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Résumée

Dans ce travail, nous avons introduit ces concepts liés aux relations de
récurrence des suites numeériques et aux fonctions symétriques. Nous avons
ensuite étudi€ les propriétés des fonctions symétriques concernant les nombres
et les polynomes spéciaux. Plus précisément, nous nous sommes concentrés
sur les (p,q)-nombres et nous avons calculé de nouvelles fonctions généra-
trices pour les produits de ces nombres avec les k- nombres de Fibonacci,
k-nombres de Pell, k-nombres balancing, et les polynomes de Fibonacci et de
Lucas bivariés complexes.

Mots-clées : Fonctions symétriques, fonctions génératrices, (p,q)-
nombres Fibonacci et (p,q)-nombres Lucas.

Abstract

In this work we introduced some notions related to recurrence relations of
number sequences and symmetric functions, then we studie properties of sym-
metric functions of special numbers and polynomials. In particular we were
interested on (p, q)-numbers and we have calculated new generating functions
of products of them with k-Fibonacci numbers, k-Pell numbers, k-balacing
numbers, complex bivariate Fibonacci polynomials and complex bivariate Lu-
cas polynomials.

Key-words: Symmetric functions, generating functions, (p,q)-
Fibonacci numbers and (p,q)-Lucas numbers.
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INTRODUCTION

ESEARCH and studies in the field of generating functions and special numbers patterns
R continue, with the introduction of new approaches and tools that contribute to deep-
ening our understanding of these numerical patterns and thier various applications. Recent
explorations by scientists using generating functions for complex and polynomial numbers offer
insightful views on how these numbers interact in multi-dimensional environments and under
changing conditions.

Theoretical methods have diversified and evolved to include the use of complex algebraic and
analytical technicians to derive new properties of these numbers, enhancing our ability to solve
mathematical problem more effectively. On the computational front, technological and pro-
gramming developments have improved our ability to analyse complex numerical patterns at
increasing speeds, opening up new avenues for exploration.

The importance of these studies extends beyond mathematics to fields such as computer science,
where special numbers like Fibonacci and Lucas numbers are used in developing encryption al-
gorithms and cybersecurity, as well as in physics and engineering for prodective modelling and

system analysis.

Recent trends show an increase in joint research projects across different disciplines enriching
and amplifying the impact of research. This collaboration leads to the production innovative
solutions that transcend the traditional boundaries of any specific scientific discipline.

The future of generating functions and special numbers is expected to see new developments

that merge theoretical and practical methods, along with expanding the use of modern tech-
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Introduction

nologies such as artificial intelligence to understand and analyse these patterns more effectively.
Continuing expand research and analysis in this field not only enhances our understanding of
mathematics but also contributes to advancing technology and science in many field.

In the first chapter we define formal series, recurrence relation, orthogonal polynomials, and
ordinary generating functions.

In the second chapter we introduce to define symmetric functions and their types with some
properties.

In the last chapter we introduce to calculate new generating functions of numbers sequences

with (p, ¢)-numbers and bivariate complex polynomials.




CHAPTER 1

PRELIMINARY CONCEPTS

IN this chapter, we introduce all the definitions and basic concepts used throughout this
work. Firstly, we define formal series, the recurrence relations followed by a recapitulation

of orthogonal polynomials. Finally, we introduce ordinary generating functions.

1.1 Formal series

Let K be a commutative field (K =R or K = C)

Definition 1.1.1. [3] The elements of the set K[[t]] = {Z a,t", a, € N} are colled the ring
n=0
of formal series (with one indeterminate) with coefficients in K, t" is called the monomial of

degree n, and a,, is its coefficient, for a, € N
- C[[t]] is denoted as the set of formal series with coefficients in C.

- R[[t]] is denoted as the set of formal series with coefficients in R.

Remark 1.1.1. K[[t]], the set of polynomials with coefficients in K, is a subset of K[[t]].



Preliminary concepts

1.1.1 Operations on formal series

-Addition [3] Let a (t) = > a,t™ and S (t) = Y _ b,yt" be two formal series, then :

neN neN

(a+B) (1) =3 (an +ba)t"

neN

1-2"

Example : Let o () = ) (

neN

-Convolution product [3] Let a(t) = > a,t™ and §(t) = > b,t" two formal series,

neN neN
then :
(axB)( Z (Z by k)
neN \k=0
t
Example: Let ao(t) = Y "= ——, B(t) = >_nt" = 5 , then:
neN —1 neN (1 - t)

(@xp)t) =3 20D

neN 2

-Scalar multiplication [3] 3 () = ) kt" is the product of
n=0
= Z t" by the scalar k.

neN
Example : §(t) = 3t" is the product of

n=0
:Zt” by 3.

neN
-Derivation [3] 5 (t Z n+ 1) a,1t" is the result of derivation of « ( Z a,t"™ with
n=0 n=0
respect to t.
2 . o 1 :
Example : ———— is the result of derivation of with respect to t.
(1—2t) (1—2t)
-Integration [3] 5 (t) = > %t”“ is the result of integrating the series
n:071

10



Preliminary concepts

at)=> axt"
n=0

Example: () = > (::1)tn+1 is the result of integrating o (t) = > (3n+ 1)"t".
n=0 n=0

-Division [3] Let a (t) = > a,t" and B (t) = >_ b,t™ two formal series such that 3 (t) # 0
n=0 n=0
, B (t) devise « (t) if and only if there exists a formal series w (t) such that:

Proposition 1.1.1. [3] Every formal series o (t) = Y a,t™ has an additive inverse given by:
n=0
—a(t) =Y (—a,)t"
n=0

Proposition 1.1.2. [3] If a(t) # 0 and B (t) # 0 are two formal series, then o (t) 5 (t) # 0 as

well.

Proof. Let a(t) = Y a,t" # 0 < 3ny € N (the smallest integer); such that: a,, # 0 and let

n=0

B(t) = byt" # 0 < Iny € N (the smallest integer); such that : b,, # 0 then :
n=0
a)Bt)=> (Z akbnk> " = (an,bp,) "2+ <Z akbnk> t". Since :
neN \k=0 n>n1+ns€N \k=0
by # 0 = (£) B (1) # 0. =

1.1.2 Invertible series

Definition 1.1.2. [3] A series a(t) in K[[t]] is called invertible if there exists a series
B (t) € K[[t]] satisfaying a(t) B (t) = S (t) a(t) = 1. In this case, B (t) is called the inverse of
a(t).

+o0
Example 1.1.1. The serie Y  (—1)"t" € K[t] is the inverse of 1 — t indeed:

n=0

(+Z°° <—1>"t”) A== (1 =3 (e

n=0 n=0 n=0
—+00 “+o00
=0+ > (=1)"t" = (="
n=1 n=1

=1.

11



Preliminary concepts

Theorem 1.1.1. [3] a(t) = Y a,t" € K([t]] is invertible under multiplication if and only if
n=0
ao 7£ 0.

Proof. o (t) = Y a,t™ is invertible in K[[¢]] if and only if there exists a™' (£) = (¢n),ey iR
n=0

K[[t]] such that a (t) o' (t) = —1, that is: if and only if agcy = 1 and
Vn € N¥, Z ajc,—; = 0.

J=0

o If o is invertible, since agco = 1, ag # 0

» Conversely, if ag # 0, the triangular system of equation

apCo =1
a100 + apcy =0
a9Co + a1¢1 + agCa =0
anco + ap_1c1 + - +agc, =0
has a unique solution. O

Proposition 1.1.3. [3] If a (t) is an invertible series, its inverse is unique.

Proof. Let a(t) is an invertible series, 5 (t) and w (¢) be two inverses of « (), then:

at)B(t) =at)w(t) =1

thus:

which implies

12
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1.2 Recurrence Relations

1.2.1 Homogeneous Linear Recurrence Relations

Definition 1.2.1. [31] A recurrence relation is called a homogeneous linear recurrence relation

of order k with constant coefficients if it is of the form :
Ay — Clp—1 — Coly_9 — *++ — Cllp_, = 0. (1.1)

where ¢y, co, - -+, are real numbers and c; # 0.

Remark 1.2.1. [31] If a; = OVi, 3[n — k,n], a solution of equation (1.1) is called a trivial

solution.

Remark 1.2.2. [31] Let a,, = t" be a solution of equation (1.1), with a,, # 0, then we obtain:
=t = gt =0, =t et~ — g = 0. (1.2)

This latter equation is the characteristic equation of the recurrence relation (1.1).

Definition 1.2.2. [31] Consider the homogeneous linear recurrence relation of order k with
constant coefficients.

Qy, — C1Gp—1 — Colp_o — *** — Ckp_p = 0. (1.3)

The corresponding characteristic polynomial is :
Pt)=tF —cithF ' — . — (1.4)

Theorem 1.2.1. [3] Let ¢1, ¢, -+, cx be real numbers such that ¢ # 0. Suppose the charac-

teristic equation :

th—etht— .~ =0.
has k distinct roots ty,ts,--- ,tx. Then, a sequence a, is a solution of the recurrence relation :
a, = ot} + oty + -+ ogtl,¥n =0,1,2,-- -, (1.5)

where aq, s, ..., oy are real constants.

13



Preliminary concepts

Example 1.2.1. Consider the Fibonacci sequence , it’s recurrence relation is given by :

Fn: n—1+Fn—2an22

Fy=0F =1.

1++4/5
2
. The general solution is therfore of the form F, = At} + Aot5.

The characteristic equation is: t* —t — 1 = 0 which has simple roots t; = and

1—+/5
2 1 1
The values of Ay and o are provided by the initial conditions: \y = —= and Ay = —. Then :

e ({55 - ().

1.2.2 Linear Recurrence Relations of Order 2

to =

Generalized Fibonacci sequence (Gy,),,oy is defined by the following recurrence relation:

Gn = pGn—l + an—Zan > 2
(1.6)
GO =, Gl = 6

with p,q € R, and «, 8 € C.

Lemma 1.2.1. [3] Consider t* — pt — q = 0, the characteristic equation associated with (1.6).
Then:

1. If the characteristic equation has two distinct real solutions t, and ty, the general solution

of (1.6) is given by:
RN W

G :
" b1 — 1o

with A\ = 8 — aty and Ay = [ — aty.

2. If the characteristic equation has a double solution t in R the general solution of (1.6)
s given by :
G, = (1 + can) t™,

—at
with ¢ = « and@zﬁ T

14
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Proof. The characteristic equation associated with relation (1.6) is :

t? —pt—q=0.

1. If t; # t5, are the roots of this equation then:

t

_ PV tdg . P* +4q
2 T 2 '

The general solution is:

Gn == Clt? + Cgtg'.

The constants ¢; and ¢y are determined by the initial conditions as follows:

GO =]+ = «,
G1 = Cltl +02t2 = B

By solving this system of two equations and two indeterminate, we obtain :

B — aty
C1 =
1 tl_t27
aty — 3
Co = .
t1 — to

The final solution is:
At Aoty

G ;
1 —to

with \; = 8 — aty and Ay = 5 — at;.

2. If the characteristic equation of relation (1.6) has a double root t:

t=—p.
227

Therefore, the general solution is:

Gn = (Cl + an) .

15
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The constants ¢; and ¢y are determined by the initial conditins as follows:

GO =C = Q,
G1 = (Cltl + Cg>t = 5
By solving this system of two equations and two unknowns, we obtain:

C1 = Q,

b —at

Cy =
The final solution is:
n=(c1+ con)t",

0 —at

with ¢y = o and ¢ = o O

Definition 1.2.3. [11] The k-Fibonacci numbers are defined by the following reccurence rela-

tion:
Fk,n = ka,n—l + Fk,n—27vn > 2
(1.7)

Fro=1F1 =1

The first terms of the k-Fibonacci numbers are given by:

Fk:,O = 17
Fri=1,
Fro=k+1,

Frs=k +k+1,
Fra=FkK +k +2k+1,
Frs =k + K+ 3K + 2k + 1,

Fro = k® + 4k* + 3k* + 3k + 1.

16



Preliminary concepts

Its Binet’s formula is given by:

Frn = (1.8)

B R )|

Definition 1.2.4. [11] The Fibonacci numbers are defined by the following recurrence relation:
F, = n71+Fn727vn2 2

(1.9)
Fy=1,F,.

The first terms of the Fibonacci numbers are given by:
{FO = l,Fl - 1,F2 - 2,F3 :3,F4 = 5,F5 == 8,F6 = 12}
Its Binet’s formula is given by:

)

Definition 1.2.5. [20] The k-Mersenne numbers are defined by the following recurrence rela-

tion:
My, = 3kMy 1 — 2My, 2,1 > 2
(1.11)

My =0, M, =1.

The first terms of the k-Mersenne numbers are given by:

My =0,

My, =1,

M2 = 3k,
My 5 = 9k* — 2,

My = 27k* — 12k,

My 5 = 81k* — 54k* — 4,

17



Preliminary concepts

My¢ = 243Kk° — 216k> + 12k.

Its Binet’s formula is given by:

T —th
My, = +—2 1.12
k, tl _tza ( )
with:
. 3k +V9k2 -8
1= 5 .
and

3k —Ok2 =38

o = B

Definition 1.2.6. [20] The Mersenne numbers are defined by the following recurrence relation:

Mn = 3Mn,1 - QMH,Q,VH Z 2

(1.13)
My =2, M, =1.
The first terms of the Mersenne numbers are given by:
{My=0,M; =1,My =3, M3 ="7,M, =15, M5 = 23, Mg = 39}.
Its Binet’s formula is given by:
¢
M,=2—2=2o"_1 (1.14)
t1 — 1o

with: t1 =2 and ty, = 1.
Definition 1.2.7. [20] The k-Mersenne-Lucas numbers are defined by the following recurrence

relation:
Mg = 3kMyg = 2Mp 2, V0 > 1
(1.15)

Mgo = Q,ka = 3k.

The first terms of the k-Mersenne numbers are given by:

Mgo = 27
mg1 = Sk,
Mg2 = 9]{72 — 4,

18



Preliminary concepts

my3 = 27k* — 18k

myq = S1k* — 72k* + 8.

The sequence (my.y,) has a second-order recurrence relation, the characteristic equation

neN’
given by:
t* =3kt +2=0.

Its Binet’s formula is given by:

Mg = 1] + 13, (1.16)

where t| > ty with:

. _ 3k VO =8

1

2
and
o 3k —vV9k2 —8
2 = 5 .
e For k =1 we have :
tl - 2,t2 =1.

Definition 1.2.8. [20] The Mersenne-Lucas numbers are defined by the following recurrence

relation:
My = 3My_1 — 2Myp_o,Vn > 1
(1.17)

m0:2,m1:3.

The first terms of the Mersenne-Lucas numbers are given by:

{mo = 2,m1 = 3,m2 = 5,m3 = 9,m4 = 18}

The sequence (M) with a second-order recurrence relation, has the characteristic equation

neN’
given by:
t? =3kt +2=0.
Its Binet’s formula is given by:
my, =t} + 15, (1.18)
where t — 1 > ty with :
t; = 2.

19
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and

ty = 1.

Proposition 1.2.1. [20] The n'" terms of the negative indices of the k-Mersenne-Lucas num-

bers are given by:

mg,—n = 2fnmk,n‘

Proposition 1.2.2. The negative indices of the Mersenne-Lucas numbers are given by:

1.2.3 Linear Recurrence Relations of ordre 3

The generalized Fibonacci sequence of ordre three (W),), . is defined by the following recurrence

relation:
Wn = &Wn—l + an—Z + CWn—37 n=>3
(1.19)

WOZOé,W1:57W2:7.

where a,b,c € R and o, 5 € R,
Form the recurrence relation (1.19), we obtainthe characteristic equation

t3 — at? — bt — ¢ = 0, the solutions ¢y, t5, t3 for the characteristic equation are given by:

=5 +A+B,

tzzg—i-WA—l—wB,

= g + w?A +wB.
with:
=<ﬂ++—mr>
a L 3
(3205
a’*  abc b 2

—27—ﬁ+?—ﬁ+z

20



Preliminary concepts

—1+iV3
5 .
Its Binet’s formula is given by:

and w =

R S T

"+ th — i
(th —to) (th —ta) ' ’

W (n) = (tr—to) (b —t3) 2 (t1 —t3) (t1 — t3)

with:
R = Y — (tg + t3) ﬁ + t2t30é,

S:’}/— (tl +t3)6+t1t30&,

T = Y= (tl —f—tg)ﬁ—f—tltg&.

An example associated with the recurrence relation (1.19)

1. Fora=0,b=c=1and a = =+ =1, we obtain the Padovan sequence (P,),, .y :

P® = PP, + PP n >3,

n

PO — pO _ p® (1.20)

Y

(P31} ={1,1,1,2,2,3,4,5,7,9,12,16, 21, 28,37, ...}.

Its Binet’s formula is given by:

(- t-1) ,, G-D-1) , GH-D(E-1) ,
Ful3) = (tr —t2) (t1 — tS)tl " (ta —t1) (t2 — tz)tQ  (ts—t1) (ts — tz)t&

with:
. _\3/9+\/69+\?/9—\/69
e 18 18
49+v69 _ 5/9— /69
ty =w\| ———— + W\ ———,
18 18
CW9+v69  4/9— /69
t3 =W ——— + wi .
18 18
WithW:zl\/g.
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Preliminary concepts

2. Fora=1,c=1,b=0,and o = 0,3 =7 = 1, we obtain the Nayarana sequence (N,), .x:

(1.21)

{N®} =10,1,1,1,2,2,3,4,6,9,13,16,19, 28,41, ...}.
Its Binet’s formula is given by:

1 1 1
N(3) — n+1 + n+1 + tn+1.
" (ty — ta) (t1 — t3) ! (to —t1) (ta — t3) 2 (ts —t1) (t3 — t2) 3

with:
co U2 329+3\/_3
'3 291 3v03 | ’
oL 2 329+3\/%
e 20+3ves TV 2 )
R 2 329+3\/%
773 \/ 94+3/93 V2 )

L
with : w = +2“/§

3. Fora=b=1,c=2and a = 0,8 =~ = 1, we obtain the Jacobsthal sequence of the
third order (.J,)

neN :

JO = g8 4+ g8 4270 n >0,

IO =J® = g = (1.22)

{J9 =1{0,1,1,2,3,5,9, 18,37, 146, 293...}.

Its Binet’s formula is given by :

2 3+2iV3 . 3-2iV3
W - W}
7 21 21

—1+iV3

with: wy; = — and wy = 7.

4. Fora =0,b =1,c=2and a = 3,8 = 0,7 = 2, we obtain the Jacobsthal-Padovan

22



Preliminary concepts

sequence (JF,), oy :

JP, = JPy_o+2JP, 3,0 >3,

JPy=JP = JP =1, (1.23)

{JP,} ={1,1,1,3,3,5,9,11,19,29,41...}.
5. Fora=0,b=c=1and o =3,8 =0,y =2, we obtain the Perin sequence (R,), .y

Rn = Rn—? + Rn—?n n > 37

Ro - 3,R1 - O7R2 - 2, (124)

{R,} =13,0,2,3,2,5,5,7,10,12,17...}.

6. Fora =0,b=2,c=1and a = 3,5 = 0,7y = 2, we obtain the Pell-Perin sequence
(PRp),en
PR, =2PR, 2+ PR, _3,n > 3,

PRy =3,PR, =0,PRy =2, (1.25)

{PR,} ={3,0,2,3,4,8,11,20,30,51,80...}.

7. Fora=0b=c=1landa=8=0,y=1,

we obtain the Padovan-Perin sequence (5,),,cy

Sn = Snf2 + Snf?n n > 37

So=3,8 =0, =2, (1.26)

{S,} ={0,0,1,0,1,1,1,2,2,3,4...}.

1.3 Orthogonal Polynomials

Theorem 1.3.1. [10] Every second-order recurrence relation of polynomials sequences (P, (x)),,cx

is that of orthogonal polynomials.

Theorem 1.3.2. [10] Let (P, (t)),cy be a sequence of normalized polynomials:

Pn (t) =" + a/nfltni1 —+ angtn72 + an73tn73 + ...

23



Preliminary concepts

Then, (P, (t)),en @5 a sequence of normalized orthogonal polynomials if and only if there ewist
two sequences of complex numbers (o), oy and (Bn),cy Satisfaying the following recurrence

relation:
P (t) = (t - an) P, (t) — BnPh (t) ,Vn >0

Theorem 1.3.3. [10] Let (P, (1)) be a sequence of orthogonal polynomials. The following

neN

statements are equivalent:

2. PnJrl(t):tPn(t)—ﬂnPn,l (t),P,l(t):O,Po(t):1,Vn20

Definition 1.3.1. [10] The Chebyshev polynomials of the first kind, denoted T,, (z) are poly-

nomials in x of degree n defined by the relation:

T, (z) = cos (nb), with x = cos(0).

For all x in [-1,1], 6 € [0, 7].
The first few terms of Chebyshev polynomials of the first kind T,, (x) are given by:

Ty () = 22° — 1,

T3 (v) = 42° — 3z,

Ty (z) = 82" +82* + 1,

Ts (z) = 162° — 202° + 5,

Ty (x) = 3225 — 482% 4+ 1822 — 1,

Ty (v) = 642" — 1122° + 562° — Tx.

Definition 1.3.2. [24] Chebyshev polynomials of the second kind, denoted T, (x) satisfies the
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second-order recurrence relation:

Toi1 (x) = 22T, (x) — Ty (x) , ¥ > 1.
(1.27)

TO ([L’) = 1,T1 (JZ) = X.

Definition 1.3.3. Chebyshev polynomials of the second kind, denoted U, (x) are polynomials
in x of degree n defined by the relation :

_sin(n+1)0

Up(z) = , with x = cosf.

sin 6

For all x in [—1,1], 6 € [0, 7).
The first few terms of Chebyshev polynomials of the second kind U, (x) are given by:

UO (Q?) = 17
Ul (‘T) = QZU,
Us (z) = 42 — 1,

Us (z) = 82° — 4,

Uy (2) = 162* — 1222 + 1,

Us (z) = 322° — 322° + 6z,

Us (z) = 642°% — 802* + 242% — 1,

Uz (z) = 1282 — 1922° + 802° — 8z.

Definition 1.3.4. [24] Chebyshev polynomials of the second kind, denoted V,, (x) satisfies the

second-order recurrence relation :

Up () =22U,_1 — U,_2,Yn > 2.
(1.28)

Up (z) = 1,U; (x) = 2.
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Definition 1.3.5. [29] Chebyshev polynomials of the third kind, denoted V,, (x) are polynomials
in x of degree n defined by the relation :

Vo (z) = COS(TL-F);)@7 with x = cos 6.

For all x in [-1,1], 6 € [0, 7].
The first few terms of Chebyshev polynomials of the third kind U, (x) are given by [19]:

Vi(x) =2z —1,

Vo (1) = 42* — 22 — 1,

Vs (1) = 82° — 42 — 4o + 1,

Vi (z) = 162" — 8% — 1222 + 42 + 1,

Vs (z) = 3220° — 162" + 322° 4+ 122% + 62 — 1,

Vs (1) = 642° — 322° — 802* — 322° 4 242 — 62 — 1,

Vi (v) = 12827 — 642 — 1922° + 802" + 802° — 242% — 8z + 1.

Definition 1.3.6. Chebyshev polynomials of the third kind, denoted V,, (x) satisfies the second-

order recurrence relation :

Vo (x) =22V, (x) = V9 (x) ,Vn > 2.
(1.29)

Vo (z)=1,Vi (z) =22 — 1.

Definition 1.3.7. Chebyshev polynomials of the fourth kind, denoted W, (x) are polynomials
in x of degree n defined by the relation :
sin (n + %) 0

W, () = ——F=*%—, with v = cos¥b.

sin (%) 0
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For all x in [-1,1], 6 € [0, 7].
The first few terms of Chebyshev polynomials of the fourth kind W, (z) are given by:

Wo () =1,

Wi (z) =2z + 1,

Ws (2) = 42 4+ 22 — 1,

W3 (x) = 82° + 42 — 4o — 1,

Wy (z) = 162* + 82% — 1227 — 42 — 1,

Ws (z) = 322° + 162" — 322% — 1227 + 62 + 1,

We (z) = 6425 + 322° — 802" — 322 + 242 4 62 — 1,

W (x) = 12827 + 6425 — 1922° — 802 4 802% + 2422 — 8z — 1.

Definition 1.3.8. [24] Chebyshev polynomials of the fourth kind, denoted V,, (x) satisfies the

second-order recurrence relation :

Wn (IE) = 2an—1 — Wn_g,‘v’n Z 2.
(1.30)

Wy (z) =1, W, (x) =2z + 1.

Definition 1.3.9. Vieta Fibonacci polynomials denote (v, (x)), oy are defined by the recurrence

relation :
U () = 20— () — vy (x) , VR > 2.
(1.31)

vo () = 0,v1 (z) = 1.

Definition 1.3.10. Vieta Lucas polynomials denote (u, (x)), oy are defined by the recurrence

relation :

(1.32)

Definition 1.3.11. Vieta Pell polynomials denote (t, (x)),.y are defined by the recurrence

27



Preliminary concepts

relation :
tn () = xt,_1 () — th_o(x),Vn > 2.
(1.33)

to (I) = O,tl (37) =1.

Definition 1.3.12. Vieta Pell Lucas polynomials denote (s, (7)), oy are defined by the recur-

rence relation :

Sp () = 2871 (T) — Sp_o (x) ,Vn > 2.

(1.34)
So () = 2,81 (z) = 2.
1.4 Ordinary Generating Functions
Definition 1.4.1. [17] The Ordinary Generating Function (OGF') of the sequence :
(an)nEN = (a07 i, a2, ) )
is defined by :
Gt)=>_ ant" (1.35)
n=0
Example 1.4.1. - The OGF of (1,1,1,...) is :
.- n 2 3 1
Gt)y=>Y t"=1+t+t"+t =
n=0 -
- The OGF of the sequence (2") is :
Gt)=> (2"
n=0
=142+ 2+ + 2"
Theorem 1.4.1. [17] Let A(t) be the OGF of (ay),cy. and B (t) be the OGF of (by),,cy then:

1. A(t)+ B(t) is the OGF of (an + by) ey -

2. tA(t) is the OGF of (0,a9,a1,a2,...,;Qn_1,...) .

3. A'(t) is the OGF of (ay,2az,3a3,...,(n+ 1) ani1,...)
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4. A (t) B (t) is the OGF Of (ao, CLobl -+ albo, CL()bQ + a1b1 + agbo, ) .

5. (1 —1t)A(t) is the OGF of (ag,a; — ag, a2 — a1, ..oy Gy — 1, ...) -

Proof. 1. A(t) + B () =D ant" + > bpt" = > (an + by)t"
n=0 n=0 n=0

2. tA(t) =t ant" =D a,t" =0+ (an_1)t".
n=0 n=0 n=1

3. A(t) = (Z ant"> =Y na " =Y (n+1) (@) t"
n=0 n=0 n=0

4.
A(t)B(t): <a0+a1t+a2t2+) (b0+b1+b2t2+)

= aobo + (a0b1 + Cllbo) t+ (aobg + albl + agbo) t2 + -

5. If B(t) is the OGF of (1,—-1,0,0,...), then (1 —t)A(t) = A(t)(1 —t) = A(t) B(t), is
the OGF of:

<a07a0 (_1) +a (1)7 --~7a0bn + albnfl +-rtap (_1) + ap (1)7 )

=a1 —ag =0 =an — Gpn_1

O
Theorem 1.4.2. [3] Let the sequence (Gy), oy be defined by the recurrence relation:
Gn (t) =pGp1+qGn2,n>2
(1.36)
GD =, Gl = ﬂ
where p,q € R and o, 3 € C.
Then the associated generating function for (Gy), oy is given by :
a+ (B —pa)t
G(t)= ————. 1.37

Proof. We have:
G(t)=> Gut"
n=0
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=Go+Git+ > Gut"

n=2

:a+ﬁt+2(pGn_1+an—2)t"

n=2

=a+Bt+pt Y Guat" 4 qt® D Gyot"?

n=2 n=2

=a+fBt+pt Y Gut"+qt* Y Gut"

n=1 n=0

=a+ 0t +pt (ZGnt”—a> +qt* Y Gut"

n=0 n=0
=a+ (8 —ap)t+ptG () + ¢t’G (1).

SO

G (1) (1—pt—qt2) = a+ (8 —pa)t.

This gives us :

G = =

From the previous theorem we obtain the following generating function :

1. Fora=k, =q=1, p=k, we get the generating function of k-Fibonacci numbers:

1

CO=1 e

2. Fora=0,8=1,p=3k, ¢q=—2, we get the generating function of k-Mersenne numbers

1
Gt)= 1 — 3kt — 212"

3. Fora =2, 8 =p =3k, ¢ = —2, we get the generating function of k-Mersenne-Lucas

numbers :
2 — 3kt

G )= 1 — 3kt + 22

e For £ =1 in the above relation we obtain the following generating functions:

30



Preliminary concepts

- The generating function of Fibonacci numbers is given by:

1
GO =7

- The generating function of Mersenne numbers is given by:

1

Gt) = 1—3t+ 212

- The generating function of Mersenne-Lucas numbers is given by:

2 -3t
G(t) = T siroe
O
Theorem 1.4.3. [3] Let the sequence (W), oy be defined by the recurrence relation:
W, (@t)=aW,_1 +bWG, o+ W, 3,n>3
(1.38)

Wo=a,Wy=B,Ws =1.

where a,b,c € R and a, 3,y € C. Then the generating function associated with (W), o\ 5 given

us:

a+ (B —aa)t+ (y— fa—ba)t?

Gt) = 1 —at —bt2 —ct3

(1.39)

Proof.

G(t)=> Wyt"
n=0

= Wo + Wit + Wat® + > (aW,_1 + bWyg + cW,_3) "

n=3

=a+Bt+yt7 +atd W qt" 02> Wy ot" 2 4 et Y W, _5t" P

n=3 n=3 n=3

=a+ft+yt* +at Y Wt +bt* > Wit" +ct® Y Wit"

n=2 n=1 n=0

=+ Bt +t* + at (Z Wot" —a — Bt) + bt? <Z Wt" — oz) + ct? (Z Wnt”>

n=0 n=0 n=0
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=a+ ft+t7 +atd Wyt" — aat — aft® + bt* > W,t" — abt® + ct® Y W,t"

= a + Bt 4+ yt2 + atG (t) — aat — aft® + bt2G () — abt?® + ct3G (t).

Therefore:

G(t) (1—at —bt? —ct®) = a+ (8 — aa)t + (v — Ba — ba)t*,

Hence:
a+ (B—aa)t+ (v — Ba—ba)t?

Gt) = 1—at — b2 — ot

Now, let’s proceed with the translation:

1. Fora==v=1,a=0,b=c=1, we obtain the generating function for the sequence

(Pn)nEN .

I+t
tzi.
G () 1—t2—13

2. Fora=0,=~v=1,b=c =1, b= 0, we obtain the generating function for the

sequence (Ny,),,en:

t
G(t):71—t—t3'

3. Fora=0,=~v=1,a=0=1, ¢c = 2, we obtain the generating function for the

sequence (Jp),cp

t

GO =1

4. Fora=p=~v=1,a =0,b =1, ¢c = 2, we obtain the generating function for the

sequence (JF,), oy :

141
G(t)=——7=-
®) 1—12— 213

5. Fora=3,=0,vy=4,a=0,b=c=1, we obtain the generating function for the

sequence (Ry),cy

3—t2

G(t)zil_ﬁ_tg.

6. Fora=3,3=0,7vy=10,a=0,b =2, ¢c =1, we obtain the generating function for the

sequence (PR,), cy :

3 — 4t?

CO=1 "
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7. Fora=p=0,v=1,a =0,b=c =1, we obtain the generating function for the

sequence (Sp),,cn:

t2
G(t) = :
®) 1—2t2 -3
Theorem 1.4.4. [3] Let the sequence (P, (7)), oy defined by the recurrence relation :

P, (z) =pxP,1 () +qPy—2(x),n>2

Py=a,P,=px+ 7.

(1.40)

where p,q € R and o, 3,7 € C. Then the generating function associated with (P, (1)), oy 5

given by:
a+((f-ap)z+7)

t p—g
G (¢) 1 — pxt — qt?

Proof. We have:

G(t) = i GP, (x)t"
=Dy (x)+ P (:c)t—i—ipn(x)t”

=a+ (x+7)t+px io: P, 1(z)t" +q i P, o (x)t"

n=2 n=2

=a+ (Br+7)t+prtd Py ()t" " +qt* > Py (2)t"

n=2 n=0

=a+ (Bx+7)t+ pat (iPn(x)t"—a>+qt2iPn(x)t"

n=0 n=0

=a+ (Bz+7)t+prt > P, (x)t" — prat +qt* > P, (z)t"

=a+ ((B—ap)x+7)t+prtG (t) + ¢t*G (1),

SO

G (t) (1—pat —qt?) = a+ (8 —ap)z +9)t.

Therefore:

_at+((B-ap)z+7)
G () = 1—paot—qt2

(1.41)
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According to the previous theorem, we deduce the following generating functions :

1. Fora=p=0,7y=p=1,¢g = —1, we obtain the generating functions associated with
(vn (7)) pen: t

Gt)=———.

®) 1 —axt + 2

2. Fora=2=1,v=0,p=1,g = —1, we obtain the generating functions associated

with (up (2)),en ,
—at

)=

G ) 1 — ot 4+ t2

3. Fora=p=0,vy=1,p=2,qg = —1, we obtain the generating functions associated with

(tn (%)) e
t

Gt)= 1— 22t + 12

4. Fora=2,=~v=0,p= 1,9 = —1, we obtain the generating functions associated with

(S0 (7)) pen
2 —2xt

G )= 1— ot + 2

5. For a = 1,6 = 1,7 = 0,p = 2,q = —1, the generating functions of the Chebyshev
polynomials of the first kind 7, (z) is :

1—at

GO =T e

6. a=1,0=2,7=0,p=2,q = —1, the generating functions of the Chebyshev polynomi-
als of the second kind U, (z) is :

1
G(t)= ———.
®) 1 —2xt+t2
7. a=1,0=2v=—1,p = 2,qg = —1, the generating functions of the Chebyshev
polynomials of the third kind V,, (x) is :
1—t
Gt)= ———.
(®) 1—2xt+t2

8. a=1,0=2,7v=1,p=2,q= —1, the generating functions of the Chebyshev polynomi-
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als of the fourth kind W, (x) is:
1+1

GO =T
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CHAPTER 2

SYMMETRIC FUNCTIONS

IN this chapter we define the elementary and the complete symmetric functions and we recall

some properties about these functions.

2.1 second order equations

Consider the second order equation: P (t) =t* —t — 1:

this matrix is called: "companion matrix "of the polynomial P(t) = t* —¢ — 1.

. . Un+1 Un, .
we are looking for the eigenvectors : =M and by the initial values:
Un Up—1
ug = 0, u1 = 1 We obtain :
Uy, 10 Up—1
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SO :
Upy1 = Up + Up_1- (2.1)
and :
Uy, U 1
Unp, Uo 0

we look for the eigenvalues by daigonalization of the matrix M:

1—)\ 1
=N - \—1.

we have: Py (M) =0.

145 1-+5
and .

so: the eigenvalues are:
this matrix is called: "companion matrix" of the polynomial t* = ¢ + 1.

on the other hand, let’s define the sequence by the recurrence relation:

11 T x
=\ (i=1 or i=2)
1 0 Y Y
SO:
1 5 1—+/5
rT+y= +\/_x r+y= \/_:c
2 2
and
1++5 1—v5
T = 5 Y. T = 5 v.

these two equations are equivalent to: x = \;

so the eigenvectors of M are proportional to:

-
S
S

— —
U= 2 and Uy= 2
1 1
note that:
3+V5 . L+vE\ "
M=t YE o T o= (LEYEY e 2
! 2 ! 1++5 ! 2 +

2 e
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3

2
1++5
2

V5

Vo=

1—

M vy= 5

1 o n
and M™ vy= (2\/3>

1_\/5 n+1

.

N
Vo=

1—
2

to pass from the eigenvectors to the canonical basis, we use the matrix

1+v5 1—+5
2 2
1 1

and to go from the canonical basis to the eigenvector basis, we will use the inverse matrix which

is :

NG

we will assume, for the moment :

A1 > | A

1 1

-1

N

2
1++5
2

A1 # Ao, and even, more precisely:

L1V 1B (Ve 1= v5

V=l e Comvs || 1
2 2

and

L L4V5 1— H\/— 0 S EN
M":ﬁ ? ( (1—2\/5>” ;) 1+22J5

I B B G

) () () ()
V5 V5

2.2  Symmetric functions

Definition 2.2.1. [33] a function f (z1;x9;...;

mutations of the set of indices (1;2;...;

Tn), in n variables is symmetric if for all per-

n) the following equality is verified:
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frymos . sx,) = f (933(1);1"3(2); ---;ZBs(n))-

Example 2.2.1. o The function f(x1;x5) =21 + x9 is symmetric, because

f(zo21) =20 + 21 = f(21522)
o The function h(xy;1y) = 2129 + 27 s not symmetric , because

h(z9; 1) = wowy + 23 # h (215 22);
when the functions are real or complex values, symmetric functions form a subalgebra of
the algebra of functions of n variables, that is:

Proposition 2.2.1. e The product of two symmetric functions is still a symmetric func-

tion.

o Any symmetric rational function (on a commutative field) is the quotient of two symmetric

polynomials

o The sum of two symmetric functions is still a symmetric function.

2.2.1 Elementary symmetric functions

Definition 2.2.2. [8] We call k™ elementary symmetric functions ey, (A1, Mg, Ag, ... , An) the
function defined by:

e™ = e (A1, A2, Agy oo An) = 3 ATNE NB Ain (2.2)
k <n, withiy, 9,13, ......... Jin =0 or1
Example 2.2.2. For an equation of degree 2 (n =2, roots : Ay and \s)

6(()2) =1

652) = )\1 + )\2

6%2) = )\1 )\2.
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Example 2.2.3. For an equation of degree 2 (n =2, roots : A1, Ay and \3)

e(()?’) =1

653) = )\1 + )\2 + )\3
623) = )\1)\2 + )\1)\3 + )\2>\3

6:(53) = )\1)\2)\3.

Proposition 2.2.2. [1] Let e,(cn) is an elementary symmetric function, then:

el = el + el
2. " = Nem ) a1 e T e et Y.

Proposition 2.2.3. [18] We can also define the k'™ elementary functions as:

=3 et _H 1+ \t). (2.3)

k>0

with eg (A1, Aoy Az, eeenne. s An) 5 for (k> 0)

Proof. We have :

€§gn) = €k ()\17 )\27 )‘37 ''''''' 9 )‘n) = Z )‘Zfa )‘327 A?? """" ) A:zn

with el = 0 if (k > n)
Let’s see that

3 etk = H (14 \it)

k>0 =1
For n = 2, we have:
1

TTQ+ Xit) = (14 Mit) (1 + Aot)

=1
=14 (AL + X))t + A hot?

=eg + 6125 + €2t2
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2
= Z ektk.
k=0

suppose the property is true for n: Z epth = H (T+ \t).
k>0 i=1
n+1

and let’s show that the property is true for n + 1: Z epth = H (T+ \t).

k>0 i=1

n+1 n
IT X+ Xxt) = JT (1 4 Xit) (1 + Apsat)
i=1 =1

= <2”: ektk> (14 Apyat)

= Z ektk + )\n—i-l Z ektkH

k=0 k=0

= Z ertt 4+ At Z ep_1t*
k=0 k=1

= Z ertt 4+ At Z ep_1t*
k=0 k=0

= (e F Apgrel )1) £k

k>0

_ Z e](fn—i—l)tk

k>0
n+1

= Z ektk.

k>0

2.2.2 Complete symmetric functions

Definition 2.2.3. [8] We also define the complete symmetric functions hy (A1, Ag, A3,

of the roots in the following way:

i
A
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hY =M+
R =22 4 A hg + A2

B = A3 A2 4+ M A2+ AL

Example 2.2.5. For an equation of degree 3 (n = 3), for roots: A1, Ay and Az.
h =1

M = A X+ As

B = X2 A2+ A2 4 Mdo 4 Mg + Aoy

B = A3 A3+ A3+ A2hg + A + A3+ A2As + A2+ ARz + Ao s,

Proposition 2.2.4. [1] Let h,(fn) is a complete symmetric function, then:

1A = A A R,
2. R = B ACEDRM AR L xa A,

Proposition 2.2.5. [18] We define the k™ complete symmetric functions as the coefficients

of the formal series expansion.:

1
H(t) =Y nth = (2.5)
k>0 IT (1+ \t)
=1
Proof. S = (A, Ag, Mgy M) = S0 ABARAR L\
k>0 11422, +in
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For n = 2, we have:

Soh? =h$ + 2P + b

k>0
=T+ A+ M)t + (A + M+ 23) £ +
= (T At + X382 ) (T4 Aot + N3+

= (T At + A2 ) (T4 Aot + A3+

_ (Z(/\lt)k) (Z ()\zt)k)

B 1
(1= Ait) (1= Aat)

1
2
(- t)

=1

suppose the property is true for n, then:

n 1
Shpre L
k>0 H (1= N\t)
and let’s show that the property is true for n + 1:
1
n+1
> e -
k20 O (1= At)
i=1

we have : h’(€n+1 = )\n+1h "H ) + h

Z h,gn+1)tk _ Z ()\n+1h(n+1) + h )

k>0 k>0

1 3RS ST M

k>0 k>0

Dt SRR ST Rk

k>0 k>0
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SRR At SO R =3 nek

£>0 k>0 E>0
(n+1) & 1
Yo (= Aat) =
k>0 IT (1= \it)
=1
. 1T—M\t)7 !
T A (n )
=1
1
:n+1
IT (1—\i)
=1

2.2.3 exponential symmetric functions

Definition 2.2.4. [87] Let k be a positive integer, we call a k™ exponential symmetric function,

the series defined by:
e = YA (2.6)

i>1

Example 2.2.6. The exponential symmetric function P,® on a 3-letter alphabet is:

P (AL, A2, As) = A2+ 22+ 22

Proposition 2.2.6. [37] The k™ symmetric functions of exponential can also be defined as

the coefficients of the series:

P (t) =Y Pt

k>1

)
=" log H
57 108 ()

Ai

=2 At

i>1 1

Proof.

44



Symmetric functions

" 1
=2 los

=1

P ,
alogH(t) => =

i>1

=>0) (A

i>0  i>1

WU

i>1 k>1

=>" P (Nt

i>1

2.2.4 Relations between symmetric functions

Proposition 2.2.7. [3] Let E (t), H (t) and P (t) be three symmetric functions, then:

_ H'(t)
2P®_H@
1 B P () "
> 11211(1_@5) —expnzzl ey

Proof. 1. We have:

n

E@)=>et" =[] @+ At).

k>0 i=1

H@)=> t" =T Q@+ \t).

k>0 i=1

SO:
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2. we have:

we set: 7 =n — 1, then:

H'(t) npn1
H(t) _ZZ)‘it

i>1n>1

Angn
n

=22

i>1n>1

AN

n>1

1;[1(1_1)\175) :epoPn()\)L;:.

n>1
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2.2.5 Some properties of symmetric functions

Definition 2.2.5. [3] Any set of finite characters is called an alphabet.

Definition 2.2.6. [3] Consider the alphabet Ey = {e1,es}, and we define the associated sym-

metric function S, by:

6?+1 _ egz-i-l
Sn (EQ) == Sn (61 + 62) == ﬁ (27)
1 — €2

with :

SQ (EQ) = h2 = 6% + eje9 + 6%.

Definition 2.2.7. [2] Let A and B be two alphabets, we denote S; (A — B) for the coefficients

of the following rational series:
KB =%"S;(A-B)t. (2.8)

with S; (A — B) =0 forn <0.

Proposition 2.2.8. [3] If A has the cardinality 1 (A = z), then:

[T (1—0t)
o S;(x — B)
beB 1 J
beB 1 4. a4l (- B PRI\ T 2D
(1= 20) + s (2 )+t L
Proof. We have:
beB ]
—— =)>» Si(x—B)t
(1 —xt) ;0 i )

SO:

Yo Si(x—B)t =14+ 5,1 (x—B)/ '+ S;(x = B)t/ + Sjs1 (x — B) /T + -
j=0

=1+ +t1S, (2= B)+#¥(S; (v — B)+ Sj1(v — B)t +--)

=1+ +t7'S; (= B)+#¥(S;(x — B)+atSj(x — B) + )
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=1+ +t7'S; (v — B)+¥S;(x — B) (1+xt+x2t2+---)

. S;(x — B)
=14+...+t7'9. (r— B A
+ oS (2 )+t -

SO:

T (1—0t)

. S;—1(z — B)
béB e L LG (o PRIz T 2
1= 1) 14+ -+t S;(x—B)+t e

]

Proposition 2.2.9. [1] Consider successively the case A = ¢ or B = ¢, then we obtain the

factorization:
Z Sj (A - B)t Z AP Y8 (-
=0 =0 =0
If B = ¢ we obtain:
> 1
J_
2 S =y
acA
If A= ¢ we obtain:
> 1
R
25 B = iy
bEB
so:
00 0o IT (1 —bt)
DS (AP Y S (=B =
j=0 =0 al;IA (]_ — CLt)

that is to say:

isj (A=-B)Y =3 (Zn: Sj-k (A) Sk (—B)> t.

>0 \k=0

Proposition 2.2.10. [3] Let A =z, we have:

So (x — B) = 2"Sy (—B) + 2" 18, (=B) + - -+ + So (—B) .

Proof. We have according to the formula

—B) =Y 5, 15 (—B
k=0

=S, (x — B) =2"Sy (=B) + 2" 'S1 (=B) + - + Sy (=B)..
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2.2.6 Symmetric functions and generating functions

Definition 2.2.8. [3] Let f be a function on R", the divided difference 0, is defined by:

i3Qi41

Dusarns () = flay, ooy, aiyq, ””’an)w—_fcsab ..... i1, Qg 1, A, ....,an)' (2.9)
7 1+1
Definition 2.2.9. [3] We define the operator 84,4, by:
k _ Lk
] (o) = AL 7 BT 02) g (2.10)
ap — as
Remark 2.2.1. [3] If f (a1) = a1, in the formula (2.10), we obtain:
Sarasf (a1) = Sk (a1 + az) .
Proposition 2.2.11. Let A = {ay, a2}, we define the operator 5(;1];2, by:
Oarasf (a1) = Sk (a1 + as) f (a1) + @50u,0, f (a1) , Yk € N.
Proof. We have :
- atf (a1) — a5 f (a2)
Skt (o) = (00
. S0:
_aff(ar) —a5f (ar) + a5 f (a1) — ab f (ag)
5a1a2f (al) -
ap — az
k_ ok _
_a a2f(a1) +a§f(a1) [ (a1)
a] — ay a1 — G2
=Sy (a1 + a2) f (a1) + agaauzzf (a1) .
]
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Definition 2.2.10. [3] We define the operator 84,4, by:

_ agf (a1) — a’ff (a2)

(alag)k ap — Qs

5.k f(ar) ,Vk € N. (2.11)

Proposition 2.2.12. Let A = {a;,as}, we define the operator 6;1122, by:

k Sk—1 (a1 + ap) a
6a1a2f (al) = — (a1a2) f (al) + mam@f (CLl) ,\V/k € N.
Proof.
5k f(a1) :a’ff (a1) — agf (as)

a1 — a2

b f(ar) —abf (ar) +af f (ar) — as)* f (an)
B a] — ag

f (a1 (a1 — ay)) n af (f (a1) = f (a2))

- (a1a2)k (a1 — as) (a1 — a1) (a1@2)k
Sk—1 (a1 + as) ag
=— ———f(a1) + == 0uya, [ (a1) .
(alaz) f( 1) (a1a2) Qf( 1)
O
2.2.7 Symmetric functions of certain numbers and polynomials
Theorem 2.2.1. Given an alphabet A = {ay,as}, so:
i Sn (a1 + ag) t" ! (2.12)
n(a a == .
= P 1 (1—at)
acA
Proof. Let > aft" and two series such that :
= (1 —at)

@“?t") (1 —1at> =L
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Let f (a1) Z at't™ then the first member of formula (2.12) is given by:

ap E at™ — as Z ayt"
5a1a2f(a1) n=

a; — a2
0o n+1 n+1
=y
n+1 n+1
n=0 @1
0o

Z CL1+CL2

Let f(a1) = ; then the second member of formula (2.12) is given by:

1—(11

Oayas f (a1) = ! <a1 ! — Q2 ! )

ap — Qs 1—a1t ]_—agt

1 (ar(1—ast) —as (1 — art)
( )

ap — Qs (1 — alt) (]_ — CLQt)

B 1
(1 —agt) (1 —agt)’

O
Lemma 2.2.1. Given an alphabet A = {ay,as} ,
then:
> t
Spoq(ay +ag)th = ————. 2.13
nZ::O 1 (01 + ap) T a—a (2.13)
acA
Theorem 2.2.2. Given an alphabet A = {ay,as} ,
then:
> a, — as + al(lgt
Sh — t" = . 2.14
nz::() +1 (a1 + [ az]) 1— (al — a2) t— ayaqt? ( )
Proof. The action of the operator 6> on the series

f(ait) = Z ayt”
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gives us the left side of equality (2.13)

) af Zo apt" — [—ay] Zo ayt"
5 __ n= n=
al[fag]f (a’l) a; — [_a2]
e e,
n=0 a — [_CL?]

= i Sn+1 (CLl + [—CLQ]) tn.

n=0

Let f(ayt) = . then the second member of the equality (2.13) is given by:

— (llt

1
Oa fan) f (@1t) =07 42 ( )

1-— alt
1 1
2 [ 2
_al 1-— alt [ CLQ] 1-— agt
a — [_(1/2]

ai (1 +ast) —a3 (1 —ait)
(ay + ap) (1 —aqt) (1 + art)

2 2 2
aj — a5 + ajast + aza;t

(a1 + ag) (1 — (a1 — ag) t— alagtz)

. a, — as + alagt
_1 — (a1 — CLQ) t+ CLlCLQtQ'

]

e By replacing (az2) by (—as), and let a; — ay = k and ajas = 1 in the formula (2.12) we

obtain:
1

R S (2.15)

i{] Sn (a1 + [—CLQ]) tn -~

which represents the generating function of k-Fibonacci numbers, then we deduce the following

proposition.

Proposition 2.2.13. [33] Let (F.), oy be the sequence of k-Fibonacci, then:
VneN: ka =5, (az + [—ag]), with:
k+VE2+4 k—VEk?+4

alzfandagz 5
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e By replacing (as) by (—as), and let ay — as = k and ajas = 1. in the formula (2.12) and
(2.13) we obtain:

i S (a1 + [—as]) = 1_]{:115_752 (2.16)
S St (ar + [~aa)) = 1_]:t_t2 (2.17)

n=0

e By multiplying (2.16) by 2 and (2.17) by (—k) and adding the results we get

i (a1 + [—ag]) — kSp—1 (a1 + [—ag])) t" = 1_2—251-125152 X%Lk W2 (2.18)

Proposition 2.2.14. [33] Let (Lyy), oy be the sequence of k-Pell-Lucas, then:
VneN,Qrn = (25, (a1 + [~az]) — kSh-1 (a1 + [—a2])),
with:
k+vVE?+4 p k—Vk?+4
aW=———andag = ————.
' 2 ? 2
Remark 2.2.2. 1. Let k = 1 in formula (2.15) we obtain the generating function of Fi-

bonacci numbers.

2. Let k =1 in formula (2.18) we obtain the generating function of Lucas numbers.

e By replacing (as) by (—az), and let ay — ay = 2 and ajay = k in the formula (2.13) we

obtain:

1 > n

n=0

i Sn—l (a1 + [—CLQ]) tn =

n=0
Proposition 2.2.15. [33] Let (Pyy), oy be the sequence of k-Pell, then:
Vn € N: Pn,k = Sn,1 (&1 -+ [—&2])
with:

ap=1+vVk+1landas=1—vVk+1.

e By replacing (az) by (—az), and let a; —ay = 2 and ayas = k in the formula (2.12) we obtain:

> 1
Z Sp (ag + [—ag]) t" = 19t — k2 (2.20)
> t
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e By multiplying (2.19) by 2 and (2.20) by (—2) and adding the results we gets

2-92t

T o if > Quat™ (2.22)

n=0

i; (25, (a1 + [—as]) = 25,1 (a1 + [—aa))) " =

Proposition 2.2.16. [33] Let (Qrn),cy
Vn € NN, ka = 2Sn (a1 + [—(12]) — QSn—l ((11 + [—(lg]) . with:

be the sequence of k-Pell-Lucas, then:

ap=1+vVk+1landas=1—vVk+1.

Remark 2.2.3. 1. Let k = 1 in formula (2.19) we obtain the generating function of Pell

numbers.

2. Let k =1 in formula (2.22) we obtain the generating Pell-Lucas numbers.

e By replacing (aq) by (2a1) and (az) by (—2as), and let a; — ay = x and 4ajay = —1 in the

formula (2.13) we obtain:

1
1 —2xt — t2

— S U () 1", (2.23)

n=0

i Sn (2a1 + [—2a9)) t" =

n=0

Proposition 2.2.17. Vn € N: We have
U, () = S, (2a1 + [—2as)) .

where U, (x) is the Chebyshev polynomials of the second kind.
e By replacing (a1) by (2a1) and ay by (—2as), and let a; — ay = x and 4ajay = —1 in the
formula (2.12) and (2.13) we obtain:

1
Sy (2a2 + [—2as]) = 1L omt — 2 (2.24)
t
Sn_1(2a3 + [—2as]) = m (2.25)

e By multiplying (2.25) by (—z) and adding the result with (2.24) we
obtain: 3 (S, (2a1 + [~2as]) — 28,1 (2a1 + [~2a,])) " = ﬁfﬁ =3 Tpn (2) 22
- - n=0

n=0

Proposition 2.2.18. Vn € N We have:

T, (x) = Sy (2a1 + [—2as]) — ©S,_1 (242 + [—2a2]) .
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where T, (x) are the Chebyshev polynomials of the first kind.

2.3 Symmetric functions of products of certain numbers

and polynomials

Theorem 2.3.1. Given two alphabets A = {a1,as} and B = {by, by}

b — bk — (ay + az) (bhby — bEBY) t — asay (D507 — b5B3) 2

Z Sn (a1 + CLQ) Sn+k—1 (bl + bg) t" =

n—=0 (bl — bg) H (1 — ablt) H (1 — abgt)
acA acA
(2.26)
Vn € N.
Proof. The action of the operator 6}, on the series
f(bit) = Z Sp (a1 + ag) bTt™ we gives the left side of equality (2.27) then:
n=0
5511)2-](‘ (blt) :5{)‘:11)2 (Sn (a1 + CLQ) b?tn)
i S, (a1 + ay) brvker — i:fo S, (a1 + az) bybkt
B by — by
00 bn+k . lef—l—n
7tn
Z CL1 + CLQ (bl _ b2>
Z (a1 + az) Snik—1 (b1 + bg) t"
[
1
Let f (ayt) = T —abd) then the second member of the equality (2.27) is written:

a€A

1
5§1b2 f(brt) =6§1b2 (H(lablt)>

acA

1 ; 1
_bl — b2 H (1 — ablt) B H (1 — abgt)

a€A acA
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a€A a€A

H (1 — ablt) H (1 — abgt) (b1 — bg)

acA a€A

b — b — (a1 + az) (bfby — biby ) t — azay + (b5by — biby) £2
H (1 — U,blt) H (1 — ath) (b1 — bg) ’

acA a€A

Let k=0, 1 in theorem (2.3.1) we obtain the following lemmas

Lemma 2.3.1. Given two alphabet A = {ay,as} and B = {by,bs} , then:

= t by + by) t?
S S, (a1 + a2) Sy (b 4+ b) 17 = AT T M BB Ty o
n=0 > Sn (—A) bt Y S, (—A) bytr
n=0 n=0
Lemma 2.3.2. Let k = 0,1 in theorem (2.3.1); we obtain the following lemmas
> 1-— b1bot?
D S (a1 + az) Spoy (b +b2) 1" = — alaQool : : (2.28)
n=0 > Su (—A) b XS, (—A) byt
n=0 n=0
Lemma 2.3.3. Let k = 0,1 in theorem (2.3.1) we obtain the following lemmas:
e~ t — ayagbybot?
S Sy (a1 + az) Spot (by + bo) " = b . (2.29)

"o S S (—A)bptn 3 S, (—A) bytn
n=0 n=0
e By replacing ag by (—az),be by (—by) and let a3 —ay = by — by = 1 and ajas = biby =1

B 1—t
ol -t — 42—

iz&*“*[—wb&hma%[—@bw

Proposition 2.3.1. Vn € N; The generating function of the product of the numbers of Fibonacci

s given by:

00 1 — t2
> Eitt = :
— 1—t— 42 — 3 + ¢4

Theorem 2.3.2. Vn € N; The generating function of the product of the Fibonacci numbers

and the Lucas numbers is given by:

2 —t—2t?
1— ¢ — 482 — 3 + ¢4

S FLt" =
n=0

Proof. We have:
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Ly = 28, (by + [=bs]) — Su_y (b1 + [=ba)]) .

SO:

i}FnLntn = i)Sn (a1 + [—a2]) [2S), (b1 + [—ba]) — Sp—1 (b1 + [—b2))]t"

_ io 25, (a1 + [—as]) Sn (b1 + [—ba]) £ — fo S, (a1 + [~az))

(Sp—1 (b1 + [=ba))) t"

2(1—1t%) t+ 2

Tl 42 Bt 1t —A2 B+t

o 2—t—3t
St — 42— 3t

e By replacing ay with (—ay) and by with (—by); and setting

a; —as = 1;by — by = 2 and byby = ajay = 1 in (2.27), we obtain:

B t+ 2t
1 — 2 — T2 — 23 ¢t

2 S,y (a1 + [—as]) S (by + [—bs]) "

Proposition 2.3.2. Vn € N; The generating function of the product of Fibonacci numbers and

Pell numbers is given by:

> t+ 22
S F, Pt = - .
—~ 1— 2t — 7¢2 — 213 4 ¢4

Theorem 2.3.3. Vn € N; The generating function of the product of Pell numbers and Pell-

Lucas numbers is given by:
2t

WPt = ——.
2Pl =

Proof. We have:
@Qn =255 (by + [—b2]) — 2501 (b1 + [—b2])
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SO:

> QuE" =3 Sut e+ [~a2)) 25 (b + [~ba]) = 25,1 by + [Ba)]e

n=0

= io: 2Sn,1 (a1 + [—CLQ]) Sn (bl + [—bg]) t" —2 io: Sn,1 (a1 + [—ag])

Snfl (bl + [_bQ]) t"

B 2(2 + 2t?) 2(t—13)

Tl =4t — 10822 — 4B + 4 1 — 4t — 1082 — 443 + 14
B 2

1 —6t+ 12

e By replacing ay with (—as) and by with (—2by); and setting a; — ay = 1;
by — by = x and 4b1by = —1,a1a5 = 1 in (2.27), we obtain:

- 1+
14 2at + (42 — 3) +20t3 + 14

S S, (a1 + [~as)) Sp (2by 4+ [~2bs]) 1"

=> FU, (z)t"
n=0

]

Proposition 2.3.3. Vn € N; The generating function of the product of Fibonacci numbers and

Chebyshev polynomials of the second kind is given by:

S B, (@) e
nUn \T = .
= 1+ 22t + (422 — 3) + 2213 + ¢4

with
FnUn (l’) = Sn (a1 + [—CLQ]) Sn (2b1 + [-2[)2]) .

1 5 1—+/5
a; = +\/_,a1: 2\/_,b1—91:+Vw2—1,b2—a:—\/x2—1.

Proof. We have:
Tn = Sn (2a9 + [—2as]) — S,—1 (2a2 + [—2as)) .
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SO:

i E,T,t" = i Sn(ar + [—as]) (Sn (2a2 + [—2a2])) — xSn—1 (2a2 + [—2as))

o0

Z a1 + ])Sn(le + {—ng])tn — X i Sn(al + [—GQDSn,l

(2by + [—2bo])t"

1+ ¢2 t + 2xt?
= -
14 2zt + (422 — 3) + 2212 + ¢4 1+ 2zt + (42 — 3) + 2xt3 4 t*

_ 1—at + (1 — 22?) 2
1+ 2t 4 (402 — 3) + 213 - 4

]

Theorem 2.3.4. Vn € N; The generating function of the products of the Chebyshev polynomials
of the first and second kind is given by:

> L+t+ 2z +1)¢?
U, T, (b — b)t" = .
HZZO (@1 a)To(br = bo)t" = g — ) v 2P 1

with:
Un(ay — az)T,,(by — bo)t" = S, (2a1 + [—2a3]) Sy, (201 + [—2bs]) — (by — b2) Sy, (201 + [—2bs]) .

Proof.

i Un(al — ag)Tn(bl — bg)tn = io: Sn (2(1,1 + [—2(12]) Sn (2[)1 + [_2b2b2])

n=0

— (b1 — ) Sp_1(2by + [—2s] )t

[e.o]

Z (2a1 + [~24]) Sy (251 + [~2b2]) £

(b —b2)S" St (241 4+ [~24]) S (20 + [~200]) £

n=0
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o0

Z 2(11 —|— 2@2]) Sn (2b1 + [—252]) t"

— (by — o) t (Z Sn (2a1 4 [—2a2)) [(2b11)" — (—2b2t)2]>

n=0

1+t
- 1-— 4 (a1 — CLQ) ((ll — ag) t + (4 (a1 — a2)2 + 4) (bl — 62)2 — 20t2 — 4 (Cbl — CLQ) (bl — bgt?’ + t4)

by — by ( 1 B 1 )
2 (bl + b2) 1—2 (al — GQ) blt + (2b1t>2 1+2 (al — a2) blt — (251t>2

1—t
1-— 4 (a1 — (lg) (CLl — CLQ) t + (4 (a1 — CLQ)Q + 4) (bl — b2)2 — 20t2 — 4 (CLl — CLQ) (bl — b2t3 + t4)

(bl — bg) [2 ((11 — CLQ) t— (bl — bQ) tz]
1—-4 (CLl — CLQ) (CLl — CLQ) t+ (4 ((1,1 — CL2)2 + 4) <b1 - b2)2 - 20t2 —4 (Cll - (1,2) (bl — b2t3 + t4)

1 —2(6L1 —CLQ) (a1 —CLQ)t—I— (2(b1 —b2)2 — 1) t2
1—4 (a1 — a) (a1 — a2)t+ (4 (a1 — ag)* +4) (by — b)” — 2062 — 4 (ay — az) (by — bot® +14)

O
Theorem 2.3.5. [6] Given two alphabets A = a1, a3, a3 and B = by, by, then:
> S, (—A) af (07 ¢
Z Sy (A) Spar (Bt = 222 k€N, (2.30)
3 Su(=A)dh, (b5) ¢
Proof. The action of the operator &, on the series f (bt) Z S, (A) b T1™ gives the

left-hand side of equation (2.30) then:

S S, (A) B — 3 S, (A) bt
5b1b§f (blt) == 20

ay — a2

00 bn+k+1 _ bn+k+1

_ A 1 2
25T,

o0

Z Sni (B) ™.
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> b
, Let Y5, (A)opth” = —— _ be the second member of the equality (2.30), then it
n—0 HA (]_ — ablt)
ac
can be written as:

by
0 bit) =0F, ———
blbgf( 1 ) b1b2 H (1 _ ablt)
acA
1 b’f+1 bllc+1
:bl — b2 H (1 — ablt) B H (1 — abgt)
acA a€A

DT (10— bot) — B TT (1 — byot)

acA a€A

<b1 —by II (1 —abyt) I1 (1 — abzt)> |

a€A a€A

and according to identity:

> S (A) byt =[] (1 — abit).
n=0

acA

the result is:

6§1b2f (blt) :5511)2 H (1 - ablt)

a€A

DT (10— bot) — 057 TT (1 — bot)

a€A acA

b (S ) (550 )

% s b11€+1b1 . bg—Hbg

n=0 b1 - bg

(5 m) (5,5 )

t?’l

> S, (A) o, batr
=0

(5 5vcam) (5 5.cam)
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Theorem 2.3.6. [4] Let A = (a1,a2),B = (by,b2), and C = (¢1,¢2) be three alphabets, then:

>~ 50 (4) St (B) St (O)

(Z S (=4) bSc’#”) (Z S (=4) b?c?t”) (Z S (—A) S 1BCQ+1t”>
n=0 n=0

bk - ( Sy (—A) bScZﬂ) <Z S, (—A) b’fcﬁt") S S, (—A) Sk 1Bc"+1t”>
172 X n=0 n=0 n=0

C1 — Cg H (1 — ablclt) H (1 — abgclt) H (1 — abQClt) H (1 — ablcgt) H (]_ — ablclt)

a€A a€A a€A a€A a€A

(2.31)

, Vk e N.

Proof. The action of the operator 6" 5511,2 on the series f (bjcit) = Z S, (A) byt H™ gives

cic2

the left-hand side of equation (2.31) then:
5b1bk(sclc f(bl ) (5b1bk5010 (Z S bn+1tn>

nX::O Sn( )bn-i-k Z S ( )bn-l-k’c?tn
by — b2

bn-i—k _ bn-l—k)

5k S S, (A a0 "2
v (L
(Z Snk=1(B) C’ﬁ")

CllC Z—IO Sn (A) Sn+k:1 (B> C?tn - Cg 2—:0 Sn (A) SnJrk:l (B> Cgtn

C1 — Co
00 CnJrk CnJrk
=35, (A) Spiper (B) 2t
n=0 €1 —C2

o0

— Z: Sn (A) SnJrkfl <b> SnJrk*l (C) :
1
H (]_ — ablclt)

acA

Let f (bient) = be the second member of the equality (2.31),
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then it can be written as:

b
5§1b265162f<blclt> :(Sllfle(Sch ( H (1 lablclt))
acA
[ W
- oac bl — b2 H (1 — ablclt) H (1 — Gbgclt)
acA acA

a€A a€A

(b1 — bg) H (1 — ab161t> H (1 — abgclt)

a€A a€A

—5k

ci1c2

( blf H (1 — bgclt) — blf H (1 — bQClt) )

and according to identity Y S, (A) b7 cit" = J] (1 — abiest) the result is:
n=0 acA

b T1 (1= bacat) = b} TT (1 = bacst)
5§1b25§1c2f (bicit) =¢* a€A s

0 (b= b) @o Sn (—=4) bg) (nio Su(=4) b?)

bn—k _ pn—k
1

bk S S (A T2y
:5k n=0 bl — b2
biba H (1 — blclt) H (1 — bgclt)
acA acA
bt S S, (A) Sk (B)it
:51];1;2 —

H (1 — blclt) H (1 — bgClt)

acA acA

L[ —hbatnt io;o S (A) Sppr (B) 3t®  —chbiFbyt fo S (A) Sp_pr (B) et
— n= + n=
C1 — Cy H (1 — blClt) H (1 — b261t> H (1 — b101t> H (1 — bgClt)

a€A a€A a€A a€A

(Zfo S, (A) b;dft”) <§ S, (A) b’fc’ft”) (g S, (A)S, 11 (B) d;“ft”)

blkbgk - (io Sn (A) bSCZ?ﬁ”) <i Sy, (A) bqfcgtn> (io S, (A) S, k1 (B) cwll—i-ktn)

n=0

C1 — Cy H (1 — ablclt) H (1 — abgclt) H (1 — blcgt) H (1 — b2C2t>

a€A a€A a€A a€A
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CHAPTER 3

NEW GENERATING FUNCTIONS

OF PRODUCTS OF (p,q-NUMBERS

WITH SOME SPECIAL NUMBERS
AND POLYNOMIALS.

N this chapter we introduce new generating functions of triple products of squares of k-
I Fibonacci numbers with (p, ¢)-Fibonacci and (p, ¢)-Lucas numbers , then squares of k-Pell
numbers with (p, ¢)-Lucas and (p, ¢) Fibonacci numbers , then (p, ¢)-Fibonacci numbers with
bivariate complex Fibonacci polynomials , (p, ¢)-Lucas numbers with bivariete complex Lucas
polynomials, (p, ¢)-Fiboncci with bivariate complex Lucas plynomiales. Finally we calculate the
new generating functions of products of squares of k-balancing numbers with (p, ¢)-Fibonacci

numbers and (p, ¢)-Lucas numbers
The reccurence relation of k-Fibonacci numbers {F},}, o is defined by:

Fyn=kEFyp1+ Fypofor k>1andn <2.

with initial conditions Fy o = 1 and Fjy; = k.
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numbers and polynomials.

The bivariate complex fibonacci polynomials { F,(z, y) },-, were initially defined in [7] using

the following recrusive formula:

Fo (x,y) =iaF, (x,y) + yF_1 (x,y) for n > 1.

with initial conditions Fj (z,y) = 0 and Fi (z,y) = 1.

their Binet’s formula and explicit formula are respectively expressed as:

a” (ZL‘,y) — 6n (fL‘,y)

F,(z,y) = .
( ) Of(l’,y)—ﬂ(l',y)
and
2zt 1
n — — . .
Fula,y) =) i (iz)" %y
=0

where « (z,y), B (z,y) represent the roots of the characteristic equation
t? —ixt —y = 0.
similarly, the bivariate complex Lucas polynomials {L,, (x,y)}>>, were defined in [7] by:
Ly (z,y) =ixLly, (x,y) + yLy_ (x,y) for n > 1.

with initial conditions Lo (z,y) = 2 and Ly (x,y) = ix.

their Binet’s and explicit formulas are respectively presented by:

LTL (l’,y) =a" (.I’,y) - Bn ('T7y) .

and

For any positive integer k, the k-Pell sequence denoted as (Pg),, oy - follows:

Pk,nJrl = 2Pk,n + k'Pkm,l, for n 2 1,
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numbers and polynomials.

with initial conditions ,

Pro=0,P; =1

The characteristic equation linked to the k-Pell numbers recurrence relation, expressed as:
r?—2r —k=0.

yields roots 11 = 1 ++v1+k and 7, = 1 — /1 + k. Notably, since the value of vV1+k > 1,
exceeds 1, it follows that ro < 0 is it between r1 and 0.

Furthermore, the relationships ry + 7o = 2,11 — 1y = 2V/1+ k and riry = —k, emerge from
the equation’s solutions. Specifically, when k& = 1, r; becomes the silver ratio, denoted by
r1 =14 V2, which holds significance in the context of the Pell numbers sequence.

Its Binet’s formula is given by:
o
1 2

Pkn:

)

7"1—7”2.

where 71, 75 are the roots of the characteristic equation 1> — 2r — k = 0 and 71 > 75.
Balancing numbers, were introduced by R.P. Finkelstein satisfy a specific Diophantine equa-
tion, k-balancing numbers being a generalized form proposed by Ray in [16]. Their recursive

definition and explicit formula are respectively outlined as follows:

Bk,n+1 = 6kBk,n - Bk,n—b k> 1

The explicit formula of k-balancing numbers is given by:

at? = 6kat™ — ot and o4 t? = 6kaj Tt — af.

aq and ay represent the roots of the equation: ozf = 6kay — 1 and a% = 6kas — 1, note that

3k +v9k2 — 1 and 3k — V9k2 — 1 represent the roots of the equation o? = 6ka — 1

Its Binet’s formula of n'" k-balancing numbers is given by:

af —ay
Bk,n =

061—042.

Definition 3.0.1. [34] The (p, q)-Fibonacci numbers {F,4n}, . are defined by the following
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numbers and polynomials.

recurrence relation:

F,

p7q7n

=pFygn-1+qFpqn_2 forn>2, with [, ,0=0,F,,1 = 1.

Its Binet’s formula for is given by:

n n
Ly — Ty

Fp,q,n = .
T1 — T2

Definition 3.0.2. [34] The (p, q)-Lucas numbers {Lygn},cn are defined by the following re-

currence relation:

Lp,q,n - pr,q,TL—l + qu’qvn_Z fOr n 2 27 wlth Lp:Q)O - 27 Ll’,q,l - p

Its Binet’s formula is given by:

_.n
Lp7Q7n - xl + x2'

3.1 Principle Theorem

The following theorem is the bases of all the next calculations and results it was proven in [10]:

Theorem 3.1.1. Let A, B and C be three alphabets, respectively, {ai,as,as}, {b1,b2} and

{c1, 2} then we have

i Sn (A) Sn+k—1 (B) Sn—i—k—l (C) 2" =

(Z Sy (—A) bgc?z”> (Z Sn (—A) b?c’fz") Z Sy (—A)S,_k_1(B) Cg”kz"
n=0 n=0 n=0

bibh (3.1)
— (i S, (—A) bgcgz”> (i S, (—A) b?cSz”) i Sy (—A) Sp_j_1 (B) C ke
(1 i:(c)g) a];[A (1 —abyc12) ago(l — abycy2) a];[A (1ni0ab1022) al;[A (1 — abycaz) ’
for all k € N.

If k=0,1,2 and az = 0 in the theorem (3.1.1), we deduce the following lemmas.
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Lemma 3.1.1. [4] Let A, B and C' be three alphabets, respectively, {ay,as}, {b1, b2}

and {c1, ¢} then we have:

ol =

S S, (A) Sut (B) Sut (C) 2" = . neN, (3.2)

with:

N = (a1 —+ (12) Z — a1a9 (bl + bg) (Cl + Cg) 22 + b1620102 (CLl + CLQ) (2(11@2 — (CLl + CLQ)Q) 23
+ a1a2b1b20102 (bl + bg) (Cl -+ 02) ((11 + a2)2 24 — blbgclcga%ag (a1 + ag)

(blbg (Cl + 02)2 + 1o (bl + bg) — 6162b1b2> z2°4+a angbQCl@ (bl + bg) (01 + Cg) 26

D=1~ (ay+ az) (by + b2) (c1 + 2) 2 + (bibz (a1 + a2)* (1 + ¢2)° + ((by + b2)* — 2D1bs)

(a1 + a2)2 c102 — 2aqaz¢109 + ajas (¢ + 02)2))2'2 — (a1 4+ az) (b1 + ba) (¢1 + ¢2)
bibacics (ag + a2)2 + bibgajasg (¢1 + 62)2 + ajaseies (by + b2)2 — 5(116L201€2b1b2) 24

(a2a2c2c2 (by 4 by)* + AE20%0% (a1 + a2)* + a2a2b0% (1 + ¢2)* — ayasbibycicy
(4b1bycico (ag + ag) + dayascien (b + b2)2 + dayasbiby (¢ + 02)2 — (a1 + ag)2
(by + bg) (1 + 02)2) + 6a2aibibscica)zt — ajagbibacicy (ay + ag) (b1 + ba) (c1 + ¢2)
(a1a20102 (b + b2) + bibacico (ag + a2)2 + bibgajasg (¢ + 62)2 — 5a1agblb201cg) 2+
(a2a2b3033 2 (ay + as)” (c1 + 2)° + a2a2b?b2ccl ((61 +by)* — 2b1b2>
((a1 + a2)2 c102 — 2aqas¢109 + ajas (¢ + 02)2) 25— a3albidciel (ar + ag) (by + by)

(c1+ ¢2) 27 + ajasbibycicy2®.

Lemma 3.1.2. [4] Let A, B and C be three alphabets, respectively, {ai,as}, {b1,b2} and

{c1, 2} then we have

Z S n+1 ) Sn+1 (O) A — n e N, (33)
with:

N1 = (a1 + ag) z — aras (¢1 + ¢2) (by + b2) 22 + c1¢9b1by (a1 + as) (— (a1 + a2)2 + 2a1a2> 2
+ a1a2b1b20102 (a1 + (12)2 (bl + bg) (Cl + CQ) 24 — a%a§b1b2C102 ((11 —+ CLQ)

(blbz (Cl + 62)2 + C1Co (bl + b2>2 — blbgclcg) 25 + a?a;’begc%cg (Cl + CQ) (bl + bQ) 26

68



New generating functions of products of (p, ¢)-numbers with some special
numbers and polynomials.

From the previous lemma we deduce the following relationship
> 8,1 (A) S, (B)S, (C)2" ===, neN, (3.4)

with:

Ng = (Cl + 02) (bl + bg) z — ((11 + az) (6162 (bl + 52)2 + blbg (Cl + 02)2 — Clcgblb2> 22
+ Clcgblbg (a1 + CLQ)Z (bl + bl) (Cl + Cl) clcngb2 (a1 + 0/2) (((ll + CLQ)Q — 2&1(12) 24

— aiazbibicics (by + by) (c1 + o) 2° + afasbibicics(ar + ag)2°

Lemma 3.1.3. [4] Let A, B and C be three alphabets, respectively, {ay,as}, {b1,ba} and
{c1, 2} then we have

S S0 (A)Sn (B)Sa (C) 2" = 2 e, (3.5)

with:

N3 =1— (a1a20102 (bl + b2)2 + a1a2b162 (Cl + 02)2 + bleClcg (611 + CLQ)Q — 3&1&20162b1b2) 22
+ 2a1a2b1b20102 (a1 + ag) (bl + bg) (Cl + Cg) 23
- (bleafagc?cg (b, + b2)2 + clcga12a%b%b§ (c1 + 02)2 + alagbfb%c%cg (aq + a2)2

— 3ajazb1?bicics)zt + ajasb1’bycics 2P,
From the previous lemma we deduce the following relationship
> Sno1(A) Spo1 (B) St (O) 2" = —, neN, (3.6)

with

N4 =z — (a1a20102 (bl + b2)2 + alagblbg (Cl + 02)2 + b1b20102 (&1 + (12)2 — 3a1&2010251b2> z
+ 2a1a2b1b26102 ((ll + CLQ) (bl + bg) (Cl —+ CQ) Z4 — (blbga%CLgC%Cg (bl + b2)2

2 21972 2 212 2 9 2 2 2,99 3130337
+ crc0aiazbibs (¢ + c2)° + ajagbibscics (ay + as)” — 3aiasbibycics)z® + ajasbibycicyz’.

3.2 Main results

In this section, we use the aforementioned theorem with the objective of deriving novel gener-

ating functions for the products involving established numbers and polynomials.
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First step

In this section we will introduce new generating function of triple product of squares of k-
Fibonacci numbers with (p, ¢) -Fibonacci numbers and (p, ¢) -Lucas numbers then we need to
do the following substitutions in (3.4) and (3.5)

We replace as by [—as] , by by [—bo] and ¢3 by [—cs] and we put:

a1 — az = p, a2 = ¢q,

by —by=Fk, and ¢phby=1,

a—c=k crep =1
we obtain:
S P
> St (a1, [—as]) Sy (br, [=bo]) Sh (e1, [—ea]) 2" = 51
n=0 1
Z Sn (a17 [_a2]> STL (b17 [_bQ]) STL (C17 [-Cz]) z = F
n=0 1
with:

Dy =1—pk?: — (q (k+4k* +4) + 2p* (K + 1)) 22 — (k?pq (26> + 5) + k*p°) 2°
+ ((=F +4) p’g + 2k°¢° (K> + 4) + p' + 6¢°) 2" + (K*pg (2k%q + p* + 5q) ) 2°
— (K¢* (K +4) +2¢°p” (K + 1) +4¢° (K + 1)) 2° + k?pg’2" + ¢'2%.

Py =Kz —p(=2k* — 1) 2% + (pk)* 2> — (p* — 2qp) =" — *h?2" + ¢*p2".

Py =1— (2qk* + p* +3q) 2* — 2pgk?z* — (—2p°k* — qp” — 3¢%) 2" — <"

Theorem 3.2.1. Forn € N, the new generating function of product of (p, q)-Fibonacci numbers

with squares of k-Fibonacci numbers is given by:

[e’e) Pl
P, F? 2" = —.
nz::o P9t k, D1
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where:

P =kz—p (—2k2 — 1) 22+ (pk)? 2% — (p3 - 2qp) 24— PR 4 ¢?pC.

For k =1 we have:

D} =1-pz— (4 +99) 2 — (p* + Tpg) 2* + (16¢° + 3p’q + p*) ="' + (Pq + Tpe®) 2°
— (4q2p2 + 9q3p) 22+ pg" + 2B

Pl=z+ 3pz? 4 p22® — (ps. _ qu) 2 — 22 4 ¢%p2S.

Py=1-— (p2 + 5q> 2?2 — 2pqz3 — (—2p2 — qu — 3q2) 2 — q3z6.

corollary 3.2.1. For n € N, the new generating functions of product of (p, q)-Fibonacci num-

bers with squares of Fibonacci numbers is given by:

o0 Pl
P, 22" = 1.

Theorem 3.2.2. Forn € N, the new generating function of the product of (p, q)- Lucas numbers

with squares of k-Fibonacci numbers is given by:

Ly FE 2" = 2.
nzzo P.q* k, Dl

where:

Py =2—pk*z — (2q(2k2 +3) + p*(—2k* + 5)) 2% — (/ch(p2 + 4q)) 23
+ <2q2 <2k2 + 3) +p*(p® + 4q)) 2 pgPk? P — (2(]3 + q2p2) 28.
Proof. The symmetric function of (p, ¢)-Lucas numbers is given by

25, (a1, [—as]) —pSn—1 (a1, [—az]) [34] and we know that k-Fibonacci numbers are given by the

symmetric function: S, (by, [—bs]) [34] then we have:

ST Py F = 3 (25, (A) — pSas (A) (Sa (B)) (5 (C))

n=0 n=0

=3"2(8, (A) S, (B) 5, (C)) — p(Sn_1(A) Sy (B) 5, (C))
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where:

Py=2—pk*s — (20 (2k* + 3) + p* (—2k* + 5)) 2> — (K’p (p* + 4q) ) &°
+ (2% (262 +3) + p* (0 + 40) ) 2* + pg*k*2° — (26° + %) 2°.
For k = 1 we have:

Py =2—pz— (10g+5p*) 2> — (4pq + p*) 2* + (10¢” + p* + 4p*q) 2" + pg*z
o (p2q2 + 2q3> 56

Dy =1-pz— (4p* +99) 2 = (p* + Tpa) 2* + (16¢° + 3p°q + p*) =* + (pq + Tpe*) °
— (4q2p2 + 9q3p) 22+ pg" + 2B
corollary 3.2.2. for n € N, the generating function of product of (p,q)-Lucas numbers with

squares of Fibonacci numbers is given by:

oo P/
L, F22" = 22,

Second step

As in the previous step we will now give te new generating function of the prodauct of squares
of k-Pell numbers with (p, ¢)-Fibonacci numbers and (p, ¢)-Lucas numbers that’s why we will

effectuate the following replacements in (3.6) and (3.2):

ag — [—GQ] ay —az =p ajaz = q

by — [=by] and (b —by=2 and {pby =k

Co — [—CQ] 1 —Cy =2 C1Cy = k

here we obtain:

io Sut (a1, [=0a)) S by, (=) Sy (e, o) 2 = 2.
= n Q3
Z_:Osn (a1, [=ag]) Sn—1 (b1, [=b2]) Sn—1 (c1,[—c2]) 2" = Dy

with:
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Dy =1 —4pz — (2kp? (k + 4) + 4kq (k + 4) + 16q) 2* — (4k7p" + 4kpq (5k + 8)) 2*
+ (4k%p%q (K — 4) + K*? (6k + 32) + k* (kK*p" + 32¢%) ) =*
+ (4k*pq (kp? + 5kq + q)) 2° — (267D (k + 4) + 4k*¢* (K + 4q + 4) ) 2°
+ 4Kk%pg® 2" + KBqt 2.

Qu =z — (K (p* + 3q) + 8kq) 2* — 8k?*qp=* + (K*q (kp* + 3kq + 8¢) ) 2° — K°¢*<".

Q, :pz~|—4q22 B (ka (2(]—1—]92)) 23 4k2qp224 + (/{?’pqz (k+8)) - 4k4q3z6_

Theorem 3.2.3. For n € N the new generating function of Product of (p,q)-Fibonacci with

squares of k-Pell numbers is given by:

P2 ===
nz:;)QM o D,

For k = 1 we have:

Dy =1—4pz — (10p* +36q) 2* — (52pq + 4p°) 2* + (p* — 12p°q + 70¢%) =*
+ (52q2p + 4qp3) 2° — (10(12]92 + 36q3> 20+ 4¢3p2" + 128,
Q) =z2— (p2 + 11q) 23— 8pqz4 + (q (p2 + 11q)> 20— q3z7.

Q) = pz + 4q2* — (p <p2 + 2q)> 23— 4pPqt + IpgPLS — 4¢PAS.
corollary 3.2.3. For n € N, the new generating functions of product of (p,q)-Fibonacci with
squares of k-Pell numbers is given by:
Qp, P2zt = 2L
2Ol =0,
Theorem 3.2.4. Forn € N, the new generating function of Prodect of (p, q)-Lucas with squares

of k-Pell numbers is given by:

- (3
P Pan" = —.
nz::o Pq- k, D2

where:
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Qs = pz + 8¢2* + (—k2p3 — k*pg + 8/<:pq) 24 (—k4p3q — k'pg® + Skgp(f) 25— 8ktq32°
+ k6pq3z7.

Proof. As we mentiond in the first step we have the symmetric function of (p,q)- Lucas
numbers is: 25, (a1, [—az]) — pSn—1 (a1, [—as]) and the k-Pell one is given by: S,_1 (b1, [—bs])
then:

o0

io PoP2 2" = 3°(25, (A) — pSos (A) (Sucs (B)) (501 (C))

n=0

_ i 2(Sh (A) S 1 (B) sn1(C)) = p (St (A) Syt (B) 501 (C))

such that:
Q3 = pz + 8¢q2* + (—k2p3 — k*pq + Skpq) 23 4 (—k4p3q — k'pg® + 8k3pq2) 25 — 8ktq32°
+ KSpg32T.
For k =1 we have:
Q= pz+8¢2" + (Tpg — 1) 2° + ((Tg — p*) ) 2° — 8¢%° + ¢*p2".
4 _ 2 2 3\ .3 4 10,2 2\ _4 2 3\ .5
D5 =1—4pz (10p +36q)z (52pq+4p)z +<p 12pq+70q>z +<52qp+4qp)z
— (10q2p2 - 36q3) 25+ 4Pp” + ¢t8.

corollary 3.2.4. Forn € N, the new generating function of product of (p, q)-Lucas with squares

of k-Pell numbers is given by:
Qp, P2z = 23
nz::() p,q DI2

Third step

We will do the same procedure as the first and second steps by involving new generating
functions of product of (p,q)- Fibonacci numbers and (p, ¢)- Lucas numbers with squares of

bivariate complex Fibonacci and Lucas polynomials and also we need the following replacements
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numbers and polynomials.

in (3.6), (3.5), (3.2), (3.4)

as — [—as] ay —az=p aias = q
b2 — [—bg] and b1 — bg = and ble =y
g — [—ca) €l — Cy =18 cico =1t

then we have:

00 . Bl

Z Sn-1 (a17 [—a2]) Sn—1 (517 [—52]) Sn-1 (017 [—Cz]) = Da

n=0 3

00 B2

Z Sn (A) S, (B) s, (C) 2" = =

n=0 D3

00 " B3

Z Sn (A) Sn—l (B) Sn—1 (C) Zz = Df

n=0 3

00 . B4

> 5,21 (A) S, (B) s, (C)2" = Do

n=0 3

with:
By =z~ (qy (s> = 3t) + t (q2? — p’y)) 2° + 2pgstay>"
+ (qty (—as’y — qta? + p’ty + 3qty) ) ° — ¢*t*y*5".
By =1—(qy(—s"+3t) +t (g2’ + p’y)) 2 + 2pgstayz’
— (aty (¢5°y + qta® — Pty — 3qty) ) 2* — ¢*t*y*2".
By =pz — gsz2® — (pty (0 + 2q)) 2° + pastayz + (pity (—s%y — ta? + ty) ) 2° + ¢*st?ay?".
By = —szz — (p (s’y +t2® — ty)) 2* — p’stayz® — (pt*y” (p° + 2q) ) 2* + ¢*st’zy’s"

+ pq2t3y326.
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Dy =1+ pswz+ (q5* (—22 + 2y) + 2qt (22 — 2y) +p? (%Y + ta® — 2ty) ) 2°
+ (—pags’ry + pstx (—qa? + p*y + 5qy) ) 2°
+ (Paty (—s%2” + 4ty) + ¢*y*s* (5% — 4t) + ¢*Fa (—4y + 2%) + 27 (p" + 6¢7) )
+ (pgstay (¢s?y + qta® — p*y — 5qt) ) 2°
+ (P2 (=5* + 2t) + PP (SPy + ta” — 2ty) + 207" (57— 2t) ) 2°
144

— pq3$t3xy3z7 +4q y4z8.

Theorem 3.2.5. For n € N, the new generating function of the product of (p,q)-Fibonacci

with bivariate complex Fibonacci is given by:

Bs

Z Pp7qB2FZn = 53

n=0

where:

Bs = pz — 2qsxz® — (py (q32 + pzt) + pqt <x2 + y)) 23— (pqty (quy + qtx + pPty + qty)) z°
+ 2¢° st xy? 2% + pPtiyP LT

Proof. The symmetric function of produc of (p, ¢)-Fibonacci is given by:

2S5, (a1, [as]) — pSn—1 (a1, [—as]) and we know that the symmetric function of bivariate complex

Fibonacci is given by: S, (b1, [—b2])

then:

[e.9]

S Py BE = 3°(25, (A) — pSucs (A) (Suct (B) (511 (O))

_ i 2 (S (A) St (B) 501 (C)) — p (St (A) Su_s (B) 501 (C))

where:
Bs = pz — 2gsx2® — (py (q32 + p2t) + pqt <x2 + y)) 2% — (pqty (quy + gt + p*ty + qty)) 2°
+ 2¢3st? w28 + pPtPyPLT.

Theorem 3.2.6. For n € N, the new generating function of product of (p,q)-Fibonacci with
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bivaraite complex Lucas is given by:
Z P, FBL? (z,y) 2" =

where:
Bs =2+ (4p (s’y — ta? +1y)) 2* + (p*tay (—4s + x) — g2’y (5> — 3t) — gta’) 2°
— (2pty (qs2® + 2p°ty + 4qty) ) 2*
— (= @’stay? (sz + 4t) + qt*2®y (—2q + P’y + 3qy) ) 2° + dpg*ty° 2" + PtPa?yPsT.

Proof. The symmetric function of product of (p, ¢)-Fibonacci is given by: S,,_1 (a1, [—az]) and

we know that the symmetric function of bivariate Lucas is given by:
25y (b1, [=ba]) —iw S, 1 (b1, [—02))
then:

S P, FBL (2,9) " = 3 St (A) (250 (B) — izSu_1 (B)) (25, (C) — iSu_r (C))

4501 (4) Sa (B) S0 (C) — #2801 (A) Sy (B) St (C)

where:

B =2+ (4p (s'y — ta® +1y)) 2 + (p*tay (—4s + 2) — q2®y (s* — 3t) — qta?) 2°
— (2pty (qs2® + 2p°ty + 4qty) ) 2* 0
— (—q28tilj'y2 (sz + 4t) + qt’z%y (—:1:2(] + Py + 3qy)) 2% 4+ dp?tPyP 20 + PriatyPsT.

Theorem 3.2.7. For n € N, the new generating function of the product (p,q)-Lucas with

squares of bivariate complex Lucas is given by:
Z P, ,BL? (z,y) 2" = ="

where:

7



New generating functions of products of (p, ¢)-numbers with some special
numbers and polynomials.

By =8 — (pr (—4s+2)) 2 — (—4s’y (p+ 2q) — 4ta® (p* + 2q) + 12ty (p* + 2q) — 2gs2°)
22 + (pPay (4s + 2) + pgsy (vs + 16t) + pata® (2 +y)) 2°
+ (8¢*ty (—s%y — 2%t + 3ty) + 4p*t*y* (p* + 4q) ) 2*
+ (pg*stay? (sz — 4t) + pat*a®y (g2 + PPy + qv) ) #°
— (207179 (gs2® + 2ty + dqty) ) 2° — pPtPa?y*s".

Proof. We have the symmetric function of (p, ¢)-Lucas numbers is:

(25, (a1, [—az]) — pSn_1 (a1, |—as])) and the symmetric function of bivariate complex Lucas

polynomial is given by: (25, (b1, [=ba]) — ixS,—1 (b1, [—bs])) then:

S P, BL (0.y) - i S 1 (A)) (25, (B) — izSu 1 (B))

(25, (C) —izS,_, (C))
= 3 85,(4)S, (B) 5, (C) — 2225, (A) S (B) Sas (C)

—4pS, 1 (A) S, (B) S, (C) + px*S,_1 (A) S, 1 (B) S,_1 (O)

where:
Br =8 — (px (—4s + x)) 2 — (—4s%y (p + 29) — 4t2® (p* + 2q) + 12ty (p* + 2q) — 2gs2”)
22+ (ptay (45 + o) + pgszy (vs + 16t) + pata® (2% +y)) 2°
+ (8¢*ty (—s%y — 2%t + 3ty) + 4p*t*y* (p* + 4q) ) 2* O
+ (pg*stay? (sz — 4t) + pat*s*y (g2 + p*y + q) ) #°
~

2q t2 2 (qsx + 2p? ty + 4qty>) pq3t3x2y3z7

Final step

Finally we calculate new generating functions of the product of squares k-balancing numbers
with (p, q)-Fibonacci numbers and (p, ¢)-Lucas numbers, that’s why we need the following

replacements in (3.6) and (3.2):
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as — [—as)

a1 — Gy =P by — by = 6k ¢ — ¢y = 6k
by — [—by] and and and

109 = q biby = —1 c1cg = —1
cy — [—ca)

then we obtain:

io Sn—1 (a1, [=az]) Sp1 (b1, [=b2]) Sn-1 (c1, [—¢2]) = g:
f:osn (a1, [—az]) Sp—1 (b1, [=ba]) Sn1 (c1, [—c2]) = gj

with:
Dy = ¢*2® + 36k*pg32" + (—1296k4q3 + T2K*p*q* + 144K ¢® — 2p%¢® — 4q3) 28
+ (—2592k"pg® + 36k%p’q + 180k%pg?) 2°
+ (—1296k"p*q + 2592k ¢* — 288k¢> + p* + 4p’q + 6¢7) =*
+ (2592k"pg — 36kp* — 180k%pq) 2* + (—1296k"q + 72k°p* + 144k%q — 2p* — 4q) 2

— 36k%*pz + 1.
H =—¢2" + (—72k2q2 + pq + 3q2) 25— T2k%pgzt + (72k2q —p? - Sq) 2+ 2.
Hy = =36k%*:° + (=T2kpq* + pq*) 2° — 36k*p*qz" + (—p* — 2pq) 2° + 36k%q2 + pz.

Theorem 3.2.8. For n € N, the new generating function of the product of (p,q)-Fibonacci

numbers with squares of k-balancing numbers is given by:

o0 Hl
BBl = =
nz:%) P9 (k,n) D4

where:

H =—¢2" + (—72k2q2 + g+ 3q2) 2° — 12k*pg2t + (72k2q . 3q) 22+ 2.

Theorem 3.2.9. Forn € N, the new generating function of the product of (p, q)-Lucas numbers
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with squares of k-balancing numbers is given by:

> Hy
N LpoBlm = =

where:
Hy = pg*z" — 12k*¢*2° + (—72k2pq2 —pPq— pq2) 2 (—72k2pq e - pq) 2 4 T2k2q2°

+ pz.

Proof. The semmytric function of (p, ¢)-Lucas numbers is given by:

25, (a1, [—as]) — pSn—1 (a1, [—a2]) [34] then we have:

io Ly By = iﬂ (25, (A) = pSp_1(A)) Sp—1 (B) Sp-1 (O)

= 25, (4) 8,1 (B) S,1(C) 9o 1 (4) 814 (B) 8,1 (C)

_
=5,
where:
Hy = pg®z" — 12k°¢*2° + (—72k2pq2 —pPq— qu) P (—72k2pq - pq) 2 4 T2k
0
+ pz.

For k£ =1 we have:
D) = ¢*2® + 36pg*2" + (70]92q2 - 1156q3) PARE (36p3q — 2412pq2) 2°
+ (p* = 1292p% + 2310¢%) =* + (=36p® + 2412pq) 2° + (70p* — 1156¢) 2> — 36pz + 1.
H} = pg®2" — 72¢°2° + (—p3q — 73pq2) 22+ (—p3 — 73pq) 22+ 72¢2* + pz
H = —¢*2" + (p2q — 69q2) 25— T2pqzt + (—p2 + 69q> 23+ 2.
H) = —36¢°2° — T1pg®z° — 36p°qz* + (—p3 — 2pq) 23 4 36¢2% + pz.

corollary 3.2.5. For n € N, the new generating function of (p,q)-Lucas with squares of bal-

ancing numbers is given by:

o0 Hl
2 3

Z Lp,an = E‘

n=0
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CONCLUSION

HIS study presents findings that demonstrate the use of generating functions and the mul-
T tiplication of numbers (p, q) can lead to effective solutions for a variety of mathematical
problems, including their applications in calculus and number theory.

Understanding symmetric functions and their role in mathematics, physics, and computer sci-
ence is fundamental to developing complex mathematical models and practical applications in
these fields.

The findings of this study highlight the importance of establishing a strong and appropriate
mathematical foundation for diverse scientific and technological applications, thereby contribut-

ing to progress and development in various domains.
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