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ABSTRACT

In this work, we explored some fundamental concepts for studying a discrete dynamical
system (equilibrium points, bifurcations, chaos, chaotic attractor, Lyapunov exponents,
and some methods for controlling chaos).

As an application, we studied a system consisting of two recursive equations (differ-
ence equations), each representing a population known as the Rosenzweig-MacArthur
system. We explored the stability, bifurcation, and chaos of the system. We also ex-
amined the existence of bifurcations at equilibrium solutions (Flip and Neimark) when
parameters traverse certain curves. Notably, the fold bifurcation does not exist in this
system. We studied these bifurcations using the center manifold theorem and bifur-
cation theory. Chaos was analyzed through two methods: Feedback and OGY. The
theoretical results were confirmed numerically.

Keywords: Rosenzweig-MacArthur system, stability, bifurcation (Flip and Neimark-

Sacker), center manifold, Lyapunov exponent, control (Feedback and OGY).



RESUME

Dans ce travail, nous avons exploré certains concepts fondamentaux pour 1'étude d'un
systeme dynamique discret (points d’équilibre, bifurcations, chaos, attracteur chao-
tique, exposants de Lyapunov, et quelques méthodes pour contrdler le chaos).

A titre d’application, nous avons étudié un systéeme composé de deux équations récur-
sives (équations aux différences), chacune représentant une population connue sous
le nom de systéme de Rosenzweig-MacArthur. Nous y avons exploré la stabilité, les
bifurcations et le chaos du systeme. Nous avons également étudié 1'existence de bi-
furcations aux solutions d’équilibre (Flip, Neimark) lorsque les parametres traversent
certaines courbes, et nous avons constaté qu’il n’existe pas de bifurcation en pli. Nous
avons étudié ces bifurcations a I’aide du théoreme de la variété centrale et de la théorie
des bifurcations. Nous avons aussi étudié le chaos en utilisant deux méthodes (Feed-
back et OGY). Les résultats théoriques ont été confirmés numériquement.

Mots-clés: systeme de Rosenzweig-MacArthur, stabilité, bifurcation (Flip et Neimark-

Sacker), variété centrale, exposant de Lyapunov, controle (Feedback et OGY).
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INTRODUCTION

Dynamical system is the mathematical formalization of the general scientific concept
of a deterministic process. They describe the future and past states of many physical,

chemical, biological, ecological, economical [23].

Differential equations were invented by Isaac Newton in the late 17th century, and
their various properties were discovered over time. Subsequent generations attempted

to develop them further, but faced some difficulties [41].

In the 19th century; Henri Poincare introduced a new perspective focusing on the
qualitative aspects of the question.One of the questions he posed was whether the
solar system is stable forever, or if some planets will eventually become unstable,

highlighting the sensitivity to initial conditions [41].

In 1975; Li and York published a paper titled "Period three implies chaos," demon-
strating the existence of periodic orbits of period 3 for a dynamical system defined by
a continuous function F : [ = [. This implies the existence of countless non-periodic
and unstable orbits [30, 25].

The term "chaos" appeared for the first time in this research to indicate the complexity
studied by Li and York [30]. And Devaney has defined fundamental definitions for
chaos in "The field of dynamical systems and especially the study of chaotic systems

has been hailed as one of the important breakthroughs in science in this centry " [24].



Introduction

A chaotic system is a simple and complex in it bihavior system sensitive to initial con-
ditions, exhibiting properties of recurrence and high complexity. Small disturbances
can lead to non-repetition or biased imbalance, making long-term predictability impos-
sible [24]. Since then, chaos theory has become important, especially in control systems,
where Li and York’s contributions to chaos control have been significant. Many tech-
niques have been developed to control chaos, most of which are variations of the OGY
(Ott-Grebogi-Yorke) and PRC (Pyragas) approaches. The notion of population is based
on the existence of an intermediate structure between the individual and the species.
The definitions of population proposed by geneticists and population biologists have

followed quite parallel paths since the beginning of the century [6].

The first definitions of population date back to Wright (1931).They are defined it
a group of individuals sharing the same gene pool.Population geneticists have also
introduced the concept of local populations, neighborhoods, or communities, which
are entities relatively isolated from other entities in terms of reproduction and the
dispersion of individuals [6]. Local populations are interpreted as demographic units
in which the main population processes take place, such as reproduction, competition,

and predation [6].

Population dynamics lies at the heart of the interface between dynamical systems

and biology [3].

Population dynamics is a crucial research area for understanding the evolution and
interaction of species within an ecosystem. Since the work of Thomas Robert Malthus,
several models have been developed to describe variations in the size and structure of
populations. Among these models, the most well-known are the Malthusian model,

the Verhulst model, and the Lotka-Volterra model.

Our dissertation is composed of an introduction and four chapters organized as
follows:
- In the first chapter: we present some essential concepts on discrete dynamical systems.
- In the second chapter: we present the important notions of stability and bifurcation
with their types.
- In the third chapter: we focus on the notions of chaos.

- In the fourth chapter: we discuss the two different types of chaos control in dynamical

2
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systems, which are OGY and Feedback.
- Finally, we conclude the work with a chapter dedicated to applying the basic no-

tions (fixed point, stability, bifurcation, Lyapunov exponent, OGY, Feedback, Center-
Manifold).



CHAPTER 1

GENERALITIES ABOUT DISCRETE
DYNAMICAL SYSTEM

Dynamics is a process that evolves over time, which can be either deterministic or
stochastic.Dynamical systems are generally described by differential or difference equa-
tions. They are used to model a wide range of natural phenomena in different fields
such as: (physics, chemical, electromechanical, biological, economic, etc) [26].

In this chapter, we discuss the definitions and types of dynamic systems, especially
the discrete dynamic system and its theories (flow, phase portrait, fixed point, periodic

point).

1.1 Discrete dynamical systems

Definition 1.1.1 [23]

A dynamical system is defined as a triplet (T, X, ¢), where T is a time x € X, X a state space,
¢ : T x X — Xa family of evolution operators parametrized by t € T; x € X and satisfying
the properties (0, x) = Id and P(P(t, x),s) = P(t + s, x) Vt,s > 0 we distinguish two types of

dynamic systems.



o Continous-time systems if T = R* or R .

e Discrete-time systems if T = N or Z..

1.1.1 Types of dynamical systems

a) Continuous-time dynamical systems:

Definition 1.1.2 [26]

In continuous time a dynamical system is represented by differential equations :

%= f(x,t,p), (L1)

wherex € R" ,p e R", t € R.
f:R* xR" — R": an application representing the dynamics of the system .

If we associate an initial state with this dynamic:
X0 = x(to)-
For each chosen pair (ty, xo), we can identify a unique solution :
(., 1o, x0) : R" x R" = R".
Such as :

¢ ¢(to, to, X0) = Xo;
Pr(t, to, X0) = f(ps(t, to, x0), ).

This solution provides the successive states occupied by the system at each time t.
When the function x is continuous within a certain interval I C R of the variable
x there is existence and uniqueness of the solution for any initial condition x € I

more precisely we have the following theorem.

Theorem 1.1.1 [12]



b)

We consider a differential equation:

dx
E - f(t/ X, A)/

and we suppose that the second member of the equation is given by a function f which is
Lipschitzian with ratio A with respect to x uniformly with respect to a parameter A and
with respect to t € [—a, +a]. There is only one solution maximum ¢ = ¢(t, ty, xo) such

that (P(to, to, xo) = Xp.

Example 1.1.1 The Lorenz map represented by:

x =o(y-x),
y =-xz+rx-—y,
z =xy-—bz.

Discrete-time dynamical systems:

Definition 1.1.3 [30]
In discrete time a dynamical system is represented by an application (iterative function)

in the form :
Xer1 = f(xx, ¢, k), (1.2)

xx€R", ceR"andk=1,2,3---
Where f : R" X Z* — R" indicates the dynamics of the system in discrete time .

We can also identify (xo, ko) a unique solution :
Qbf(; Xo, kO) : ]R+ X IRH/
Such as:

(Pf(koz xo, ko) = xo,
qbf(k +1,x9, ko) = f(qbf(k, Xo, ko), €), k.

Example 1.1.2 The Henon map:



Xkv1 = Y t 1- axi.
Yes1 = bxy.

b.1) Linear discrete systems:

Definition 1.1.4 [11]

A linear discrete dynamic system is represented by equation of the form :

; e _ 2
given by: x = (X, X1, X2+ ,Xn) = (X0, Axo, AX0, -+ , A"Xy).

Where A is square matrix of dimention n X n.
b.2) Non linear discrete systems:

Definition 1.1.5 [11]

A non linear discrete dynamic system is represented by an equation of the form:

Xny1 = f(xn/ t)/
x(0) =x9€R".

Where f : R" — R" is a differentiable function.

c) Autonomous or non autonomous systems:
A dynamical system is a non autonomous [26] if the variable t appears explicitly
in an expression:

Xn+1 = f(xn)/
x(0) = xo.

and autonomous if the variable t not appear explicitly in the expression f :

Xnyl = f(xn/ t)/
x(0) = xo.

e Phase Space:
A dynamical system is defined by a set of state variables, each of which completely

describes the system’s state at any particular time. The system’s dynamic behavior is

7



connected to how these state variables change over time. This concept is represented
in phase space, where each point represents a state and the path associated with that
point illustrates a trajectory [39].

eTransition from continuous time to discrete time:

Euler’s method:
A simple way to obtain an equation in discrete time is to perform the Euler
approximation of a continuous time equation.
Let x(t) be a real variable depending on time t. A differential equation of first

autonomous order is written in the following general form:

dx
prialACY)

where the function f depends on the variable x.
Let x(t) be the solution at time t and x(tf + At) be the solution at time t + At.

Derivative - can be approximated by the following relation:

dt

dx _ x(t+ Af) —x(f)
dt ~ At ‘

This Euler approximation is all the more valid as the time interval At is small.

From the two previous equations we obtain a discrete time equation:
x(t + At) = x(t) + f(x)At.

The previous equation allows, from an initial condition x,, to calculate the
solution at consecutive time intervals, At , 2At, 3At, ..., n/At, and so on.
By choosing At = 1 as the unit of time, it is possible to rewrite this equation in

discrete time as follows:

x(t+1) = g(x(t)),

where the function g(x(t)) = x(t) + f(x(t)) [4].

1.1.2 Flow, trajectory (orbit), phase portrait

a) Flow:



Definition 1.1.6 [12]

The correspondence ¢; : xo +— x(t) which associates with each initial state value x, the
value of the maximal solution x(t) at time t, that corresponds to this initial data is called
the flow at time t of the vector field. The flow of the vector field is the map which associates

with (t, x) the maximal solution x(t) at time t that corresponds to the initial data x:

(t,x) = O(t, x) = P = x(t).

The flow is said to be complete when this correspondence is defined for any value of

t €] — 0o, 400 .

Properties

¢i(x0) has the following properties :

i) ¢:(xp) is of class .

ii) ¢o(xo) = xo.

iii) Pris(x0) = Pi(s(x0)) Vt, s > 0.

For the demonstration of these properties in [41]

X (1) = O(t, xg)
% ~

i f

Figure 1.1: Flow representation.

X(s+1)=0(L x3)

Xy = x(S) P

/5 s+

Figure 1.2: Tllustration of stationarity.



b) Trajectory:

Definition 1.1.7 [5]

An orbit of the system (1.2) starting at x, is an ordered subset of the state space X, x € X.
the following:

O(x0) = {x(0) = xo, x(1) = f(x(0)), ..., x(n + 1) = f(x(n))}.

¢) Phase portrait:
Phase portrait are frequently used in dynamical system to represent the dynamics
of a map graphically. A phase portrait consists of a diagram exhibiting possible
changing positions of a map function and the arrows indicate the change of

positions under iterations of the map [26].

Example 1.1.3 Consider a simple one dimensional map:
f:10,2n] — [0, 2m].

Defined by f(0) = 0 + 0.3 sin (30). The phase portrait of this map is displayer in figure
(1.3). The figure shows that the six points satisfy the relationship f(0) = 0. The arrows
indicate that the flow moves toward the three points Z,1,%% and the flow moves away from

the other three points 0,%%,%E, the points have special interest.

Figure 1.3: Phase portrait of f(0) = 0 + 0.3sin(30).

10



1.1.3 Fixed points, periodic points

Consider a discrete-time equation of the following general form:
Xn+l = f (xn)-

1) Fixed point

Definition 1.1.8 [11]

The vector x* € R" is called an equilibrium point of the system if x* = f(x”).
Example 1.1.4 : Consider the following discrete system:

xk+1) = ax (k) + 23(K),
XQ(k + 1) = xl(k) + ﬁXQ(k)

An equilibrium point of this system is a vector x* = (x1,xy) that solves the system:

X1 = axy + %3,

Xy = X1 + ‘sz.
Which gives two equilibrium points: x* = (0,0) and x* = (1 - a)(1 = B)?, (1 —a)(1 - pB)).

2) Periodic Point:
x is a periodic point of the system (1.2) if there exists k > 1, such that f*(x) = x, the
period of a periodic point x is the smallest integer k > 1 such that f*(x) = x [33].

11



CHAPTER 2

STABILITY AND BIFURCATION

2.1 Stability

2.1.1 Stability of fixed points

Definition 2.1.1 [9]
Let f : I — I be a map and x* be a fixed point of f, where I is an interval in the set of real

numbers R. Then

(1) x*is said to be stable if for every € > 0, there exists 6 > 0 and n > 0 such that ||xo—x*|| < 6

implies ||x; — x*|| < € for all k > n. Otherwise, it is said to be unstable.

(2) x* is said to be asymptotically stable (a.s) if it is stable and %im [lxx — x| = 0.

(3) x*is said to be globally asymptotically stable (g.a.s) if it is asymptotically stable (a.s) and
for every x;, I}im [|xe = x*|| = 0.

Henceforth, unless otherwise stated, "stable” (asymptotically stable).

e The exisstence of a fixed point can be assured by:

12
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Theorem 2.1.1 (Brouwer’s Fixed Point Theorem) [13]
Suppose F : B — IR" is continuous, B is a compact convex subset of R", and F(B) C B.
Then there exists x* € B such that F(x*) = x".

A proof of this theorem can be found in Heuser [1994].

e The uniqueness of a fixed point can be assured by:

Theorem 2.1.2 (Contraction Mapping Theorem) [13]
Suppose F : B — B where B is a closed subset of a Banach space X and F is a contraction

on B, i.e. there exists u < 1 such that
IF() = F(ll < pllx = yll - forall  x,y € B.

Then there exists a unique fixed point x* and each trajectory starting in B converges

exponentially fast to it.

Linear dynamical systems
Let’s consider the autonomous systems, which are time-invariant and take the form:
Xpi1 = AXy,. (2.1)

The next theorem summarizes the key stability results for such linear autonomous
systems.
We make the assumption that the system (2.1) is at its equilibrium state, meaning that:
x* = Ax". Therefore:

x*=(0,0,---,0) if det(I-A)=#0.

So there exists a unique fixed point (x* = 0) In the next theorem we summarize the main

stability results for the linear autonomous systems.

Theorem 2.1.3 (m-dimensional linear systems) [9]

The following statements hold for equation (2.1) :

(i) The zero solution of (2.1) is stable if and only if p(A) < 1 and the eigenvalues of unit

13
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modulus are semisimple (An eigenvalue is said to be semisimple if the corresponding

Jordan block is diagonal).
(i) The zero solution of (2.1) is asymptotically stable if and only if p(A) < 1.
Where:

p(A) = max {|A| : A is an eigenvalue of A } is the spectral radius of A.

Proof. The proof can be found in reference [9]. m

Theorem 2.1.4 (2-dimentional linear systems) [10]
The following statements hold for Equation (2.1) :
(a) If p(A) < 1, then the origin is asymptotically stable.

(b) If p(A) > 1, then the origin is unstable.

Al
(c) If p(A) = 1, then the origin is unstable if the Jordan form is of the form [ 0 1 ], and

stable otherwise.
Proof. The proof can be found in reference [10]. =

e Trace-determinant method:
Let’s examine the two-dimensional linear dynamic system X,.; = AX, . The
system’s qualitative characteristics can be categorized according to the values of
tr(A) and det(A).

The eigenvalues of A are derived by solving the characteristic equation.

P(A) = A2 — tr(A)A + det(A).
P(A) = 0.

Proposition 2.1.1
Consider the two-dimensional linear dynamical system X1 = AX,, and let A, and A, be the

eigenvalues of A.

1. if (tr(A))* > 4det(A) then A1, are real (A1 > Ay), moreover

14
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(a) The origin is a Saddle (|A1] > 1 and || < 1) or (|A4] < 1and Ay > 1)
if and only if:

P(1) <0 and P(-1)>0,
or

P(1)>0 and P(-1)<0,
i.e. ,if and only if:

—tr(A) — 1 < det(A) < tr(A) — 1.
or
tr(A) — 1 < det(A) < —tr(A) — 1.

(b) The origin is a sink (|A12| < 1) if and only if:
P(1) > 0and P(-1) > 0,

i.e., if and only if:

det(A) > tr(A) — 1 and det(A) > —tr(A) — 1.
(c) The origin is a Source (|A1,| > 1) if and only if:
P(1) < 0and P(-1) <0,

i.e., if and only if:

det(A) < tr(A) — 1 and det(A) < —tr(A) — 1.
2. if (tr(A))* < 4det(A) then Ay, are complex, moreover

(a) The origin is a spiral sink if and only if det(A) < 1.
(b) The origin is a spiral source if and only if det(A) > 1.

15
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Type Eigenvalue Phase Portrait
Saddle A, A € R A >Tand [A;| < 1or Al <1and Ay > 1 j //
Sink Al, Az € ]R, 0< |A1/2| <1
Source M, A eR, Ao >1 / \
/—\
GDJ
Stable focus AM,AeC A p=ax1f,| i <1,p#0

16
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(¢
N

Instable focus | A1, A, € C, A1y =a+1f,|A1p/>1,#0

e
N

NN &

center /\1, /\2 € C, /\1[2 =ax Lﬁ , |/\1/2| =1 , ‘B #0

Table 2.1: The types of fixed points for 2-dimentional linear systems and their phase
portrait.
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det(A)

det(A)=tr(a) 214

tr(A)

Figure 2.1: Stability by trace-determinent plane.

Non linear dynamical systems

e Indirect method (Linearization):

Definition 2.1.2

The first-order Taylor expansion of f(xx) = Xi.1 around x* is :

X = ) + DF() (0 = ) + Ol = x°)?,

=X+ Al — x°) + O(x — x)2.

Puting Xy = xx — x".
We get :

Xir1 = AXk.

18
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Where:
) ) IAE)
Jxy oxn Xy
) AHE) I
_ N oxy oxy oxm
A=Df(x")=| % ) .
afn(x*) afn(x*) . 8f,1(x*)
Ixy oxn X

Since ||x—x"|| — 0 in the vicinity of x*, by neglecting the second-order terms, the system (1.2)
is linearized as :

Xps1 = AXg.

The mapping X — AX is called the linearization of f in the vicinity of x*. We say that the

system (1.2) is approximated in the vicinity of the equilibrium point x".

Let f : R" — RR", to determine the attractivity of an equilibrium point, we need to

calculate the eigenvalues of the Jacobian matrix:

oh oA . 9
ox1 oxy Oy
dh dh . If
Ja)y=Df@)| ™ e P
f,  of f
a_xl 19_362 o X

Theorem 2.1.5 The fixed point x* of (1.2) is:

1. Stable if all the eigenvalues of J(x*) = D f(x") are inside the unit circle (their modules are
less than 1).

2. Unstable if any of these eigenvalues of [(x*) = D f(x") has module greater than 1 (outside

the unit circle).

Remark 2.1.6 [18]

Sometimes, these points are also called stationary points or equilibrium points. Let x; be a
point of the equation (1.2), and A;, 1 < i < n, be the eigenvalues of the Jacobian matrix D f(x)
associated with x.

1. x¢ is a hyperbolic point if |A;| # 1V¥i € [1,n].

2. xg is an elliptic point if |A;| = 1¥i € [1,n].
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e Direct method (Lyapunov function):

The stability of the system (1.2) can be studied using a well-chosen function, called
the Lyapunov function. This is an incredible method, called direct, which is useful for
non-linear systems, with the advantage of being applicable in non-standard situations
[11].

Let’s consider the system :

(2.2)
x(0) = xp,x0 € R".

{ Xer1 = f(xx),
If x* is an equilibrium point of this system, then we have the following definition.

Definition 2.1.3
A function V defined on a region (Q C IR" of the state space of the discrete system (2.2) containing

x* is a Lyapunov function if it satisfies the following conditions:
1. V' is continuous on (.

2. 'V has a unique minimum at the point x* on (2.

3. The function AV(x) = V(f(x)) — V(x) < 0on Q.

Remark 2.1.7 [11]

1) Condition 3 of the definition is equivalent to saying that along the trajectory of the system

contained in 2, the function V is decreasing. Indeed:

o If at time k, the state of the system is x, then at time k+1, the state of the system is
f(x). The values of Lyapunov function at these points are V(x) and V(f(x)), so the
variation is AV(x) = V(f(x)) — V(x).

e If Vis a Lyapunov function on Q, then AV(x) <0 forall x € Q.

2) The geometric interpretation allows us to conclude that if a Lyapunov function exists, the

equilibrium point must be stable.

3) Condition 2 of the definition can be replaced by V(x*) = 0 and V(x) > 0 on Q. Indeed, it
suffices to consider the function W defined by W(x) = V(x) — V(x*).
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Theorem 2.1.8

If there exists a Lyapunov function V(x) associated with the system (2.2) in a ball B(x",Ro),
then the equilibrium point x* is stable. If, furthermore, AV (x) < 0 at every point (except x*),
then x* is asymptotically stable.

Theorem 2.1.9 (Global asymptotic Lyapunov stability )

Let x = 0 be an equilibrium point of the autonomous system:

Xie1 = f(x0),

where f : D — R" is locally Lipschitz in D C R" and 0 € D .

Let V : IR" — R" be a continuous function such that:

V(0)=0,and V(x) >0,¥x € D — {0},
llxll = 00 = V(x) — oo,
V(f(x))-V(x) <0,VxeD,

then x=0 is asymptotically globally stable.

eJury’s criterion
The stability test of the jury, is directly applied to the characteristic polynomial of the

system:

1

P(z) =a,z" +a, 12" + -+ @z + ay.

Where ay, a4,...,4,-1, 4, are real coefficients and a,, > 0 Let:

o Ank bo  Mu-1-k Co Cn2k
bk: s Ck = /dk: A
an b1 bx Cia Gk
The necessary and sufficient conditions for the polynomial P(z) to have no roots outside

or on the unit circle are as follows [11]:
P(1) >0,

(=1)"P(-1) > 0,
laol < lanl,
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lbo| > |by-1l,
lcol > len—al,

|do| > |d,—3].

Remark 2.1.10
Verify the three conditions that are easy to compute: P(1) > 0, (=1)"P(=1) > 0 and |ag| < |a,.

Stop if any of these conditions are not met.

Remark 2.1.11
Ifa, <O0:

e First, construct another polynomial Q(z) = —P(z).

o Then, treat the new polynomial Q(z).

Example 2.1.1 Consider the characteristic polynomial:

AAz A
A A
P(A) =A%+ T T %
9 3 1 7 17
We have: P(1) = 3 P(-1) = g 0= 0,|bsl =1,b; = 5 lca| = 5 lco| = e

Therefore, the corresponding discrete system is asymptotically stable.

2.1.2 Stability of periodic points

Theorem 2.1.12 [26]
Let O(x*) = x*, f(x%), ..., f*1(x*) be the orbit of the k-periodic point x*, where f is a continuously

differentiable function at x*. Then the following statements hold true:

e x" is asymptotically stable if

f @V FEN-f (T < 1.
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e x" is unstable if

f QO FEN-f (T > 1.

2.1.3 Attractors

Definition 2.1.4
An attractor is a closed subset of the phase space that draws all other trajectories towards it
[31, 1].

There are two types of attractors: regular attractors and strange or chaotic attractors.

a) Regular attractors: which characterize the evolution of non-chaotic systems, they

can be classified into three types:

i) Fixed points: points that all trajectories of nearby points are attracted to them.

Thus, they represent a constant stationary solution satisfying f(x) = x.

ii) A periodic attractor: are periodic orbits (orbits of trajectories that cycle around
a finite point set) which are attractive. Thus, it represents a periodic solution

of the system.

iii) Invariant Curve: in discrete systems, invariant curves are similar to the torus
found in continuous flows. The dynamics on a closed invariant curve can be
simplified to those of a map of the unit circle onto itself, known as a "circle
map". The behavior on these closed curves can be complex, particularly
when parameters change, causing these curves to lose their regularity and

potentially become invariant sets.

b) Strange attractor: the strange attractor is another intriguing type of attractor intro-
duced by Ruelle and Takens. Its characteristics include:
¢ In the phase space, the attractor occupies zero volume.

e The dimension d of the attractor is fractal (non-integer) with 0 < d < n, where

n is the dimension of the phase space.

e Sensitivity to initial conditions: two trajectories of the attractor that are

initially close to each other always diverge over time.
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Figure 2.2: Lozi attractor obtained fora=1.7 and b = 0.5.

2.1.4 Basin of attraction

Given an attractor A, we call the basin of attraction of A the set of all initial conditions
Xo, such that d(x,,A) — 0 as n — oo.
Different basins of attraction are separated by basin boundaries. The geometry of these

boundaries is frequently as complex as the geometry of the attractors themselves.

2.1.5 Stable, unstable, and center eigenspaces

The stable and unstable eigenspaces provide an essential reference point to the local
characterization of a nonlinear dynamical system in the proximity of a steady-state

equilibrium [15].

Definition 2.1.5 (Stable, unstable, and center eigenspaces)
Let f(x) : R" — R" be a continuously differentiable single-value function, and let D f(x*) be

the Jacobian matrix of f(x) evaluated at a steady-state equilibrium, x*, i.e.
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[of' () dfl) ft ()]
Toxy v Oxwm
I I IR
Df(x*) — t%flr anZt . annt
ofty)  9ft) o If()
L Idxqy dxy; oxp |

o The stable eigenspace E°(x*) of the steady-state equilibrium x* is:

Es(x*)=span {eigenvectors of D f(x*) whose eigenvalues have modulus < 1} .
o The unstable eigenspace E"(x") of the steady-state equilibrium x* is:

E"(x*)=span {eigenvectors of D f(x*) whose eigenvalues have modulus > 1}.
o The center eigenspace E°(x*) of the steady-state equilibrium x* is:

E¢(x*)=span {eigenvectors of D f(x*) whose eigenvalues have modulus = 1}.

2.1.6 Stable and unstable manifolds

The stable and unstable manifolds provide the nonlinear counterparts for the stable

and unstable eigenspaces.

Definition 2.1.6 (Local stable and unstable manifolds)

Consider the nonlinear dynamical system:
x(t+1) = f(xe).
e A local stable manifold, W; (x*), a local stable manifold, x*:
Wi (x) = {x € Ul lim f"(x)},
={x* and f"(x)eU VneN}.
e A local unstable manifold, W} (x*), A local unstable manifold,x,

Wi (x) = {x € U] lim ¢! (x)},
={x" and cp{”}(x*) elU VnelN}
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where U = B.(x) for some ¢ > 0, and f"(x) is the n'" iteration over x under the map f [15].
B.(x) = {x ER": |x; —xi| <eVi= 1,2,3,...n}

Definition 2.1.7 (Globally stable and unstable manifolds)

Consider the nonlinear dynamical system:

x(t+1) = plx), (2.3)

and let x* be the steady-state equilibrium of the system (2.3), [12].

o The global stable manifold, W*(x*), of a steady-state equilibrium, x*, is:

We) = | oW, ().

neN

o The global unstable manifold, W*(x*), of a steady-state equilibrium, x*, is:

W) = | Jio" Wi et

neN

2.1.7 Cobweb diagram

One of the most effective graphical methods for iterating to determine the stability

of fixed points of the system (1.2) is the cobweb diagram. On the x-y plane, we plot

the curve y = f(x) and the diagonal line y = x. Starting from an initial point xy, we

move vertically to the graph of f at the point (x, f(x0)). Then, we move horizontally to

intersect the line y = x at (f(xo), f(xo)), which determines f(x() on the x-axis.

To find f?(x,), we repeat this process by moving vertically to the graph of fat (f(xo), f*(xo))
and then horizontally to (f*(xo), f*(xo))-

This iterative process allows us to evaluate all points in the orbit of x;, denoted by

{xO/ f(x0)1f2(x0)/ oo /fn(x())/ .. } [1()]
Example 2.1.2 we use the cobweb diagram to find the fixed points for the quadratic map:

fe(x) = ¥+,

26



Stability and bifurcation

on the interval [-2,2] , where ¢ € [-2,0]. Then determine the stability of all fixed points.

» To find the fixed point of f.(x), we solve the equation x* + ¢ = x or x> — x + ¢ = 0.

This yields the two fixed points x, = 1 — 1 V1 —4dcand x; = 1 + 1 V1 - 4c.

Since we have not developed enough machinery to treat the general case for arbitrary c, let us

examine few values of c. We begin with ¢ = —0.5 and an initial point xo = 1.1 . It is clear from

that the fixed point x; = 1 — % ~ —0.366 is asymptotically stable, whereas the second fixed
point x = 1 + % ~ 1.366 is unstable.

Figure 2.3: Cobweb diagram of f.(x) = x* + ¢ with ¢ = =0.5.

2.2 Bifurcation

2.2.1 Bifurcation theory

A discrete dynamical systems undergo a bifurcation when its bihavior changes as
a parameter change [14]. In the following section, we explore the center manifold
theoremthe and different types of bifurcations in discrete dynamical systems. We will

discuss their conditions with examples, as well as the Center Manifold Theorem .
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Center manifold

We have seen in the second section of chapter2 the general concepts of stability of two
dimensional maps via linearization, when the fixed point is hyperbolic in other words
the eigenvalues of the Jacobian matrix are off the unit circle. But it does not give us
an exact stability in the nonhyperbolic case. So we are obligated to use the center
manifold theory, and we will discuss it later.

Center manifold is a set M, in a lower dimensional space, where the dynamics of the
original system can be obtained by studying the dynamics on M. [10].

Let consider the system:

(2.4)

x = Ax+ f(x,y),
y — By +g(x, y).
We studied in Chapter2 the stability of hyperbolic fixed points of F. We have

J = D.F(c’, x"), (2.5)
A 0

B
Moreover, all of the eigenvalues of A lie on the unit circle and all of the eigenvalues of

where | in Equation (2.5) has the form | =

B are off the unit circle. Furthermore,

£(0,00 =0, (0,00 =0,
Df(0,0) =0, Dg(0,0) =0.

Theorem 2.2.1 [10]

There is a C'-center manifold for system (2.4) that can be represented locally as:

M. ={(x,y) e R"xXR°: y = h(x),|x| <, h(0) =0,
Dh(0) = O, for a sufficiently small 6 }.

Furthermore, the dynamics restricted to M. are given locally by the map
x = Ax + f(x,h(x)), xeR" (2.6)

This theorem asserts the existence of a center manifold, i.e., a curve y = h(x) on which the

dynamics of System (2.4) is given by Equation (2.6). The next result states that the dynamics
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on the center manifold M. determines completely the dynamics of System (2.4).

Center manifolds depending on parameters
Suppose that system (2.4) depends on a vector of parameters, u € R” Then, System
(2.4) takes the form:

2.7)

{ x(n +1) = Ax(n) + f(u, x(n), y(n)),
y(n +1) = By(n) + g(u, x(n), y(n)).

The center manifold M, now takes the form:
M. = { (1,%,y) : y = h(x, )l < b1, lul < 5, h(0,0) = 0,Dh(0,0) = 0 }..
After substituting y we get the latter equations lead to the functional equation :

E(h(x, W) = h[Ax + f(u, h(x, ), x), u] — Bh(x, p) — g(g, h(x, ), x). (2.8)

Definition 2.2.1 [33]

Consider the following nonlinear dynamical system:
X1 = Fr(xe). (2.9)

Where x € R", p € R", k € N, and F : R" Xx R" — R", F is continious function.

Definition 2.2.2
A bifurcation is a quantitative or qualitative change in the solution of a dynamical system
when the parameters on which it depends are modified, and more precisely, the disappearance or

change in stability or the appearance of new solutions.

Theorem 2.2.2 [14] (The bifurcation criterion)
Let f, be a family of functions depending smoothly on the parameter u. Suppose that f,, (xo) = xo

and %‘ (xo) # 1. Then there are intervals I about xo and | about uy and a smooth function

Ho
p : ] — Isuch that p(uo) = xo and f,(p(u)) = p(u). Moreover, f, has no other fixed points in I.
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Bifurcation diagram

It tracks the points of the system’s steady state according to the bifurcation parameter.

These graphs are called bifurcation diagrams.

In general, we choose the initial state x, such that the horizontal axis represents the
values of i and the vertical axis represents the higher iterations Fj. Then we track its

limit value as a function of a single parameter.

In the discrete case, we plot the successive values of the state and the variable. It
summarizes the information about the state space, and the variation with respect to the

parameter u can visualize the transition from a steady state to chaos.

Types of bifurcation

Consider the one-parameter family of maps:

F(u,p) : RxR* — R.

where u = (x,y) € R?, p€Rand F e C',r>5. If (u", u*) is a fixed point, we can change
the variables so that the fixed point is at (0, 0).

Let ] = D,F(0,0). Using the center manifold theorem, we can derive a one-dimensional
map f,(x) defined on the center manifold M.. By Theorem (2.2.1), we can infer the

following statements.

Where A the eigenvalues of | lies on the unit circle,meaning |A| = 1. There are three

distinct cases in which the fixed point (0, 0) is nonhyperbolic.

I. Jhas an eigenvalue equal to 1. Then we havethree kinds of bifurcations:
Let f : R> > Rbe a C’ function with r > 2 [10]:

(a) Saddle-node bifurcation (fold bifurcation:)
This type of bifurcation is characterized by the sudden loss or acquisition
of multiple stable or unstable equilibrium solutions when the value of a
parameter crosses a critical value. It satisfies the following conditions:

P f(x,
1. J;S;mkoro) # 0.
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df(x,
2, U,

Theorem 2.2.3 (Topological normal form for the fold bifurcation) [23]

Any generic scalar one-parameter system

x = fx, p),

having at u = 0 the fixed point xo = 0 with A = £,(0,0) = 1, is locally topologically

equivalent near the origin to one of the following normal forms:
X U+ x £
» Consider the map:
xo fr,p)=x+u+x’,xeR,ueR (2.10)
We can solve for the fixed points directly as follows

fx, ) —x=p+x*=0.

We are interested in the nature of the fixed points for (2.10) near (x, u) = (0, 0)
the map possesses a unique curve of fixed points in the x — u plane passing
through the bifurcation point which locally lies on one side of p = 0. Then
we must check the conditions (1) and (2) we have:

of
50,0 =1

df?
e
of
E

Thus, (2.10) can be viewed as a normal form for the saddle-node bifurcation

(0,0) # 0.

(0,0) =1 #0.

0
of maps. Notice that, with the exception of the condition &—i(O, 0) = 1, the
conditions for a one-parameter family of one-dimensional maps to undergo a
saddle-node bifurcation in terms of derivatives of the map at the bifurcation

point are exactly the same as those for vector fields.
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In Figure 2.4, we show a curve of fixed points and refer to the bifurcation

occurring at (x, u) = (0,0) as a saddle-node bifurcation [44].

\

Figure 2.4: Fold bifurcation of f(x, u) = x + p + x%.

(b) Pitchfork bifurcation:
In general, a Pitchfork bifurcation occurs near the bifurcation point (xo, t).
The model has two fixed-point curves in the (x,, 1) plane that pass through
the bifurcation point, with one of them being on both sides of the line p1 = po.

It satisfies the following conditions:

%(o, 0) = 0.

of _
1. £(0,00=0, 5

2. 2(0,00=1, 2£(0,0) = 0.

Theorem 2.2.4 [44]
Consider the application x4y = f(xx, 1), such that f(—x,u) = —f(x, u) for all u
near u = 0. If this application has a non-hyperbolic fixed point at x* = 0, u = 0 and
9(0,0) =1, and if

of (0,00 #0 i(O 0)#0

oxou -’ Toxd ’

then in the neighborhood of (0, 0), this application is locally equivalent to one of the
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following normal forms:
X1 = X + X(£p [)’xlf).
» Consider the map:
x flo,u) =x+ux+x’,xeR,ueR), (2.11)

we can solve for the fixed points directly as follows:

flx, ) —x = px£x°.
We are interested in the nature of the fixed points for (2.11) near (x, 1) = (0, 0),
in the x — u plane the map has two curves of fixed points passing through
the bifurcation point; one curve exists on both sides of u = 0 and the other
lies locally to one side of u = 0. Now we seek general conditions for a one-

parameter family of C'(r > 3) one-dimensional maps to undergo a pitchfork

bifurcation:
af 02
- =—(0,0) =0, —(O, 0)=0
Ju
of >f
- M(O,O)io (0 0) # 0.
3
9 f(O 0)
[
af (0 0)

Moreover, the sign of | tells us on which side of 1 = 0 that one of the curves of
fixed points lies. Thus, we can view (2.11) as a normal form for the pitchfork
bifurcation.

We end our discussion of the pitchfork bifurcation by graphically showing

the bifurcation for x - x + ux + x* in Figure 2.5 [44].
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)

2 %
Figure 2.5: Pitchfork bifurcation of f(x, yt) = x + px + x° a) —E(O, 0)/ —f(O, 0)>0

axdy
P’ f of

b) _ax3( IO)/m

(0,0) < 0

(c) Transcritical bifurcation:

This type of bifurcation is characterized by an exchange of stability between
two equilibrium solutions. Initially, the system has a stable equilibrium
solution and an unstable equilibrium solution. When a parameter varies
and reaches a critical value, the stable equilibrium solution becomes unsta-
ble, while the unstable equilibrium becomes stable It satisfies the following
conditions:

1. Z©,0=0.

2. Z(0,00=1.

3. 2£(0,0) 0.

Theorem 2.2.5 [44]
Let xys1 = f(xx, 1) = xxg(xx, 1) be a point x, that is non-hyperbolicat x* =0, u = 0

9(0,0) = 1.
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%2(0,0) # 0; and 2(0,0) # 0.

Then, in the neighborhood of (0, 0), the application is locally equivalent to one of the
following normal forms:

— 2
Xk+1 = Xk £ UXg £ X5

» Consider the map:
x> x+ux+x,xeR,peR (2.12)
We can solve for the fixed points directly as follows:

e, 1) —x = px + 22

Hence, there are two curves of fixed points passing through the bifurcation
point:
x=0,

and

u==+x%

We are interested in the nature of the fixed points for (2.11) near (x, 1) = (0, 0),
in the x — u plane the map has two curves of fixed points passing through
the origin and existing on both sides of u = 0. Then we must check the

conditions (1,2, 3) we have:

of

- 5,00=00.
’f
- 00 #0.
’f
- 550,00,
’f
T2
k= aﬁ; : (2.13)
axdu

Moreover, the sign of (2.13) gives us the slope of the curve of fixed points

thatisnotx = 0.
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2 %
x —— Stable solutions
- - - Unstable solutions

1 1

L + H ‘

) -1 e 1 2
~1 4
2!

Figure 2.6: Transcritical bifurcation diagram for f(x, ) = x + ux + x> when k > 0.

II. If ] has an eigenvalue equal to —1, then we have :

e Period-doubling (flip):
This bifurcation occurs when a stable cycle of order k has a multiplier that
passes through the value A = 1. This cycle then becomes unstable and gives

rise to a cycle of order 2k. It satisfies the following conditions:
J
1. 2(0,0) = -1 = Z[F(x, p) — x] 5 # 0.
2. The derivate of g_f with respect to A at the point (0, 0) is nonzero, that is:

_|Pf 19 Pf
@ = [ayax tagaon| 0

1 Pf of
3. ﬁ [3'8):3 x) ](00) # 0.

Then:

(@) There occurs a differentiable curve x(u) of fixed points passing through
the point (x, to); the stability of the fixed points changes at (xo, to): the
curvature changes from stable to unstable as i increases past the value
o if @ < 0 while the converse occurs if a > 0.

(b) Moreover, there occurs a period-doubling bifurcation at the point (xo, o),
there is a differentiable curve ua = I(x) passing through the point (x, o)
such that all points on the curve except the point (xo, 19) are hyperbolic
period-2 points, szl(x)(x) = x; the curve A = [(x) is tangential to u = i at
(xo0, to); I'(x) = 0 and I”(xp) = —=2B/a # 0. Finally, the period 2 orbits are
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attracting if § > 0 and are repelling if § < 0.

Theorem 2.2.6 [10] (Topological normal form for the flip bifurcation)

Any generic, scalar, one-parameter system

x = fx, @),
having at i1 = 0 the fixed point xo = Qwith p = £,(0,0) = =1, is locally topologically

equivalent near the origin to one of the following normal forms:

x - —(1+ pw)x £ 2.

Figure 2.7: Flip bifurcation diagram for p of f(x, u) = —(1 + p)x = x°.

Example 2.2.1 Consider the following simple population model [Ricker 1954]:
Xir1 = XXy k.

where xi is population, k : the year,a :growt rate. The above recurrence relation

corresponds to the discrete-time dynamical system
x = axe™ = f(x,a).

System has a trivial fixed point xy = 0 for all values of the parameter a. At ap =1,

however, a nontrivial positive fixed point appears:
xia = In(a).
The multiplier of this point is given by the expression:
u(a) =1-In(a).
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Thus, x; is stable for 1 < a < oy and unstable for & > oy, where a; = e*.At

the critical parameter value o = v, the fixed point has multiplier u(aq) = —1.

Therefore, a flip bifurcation takes place. To apply Theorem (2.2.6), one needs to verify

the corresponding nondegeneracy conditions in which all the derivatives must be

computed at the fixed point x1(aq) = 2 and at the critical parameter value al. One

can check that:

c(O):%>0,fm=—el—2i0.

The Neimark-Sacker bifurcation is the birth of a closed invariant curve from a
fixed point in discrete dynamical systems, occurring when the fixed point changes
stability through a pair of complex eigenvalues with modulus equal to 1. This
bifurcation occurs only in discrete dynamical systems with dimension greater than
or equal to 2 (m <= 2) and is analogous to the Hopf bifurcation in continuous
dynamical systems (ODEs), where the complex conjugate eigenvalues are written

in the form of Euler’s complex numbers.

Ap(u) = p(u) exp(£i6(u))

If these eigenvalues cross the unit circle for y = g such that 0 < O(u) < 7, a
closed invariant curve appears, which is an attractor for the system’s orbits. This
phenomenon is called the Neimark-Sacker bifurcation. Note that the condition
on the angle O(o) at the critical parameter value p implies that the eigenvalues

must be strictly complex. In this case, defining the complex number

Zn = Xy + 1Yy

it can be shown that as long as py(to) # 0 and exp(ikO(uo)) # 0 fork = 1,2, 3,4, the

system is locally equivalent to:

Zu1 = (1 + €) exp(i0(€))z, + c(€)zalzal” + O(lz, ).

Where € is a new parameter. The situation where exp(ikO(uo)) = O for all k €
{1,2,3,4} is known as a strong resonance and is associated with the first four roots

of 1 on the complex unit circle.

As in the case of the Andronov-Hopf bifurcation, in the supercritical Neimark-
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Sacker bifurcation, a fixed point loses stability and a closed orbit appears with an

increasing radius. There is also a subcritical case, but it will not be treated here.

To illustrate the Neimark-Sacker bifurcation, consider the following example:

e Neimark-Sacker bifurcation :
Let F(x, u) = Fu(x): R? —» R be a C’ function in variables x, u with r > 3. If

F(x, u) satisfies the following conditions:
Theorem 2.2.7 [29] Consider the family of C" maps (r > 5), f, : R”* x R —» R?
such that the following conditions hold:

(1) fu(0) =0, i.e., the origin is a fixed point of f,.

(2) Df,(0) has two complex conjugate eigenvalues Aio(u) = r(u)et®W, where
r0) = 1, 7(0) £ 0, 6(0) = 6.

(3) %% %1 for k € {1,2,3,4} (absence of strong resonances condition).

1-21)A2 1 .
Y =-R (%Pnpzo) - §||1011||2 - ||,002||2 + R(Ap2), (2.14)

Y is called the first Lyapunov coefficient.

Where:
—1(22 _ #0520 2Q _PQ o PP
Poz =3 (3x,2 Y2 + Zaxﬂyt i ox? y? + Zaxﬁyt |(0,0) :
_1(&p , 2P 2Q , #Q
P =alae topet L(axg + 57 )] loo -
—1(2p _ &p PQ PQ _PQ _H PP
pZO -8 ath ﬁytz + 28xt8yt + t (9xt2 ay% 283@8% |(O/O) °
—1(&Pp Pp . P9  PQ Q. Qo _ P _ Pp
Pa1 =16 (axf o T ooy T op T2 T e T adow  on oo

Then, for sufficiently small u and F,, there exists a unique invariant closed
curve enclosing that bifurcates from the origin as a passes through 0. If
<0, we have a supercritical Neimark-Sacker bifurcation. If {>0, we have a

subcritical Neimark-Sacker bifurcation.

Theorem 2.2.8 Consider the following application:
Xk+1 = f(xk/ Yiks [U),
Yrsr = 9k, Yo W)
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At a non-hyperbolic point (x, y, 1) = (0,0, 0), the eigenvalues of the Jacobian matrix
are:
A =A™ 1A(0)] = 1.

Then, if:

%(0) #0; A= 00) #1 (k=1,2,3,4); d(0) #0,

there is a change to polar coordinates that transforms the application into the fol-

lowing form:

Vis1 = Ak +dy;,
Ori1 = Ok + P(c) + b(c)ys.

There are two types distinguished, node-col bifurcations that give rise to fixed points

and period-doubling bifurcations that produce periodic orbits.

Remark 2.2.9 [18]:
Note that the pli bifurcation and flip bifurcation take place in systems of dimension

n > 1, but for the Neimark-Sacker bifurcation it requires n > 2.

Example 2.2.2 Consider the discrete dynamical system generated by the transfor-

mation F defined as follows:

r. Xpy1 = HXn(l - Yn)/ u > 0
. Y =X,

This system has two fixed points:

(X1, Y1) =(0,0).
(X2,Y2) =(1- %/ 1- ﬁ)

The Jacobian matrix evaluated at the fixed point (X, Y>) is:

1 1-u
DF(XZIYZ): .
1 0
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Its characteristic equation is:
AP=A+p-1=0.

From which we deduce the eigenvalues:

*

5
A1,2 = Z - [,l

N =

5

Ifu> 3
point (Xy, Y,) loses its stability. The eigenvalues are then A, = e*'5 and the system

the eigenvalues are complex with |A1,> = u — 1. For u = 2, the fixed
undergoes a Neimark bifurcation.

Let T = tr(J), D = det(]). Then the following trace-determinant diagram figure illustrate

the main bifurcation phenomena.

D D=T%/4
3
2r Neimark-Sacker bifurcation ]
J ) N TP ,
Stability |region

Period-Doubling (Flip) y|red addle-Node (Fold)
bifurcation _ bifurcation T
0 - _
Ak J
2F J
3F D=T-1 D=-T-1 ~
-4 1 1 1 1

-3 -2 -1 0 1 2 3 4

Figure 2.8: The occurrence of the three main types of bifurcation.
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CHAPTER 3

NOTIONS OF CHAQOS

Chaos is a deterministically unpredictable phenomenon. In the evolution of chaotic
orbit there are trajectories which do not settle down to fixed points or periodic or-
bits or quasi-periodic orbits as time tends to infinity. Even a deterministic system
has no random or noisy inputs; an irregular behavior may appear due to presence of
nonlinearity, dimensionality, or nondifferentiability of the system. Although the time
evolution obeys strict deterministic laws, the system seems to behave according to its
own free will. The mathematical definition of chaos introduces two notions , the topo-
logical transitive property implying the mixing and the metrical property measuring
the distance. Chaotic orbit may be expressed by fractals. Before defining chaos under
the mathematical framework we discuss some preliminary concepts and definitions of

topological and metric spaces which are essential for chaos theory.

3.1 Definitions of chaos

There exist numerous mathematical definitions of chaos in literature; however, as

of now, there is no universally accepted mathematical definition of chaos. Prior to
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presenting a definition of chaos by Devaney [7], it is essential to establish some basic
definitions.

Let (J C R, d) designate a compact metric space (d is a distance), and let f be the function:
fi]—=T, %= f(x), xo € J.

Definition 3.1.1 [26]
(Dense set) In a topological space (X, T), a subset A of X is said to be a dense set (or an everywhere
dense set) if A = X. In other words, A is said to be dense subset of X if for any x € X, any

neighborhood of x contains at least one point of A.

Definition 3.1.2 [7]
fis said to be topologically transitive if, for any pair of open sets U,V C ], there exists k > 0
such that fX(U) NV # 0.

Definition 3.1.3 [7]
f has sensitive dependence on initial conditions on ] if there exists 6 > 0 such that, for any x € |
and any neighborhood N of x, there exists y € | and n > 0 such that |f"(x) — f"(y)| > 6.

Example 3.1.1 The logistic map ux(1 - x) with u > 2+ V5 possesses sensitive dependence on
initial conditions on A.

To see this, choose 6 less than the width of Ay, where A, is the gap between Iy and I in which
all points immediately escape from I. Let x,y € A. If x # y, then S(x) # S(y), so the itineraries
of x and y must differ in at least one spot, say the n'h. But this means that f,!(x) and f(y) lie
on opposite sides of Ay, so that

1) = f1w)l > 0.

Definition 3.1.4 (Devaney) [7]
Let Vbeaset. f:V — Vis said to be chaotic on V if f has the following three properties:

1. periodic points are dense in V.
2. fis topologically transitive.
3. f has sensitive dependence on initial conditions.
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3.2 Characteristics of chaos

e Sensitivity to initial conditions: sensitivity to initial conditions was first ob-

served by Poincare in the late 19th century and later rediscovered by Lorenz
in 1963 during his meteorological research. This discovery sparked significant
interest in mathematics, leading to numerous important works. This sensitivity is
responsible for the unpredictable long-term outcomes of chaotic systems, where
even small changes in initial conditions can lead to vastly different results. The
degree of sensitivity to initial conditions is a measure of the system’s chaotic
behavior [33].

¢ Non-linearity: if the system is linear, it cannot be chaotic.

e Determinism: a chaotic system has fundamental deterministic rules (rather than

probabilistic ones).

e Unpredictability: due to sensitivity to initial conditions, which can only be

known to a finite degree of precision.

e Irregularity: hidden order comprising an infinite number of unstable periodic
patterns (or motions). This hidden order forms the infrastructure of chaotic

systems, more simply put as "order in disorder."
, y

3.3 Lyapunov exponents

The Lyapunov exponent is an important quantitative measure in chaos theory, used
to measure the potential difference between orbits arising from neighboring initial
conditions and to quantify the sensitivity of a chaotic system to its initial conditions.
It is also used to study the stability (or instability) of equilibrium points in nonlinear
systems.

Let the following discrete nonlinear dynamical system be given:

Xk+1 = f(xk)/
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with x; € R, we assume that the trajectory emanating from an initial state x(0) reaches
an attractor. x; is thus bounded inside the attractor [33].

We choose two very close initial conditions, denoted x;, and x’(0), and observe how the
trajectories emanating from them behave. Assuming that the two trajectories x; and

x’'(k) diverge exponentially, after k steps we have:
' (k) = x(K)] = 1x'(0) = x(0)le*,

A indicate the divergence rate per iteration of the two trajectories, whose expression is

as follows:

x' (k) — x(k)
x'(0) = x(0) |
For x(0) and x’(0) close, if the absolute value of the difference ¢ = |x’(0) — x(0)| tends to

Az%ln

converge to zero, we obtain:

1 x' (k) — x(k)
A= im e limIn | 0 =) |
This gives:
B 1 x' (k) — x(k) X'(k—1)—x(k-1) x'(1) = x(1)
A = lim lim I | ) =) vk =2 —x=2) < X w0 =x0)|"

1S K- —x@i+1)
= fim ling EZ(;IH ¥ (0) — x(7)
Cimlim LY i ‘f(x’(i)) ~ f(@)
B k—o0 -0 k X'(i) - X(Z) ’

Finally, we have:

k-1
df (x(i))
= lim lim kZl ‘

k—c0 £—0 dx(i)

A the Lyapunov exponent, measures the average rate of divergence of two distinct
trajectories starting from two very close initial conditions.

In the case of a system of dimension n > 1, there exist n Lyapunov exponents Lj(j =
1,2,---,n), each of them measures the divergence rate along one of the axes of the phase
space. To calculate the Lyapunov exponent, we start from an initial point x(0) € R, to

characterize the infinitesimal behavior around the point x(k), we use the first derivative
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matrix Df(x(i)).
D) ARG
ox1(i) 0 (i)
Dfa) =| : .
x@) . Ifulx(@)
dx1(i) dxy, (i)

Let’s denote: Jy = Df(x(k — 1)) --- Df(x(0)), with: Jo = Df(x(0)).

The Lyapunov exponent is calculated by the following expression:

A= hm lnl)\ Je---J),i=1,2,...,n

By analyzing the Lyapunov exponents of a system, we can conclude about the behavior
of the system as follows:

- If all Lyapunov exponents are negative, there exist asymptotically stable fixed points
or periodic points.

- If one or more Lyapunov exponents are zero, and the others are negative, the attractor
is quasi-periodic.

- If at least one of the Lyapunov exponents is positive, and the others can be negative

or zero, the attractor is chaotic.

Example 3.3.1 Lyapunov exponent for the tent map:

For the general tent map

NID—‘

{ 2rx, 0<
T(x) =

x <
2r(1 —x), % <x<1

we calculate |T'(x)| = 2r,Vx € [0, 1], except at x = %, the point of non differentiability. Here
the parameter r lies in the interval 0 <r < 1.

Thus the Lyapunov exponent of the tent map is given by

N- N-1 1
;lan'(xl )| = 11m Zanr = lim N.Nanr

N—ooo

=In2r.

Since A > 0 for 2r > 1, that is, for r > 1, the tent map is chaotic for r > 3.

It is nonchaotic for r < %. The transition from nonchaotic to chaotic behavior occurs at
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r=re=13.

3.4 Fractal dimension

Our intuitive idea of dimension assigns an integer to common geometric objects. For
example, a point has dimension 0, a line segment has dimension 1, a full square
(interior and boundary) has dimension 2, a full cube (interior and boundary) has
dimension 3, etc. This intuitive idea is not sophisticated enough for complex geometric
objects, including strange attractors. More elaborate definitions of dimension have

been proposed [30], we will present some of them here :

1) Hausdorff dimension

Definition 3.4.1 (The Hausdorff outer measure of order s € R* in a separable metric
space X) [38]

Let G € X. Let’s denote by C(G, 0) the set of 6-coverings of G, i.e., the set of countable
families of open sets (C;) with diameters less than or equal to 6 such that G C |J; C;. Let

(CeC(G,0)

H.s(G) = inf Z'C”S'
The Hausdorff outer measure is the measure defined by:
H,(G) = lim (H,5(G).
The Hausdorff dimension of G C X is defined as follows:
dimy(G) = inf{s : Hy(G) = 0} = sup{s : Hs(G) = oo}.

2) Correlation dimension
Let’s consider O(x1) as a trajectory of a dynamical system, where the initial con-
dition is denoted by x;. The correlation dimension of the set O(x;) is calculated
as follows:

Given a positive real number 1, we form the "correlation integral

1y
€ = lim —— ; Hr = i = %),
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3)

where:

0 x<0,
H(x) =
1 x>0,

is the unit-step function.

The summation counts how many pairs of vectors are closer than r when 1<i, j<n,
and i # j, while n? — n is the total number of pairs with i # j. Hence, the ration
between the two represents the fraction of pairs that are closer than r, and C(r)
measures the density of pairs of distinct vectors x; and x; that are closer than r
[30].

Definition 3.4.2 [30]

The correlation dimension D¢ of O(x1) is defined as:

De = lim :C0).
r—0 ln r

Example 3.4.1 Consider the dynamical system governed by the function

x> if-3<x<1.
F(x) =
4yx-3 ifl <x<9.

in the interval [-3,9]. Suppose that we start from the point x, = =2 . We have
X1 :4,3(72 :5,X3 :4\/3—3,"' .

And the sequence {x,} is increasing and converges to 9. For every r > 0 there is an index
n(r) such that all elements of the sequence with index larger than n(r) are closer than r.
This implies that C(r) = 1 and D¢ = 0.

Capacity dimension:

The concept of the capacity dimension works like this: imagine you have a
bounded subset A of R". Take a positive number ¢ and pick hypercubes (line
segments in R, squares in R?, cubes in IR?, and so on) with side lengths of €.

Define N(¢) as the smallest number of these hypercubes needed to cover A.
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Dc is called the capacity dimension of the set A [5].

4) Kaplan and Yorke dimension (Lyapunov) :
Let Ay > Ay > --- > A, the n Lyapunov exponents of an attractor of a dynamical
system, and let j be the large natural number such that: Ay +A;+---+A; > 0. Then

the Karlan and Yorke (Lyapunov) dimension is given by [5]:

>
=l

DKy:]-i-

=1
M’+1| ’
]

3.5 Scenarios of transition to chaos

The study of the transition to chaos involves examining the series of bifurcations in a
system’s dynamics as its parameters change, particularly focusing on dissipative phe-
nomena and the shift towards dissipative chaos. While the chaotic behavior itself is
not the primary focus, understanding its relationship to the transition is crucial, and
this section explores three scenarios of transitioning from regular dynamics to chaotic
dynamics when a parameter is varied.

Three common paths have been identified for dissipative systems, each linked to a
specific type of bifurcation: the period-doubling route associated with the flip bifur-
cation or period doubling, the intermittency route related to the fold or saddle node

bifurcation, and the Ruelle-Takens route linked to the Neimark-Sacker bifurcation [18].

e Period-doubling cascade
This passage discusses the process by which a dynamical system transitions from
an equilibrium state (a stable fixed point) to chaos through a series of period-
doubling bifurcations. As the bifurcation increases, the stable fixed point is
replaced by a stable 2-cycle at u = o parameter u (the fixed point still exists
for 4 > uo but becomes unstable). Subsequently, at u = 4, this 2-cycle loses its
stability and is replaced by a stable 4-cycle. This pattern continues: the periodic
orbit of period 2/~! present for u < p; loses its stability at u = y; and is replaced
by a stable periodic orbit of period 2/. The sequence (i) s of bifurcation values

converges to a limit pc. At p = uc, the system enters a chaotic regime. The
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bifurcation values (u;);»0 are unique to the system, as is their limit value uc.

However, the accumulation of these values at ¢ follows a geometric progression:

lim P T
jreo Wito — il

= 0.

where 6 is a universal number [5] : 6 = 4.66920... . This means that the exponent
6 is identical in all systems where such a sequence of period-doubling leading to
chaos is observed: a qualitative similarity between asymptotic behaviors implies

a quantitative identity .

Figure 3.1: Bifurcation diagram of the logistic map f(x) = 1 — ux?. The parameter y
is put in abscissa and the attractor along the other axis. This plot clearly displays an
accumulation of period doublings leading to chaos in p, = 1.4011550...

e By intermittency
The route named intermittency describes the persistence of regular and pre-
dictable phases in a globally chaotic dynamics. The key idea is that after the

disappearance of a stable fixed point x}, through a saddle-node bifurcation in
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Figure 3.2: Temporal intermittency. This sketch explains the slow and regular regime
displayed by the discrete evolution x,,,1 = g,(x,) if u is slightly larger than the value u,
associated with the bifurcation g, (0) = +1.

p = 0, the dynamics remains slow in the neighborhood of Xg, as if it were expe-
riencing the presence of a ghost fixed point. The typical example (actually, the

normal form) is the discrete evolution:
Xne1) = Gu(Xn) = =l + x, — Axj.

In u = 0, the fixed points + /—1/A observed for u < 0 (respectively stable and
unstable) merge in x; = 0 and for u > 0, there is no longer fixed points. However,
gmt(x) = x in the neighborhood of 0, so that the trajectory loiters a long time in
this region and a regular and slow regime is observed, that roughly follows the

evolution law x(,+1) = x,, — p as long as Ax, << 1 and A%x, << 1.

e Ruelle and Takens’ scenario
The exact statement of this route is quite technical because it requires introduc-
ing a topology on the space of vector fields in order to define the proximity of
two continuous dynamical systems. An approximate formulation is as follows:

a continuous dynamical system undergoing three successive Hopf bifurcations
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generally has a strange attractor. Each Hopf bifurcation corresponds to the ap-
pearance of an unstable mode. The statement above can be reformulated as
follows: the loss of stability of 3 modes with frequencies whose pairwise ratios
are irrational leads to chaos. This result has profoundly modified scientists” un-
derstanding of chaos: the prevailing view before, due to Landau, required the
loss of stability of an infinity of modes for the evolution to become apparently
erratic and unpredictable. Consequently, it was believed that chaos would only
occur in systems with an infinity of degrees of freedom. Landau’s scenario was
found to be much too restrictive: the nonlinear coupling of three modes with

pairwise irrational frequency ratios is sufficient to generate a strange attractor [5].
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CHAPTER 4

CONTROL OF CHAOTIC SYSTEMS

A chaotic attractor contains an infinite number of unstable periodic orbits as it evolves
over time. The system will visit a small neighborhood of each point on these periodic
orbits (which are unstable) within the attractor. This suggests that we can describe
chaotic dynamics as a sequence of irregular jumps from one periodic orbit to another,

leading to the concept of chaos control.

Chaos control is the stabilization of one of these unstable periodic orbits through
small perturbations in the system, which makes chaotic motion more stable and pre-
dictable. The disturbance should be small compared to the overall size of the system’s
attractor to avoid large alterations in the system’s natural dynamics. Several techniques
have been devised for chaos control, and we will focus on two types: The Ott, Grebo-
gie and Yorke (OGY) method and the Feedback method.

We consider the discrete model:

{ Xip1 = Fa(xr, ), 4.1)

vr = h(k).

Where x; € R", 4 € R" and y; € R! are the state vector, input vector, and output vector

at the k-th iteration, respectively. The control of a chaotic system aims to stabilize an
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unstable periodic orbit. Let £ be the periodic solution of period T of the system (4.1) ,
with the initial condition £,. If the solution x; is unstable, stability can be understood

in a certain sense, for example:

lim (x - %) = 0, (4.2)
or
Lim (¢ = 9¢) = 0, (4.3)

for any solution x; of equation (4.1) with x; € IR" as the initial condition, and € as a set
of any initial conditions. Additionally, ; is the desired output function. The problem

is to find a control function for both forms: non-feedback control:

ur = u(k, xo),

or in feedback form:

U = u(Xk),

which verifies equation (4.2) or equation (4.3) [45].

4,1 Chaos control methods

41.1 The OGY method

As previously mentioned, OGY is one of the control methods used in dynamic systems.
This method relies on a fundamental concept: that within a chaotic attractor, there are
numerous unstable periodic orbits. By perturbing a specific parameter, it becomes
possible to access and stabilize one or more of these orbits. How is this achieved ? [45].
In the case of a continuous-time dynamical system, it must first be converted into a
discrete-time system using Poincare maps or other methods [45].

n-dimensional system can be written in the form :

X1 = f(xi, p)- (4.4)
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Where x; € R": n dimensional state at i.
p : the accessible parameter .
p: nominal value.

Since the perturbation of p is assumed to be small, the value of p is restricted

lp—pl <o
In discrete-time maps with p = p, the fixed point satisfies x7,, = x}. Generally, x}, . = x_.
system (4.4) can be linearized around x":
Xis1 — X = A(x; —x7) + B(p — p),
where A is the Jacobian matrix and B represents the influence of the (input) p
(forj,k=1,2,--- ,n) [45]:
a’f‘ * - * —_
A= a—(x,p) = D.f(x",p), (4.5)
x
a.f< * - * —_
B= 2300 = Df ) (4.6)

Let x* be a given hyperbolic fixed point. The linearization of the system (4.4) around

this fixed point is given by:
Ax(i+ 1) = AAx(i) + B(p — p),

where:
Ax(i+1) =x(i+ 1) — xe(p),

and
A = Ae,fu + Asesfs.

If small changes are made to the parameter p, then the coordinate of the fixed point
is also shifted to a nearby point x¢(p). Around this point, we can write the following

approximations:

xp(p) = xp(p) + (P — pO)(%_J;F)P:PO

= xp(p) + Ap(i)B.
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where Ap(i) = (p — po) and B = (%—J;F)p:po. The expression for Ax(i + 1) can then be
rewritten as:
Ax(i + 1) = Ap(i)B + A[Ax(i) — Ap(i)B].

If we want the imposed variation to correspond to the unstable fixed point, meaning

that the system trajectory follows the stable direction and that:
fulbx(i+1) =0,

then:
A fu
Av—1f.B

Ap(i) = Ax(i) = KAx(i).

This parametric variation is activated only when x(i) is located within an interval
|AX(D)] < Apimax [25]-

Example 4.1.1 Control of the Henon map using the OGY method
The Henon map is described by the following equations:

X1 = 1 —ax2 + vy,
o n Y (4.7)
Yne1 = bxn/
where a and b represent the control parameters.
- Stability and chaos:
To determine the fixed points, we set X1 = X, and Y41 = Yy, yielding:
x =1-ax*+y,
y =bx.
This means:
1-b 1-b)?
X Y= —% * ( 1 ) +a. (4.8)

Setting: ¢ = 12;b
We obtain: x¢,ys = —c + Ve +a.

- Application of the control algorithm:

The control algorithm is applied to the system with chaotic parameter values a = 1.4 and
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b=03.
Control using the OGY method consists of the following operations:

a-

Identification of the fixed point to be stabilized:
Substituting a and b in equation (4.8) yields:

X1, Y1 = 0.8839.

X2, Y2 = —1.5839.

In our case, we choose the point x¢ = 0.8839.
Calculation of the matrices A and B:

We have A = D, F(x*,p) and B = g—i(x*,ﬁ).
A= —2.X'f1 b ’B _ 1 .
1 0 0

l—1.7678 0.3}

So:

1 0

Calculation of the eigenvalues A, and A;:
Ay and A are defined by

Asu = —Xp1 x}%l + b.

Thus:
A =0.1559 and A, =-1,9237.

Calculation of the eigenvectors {vs, v,} and the covariance vectors {f;, f,}:

The eigenvectors are calculated using the following equation:
[Al - Ale=0.

The eigenvector are chosen in the form:

A . As
e= With e, = and e, =
1 1
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0.1559 -1.9237
€s = 6y = .
1 1

Knowing that :fses = fue, = 1and fe, = f,e; = 0. Which give :

S Y e
fs [AS—AM ol fo= v =l

f.=[04808 0.9250| and f, = [-04787 0.0746].

e- Calculation of k:

The parameter k is represented by:

k= Aufu _ Au [ﬁ /\Sis)\u]
fuB | ][1

= [Au _Au/\s] ’

k=[-1.9237 0.3011].

We choose 6 = 0.01.
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Figure 4.1: Control of the Henon system by the OGY method

4.1.2 The closed-loop control method (Feedback)

This method consists of perturbing the systems state variables to reach the target
orbit. It has the advantage of guaranteeing robust stability and a strong noise rejection
capability, let:

Yo = Fa, ). (49)
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where f : R¥ X R" — RR*. The objective is to find a feedback control
U, = h(x,). (4.10)
in such a way that the equilibrium point x* = 0 of the closed-loop system
X1 = f (2, B(xn)), (4.11)
is asymptotically stable (locally). We make the following assumptions:

e £(0,0)=0,

e fis continuously differentiable, A = %(O, 0) is a k X k matrix, B = %(O, O)isakxm

matrix.
Under the above conditions, we have the following surprising result.

Theorem 4.1.1
If the pair {A, B} is controllable, then the nonlinear system (4.9) is stabilizable. Moreover, if K is

the gain matrix for the pair {A, B}, then the control u, = —Kx, may be used to stabilize system
(4.9).

Proof.
Since the pair {A, B} is controllable, there exists a feedback control u(n) = —Kx(n) that

stabilizes the linear part of the system, namely:
Y1 = Ay(n) + Bu(n).

We are going to use the same control on the nonlinear system. So let g : R* —» R*be a

function defined by g(x) = f(x, —Kx). Then system equation (4.9) becomes:
Xt = 9. (4.12)

|X_ - A Bk-
&x
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Since by assumption the zero solution of the linearized system:
Yns1 = (A — BK)y,.

is asymptotically stable, it follows by Theorem (Lyapunov stability theorem) that the
zero solution of system (4.12) is also locally asymptotically stable. This completes the

proof of the theorem. m
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CHAPTER 5

NON LINEAR DYNAMICS AND
CHAOS CONTROL OF A DISCRETE
ROSENZEIG-MACARTHUR
PREY-PREDATOR MODEL

The Rosenzweig-MacArthur model has been powerful in describing and predicting
various phenomena in ecological systems of predator-prey interactions (e.g. [32]). In
the model, the prey is a biotic or abiotic factor that promotes growth of its predator,
while the predator utilizes the prey and reduces its growth. Thus the prey is beneficial
to its predator without any harmful effect. In natural environment, the prey does not
always have only positive effects on its predator. Hence the Rosenzweig-MacArthur
model needs to be extended to characterize the interactions in which the prey has
both positive and negative effects on its predator. Indeed, this type of predator-prey

interactions has been displayed in real situations for years.

In plant-animal systems, the plant (prey) may have non-trophic, negative effect on its

predator. As shown by Stamp [36], some plants carry specific chemicals that are toxic
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to herbivores. When the plants are at low density, the herbivores may have strategies
to avoid ingestion of the toxins and the mortality rate is small. However, when the
plants are at high density, both of the ingestion and mortality rates increase. Thus
the plants have a non-trophic, harmful effect on the herbivores, while they are prey of
the herbivores [42]. The Rosenzeig-MacArthur model is a system of two differantial

equations used in population dynamics to modelise the predator-prey relationship [27].

In this chapter we will apply the hydra effect to the Rosenzweig system, in which
the effect element is of the Holling type II, shows us two types of bifurcation: Flip and
Neimark-Sacker, and we use the center manifold in this study. We will also draw region
of stability, bifurcation diagram,lyapunov exponent and phase portrait moreover we
will apply the feedback and OGY controls [42, 21, 22].
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5.1 Model formulation

To develop the continuous-time Rosenzweig-Macarthur predator-prey model, one

should follow this general framework [24]:

{x = rx(1 - ) = h(x)y, 1)
= y(dh(x) —e).

where rx(1 — 7) is the logistic growth function, parameters k, r, d, e are all positive and
h(x) denote the per predator kill rate with the following mathematical form (type II

functional response) [24]:

h(x) = 2
() 1+ stx (52)
where % is the maximum kill rate.
With substituting (5.2) in (5.1) we find:
¥ o=rx(l-%) - =L,
{ ( ) 1+stx (53)
y = y( 1+STx - 8)
We put :
u =% so =%,
v =L s ov=1
The model (5.3) becomes:
= 1 — #Xy _ M,
1/.1 1’1/[( o k ) 1+stuX (54)
v = U(1+STMX - 6).

By denoting ¢ = d ,b= E H = L Y=X,e=mandK = K then model (5.4) becomes:
y 8= T T s - X ' '
u o=ru(l - L) - e

=30~k (5.5)
0 =o(-m+
Finally, in the original variables, the model (5.5) takes the following from [24, 40]:
. x bxy
x =rx(1-2) - —,
{ ( K) x+H (56)
y =ylm+ 3y
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Using Euler’s method, setting At = h we find:

_ xy _ b
rx(1 K) xi+H’

yt(_m + xthH)

Xen = x+hA), ere {fl(xo
Y1 = v +f(y), £y

The discrete version of model (5.6) is :

(5.7)

her hbxtyt
{ X1 = x(1+hr) — =+ = o

Yisr =Y +hy(—=m+ xffH)

5.2 Dynamical analysis

We explore local dynamical analysis of discrete model (5.7) in the present section. For
study local dynamics, first we study the existence of equilibrium solutions of discrete
model (5.21) in R? = {(x, y) : x,y > 0}.

5.2.1 Existence of equilibrium solutions:

Lemma 5.2.1

(i) Forall b,c,m,r,H,h, K discrete model (5.7) has trivial and semitrivial equilibrium solu-
tions P1 = (0,0) and P, = (K, 0), respectively.

(ii) If ¢ > max {m, @} then discrete model (5.7) has positive equilibrium solution
Hm cHr(cK—Hm—Km)

Py = (o, )

Proof. "
X1 =X x =x(1+hr)—x? - =2

The study state satisfy: ik thus: ( ) K cxy 1 then:
Y1 =Y y =y —hm)+ 75

x+H —
hexy
—hmy + oH = 0,

b
{hrx—%xZ—ﬂ—O
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it follows:
hr hby
(hr_fx_x+H)x_O' (5.8)
hex
(—hm o H) y=0. 5.9)

After the calculations we find:

X1 = 0,y1 =0.

X2 :K,yz =0.
= mH _ cHr(K(c —m) — Hm)
ST T bK(c — m)?

Now the Jacobian matrix of the discrete model (5.7) at an equilibrium solution P = (x, y)

under the map (5.7) is:

1+ hr — 2= — D
J Ip= cHhy K . o x| (5.10)
G+ H) L —hm+ 5

5.2.2 Stability of fixed points

Stability of P;:

Theorem 5.2.1
The fixed point Py of model (5.7) will never be a sink and it will be :

(i) asource if m > ;

(ii) asaddleif 0 <m < %;

(iii) non-hyperbolic if m = 2;

Proof.
Around P, (5.10) becomes:
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With eigenvalues:
Al =1+ h1", Az =1-hr (511)

|A|=|1+hr|=1+hr>1.
and

| A2 =l 1=hm|< 1,
-1<1-hhm<1,
-2<-hm<QO,

%>m>0.

m By stability theory, P; of discrete model (5.7) is a sink if | A1, [< 1 but| Ay [> 1, and
so for all allowed parametric values b, ¢, K, H, m, r, h, P; is never sink. In similar way,

one can obtain that P; is a source if m > %, sadlleif 0 < m < % and non-hyperbolic if
2

m = E

Stability of P»:

Theorem 5.2.2

P; of model (5.7) is:
(i) asink if 2 < K < H- gpd 0 <1 < 2;
(i) a source if K < 2 gy > 2

(iii) a saddle if K < ZEMH 5pd 0 < 7 < 3;

2HAmH . — 2

(iv) non-hyperbolic if K = 2t I

Proof.
Around P, (5.10) becomes:

J|p:(1_h’ = ]

chK
0 1—hm+ &5

chK
K+H’

/\1:1—hr,/\2:1—hm+
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o M|=]1-hr<1
-1<1-hr<1
-2<-hr<0

2
E>1">0

o A =11-hm+ 2K <1

K+H
—1<1-hm+2& <1
—2<-hm+Z2X <0
-2 < —hm+ 2%
-2« —th;(lin;{H+chK

— 2K —2H < —hmK — hmH + chK
—2H < —hmK — hmH + chK + 2K

—2H + hmH < (=hm + ch + 2)K

—2H+hmH
2—hm-+ch <K

chK
—hm + g <0

chK
—hm+ &5 <0

—hmK-=hmH+chK
K+H <0

—hmK — hmH + chK < 0
(=hm + ch)K < hmH

hmH
K< Timhm eeeeeeeseeeens (2)

from (1) and (2) Z2HthmH o g < JmH g

2—hm+ch ch—hm
By linear stability theory, if 11| = [1 —hr| < 1and [y = [1 —hm + £K| < 1,ie,0<r< 2
and 2Ll o g < JmH- then P, of discrete model (5.7) is a sink. Similarly, its easy
to prove that P, of discrete model (5.7) is a source if K < 22 and r > 2 saddle
K < ‘22_71;’1"2}? or0<r< % and non-hyperbolic if K = ‘zz_lfl;}jr’zf orr= %

Stability of Ps:

Theorem 5.2.3
If A < 0 then Py is:

. . H(hem+c+m—hm?) _ . hm=1 hm?=m|.
(i) astable focus if 0 < K < T Zmmamps with ¢ > max {m, =, T },
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. . H(hem+c+m—hm?)
(ii) an unstable focus if K > o (rchTm)

H(hem+c+m—hm?)
(c—m)(1+ch—hm) /

(iii) non-hyperbolic if K =

Proof.
Further at P, (5.10) becomes:

1- hmr(c(H-K)+m(H+K))  phm

— cK(c—m) c
]|P3 - hr(K(c—m)—Hm) 1 : (512)

bK

With characteristic equation is:
A>=TA+D=0. (5.13)

Where:

T =2 hmr(c(H-K)+m(H+K))
- cK(c—m) ’
D =1- hmr(c(H-K)+m(H+K)) + hzmr(cK—m(H+K))'
cK(c—m) cK

Finally, the roots of (5.13) are:
T+ VA

/\1,2 = T/
where:
{ A =T2-4D,
_ hmr(c(H-K)+m(H+K)) 2 hmr(c(H-K)+m(H+K)) W2 mr(cK—m(H+K))
- (2 - cK(c—m) ) -4 (1 - cK(c—m) + cK ) :

If A < 0 then the characteristics roots of J|p, at P; are:

_ n__hmr(c(H-K)+m(H+K)) , © hmr(c(H-K)+m(H+K)) h2mr(cK—m(H+K)) _ [ hmr(c(H-K)+m(H+K)) 2
My =2 N \/(4( + ) ( F).

cK(c—m) -2 cK(c—m) cK cK(c—m)
Which give that if:
il = VD = \/1 _ hmr(c([—cllzi)_ﬁ—nz;(H+K)) N thr(cKc—Izn(H+K)) <1
then:

—hmrcH + hmrcK — hm?rH — hm®>rK + h?mrc*K — 2h*m?rcH — 2h?m?rcK + W?mPrH — h*mPrK
cK(c —m)

<0
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—hmrcH +hmrcK —hm?rH —hm?rK+h2mrc2K = 2h2m2rcH = 2h2m%rc K+ 2mPrH — 2mPrK < 0

hmrcK — hm?rK + h2mrc?K — 2h?*m?rcK — W?mPrK < hmrcH + hm?rH + h2m?rcH — W*mPrH

hmrcH + hm?rH + h?m?rcH — W*m*rH
hmrc — hm2r + h2mrc? — 2h2m?rc — h2m3r

hmrH(c + m + hmc — hm?)

K< hmr(c — m + hc? — 2hmc — hm?)

So we find:
0<K< H(c+m+hmec—hm?)

(c—m)(1+ch—hm)
i ) 2
® So P; is stable focus if 0 < K < %, unstable focus if K > % and
H(c+m+hme—hm?)

non-hyperbolic if K = T=F=2="5

Theorem 5.2.4
If A > 0 then P3 is :

. . mH hHmr(—2c—2m—hmc+hm?) . . {hzmzr—zhmr hm2—2m}
(i) A stable node Zf c—m <K< (h2m2r—4c—h2mrc—2hmr)(c—m) with ¢ < min 4+W2mr 7 mh+2 and

c>m.

. . hHmr(—2c—2m—hmc+hm?) mH
(ii) An unstable node if Tener—dePmre—2mniem < K<

. i omH _ hHmr(=2c=2m—hmc+hm?)
(iii) Non-hyperbolic if K = 20 or K = gz a= =5 =S =

Proof.
A > 0ie|tr())l =1 < det())

case a det(]) < tr(]) — 1

hmr(c(H-K)+m(H+K)) 2 mr(cK—m(H+K)) hmr(c(H-K)+m(H+K))
12_ cK(c—m) + cK <2- cK(c—m) -1
I3 mr(cKC—IJ<11(H+K)) <0

W?mrcK — W?m*rH — W’m?rK < 0

Wm?*rH < K(h*mrc — h®m?®r)
W2m?rH

hémrc—hzmzr <K

h=mr(mH)

h2mr(c—m) <K

mH < K

c—m
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case b —tr(]) — 1 < det(])

2+ hmr(c(H-K)+m(H+K)) 1<1- hmr(c(H-K)+m(H+K)) + I2mr(cK—m(H+K))
cK(c—m) cK(c—m) cK
—2hmrcH+2hmrcK—2hm?rH—2hm?rK+h2mrc> K=h2m?rcH—h2m>rcK=h2m>rcK+h2m3rH+ 12 m3rK > —4
cK(c—m)

—2hmrcH — 2hmrH — W2m?rcH + hW*mPrH
—4c? + 4cm — 2hmre + 2hm?r — h2mrc? + 2h2m?rc — h?>m3r
hHmr(=2c¢ — 2m — hmc + hm?)
(H2m?2r — 4c — h2mrc — 2hmr)(c — m)

> K

> K

. . . hHmr(=2c—2m—hmec+hm?
m So, P; is a stable node if |A;,] < 1, ie, 2L < K < (hzmz":ic_chzmn:c_;‘;r)z_)m). Moreover,

-
. . . . . hHmr(=2c—-2m—hmc+hm?)
simple manipulation also shows that P; is unstable node if 77 == === 5= < K <

hHmr(=2c—2m—hmc+hm?) orK = mH
(h2m2r—4c—h2mrc—2hmr)(c—m) T~ c—m"

28 and non-hyperbolic if K =

5.2.3 Bifurcation analysis
Bifurcation at Pq:

The model (5.7) does undergo flip bifurcation at P;:

if non hyperbolic condition m = 2 holds then from (5.11) one has Aaly—z = =1 but
Mlp=2 =1+ hr # £1. This implies that at P; the under study model (5.7) may undergoes
a flip bifurcation when (b, c, m, v, H, h, K) passes through the region:

2
FlPl = {(b/C/K/m/r;H,h) € ]R:_,m = E}

Proof.

cX
st =y (s )

We check the flip conditions at the first fixed point P;, m = %:

9 _ _ xy % - _
° z9y_1+h( m+x+H’z9y |(%/0)_ L.

_ Py 1999y _
¢ a= dmay + 2 0m 9y? |(%,0)_ ~h #0.
_ 1% 1 (&_9)2 _1
* =305t 2(5) lgon=2 %0

So we have a flip bifurcation in m = % if (b,c,K,m,r,H,h) € Flp,. m
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Bifurcation at P»:

o If r = 2and hm # 2K, we get Ml,cz = =1but Af, 2 = 1~ hm + GK # +1 this

implies that if (b, ¢, K, m, r, H, h) goes through the curve :

2 chK
F1|P2 - {(blclK/m/r/H/h)/r — E,hm 7& H+K}_

then at P, the model (5.7) may undergoes a flip bifurcation.

Theorem 5.2.5
If (b,c,K,m,r,H,h) € Fy|p, then at P, the under study model (5.7) undergoes a flip
bifurcation.
Proof.
hrx*>  hbxy
fx,v) —x+hrx—7— 2

We check the flip conditions at the second fixed point Py, r = %:

hbHy  Of |
G+H?2’ o9x

_ Pf | 19fPf _
¢ a= m+28rax2 |(2K)_ —h #0.

o L =14hr—2lyx— 1.

19f 1 (9f
* ﬁ 3! 8x3 (8x> |(; K~ 2 :'t 0.

So we have a flip bifurcation in r = % if (b,c,K,m,r,H,h) € F|p,. m

If K = i o6 we have Ayly_ s = 1 — hr # £1 but Aoly_wwwn = —1 ,this
+ T 2-hm+ch 2=hm+ch

implies that if (b, c, m, r, H, h, K) goes through the curve:

—2H + hmH
Fs |p,= {(b, ¢,m,r,Hh K),K = +hm }

2—hm+ch

then at P, the model (5.7) may under goes a flip bifurcation .

Theorem 5.2.6
If (b,c,K,m,r,H, h) € F, |p, then at P, no flip bifurcation occurs.
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Proof. of e WHy  of
_ r Y _
5 =1+hr- ZKX - x+ H)Z, al(k:}%lzsz,K) =-1. (514)
a #0. (5.15)
and
p=0. (5.16)

m The obtained condition (5.16) violates the non-degenerate condition for its

existence, and hence at P, no flip bifurcation occurs if (b, ¢, K, m, r, H, h) € Flp,.

Bifurcation at Ps:

b If K = Blomscomhn) (non-hyperbolic condition) [A12] _sgenconme = 1. This implies

(c—m)(1+ch—hm) = (c—m)(1+ch—hm)

that if (b,c, K, m,r,H, h) passes through the following indicated curve then at P;

model (5.7) may undergoes a Neimark-Sacker bifurcation:

H ]
N|P3={(b,c,m,r,H,h,K)’K= (hem+c+m hm)}

(c —m)(1 + ch — hm)

Theorem 5.2.7
If (b,c,m,v,H,h,K) € N |p, then at Ps the model (5.7) undergoes a Neimark-Sacker

bifurcation by considering K as a bifurcation parameter.

Proof.
If K varies in a small neighborhood of K* that is K = K* + € where € << 1 then the

discrete model (5.7) can be written as:

K~ ++H ’
+eCXt xp+ (5.17)

Yir1 =Yt + hyt(—m + 0/

hrx? hb.
{xfﬂ =x,(1+hr) - & - =&

Now the pair of complex characteristics roots of | |p, of the discrete model (5.17)

is:

T(e) + t~/4D(e) — T%(¢))
> .

Mo = (5.18)
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Where:
_  _ hr(c(H=(K* +€)+m(H+(K' +¢))
{ T(e) -2 hmr(c(H— (KC-IES)+”;1)(H+(K +e))), H2mr(c(K* +e)—m(H+(K* +e))) (519)
D) =1- (K" +e)(c—m) c(K*+e)
From (5.18) and (5.19), we get:
dAal|  hmr(c — m)(1 + ch — hm)? (5.20)
de |..o 2cH(c+m+chm —hm?)’ '
U =xr— x5,
(5.21)
Uy =70 — y*.

mH ,» _ cHr(cK=Hm—Km)
c—m - bK(c—m)?

with x*

U =X — X = (L+hr)(uy + ) = 2=y + ) —
* * h
Ot = Yen — Y = (1= hm)(o, + ) + "))

_y.

hb(us ) ty)
up+x*+H X

*

[uor + y'uy + X'vp + x7y°],

« _ h hr «2 2k
Uttt :ut+hrut+hrx _K*_:—eu%_K*_:—ex K:)—Ce £t uf+x+H
_ * h *
Upy1 = 0y — hmo, — hmy +ut+xf+H[utvt+yut+xvt+xy].
Ll(u U)
Let L(u,v) = |l
LZ(MIU)
Where:
L( ) hb [ + * + X + **]
1(n,0) = —————[u,v; U+ X0+ x
! u+x+H Y ¥l
Lo(,0) = 0w, + e+ 0+ 2]
o(u,v) = ————[uv Uy + xv; + X"y
’ u+x +H Yt ! Y

We limited to the Taylor development with two variables u and v :

L(u,0) = L(0,0) + 9(0, 0)u + %(0, 000 + 1 (3%(0, 0)u? + 2L

We have:

hbx"y*
Ll(o 0) = Y +H "’
Ly __ hbHuv+hbHy" 3L1 _hbHy"
(W0 = e mEr 7. (0,0) = 7
(253 hbuy hbx* ILy _ hbx
v (u’ Z)) T wtx+H L oux+H v (0’ O) -
P’Ly _ _T2hbHy* Ly _ —2hbHy'
e wo) =m0 20,0 = s
28 _ _ hbH ILy _ _hbH
dudv (1/[, U) T (w+x+H)?2 7 (9u80(0 O) T (*+H)2/
Ly _
W(M, U) =0.
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Then:
U & Up+ hru + hrxt = 2y? — Jox? = By, B[y 4 o] — = L
hbHy*
+ ey i
. h h Hy' heHy*
(5.22)
That we can be written as:
U1 = Pt + Pro0s + Prau? + Praltevy,
U1 = Porlis + PBoo¥s + Pastt? + Poalisvy.
With:
bHhy*
ﬁll =1+ hr- Zhrx - (x+Hy)2’
_ __bh
ﬁlZ - _x fH’
_ bhHy*
ﬁl3 - 7K + (" +H)3’
ﬁ14 _ th
= T +H)?’
_ cHy (5.23)
o1 = e
— chx*
Pz =1—hm+ 5,
‘3 _ _ CcHhy
23 = (x*+H)3’
_ _CcHh
ﬁ24 ~ @+H)2"
Using the transformation:
= Biaxy,
0y = (77 - ﬁll)xt - C]/t,
which can be written in the vectorial form :
u X
‘=17
Ot Yy
12 0
Where: T = p .
n—pu —C
t
1
T ! = (Co(T))! = —¢ Nt pu =__1 —C 0 —| B 0
dft(T) —ﬁlzC 0 Bl | + -pu 1
P12 n+pu P2 Pl T

So:
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Then:

Xtv1 = ,B 2 Uy,
n—pu
Yiy1 = ﬁlzC 77 U1 — Cvt+l-

1
Xps1 = ——(Buaths + P1a0s + Pt + Pratisvy),

P12
X1 = i[ﬁllﬁuxt + B12((n = Pr1)xs — Cyy) + ,8135%235,52 + Bra(Braxe) (17 — P11)x: — Cyy)]

= [%12[/3115123& + B12((n = Pr1)xe — Cyi) + 5135%236? + Bra(Br2xe) (1 — P11)x: — Cyy)]

= Buxi + (= Puxs) — Cys + PraPraxs + Praxi(n — Pr)xi — Cyi),
X1 = N — Y + PraPrax; + Pra(n — Pr)x; — Pralxys.

1
Y1 = nﬁ ﬁcll Upy1 — val
_N=pn 2 1 2
Yer1 = Bl (Br1ue + P120s + Pisuy + Praldsvy) — —(ﬁzﬂlt + Boo0; + Posuty + PoaltsVy),

Yes1 = ’Tﬁ_ ﬁg (Bianxi — Praly: + P1afixs + PraPianxi — PraPuifrox; — PraPralxiy)

- Z(ﬁzlﬁlzxt + Boanxs — PoaPraxe — PCy; + ,323,312xt + ﬁ2451277xt - ,leﬁllﬁlzxt — B2aP12Cx1yy),

Yee1 = Y _fll)nxt —(n=Pu)y: + = 'Bll 513,312 } Ui '811)17514 - = 'Bll 514,311 X7
— (1 = B1)Braxeys — ﬁﬂf 2y - %nxt + ﬁzzfllxt + Booys — i ?f 232 + ﬁz‘f” nxt
,324521,312 o+ BoaPi2X: Vi
Yis1 = 1(772 — B — Pa1Piz — P2 + PooPi1)xe + (=1 + P11 + P2)V:
(T] ﬁll)ﬁl?ﬁu (n- ﬁll)ﬁ14 3 (n— ﬁll)ﬁMﬁH B ﬁzacﬁlz N [)’24251217 N ﬁz4ﬁ:)1ﬁ12 2

+ (=(n = P11)P1a + PoaPr2) Xty
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Furthermore, (5.22) becomes the following form:

Xt+1 = NXp — Cyt + P(xt, yt), (5.24)
Yir = O+ nys + Qxr, vr)-
With:
=1- hmr(c(H-K)+m(H+K))
n = 2cK(c—m) 4
~ \/4(1_ hmr(c(l-ilzﬁ)j’;r;(H+K)) + hzmr(K(iI—Jn)—Hm) )_(2_ hmr(c(I—i;é)j—anr;(H-ﬁ—K)) )2
¢ = >
where:
P(x,y:) = 011355 + 012Xt Y+, (5.25)
Q(xt/ yt) = Ulet + 022Xt Yt,
onn = 512,313 + 71/314 - ,311,314,
o2 = —Pul,
p (5.26)

Oy = % [ﬁuﬁm(’] — Bu1) + P1a(n — B11)* — Pr2Ps(n — P11) — 5235%2] ,
02 = P12fos — 514(77 - ,311)-

Now following quantity required to be non-zero in order to answer that (5.24)

undergoes a Neimark-Sacker bifurcation:

(1-21)A2 1 -
Y =-R (ﬁpupzo - §||Pn||2 — llpo2ll* + R(Ap21). (5.27)
Where:
_1(& P *Q PQ _ PQ P
o = %(—P = 55 T 2oy + ‘(a_ Wt 2%)) oo
_1(ep 2 ?Q . 20
pu = {25+ 25 +1(52+59)) o,

—1(e _ 2p Q PQ _#Q _H PP
P20 = 8 (axﬂ y? + 23xt3yt T Qxf &yf 0x19Yy |(0,0)1

_ 1 &, Pr, PQ | FQ PQ . P PP PP
pan = 16 (th oy} + X2y, + ay? + ox? + |(0 0)

Ix;dy? X2y, dy?

From (5.25), we get :
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2P _ P _

o’ |(0,0) = 2011, 9x:19y; |(0,0) =012, PP | ~0
PP | ~0 23p | -0 92 0o =Y
X2y (0,0) 7 axtayrZ 00 =Y PP | ~0
PQ _ 29 | -0 oy7 100 =
oy (00 =02, GFlon =0, 30 _
30 0 0 B Fr loo =0,
o 00 =0, o loo =0, Q| 0
Pp _ Fie) _ a2ay, 100 =Y
o looy =0, Fra loo =202,

After manipulation we gets:

Po2 = i(Ull + 022 + (021 + 012)),
pu = %(011 + 1021),
P20 = %(011 + 0 + (021 — 012)),

P21 = 0.

(5.28)

Using (5.28) in (5.27) if one obtains i # 0 as (b,c,m, 1, H, h,K) € N|p, then at P; the
discrete model (5.7) undergoes Neimark-Sacker bifurcation. Additionally, for its
existence, it is also necessary that /\’fz #1,m=1,..,4if e = 0 that corresponds to
T(0) # —2,0,1,2. Butif K = % holds then from (5.19), we get D(0) = 1,
and so D(0) # -2, 2. Therefore, we only require that D(0) # 0,1, i.e,,

2(c + m + chm — hm?) _(c+m+chm— hm?)
h2m(m — c) ’ h2m(m — c)

r+

Moreover, at P; the existence of Neimark-Sacker bifurcation also classify to su-
percritical (resp.subcritical) Neimark-Sacker bifurcation if ¢ < 0 (resp. ¢ > 0).
n

» IfK = % (non-hyperbolic condition), we have: Ay [g_m = 1but A [g_m=1-hr #
+1. This implies that if (b, c, m, 1, H, h, K) passes through the following curve then

at P3 there may exists fold bifurcation:

H
F3 |P3: {(blclm/r,H,h,K),K: m }'
c—m
Theorem 5.2.8
If (b,c,K,m,r,H,h) € F\, then at the Py discrete model (5.7) cannot undergoes the fold
bifurcation.
Proof.
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If K varies in a small neighborhood of K* then (5.7) will be written in the form
(5.17).
Let: Ly = 2.

We limited the Taylor development of L3 with one variable :
L(e) = L(0) + L’ (0)e.

LO) =%,
L) =-@s ,  L(0)=-1.

T (K+eR’

K k2 (up+x*)+H
he(ue+x)(wi+y’) &

{ Uy = A+ hr)(u +x°) — b ﬂ)(ut + x*)2 _ M)ty x5,
(up+x*)+H .

U1 = (1 —hm)(vp + y°) +

Moreover, by (5.21), the discrete model (5.7) takes the form:

_ 2 2
U1 = Pty + P120 + Prsudy + Praltsvr + Ooue + 502%6, (5.29)
_ 2 )
U1 = Pttty + o0 + Posily + Posldsy.
With:
— _ 2yt _ bHHY
Pu =1+hr— = - i
ﬁ _ _ bhx
12 — T+H’
‘B _ _hr + bhHy*
B = 7K™ w+H3’
‘3 _ _ _bhH
14 — (e +H)Z/
o1 = Ly
K*Z 7
hr (530)
o = K27
__ chHy"
Pn = wrmp
— chx*
‘322 —l—hm+x*+H,
_ chHy*
P =~y
‘8 _ _chH
24 — (r+H)2’
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Using the transformation:

So:

Xt+1
Yi1
Xt+1
Yi+1

U Xt 1 1
= T , T = .
(vt] (y] (—% OJ
Xt — T—l Uy , T—l — 0 br_ril .
Yi (% -1 b,—T

= Upq + br_’?vtﬂz
—l;—?(ﬁnut + Bo0s + Postt? + PoalisVyr),

= ,Bllut + P20 + ﬁlauz + P1alts0; + Oor1is€ + 502M2€ + br—T(ﬁzlut + Brv; + ﬁza‘u2 + BoaltsVy).

bm
= =5 Ot+1,

Xt+1 B (Bo1 (X1 + Yo) + Poa(—=xe) + Boa(x] + Y7 + 2xeys) + Paa(Xe + y) (= E5%0)),
Y1 = ﬁn(xt + ) + Pra(=gaxs) + Pra(x] + Y7 + 2x:1) + Pra(xr + Ye) (=g xe) + 001 (x; + Yi)e
+002(x7 + Y7 + 2x,y1)€ + 22 (Bor (1 + Yo) + Pra(—15xr) + Pos(x] + Y7 + 2x1y1)
+Paa (Xt + Yo) (= xt))-
System (5.29) becomes:
+ A P 7 ’
el A O [Py g g, (531)
Yis1 0 BJly Q(xt, Y, €)
where:
P(x;, yi,€) =22 3(x + ]/t +2x: ) — ﬁz4(xt + yt)(—ﬁxt)
Q(xt, Y, €) (,313 + B Bos) (37 + v + 2xtyt) + (Bra + ZBoa) (xr + y) (== x0) + o0 (xe + Yi)e

+602(xt + yt + 2x: 1 )€.

Itis recall here at € = 0, we can check the stability of O(0, 0) by the center manifold
theory, according to the theorem of implicit functions there exists FCO.

Where FCO = y:

then:

FCO(x, €), x| < &1, le] < &2, FCO(0,0) = DFCO(0,0) =

(5.32)

=1{(x,y,€) eR?: y=

The function FCO must satisfy equation (5.32),
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we suppose that:
FCO(x;, €) = boe + byxse + bye® + bax? + O((|xi| + [yi])?).
By (5.32):

F(FCO(x;, €)) = FCO[Ax; + P(x, FCO(x,, €),€)] + BFCO(x, €) — Q(x;, FCO(xy, €), €),

F(FCO(, €)) = FO [ = T2 (0 + FEO(w, € + 26F0(0,€) = sl + O, )~ 7-x)

bm bm
— AFCO(x;, €) — (B3 + ;ﬁzs)(x% + FCO(xy, €)% + 2x,FCO(x, €)) + (Bra + F,BM)

(x; + FCO(x, e))(—%xt) + 801(x; + FO(x, €))€ + 002(x7 + Y7 + 2x,1)e,

F(FCO(xt, €)) = boe + bre(x; — l;—rcnﬁzgxf - %523(b06 + byxi€ + bre® + ngf 2_ 2%523xt(b0€ + byxi€

bm b

+ b2€2 + ngtz)) + b2€2 + bg(xt — —ﬁ23x2 — 2)2
rc

r—rzlﬁzg(boe + blxte + l’)2€2 + ngt
bm 2 2\\2 2 2 bm
- Z?ﬁzgxt(boe + blxte + b2€ + ngt)) - Az(boe + blxt(—: + b2€ + ngt) - (‘813 + ;‘323)

+ (b0€ + blxte + b2€2 + b3X?)2 + th(b()G + blxte + b2€2 + b3xt2)) + (ﬁ14 + Z;—T‘BM)

(x; + (boe + bixie + b€ + bﬂf))(—%xt) + 801 (x; + (bo€ + bixs€ + bye? + b3x?))e

+ O002(x7 + Y7 + 2x:(boe + byxie + bre® + byx?d))e,
F(FCO(xt, 6)) = b0€ + blxte — 21:/_1:[523170351?6 + b2€2 + ngg — /\21706 — /lzblxté‘ — /\217262 — A2b3xf — ﬁ13xt2
b c T

bm bm m T c
- ﬁ13béez — 2B13bo€ex; — ?ﬁzsxtz - ?523536‘2 - Zr—cﬁmboxte + 514%3& + Pia b boxie
+ ﬁ24xf + Bosboxi€ — Omxi€ — 501b0€2,
bm bm re
F(FCO(xt, €)) = (by — Axbp)e + (by — 2;&350 — Axby — 2513170 - 2?,32350 + ,314%170 + 5241?0 — 001)2

bm bm rc
+ (ba — Aaby — Pi3bl — Fﬁzsbg — do1bo)e” + (b — Aabs — Pr3 — F‘BZS’ + 514% + Boa)x®

So:
bo—/\zb():O:)bo:O,bz:O,
_ _ bm
by —Ab1 — 601 =0 = by = 11
B B3z — ﬁﬁm + b,—Tﬁzs — Pos

bm rc
bs—/\zb3—513—F523+%514+,324—0:>173— -1
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Now, we write (5.31) restrict to F°O as:

gi(x,€) = x + dle + dyxi€ + dse® + d4xf€ + dsxi€? + O((Jaxe| + |€|)3). (5.33)
bm bm
Xey1 = Xp + (——,323uf - —ﬁzwtvt),
bm bm )
=X — —,323 ; — —523(b1xt€ + bsxt) 2—ﬁ23xt(blxt€ + b3x?) + Boax? + Boax(brxs€ + b3x?),
bm bm
=X — —‘823xt ﬁ23b% xje* — ‘823b3xt r—cﬁz3blb3xf€ + BoaX? + Paabix?€ + Posbsxs,

bm bm bm
=X; + (—r—cﬁ23 + ﬁ24) xf + ‘324[1’)33@;5 - r—cﬁngfxgez + (‘3241’)1 2—ﬁ23b1b3) X, € — e ﬁngfle

Where: ,
m
d = ——,523 + Pos,
dy=d;=ds =0,
bm
dy = Poabr — 2—Pa3b1bs.

rC

We obtain:

g1(xs,€) = x; + dix7 + dyxle.
After that we discuss the conditions on fold bifurcation:
Iy _
- 5 lo=0

The first condition is not satisfaied; so if (b,c,m,r,H,h,K) € F; | P3, the fold

bifurcation does not exist. m

IfK = hHmr(—=2c—2m—hmc+hm?) /\1 |

(1Zm2r—4c—T2mrc—2hmr)(c—m) hHmr(=2c=2m—hmc+hm2) = _1/

(h2 m2r—4c—h2 mrc—2hmr)(c—m)

_ o(=2+hm(=3+hr))—mQ2+hm(-3+hr)) .. . .
/\2 |K= hHmr(—Zc—Zm—hchrhmz) - m(—2+hm)—c(2+hm) i il ThlS 1mp].1es tha.t lf (b, C, m, 1’, H, h, K)
(H2m2 r—4c—h2 mrc—2hmr)(c—m)

passes through the following curve then system(5.7) may undergoes a flip bifur-

cation at P3:

hHmr(=2c —2m —h him?
P4|P3={(b,c,m,r,H,h,K),K: mr(—=2c — 2m — hmc + hm?) }

(h2m?r — 4c — h>mrc — 2hmr)(c — m)

Theorem 5.2.9
If (b,c,m,r,H,h,K) € Fy4 |p, then at P discrete model (5.7) undergoes a flip bifurcation.
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Proof.
By (5.21), the system (5.29) takes the form:
Xt+1 _ -1 0 ||x + F(xt, y1,€) . (5.34)
Yi+1 0 A Y G(x, Y, €)
Where:
B =2m(—=2 + hm) + 2¢(2 + hm) ) )
F(us, v, €) = (A + hm(d — hir) + m(d < hm(—4 + hr))(‘BBut + P14V + Og1us€ + OppUif€)
bhm(m(2 — hm) + ¢(2 + hm)) )
—4c(c + m + chm — hm?) + chic — m)mr(‘BZSut ¥ P,
B h(c — m)m(=2 + hr) ) )
G(ut/ Ut/ 6) - C(—4 + hm(—4 + h?’)) _ m(4 + hm(—4 + hr)) (ﬁl?)ut + ﬁlzﬂxltvt + 601ut€ + 602ut €)
bhm(m(2 — hm) + ¢(2 + hm)) 5
—4c(c + m + chm — hm?) + chlc — m)mr(‘BBut ¥ Pasttst),
Uy = Xt + Yy,
o = c(2c — 2m — chr + hmr) . 2c
"7 bQ2c + 2m + chm — hm?) ™" bhm”"
utz = xf + yf + 2x:Ys,
_ ¢(2c=2m —chr + hmr)  , 2c )
Ui = e o+l — )& XY T g W F Y,

W€ = X€ + Y€, , UTE = Xi€ + YP€ + 2XiYy

u| |1 1)fx A c(2¢c — 2m — chr + hmr) B——i
o] (A B n ’ ~ b(2c + 2m + chm — hm?)’ ~ bhm’
Now from (5.34), and by (5.32) the center manifold is:

MFop(0,0) = {(xs, 1) : ye = Coe + Cix? + Coxie + Coe® + O (il + [el)?)},
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M-(h(x,€)) = h[Ax + F(x, h(x,€),€), €] — Bh(x, €) — G(x, h(x,€),€),
M (h(x,€)) = h[—x + F(x, h(x,€),€), €] — Ah(x,€) — G(x, h(x, €), €),

2c 2c
M (h(x, €)) = h[—x + A(B13x? + B1aBx? + B1ay? + 2B13Xeys + PraBxiys — ——PraXeys — ——Prayy
bhm bhm
+ Oo1X€ + Og1 Y€ + 602xf€ + 602yfe + 200X Y1€) — C(‘B23(xf + ytz + 2x:y) + /324B(xf + X Yp)

2c
- %[‘324(3&% +y7))] — Aa(Coe + C1x7 + Coxie + C3€”) — D(Bi3(x? + y7 + 2x111))

2c
+ BraB(x7 + 1Y) — Wﬁm(xt]/t +y7) + So1:€ + Oor Y€ + O€(x? + Y7 + 2x,yy),

Mc(h(é‘, X)) = (CO - /\QCO)E + (AC1ﬁ13 + AC1ﬁ14B - Cclﬁzg, - CClﬁM - /\2C1 — Dﬁlg, - DﬁmB)X%

2CAC,C
+ (2AC1ﬁ14C0 + AClﬁMCO - Wlo + AC1601 - /\2C2C0 - 2D‘314C0 - D‘314BCO

2 2CC.C
+ - DpB1aCo = D1 = 2CC1P323Co — CCiCofaB + b;l—mOﬁM

+(C5 — A2C3)€3.

+ CC1Cy)xse

Suppose that:
B bhm(m(2 — hm) + c(2 + hm))
~ —dc(c + m + chm — hm?) + ch?(c — m)mr’
D h(c — m)m(=2 + hr)
(=4 + hm(—4 + hr)) — m(4 + hm(—4 + hr))’
Where:

Co=C3=0 /C = L(D(ﬁw + AP1a) + C(Bs + APrs)) /Co = L(D<501)-

1-A, 1-A,
(5.35)
Now, we write (5.34) as:
g1(xs) = —=x¢ + lx? + hoxee + haxie + hyxi€® + hsx? + O ((Ixtl + |e|)4) . (5.36)
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X1 = =Xt + F(uy, v, €),
- _ —2m(=2 + hm) + 2¢(2 + hm)
Xep1 = =X + c(4 + hm(4 — hr)) + m(4 + hm(—4 + hr))
bhm(m(2 — hm) + c(2 + hm))
- —4c(c + m + chm — hm?) + hmrc(c — m) (Bas} + Boaths0r),
—2m(=2 + hm) + 2c(2 + hm)
B c(4 + hm(4 — hr)) + m(4 + hm(—4 + hr))
c(2¢c — 2m — chr + hmr)
b(2c + 2m + chm — hm?)
bhm(m(2 — hm) + ¢(2 + hm))

_ 2, 2
—dc(c + m + chm — hm?) + ch(c — m)mr(ﬁm(xt Y+ 20y + Pl

(5131/{% + 5141/[1}7)1} + 601ut€ + 60211%6)

Xip1 = —X; (Bia(x7 + y7 + 2x:y4) + Pua

2c
(xf + Xt Yr) — W(xtyt + yf)) + 001 (xt + yi) + 602(xt2 + ]/f + 2X:Y1)€)

c(2¢c — 2m — chr + hmr)
b(2c + 2m + chm — hm?)

2
(o + 2xy1) - ﬁ(xtyt + 1),
B =2m(—=2 + hm) + 2¢(2 + hm)

c(4 + hm(4 — hr)) + m(4 + hm(—4 + hr))
S I (5 4 (5, ) = o (i, €) + H(x, €) + B + )

b(2c + 2m + chm — hm?)
bhm(m(2 — hm) + (2 + hm))

—4c(c + m + chm — hm?) + chic — m)mr

c(2c = 2m — chr + hmr) , ,

b(2c + 2m + chm — hm?) (x" + x¢h(x, €))

Xt = =X (Bia(x7 + H*(x, €) + 2x:h(x, €) + P

(

+ 002 (2 + I (x, €) + 2x:h(x, €))e) —

(B + B2 (x, €) + 2x:h(x, €))) + Poa(

- 5 (k) + 125, €)),

—2m(=2 + hm) + 2c(2 + hm)
" o(4 + hm(4 — hr)) + m(4 + hm(—4 + hr))
c(2c — 2m — chr + hmr)
b(2c + 2m + chm — hm?)

(‘313(3(7% + (C0€ + C1X% + szté‘ + C3€3)2

Xty1 = —X¢

+ 2x:(Coe + C17 + Coxse + Cs€”) + Bua( (x? + x:(Coe + C1x7 + Coxse

+ Cs€?)) — bi—fn(xt(coe + C1x? + Coxse + C3€) + (Coe + Crx? + Coxie + C3€°)?)) + S (xs

+ (Coe + C1? + Coxse + C3€%)) + 0p2(x? + (Coe + C1x? + Coxse + Ca€®)? + 2x(Coe + Cix?
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bhm(m(2 — hm) + ¢(2 + hm))
—4c(c + m + chm — hm?) + chc — m)mr
c(2¢c — 2m — chr + hmr)
b(2c + 2m + chm — hm?)

+ Coxse + Cze¥))e) —

(‘Bzg(X? + (C0€ + C1X% + szte

+ C5€®)? + 2x,(Coe + Clxt + Coxse + C3€d)) + ﬁ24( (x* + x;(Cope + Cle

+ Coxse + Czed)) — bfz (x/(Coe + C1x7 + Coxse + C3€”) + (Coe + C1x7 + Coxse + Cz€%)?)),
=2m(—=2 + hm) + 2¢(2 + hm)

c(4 + hm(4 — hr)) + m(4 + hm(—4 + hr))

c(2¢c — 2m — chr + hmr)

bQ2c + 2m + chm — hm?)

Xi+1 = —Xp —

(ﬁlS((xtz + Clxtz + 2xt(C1X% + Coxs€)

+ B1a( (x7 + x:(C1x7 + Coxs)) — ——(xi(c12x7 + Coxse)

2c

bhm

2x7)) + So1(xs€ + C1x? + Coxse)e + 8o (x7 + c*1x7 + 2x,(C1x? + Coxs€)e))))
bhm(m(2 — hm) + ¢(2 + hm))

- —4c(c + m + chm — hm?) + ch'c — m)mr(ﬁ By + G + th(clxtz + Cxie))

c(2c — 2m — chr + hmr)

b(2c + 2m + chm — hmz)(

+ Boa( xt2 + xt(Cle + Cox;€))) — (xt(Clxt + Coxs€) + C2 ))

bh

So we find :
—2m(=2+hm)+2c(2+hm) c(2c—2m—chr+hmr)
I c(@+hm(&—hr))+m(d+hm(—4+hr)) X (513 + b(2c+2m+chm— hmz)ﬁM)
1 _ bhm(m(2—hm)+c(2+hm)) X( + c(2c 2m—chr+hmr) )
—4c(c+m+chm—hm?2)+ch?(c—m)mr ﬁ23 b(2c+2m+chm— hmz)ﬁ24
h _ =2m(=2m+hm)+2c(2+hm) S
2 c(d+hm(&—hr))+m(&+hm(=4+hr)) © 01/
—2m(=2m+hm)+2c(2+hm) c(2c—2m—chr+hmr)
hy = C@hm{A—n) +m @ hm(—a+hn) (2B13C2 + (b(2c+2m+chm “hm?) bhm s P14C2 + 001C1 + 002C1) }

bhm(m(2—hm)+c(2+hm)) c(2c—2m—chr+hmr)
_—4c(c+m+chm—hm2)+ch2(c—m)mr X (2ﬁ23C2 + (m bhm ),324C2)
e = —2m(=2m+hm)+2c(2+hm) S5nC
4 T C@thm@—T)+m@A+hm(—4+hr)) Y012/

—2m(=2m+hm)~+2c(2+hm) c(2c—2m—chr+hmr)
he = { ity rmacmam < (2P13C1 + Gz nd) bhm)ﬁMCl) }

bhm(m(2—hm)+c(2+hm)) c(2c—2m—chr+hmr)
T Zac(c+m+chm—hm2)+ch(c—m)mr (2623 Cl + (b(2c+2m+chm—hm2) bhm )ﬁ24cl
We calculate:

&Zgl 1 391 8291)
o= (22 2 5.37
! (8xtae 2 de 9x} )| ) 5:37)
1% (101
FQ = (g ax‘;’ + (E axf ) (538)
(0,0)

P
A = hyx; + hax? + 2hyxse.

Po _
ol = hz + 2]’133(15 + 2]’146.

‘;_Zt = —1 4 2h1x; + hye + 2h3x,€ + hye? + 3h3xt2.
‘f% = 2hy + 2hse + 6hsx;.
f)% = 6.
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In view of (5.36), (5.37) and (5.38)

and

one gets:
In=h, #0, (5.39)
T, = hs + . (5.40)

Finally, from (5.40) if 'y # 0 as (b,c, H,m,1,h,K) € F4 |p, then at P; the model (5.7)

undergoes a flip bifurcation, moreover, if I > 0 (respectively, I'; < 0) then the

period-2 points bifurcating from P; are stable (respectively, unstable). =

Chaos control

We will explore chaos control first by OGY control method than by Feedback method.

» OGY method

The first method is OGY that we first verify controllability by:

Lets consider the system:

X1 =

F(X,,p) ~ AX, + B. (5.41)

The system (5.41) is controllable if the the controllability matrix:

has full rank 2.
Where A = 3_1; r=x5(0) and B=
So for the system (5.7) we have:

1+ hr — 2
CthF

K
(xp+H)2 1-
The K controllability matrix is:

— ot
A—ax

(ryr)

Px = [Bx, ABk] =

P = [B, AB],
JF Xe =]
, Xr = [xF, yr].
3p :ﬁ y
b i
xp+H BK _ JF _ | K
chxg |/ = OKl(xryp) )
i + SR
herZ: herZ: hzrzmxlzs(c(H—K)+m(H+K))
KOK? T cK3(c—m)
0 12r2(K(c—m)—Hm)
bK3 :
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Then we conclude that the Rosenzeig MacArthur system can stabilize around

equilibruim point by OGY method.

» Feedback method
For the second method we adding control force U; = —k;(x; — x) — ka2 (y: — v)

Let the system:
X1 = F(Xy, p) = AXy + Uy

The system (5.42) is controllable if the controllability matrix:

P = [B, AB]

oF ky

Where A = E'xsz and B=K = L and xr = (x, y)
2
The discrete model (5.7) becomes:

X1 = (1 +hr)x, — %x% - xf’fotyt —ki(x: = x) = ka2 (ye — v),
Yerr = (1 —hm)y, + xt’%xtyt-

where x = %, Y= %, the Jackobien of (5.43) is:

I Ip.= tn—k tn—k
P3_ .
{)21 522
_ hmr(c(H-K)+m(H+K)) __ hr(K(c—m)—Hm)
gll =1- cK(c—m) ’ 521 - kK
by =-tm tn =1

c /

M+Ay =01+ ln -k,

AMAy = (611 = k1) = €21 (612 — k).

Lemma 5.2.2

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)

If the characteristics roots of [°(Ps) satisfying |A1,| < 1 then (5.43) is asymptotically stable.

Proof.
IfA =+1

o If /\1/\2 = 1, from (546) . 522(511 - k1) - 521(512 - kz) =1
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_ hmr(c(H-K)+m(H+K)) ey — hr(K(c—m)—Hm) (_bh_m —k)=0
cK(c—m) 1 bK c 2) =
—hmrb(c(H—K)+m(H+K))—ky cbK(c—m)+hr(K(c—m)—Hm)(bhm(c—m))+kyhrc(K(c—m)—Hm)(c—m) __ 0
bKc(c—m) -

— hmrb(c(H — K) + m(H + K)) — kicbK(c — m) + hr(K(c — m) — Hm)(bhm(c — m)) +
kohre(K(c — m) — Hm)(c —m) =0
We get :

. —hmrb(c(H — K) + m(H + K)) — k;cbK(c — m)
1. +hr(K(c — m) — Hm)(bhm(c — m)) + kohrc(K(c — m) — Hm)(c —m) = 0.

(5.47)
e If A; =1, by substitute A, in (5.45) and (5.46), they becomes:
Az = {711 + 522 - k1 — 1, (548)
Ay = oty — ky) = o1 (t12 — ko). (5.49)
i+l — k1 =1 = (b — k1) — €1 (br2 — k2)
i+l —ky — 1= (b — ki) + O (612 —k2) = 0
hr(K(c—bz)—Hm)(_thm _ kz) -0
W2bmr(K(c—m)—Hm)—hrbcky (K(c—m)—Hm) __ 0
bKc -
h*bmr(K(c — m) — Hm) — hrk,bKe(K(c — m) — Hm) = 0
h?bmr — hrkck, = 0
hbm — kck, = 0
We get:
Ly :{ hbm — keky = 0. (5.50)
e If A; = —1 by substitute it in (5.45) and (5.46) :
Ay =ty +lp—k +1, (5.51)
Ay = =lpn(l11 — ki) + (€12 — k2). (5.52)

i+ O — ki + 1= —Co(l11 — k1) + (€12 — ko)
tin+ 0l —ki+ 1=l + ki + €i(l — ko)
ti+ 0l —ki+ 1+ —ky — (b2 —k2) =0
2011 +2—=2ky — n(tia — k) =0

89



Non linear dynamics and chaos control of a discrete Rosenzeig-MacArthur
prey-predator model

2(1 — Ky )y o op M( bhm —k) =0

cK(c—m)
2hmr(c(H-K)+m(H+K)) hr(K(c=m)—=Hm) , bi _
4- cK(c—m) — 2K+ T(_m - k2) -
We get:

Thus from (5.47), (5.50) and (5.53) lines L;, L, and L3 gives the conditions for the eigen-
values satisfying |A1,| < 1. Moreover, triangular region bounded by L;,L, and Ls

contains stable eigenvalues. m

5.3 Numerical simulations

In this section, we will give some numerical simulations for the system (5.7) to support
our theoretical results.

We presente this in two cases with different values of parametres and intial conditions.

5.3.1 Case(1): Numerical simulation for the set of parametre: b = 0.55,
c=205,H=08,m=015,r=0.7,h=1

If
b=055,c=205H=08m=0.15r=07h=1, (5.54)

and K = [0.1, 1.2]. With the initial condition (xo, o) = (0.1,0.1) then at K = 0.36 discrete
model (5.7) undergoes a Neimark-Sacker bifurcation. Two 2D bifurcation diagrams
are drawn in Figure 5.1. Additionally, corresponding to Figure 5.1. 2D Lyapunov
exponent is also plotted in Figure 5.2 and the positive Lyapunov exponent indicative
chaotic behavior.Further, at (b,c, H,m,r,h,K) = (0.55,2.05,0.8,0.15,0.7,1.0,0.36) model
(5.7) has interior equilibrium solution P; = (0.0632,0.9058) and, from (5.12), one gets

the Jackobien matrix:
. 0.9194 —0.0402
] |P3 = s

119938 1

90



Non linear dynamics and chaos control of a discrete Rosenzeig-MacArthur
prey-predator model

with the characteristic equation:
A% —1.9194A + 0.9996 = 0. (5.55)

The roots of (5.55) are A1, = 0.9597 + 0.2804: with |A;,| # 1 which implies the fact that
parametric condition:

(b,c,H,m,r,h,K) = (0.55,2.05,0.8,0.15,0.7,1.0,0.36) € N |p,.

Furthermore, for the set of parameter values (5.54), and varying the value of the bifurca-
tion parameter K < 0.36 then one can obtain that the respective interior equilibrium so-
lutionis a stable focus. Similarly, if one varies K = 0.2965, 0.3165, 0.3355, 0.3445, 0.3575, 0.359 <
0.36 then Figure 5.4 also show that the corresponding equilibrium solution P; =
(0.0632,0.8646),

(0.0632,0.8793)(0.0632, 0.8918), (0.0632, 0.8972), (0.0632, 0.9045), (0.0632, 0.9053) is also sta-
ble focus. On the other hand, if one varies the bifurcation parameter K > 0.36 then
we can conclude that respective interior equilibrium solution is unstable focus, and
meanwhile supercritical Neimark-Sacker bifurcation occurs.

For instance, for the set of parameter (5.54), then from (5.20) the nondegenerate condi-

tions, i.e, %Iezoz 0.206 # 0 holds, and if K = 0.3599 then from (5.23) and (5.2.3), one
gets:

B11 = 0.9194,

Bz = —0.0402,

Bz = —1.3253,

P1a = —0.5906, (5.56)

Bn = 1.9938,

B =1,

B = -2.3099,

Bas = 2.2012.

{ n =0.9597, 557

C =0.9378.
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Utilizing (5.56) and (5.57) into (5.26) one gets:

onn = 0.0295,
o2 = 0.5538,
oy = 0.0091,
oxn = —0.0648.

Now in view of (5.58) and (5.28), one obtains

oz = —0.0088 + 0.14071,
p11 = 0.0147 + 0.0045.,
p20 = —0.0088 —0.13611,
pa =0.

Finally, using (5.59) along with A = 0.9597 + 0.2804: into (5.27) one gets:

Y = —0.1944 < 0 which give the fact closed invariant curve must exists, and hence

(5.58)

(5.59)

discrete model undergoes supercritical Neimark-Sacker bifurcation at indicated interior
tixed point P = (0.0632,0.9058) (see Figure (5.5a)).

In similar manner, we can also obtain that if one varies K = 0.361, 0.366, 0.40 then stable

invariant curves also appears which are depicted in Figure (5.5¢c).

(a)

k

(b)

Figure 5.1: Neimark-Sacker bifurcation of discrete system (5.7) (a) for x; and (b) for y;
for the set of (5.54) at P; = (0.0632, 0.9058).
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Lyapunov exponents A,

Figure 5.2: Lyapunov exponent of the system (5.7) varsus k for the set of parameter
values (5.54) at P; = (0.0632, 0.9058).

Evolution of eigenvalues by k

15

Lambda

051

0 0.1 0.2 0.3 0.4 0.5 0.6
k

Evolution of descriminent
T T T

051

Descriminent

-0.5

Figure 5.3: Evolution of eigenvalues and descriminenet by k for the set of parameter
values (5.54) at P3 = (0.0632,0.9058)
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Figure 5.4: Phase portrait of the discrete model (5.7) for the set of parameter values
(5.54) in P3 = (0.0632,0.9058), k=0.359 and the initial condition: (0.1760, 0.5259)
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@ k0,361 (b) k=0.366
a) K=U.

(c) k=0.40

Figure 5.5: Invariant closed curves of the discrete model (5.7) for the set of parameter
values (5.54) in P; = (0.0632,0.9058) and the initial condition: (0.1760,0.5259)

5.3.2 Case(2): Numerical simulation for the set of parametre: b = 0.9,
c=35,H=07,m=07,r=28,h=1

Flip bifurcation

If
b=09,c=35H=07m=07r=28h=1 (5.60)

95



Non linear dynamics and chaos control of a discrete Rosenzeig-MacArthur
prey-predator model

K € [0.01,0.55]. With (xo, y0) = (0.1760,0.5259) then at K = 0.2168 discrete model

undergoes the flip bifurcation. The Lyapunov exponent with flip bifurcation diagrams

are drawn in figure (5.6a).
Further, at (b,c, H,m,r,h,K) = (0.9,3.5,0.7,0.7,2.8,1,0.2168) the discrete model (5.7) has
an equilibrium solution P3 = (0.1750, 0.5249) and the Jackobian matrix is :

_ o (-11522 -0.1800
J Ipy= :
16795 1

with the eigenvalues A; = =1 and A, = 0.8489 # +1 and hence based on these sim-
ulations one can obtain that (b,c,H,m,r,h,K) = (0.9,3.5,0.7,0.7,2.8,1,0.2168) € F3 |p,.
From (5.30), (5.35), (5.2.3) one gets:

B =-11522,
B =—0.1800,
Bz = —12.4215,
B = —0.8229,
001 = 20.8501,

(5.61)
002 = 59.5716,
P =1.6795,
B =1,
By =-1.9195,
By =32
Co =GC3=0,
C, =0.8055, (5.62)
C, =-11.2991.
And:

hy = -15.3803,
h, =123.8379,
hy = —-163.5835, (5.63)

hy = —-269.3474,
hs = —-144.6623.
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Substituting (5.63) in (5.39) and (5.40) one gets: I'1 = 23.8379 # 0, I, = 91.8928 > 0.
Since I'; = 91.8928 > 0 and so it can be concluded that stable period-2 points bifurcate
from P; = (0.175,0.5249).
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Evolution of eigenvalues by k

v el

W,

i
Lambda

Lyapunov exponents A

Evolution of descriminent
T T T T T

Descriminent
5

L L L L L L L
01 015 02 025 03 035 04 045 05 055 06

(a) Lyapunov exponents of Flip bifurcation at (b) Evolution of eigenvalues and descrim-

P5 = (0.175, 0.5249). inenet by K at P5 = (0.175,0.5249)
xt
1
0.17 15
08 0.4750000000001
0.17500000000005 |  |°
0.8~ 0475 '%
0.17499000009995 | .
07
0.1749999999899
0.1
06 - 021 0218 022
05
04
03
02
01
o .
0.1 015 02 025 03 035

(c) Flip bifurcation diagram for x; at
P3 = (0.175,0.5249)

Figure 5.6: a)Lyapunov exponents of Flip bifurcation b)Evolution of eigenvalues and
descriminenet by K. c¢)Flip bifurcation diagram for x; at P3 = (0.175, 0.5249).
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e In this section, we explain the chaotic coexistence in the Rosenzweig-MacArthur
system. Table 5.3.2 illustrates the cases of changes in attractors and Lyapunov

exponents with the evolution of K.

Attractors K A2
Chaotic [0.164,0.2169] | Ay >0and A, <0
Quasi-periodic 0.217 Ap=0and A, <0
Periodic [0.217,0.399] | A; <0and A, <0
chaotic [0.3992,0.437] | Ay >0and A, <0
Quasi-periodic 0.438 Ap=0and A, <0
periodic [0.438,0.442] | Ay <0and A, <0
Quasi-periodic 0.457 A =0and A, <0
Periodic [0.457,0.477] | Ay <0and A, <0
Chaotic [0.477,0.538] | Ay >0and A, <0
Hyper-chaotic | [0.538, 0.5816] | A1 >0and A, >0

Table 5.1: The Lyapunov exponents and the type of attractors of the system with the
tirst set of parameters (5.60) at P; = (0.175,0.5249)

— Coexistence of attractor: In the diagram, we observe the coexistence of
different attractors for several values of k, such as k=0.2171 and k=0.47, with

different initial conditions.

+ If k=0.2171 with three initial conditions for (x1, y1) = (0.1749,0.5278) we
have a chaotic attractor, for (x, 12) = (0.2505,0.1405) we have(periodic
points), for (x3, y3) = (0.1931,0) (invariant curve), where we observe two
periodic points, corresponding to two Lyapunov exponent values, both

of which are negative (periodic attractor), (see figure 5.84,5.8b)

+ If k=0.47 with three initial conditions for (x1,y1) = (0.1831,0.9633) we
have a periodic points , for (x, 12) = (0.1750, 1.4346) we have (periodic
points), for (x3, y3) = (0.5886,0) (invariant curve), where observe seven
periodic points,corresponding to two Lyapunov exponent values, both

of which are negative (periodic attractor), (see figure 5.94,5.9b)
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(a) Bifurcation diagram for x; with three condi-
tions: (x1,y1) = (0.1749,0.5278),

(x2,¥2) = (0.2505,0.1405), (x3,y3) = (0.1931,0) at
P3 = (0.175,0.5249).

(b) Bifurcation diagram for y; with three condi-
tions: (x1,y1) = (0.1831,0.9633),

(x2,y2) = (0.1750,1.4346), (x3,y3) = (0.5886,0) at
P35 = (0.175,0.5249).
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0.8278920320846

*
> 0.52789293208455 \

0.5278929320845

(a) (b)

Figure 5.8: a) Coexistence of a chaotic attractor and period-2 points for the set of param-
eter (5.60) at P; = (0.175,0.5249) with k = 0.2171 and the initial condition (0.2505, 0.1405)
for the chaotic attractor and (0.1749, 0.5278) for the period-2 points. b) Time evolution
of x for the periodic points

25

(b)
(a)
Figure 5.9: a) Coexistence of a chaotic attractor and period-2 points for the set of param-
eter (5.60) at P; = (0.175,0.5249) with k = 0.47 and the initial condition (0.1750, 1.4346)

for the chaotic attractor and (0.1831,0.9633) for the period-2 points. b) Time evolution
of x for the periodic points

101



Non linear dynamics and chaos control of a discrete Rosenzeig-MacArthur
prey-predator model

Control methods

e Feedback control From (5.47), (5.50) and (5.53), one gets:

The first strigh line equation:
Ly : 0.5954K; — K, + 1.2814 = 0. (5.64)
The second strigh line equation:
L, : K; + —0.00002545 = 0. (5.65)
The third strigh line equation:
Ls : 1.1908K; — K, + 0.0012 = 0. (5.66)

Hence, lines (5.64), (5.65) and (5.66) determine triangular region that gives

A2l < 1 (See Figure 5.11). The Figures (5.104,5.100,5.10¢,5.10d) are without
control. Finally t vs x; and y; for (5.43) with k1 = 0.02 , k2 = 0.24 have
been plotted that implies that unstable trajectories are stabilized (See Figure
5.12a;5.12a;5.12b;5.12¢;5.124d)
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Figure 5.10: (a)Time evolution of x;,(b)time evolution of y;,(c)time evolution of fixed
point. (d)Plot of x; and y; for the non controlled system (5.43) for the set of parameter
values (5.60) in Pz = (0.175,0.5249) and initial codition (0.176,0.5259) with K1 = 0.02,

K2 = 0.24 by control Feedback
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Figure 5.11: Stability region (|A;,| < 1) for the set of parameter values (5.60) at
P; = (0.175,0.5249).
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Figure 5.12: (a)Time evolution of x;,(b)time evolution of y;,(c)time evolution of fixed
point. (d)Plot of x; and y; for the controlled system (5.43) for the set of parameter values
(5.60) and initial codition (0.176, 0.5259) with K1 = 0.02, K2 = 0.24 by control feedback

¢ OGY method

Let us consider K as a control parameter of the system (5.7) for the set of parameter

values (5.60) and the Jacobian matrix at the fixed point P; is:

of -1.1522 —0.1800
A = =(0.1750,0.5249) = ,
ox 1.6795 1
0 1,8243
with B = 7{(0'1750’0'5249) = ]

The matrix A has two eigenvalues : A, = —1.0011 and A, = 0.8489, indicating that
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P5 is saddle point (hyperbolic)
Whith two right eigenvectors

—0.7660 0.0896
Uy = and v = ,
0.6429 —-0.9960

and two left eigenvectors:

P (—0.9960] and f [—0.6429] ,
—0.0896 —-0.7660
and KT = (—0.5487, —0.0494).
Figure 5.13 illustrates the response of the controlled Rosenzeig-Macarthur model
with the applied control effort. The control is activated when the system state ap-
proaches the unstable equilibrium P; att = 100 and the parameter K is adjusted by
a small perturbation of order 10~ during the short time period ¢ € [100,101]. Sub-

sequently, the control is quickly established at t = 101, stabilizing the Rosenzeig-

Macarthur model to its P; equilibrium.
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Response of Rosenzeig-MacArthur controled system for k=0.2168
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Figure 5.13: Response of the controlled system (5.7) using the OGY control with the
set of parameter values (5.60) in P; = (0.175,0.5249), k = 0.2168, and initial condition
(0.1760, 0.5259).
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CONCLUSION

The goal of this work is to study the Rosenzweig-MacArthur model for prey and
predator interactions, finding that it has three fixed points whose stability depends
on the parameter k. We showed that the model undergoes two types of bifurcations
(Neimark and Flip) and that their calculations are very complicated. In addition, the
bifurcations indicate that the system is sensitive to initial conditions. Furthermore, we
discovered that chaotic behavior can be eliminated by applying two types of control

(Feedback and OGY). Finally, we confirmed the results numerically.

It is also possible to propose the development of this system into one where the

interaction part is of the Holling Type III with k = 2 for both the prey and the predator.
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