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ABSTRACT

Our aim in this thesis is to study a first-order linear difference equation with positive

fuzzy coefficients.

In the first chapter, we presented some definitions and the main theories related to

linear and nonlinear difference equations.

The second chapter focused on fuzzy sets, including some of their important prop-
erties and illustrative examples, as well as fuzzy numbers, which are part of them.
We discussed their theoretical aspects, fundamental properties, various types, and

arithmetic operations on them.

The third chapter was dedicated to studying the existence, uniqueness, bounded-

ness, persistence, and convergence of the positive fuzzy solution.

Key words: fuzzy difference equation, fuzzy numbers, fuzzy sets, boundedness,

persistence.
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RESUME

Notre objectif dans ce mémoire est d’étudier une équation aux différences linéaires du

premier ordre avec des coefficients flous positifs.

Dans le premier chapitre, nous avons présenté quelques définitions et théories prin-

cipales relatives aux équations aux différences linéaires et non linéaires.

Le deuxiéme chapitre est concentré sur les ensembles flous, ainsi que sur certaines
de leurs propriétés importantes et des exemples illustratifs, ainsi que sur les nombres
flous qui en font partie. Nous avons discuté de leurs aspects théoriques, de leurs pro-

priétés fondamentales, de certains types et des opérations arithmétiques associées.

Le troisieme chapitre a été consacré a 1'étude de 1'existence, de l'unicité, de la

bornitude , de la continuité et de la convergence de la solution floue positive.

Mots-clés : équation aux différences floues, nombres flous, ensembles flous, borni-

tude, continuité.

v



Introduction

CONTENTS

1 Preliminaries

1.1 Linear difference equations

1.2 Non linear difference equations

1.2.1

1.2.2

Stability of non linear difference equations . . . . ... ... ...

Theorems of convergence . . .

2 Fuzzy Sets and Fuzzy Numbers

2.1 Fuzzy sets

211

2.1.2

2.1.3

214

Fuzzylogic . ..........
Classicalsets . . ... .. ...

Concept of fuzzy sets . . . . . .

Operations between fuzzy sets

\%



2.1.5  Algebraic operations on fuzzysets . .. .............. 18

2.1.6 Caracteristicsofa fuzzysets. . . . .. ... ... .. ........ 20

2.1.7 Norms triangular and conorms triangular . . . . . . ... ... .. 22

218 Conceptofa-level . .. ... ... ... ... .. .. ...... 23

22 Fuzzynumber . . . .. .. .. ... 24
22.1 Conceptof fuzzynumber . . ... ... ... .. .. ... ...... 24

2.2.2  Some definitions of fuzzy number . . . ... ... ... L. 25

223 Typesof fuzzynumber. . . ... ... ... .. .. ........ 29

224  Arithmetic operations with fuzzy numbers . . . . ... ... ... 33

2.2.5 Extended operations with fuzzy numbers . . . . . ... ... ... 37

3 Fuzzy difference equations 39
3.1 Linear difference equations . . .. ... ... . ... .. ... ... ... 39
3.2 Fuzzy differenceequations . . . . . .. ... ... o L0 41
3.3 Existence and uniqueness of positive fuzzy solution . . . . ... ... .. 42
3.4 The boundedness and persistence of positive fuzzy solution . . . .. .. 46
3.5 The existence of positive equilibrium point . . . . . ... ... .00 48

vi



INTRODUCTION

Fuzzy sets and fuzzy numbers are fundamental concepts in fuzzy theory, which was
developed by Lotfi Zadeh, in 1965 [16]. This theory aims to handle uncertain and

imprecise information that is difficult to process using traditional methods.

Additionally, fuzzy sets are a generalization of classical (traditional) sets, allowing
an element to belong to the set with degrees of membership ranging between 0 and
1. The concept of a fuzzy number and fuzzy arithmetic operations was introduced by
Zadeh, Dubois and Prade [16, 8]. A fuzzy number is represented by a fuzzy set on the
real number line and is used in various fields such as artificial intelligence, engineering,

and economics.

Difference equations play an important role in mathematics, applied sciences, en-
gineering, and various other fields. Their significance is evident in modeling many
biological, physical, and social phenomena, such as the motion of bodies and the
spread of diseases. They help in understanding how systems change, analyzing their

stability, and predicting the behavior of complex systems.

Difference equations are essential for understanding, describing, and predicting the

behavior of continuously changing systems.



Introduction

A fuzzy difference equation involves sequence differences. Solving a difference
equation involves finding a sequence that satisfies the equation. The sequence that
satisfies the equation is called a solution of the equation. A fuzzy difference equation
is a difference equation where constants and the initial values are fuzzy numbers,
and its solutions are sequences of fuzzy numbers. Fuzzy difference equations have
been rapidly developed over the years as discrete analogs and numerical solutions of

differential equations.

The aim of this research is to verify the existence, uniqueness, and behavior of the

global solution. This research consists of three chapters:

In the first chapter, we addresse some basic concepts of linear and nonlinear differ-

ence equations and stability.

The work done in the second chapter is divide into two parts. In the first part, we
presente some fundamental definitions regarding fuzzy sets and their operations, fol-
lowed by definitions related to fuzzy numbers, their properties, types, and operations

in the second part.

In the final chapter, we solve the first-order fuzzy difference equation, where Deeba
and Korvin studied [6] its global behavior, which gives the frequency of genetic patterns.
First, we discussed the classical solution of the first-order difference equation with

constant coefficients and the initial condition x;.

Xp1 =wx, +q, n=0,12..

Second, we study the existence, boundedness, and persistence of the positive fuzzy
solution of the fuzzy difference equation, where x, is sequences of fuzzy numbers and

w,q, xo € RY.



CHAPTER 1

PRELIMINARIES

In this chapter, we present definitions of linear and nonlinear difference equations,
stability using the famous method of linearization, periodicity, permanence, as well as

some Theorems of convergence.

1.1 Linear difference equations

Definition 1.1.1 [5] The equation

Xn+k = f(xn+k—l/ Xn+k—=27 s xn)/ (11)

for a given function f and unknown quantities x;, i = 0,1,... is called a difference equation of

order k.
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If f is linear, it is called a linear difference equation and it is in the form
AXpik + A1 Xpik—1 + * - + AoXy = b, a9 # 0 (1.2)

According to whether the coefficients and the right hand side of the equation depend on n or not,
it is called an equation with variable or constant coefficients respectively.
When the right hand side b # 0, then the equation X,k = f(Xpsk-1, Xn4k=2, s Xn) 1S

non-homogeneous, while for b = 0, i.e
AXpsk + A1 Xpek—1 + -+ + 20X, = 0. (1.3)

This is called a linear homogeneous difference equation.

1.2 Non linear difference equations

Let I be an interval of real numbers and let
Fil S
where f is a continuously differentiable function. Consider the difference equation
Xn+1 = f(Xn, Xu-1, o Xnk), 1 =0,1,2,.., (1.4)

with the initial conditions x_, Xx_¢41, ..., Xo € I.

Definition 1.2.1 [14] (Equilibrium point) A point X is said to be an equilibrium point for the
equation (1.4) if
X =f(%%,..,X%), (1.5)

in other words

x,=% Vn>-—k (1.6)
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Definition 1.2.2 [10] (Periodicity)
A solution {x,}> . of Eq. (1.4) is called periodic with period p (or a period p solution) if there

exists an integer p > 1 such that
Xnip = Xp, V11 2 —k. (1.7)

We say that the solution is periodic with prime period p if p is the smallest positive integer for

which Eq. (1.7) holds. In this case, a p-tuple

(xn+1/ X427 +oes xn+p)

of any p consecutive values of the solution is called a p-cycle of Eq.(1.4).

Definition 1.2.3 [10] (Eventually periodic)
A solution {x,}_, of Eq.(1.4) is called eventually periodic with period p if there exists an integer
N > —k such that {x,}" ; is periodic with period p that is,

Xnip = Xn, Y11 2 N.

Definition 1.2.4 [9] (Permanence)

The difference equation

Xn41 = f(Xn, Xn-1, o Xuk), n=0,1,..., (1.8)

is said to be permanent if there exist numbers m and M with 0 < m < M < oo such that for any
initial conditions X_i, X_41, ..., X-1, X9 € (0, 00) there exists a positive integer N which depends

on the initial conditions such that

m<x, <M, Vn>=N. (1.9)
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Definition 1.2.5 [14] (Invariant interval)

An interval | C I is said to be an invariant interval for equation (1.4) if

Xk, Xgs1, X0 €] = x, €], n>0. (1.10)

1.2.1 Stability of non linear difference equations

Definition 1.2.6 [9] Let x be an equilibrium point of Eq (1.4).
(i) x is locally stable if

Ye>0,36>0,Vx_i, X_js1, .o, X1, X0 €I : |x_k - §| + |x_k+1 - E| + ...+ |x0 - §| <9,

we have

X, —EI <e Vn > —k.

(i) x is locally asymptotically stable if
. X is locally stable,

Ay >0, Vx_g, X1, X210, X0 €1 Ix_k - E| + |x_k+1 - E| + ...+ |x0 - §| <y, we have

limx, = x.

n—oo

(iii) x is global attractor if
VX i, Xyl oy X—1,X0 € 1, limx,, = X.
n—oo

(iv) X is globally asymptotically stable if
. x is locally stable,
. x is also a global attractor.

(v) The equilibrium point X of Eq (1.4) is unstable if x is not locally stable.

Definition 1.2.7 [14] The equation

Yn+1 = PoYn + P1Yn1 +** + PkYn-ks (1.11)

6
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is called the linearized equation of Eq. (1.4), with
pi=LE%,..%),i=0,.k

and

f: IF —I

(U1, ..., u) — f(uq, ..., ug),

and

p(A) = A —ppAf — - —py, (1.12)

its associated characteristic polynomial.

Theorem 1.2.1 [10](Stability by linearization)

Suppose f is a continuously differentiable function defined on some open neighborhood of x.
Then the following statement are true:

1. If all the roots of Eq.(1.12) have absolute value less than one, then the equilibrium point x of
equation (1.4) is locally asymptotically stable.

2. Ifat least one root of Eq.(1.12) has absolute value greater than one, then the equilibrium point

X of equation (1.4) is unstable.

Theorem 1.2.2 [9](The clark Theorem) Assume that p,q € Rand k€ {0,1,2,...}. Then
[pl+af <1
is a sufficient condition for the asymptotic stability of the difference equation
Xpe1 +PXp +gxr =0, n=0,1,..

Remarque 1.2.3 [9] Theorem (1.2.2) can be easily extended to general linear equations of the
form

Xpik + P1Xpsk—1 + -+ pix, =0, n=0,1,.. (1.13)

7
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where p1,pz, ..., prand k € {1,2, ...}. Then Eq (1.13) is asymptotically stable provided that

k
|p1| <1

=1

1

Theorem 1.2.4 [14](Theorem of Rouché) Let f(z), g(z) be two holomorphic functions in an
open set ) in the complex plane C, and let K be a compact with boundary contained in Q. If we

have

l9(2)| < |f)|,Vz € 9K,

then the number of zeros of f(z) + g(z) in K is equal to the number of zeros of f(z) in K, where
dK is the boundary of K.

1.2.2 Theorems of convergence

Theorem 1.2.5 [10] Let g : [a, b] X [a,b] — [a, b] be a continuous function, where a and b are

real numbers with a < b, and consider the difference equation
Xps1 = G(Xn, xp-1), n=0,1,.. (1.14)

Suppose that g satisfies the following coditions:

1) g(x, y) is non-decreasing in x € [a, b] for each fixed y € [a, b], and g(x, y) is non-decreasing
in y € [a, b] for each fixed x € [a,b];

2) If (m, M) is a solution of the system

m = g(m, m)

M = g(M, M),

then m = M.
Then there exists exactly one equilibrium x of Eq.(1.14), and every solution of Eq (1.14) converges

fo x.
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Theorem 1.2.6 [10] Let g : [a,b] X [a,b] — [a, b] be a continuous function, where a and b are

real numbers with a < b, and consider the difference equation

Xni1 = (X, Xp-1), 1n=0,1,...

Suppose that g satisfies the following coditions:

1) g(x, y) is non-increasing in x € [a, b] for each fixed y € [a, b], and g(x, y) is non-decreasing
in y € [a, b] for each fixed x € [a, b];

2) If (m, M) is a solution of the system

m = g(M, m)
M = g(m, M)
then m = M.

Then there exists exactly one equilibrium x of Eq.(1.14), and every solution of Eq (1.14) converges

fo x.

Theorem 1.2.7 [10] Let g : [a, b] X [a,b] — [a, b] be a continuous function, where a and b are

real numbers with a < b, and consider the difference equation

Xns1 = 9(Xp, xp1), n=0,1,...

Suppose that g satisfies the following coditions:

1) g(x, y) is non-decreasing in x € [a, b] for each fixed y € [a, b], and g(x, y) is non-increasing
in y € [a, b] for each fixed x € [a, b];

2) If (m, M) is a solution of the system

m = g(m, M)
M = g(M, m),

then m = M.
Then there exists exactly one equilibrium x of Eq.(1.14), and every solution of Eq (1.14) converges

9
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to x.

Theorem 1.2.8 [10] Let g : [a,b] X [a,b] — [a, b] be a continuous function, where a and b are

real numbers with a < b, and consider the difference equation
X1 = (X, X0-1), n=0,1,..

Suppose that g satisfies the following coditions:

1) g(x, y) is non-increasing in x € [a, b] for each fixed y € [a, b], and g(x, y) is non-increasing
in y € [a, b] for each fixed x € [a, b];

2) If (m, M) is a solution of the system

m = g(M, M)
M = g(m,m),
then m = M.

Then there exists exactly one equilibrium x of Eq.(1.14), and every solution of Eq (1.14) converges

to x.

Theorem 1.2.9 [10] Let g : [a,b]**! — [a, b] be a continuous function, where k is a positive

integer, and where [a,b] is an interval of real numbers. Consider the difference equation
Xps1 = G(Xn, Xp=1, .y Xn—k), n=0,1,.. (1.15)

Suppose that g satisfies the following coditions:

1. For each integer i with 1 < i < k + 1, the function g(z1, z,, ..., zk+1) is weakly monotonic in z;

for fixed z1,22, ..., Zi—1, Zis1, -er Zk41-

2. If (m, M) is a solution of the system

m = g(my, my, ..., My1)

M = g(le MZ/ seey Mk+1)

10
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then m = M, where fori =1,2,...,k + 1, we set

m if g isnon —decreasing in z
m; =

M if g isnon—increasing in z;.

And

M if g isnon — decreasing in z;
M; =
m if g isnon — increasing in z,.

Then there exists exactly one equilibrium x of Eq.(1.15), and every solution of Eq (1.15) converges

tox.

11



CHAPTER 2

FUZZY SETS AND FUZZY NUMBERS

In this chapter, we present some basic definitions about fuzzy sets and fuzzy numbers.
In the first part, we focus on fuzzy sets and operations on them. In the last part, we

present some definitions, properties, types and operations on fuzzy numbers.

2.1 Fuzzy sets

2.1.1 Fuzzy logic

Definition 2.1.1 [7] Fuzzy Logic is an extension of Boolean logic by Lotfi Zadeh in 1965 based
on the mathematical theory of fuzzy sets, which is a generalization of the classical set theory. By
introducing the notion of degree in the verification of a condition, thus enabling a condition to be
in a state other than true or false, fuzzy logic provides a very valuable flexibility for reasoning,
which makes it possible to take into account inaccuracies and uncertainties.

One advantage of fuzzy logic in order to formalize human reasoning is that the rules are set in

12
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natural language.

2.1.2 Classical sets

Definition 2.1.2 [8] Let X be a classical set of objects, called the universe, whose generic
elements are denoted x. Membership in a classical subset A of X is often viewed as a characteristic

function , us from X to {0, 1} such that

1 ifxeA
Xa(x) =
0 ifx¢A
Example 2.1.1 Let X=R be the reference set and A be the set of numbers between 3 and 9, it is

characterized by the following characteristic function

XA:R_>{O/1}
1 ifxeA
Xa(x) =
0 ifx¢A

xa4)=1, xa2)=0.

2.1.3 Concept of fuzzy sets

Fuzzy sets were introduced by L. Zadeh . The definition of a fuzzy set given by L.
Zadeh is as follows: A fuzzy set is a class with a continuum of membership grades. So
a fuzzy set A in a referential (universe of discourse) X is characterized by a membership
function A which associates with each element x € X a real number A(x) € [0, 1], having

the interpretation A(x) is the membership grade of x in the fuzzy set A [3].
Definition 2.1.3 [3] A fuzzy set A (fuzzy subset of X) is defined as a mapping

A:X —10,1]

13
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where A(x) is the membership degree of x to the fuzzy set A. We denote by F(X) the collection
of all fuzzy subsets of X. Fuzzy sets are generalizations of the classical sets represented by their
characteristic functions xa : X — {0,1}). In our case A(x) = 1 means full membership of
x in A, while A(x) = 0 expresses non-membership, but in contrary to the classical case other
membership degrees are allowed. We identify a fuzzy set with its membership function. Other
notations that can be used are the following ua(x) = A(x). Every classical set is also a fuzzy set.

We can define the membership function of a classical set A C X as its characteristic function

1 ifxeA
pa(x) = f

0 otherwise

Definition 2.1.4 [17]If X is a collection of objects denoted generically by x, then a fuzzy set A
in X is a set of ordered pairs:

A = {(x, pa(x))lx € X}

pa(x) is called the membership function or grade of membership .

Example 2.1.2 A realtor wants to classify the house he offers to his clients. One indicator
of comfort of these houses is the number of bedrooms in it. Let X={1,2,...,10} be the set of
available types of houses described by x = number of bedrooms in a house. Then the fuzzy set

"comfortable type of house for a four-person family” may be described as

A =1{(1,0.2),(2,0.5),(3,0.8), (4,1),(5,0.7), (6,0.3)}

2.1.4 Operations between fuzzy sets

e Equality

Two fuzzy sets A and B are equal, whritten as A=B, if and only if 4 (x) = g (x) For
all x in X [16].

14
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e Complement

The complement of a fuzzy set A is denoted byA° and is defined by [16].

fae =1—pa

| >
0 45 9 X
Figure 2.1: Complement of fuzzy sets.

e Containment

A is contained in B if and only if ps<up. In symbols[16]

ACB & uas < ug
e Union

The union of two fuzzy sets A and B with respective membership functions 4 (x) and
up (x) is a fuzzy set C, written as C = A U B, whose membership function is related to

those of A and B by [16]
tc (x) = max [ua (x), up (x)] , x € X

Or, in abbreviated form

Hc = HaV U

15
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0 45 9 X

Figure 2.2: Union of fuzzy sets.

e Intersection

The intersection of two fuzzy sets A and B with respective membership functions 4 (x)
and up (x) is a fuzzy set C, written as C = A N B, whose membership function is related

to those of A and B by [16]:

pie (x) = min [pa (x), us (x)],x € X.

Or, in abbreviated form:

He = pa N Up.

| T -

0 45 9 X

Figure 2.3: Intersection of fuzzy sets.

16
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Example 2.1.3 Let A be the fuzzy set “comfortable type of house for a four-person family” from
example 2.1.2 and B be the fuzzy set "large type of house” defined as:

B =1{(3,0.2),(4,0.4),(5,0.6),(6,0.8),(7,1),(8,1)}.

The intersection C = A N B is then

C =1{(3,0.2),(4,0.4),(5,0.6),(6,0.3)}.

The union D = AU B is:

D=1{(1,0.2),(2,0.5),(3,0.8), (4, 1), (5,0.7),(6,0.8), (7, 1), (8, 1)}.

The complement B¢, which might be interpreted as "not large type of house,” is :

B°={(1,1),(2,1),(3,0.8), (4,0.6), (5,0.4), (6,0.2), 9, 1), (10, 1)}.

List the basic properties of complement, union and inter-
section:
All sets are subsets of the same X [4].

e Involution: (AC)C A.

AUB=BUA,
ANB=BNA.

Commutativity:

(AUB)UC=AU(BUQ),
(ANB)NC=ANn(BNO).

Associativity:

ANBUC)=(ANB)UANCQC),
Distributivity:
AUBNC)=(AUB)N(AUCQC).

ANA=A,
AUA = A.

Idempotency:

Law of contradiction: A N A® = @.

17
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Law of excluded middle: A U A¢ = X.

(AUB) = A° N B,
(AN B) = A° U B,

De morgan:

. AU@=AANo =0,
Identity:
AUX=XANnX=A.

AUANB) =A
Absorbtion:
AN(AUB)=A

4

2.1.5 Algebraic operations on fuzzy sets

For the time being we return to ordinary fuzzy sets and consider additional operations
on them that have been defined in the literature and that will be useful or even necessary

for later chapters[17].

e Product:

The algebraic product of two fuzzy sets C = A - B is defined as:

C = (x4 () - 1 (), x € X).

e Cartesian Product :
Cartesian product applied to multiple fuzzy sets can be defined as follows.
Denoting pa, (x), tia, (x), ..., ta, (x) as membership functions of A;, A,, ..., A, for
Vx1 € Ay, xp € Ay, ..., X, € A,
Then, the probability for n-tuple (x1, x2, ..., x,,) to be involved in fuzzy set

Al XAy X...XA,Iis:

‘U'A1><A2><...><An (xll X2, eeey xn) = min[[lel (xl) ’ lu'Az (xz) ALY, ‘U'A,, (le)]'

18
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e Sum:

The algebraic sum (probabilistic sum) C = A + B is defined as :

C={(x, uass (), x € X},

where

tass (X) = pa (x) + pp (x) — pa (x) - up (x).

e Bounded sum:

The bounded sum C = A & B is defined as:

C= {(x/ UAeB (x)),x € X} ’

where

Pas (x) = min{1, pa (x) + up (x)}.

e Bounded difference :

The bounded difference C = A © B is defined as:

C= {(X, UAeB (X)),X € X} ’

where

pass (x) = max{0, pa (x) + up (x) — 1}.

e Mth power:

The mth power of a fuzzy set A is a fuzzy set with the membership function.

o () = [pa (1", x € X.

19
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Example 2.1.4 Let A and B two fuzzy sets:

A(x) ={(3,0.5), (5,1),(7,0.6)}.

B(x) = {(3,1),(5,0.6)} .

The above definitions are then illustrated by the following results:
AxB={[(3;3),0.5],[(5;3),1],[(7;3),0.6][(3; 5),0.5], [(5; 5),0.6], [(7; 5), 0.6]}.
A% ={(3,0.25),(5,1),(7,0.36)}.

A+B={3,1),(5,1),(7,0.6)}.

A®B={(3,1),(51),(7,0.6)}.

A©B=1{(3,05),(5,0.6)}.

A-B={(3,05),(5,0.6)}.

2.1.6 Caracteristics of a fuzzy sets

In order to define the characteristics of fuzzy sets, we are redefining and expanding the

usual characteristics of classical sets [7].

Definition 2.1.5 [7] The height of A, denoted h(A), corresponds to the upper bound of the

codomain of its membership function:
h(A) = sup{ua (x) |x € X}.

Definition 2.1.6 [7] A is said to be normalised if and only if h(A) = 1. In practice, it is

extremely rare to work on non-normalised fuzzy sets.

Definition 2.1.7 [7] The support of A is the set of elements of X belonging to at least some A

(i.e.The membership degree of x is strictly positive). In other words, the support is the set:
supp(A) = {x € X|ua (x) > 0}.

Definition 2.1.8 [7] The kernel of A is the set of elements of X belonging entirely to A. In
other words, the kernel noy(A) = {x € X|ua (x) = 1}. By construction, noy(A) C supp(A).
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Definition 2.1.9 [17] For a finite fuzzy set A also X finite, the cardinality |A| is defined as:

A=) pa ().

xeX

|| All= % is called the relative cardinality of A.
Obviously, the relative cardinality of a fuzzy set depends on the cardinality of the universe.
So you have to choose the same universe if you want to compare fuzzy sets by their relative

cardinality.

Example 2.1.5 1) Let X={A,B,E,FG,I} finit set and the fuzzy sets A be given by:

A ={(A;0.6);(B;0.7); (E; 0.4); (F;0.3); (G;0.8); (I,0.5)} .

So h(A) =0.8, supp(A) = X, noy(A) =2, |A| =33

And B = {(A;0); (B; 0); (E; 1); (F; 0.8); (G; 0); (I; 1)}.

So B is a normalised fuzzy set, because h(B) =1, supp(B) = {E,F, 1}, noy(B) = {E, I},

|B| = 2.8.

2) Let X=[0,35] (the set of Ages) such as a € [0,1], and let A be a fuzzy set of X of young ages
given by :

1 if x €[20,30]

pa(x) =30 ifx>35 and x<15

a if x €]15,20[ and x €]30, 35[

noy(A)=[20,30], supp(A)=]15,35[, and h(A)=1.

Definition 2.1.10 [17] A fuzzy set A is convex if:

ta(Axy + (1= A) xz) > min {ua (x1), pa (x2)}, x1, %2 € X, A € [0,1].

Alternatively, a fuzzy set is convex if all o — level sets are convex.
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Figure 2.4: Convex fuzzy set.

2.1.7 Norms triangular and conorms triangular

We shall investigate the two basic classes of operators: Operators for the intersection
and union of fuzzy sets referred to as triangular norms and conorms and the class
of averaging operators, which model connectives for fuzzy sets between t-norms and
t-conorms. Each class contains parameterized as well as nonparameterized operators

[17].

Definition 2.1.11 [17] t-norms (Triangular Norme) are two-valued functions from [0, 1] X
[0, 1] that satisfy the following conditions:

1. T(0,0) = 0; T(pa (x),1) = T(1, pa (x)) = pa(x),x € X.

2. T(a (), s () < T(pe (), o () if pa () < pc (1) and g (x) < pip (x) (monotonic-
ity).

3. T(ua (x), up (x)) = T(up (x) , ua (x)) Yua (x), up (x) € [0,1]  (commutativity).

4. T(pa(x), T(up (x), uc (x))) = T(T(pa (x), pp (x)), pc () Ypa (x), ps (x), pe (x) € [0,1]
(associativity).

The functions T define a general class of intersection operators for fuzzy sets.

Definition 2.1.12 [17] t-conorms or s-norms are associative, commutative, and monotonic

two-placed functions S that map from [0,1] X [0, 1] into [0, 1]. These properties are formulated
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with the following conditions:

1. S(1,1) = 1;5(ua (x),0) = SO, ta () = pta (x), x € X .

2. S5(ua (x), up (x)) < S(uc (x), up (%)) if pa (x) < pc (x)anda ug (x) < up (x) (monotonicity) .
3. S(ua (x), ug (x)) = S(ug (x), pa (x)) Yua (x), ug (x) € [0,1] (commutativity).

4 S(ua®),S(us (), e () = S(S(ua (x), 15 (), pie (1)) Viaa (), 5 (), e () € [0,1]
(associativity).

A general class of aggregation operators for the union of fuzzy sets called triangular conorms

or t-conorms (sometimes referred to as s-norms).

Remarque 2.1.1 [17] t-norms and t-conorms are related in a sense of logical duality. Alsina
[Alsina 1985] defined a t-conorm as a two-placed function S mapping from [0,1] X [0, 1] into
[0, 1] such that the function T, defined as

T(ua (x), up(x)) =1—=5(1 - pa(x),1 - up(x)).

2.1.8 Concept of a-level

A fuzzy subset A of U is "formed" by elements of U with an order (hierarchy) that is
given by the membership degrees. An element x of U will be in an "order class" «a if its
degree of belonging (its membership value) is at least the threshold level a € [0, 1] that

defines that class. The classic set of such elements is called an a-level of A, denoted

[Ala [2].

Definition 2.1.13 [2] (a-level) Let A be a fuzzy subset of U and o € [0,1]. The a-level of the
subset A is classical set [A], of U defined by:

[Al,={xeU:pus(x) > alfor0<a<1,

when U is a topological space, the zero a-level of the fuzzy subset A is defined as the smallest
closed subset (in the classic sense) in U containing the support set of A. In mathematical terms,

[A]o is the closure of the support of A and is also denoted by suppA. This consideration becomes

23



fuzzy sets and fuzzy numbers

essential in theoretical situations appearing in this text. Note also that the set

{x € U: pa(x) >0} = U is not necessarily equal [A]y = suppA.

Example 2.1.6 Let U = R be the set of real numbers and let A be a fuzzy subset of R with the

following function membership function:

x—1 if1<x<2
pa(x) =43 —x if2<x<3

0 if x¢[1,3].

In this case we have: [A], = [a+1,3 —a] for 0 <a < 1land[A]o =11,3[ =[1,3].

2.2 Fuzzy number

First of all, we’ll look into interval, the fundamental concept of fuzzy number, and
then operation of fuzzy numbers. In addition, we’all introduce special kind of fuzzy

number such as triangular fuzzy number and trapezoidal fuzzy number[6].

2.2.1 Concept of fuzzy number

Definition 2.2.1 [15] (Interval) When interval is defined on real number R, this interval is
said to be a subset of R. For instance, if interval is denoted as A = [a1,a3],a1,a3 € R, a1 < a3,
we may regard this as one kind of sets. Expressing the interval as membership function is shown
in the following see Fig(2.5)

0, x<m

pa(x) =31, a; <x<a;

0, x>as

If a1 = a3, this interval indicates a point. That is, [a1,a1] =
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4 HA(X)

a) as

Figure 2.5: Interval A = [ay, a3].

2.2.2 Some definitions of fuzzy number

Fuzzy number is expressed as a fuzzy set defining a fuzzy interval in the real number
RR. Since the boundary of this interval is ambiguous, the interval is also a fuzzy set.
Generally a fuzzy interval is represented by two end points 4; and 43 and a peak point
ay as [a1,a,,a3] see Fig (2.7). The a — level operation can be also applied to the fuzzy
number. If we denote a — level interval for fuzzy number A as A,, the obtained interval

A, is defined as[15]:
Ay = [ag"‘),aéa)].

Definition 2.2.2 [15] (Fuzzy number) It is a fuzzy set the following conditions :

1. Convex fuzzy set.

2. Normalized fuzzy set.

3. It's membership function is piecewise continuous.

4. It is defined in the real number.

fuzzy number should be normalized and convex. Here the condition of normalization implies

that maximum membership value is 1.
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IxeR, ua(x) =1.

The convex condition is that the line by a — level is continuous and a — level interval satisfies

the following relation.

Ay =[a,a].

@) o @ @) < (@
(@ <a)=>(a, ' <ay,ay, 2a).

a(x) 4
1
o
A
o
(0 (') () (a) (er) 0y x
a d) daj ds as as

(—

Arx — [a]‘m, as{ JJ]

Ay = [uf”l'. u;"“]

Figure 2.6: a-level of fuzzy number (o’ < a) = (A, C Aw).

The convex condition may also be written as,
(@ <a)= (A, CAp).

Definition 2.2.3 [1] Consider a fuzzy subset of the real line A : R — [0, 1]. Then we say A is
a fuzzy number if it satisfies the following properties:

(i) Ais normal, i.e, A xo € R with p4 (xp) = 1.

(ii) A is fuzzy convex, i.e, pa(Ax1 + (1 — A)xp) = min{ua (x1), pa (x2)}, YA € [0,1], x1, 22 € R.

(iii) A is upper semicontinuous on R.

(iv) A is compactly supported i.e, {x € R; ua (x) > 0}, is compact.

Let us denote by R the space of all fuzzy numbers. For 0 < a < 1 and A € Rg, we denote

a-levels of fuzzy number A by [Al, = {x € R; ua (x) > a} and [A]p = {x € R; pa (x) > 0}. We
call [Alo, the support of fuzzy number A and denote it by supp(A). The fuzzy number A is
called positive if supp(A) CJ0, oo[. We denote by R}, the space of all positive fuzzy numbers.
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4 HA(X)

> X
ay ar as

Figure 2.7: Fuzzy number A = [a;, a,, a3].

Definition 2.2.4 [17] A fuzzy number A is called positive (respectivly negative) if its mem-
bership function is such that p, (x) = 0,Vx < 0 (respectivly Vx > 0).

Example 2.2.1 Let X={1,2,3,4,5,6,7,8,9,10}

pa={numbers close to 5}
A={(1,0),(2,0.4),(3,0.7),(4,0.9),(5,1),(6,0.9),(7,0.7),(8,0.4),(9,0),(10,0)}
1)A is normalised

pa =1 = Ais normal fuzzy set.

2) A is convex([A], convex = A is convex).

Let o =0.4
[Alos =12,3,4,5,6,7,8).

We take two elements x1,x, € [A]a.
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Let A=0.5, x; = 3,x, = 4.
We have (Ax1 + (1 — A)x,) € [A]l., A €]0,1]

In compensation, we find:
3(0.5)+ (1 -0.5)4=3.5€[A],
= [A], is convex
= A is convex
3)The support of A is bounded

[A]O = {2/ 3/ 4/ 5/ 6/ 7/ 8}

We observe that the values of [A]o € [2, 8] then [A]y is bounded.

So A is fuzzy number.

1 Fuzzy number A at alpha=0.4
T

alpha=04 f— — — — f —— = — — — — = —

Figure 2.8: Fuzzy number A at a = 0.4.
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2.2.3 Types of fuzzy number

The most common fuzzy numbers are the triangular, trapezoidal and the bell shape

numbers [2].

a) Triangulair fuzzy number

Among the various shapes of fuzzy number, triangular fuzzy number(TFN) is the most

popular one.

Definition 2.2.5 [15] Triangulair fuzzy number is a fuzzy number represented with three
points as follows :

A= (ﬂl, a, 03),

this representation is interpreted as membership functions see Fig (2.9)

0, x <
X—ay
o @ Sx<m
Ua (x) =
az—Xx
o 2SX=43
0, X > a3

Now if you get crisp interval by o — level operation, interval A, shall be

obtained as follows Ya € [0, 1].

From
aga) -m as — aéa)
=q, = Q.
ay — asz —ap
We get
a9 = (@, —ar)a +a
1 2 1 1,
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Ja(x)

/

[ [ 5 a3 X

Figure 2.9: Triangular fuzzy number A = (a1,ay, a3).

ag"‘) = —(a3 — ap)ax + a3
thus
A, = [a(a) a(a)]

1773

= [(ay — ar)a + a1, —(a3 — a)a + az].

Example 2.2.2 In the case of the triangular fuzzy number A = (-5, -1, 1) see Fig (2.10), the

membership function value will be,

0, x<-=5
5, 5<x<-1
pa (x) =
B, -1<x<1
0, x>1
1
0.5
-6 -5 4 -3-2-1 01 2
I
AO.S

Figure 2.10: « = 0.5 Level of triangular fuzzy number A = (-5,-1,1).
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a-level interval from this fuzzy number is:

x+5=a=>x=4a—5.
4

1—
2x=0z=>x=—20z+1.

A, = [ag"‘),ag")] = [4a -5, -2a + 1].

If o = 0.5, substituting 0.5 for o, we get Ay

Ags = [a"?,a09] = [-3,0].

b) Trapezoidal fuzzy number

Another shape of fuzzy number is trapezoidal fuzzy number. This shape is originated

from the fact that there are several points whose membership degree is maximum

(a =1).
Definition 2.2.6 [15] We can define trapezoidal fuzzy number A as:
A= (all as,as, ﬂ4).

The membership function of this fuzzy number will be interpreted as follows see Fig (2.11)

0, x <

X—ay

moar M SXSm
[le(x): 1, a, <x<as

ag—Xx

ma BSXSa4

0, X > .
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Ha(X) 4

1

/

[43] 5] [# 53 cly

Figure 2.11: Trapezoidal fuzzy number A = (a1,ay, a3, as).

a-cut interval for this shape is written below. Ya € [0, 1]

Ay =[(a2 —m)a + a1, —(as — az)a + aa].

When a, = a3, the trapezoidal fuzzy number coincides with triangular one.

Example 2.2.3 The fuzzy set of the teenagers can be represented by the trapezoidal fuzzy

number with the membership function:

= if11<x<14

1 if14<x<17
HA(X):

02 17 <x<20

0 otherwise.

And it is illustrated in Fig (2.12). The a-levels for this example [3a + 11, =3a + 20], with
a € [0,1].

Figure 2.12: Trapezoidal fuzzy number .
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c) Bell shape fuzzy number

Definition 2.2.7 [2] A fuzzy number has the bell shape if the membership function is smooth
and symmetric in relation to a given real number. The following membership function has those
properties for fixed u, a and 6 see Fig (2.13)

2
ﬂ)) ifu-6<x<u+od

a

pa (x) = : (_(

0 otherwise.
The a-levels of fuzzy numbers in bell shape are the intervals:
- \2
1 1 ‘ ~ ,
[4'Y, 4] = [u— mﬂl'k \/@] if a >a_e_(a)
1743 '
[t —6,u+ 9] ifa<a:e_<§)2.

We next present the arithmetic operations for fuzzy numbers, that is, the operations that allow

us “to compute” with fuzzy sets

Figure 2.13: Fuzzy number in the bell shape .

2.24 Arithmetic operations with fuzzy numbers

The arithmetic operations involving fuzzy numbers are closely linked to the interval
arithmetic operations. Let us list some of those operations for closed intervals on the

real line R [2].
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1) Interval arithmetic operations
Let A be a real number and, A and B two closed intervals on the real line given by:

A = [ay,a;] and B = [by, bs].

Definition 2.2.8 [2] (Interval operations) The arithmetic operations between intervals can
be defined as:

(a) The Sum between A and B is the interval:
A+ B =a; +by,a, + b].
(b) The difference between A and B is the interval:
A—B=][a; —by,a, — b].
(¢c) The multiplication of A by a scalar A is the interval:

[Alll, /\02] Zf A>0

[Aﬂz, /\611] lf A <O0.

(d) The multiplication of A by B is the interval:
A - B = [min P, maxP],

where P = {albl, Ellbz, azbl,(lzbz}.

(e) The quotient of A by B, if 0 ¢ B, is the interval:
A/B = [a,a0] - [, 5]

(] The Inverse interval of A is:

1
a3’

), max(%, L)].

[alla?)]_l = [mln(%/ a1’ a3
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Example 2.2.4 There are two intervals A and B, A=[3,5], B=[-2,7]. Then following operations
might be set.

A+B=[3-2,5+7]=[1,12].

A-B=[3-7,5-(-2)]=[-4"7]

A - B = [min P, max P] = [-10, 35] where P = {-6,21,-10, 35}.

A/B=13,5]1%, 3] = [, 2] Where P = {2, 3,3, 2}
B =[-2,7]"! = [min(3, 7), max(F, 3)] = [T, 3].

2) Interval a-level operation

Theorem 2.2.1 The a-levels of the fuzzy set A ® B are given by:
[A® B, = [Al. ® [Bls-

For all a € [0, 1], where ® is any arithmetic operations {+,—, X, +} [2].

Proposition 2.2.1 [2] Let A and B be fuzzy numbers with a-levels respectively given by
[Al, = [af,a5] and [B], = [b$,b5] . Then the following properties hold.:

(a) The sum of A and B is the fuzzy number A + B whose a-levels are:

[A + B, = [Als + [Bla = [a] + b{,a; + b3].

(b) The difference of A and B is the fuzzy number A — B whose a-levels are:
[A = Bla = [Ala = [Bla = [a] — b3, a5 — DY].
(¢c) The multiplication of A by a scalar A is the fuzzy number AA whose a-levels are:

Aa%, Aa?]l ifA=0
AL, = AA], = sl if A

[Aag, Aaf] if A <O.

35



fuzzy sets and fuzzy numbers

(d) The multiplication of A by B is the fuzzy number A- B whose a-levels are:
[A : B]a = [A]a[B]a = [minpa/ maXPa],

where p* = [alby],aiby,a5bs,asbs].

(e) The division of A by B, if 0 & supp B, is the fuzzy number whose a-levels are:

A [A], e o]l 1
5], = e = oot 3 |

Theorem 2.2.2 [2] (Extension principle for real intervals) Let A and B be two closed

intervals of R and ® one of the arithmetic operations between real numbers. Then:

Las (z) = sup  min[ua (x), ug (v)].
{(x,y) :x®y:z}

It is simple to verify that:

‘ 1 ifxeAandy€B
min(ua (x), up (v)) =
0 ifx¢Aandy¢B.

Thus, for the sum case (® = +), we have

1 ifxeA+B
sup  min[ua (x), up (y)] =
{(x,y):x+y:z} 0 lf x¢ A+ B.

The other cases can be obtained analogously.

Definition 2.2.9 [17] A binary operation * in R is called increasing (decreasing) if for

X1 > Y1 and X > Yo X1 %X > Y1 * Yo (X1 % X2 < Yq * Y2).

Example 2.2.5 Let the following functions:
f(x,y) = x + y is an increasing operation.

f(x,y) = —(x + y) is an decreasing operation.
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2.2.5 Extended operations with fuzzy numbers

If the normal algebraic operations +, -, -, + are extended to operations on fuzzy numbers,

they shall be denoted by ®,6,0, @ [17].

Definition 2.2.10 [2] Let A and B be two fuzzy numbers and A a real number.
(a) The sum of the fuzzy numbers A and B is the fuzzy number A & B, whose membership
function is:

Haes (z) = sup  minfuu (x), up (y)].
{(x,y):x+y:z}

(b) The difference A © B is the fuzzy number whose membership function is given by:

taes (z) = sup  minfuu (x), up (y)l.
{(oy)ax-y=z}

(c) The multiplication of A by B is the fuzzy number A® B, whose membership function is given

by:

Haop (z) = sup min[ua (x), ug (y)]-
{(ry)y=2}

(d) The quotient is the fuzzy number A @ B whose membership function is:

Lae (z) = sup  minfu, (x), us (v)].
{(ey)xly=2}

Properties

The following points are properties of the extended operations with fuzzy numbers[17]:
1. ®, 6,0, are commutative.

2. ®,6,0, @ are associative.

3. 5(A @ B) = (6A) @ (SB).

4. 0 € R C Rr is the neutral element for @, thatis,A ®0,VA € Rr.

5. For & there does not exist an invers element, thatis, VA € RF\R: A® (6A) # 0 € R.
6. (@A) OB =6(A0OB).
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7.A01=A € R C Ry is the neutral element for © , thatis, A®1 =A,VA € Ry.
8. For © there does not exist an inverse element, thatis, YA € Rp\R: A0 At # 1.
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CHAPTER 3

FUZZY DIFFERENCE EQUATIONS

In this chapter, first we provide the solution of first-order difference equation
Xu+1 = WX, + q, with w, q are constant coefficients in real numbers.
Second, we study the existence, boundedness and persistence to positive fuzzy solution,

also the existence of equilibrium point of fuzzy difference equation
Xp1 =wx, +q, n=0,12.. (3.1)

where x, is a sequence of positive fuzzy numbers,the parameters w, q are positive fuzzy

numbers and the initial condition x, is arbitrary positive fuzzy number.

3.1 Linear difference equations

Definition 3.1.1 [5] Given constant w and q, a difference equation of the form

Xp+1 = WXy + 4. (3.2)
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n =20,1,2,... is called a first-order linear difference equation. A procedure analogous to the
method we used to solve x,+1 = wx, will enable to solve this equation as well.

Namely,

Xp = WXy +(
= w(wx,—2+q)+q
= W, +qw+1)
= w(wx,_3+q)+ W+ 1)
= wx,3+qw*+w+1)

n—1 n—2

= wx+q@ T+ w4+ w +w+ 1)

Note that w = 1, this gives

X, = Xo + nq, (33)

n=0,1,2,...as the solution of the difference equation x,.1 = x,, + q

for w # 1 known that

et +rw+ 1=

W+ w

hence

1w ) (3.4)

xn:w”x0+q(1_w

n=0,1,2,...1s the solution of the first-order linear difference equation x,,1 = wx, + q when

w# 1.
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3.2 Fuzzy difference equations

Lemma 3.2.1 [1] Let f be a continuous function from R* x R* X R* into R* and A, B, C be

fuzzy numbers, then

[f(A,B,O)la = f(IAla, [Bla, [Cla),  a €[0,1].

Theorem 3.2.1 [1](Stacking Theorem) If A € R is a fuzzy number and A,, a € [0, 1] are its

a-cuts, then

(i) A, isa closed intervale A, = [A14, Arel for any a € [0,1],
(ii) IfO <a <ap <1, then Ay, €A,

(iii) For any sequence v, which converges from below to a € (0, 1], we have

VAo = A

n=1

(iv) For any sequence o, which converges from above to 0, we have

0 Ag, = Ao.
n=1

Theorem 3.2.2 [1] Let us consider the functions

AZ,DU AI’,DL : [O/ 1] - R/

satisfy the following conditions

(i) A € R is bounded, non-decreasing, left-continuous function on ]0,1] and it is right-

continuous at 0.

(ii) Ao € R is bounded, non-increasing, left-continuous function on ]0,1] and it is right-

continuous at 0.

(i) Ay < Apn.
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Then thereis a fuzzy number A € Ry that has Ay, A, « as endpoints of its a-cuts, A,. Conversely

let A € Ry with endpoints A, A, o, then conditions (i)-(iii) are satisfied.

Definition 3.2.1 [1] Let A, B be fuzzy numbers with [A], = [Ara, Aral, [Bla = [Bia, Bral,

a € [0,1]. Then the metric on the fuzzy numbers space is defined as follow

D(A/ B) = sup max{lAI,a - Bl,alr |Ar,a - Br,al}

where sup is taken for all o € [0, 1].

Definition 3.2.2 [11] We say that x,, is a positive solution of (3.1) if x,, is a sequence of positive
fuzzy numbers, which satisfies (3.1).
We say that a sequence of positive fuzzy numbers x, is persistent (resp. is bounded) if there

exists a positive number M (resp., N) such that

suppx, C [M, +oo[ (resp.suppx, C [0,N]), n=1.2, ...

In addition, we say that x,, is bounded and persists if there exist numbers M, N €[0, + oo[ such

that

suppx, C[M,N], n=1.2,.

Remark 3.2.1 Let u,v € Ry, if U + V = W € Rp exists, then there are two cases:

N U, U,
case (i): if UjoV, o < U0 Vg, Ya € [0,1], then W, = ﬁ, Wia = 72,

o U Uy,
case (ii): if UjoVya > Uy Vi, Ve € [0,1], then Wi = 37, Wy = V;'a'

3.3 Existence and uniqueness of positive fuzzy solution

Theorem 3.3.1 [11] For any positive fuzzy numbers xo, fuzzy difference equation (3.1), there

exists a unique positive solution x, whose initial value is x.
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Proof.

Firstly: existence of the solution

For all positive fuzzy numbers x), where w, q € IRY, suppose there exists a fuzzy number
sequence that satisfies equation (3.1) whose initial value is x;. Consider their a-cuts,
a € [0,1],

[Xnla = [Lnas Rial

[w]a = [wl,a/ wr,a] (35)

[q]a = [q1,a/ qr,a]

following (3.1), (3.5) , and Lemma (3.2.1), we have:

[*n+1]a = [Lus1as Ruvial
= [wxy + qla
= [wxula + [9]a
= [w]alxula + [9]a
= Wi, WrallLnas Rual + (G0, Gral

= [wl,aLn,a + 10, wr,aRn,a + qr,a]-

So we obtain the related equation system

Lyvig =wiaLlyq + i (3.6)

Rn+1,a = wr,ocRn,a + dra-

For any given initial values (L; o, R;), i = 0, a € [0, 1], system (3.6), there exists a unique
positive solution (L., Ryq), @ €[0, 1].

Now we demonstrate that [L, ., R, »], @ €[0, 1] determines the solution x, of (3.1) whose
initial value is xo, where (L, 4, R,o) is the positive solution of system (3.6) with initial

value (L; o, R;»), i = 0, such that

[xn]a = [Ln,a/ Rn,a]ra € [O/ 1] (37)
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By Theorem (3.2.1) and w, g, x( are positive fuzzy numbers, for any ay, a, € [0, 1],
a1 < ap , we have:

0< wl,al < wl,@(g < wr,az < wr,alr

0<Gie, € Gray < Gray < Grays (3.8)

0< LO,a1 < LO,az < RO,az < RO,Dq

By induction and (3.6), (3.8), we will show

Ln,oq < Ln,a S < Rn,al- (3’9)

We prove that (3.9) is true.
1) For n=0 (3.9) is true by (3.8).
2) Suppose (3.9) is true for n and prove that (3.9) is true for n+1,

Ln+1,a1 = wl,aan,al + 1,
< wl,aan,az t 10, = Ln+l,a2
< wr,aan,az T dra, = Rn+1,a2

< wr,aan,al + q;’,al = Rn+1,a1-

Hence

Ln+1,a1 < Ln+1,a2 < Rn+1,a2 < Rn+1,a1 (310)

Therefore (3.10) is true.
So by induction (3.9) is true.

Following (3.6) and we put n=0, we have:

Ll/a = wl,OLLO,UC + ql/“ (3 11)
era = wT,DlRO,U( + q"ﬂ‘

e By theoreme (3.2.2): xy € R} exist, then w;,, W4, G4, Gr.ar Lo.as Roa are left continous,
and by (3.11) L; o, R; , are left continous.

¢ Also working inductively, we can prove that L, ,, R, are left continous.
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e We have L, is non decreasing and R, is non increasing by (3.10).
e By systeme (3.11) and (3.10) we have L; < R;.
Secondly: positivity of the solution

To prove that the solution is a positive fuzzy number, we must prove

supp x, = U [Lia, Run] (support of fuzzy number x,) is compact. It is sufficient to
a€l0,1]

prove that U [L;4, Ryo] is bounded.
ae(0,1]
Since w, q, x are positive fuzzy numbers, there exist constants M,, > 0, N, > 0, M, >

0,N,; > 0,M, > 0,Ng > 0 such that for all a € [0, 1]

[wl,m wr,a] - U [wl,a/ wr,a] - [Mw/ Nw]
a€l0,1]

[ql,m qr,a] - U [[]l,a/ Qr,a] - [Mq/ Nq]- (3.12)

a€l0,1]

[Lo,a, Roal C U [Lo,as Roa] € [Mo, Nol.

a€l0,1]

Hence from (3.11) and (3.12) we can easily get
[Ll,ar Rl,a] C [MwMO + Mq/ NwNO + Nq]/ [0S (O/ 1] (313)
From which it is obvious that

|J [Lia Ria] € [MoMo + My, NuNo + N, a € (0,1] (3.14)
ae(0,1]

There for (3.14) implies that U [L1,4,R1,4] is compact and U [L14,R14] € (0,00).
ae(0,1] ag(0,1]

Deducing inductively, one can get that U [Lia, Rye] is compact, moreover,for n =
ae(0,1]

| L Rual € (0, 0)

ae(0,1]
Therefore (3.9), (3.14) and that L, ,, R, , are left continuous we have that [L, ,, R, ]

determines a sequence of positive fuzzy numbers (x,) such that (3.7) holds.
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Thirdly: uniqueness of the solution
We prove the uniqueness of the solution. Suppose that there exists another solution ¥,
of (3.1) with initial data x; € R}.

For [x,], solution of (3.1):

[xn+1]a = [wl,aLn,a + Jia, wr,aRn,a + Qr,oz]

[x0]a = [Cl,a/ Cr,a]

For [%,]. solution of (3.1):

[fn+1]a = [wl,ain,a + Jla, wr,aRn,a + Qr,a]

[JEO]a = [Cl,m Cr,a]

We get [%,], = [x4], for any a € [0, 1], so %, = x,, which is contradictory .

So the positive solution of fuzzy difference equation (3.1) is unique. m

3.4 The boundedness and persistence of positive fuzzy

solution

Lemma 3.4.1 [12] Consider the difference equations:

Yol = WYn +G1, Zpe1 = WaZy+qGo, n=12,.., VYo,2 € R*. (3.15)

Suppose that there exist positive numbers P,Q, P, Q’, G such that Q' <1,yo < zo < G,
P<qgi<q2<Quand P < wy < wy <Q, then there exists positive number T such that the

following statements are true.
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Proof. 1) Let y, be a positive solution of (3.15). Then we have

Yo = WiYn-1 + 41 < QYno1 + Q= Q'(wWiYn—2 + q1) + Q
SQQYn2+Q+Q=Q%2+QQ+Q
<Q*QYu3+Q+QQ+Q=Q%m3+Q%°Q+QQ+Q
<Q'a+Q°Q+Q%Q+QQ+Q

1_Qm

<QY QR QT4+ Q@+ D= Q"+ QT

We are going to the limit, we have

) . l_Qm Q
< i @ O <G+

SowehaveP<yn<T,whereT:G+%.

2) Let z, be a positive solution of (3.15). Then we have

Zp = Wozp-1 + 2 < Qg + Q = Q(Wayn—2 + q2) + Q
<QQz2+Q+Q=Q%,2+QQ+Q
<QH Q23 +Q+QQ+Q=0Q%23+Q?Q+QQ+Q
<Qz,a+Q°Q+Q%Q+QQ+Q

1_Q/n

<QU+QQT+Q T QH D= Q"+ QT

We are going to the limit, we have

lim z, < lim Q"zp+ Q=% < G+ .
n—+oo n—+oo Q Q

SowehaveP<zn<T,whereT:G+%. [ ]

Theorem 3.4.1 [12] Let g, w, xo € R} and w,y < 1. Then every positive solution of Eq. (3.1)

is bounded and persists.
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Proof:Let x, be a positive solution of Eq. (3.1) Since g, w, x¢ € ]R;; and w,( < 1, then there

exist positive numbers P, Q, P’,Q’, R, for each a € [0, 1] such that Q" < 1,

Low Roo SR PLGiun<qp<Qand P <wjp <wpy < Q.

By lemma (3.4.1) we obtain:

P<L,,<R,,<T, Vace€[0,1]. Therefore [L, ., Ry.] C [P, T],Va € [0,1] and so

supp(x,) C [P, T].

Then the positive solution is bounded and persists.

3.5 The existence of positive equilibrium point
Definition 3.5.1 [12] We say that fuzzy numbers x is a equilibrium for (3.1), if x = wx +q.

Proposition 3.5.1 If w < 1, then every positive solution x, of Eq. (3.1) converges to the

positive equilibrium x as n — oo.

Proof: The solution of Eq. (3.1) is given by:

" 1-w"
xn:wxo+q(1_w).

Ifw<1w"=0whenn — .

So

. _ . n 1-w"\ _ L
nETooxn B nl—l>Toow Xo + q( 1-w ) S 1w

Theorem 3.5.1 [13] Consider (3.1) wkere w,xo,q € Rf such that w,., Ro. < 1. then the

following statments are true:

i) (3.1) has unique equilibrium point.

ii) Every positive solution x,, of (3.1) converges to the unique equilibrium x with respect to D

asn — oo.
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Proof: i) By definition (3.5.1), if x is a equilibrium point of (3.1), then

La = wl,aLa + l,au-(l)
L (3.16)
Ry = wroRy + Gr ... (2).

According to (1) we have

La - wl,acLa =qia
La(l - wl,a) = (qla
—

La - l—w;,a'

Based on (2) we have

Ra - wr,acRat =Gra

Ra(l - wr,a) =Gra
Ra — Jr.a

1-w, o *

The system (3.16) has one solution: [x], = [L,, R,] = [ql—“ q’—“]

1_wl,a’ 1-wy,q
so [x], is an equilibrium point of (3.1). For uniqueness, suppose there exist another

equilibrium point ¥ € R} for (3.1)

(3.17)

According to (3) we have

ioz - wl,ozLa =Jia
ia(l - wl,cx) = ql,cx

i — _Qa

@ 1_wl,oz-

Based on (4) we have
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S0 [#la = [La, Rol = [, 122, Var €10, 1].

1-wy ™

From this we have L, = L, = % and R, = R, = {22, Ya €]0, 1].

Wy 1-w, o’

So the eqilibrium point of (3.1) is unique.

ii) From (3.6), proposition (3.5.1) and since w;,, Ry, < 1, we have lim L,, =L, = 11;‘1
n—+oco o

and

lim R,,, = R, = 2~. So we have

N—+00 1w,y

lim D(x,,x) = nl_i]limsup max{ Rya— Ra” =0.

n—+oo

Ln,a - La

7

So x,, converge to the unique equilibrium point.

Example 3.5.1 Consider the following fuzzy difference equation

Xpr1 =wx, +q, n=0,1,2..

Take w,q € R} and initial value xo € R} are triangular fuzzy numbers with membership

functions as

» 5x—1 , H<x<3 ” x—-6 , 6<x<7
w(x) = , g(x) =
—Sx+32 , S<x<3. —x+8 , 7<x<8
x—2 , 2<x<3
xo(x) =
—-x+4 , 3<x<4
Then we have,
Sx—1=a = x=%+ 4 x-6=a = x=a+6
[w]a, = , lgle =
Sr+i=a = x=F+3. —x+8=a = x=-a+6.

50



fuzzy sets and fuzzy numbers

a 1 —a 1
§+E’?+§] , [gla=la+6,—a+6] , ac€]0,1]

X—-2=a0 = x=a+2
[xO]a:

—x+4=0 = x=—-a+4.

So [xola=[a+2,-a+4] , ac€]0,1].

Therefore, it follows that

Uae(O,l][Q]a = [6/ 8] (318)

Uae1)[%0]a = [2,4].

Since Wy, Wy < 1, by theorem (3.3.1) there exist a unique positive solution to (3.1).
By theorem (3.4.1) every positive solution of Eq (3.1) is bounded and persists. Also, by theorem

(3.5.1) there is unique positive equilibrium.

_ _ ql,a T
[x]Oé - [LDU Ra] - [l—Iw],Q’ 1zwr,a:|'
Fora=20

[xlo = [Lo, Ro] = [, 2| = [6.66,12].

1-w;g” 1-wyp

Fora =05
[xlos = [Los, Ros] = | a2, 22| = [8.13,9.16].

1-wip5” 1-wro5

Moreover, every positive solution x, of (3.1) converges to the unique positive equilibrium x.
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Figure 3.1: The solution of Eq(3.1) at &« = 0.5.
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Figure 3.2: The solution of Eq(3.1) at a = 0.
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CONCLUSION

This dessertation explores the theoretical and practical aspects of first-order linear
difference equations with positive fuzzy coefficients. Through the three chapters, we
systematically developed and analyzed the mathematical foundation and behavior of
fuzzy difference equations, providing valuable insights into their characteristics and

applications.

Key Findings:

e Existence and Uniqueness: The research confirmed that positive fuzzy solutions
exist and are unique under certain conditions. This finding is pivotal as it ensures

that the equations are solvable within the defined fuzzy framework.

e Boundedness and Persistence: The boundedness and persistence of solutions
indicate the stability and resilience of fuzzy solutions, making them reliable for

modeling and predicting the behavior of systems involving uncertainty.

e Convergence: The analysis of convergence demonstrated that fuzzy solutions
tend to stabilize over time, reflecting the consistency and reliability of these solu-

tions in dynamic systems.
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In conclusion, this dissertation contributes to the broader understanding of fuzzy
mathematics and its application to difference equations. It opens new avenues for
research and application, providing a valuable tool for dealing with uncertainty in
mathematical modeling and analysis. The work underscores the potential of fuzzy
systems to offer more flexible and realistic models for a variety of complex, real-world

problems.
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