
الشعبيـة الديمقراطيـة الجزائـريـة الجمهوريـة
People's Democratic Republic of Algeria

العلمـي والبحـث العالـي التعليــم وزارة
Ministry of Higher Education and Scientific Research

No Réf :……………

Abdelhafid Boussouf
University Center – Mila

Institute of Mathematics and Computer Science Department of Mathematics

Submitted for the Degree of Master
In: Mathematics

Specialty: Applied Mathematics

Presented by: Zahra Bouketta

Manar Khalfatni

Defended on …/06/2024 in front of the Jury

Smail Kaouache MCA Abdelhafid Boussouf U. C. of Mila, Chairman

Yacine Halim Prof Abdelhafid Boussouf U. C. of Mila, Supervisor

Mohamed Khalfaoui MAA Abdelhafid Boussouf U. C. of Mila, Examiner

Academic Year: 2023/2024

On the solutions to the fuzzy difference
equations



ACKNOWLEDGMENTS

All praise and gratitude are due to Allah. We seek his help in all matters, and send

prayers and peace upon Prophet Muhammad, his companions, and those who follow

their guidance until the day of Judgment.

A heartfelt greeting and special thanks to our supervisor Prof. Yacine Halim, who

provided us with valuable advice and guidance throughout the completion of this

thesis.

A warm greeting to the committee members who kindly discussed this thesis: Dr.

Smail Kaouache, Mr. Mohamed Khalfaoui. Thank you for your thorough review of

this thesis and for the valuable comments you provided.

I extend our gratitude to all professors and institutions from our educational journey,

especially those at the Institute of Mathematics and Informatics, Abdelhafid Boussouf

University Center of Mila.

We dedicate this work to our parents for their sacrifices and to our friends and

classmates, and to all who supported us but are not mentioned here.

Manar, Zahra.

i



ABSTRACT

Our aim in this thesis is to study a first-order linear difference equation with positive

fuzzy coefficients.

In the first chapter, we presented some definitions and the main theories related to

linear and nonlinear difference equations.

The second chapter focused on fuzzy sets, including some of their important prop-

erties and illustrative examples, as well as fuzzy numbers, which are part of them.

We discussed their theoretical aspects, fundamental properties, various types, and

arithmetic operations on them.

The third chapter was dedicated to studying the existence, uniqueness, bounded-

ness, persistence, and convergence of the positive fuzzy solution.

Key words: fuzzy difference equation, fuzzy numbers, fuzzy sets, boundedness,

persistence.
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موجبة. ضبابية بمعاملات ʄالأوڲ الدرجة من خطية فروق معادلة دراسة ɸو المذكرة ɸذه ʏࢭ ɸدفنا

غ؈ف و اݍݵطية الفروق بمعادلة المتعلقة الرئʋسية النظرʈات و التعارʈف Ȋعض قدمنا الأول الفصل ʏࢭ

. اݍݵطية

أمثلة و الɺامة خواصɺا Ȋعض ʄإڲ بالإضافة الضبابية اݝݨموعات حول تمحور الثاɲي الفصل

الأساسية وخواصɺا النظري ݍݨانّڈا التطرق تم حيث مٔڈا، جزء ʏۂ الۘܣ الضبابية ,والأعداد توضيحية

. علٕڈا اݍݰسابية أنواعɺاوالعمليات والبعضمن

الموجبوتقارȋه. الضباȌي اݍݰل استمرارʈة و محدودية الثالثخصصلدراسةوجود،وحدانية، الفصل

و اݝݰدودية الضبابية، اݝݨموعات الضبابية، الأعداد الضبابية، الفروق معادلة المفتاحية: الɢلمات

الاستمرارʈة.



RÉSUMÉ

Notre objectif dans ce mémoire est d’étudier une équation aux différences linéaires du

premier ordre avec des coefficients flous positifs.

Dans le premier chapitre, nous avons présenté quelques définitions et théories prin-

cipales relatives aux équations aux différences linéaires et non linéaires.

Le deuxième chapitre est concentré sur les ensembles flous, ainsi que sur certaines

de leurs propriétés importantes et des exemples illustratifs, ainsi que sur les nombres

flous qui en font partie. Nous avons discuté de leurs aspects théoriques, de leurs pro-

priétés fondamentales, de certains types et des opérations arithmétiques associées.

Le troisième chapitre a été consacré à l’étude de l’existence, de l’unicité, de la

bornitude , de la continuité et de la convergence de la solution floue positive.

Mots-clés : équation aux différences floues, nombres flous, ensembles flous, borni-

tude, continuité.
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INTRODUCTION

Fuzzy sets and fuzzy numbers are fundamental concepts in fuzzy theory, which was

developed by Lotfi Zadeh, in 1965 [16]. This theory aims to handle uncertain and

imprecise information that is difficult to process using traditional methods.

Additionally, fuzzy sets are a generalization of classical (traditional) sets, allowing

an element to belong to the set with degrees of membership ranging between 0 and

1. The concept of a fuzzy number and fuzzy arithmetic operations was introduced by

Zadeh, Dubois and Prade [16, 8]. A fuzzy number is represented by a fuzzy set on the

real number line and is used in various fields such as artificial intelligence, engineering,

and economics.

Difference equations play an important role in mathematics, applied sciences, en-

gineering, and various other fields. Their significance is evident in modeling many

biological, physical, and social phenomena, such as the motion of bodies and the

spread of diseases. They help in understanding how systems change, analyzing their

stability, and predicting the behavior of complex systems.

Difference equations are essential for understanding, describing, and predicting the

behavior of continuously changing systems.
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Introduction

A fuzzy difference equation involves sequence differences. Solving a difference

equation involves finding a sequence that satisfies the equation. The sequence that

satisfies the equation is called a solution of the equation. A fuzzy difference equation

is a difference equation where constants and the initial values are fuzzy numbers,

and its solutions are sequences of fuzzy numbers. Fuzzy difference equations have

been rapidly developed over the years as discrete analogs and numerical solutions of

differential equations.

The aim of this research is to verify the existence, uniqueness, and behavior of the

global solution. This research consists of three chapters:

In the first chapter, we addresse some basic concepts of linear and nonlinear differ-

ence equations and stability.

The work done in the second chapter is divide into two parts. In the first part, we

presente some fundamental definitions regarding fuzzy sets and their operations, fol-

lowed by definitions related to fuzzy numbers, their properties, types, and operations

in the second part.

In the final chapter, we solve the first-order fuzzy difference equation, where Deeba

and Korvin studied [6] its global behavior, which gives the frequency of genetic patterns.

First, we discussed the classical solution of the first-order difference equation with

constant coefficients and the initial condition x0.

xn+1 = wxn + q, n = 0, 1, 2, ...

Second, we study the existence, boundedness, and persistence of the positive fuzzy

solution of the fuzzy difference equation, where xn is sequences of fuzzy numbers and

w, q, x0 ∈ R+F .
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CHAPTER 1

PRELIMINARIES

In this chapter, we present definitions of linear and nonlinear difference equations,

stability using the famous method of linearization, periodicity, permanence, as well as

some Theorems of convergence.

1.1 Linear difference equations

Definition 1.1.1 [5] The equation

xn+k = f (xn+k−1, xn+k−2, ..., xn), (1.1)

for a given function f and unknown quantities xi, i = 0, 1, . . . is called a difference equation of

order k.
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If f is linear, it is called a linear difference equation and it is in the form

akxn+k + ak−1xn+k−1 + · · · + a0xn = b, a0 , 0 (1.2)

According to whether the coefficients and the right hand side of the equation depend on n or not,

it is called an equation with variable or constant coefficients respectively.

When the right hand side b , 0, then the equation xn+k = f (xn+k−1, xn+k−2, ..., xn) is

non-homogeneous, while for b = 0, i.e

akxn+k + ak−1xn+k−1 + · · · + a0xn = 0. (1.3)

This is called a linear homogeneous difference equation.

1.2 Non linear difference equations

Let I be an interval of real numbers and let

f : Ik+1
→ I,

where f is a continuously differentiable function. Consider the difference equation

xn+1 = f (xn, xn−1, ..., xn−k), n = 0, 1, 2, ..., (1.4)

with the initial conditions x−k, x−k+1, ..., x0 ∈ I.

Definition 1.2.1 [14] (Equilibrium point) A point x̄ is said to be an equilibrium point for the

equation (1.4) if

x̄ = f (x̄, x̄, ..., x̄), (1.5)

in other words

xn = x̄, ∀n ⩾ −k. (1.6)
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Definition 1.2.2 [10] (Periodicity)

A solution {xn}
∞

n=−k of Eq. (1.4) is called periodic with period p (or a period p solution) if there

exists an integer p ⩾ 1 such that

xn+p = xn,∀n ⩾ −k. (1.7)

We say that the solution is periodic with prime period p if p is the smallest positive integer for

which Eq. (1.7) holds. In this case, a p-tuple

(xn+1, xn+2, ..., xn+p)

of any p consecutive values of the solution is called a p-cycle of Eq.(1.4).

Definition 1.2.3 [10] (Eventually periodic)

A solution {xn}
∞

n=−k of Eq.(1.4) is called eventually periodic with period p if there exists an integer

N ⩾ −k such that {xn}
∞

n=N is periodic with period p that is,

xn+p = xn,∀n ⩾ N.

Definition 1.2.4 [9] (Permanence)

The difference equation

xn+1 = f (xn, xn−1, ..., xn−k), n = 0, 1, ..., (1.8)

is said to be permanent if there exist numbers m and M with 0 < m ⩽M < ∞ such that for any

initial conditions x−k, x−k+1, ..., x−1, x0 ∈ (0,∞) there exists a positive integer N which depends

on the initial conditions such that

m ⩽ xn ⩽M, ∀n ⩾ N. (1.9)
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Definition 1.2.5 [14] (Invariant interval)

An interval J ⊆ I is said to be an invariant interval for equation (1.4) if

x−k, x−k+1, ..., x0 ∈ J =⇒ xn ∈ J, n > 0. (1.10)

1.2.1 Stability of non linear difference equations

Definition 1.2.6 [9] Let x be an equilibrium point of Eq (1.4).

(i) x is locally stable if

∀ϵ > 0,∃δ > 0,∀x−k, x−k+1, ..., x−1, x0 ∈ I :
∣∣∣x−k − x

∣∣∣ + ∣∣∣x−k+1 − x
∣∣∣ + ... + ∣∣∣x0 − x

∣∣∣ < δ,
we have

∣∣∣xn − x
∣∣∣ < ϵ,∀n ⩾ −k.

(ii) x is locally asymptotically stable if

. x is locally stable,

. ∃γ > 0,∀x−k, x−k+1, ..., x−1, x0 ∈ I :
∣∣∣x−k − x

∣∣∣ + ∣∣∣x−k+1 − x
∣∣∣ + ... + ∣∣∣x0 − x

∣∣∣ < γ, we have

lim
n→∞

xn = x.

(iii) x is global attractor if

∀x−k, x−k+1, ..., x−1, x0 ∈ I, lim
n→∞

xn = x.

(iv) x is globally asymptotically stable if

. x is locally stable,

. x is also a global attractor.

(v) The equilibrium point x of Eq (1.4) is unstable if x is not locally stable.

Definition 1.2.7 [14] The equation

yn+1 = p0yn + p1yn−1 + · · · + pkyn−k, (1.11)
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is called the linearized equation of Eq. (1.4), with

pi =
∂ f
∂ui

(x, x, ..., x), i = 0, ..., k,

and

f : Ik
−→ I

(u1, ...,uk) 7−→ f (u1, ...,uk),

and

p(λ) = λk+1
− p0λ

k
− · · · − pk, (1.12)

its associated characteristic polynomial.

Theorem 1.2.1 [10](Stability by linearization)

Suppose f is a continuously differentiable function defined on some open neighborhood of x.

Then the following statement are true:

1. If all the roots of Eq.(1.12) have absolute value less than one, then the equilibrium point x of

equation (1.4) is locally asymptotically stable.

2. If at least one root of Eq.(1.12) has absolute value greater than one, then the equilibrium point

x of equation (1.4) is unstable.

Theorem 1.2.2 [9](The clark Theorem) Assume that p, q ∈ R and k ∈ {0, 1, 2, ...}. Then

∣∣∣p∣∣∣ + ∣∣∣q∣∣∣ < 1

is a sufficient condition for the asymptotic stability of the difference equation

xn+1 + pxn + qxn−k = 0, n = 0, 1, ...

Remarque 1.2.3 [9] Theorem (1.2.2) can be easily extended to general linear equations of the

form

xn+k + p1xn+k−1 + · · · + pkxn = 0, n = 0, 1, ... (1.13)

7
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where p1, p2, ..., pk and k ∈ {1, 2, ...}. Then Eq (1.13) is asymptotically stable provided that

k∑
i=1

∣∣∣pi

∣∣∣ < 1.

Theorem 1.2.4 [14](Theorem of Rouché) Let f (z), 1(z) be two holomorphic functions in an

open setΩ in the complex plane C, and let K be a compact with boundary contained inΩ. If we

have

∣∣∣1(z)
∣∣∣ < ∣∣∣ f (z)

∣∣∣ ,∀z ∈ ∂K,

then the number of zeros of f (z) + 1(z) in K is equal to the number of zeros of f (z) in K, where

∂K is the boundary of K.

1.2.2 Theorems of convergence

Theorem 1.2.5 [10] Let 1 : [a, b] × [a, b]→ [a, b] be a continuous function, where a and b are

real numbers with a < b, and consider the difference equation

xn+1 = 1(xn, xn−1), n = 0, 1, ... (1.14)

Suppose that g satisfies the following coditions:

1) 1(x, y) is non-decreasing in x ∈ [a, b] for each fixed y ∈ [a, b], and 1(x, y) is non-decreasing

in y ∈ [a, b] for each fixed x ∈ [a, b];

2) If (m,M) is a solution of the system


m = 1(m,m)

M = 1(M,M),

then m =M.

Then there exists exactly one equilibrium x of Eq.(1.14), and every solution of Eq (1.14) converges

to x.
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Theorem 1.2.6 [10] Let 1 : [a, b] × [a, b]→ [a, b] be a continuous function, where a and b are

real numbers with a < b, and consider the difference equation

xn+1 = 1(xn, xn−1), n = 0, 1, ...

Suppose that g satisfies the following coditions:

1) 1(x, y) is non-increasing in x ∈ [a, b] for each fixed y ∈ [a, b], and 1(x, y) is non-decreasing

in y ∈ [a, b] for each fixed x ∈ [a, b];

2) If (m,M) is a solution of the system


m = 1(M,m)

M = 1(m,M)

then m =M.

Then there exists exactly one equilibrium x of Eq.(1.14), and every solution of Eq (1.14) converges

to x.

Theorem 1.2.7 [10] Let 1 : [a, b] × [a, b]→ [a, b] be a continuous function, where a and b are

real numbers with a < b, and consider the difference equation

xn+1 = 1(xn, xn−1), n = 0, 1, ...

Suppose that g satisfies the following coditions:

1) 1(x, y) is non-decreasing in x ∈ [a, b] for each fixed y ∈ [a, b], and 1(x, y) is non-increasing

in y ∈ [a, b] for each fixed x ∈ [a, b];

2) If (m,M) is a solution of the system


m = 1(m,M)

M = 1(M,m),

then m =M.

Then there exists exactly one equilibrium x of Eq.(1.14), and every solution of Eq (1.14) converges

9
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to x.

Theorem 1.2.8 [10] Let 1 : [a, b] × [a, b]→ [a, b] be a continuous function, where a and b are

real numbers with a < b, and consider the difference equation

xn+1 = 1(xn, xn−1), n = 0, 1, ...

Suppose that g satisfies the following coditions:

1) 1(x, y) is non-increasing in x ∈ [a, b] for each fixed y ∈ [a, b], and 1(x, y) is non-increasing

in y ∈ [a, b] for each fixed x ∈ [a, b];

2) If (m,M) is a solution of the system


m = 1(M,M)

M = 1(m,m),

then m =M.

Then there exists exactly one equilibrium x of Eq.(1.14), and every solution of Eq (1.14) converges

to x.

Theorem 1.2.9 [10] Let 1 : [a, b]k+1
→ [a, b] be a continuous function, where k is a positive

integer, and where [a,b] is an interval of real numbers. Consider the difference equation

xn+1 = 1(xn, xn−1, ..., xn−k), n = 0, 1, ... (1.15)

Suppose that g satisfies the following coditions:

1. For each integer i with 1 ⩽ i ⩽ k+ 1, the function 1(z1, z2, ..., zk+1) is weakly monotonic in zi

for fixed z1, z2, ..., zi−1, zi+1, ..., zk+1.

2. If (m,M) is a solution of the system


m = 1(m1,m2, ...,mk+1)

M = 1(M1,M2, ...,Mk+1)

10
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then m =M, where for i = 1, 2, ..., k + 1, we set

mi =


m i f 1 is non − decreasin1 in zi

M i f 1 is non − increasin1 in zi.

And

Mi =


M i f 1 is non − decreasin1 in zi

m i f 1 is non − increasin1 in zi.

Then there exists exactly one equilibrium x of Eq.(1.15), and every solution of Eq (1.15) converges

to x.

11



CHAPTER 2

FUZZY SETS AND FUZZY NUMBERS

In this chapter, we present some basic definitions about fuzzy sets and fuzzy numbers.

In the first part, we focus on fuzzy sets and operations on them. In the last part, we

present some definitions, properties, types and operations on fuzzy numbers.

2.1 Fuzzy sets

2.1.1 Fuzzy logic

Definition 2.1.1 [7] Fuzzy Logic is an extension of Boolean logic by Lotfi Zadeh in 1965 based

on the mathematical theory of fuzzy sets, which is a generalization of the classical set theory. By

introducing the notion of degree in the verification of a condition, thus enabling a condition to be

in a state other than true or false, fuzzy logic provides a very valuable flexibility for reasoning,

which makes it possible to take into account inaccuracies and uncertainties.

One advantage of fuzzy logic in order to formalize human reasoning is that the rules are set in

12
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natural language.

2.1.2 Classical sets

Definition 2.1.2 [8] Let X be a classical set of objects, called the universe, whose generic

elements are denoted x. Membership in a classical subset A of X is often viewed as a characteristic

function , µA from X to {0, 1} such that

χA (x) =


1 i f x ∈ A

0 i f x < A

Example 2.1.1 Let X=R be the reference set and A be the set of numbers between 3 and 9, it is

characterized by the following characteristic function

χA : R −→ {0, 1}

χA (x) =


1 i f x ∈ A

0 i f x < A

χA (4) = 1, χA (2) = 0.

2.1.3 Concept of fuzzy sets

Fuzzy sets were introduced by L. Zadeh . The definition of a fuzzy set given by L.

Zadeh is as follows: A fuzzy set is a class with a continuum of membership grades. So

a fuzzy set A in a referential (universe of discourse) X is characterized by a membership

function A which associates with each element x ∈ X a real number A(x) ∈ [0, 1], having

the interpretation A(x) is the membership grade of x in the fuzzy set A [3].

Definition 2.1.3 [3] A fuzzy set A (fuzzy subset of X) is defined as a mapping

A : X −→ [0, 1]

13
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where A(x) is the membership degree of x to the fuzzy set A. We denote by F(X) the collection

of all fuzzy subsets of X. Fuzzy sets are generalizations of the classical sets represented by their

characteristic functions χA : X −→ {0, 1}. In our case A(x) = 1 means full membership of

x in A, while A(x) = 0 expresses non-membership, but in contrary to the classical case other

membership degrees are allowed. We identify a fuzzy set with its membership function. Other

notations that can be used are the following µA(x) = A(x). Every classical set is also a fuzzy set.

We can define the membership function of a classical set A ⊆ X as its characteristic function

µA(x) =


1 i f x ∈ A

0 otherwise

Definition 2.1.4 [17] If X is a collection of objects denoted generically by x, then a fuzzy set A

in X is a set of ordered pairs:

A = {(x, µA(x))|x ∈ X}

µA(x) is called the membership function or grade of membership .

Example 2.1.2 A realtor wants to classify the house he offers to his clients. One indicator

of comfort of these houses is the number of bedrooms in it. Let X={1, 2, ..., 10} be the set of

available types of houses described by x = number of bedrooms in a house. Then the fuzzy set

"comfortable type of house for a four-person family" may be described as

A = {(1, 0.2), (2, 0.5), (3, 0.8), (4, 1), (5, 0.7), (6, 0.3)}

2.1.4 Operations between fuzzy sets

• Equality

Two fuzzy sets A and B are equal, whritten as A=B, if and only if µA (x) = µB (x) For

all x in X [16].

14
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• Complement

The complement of a fuzzy set A is denoted byAc and is defined by [16].

µAc = 1 − µA

Figure 2.1: Complement of fuzzy sets.

• Containment

A is contained in B if and only if µA≤µB. In symbols[16]

A ⊂ B⇔ µA ≤ µB

• Union

The union of two fuzzy sets A and B with respective membership functions µA (x) and

µB (x) is a fuzzy set C, written as C = A ∪ B, whose membership function is related to

those of A and B by [16]

µC (x) = max
[
µA (x) , µB (x)

]
, x ∈ X

Or, in abbreviated form

µC = µA ∨ µB

15



fuzzy sets and fuzzy numbers

Figure 2.2: Union of fuzzy sets.

• Intersection

The intersection of two fuzzy sets A and B with respective membership functions µA (x)

and µB (x) is a fuzzy set C, written as C = A∩ B, whose membership function is related

to those of A and B by [16]:

µC (x) = min
[
µA (x) , µB (x)

]
, x ∈ X.

Or, in abbreviated form:

µC = µA ∧ µB.

Figure 2.3: Intersection of fuzzy sets.
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Example 2.1.3 Let A be the fuzzy set "comfortable type of house for a four-person family" from

example 2.1.2 and B be the fuzzy set "large type of house" defined as:

B = {(3, 0.2), (4, 0.4), (5, 0.6), (6, 0.8), (7, 1), (8, 1)}.

The intersection C = A ∩ B is then

C = {(3, 0.2), (4, 0.4), (5, 0.6), (6, 0.3)}.

The union D = A ∪ B is:

D= {(1, 0.2), (2, 0.5), (3, 0.8), (4, 1), (5, 0.7), (6, 0.8), (7, 1), (8, 1)}.

The complement Bc, which might be interpreted as "not large type of house," is :

Bc = {(1, 1), (2, 1), (3, 0.8), (4, 0.6), (5, 0.4), (6, 0.2), (9, 1), (10, 1)}.

List the basic properties of complement, union and inter-

section:

All sets are subsets of the same X [4].

• Involution:
(
AC
)C
= A .

• Commutativity:
A ∪ B = B ∪ A,

A ∩ B = B ∩ A.

• Associativity:
(A ∪ B) ∪ C = A ∪ (B ∪ C),

(A ∩ B) ∩ C = A ∩ (B ∩ C).

• Distributivity:
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C),

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).

• Idempotency:
A ∩ A = A,

A ∪ A = A.

• Law of contradiction: A ∩ Ac = ∅.
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• Law of excluded middle: A ∪ Ac = X.

• De morgan:
(A ∪ B)c = Ac

∩ Bc,

(A ∩ B)c = Ac
∪ Bc.

• Identity:
A ∪ ∅ = A,A ∩ ∅ = ∅,

A ∪ X = X,A ∩ X = A.

• Absorbtion:
A ∪ (A ∩ B) = A,

A ∩ (A ∪ B) = A.

2.1.5 Algebraic operations on fuzzy sets

For the time being we return to ordinary fuzzy sets and consider additional operations

on them that have been defined in the literature and that will be useful or even necessary

for later chapters[17].

• Product :

The algebraic product of two fuzzy sets C = A · B is defined as:

C =
{
(x, µA (x) · µB (x)), x ∈ X

}
.

• Cartesian Product :

Cartesian product applied to multiple fuzzy sets can be defined as follows.

Denoting µA1 (x) , µA2 (x) , ..., µAn (x) as membership functions of A1,A2, ...,An for

∀x1 ∈ A1, x2 ∈ A2, ..., xn ∈ An.

Then, the probability for n-tuple (x1, x2, ..., xn) to be involved in fuzzy set

A1 × A2 × ... × An is:

µA1×A2×...×An (x1, x2, ..., xn) = min[µA1 (x1) , µA2 (x2) , ..., µAn (xn)].
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• Sum :

The algebraic sum (probabilistic sum) C = A + B is defined as :

C =
{
(x, µA+B (x)), x ∈ X

}
,

where

µA+B (x) = µA (x) + µB (x) − µA (x) · µB (x) .

• Bounded sum :

The bounded sum C = A ⊕ B is defined as:

C =
{
(x, µA⊕B (x)), x ∈ X

}
,

where

µA⊕B (x) = min{1, µA (x) + µB (x)}.

• Bounded difference :

The bounded difference C = A ⊖ B is defined as:

C =
{
(x, µA⊖B (x)), x ∈ X

}
,

where

µA⊖B (x) = max{0, µA (x) + µB (x) − 1}.

• Mth power:

The mth power of a fuzzy set A is a fuzzy set with the membership function.

µAm (x) = [µA (x)]m, x ∈ X.
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Example 2.1.4 Let A and B two fuzzy sets:

A(x) = {(3, 0.5), (5, 1), (7, 0.6)}.

B(x) = {(3, 1), (5, 0.6)} .

The above definitions are then illustrated by the following results:

A × B = {[(3; 3), 0.5], [(5; 3), 1], [(7; 3), 0.6][(3; 5), 0.5], [(5; 5), 0.6], [(7; 5), 0.6]}.

A2 = {(3, 0.25), (5, 1), (7, 0.36)}.

A + B = {(3, 1), (5, 1), (7, 0.6)}.

A ⊕ B = {(3, 1), (5, 1), (7, 0.6)}.

A ⊖ B = {(3, 0.5), (5, 0.6)}.

A · B = {(3, 0.5), (5, 0.6)}.

2.1.6 Caracteristics of a fuzzy sets

In order to define the characteristics of fuzzy sets, we are redefining and expanding the

usual characteristics of classical sets [7].

Definition 2.1.5 [7] The height of A, denoted h(A), corresponds to the upper bound of the

codomain of its membership function:

h(A) = sup{µA (x) |x ∈ X}.

Definition 2.1.6 [7] A is said to be normalised if and only if h(A) = 1. In practice, it is

extremely rare to work on non-normalised fuzzy sets.

Definition 2.1.7 [7] The support of A is the set of elements of X belonging to at least some A

(i.e.The membership degree of x is strictly positive). In other words, the support is the set:

supp(A) =
{
x ∈ X|µA (x) > 0

}
.

Definition 2.1.8 [7] The kernel of A is the set of elements of X belonging entirely to A. In

other words, the kernel noy(A) =
{
x ∈ X|µA (x) = 1

}
. By construction, noy(A) ⊆ supp(A).
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Definition 2.1.9 [17] For a finite fuzzy set A also X finite, the cardinality |A| is defined as:

|A| =
∑
x∈X

µA (x).

∥ A ∥= |A|
|X| is called the relative cardinality of A.

Obviously, the relative cardinality of a fuzzy set depends on the cardinality of the universe.

So you have to choose the same universe if you want to compare fuzzy sets by their relative

cardinality.

Example 2.1.5 1) Let X={A,B,E,F,G,I} finit set and the fuzzy sets A be given by:

A = {(A; 0.6); (B; 0.7); (E; 0.4); (F; 0.3); (G; 0.8); (I; 0.5)} .

So h(A) = 0.8, supp(A) = X, noy(A) = ∅, |A| = 3.3

And B = {(A; 0); (B; 0); (E; 1); (F; 0.8); (G; 0); (I; 1)}.

So B is a normalised fuzzy set, because h(B) = 1, supp(B) = {E,F, I}, noy(B) = {E, I},

|B| = 2.8.

2) Let X=[0,35] (the set of Ages) such as α ∈ [0, 1], and let A be a fuzzy set of X of young ages

given by :

µA (x) =


1 i f x ∈ [20, 30]

0 i f x ⩾ 35 and x ⩽ 15

α i f x ∈]15, 20[ and x ∈]30, 35[

noy(A)=[20,30], supp(A)=]15,35[, and h(A)=1.

Definition 2.1.10 [17] A fuzzy set A is convex if:

µA(λx1 + (1 − λ) x2) ≥ min
{
µA (x1) , µA (x2)

}
, x1, x2 ∈ X, λ ∈ [0, 1].

Alternatively, a fuzzy set is convex if all α − level sets are convex.
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Figure 2.4: Convex fuzzy set.

2.1.7 Norms triangular and conorms triangular

We shall investigate the two basic classes of operators: Operators for the intersection

and union of fuzzy sets referred to as triangular norms and conorms and the class

of averaging operators, which model connectives for fuzzy sets between t-norms and

t-conorms. Each class contains parameterized as well as nonparameterized operators

[17].

Definition 2.1.11 [17] t-norms (Triangular Norme) are two-valued functions from [0, 1] ×

[0, 1] that satisfy the following conditions:

1. T(0, 0) = 0; T(µA (x) , 1) = T(1, µA (x)) = µA (x) , x ∈ X .

2. T(µA (x) , µB (x)) ≤ T(µC (x) , µD (x)) if µA (x) ≤ µC (x) and µB (x) ≤ µD (x) (monotonic-

ity).

3. T(µA (x) , µB (x)) = T(µB (x) , µA (x)) ∀µA (x) , µB (x) ∈ [0, 1] (commutativity).

4. T(µA (x) ,T(µB (x) , µC (x))) = T(T(µA (x) , µB (x)), µC (x)) ∀µA (x) , µB (x) , µC (x) ∈ [0, 1]

(associativity).

The functions T define a general class of intersection operators for fuzzy sets.

Definition 2.1.12 [17] t-conorms or s-norms are associative, commutative, and monotonic

two-placed functions S that map from [0, 1] × [0, 1] into [0, 1]. These properties are formulated
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with the following conditions:

1. S(1, 1) = 1; S(µA (x) , 0) = S(0, µA (x)) = µA (x) , x ∈ X .

2. S(µA (x) , µB (x)) ≤ S(µC (x) , µD (x)) ifµA (x) ≤ µC (x) and aµB (x) ≤ µD (x) (monotonicity) .

3. S(µA (x) , µB (x)) = S(µB (x) , µA (x)) ∀µA (x) , µB (x) ∈ [0, 1] (commutativity).

4. S(µA (x) ,S(µB (x) , µC (x))) = S(S(µA (x) , µB (x)), µC (x)) ∀µA (x) , µB (x) , µC (x) ∈ [0, 1]

(associativity).

A general class of aggregation operators for the union of fuzzy sets called triangular conorms

or t-conorms (sometimes referred to as s-norms).

Remarque 2.1.1 [17] t-norms and t-conorms are related in a sense of logical duality. Alsina

[Alsina 1985] defined a t-conorm as a two-placed function S mapping from [0, 1] × [0, 1] into

[0, 1] such that the function T, defined as

T(µA (x) , µB (x)) = 1 − S(1 − µA (x) , 1 − µB (x)).

2.1.8 Concept of α-level

A fuzzy subset A of U is "formed" by elements of U with an order (hierarchy) that is

given by the membership degrees. An element x of U will be in an "order class" α if its

degree of belonging (its membership value) is at least the threshold level α ∈ [0, 1] that

defines that class. The classic set of such elements is called an α-level of A, denoted

[A]α [2].

Definition 2.1.13 [2] (α-level) Let A be a fuzzy subset of U and α ∈ [0, 1]. The α-level of the

subset A is classical set [A]α of U defined by:

[A]α = {x ∈ U : µA (x) ≥ α} for 0 < α ⩽ 1,

when U is a topological space, the zero α-level of the fuzzy subset A is defined as the smallest

closed subset (in the classic sense) in U containing the support set of A. In mathematical terms,

[A]0 is the closure of the support of A and is also denoted by suppA. This consideration becomes
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essential in theoretical situations appearing in this text. Note also that the set

{x ∈ U : µA (x) ≥ 0} = U is not necessarily equal [A]0 = suppA.

Example 2.1.6 Let U = R be the set of real numbers and let A be a fuzzy subset of R with the

following function membership function:

µA (x) =


x − 1 i f 1 ⩽ x ⩽ 2

3 − x i f 2 < x < 3

0 i f x < [1, 3].

In this case we have: [A]α = [α + 1, 3 − α] for 0 < α ⩽ 1 and [A]0 = ]1, 3[ = [1, 3].

2.2 Fuzzy number

First of all, we’ll look into interval, the fundamental concept of fuzzy number, and

then operation of fuzzy numbers. In addition, we’all introduce special kind of fuzzy

number such as triangular fuzzy number and trapezoidal fuzzy number[6].

2.2.1 Concept of fuzzy number

Definition 2.2.1 [15] (Interval) When interval is defined on real number R, this interval is

said to be a subset of R. For instance, if interval is denoted as A = [a1, a3], a1, a3 ∈ R, a1 < a3,

we may regard this as one kind of sets. Expressing the interval as membership function is shown

in the following see Fi1(2.5)

µA (x) =


0, x < a1

1, a1 ≤ x ≤ a3

0, x > a3

If a1 = a3, this interval indicates a point. That is, [a1, a1] = a1
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Figure 2.5: Interval A = [a1, a3].

2.2.2 Some definitions of fuzzy number

Fuzzy number is expressed as a fuzzy set defining a fuzzy interval in the real number

R. Since the boundary of this interval is ambiguous, the interval is also a fuzzy set.

Generally a fuzzy interval is represented by two end points a1 and a3 and a peak point

a2 as [a1, a2, a3] see Fig (2.7). The α − level operation can be also applied to the fuzzy

number. If we denote α− level interval for fuzzy number A as Aα, the obtained interval

Aα is defined as[15]:

Aα = [a(α)
1 , a

(α)
3 ].

Definition 2.2.2 [15] (Fuzzy number) It is a fuzzy set the following conditions :

1. Convex fuzzy set.

2. Normalized fuzzy set.

3. It’s membership function is piecewise continuous.

4. It is defined in the real number.

fuzzy number should be normalized and convex. Here the condition of normalization implies

that maximum membership value is 1.
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∃x ∈ R, µA (x) = 1.

The convex condition is that the line by α − level is continuous and α − level interval satisfies

the following relation.

Aα = [a(α)
1 , a

(α)
3 ] .

(α′ < α)⇒ (a(α′)
1 ≤ a(α)

1 , a
(α′)
3 ≥ a(α)

3 ).

Figure 2.6: α-level of fuzzy number (α′ < α)⇒ (Aα ⊂ Aα′).

The convex condition may also be written as,

(α′ < α)⇒ (Aα ⊂ Aα′).

Definition 2.2.3 [1] Consider a fuzzy subset of the real line A : R→ [0, 1]. Then we say A is

a fuzzy number if it satisfies the following properties:

(i) A is normal, i.e, ∃ x0 ∈ R with µA (x0) = 1.

(ii) A is fuzzy convex, i.e, µA(λx1 + (1−λ)x2) ⩾ min{µA (x1) , µA (x2)},∀λ ∈ [0, 1], x1, x2 ∈ R.

(iii) A is upper semicontinuous on R.

(iv) A is compactly supported i.e, {x ∈ R;µA (x) > 0}, is compact.

Let us denote by RF the space of all fuzzy numbers. For 0 < α ⩽ 1 and A ∈ RF, we denote

α-levels of fuzzy number A by [A]α = {x ∈ R;µA (x) ⩾ α} and [A]0 = {x ∈ R;µA (x) > 0}. We

call [A]0, the support of fuzzy number A and denote it by supp(A). The fuzzy number A is

called positive if supp(A) ⊂]0,∞[. We denote by R+F , the space of all positive fuzzy numbers.
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Figure 2.7: Fuzzy number A = [a1, a2, a3].

Definition 2.2.4 [17] A fuzzy number A is called positive (respectivly negative) if its mem-

bership function is such that µA (x) = 0,∀x < 0 (respectivly ∀x > 0).

Example 2.2.1 Let X={1,2,3,4,5,6,7,8,9,10}

µA={numbers close to 5}

A={(1,0),(2,0.4),(3,0.7),(4,0.9),(5,1),(6,0.9),(7,0.7),(8,0.4),(9,0),(10,0)}

1)A is normalised

µA = 1⇒ A is normal fuzzy set.

2) A is convex([A]α convex⇒ A is convex).

Let α =0.4

[A]0.4 = {2, 3, 4, 5, 6, 7, 8}.

We take two elements x1, x2 ∈ [A]α.

27



fuzzy sets and fuzzy numbers

Let λ=0.5, x1 = 3, x2 = 4.

We have (λx1 + (1 − λ)x2) ∈ [A]α, λ ∈ [0, 1]

In compensation, we find:

3(0.5) + (1 − 0.5)4 = 3.5 ∈ [A]α

⇒ [A]α is convex

⇒ A is convex

3)The support of A is bounded

[A]0 = {2, 3, 4, 5, 6, 7, 8}

We observe that the values of [A]0 ∈ [2, 8] then [A]0 is bounded.

So A is fuzzy number.
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A
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Figure 2.8: Fuzzy number A at α = 0.4.
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2.2.3 Types of fuzzy number

The most common fuzzy numbers are the triangular, trapezoidal and the bell shape

numbers [2].

a) Triangulair fuzzy number

Among the various shapes of fuzzy number, triangular fuzzy number(TFN) is the most

popular one.

Definition 2.2.5 [15] Triangulair fuzzy number is a fuzzy number represented with three

points as follows :

A = (a1, a2, a3),

this representation is interpreted as membership functions see Fig (2.9)

µA (x) =



0, x < a1

x−a1
a2−a1
, a1 ≤ x ≤ a2

a3−x
a3−a2
, a2 ≤ x ≤ a3

0, x > a3.

Now if you get crisp interval by α − level operation, interval Aα shall be

obtained as follows ∀α ∈ [0, 1].

From
a(α)

1 − a1

a2 − a1
= α,

a3 − a(α)
3

a3 − a2
= α.

We get

a(α)
1 = (a2 − a1)α + a1,
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Figure 2.9: Triangular fuzzy number A = (a1, a2, a3).

a(α)
3 = −(a3 − a2)α + a3

thus

Aα = [a(α)
1 , a

(α)
3 ]

= [(a2 − a1)α + a1,−(a3 − a2)α + a3].

Example 2.2.2 In the case of the triangular fuzzy number A = (-5, -1, 1) see Fig (2.10), the

membership function value will be,

µA (x) =



0, x < −5

x+5
4 , −5 ⩽ x ⩽ −1

1−x
2 , −1 ⩽ x ⩽ 1

0, x > 1.

Figure 2.10: α = 0.5 Level of triangular fuzzy number A = (−5,−1, 1).
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α-level interval from this fuzzy number is:

x + 5
4
= α⇒ x = 4α − 5.

1 − x
2
= α⇒ x = −2α + 1.

Aα = [a(α)
1 , a

(α)
3 ] = [4α − 5,−2α + 1].

If α = 0.5, substituting 0.5 for α, we get A0.5

A0.5 = [a(0.5)
1 , a(0.5)

3 ] = [−3, 0].

b) Trapezoidal fuzzy number

Another shape of fuzzy number is trapezoidal fuzzy number. This shape is originated

from the fact that there are several points whose membership degree is maximum

(α = 1).

Definition 2.2.6 [15] We can define trapezoidal fuzzy number A as:

A = (a1, a2, a3, a4).

The membership function of this fuzzy number will be interpreted as follows see Fig (2.11)

µA (x) =



0, x < a1

x−a1
a2−a1
, a1 ≤ x ≤ a2

1, a2 ≤ x ≤ a3

a4−x
a4−a3
, a3 ≤ x ≤ a4

0, x > a4.
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Figure 2.11: Trapezoidal fuzzy number A = (a1, a2, a3, a4).

α-cut interval for this shape is written below. ∀α ∈ [0, 1]

Aα = [(a2 − a1)α + a1,−(a4 − a3)α + a4].

When a2 = a3, the trapezoidal fuzzy number coincides with triangular one.

Example 2.2.3 The fuzzy set of the teenagers can be represented by the trapezoidal fuzzy

number with the membership function:

µA (x) =



x−11
3 i f 11 ⩽ x < 14

1 i f 14 ⩽ x ⩽ 17

20−x
3 i f 17 < x ⩽ 20

0 otherwise.

And it is illustrated in Fig (2.12). The α-levels for this example [3α + 11,−3α + 20], with

α ∈ [0, 1].

Figure 2.12: Trapezoidal fuzzy number .
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c) Bell shape fuzzy number

Definition 2.2.7 [2] A fuzzy number has the bell shape if the membership function is smooth

and symmetric in relation to a given real number. The following membership function has those

properties for fixed u, a and δ see Fig (2.13)

µA (x) =


e
(
−

(
x−u

a

)2)
i f u − δ ⩽ x ⩽ u + δ

0 otherwise.

The α-levels of fuzzy numbers in bell shape are the intervals:

[a(α)
1 , a

(α)
3 ] =


[
u −
√

ln
(

1
αa2

)
,u +

√
ln
(

1
αa2

)]
i f α ⩾

−

α= e −
(
δ
a

)2
[u − δ,u + δ] i f α <

−

α= e −
(
δ
a

)2
.

We next present the arithmetic operations for fuzzy numbers, that is, the operations that allow

us "to compute" with fuzzy sets

Figure 2.13: Fuzzy number in the bell shape .

2.2.4 Arithmetic operations with fuzzy numbers

The arithmetic operations involving fuzzy numbers are closely linked to the interval

arithmetic operations. Let us list some of those operations for closed intervals on the

real line R [2].
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1) Interval arithmetic operations

Let λ be a real number and, A and B two closed intervals on the real line given by:

A = [a1, a2] and B = [b1, b2].

Definition 2.2.8 [2] (Interval operations) The arithmetic operations between intervals can

be defined as:

(a) The Sum between A and B is the interval:

A + B = [a1 + b1, a2 + b2].

(b) The difference between A and B is the interval:

A − B = [a1 − b2, a2 − b1].

(c) The multiplication of A by a scalar λ is the interval:

λA =


[λa1, λa2] i f λ ≥ 0

[λa2, λa1] i f λ < 0.

(d) The multiplication of A by B is the interval:

A · B = [min P,max P],

where P = {a1b1, a1b2, a2b1, a2b2}.

(e) The quotient of A by B, if 0 < B, is the interval:

A/B = [a1, a2] · [ 1
b2
, 1

b1
].

(f)] The Inverse interval of A is:

[a1, a3]−1 = [min( 1
a1
, 1

a3
, ),max( 1

a1
, 1

a3
)].
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Example 2.2.4 There are two intervals A and B, A=[3,5], B=[-2,7]. Then following operations

might be set.

A + B = [3 − 2, 5 + 7] = [1, 12].

A − B = [3 − 7, 5 − (−2)] = [−4, 7].

A · B = [min P,max P] = [−10, 35] where P = {−6, 21,−10, 35}.

A/B = [3, 5].[ 1
7 ,
−1
2 ] = [−5

2 ,
5
7 ] Where P = { 37 ,

−3
2 ,

5
7 ,
−5
2 }.

B−1 = [−2, 7]−1 = [min(−1
2 ,

1
7 ),max(−1

2 ,
1
7 )] = [−1

2 ,
1
7 ].

2) Interval α-level operation

Theorem 2.2.1 The α-levels of the fuzzy set A ⊗ B are given by:

[A ⊗ B]α = [A]α ⊗ [B]α.

For all α ∈ [0, 1], where ⊗ is any arithmetic operations {+,−,×,÷} [2].

Proposition 2.2.1 [2] Let A and B be fuzzy numbers with α-levels respectively given by

[A]α = [aα1 , a
α
2 ] and [B]α = [bα1 , b

α
2 ] . Then the following properties hold:

(a) The sum of A and B is the fuzzy number A + B whose α-levels are:

[A + B]α = [A]α + [B]α = [aα1 + bα1 , a
α
2 + bα2 ].

(b) The difference of A and B is the fuzzy number A − B whose α-levels are:

[A − B]α = [A]α − [B]α = [aα1 − bα2 , a
α
2 − bα1 ].

(c) The multiplication of A by a scalar λ is the fuzzy number λA whose α-levels are:

[λA]α = λ[A]α =


[λaα1 , λaα2 ] i f λ ⩾ 0

[λaα2 , λaα1 ] i f λ < 0.
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(d) The multiplication of A by B is the fuzzy number A·B whose α-levels are:

[A · B]α = [A]α[B]α = [min pα,max pα],

where pα = [aα1 bα1 , a
α
1 bα2 , a

α
2 bα1 , a

α
2 bα2 ].

(e) The division of A by B, if 0 < supp B, is the fuzzy number whose α-levels are:

[A
B

]
α
=

[A]α
[B]α

=
[
aα1′a

α
2

] [ 1
bα2
,

1
bα1

]
.

Theorem 2.2.2 [2] (Extension principle for real intervals) Let A and B be two closed

intervals of R and ⊗ one of the arithmetic operations between real numbers. Then:

µA⊗B (z) = sup
{(x,y):x⊗y=z}

min[µA (x) , µB
(
y
)
].

It is simple to verify that:

min(µA (x) , µB
(
y
)
) =


1 i f x ∈ A and y ∈ B

0 i f x < A and y < B.

Thus, for the sum case (⊗ = +), we have

sup
{(x,y):x+y=z}

min[µA (x) , µB
(
y
)
] =


1 i f x ∈ A + B

0 i f x < A + B.

The other cases can be obtained analogously.

Definition 2.2.9 [17] A binary operation ∗ in R is called increasing (decreasing) if for

x1 > y1 and x2 > y2. x1 ∗ x2 > y1 ∗ y2 (x1 ∗ x2 < y1 ∗ y2).

Example 2.2.5 Let the following functions:

f (x, y) = x + y is an increasing operation.

f (x, y) = −(x + y) is an decreasing operation.
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2.2.5 Extended operations with fuzzy numbers

If the normal algebraic operations+, -, ·,÷ are extended to operations on fuzzy numbers,

they shall be denoted by ⊕,⊖,⊙,⊘ [17].

Definition 2.2.10 [2] Let A and B be two fuzzy numbers and λ a real number.

(a) The sum of the fuzzy numbers A and B is the fuzzy number A ⊕ B, whose membership

function is:

µA⊕B (z) = sup
{(x,y):x+y=z}

min[µA (x) , µB
(
y
)
].

(b) The difference A ⊖ B is the fuzzy number whose membership function is given by:

µA⊖B (z) = sup
{(x,y):x−y=z}

min[µA (x) , µB
(
y
)
].

(c) The multiplication of A by B is the fuzzy number A⊙ B, whose membership function is given

by:

µA⊙B (z) = sup
{(x,y):x·y=z}

min[µA (x) , µB
(
y
)
].

(d) The quotient is the fuzzy number A ⊘ B whose membership function is:

µA⊘B (z) = sup
{(x,y):x/y=z}

min[µA (x) , µB
(
y
)
].

Properties

The following points are properties of the extended operations with fuzzy numbers[17]:

1. ⊕,⊖,⊙,⊘ are commutative.

2. ⊕,⊖,⊙,⊘ are associative.

3. ⊖(A ⊕ B) = (⊖A) ⊕ (⊖B).

4. 0 ∈ R ⊆ RF is the neutral element for ⊕ , that is,A ⊕ 0,∀A ∈ RF.

5. For ⊕ there does not exist an invers element, that is, ∀A ∈ RF\R : A ⊕ (⊖A) , 0 ∈ R.

6. (⊖A) ⊙ B = ⊖(A ⊙ B).
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7. A ⊙ 1 = A ∈ R ⊆ RF is the neutral element for ⊙ , that is, A ⊙ 1 = A,∀A ∈ RF.

8. For ⊙ there does not exist an inverse element, that is, ∀A ∈ RF\R : A ⊙ A−1 , 1.
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CHAPTER 3

FUZZY DIFFERENCE EQUATIONS

In this chapter, first we provide the solution of first-order difference equation

xn+1 = wxn + q, with w, q are constant coefficients in real numbers.

Second, we study the existence, boundedness and persistence to positive fuzzy solution,

also the existence of equilibrium point of fuzzy difference equation

xn+1 = wxn + q, n = 0, 1, 2, ... (3.1)

where xn is a sequence of positive fuzzy numbers,the parameters w, q are positive fuzzy

numbers and the initial condition x0 is arbitrary positive fuzzy number.

3.1 Linear difference equations

Definition 3.1.1 [5] Given constant w and q, a difference equation of the form

xn+1 = wxn + q. (3.2)
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n = 0, 1, 2, ... is called a first-order linear difference equation. A procedure analogous to the

method we used to solve xn+1 = wxn will enable to solve this equation as well.

Namely,

xn = wxn−1 + q

= w(wxn−2 + q) + q

= w2xn−2 + q(w + 1)

= w2(wxn−3 + q) + (w + 1)

= w3xn−3 + q(w2 + w + 1)
...

= wnx0 + q(wn−1 + wn−2 + · · · + w2 + w + 1).

Note that w = 1, this gives

xn = x0 + nq. (3.3)

n = 0, 1, 2, . . .as the solution of the difference equation xn+1 = xn + q

for w , 1 known that

wn−1 + wn−2 + · · · + w2 + w + 1 =
1 − wn

1 − w
,

hence

xn = wnx0 + q
(1 − wn

1 − w

)
. (3.4)

n = 0, 1, 2, . . . is the solution of the first-order linear difference equation xn+1 = wxn + q when

w , 1.
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3.2 Fuzzy difference equations

Lemma 3.2.1 [1] Let f be a continuous function from R+ × R+ × R+ into R+ and A, B, C be

fuzzy numbers, then

[ f (A,B,C)]α = f ([A]α, [B]α, [C]α), α ∈ [0, 1].

Theorem 3.2.1 [1](Stacking Theorem) If A ∈ RF is a fuzzy number and Aα, α ∈ [0, 1] are its

α-cuts, then

(i) Aα is a closed intervale Aα = [Al,α,Ar,α],for any α ∈ [0, 1],

(ii) If 0 ⩽ α1 ⩽ α2 ⩽ 1, then Aα2 ⊆ Aα1 ,

(iii) For any sequence αn which converges from below to α ∈ (0, 1], we have

∞⋂
n=1

Aαn = Aα,

(iv) For any sequence αn which converges from above to 0, we have

∞⋃
n=1

Aαh = A0.

Theorem 3.2.2 [1] Let us consider the functions

Al,α,Ar,α : [0, 1]→ R,

satisfy the following conditions

(i) Al,α ∈ R is bounded, non-decreasing, left-continuous function on ]0,1] and it is right-

continuous at 0.

(ii) Ar,α ∈ R is bounded, non-increasing, left-continuous function on ]0,1] and it is right-

continuous at 0.

(iii) Al,1 ≤ Ar,1.
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Then there is a fuzzy number A ∈ RF that has Al,α,Ar,α as endpoints of itsα-cuts, Aα. Conversely

let A ∈ RF with endpoints Al,α,Ar,α, then conditions (i)-(iii) are satisfied.

Definition 3.2.1 [1] Let A,B be fuzzy numbers with [A]α = [Al,α,Ar,α], [B]α = [Bl,α,Br,α],

α ∈ [0,1]. Then the metric on the fuzzy numbers space is defined as follow

D(A,B) = sup max{|Al,α − Bl,α|, |Ar,α − Br,α|}

where sup is taken for all α ∈ [0, 1].

Definition 3.2.2 [11] We say that xn is a positive solution of (3.1) if xn is a sequence of positive

fuzzy numbers, which satisfies (3.1).

We say that a sequence of positive fuzzy numbers xn is persistent (resp. is bounded) if there

exists a positive number M (resp., N) such that

suppxn ⊂ [M,+∞[,(resp.suppxn ⊂ [0,N]), n=1,2, ....

In addition, we say that xn is bounded and persists if there exist numbers M, N ∈[0, +∞[ such

that

suppxn ⊂ [M, N], n = 1,2,...

Remark 3.2.1 Let u, v ∈ RF, if U ÷ V =W ∈ RF exists, then there are two cases:

case (i): if Ul,αVr,α ⩽ Ur,αVl,α,∀α ∈ [0, 1], then Wl,α =
Ul,α

Vl,α
,Wr,α =

Ur,α

Vr,α
,

case (ii): if Ul,αVr,α ⩾ Ur,αVl,α,∀α ∈ [0, 1], then Wl,α =
Ur,α

Vr,α
,Wr,α =

Ul,α

Vl,α
.

3.3 Existence and uniqueness of positive fuzzy solution

Theorem 3.3.1 [11] For any positive fuzzy numbers x0, fuzzy difference equation (3.1), there

exists a unique positive solution xn whose initial value is x0.

42



fuzzy sets and fuzzy numbers

Proof.

Firstly: existence of the solution

For all positive fuzzy numbers x0, where w, q ∈ R+F , suppose there exists a fuzzy number

sequence that satisfies equation (3.1) whose initial value is x0. Consider their α-cuts,

α ∈ [0, 1], 
[xn]α = [Ln,α,Rn,α]

[w]α = [wl,α,wr,α]

[q]α = [ql,α, qr,α]

(3.5)

following (3.1), (3.5) , and Lemma (3.2.1), we have:

[xn+1]α = [Ln+1,α,Rn+1,α]

= [wxn + q]α

= [wxn]α + [q]α

= [w]α[xn]α + [q]α

= [wl,α,wr,α][Ln,α,Rn,α] + [ql,α, qr,α]

= [wl,αLn,α + ql,α,wr,αRn,α + qr,α].

So we obtain the related equation system


Ln+1,α = wl,αLn,α + ql,α

Rn+1,α = wr,αRn,α + qr,α.
(3.6)

For any given initial values (Li,α,Ri,α), i = 0, α ∈ [0, 1], system (3.6), there exists a unique

positive solution (Ln,α,Rn,α), α ∈[0, 1].

Now we demonstrate that [Ln,α,Rn,α], α ∈[0, 1] determines the solution xn of (3.1) whose

initial value is x0, where (Ln,α,Rn,α) is the positive solution of system (3.6) with initial

value (Li,α,Ri,α), i = 0, such that

[xn]α = [Ln,α,Rn,α], α ∈ [0, 1]. (3.7)
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By Theorem (3.2.1) and w, q, x0 are positive fuzzy numbers, for any α1, α2 ∈ [0, 1],

α1 ⩽ α2 , we have: 
0 < wl,α1 ⩽ wl,α2 ⩽ wr,α2 ⩽ wr,α1 ,

0 < ql,α1 ⩽ ql,α2 ⩽ qr,α2 ⩽ qr,α1 ,

0 < L0,α1 ⩽ L0,α2 ⩽ R0,α2 ⩽ R0,α1

(3.8)

By induction and (3.6), (3.8), we will show

Ln,α1 ⩽ Ln,α2 ⩽ Rn,α2 ⩽ Rn,α1 . (3.9)

We prove that (3.9) is true.

1) For n=0 (3.9) is true by (3.8).

2) Suppose (3.9) is true for n and prove that (3.9) is true for n+1,

Ln+1,α1 = wl,α1Ln,α1 + ql,α1

⩽ wl,α2Ln,α2 + ql,α2 = Ln+1,α2

⩽ wr,α2Rn,α2 + qr,α2 = Rn+1,α2

⩽ wr,α1Rn,α1 + qr,α1 = Rn+1,α1 .

Hence

Ln+1,α1 ⩽ Ln+1,α2 ⩽ Rn+1,α2 ⩽ Rn+1,α1 (3.10)

Therefore (3.10) is true.

So by induction (3.9) is true.

Following (3.6) and we put n=0, we have:


L1,α = wl,αL0,α + ql,α

R1,α = wr,αR0,α + qr,α.
(3.11)

• By theoreme (3.2.2): x0 ∈ R+F exist, then wl,α,wr,α, ql,α, qr,α,L0,α,R0,α are left continous,

and by (3.11) L1,α,R1,α are left continous.

• Also working inductively, we can prove that Ln,α,Rn,α are left continous.
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•We have Lα is non decreasing and Rα is non increasing by (3.10).

• By systeme (3.11) and (3.10) we have L1 ⩽ R1.

Secondly: positivity of the solution

To prove that the solution is a positive fuzzy number, we must prove

supp xn =
⋃
α∈[0,1]

[
Ln,α,Rn,α

]
(support of fuzzy number xn) is compact. It is sufficient to

prove that
⋃
α∈(0,1]

[
Ln,α,Rn,α

]
is bounded.

Since w, q, x0 are positive fuzzy numbers, there exist constants Mw > 0,Nw > 0,Mq >

0,Nq > 0,M0 > 0,N0 > 0 such that for all α ∈ [0, 1]



[wl,α,wr,α] ⊂
⋃
α∈[0,1]

[
wl,α,wr,α

]
⊂ [Mw,Nw].

[ql,α, qr,α] ⊂
⋃
α∈[0,1]

[
ql,α, qr,α

]
⊂ [Mq,Nq].

[L0,α,R0,α] ⊂
⋃
α∈[0,1]

[
L0,α,R0,α

]
⊂ [M0,N0].

(3.12)

Hence from (3.11) and (3.12) we can easily get

[L1,α,R1,α] ⊂ [MwM0 +Mq,NwN0 +Nq], α ∈ (0, 1]. (3.13)

From which it is obvious that

⋃
α∈(0,1]

[
L1,α,R1,α

]
⊂ [MwM0 +Mq,NwN0 +Nq], α ∈ (0, 1]. (3.14)

There for (3.14) implies that
⋃
α∈(0,1]

[
L1,α,R1,α

]
is compact and

⋃
α∈(0,1]

[
L1,α,R1,α

]
⊂ (0,∞).

Deducing inductively, one can get that
⋃
α∈(0,1]

[
Ln,α,Rn,α

]
is compact, moreover,for n =

1, 2, ....., ⋃
α∈(0,1]

[
Ln,α,Rn,α

]
⊂ (0,∞)

Therefore (3.9), (3.14) and that Ln,α,Rn,α are left continuous we have that [Ln,α,Rn,α]

determines a sequence of positive fuzzy numbers (xn) such that (3.7) holds.
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Thirdly: uniqueness of the solution

We prove the uniqueness of the solution. Suppose that there exists another solution x̃n

of (3.1) with initial data x0 ∈ R+F .

For [xn]α solution of (3.1):

[xn+1]α = [wl,αLn,α + ql,α,wr,αRn,α + qr,α]

[x0]α = [cl,α, cr,α]

For [x̃n]α solution of (3.1):

[x̃n+1]α = [wl,αL̃n,α + ql,α,wr,αR̃n,α + qr,α]

[x̃0]α = [cl,α, cr,α]

We get [x̃n]α = [xn]α for any α ∈ [0, 1], so x̃n = xn which is contradictory .

So the positive solution of fuzzy difference equation (3.1) is unique.

3.4 The boundedness and persistence of positive fuzzy

solution

Lemma 3.4.1 [12] Consider the difference equations:

yn+1 = w1yn + q1, zn+1 = w2zn + q2, n = 1, 2, ..., y0, z0 ∈ R
+. (3.15)

Suppose that there exist positive numbers P,Q,P′,Q′,G such that Q′ < 1, y0 ⩽ z0 ⩽ G,

P ⩽ q1 ⩽ q2 ⩽ Q and P′ ⩽ w1 ⩽ w2 ⩽ Q′, then there exists positive number T such that the

following statements are true.

P ⩽ yn ⩽ T, P ⩽ zn ⩽ T.
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Proof. 1) Let yn be a positive solution of (3.15). Then we have

yn = w1yn−1 + q1 ⩽ Q′yn−1 +Q = Q′(w1yn−2 + q1) +Q

⩽ Q′(Q′yn−2 +Q) +Q = Q′2yn−2 +Q′Q +Q

⩽ Q′2(Q′yn−3 +Q) +Q′Q +Q = Q′3yn−3 +Q′2Q +Q′Q +Q

⩽ Q′4yn−4 +Q′3Q +Q′2Q +Q′Q +Q
...

⩽ Q′ny0 +Q(Q′n−1 +Q′n−2 + ... +Q′ + 1) = Q′ny0 +Q
1 −Q′n

1 −Q′
.

We are going to the limit, we have

lim
n→+∞

yn ⩽ lim
n→+∞

Q′ny0 +Q 1−Q′n

1−Q′ ⩽ G + Q
1−Q′ .

So we have P ⩽ yn ⩽ T, where T = G + Q
1−Q′ .

2) Let zn be a positive solution of (3.15). Then we have

zn = w2zn−1 + q2 ⩽ Q′n−1 +Q = Q′(w2yn−2 + q2) +Q

⩽ Q′(Q′zn−2 +Q) +Q = Q′2zn−2 +Q′Q +Q

⩽ Q′2(Q′zn−3 +Q) +Q′Q +Q = Q′3zn−3 +Q′2Q +Q′Q +Q

⩽ Q′4zn−4 +Q′3Q +Q′2Q +Q′Q +Q
...

⩽ Q′nz0 +Q(Q′n−1 +Q′n−2 + ... +Q′ + 1) = Q′nz0 +Q
1 −Q′n

1 −Q′
.

We are going to the limit, we have

lim
n→+∞

zn ⩽ lim
n→+∞

Q′nz0 +Q 1−Q′n

1−Q′ ⩽ G + Q
1−Q′ .

So we have P ⩽ zn ⩽ T, where T = G + Q
1−Q′ .

Theorem 3.4.1 [12] Let q,w, x0 ∈ R+F and wr,0 < 1. Then every positive solution of Eq. (3.1)

is bounded and persists.

47



fuzzy sets and fuzzy numbers

Proof:Let xn be a positive solution of Eq. (3.1) Since q,w, x0 ∈ R+f and wr,0 < 1, then there

exist positive numbers P,Q,P′,Q′,R, for each α ∈ [0, 1] such that Q′ < 1,

L0,α ⩽ R0,α ⩽ R,P ⩽ ql,α ⩽ qr,α ⩽ Q and P′ ⩽ wl,α ⩽ wr,α ⩽ Q′.

By lemma (3.4.1) we obtain:

P < Ln,α ⩽ Rn,α < T, ∀α ∈ [0, 1]. Therefore [Ln,α,Rn,α] ⊂ [P,T],∀α ∈ [0, 1] and so

supp(xn) ⊂ [P,T].

Then the positive solution is bounded and persists.

3.5 The existence of positive equilibrium point

Definition 3.5.1 [12] We say that fuzzy numbers x is a equilibrium for (3.1), if x = wx + q.

Proposition 3.5.1 If w < 1, then every positive solution xn of Eq. (3.1) converges to the

positive equilibrium x as n→∞.

Proof: The solution of Eq. (3.1) is given by:

xn = wnx0 + q
(1 − wn

1 − w

)
.

If w < 1,wn = 0 when n→∞.

So

lim
n→+∞

xn = lim
n→+∞

wnx0 + q
(

1−wn

1−w

)
=

q
1−w

Theorem 3.5.1 [13] Consider (3.1) wkere w, x0, q ∈ R+F such that wr,α,R0,α < 1. then the

following statments are true:

i) (3.1) has unique equilibrium point.

ii) Every positive solution xn of (3.1) converges to the unique equilibrium x with respect to D

as n→∞.
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Proof: i) By definition (3.5.1), if x is a equilibrium point of (3.1), then


Lα = wl,αLα + ql,α...(1)

Rα = wr,αRα + qr,α...(2).
(3.16)

According to (1) we have

Lα − wl,αLα = ql,α

Lα(1 − wl,α) = ql,α

Lα =
ql,α

1−wl,α
.

Based on (2) we have

Rα − wr,αRα = qr,α

Rα(1 − wr,α) = qr,α

Rα =
qr,α

1−wr,α
.

The system (3.16) has one solution: [x]α = [Lα,Rα] =
[ ql,α

1−wl,α
, qr,α

1−wr,α

]
.

so [x]α is an equilibrium point of (3.1). For uniqueness, suppose there exist another

equilibrium point x̃ ∈ R+F for (3.1)

[x̃]α = [L̃α, R̃α]
L̃α = wl,αL̃α + ql,α...(3)

R̃α = wr,αR̃α + qr,α...(4).
(3.17)

According to (3) we have

L̃α − wl,αL̃α = ql,α

L̃α(1 − wl,α) = ql,α

L̃α =
ql,α

1−wl,α
.

Based on (4) we have
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R̃α − wr,αR̃α = qr,α

R̃α(1 − wr,α) = qr,α

R̃α =
qr,α

1−wr,α
.

So [x̃]α = [L̃α, R̃α] =
[ ql,α

1−wl,α
, qr,α

1−wr,α

]
,∀α ∈]0, 1].

From this we have Lα = L̃α =
ql,α

1−wl,α
and Rα = R̃α =

qr,α

1−wr,α
,∀α ∈]0, 1].

So the eqilibrium point of (3.1) is unique.

ii) From (3.6), proposition (3.5.1) and since wr,α,R0,α < 1, we have lim
n→+∞

Ln,α = Lα =
ql,α

1−wl,α

and

lim
n→+∞

Rn,α = Rα =
qr,α

1−wr,α
. So we have

lim
n→+∞

D(xn, x) = lim
n→+∞

sup max
{∣∣∣Ln,α − Lα

∣∣∣ , ∣∣∣Rn,α − Rα
∣∣∣} = 0.

So xn converge to the unique equilibrium point.

Example 3.5.1 Consider the following fuzzy difference equation

xn+1 = wxn + q, n = 0, 1, 2, ...

Take w, q ∈ R+F and initial value x0 ∈ R+F are triangular fuzzy numbers with membership

functions as

w(x) =


5x − 1

2 , 1
10 ⩽ x ⩽ 3

10

−5x + 5
2 , 3

10 ⩽ x ⩽ 1
2 .
, q(x) =


x − 6 , 6 ⩽ x ⩽ 7

−x + 8 , 7 ⩽ x ⩽ 8.

x0(x) =


x − 2 , 2 ⩽ x ⩽ 3

−x + 4 , 3 ⩽ x ⩽ 4.

Then we have,

[w]α =


5x − 1

2 = α =⇒ x = α5 +
1
10

−5x + 5
2 = α =⇒ x = −α5 +

1
2 .
, [q]α =


x − 6 = α =⇒ x = α + 6

−x + 8 = α =⇒ x = −α + 6.
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So [w]α =
[
α
5
+

1
10
,
−α
5
+

1
2

]
, [q]α = [α + 6,−α + 6] , α ∈]0, 1].

[x0]α =


x − 2 = α =⇒ x = α + 2

−x + 4 = α =⇒ x = −α + 4.

So [x0]α = [α + 2,−α + 4] , α ∈]0, 1].

Therefore, it follows that 
∪α∈(0,1][w]α =

[
1
10 ,

1
2

]
∪α∈(0,1][q]α = [6, 8]

∪α∈(0,1][x0]α = [2, 4] .

(3.18)

Since wl,α,wr,α < 1, by theorem (3.3.1) there exist a unique positive solution to (3.1).

By theorem (3.4.1) every positive solution of Eq (3.1) is bounded and persists. Also, by theorem

(3.5.1) there is unique positive equilibrium.

[x]α = [Lα,Rα] =
[ ql,α

1−wl,α
, qr,α

1−wr,α

]
.

For α = 0

[x]0 = [L0,R0] =
[ ql,0

1−wl,0
, qr,0

1−wr,0

]
= [6.66, 12].

For α = 0.5

[x]0.5 = [L0.5,R0.5] =
[ ql,0.5

1−wl,0.5
, qr,0.5

1−wr,0.5

]
= [8.13, 9.16].

Moreover, every positive solution xn of (3.1) converges to the unique positive equilibrium x.
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Figure 3.1: The solution of Eq(3.1) at α = 0.5.
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Figure 3.2: The solution of Eq(3.1) at α = 0.
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CONCLUSION

This dessertation explores the theoretical and practical aspects of first-order linear

difference equations with positive fuzzy coefficients. Through the three chapters, we

systematically developed and analyzed the mathematical foundation and behavior of

fuzzy difference equations, providing valuable insights into their characteristics and

applications.

Key Findings:

• Existence and Uniqueness: The research confirmed that positive fuzzy solutions

exist and are unique under certain conditions. This finding is pivotal as it ensures

that the equations are solvable within the defined fuzzy framework.

• Boundedness and Persistence: The boundedness and persistence of solutions

indicate the stability and resilience of fuzzy solutions, making them reliable for

modeling and predicting the behavior of systems involving uncertainty.

• Convergence: The analysis of convergence demonstrated that fuzzy solutions

tend to stabilize over time, reflecting the consistency and reliability of these solu-

tions in dynamic systems.
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In conclusion, this dissertation contributes to the broader understanding of fuzzy

mathematics and its application to difference equations. It opens new avenues for

research and application, providing a valuable tool for dealing with uncertainty in

mathematical modeling and analysis. The work underscores the potential of fuzzy

systems to offer more flexible and realistic models for a variety of complex, real-world

problems.
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