at P3 = (0.175, 0.5249) with k = 0.2171 and the initial condition (0.2505, 0.1405)
for the chaotic attractor and (0.1749, 0.5278) for the period-2 points. b) Time evolution
of x for the periodic points
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Figure 5.9: a) Coexistence of a chaotic attractor and period-2 points for the set of param-
eter (5.60) at P3 = (0.175, 0.5249) with k = 0.47 and the initial condition (0.1750, 1.4346)
for the chaotic attractor and (0.1831, 0.9633) for the period-2 points. b) Time evolution
of x for the periodic points
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Control methods

• Feedback control From (5.47), (5.50) and (5.53), one gets:

The first strigh line equation:

L1 : 0.5954K1 − K2 + 1.2814 = 0. (5.64)

The second strigh line equation:

L2 : K2 + −0.00002545 = 0. (5.65)

The third strigh line equation:

L3 : 1.1908K1 − K2 + 0.0012 = 0. (5.66)

Hence, lines (5.64), (5.65) and (5.66) determine triangular region that gives

|λ1,2| < 1 (See Figure 5.11). The Figures (5.10a,5.10b,5.10c,5.10d) are without

control. Finally t vs xt and yt for (5.43) with k1 = 0.02 , k2 = 0.24 have

been plotted that implies that unstable trajectories are stabilized (See Figure

5.12a;5.12a;5.12b;5.12c;5.12d)
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Figure 5.10: (a)Time evolution of xt,(b)time evolution of yt,(c)time evolution of fixed
point. (d)Plot of xt and yt for the non controlled system (5.43) for the set of parameter
values (5.60) in P3 = (0.175, 0.5249) and initial codition (0.176, 0.5259) with K1 = 0.02,
K2 = 0.24 by control Feedback
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Figure 5.11: Stability region (|λ1,2| < 1) for the set of parameter values (5.60) at
P3 = (0.175, 0.5249).
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Figure 5.12: (a)Time evolution of xt,(b)time evolution of yt,(c)time evolution of fixed
point. (d)Plot of xt and yt for the controlled system (5.43) for the set of parameter values
(5.60) and initial codition (0.176, 0.5259) with K1 = 0.02, K2 = 0.24 by control feedback

• OGY method

Let us consider K as a control parameter of the system (5.7) for the set of parameter

values (5.60) and the Jacobian matrix at the fixed point P3 is:

A =
∂ f
∂x

(0.1750, 0.5249) =

−1.1522 −0.1800

1.6795 1

,
with B =

∂ f
∂r

(0.1750, 0.5249) =

1, 8243

0

 .
The matrix A has two eigenvalues : λu = −1.0011 and λs = 0.8489, indicating that
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P3 is saddle point (hyperbolic)

Whith two right eigenvectors

vu =

−0.7660

0.6429

 and vs =

 0.0896

−0.9960

 ,
and two left eigenvectors:

fu =

−0.9960

−0.0896

 and fs =

−0.6429

−0.7660

 ,
and KT = (−0.5487,−0.0494).

Figure 5.13 illustrates the response of the controlled Rosenzeig-Macarthur model

with the applied control effort. The control is activated when the system state ap-

proaches the unstable equilibrium P3 at t = 100 and the parameter K is adjusted by

a small perturbation of order 10−4 during the short time period t ∈ [100, 101]. Sub-

sequently, the control is quickly established at t = 101, stabilizing the Rosenzeig-

Macarthur model to its P3 equilibrium.
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Figure 5.13: Response of the controlled system (5.7) using the OGY control with the
set of parameter values (5.60) in P3 = (0.175, 0.5249), k = 0.2168, and initial condition
(0.1760, 0.5259).
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CONCLUSION

The goal of this work is to study the Rosenzweig-MacArthur model for prey and

predator interactions, finding that it has three fixed points whose stability depends

on the parameter k. We showed that the model undergoes two types of bifurcations

(Neimark and Flip) and that their calculations are very complicated. In addition, the

bifurcations indicate that the system is sensitive to initial conditions. Furthermore, we

discovered that chaotic behavior can be eliminated by applying two types of control

(Feedback and OGY). Finally, we confirmed the results numerically.

It is also possible to propose the development of this system into one where the

interaction part is of the Holling Type III with k = 2 for both the prey and the predator.
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