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Abstract

This thesis discusses the idea of reproducing kernel Hilbert spaces connected to

positive definite kernels and provides examples of how to apply it to a certain class of

first integro differential equations. We build a new reproducing kernel space, exam-

ine the Sobolev space which is one of the most practical reproducing kernel Hilbert

spaces, and provide an expression for reproducing kernel functions. In meantime, we

built the whole orthonormal basis in the space W m
2 [a, b] using a replicating kernel

function and its conjugate operator.

This thesis uses the replicating kernel Hilbert space approach to study the solutions

of a general class of first-order integro-differential equations. In the space W m
2 [a, b],

the analytical and approximate solutions are shown as series. It is demonstrated

that the n−term approximation and all of its derivatives converge uniformly to

the analytical solution and all of its derivatives, respectively. To demonstrate the

correctness, dependability, and computing efficiency of the suggested technique for

first-order integro-differential equations, a number of numerical examples are given.

KeyWords: Integro-Differential Equation, Positive Definite Functions, Sobolev

Spaces, Reproducing Kernel Theory, Reproducing Kernel Method.



 

 
  

 ملخص
 

 

ناقش هذه الأطروحة فكرة إعادة إنتاج فضاءات نواة هلبرت المرتبطة بنواة محددة موجبة وتقدم أمثلة لكيفية  ت

تطبيقها على فئة معينة من المعادلات التفاضلية التكاملية الأولى. نحن نبني مساحة نواة جديدة لإعادة  

. في غضون ذلك،  الإنتاج، ونفحص مساحة سوبوليف التي تعد واحدة من أكثر مساحات هيلبرت للنواة عملية

 a,b][m    ء ضاالفقمنا ببناء الأساس المتعامد بالكامل في 
2W  المتماثلة والمشغل المرافق لها.  النواةباستخدام 

تستخدم هذه الأطروحة منهج فضاء هيلبرت التكراري لدراسة حلول فئة عامة من المعادلات التفاضلية  

 a,b][m  فضاءالتكاملية من الدرجة الأولى. في ال
2W   .تظهر الحلول التحليلية والتقريبية على شكل سلاسل

وجميع مشتقاته يتقارب بشكل موحد مع الحل التحليلي وجميع مشتقاته على    n حد لقد ثبت أن تقريب ال

 التوالي. 

لإثبات صحة واعتمادية وكفاءة الحوسبة للتقنية المقترحة للمعادلات التفاضلية التكاملية من الدرجة الأولى،  

 تم تقديم عدد من الأمثلة العددية. 

 

 

 

المعادلة التكاملية التفاضلية، الدوال المحددة الموجبة، فضاءات سوبوليف، إعادة إنتاج   الكلمات المفتاحية: 

 نظرية النواة، إعادة إنتاج طريقة النواة. 

 



 

 

 

Résumé 
 

 

Cette thèse discute de l'idée de reproduire des espaces de Hilbert à noyau connectés à des noyaux 

définis positifs et fournit des exemples de la façon de l'appliquer à une certaine classe des 

équations intégro-différentielles du premier ordre. Nous construisons un nouvel espace de noyau 

de reproduction, examinons l'espace de Sobolev qui est l'un des espaces de Hilbert de noyau de 

reproduction les plus pratiques, et fournissons une expression pour reproduire les fonctions du 

noyau. En même temps, nous avons construit toute la base orthonormée dans l'espace W2
m [a,b] en 

utilisant une fonction noyau de réplication et son opérateur conjugué. 

Cette thèse utilise l'approche spatiale de Hilbert à noyau de réproduction pour étudier les solutions 

d'une classe générale d'équations intégro-différentielles du premier ordre. Dans l'espace W2
m [a,b], 

les solutions analytiques et approximatives sont présentées sous forme de séries. Il est démontré 

que l'approximation n-terme et toutes ses dérivées convergent uniformément vers la solution 

analytique et toutes ses dérivées, respectivement. 

Pour démontrer l'exactitude, la fiabilité et l'efficacité informatique de la technique suggérée pour 

les équations intégro-différentielles du premier ordre, un certain nombre d'exemples numériques 

sont donnés. 

Mots clés: équation intégro-différentielle, fonctions définies positives, espaces de Sobolev, théorie 

du noyau de reproduction, méthode du noyau de reproduction. 
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Introduction

In the early 20th century, S. Zaremba used the reproducing kernel for the first

time when he worked on boundary value problems (BVPs) for harmonic and bihar-

monic functions. He was the first to introduce and express the reproducing property

of the kernel corresponding to a class of functions in a particular case in 1907. But

he did not develop any theory and did not give any particular name to the kernels

he introduced.

J. Mercer studied the functions that satisfy the reproducing property in Hilbert’s

theory of integral equations in 1909. He devised a theory known as ”positive-definite

kernels” based on the kernels that were taken into consideration at the time, which

were continuous kernels of positive-definite integral operators. Additionally, he

demonstrated that among all continuous kernels of integral equations, these pos-

itive definite kernels have good properties.

Three Berlin mathematicians, G. Szego (1921), S. Bergman (1922), and S. Bochner

(1922), presented the concept of reproducing kernels in their dissertations in the

1920s. Specifically, for the class of harmonic and analytic functions, S. Bergman

presented reproducing kernels in one or more variables, which he dubbed ”kernel

functions.”
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Nonetheless, positive definite kernels were first proposed by E. H. Moore (1935)

in the general analysis under the term ”positive Hermitian matrices,” with the in-

tention of using them in a manner that was similar to the generalization of integral

equations. In 1943, N. Aronszajn developed the theory of reproducing kernels which

contains the Bergman kernel functions.

Bergman and Schiffer (1947) developed the original Zaremba proposal to apply the

kernels to the solution of BVPs. These studies demonstrated the effectiveness of

the kernels as a tool for solving BVPs of elliptic-type partial differential equations

(PDEs). Moreover, S. Bergman and M. Schiffer (1948) achieved very nice results by

using kernels to conformal mapping of multiply-connected domains.

N. Aronszajn organized the general theory of reproducing kernels in 1950. The

groundwork for reproducing kernel theory was laid when he compiled the findings

of other studies in the same field and utilized the same term ”reproducing kernel

functions,” for each of these functions. The basic result by Aronszajn is the exis-

tence and uniqueness of a reproducing kernel Hilbert space (RKHS) corresponding

to any self-adjoint nonnegative-definite kernel.

In 1986, M.G. Cui showed that space W 1
2 [a, b] is a Hilbert space with reproducing

kernel function which is expressed by finite terms. Hence, the implementation of

reproducing kernel theory started in many fields. In 1988, the general theory of re-

producing kernel Hilbert space and its different applications was given by S. Saitoh.

By redefining the inner product of the space W m
2 [a, b] and based on the reproducing

kernel created by M.G. Cui 1998, the reproducing kernel functions of W m
2 [a, b] space

can be represented by piecewise polynomials and the higher order of derivatives

without changing any other conditions.
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The RKHS algorithm provides the possibility to pick any point in the integration

interval, this algorithm has been successfully applied to various fields of numerical

analysis, computational mathematics, probability, and statistics (17), and machine

learning (34). Therefore, a wide range of research works have been directed to its

applications in various stochastic categories (36), and defined problems involving op-

erator equations (12), partial differential equations (1), integrative equations ((18),

(35)), and differential integration equations ((11), (7), (2), (8)). In addition, many

studies have focused in recent years on the use of the RKHS method as a frame-

work for seeking approximate numerical solutions to different problems ((20), (43)).

Moreover, the numerical solutions of the different groups of BVP can be found in

((6), (19),(21), (40)).

The thesis is organized as follows: In Chapter One, we give a preliminaries, basic

concepts, definitions and theorems relevant to our study. Afterward, we present the

reproducing kernel function by re-defining the inner product of a reproducing kernel

space in order to obtain the analytical approximate solution for a general form of

IDEs. Furthermore, the analysis of the RKHS method is described and an effective

algorithm is introduced.

In Chapter Two, the RKHS method is applied to approximate the solution of a

general form of first-order IDEs. It is a relatively new analytical technique. The

analytical solution u(x) and approximate solution un(x) are represented in the form

of series in the space W 2
2 [a, b]. Meanwhile, we give an iterative method to solve a

nonlinear first-order IDEs. Various numerical examples are presented to illustrate

the computational efficiency and the accuracy of the proposed method.

This thesis ends in Chapter Three with some concluding remarks and future recom-
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mendations.
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Chapter 1

Basic Fundamentals

1.1 Functional Analysis

Functional analysis is a branch of mathematics that focuses on the study of

infinite-dimensional vector spaces and the mappings between these spaces that re-

spect the algebraic and topological structures defined on them. These structures

include inner products, norms, and topology, which are essential for understanding

the properties of functions and operators defined in these spaces. Functional analy-

sis also extends the concepts of calculus to infinite-dimensional spaces, providing a

framework for solving differential and integral equations in these contexts.

Most of the definitions and properties of this section are taken from (37).

1.1.1 Normed Spaces

Definition 1.1.1. Let X be a vector space over K = R or C. A norm on X is a

map ‖.‖ : X −→ [0,∞) that satisfies the following three properties.

1. (Positive definite) For all x ∈ X, ‖x‖ ≥ 0, if x ∈ X, then ‖x‖ = 0 iff x = 0 ,

2. For all λ ∈ R (or C) and for all x ∈ X, ‖λx‖ = |λ| ‖x‖,
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3. (Triangle inequality) For all x, y ∈ X, ‖x+ y‖ ≤ ‖x‖+ ‖y‖ .

Definition 1.1.2. A vector space with norm defined on it is called normed space.

Example 1.1.1. 1. R is a vector space over R, and if we define ‖.‖ : R −→

[0,∞) by ‖x‖ = |x|, x ∈ R, then it becomes a normed space.

2. Rn is a vector space over R, and let ‖x‖2 =
(∑n

i=1 |xi|
2) 1

2 , x = [x1, . . . , xn] ∈

Rn, then Rn is a normed space.

We have a notion of ”distance” between vectors in a normed space, and we can

say whether two vectors are close or far away. Thus, in a normed space, we can

discuss Cauchy sequences and convergent sequences.

Definition 1.1.3. Let (X, ‖ ·‖) be a normed space. A sequence (xn)n∈N in X is said

to be converge to a ∈ X if

∀ε > 0,∃N ∈ N : ∀n ≥ N : ‖xn − a‖ < ε. (1.1)

Note that (1.1) says that the real sequence (‖xn − a‖)n∈N converges to 0, i.e

lim
n→∞

‖xn − a‖ = 0.

In this case, we writes lim
n→∞

xn = a or xn → a as n→∞.

Definition 1.1.4. A sequence (xn)n∈N in X is called a Cauchy sequence if

∀ε > 0,∃N ∈ N : ∀n,m ≥ N : ‖xn − xm‖ < ε. (1.2)

Remark 1.1.1. Every convergent sequence is a Cauchy sequence, since
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for ε > 0,∃N1 s.t ∀n ≥ N1 : |xn − x| < ε
2
< ε, and for m > n ≥ N1 we have also:

|xm − x| < ε
2
< ε.

Let N ≥ N1, then for all n,m ≥ N we have:

‖xn − xm‖ ≤ ‖xm − x‖+ ‖x− xn‖ <
ε

2
+
ε

2
= ε.

Definition 1.1.5. A normed space X is called complete ( or Banach space), if every

Cauchy sequence (xn)n∈N is converges in X.

1.1.2 Inner Product Spaces

Let X be a vector space.

Definition 1.1.6. A function 〈.〉 : X ×X −→ K is called an inner product if

1. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 for all u, v, w ∈ X ,

2. 〈αu, v〉 = α 〈u, v〉 for u, v ∈ X and α ∈ K ,

3. 〈u, v〉 = 〈v, u〉 for u, v ∈ X ,

4. 〈u, u〉 ≥ 0 for all u ∈ X and 〈u, u〉 = 0⇔ u = 0.

Every inner product naturally induces a norm of the form

‖x‖ =
√
〈x, x〉.

Definition 1.1.7. A Hilbert space H is a complete inner product space.

Definition 1.1.8. Let X and Y be a vector spaces over K (K = R or C) and let

D(T ) be a subspace of X. We say that T : D(T ) ⊂ X −→ Y is a linear operator if
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T (x+ y) = T (x) + T (y)

T (α x) = α T (x)

When D(T ) = X, so we write T : X −→ Y .

Definition 1.1.9. Let X and Y be two normed spaces. The linear operator

T : D(T ) ⊂ X −→ Y is bounded, if there exist a real number C > 0 such that

‖Tx‖Y ≤ C ‖x‖X , ∀x ∈ D(T ). (1.3)

Definition 1.1.10. Let T : D(T ) ⊂ X −→ Y be any operator, not necessarily

linear, where D(T ) ⊂ X and X, Y are normed spaces. The operator T is continuous

at an x0 ∈ D(T ) if for every ε > 0, ∃δ > 0 such that ‖Tx − Tx0‖ < ε, ∀x ∈

D(T ) satisfying ‖x− x0‖ < δ.

T is continuous if T is continuous at every x ∈ D(T ).

Definition 1.1.11. We say that a linear operator f is a linear functional if it is

defined from X to K, K = R or C, where X is a vector space and K is a scalar

field.

Note that, a bounded linear functional f is a bounded linear oparator i.e

∃c ∈ R such that ∀x ∈ D(T ), |f(x)| ≤ c ‖x‖ .

Theorem 1.1.1. (41) (Riesz’s Theorem) If f is a bounded linear functional on

a Hilbert space H , then there exists some y ∈ H such that for every x ∈ H we

have f(x) = 〈x, y〉. Where y is uniquely determined by f and has norm ‖f‖ = ‖y‖.

Definition 1.1.12. Let H1 and H2 be two Hilbert spaces, and T a bounded linear

operator from H1 to H2. The bounded opertor T ∗ : H2 −→H1 such that 〈Tx, y〉 =



9

〈x, T ∗y〉 , ∀x ∈ H1 and y ∈ H2 is called the adjoint of T . If T = T ∗, then T is

self-adjoint.

Definition 1.1.13. Let Ω ⊆ Rn, thus Lp(Ω), 1 ≤ p < ∞ represents the linear

space of pth order of integrable functions u on Ω, and L∞(Ω) as the linear space of

essentially bounded functions.

The spaces Lp(Ω), 1 ≤ p <∞, and L∞(Ω) are Banach spaces with respect to the

norms ‖u‖Lp =
(∫

Ω
|u(x)|p dx

) 1
p <∞, and ‖u‖L∞ = esssup

x∈Ω
|u(x)| , respectively.

If p = 2, then the space L2(Ω) =
{

u :
(∫

Ω
|u|2 (x)dx

) 1
2 <∞

}
is a Hilbert space with

respect to the inner product 〈u, v〉L2 =
∫

Ω
u(x)v(x)dx.

Definition 1.1.14. A function u : [a, b] −→ R is called absolutely continuous

(Abs.C) if ∀ε > 0, ∃ δ such that for any finite set (x1, y1), (x2, y2), · · · , (xk, yk)(⊂

[a, b]) satisfies
∑k

i=1 |yi − xi| < δ then

k∑
i=1

|u(yi)− u(xi)| < ε.

1.2 Integral Equations

An equation is called an integral equation when a function that has to be deter-

mined and is unknown appears under one or more integral sing. Naturally, such an

equation can have additional terms. The usual format for integral equations is as

follows:

h(x)g(x) = f(x) + λ

∫ β(x)

α(x)

k(x, t, g(t))dt (1.4)

where:

h(x), f(x), and k(x, t, g(t)) three functions are given, k(x, t, g(x)) is called the kernel,
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α(x) and β(x) are the limits of integration, g(x) it the unknown function appears

under the integral sign, and λ a no null constant parameter in to R or C.

1.2.1 Classification of Integral Equations

Integral equations can be expressed in several ways. Fundamentally, the types

rely on the integration limits and kernel of the equation. In this part, we will talk

about different kinds of integral equations.

Fredholm integral equations

There are several scientific uses for Fredholm integral equations. Furthermore,

the construction of Fredholm integral equations from boundary value problems was

demonstrated. The greatest known contributions to integral equations and spectral

theory are those made by Erik Ivar Fredholm (1866-1927). The theory of integral

equations was developed by Swedish mathematician Fredholm, and operator theory

was largely developed as a result of his 1903 work published in Acta Mathematica.

In all Fredholm integral equations the limits of integration are finite and the upper

limit of integration b is fixed.

1. First Kind Fredholm Integral Equation:

h(x) = 0

f(x) + λ

∫ b

a

k(x, t)g(t)dt = 0 (1.5)

2. Second Kind Fredholm Integral Equation:
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h(x) = 1

g(x) = f(x) + λ

∫ b

a

k(x, t)g(t)dt (1.6)

Volterra integral equations

Numerous scientific applications, including population dynamics, epidemic spread,

and semi-conductor devices, contain Volterra integral equations. It was also demon-

strated that initial value problems may be used to create Volterra integral equa-

tions. Although Volterra began working on integral equations in 1884, he didn’t

start studying them seriously until 1896. The term ”integral equation” was first

used in 1888 by du Bois-Reymond. But Lalesco was the one who initially came up

with the term Volterra integral equation in 1908.

In all Volterra Equations, the upper limit of integration b is variable, b = x.

1. First Kind Volterra Integral Equation:

h(x) = 0

f(x) + λ

∫ x

a

k(x, t)g(t)dt = 0 (1.7)

2. Second Kind Volterra Integral Equation:

h(x) = 1

g(x) = f(x) + λ

∫ x

a

k(x, t)g(t)dt (1.8)
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Singular Integral Equations

When one or both limits of integration become infinite or when the kernel be-

comes infinite at one or more points within the range of integration, the integral

equation is called singular.

For example, the integral equations

g(x) = f(x) + λ

∫ ∞
−∞

exp−|x−t| g(t)dt (1.9)

and

f(x) =

∫ x

0

1

(x− t)α
g(t), 0 < α < 1 (1.10)

are singular equations.

1.3 Reproducing Kernel Hilbert Spaces

A linear and continuous map φ from a Hilbert space H to the real numbers is

called a functional, that is, φ is an element of the dual space H ∗. We denote the

point evaluation functional by δx, where x ∈ X.

A Dirac functional at an element x ∈ X is a functional δx ∈H such that δx(f) =

f(x). Note that δx is bounded if ∃M > 0 such that ‖δxf‖R ≤M‖f‖H , ∀f ∈H .

When we convert this theorem into Dirac evaluation functionals, we obtain that for

every δx, there is a unique vector kx in H such that δx(f) = f(x) = 〈f, kx〉H .

Definition 1.3.1. Let H be a Hilbert space of function f : X −→ K on a set X. A

function k : X ×X −→ C is a reproducting kernel of H if the following properties
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are satisfied

1. k(., x) ∈H , For every x ∈ X,

2. 〈f, k(., x)〉H = f(x), For every f ∈H and x ∈ X.

The second condition infers that the function f evaluated at x is produced by the

inner product of f with k. Also, we can write the first condition as follows: for all

x ∈ X, kx(y) = k(x, y) ∈ H , ∀y ∈ X. Thus, using the reproducing property to the

function kx at y, we get:

kx(y) = 〈kx, ky〉 , ∀x, y ∈ X.

So, ∀x ∈ X, we obtain ‖kx‖2 = 〈kx, kx〉 = k(x, x).

If a Hilbert function space H has a reproducing kernel k, then H is called a re-

producing kernel Hilbert space (RKHS). We denote the RKHS by Hk and 〈., .〉Hk
, ‖.‖Hk

are representd the norm and the inner product, respectively.

Theorem 1.3.1. If a Hilbert space H of functions defined on a set X has a re-

producing kernel, then the reproducing kernel k(x, y) is uniquely determined by the

Hilbert space H .

Theorem 1.3.2. Let H be a Hilbert functions space on X, then there is a reproduc-

ing kernel k of H if and only if for every x ∈ X, the Dirac functional δx : f −→ f(x)

is a bounded linear functional on H .

Definition 1.3.2. Let k : X ×X −→ C be a complex-valued fucntion on a set X,

then
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1. k is Hermitian if for every finite set of points y1, ...., yn ⊆ X, and any complex

numbers c1, ....., c2, we have

∞∑
i,j=1

cicj k(yi, yj) ∈ R

2. k is positive definite if
∞∑

i,j=1

cicj k(yi, yj) ≥ 0

Theorem 1.3.3. (10) The reproducing kernel k(x, y) of a reproducing kernel Hilbert

space H is a positive definite kernel.

Proof : We have

0 ≤ ‖
∑n

i=1 cikxi‖
2

= 〈
∑n

i=1 cikxi ,
∑n

i=1 cikxi〉 ,

=
∑n

i=1

∑n
j=1 cicj

〈
kxi , kxj

〉
,

=
∑n

i=1

∑n
j=1 cicjk(xi, xj).

Hence,
∑n

i=1

∑n
j=1 cicjk(xi, xj) ≥ 0.

Remark 1.3.1. Let H be a RKHS, and k(x, y) its kernel on X. Then for every

x, y ∈ X, we have

1. |k(x, y)|2 ≤ k(x, x)k(y, y),

2. for x∗ ∈ X, then the following are equivalent

• k(x∗, x∗) = 0,

• k(x∗, y) = 0, ∀y ∈ X,

• f(x∗) = 0, ∀f ∈H .
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We can clarify (1) by applying the Schwarz inequality in H , so we oget

|k(x, y)|2 = |〈kx, ky〉|2 ≤ ‖kx‖2‖ky‖2 = 〈kx, kx〉〈kyky〉 = k(x, x)k(y, y).

For (2) it follows by (1) that

|k(x∗, y)|2 ≤ k(x∗, x∗)k(y, y) = 0.

Therefore, k(x∗, x∗) = 0 is equivalent to k(x∗, y) = 0,∀y ∈ X. Moreover, by the

reproducing property k(x∗, y) = 0, ∀y ∈ X if and only if f(x∗) = 0 for every

f ∈H .

Theorem 1.3.4. Any sequence of functions (gn)n≥1 that strongly converge to a func-

tion g in Hk(x), it also converges in the point-wise sense, which means limn→∞ gn(x) =

g(x), ∀x ∈ X. Furthermore, this convergence is uniform on every subset of X on

which x −→ k(x, x) is bounded.

Proof : For x ∈ X, using the Schwwarz inequality and the reproducing property,

we have:

|g(x)− gn(x)| = |〈g , kx〉 − 〈gn , kx〉| ,

= |〈g − gn , kx〉| ,

≤ ‖g − gn‖ ‖kx‖ ,

= ‖g − gn‖ k(x, x)
1
2 .

Therefore, limn→∞ gn(x) = g(x), ∀x ∈ X.

Moreover it is clear from the above inequality that this convergence is uniform on

every subset of X on which x −→ k(x, x) is bounded
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Definition 1.3.3. Consider the non-negative integer m, and let u ∈ L2[a, b], then

the function space W m
2 [a, b] is defined as follows

W m
2 [a, b] = {u|u(i) is Abs.C, i = 1, .....,m− 1, and u(m) ∈ L2[a, b]}.

The inner product and the norm are defined respectively in the function space W m
2 [a, b]

as follows:

〈u, v〉W m
2 [a,b] :=

m−1∑
i=0

u(i)(a)v(i)(a) +

∫ b

a

u(m)(x)v(m)(x)dx, (1.11)

and

‖u‖W m
2 [a,b] = (〈u, u〉W m

2 [a,b])
1
2 , (1.12)

for all functions u(x), v(x) in W m
2 [a, b].

Theorem 1.3.5. The function space W m
2 [a, b] is a Hilbert space.

Theorem 1.3.6. The function space W 2
m[a, b] is a reproducing kernel space. That is,

∀x ∈ [a, b], ∀u(y) ∈ W m
2 [a, b], ∃ kx(y) ∈ W m

2 [a, b], y ∈ [a, b] such that 〈u(y), kx(y)〉 =

u(x), and kx(y) is called the reproducing kernel function of the space W m
2 [a, b].

1.4 Reproducing Kernel Function

Different ways to express the reproducing kernel functions in the space W m
2 [a, b]

are discussed in this section. The expressions are displayed as 2m−1 degree piecewise

polynomials. We will also talk about some related results and crucial points about

these kernel functions. Examples of such kernel functions in the space W 1
2 [a, b] are

given towards the end of this section.
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In the space W m
2 [a, b], let’s now determine the reproducing kernel function kx(y)

expression form. Assume that the reproducing kernel function of the space W m
2 [a, b]

is kx(y). Thus, by using the equations (1.11) and (1.12) for each fixed x ∈ [a, b] and

each u(y) ∈ W m
2 [a, b], we obtain 〈u(y), kx(y)〉 = u(x).y ∈ [a, b]. We obtain

〈u(y), kx(y)〉W m
2 [a,b] =

m−1∑
i=0

u(i)(a)k(i)
x (a) +

∫ b

a

u(m)(y)k(m)
x (y)dy, (1.13)

using the integration by part for the right-hand of equation (1.13) we obtain

∫ b

a

u(m)(y)k(m)
x (y)dy =

m−1∑
i=0

(−1)iu(m−i−1)(y)k(m+i)
x (y)|by=a +

∫ b

a

(−1)mu(y)k(2m)
x (y)dy.

Assume that j = m− i− 1, then the

rst term from the right side of the above formula can be rewritten as follows

m−1∑
i=0

(−1)iu(m−i−1)(y)k(m+i)
x (y)|by=a =

m−1∑
j=0

(−1)m−j−1u(j)(y)k(2m−j−1)
x (y)|by=a.

After a certain simplification, equation (1.13) becomes

〈u(y), kx(y)〉W m
2 [a,b] =

m−1∑
i=0

u(i)(a)(k(i)
x (a)− (−1)m−i−1k(2m−i−1)

x (a))

+
m−1∑
i=0

(−1)m−i−1u(i)(b)k(2m−i−1)
x (b) +

∫ b

a

(−1)mu(y)k(2m)
x (y)dy.

Since kx(y), u(y) ∈ W m
2 [a, b], it suggests that

k(i)
x (a)− (−1)m−i−1k(2m−i−1)

x (a) = 0, k(2m−i−1)
x (b) = 0, i = 0, · · · ,m− 1.
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Then 〈u(y), kx(y)〉W m
2 [a,b] =

∫ b
a
u(y)((−1)mk

(2m)
x (y))dy.

Now, let δ the dirac-delta function, for all x ∈ [a, b], if (−1)(m)k
(2m)
x (y) = δ(x − y),

then

〈u(y), kx(y)〉W m
2 [a,b] =

∫ b

a

u(y)δ(x− y)dy = u(x),

Obviously, kx(y) is the reproducing kernel of the space W m
2 [a, b], then kx(y) is

solution of the following generalized differential equations


(−1)mk

(2m)
x (y) = δ(x− y),

k
(i)
x (a)− (−1)m−i−1k

(2m−i−1)
x (a) = 0, i = 0, · · · ,m− 1 ,

k
(2m−i−1)
x (b) = 0, i = 0, · · · ,m− 1.

(1.14)

When x 6= y

(−1)mk(2m)
x (y) = 0, (1.15)

with the boundary conditions

k(i)
x (a)− (−1)m−i−1k(2m−i−1)

x (a) = 0, k(2m−i−1)
x (b) = 0, i = 1, · · · ,m− 1. (1.16)

For the equations (1.15), λ2m = 0 is the characteristic equation, and λ = 0 is their

characteristic values with 2m multiple roots, so the general solution of equation

(1.15) is as follows:

kx(y) =


∑2m−1

i=0 Pi(x)yi, y ≤ x,∑2m−1
i=0 Qiyi, y > x.

(1.17)
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Additionally, since (−1)mk2m
x (y) = δ(x− y), we have

k(i)
x (x+ 0) = k(i)

x (x− 0), i = 0, · · · , 2m− 2, (1.18)

by the integration of (−1)mk
(2m)
x (y) = δ(x− y) from x− ξ to x+ ξ with respect to

y and let ξ −→ 0, we get the jump degree of k
(2m−1)
x (y) at y = x given by

(−1)m(k(2m−1)
x (x+ 0)− k(2m−1)

x (x− 0)) = 1. (1.19)

For i = 0, 1, · · · , 2m − 1, we have 2m equations: equations (1.18) and (1.19)

provide 2m conditions for solving the cofficients Pi(x) and Qi(x) in (1.18). Addi-

tionally, 2m boundary conditions were provided by the equation (1.16). These 4m

equations, which have the variables Pi(x) and Qi(x) with unknown coefficients, are

obviously linear equations. Calculating Pi(x) and Qi(x) in equation (1.17) can be

done with the Mathematica 11.0 software.

The following corollary provides some necessary properties of the reproducing

kernel kx(y).

Corollary 1.4.1. If kx(y) is the reproducing kernel of the space W m
2 [a, b], then for

any fixed x ∈ [a, b], kx(y) is symmetric, unique, and kx(y) ≥ 0.

Proof : Using the reproducing property, we have

kx(y) = 〈kx(.), ky(.)〉 = 〈ky(.), kx(.)〉 = ky(x).

Now, let that kx(y) and k̃x(y) be all the reproducing kernel of the space W m
2 [a, b],



20

then

kx(y) = 〈kx(.), k̃y(.)〉 = 〈k̃y(.), kx(.)〉 = k̃y(x).

since k̃x(y) is symmetric, we have unique representation of kx(y). For the last

condition, we observe that

kx(x) = 〈kx(.), kx(.)〉 = ‖kx(.)‖2 ≥ 0.

We now provide some formulas for recreating kernel functions with respect to

various norms in the space W 1
2 [a, b] using the method provided in this section.

Example 1.4.1. Given the space W 1
2 [a, b] = {u : [a, b] −→ R : u(x) is Abc.C and u′(x) ∈

L2[a, b]}, in this space, the inner product and the norm are defined by

〈u, v〉W 1
2

= u(a)v(a)+

∫ b

a

u′(y)v′(y)dy, and ‖u‖W 1
2

= 〈u, u〉
1
2 , ∀u(x), v(x) ∈ W 1

2 [a, b].

To find the reproducing kernel function kx(y), we use the integration by parts, we

get

〈u, kx〉W 1
2 [a,b] = u(a)kx(a) + u(y)k′x(y)|by=a −

∫ b

a

u(y)k′′x(y)dy.

Since u(y), kx(y) ∈ W 1
2 [a, b], we get kx(a) − k′x(a) = 0 and k′x(b) = 0. So, we must

solve the BVP 
−k′′x(y) = δ(x− y),

kx(a)− k′x(a) = 0,

k′x(b) = 0.
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λ2 = 0 is characteristic equation of the differential equation −k′′x(y) = 0, moreover,

the characteristic value is λ = 0 with 2 multiple roots. So

kx(y) =


P1(x) + P2(x)y, y ≤ x,

Q1(x) +Q2(x)y, y > x.

Additionally, by using the equations (1.18) and (1.19), we obtain kx(x+0) = kx(x−

0) and k′x(x+0)−k′x(x−0) = −1. Thus, the coefficients Pi(x), and Qi(x), i = 1, 2

can be calculated by solving the following equations.

1) kx(x+ 0) = kx(x− 0),

2) k′x(x+ 0)− k′x(x− 0) = −1.

3) kx(a)− k′x(a) = 0,

4) k′x(b) = 0,

Then, the kernel function is given by

kx(y) =


y − a+ 1, y ≤ x,

x− a+ 1, y > x.

Example 1.4.2. Consider the space W 1
2 [a, b] = {u : u(x) is Abs.C, u′(x) ∈

L2[a, b] and u(a) = u(b) = 0}. The inner product and the norm in this space

are given respectively by


〈u, v〉W 1

2
=
∫ b
a
u′(y)v′(y)dy,

‖u‖ = (〈u, u〉) 1
2 ,

where u(x), v(x) ∈ W 1
2 . (1.20)
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Similarly, as in Example (1.4.1) we have

Rx(y) =


c1(x) + c2(x)y, y ≤ x ,

d1(x) + d2(x)y, y > x .

We can obtain the unknown coefficients ci(x), and di(x), i = 1, 2 by solving the

following equations

1) Rx(b) = 0,

2) Rx(a) = 0,

3) Rx(x+ 0) = Rx(x− 0),

4) R′x(x+ 0)− R′x(x− 0) = −1.

Hence, the reproducing kernel function Rx(y) is given by

Rx(y) =


(b− x)(a− y)

a− b
, y ≤ x,

(a− x)(b− y)

a− b
, y > x.

Example 1.4.3. Consider the space W 1
2 [a, b] defi

ned as the same set of functions in Example (1.4.1), and provide a new inner

product in the space W 1
2 [a, b] by 〈u, v〉W 1

2
=
∫ b
a
(u(y)v(y) + u′(y)v′(y))dy, such that

u(x), v(x) ∈ W 1
2 [a, b], and considering the same norm. Through the integration by

part of 〈u,Px〉W 1
2

=
∫ b
a
(u(y)Px(y) + u′(y)P′x(y))dy, we get

〈u,Px〉W 1
2

= u(y)P′x(y)|by=a +

∫ b

a

u(y)(Px(y)− P′′x(y))dy.

Because u(y),Px(y) ∈ W 1
2 [a, b], so P′x(a) = P′x(b) = 0. and Px(y)−P′′x(y) = δ(x−y).

The characteristic equation is 1−λ2 = 0, and the characteristic values are λ = −1, 1.
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Then

Px(y) =


a1(x)e−y + a2(x)ey, y ≤ x,

b1(x)e−y + b2(x)ey, y > x.

By solving the following equations

1) P′x(a) = 0,

2) P′x(b) = 0,

3) Px(x+ 0) = Px(x− 0),

4) P′x(x+ 0)− P′x(x− 0) = −1,

we obtain the unknown coefficients ai(x), bi(x), i = 1, 2, hence, the reproducing

kernel function is given by

Px(y) =


− e−(x+y)(e2b + e2x)(e2a + e2y)

2(e2a − e2b)
, y ≤ x,

− e−(x+y)(e2a + e2x)(e2b + e2y)

2(e2a − e2b)
, y > x .

1.5 Description of Reproducing Kernel Method

An iterative procedure for developing and calculating the general mth−order

BVP solution is shown in this section. The RKHS provides the computation formula

as well as a representation of the exact solution. The approximate solution can be

obtained by truncating the n−term of the exact solution. We take the general

mth−order BVP of the following type to give an overview of the RKHS method.

u(m)(x) + a1(x)u(m−1)(x) + · · ·+ am−1(x)u′(x) = F (x, u(x)), a ≤ x ≤ b, (1.21)
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subject to the BCs


u(i)(a) = αi, i = 0, 1, 2, · · · , r − 1,

u(i)(b) = βi, i = r, r + 1, · · · ,m− 1.

(1.22)

Where ai(x), i = 1, 2, · · · ,m − 1, are continuous real-valued functions, αi, 0 ≤ i ≤

r− 1, and βi, r ≤ i ≤ m− 1 are real constants, and u(x) is unknown function to be

determined, u(m)(x) indicates the mth derivative of u(x), and F (x, u (x)) is a linear

or nonlinear function depending on the problem discussed.

We use the RKHS method to solve the BVP (1.21) and (1.22), first of all, we

construct a reproducing kernel space W m+1
2 [a, b] in which every function satisfies the

homogeneous BC’s (1.22), and then utilize the space W 1
2 [a, b]. The inner product

and the norm in the space W m+1
2 [a, b] are given previously in equations (1.11), and

(1.12) respectively.

Let Kx(y) and Rx(y) be the reproducing kernel functions of the spaces W m+1
2 [a, b]

and W 1
2 [a, b] respectively, such that Kx(y) is a piecewise polynomial with 2m+1

degrees. Define a linear bounded differential operator L : W m+1
2 [a, b] → W 1

2 [a, b],

such that

Lu(x) = u(m)(x) + a1(x)u(m−1)(x) + · · ·+ am−1(x)u′(x),

After homogenization of the BCs (1.22), the BVP(1.21)and (1.22) can be converted

into the equivalent form as follows:

Lu = F (x, u (x)) , a ≤ x ≤ b (1.23)
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u(i)(a) = 0, i = 0, 1, 2, · · · , r − 1, u(i)(b) = 0, i = r, r + 1, · · · ,m− 1, (1.24)

where u(x) ∈ W m+1
2 [a, b] and F (x, u) ∈ W 1

2 [a, b].

Now, we construct an orthogonal function system of the space W m+1
2 [a, b].

Consider a countable dense set{xi}∞i=1 of [a, b], set ϕi(x) = Rxi(x). So, from the

properties of Rx(y), for every u (x) ∈ W 1
2 [a, b], it follows that 〈u (x) , ϕi (x)〉W 1

2 [a,b] =〈
u (x) ,Rxi(x)〉W 1

2 [a,b] = u (xi) .

Additionally, let ψi (x) = L∗ϕi (x), where L∗ is the adjoint operator of L, and

ψi(x) ∈ W m+1
2 [a, b]. According to the property of the Kx(y), we obtains

〈u(x), ψi(x)〉W m+1
2

= 〈u(x),L∗ϕi(x)〉W m+1
2

,

= 〈Lu(x), ϕi(x)〉W 1
2
,

= Lu(xi).

where i=1,2...

Lemma 1.5.1. ψi (x) can be written on the following form ψi (x) = LyKx (y) |y=xi.

Proof : From the above assumption, it is clear that

ψi(x) = L∗ϕi(x) = 〈L∗ϕi(y), kx(y)〉W m+1
2

,

= 〈ϕi(y),Lkx(y)〉W 1
2
,

= Lykx(y)|y=xi .

Lemma 1.5.2. ψi (a) = ψi (b) = 0, i = 1, 2, ...
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Proof :

ψi (a) = 〈ψi (y) ,Ka (y)〉W m+1
2

= 〈L∗ϕi (y) ,Ka (y)〉W m+1
2

= 〈ϕi (y) ,LyKa (y)〉W 1
2
.

By the symmetry of Ka (y) , we arrive at Ka (y) = Ky (a) = 0 . thus ψi (a) = 0 .

Similarly, we can obtain ψi (b) = 0 .

Theorem 1.5.1. Assume that the inverse operator L−1 in Equation (1.23) exists,

and {xi}∞i=1 is dense on [a, b] , then {ψi (x)}∞i=1 is the complete function system of

the space W m+1
2 [a, b] .

Proof : For each fixed u(x) ∈ W m+1
2 [a, b], let 〈u(x), ψi(x)〉 = 0,∀i = 1, 2, · · · , that

is

〈u(x), ψi(x)〉W m+1
2

= 〈u(x),L∗φi(x)〉W m+1
2

,

= 〈Lu(x), φi(x)〉W 1
2
,

= Lu(xi) = 0.

Note that {xi}∞i=1 is dense on [a, b], so Lu (x) = 0 . Then u (x) = 0 from the existence

of L−1 and the continuity of u (x).

We can obtained the orthonormal function system
{
ψi (x)

}∞
i=1

of the space

W m+1
2 [a, b] from Gram-Schmidt orthogonalization process of {ψi (x)}∞i=1 as follows:

ψi(x) =
i∑

k=1

βikψk(x), i = 1, 2... (1.25)
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where βik are orthogonalization coefficients and are given by

β11 =
1

‖ψ1‖
, βii =

1√
‖ψi‖2 −

∑i−1
k=1C

2
ik

, βij =
−
∑i−1

k=1Cikβkj√
‖ψi‖2 −

∑i−1
k=1 C

2
ik

j < i, (1.26)

such that Cik =
〈
ψi, ψk

〉
W m+1

2
and

{
ψi (x)

}∞
i=1

is the orthonormal system in the space

W m+1
2 [a, b].

Theorem 1.5.2. For all u(x) ∈ W m+1
2 [a, b], the series

∑∞
i=1〈u(x), ψi〉ψi(x) are

convergent in the sense of the norm of W m+1
2 [a, b]. In contrast if {xi}∞i=1 is dense

subset on [a, b], then the unique solution of the BVP (1.21) and (1.22) satisfies the

form:

u(x) =
∞∑
i=1

i∑
k=1

βikF (xk, u(xk), ψi(x)). (1.27)

Proof : According the Theorem (1.5.1), it is clear that {ψi(x)}∞i=1 is the complete

orthonormal basis of the space W m+1
2 [a, b]. Thus, u(x) can be expanded in the

Fourier series about the orthonormal system {ψi(x)}∞i=1 as u(x) =
∑∞

i=1

〈
u(x), ψi(x)

〉
ψi(x).

Additionally, the space W m+1
2 [a, b] is Hilbert space, then the series

∑∞
i=1

〈
u(x), ψi(x)

〉
ψi(x)

is convergent in the sense of the norm of W m+1
2 [a, b].

Since 〈v(x), φi(x)〉 = v(xi), ∀v(x) ∈ W 1
2 [a, b], we have

u(x) =
∑∞

i=1〈u(x), ψi(x)〉W m+1
2

ψi(x),

=
∑∞

i=1〈u(x),
∑i

k=1 βikψk(x)〉W m+1
2

ψi(x),

=
∑∞

i=1

∑i
k=1 βik〈u(x), ψk(x)〉W m+1

2
ψi(x),

=
∑∞

i=1

∑i
k=1 βik〈u(x),L∗φk(x)〉W m+1

2
ψi(x),

=
∑∞

i=1

∑i
k=1 βik〈Lu(x), φk(x)〉W 1

2
ψi(x),

=
∑∞

i=1

∑i
k=1 βik〈F (x, u(x)), φk(x)〉W 1

2
ψi(x),

=
∑∞

i=0

∑i
k=1 βikF (xk, u(xk))ψi(x).
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Remark 1.5.1. If Equation (1.21) is linear, then the analytical and the approximate

solution to Equation (1.21) can be obtained directly from Equation (1.27).

We denote the n-term approximate solution to u (x) by

un(x) =
n∑
i=1

i∑
k=1

βikF (xk, u(xk))ψi(x) (1.28)

where ψi (x) and βik are given in Equations (1.25) and (1.26) , respectively.

Remark 1.5.2. If Equation (1.21) is nonlinear: Then, the approximation solution

to Equation (1.21) can be obtained using the following iteration method.

From the Equation (1.27), the solution of Equation (1.21) can be obtained by

u (x) =
∞∑
i=1

Aiψi (x) (1.29)

where Ai =
∑i

k=1 βikF (xk, u (xk)). In fact , Ai, i = 1, 2, ..., are unknown, we

will approximate Ai using known Bi. let u (x1) = 0, so F (x1, u (x1)) is known.

Then, by a numerical computation, we set u0 (x1) = u (x1) and define the n-term

approximation to u (x) by

un (x) =
n∑
i=1

Biψi (x) (1.30)
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where the coefficients Bi, i = 1, 2, ..., n, are given as



B1 = β11F (x1, u0 (x1)) ,

u1 (x) = B1ψ1 (x) ;

B2 =
∑2

k=1 β2kF (xk, uk−1 (xk)) ,

u2 (x) = B1ψ1 (x) + B2ψ2 (x) ;

...

BN =
∑n

k=1 βnkF (xk, uk−1 (xk)) .

(1.31)

Remark 1.5.3. We can make sure that the approximation un(x) satisfies the BCs

of Equation (1.21) in the iteration process of Equation (1.29).

In fact, with the proper choosing of the initial term u0 (x), the solution to Equa-

tion (1.21) is regarded as the fixed point of the following functional:

un+1 (x) = L−1F (x, un (x))

=
∑∞

i=1

∑i
k=1 βikF (xk, un (xk))ψi (x) .

As a well known powerful tool, we have the Banach’s fixed point theorem .

Theorem 1.5.3. Assume that X is a Banach space and A : X −→ X is a nonlinear

mapping, and suppose that

‖ A [u]− A [v] ‖≤ α ‖ u− v ‖, u, v ∈ X

for some constants α < 1. Then A has a unique fixed point. Furthermore, the

sequence un+1 (x) = A [un], with an arbitrary choice of u0 ∈ X, converges to the

fixed point of A .
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According to above Theorem, for the nonlinear mapping

A [u (x)] = L−1F (x, u (x))

=
∑∞

i=1

∑i
k=1 βikF (xk, u (xk))ψi (x) ,

a sufficient condition for convergence of the present iteration method is strictly con-

traction of A. Furthermore, the sequence (1.29) converges to the fixed point of A

which is also the solution of Equation (1.21) .

However, the approximate solution uNn (x) can be obtained by taking finitely

many terms in the series representation of un (x) and

uNn (x) =
N∑
i=1

i∑
k=1

βikF (xk, un−1 (xk))ψi (x) .

Theorem 1.5.4. For every u(x) ∈ W m+1
2 [a, b], u

(i)
n (x) are uniformly convergent to

u(i)(x), i = 0,m.

Proof : For any x ∈ [a, b], we get∣∣∣u(i)
n (x)− u(i)(x)

∣∣∣ =

∣∣∣∣〈u(i)
n (x)− u(i)(x), Kx(x)

〉
W +

∣∣∣∣
=

∣∣∣∣〈un(x)− u(x), K
(i)
x (x)

〉
Wm+1

∣∣∣∣
≤

∥∥∥K(i)
x (x)

∥∥∥
Wm+1

‖un(x)− u(x)‖Wm+1

≤ Mi ‖un(x)− u(x)‖Wm+1 −→ 0, as n −→∞
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Chapter 2

First-order integro-differential

equations

Functional equations are typically the outcome of mathematical modeling of

physics and engineering problems encountered in everyday life. For instance, stochas-

tic equations, PDEs, integral and IDEs, and others. IDEs are found in many mathe-

matical formulations of physical processes, these equations arise in chemical kinetics,

fluid dynamics, and biological models.

The most integral and integrodifferential equations fall under two main classes

namely Fredholm and Volterra integro differential equations. Since IDEs are typi-

cally challenging to solve analytically, an effective approximation solution must be

found. As a result, several writers have shown a great deal of interest in them.

Using the RKHS, Yang and Cui (2006) were able to solve a class of IDEs and con-

vert them into linear equations. A novel approach for providing the analytical and

approximation solutions to the Fredholm-Volterra IDE in the RKHS was given by

the authors (Yulan, et al., 2009).

In this chapter, the RKHS method is applied to approximate the solution of a gen-

eral form of first-order IDE. It is a relatively new analytical technique.

Software packages have great capabilities for solving IDEs. Sometimes, it is difficult
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to solve them analytically so it is required to obtain an efficient approximate solu-

tion. Thus, some software mathematical packages such as Mathematica or MathCad

can be helpful in visualizing the behavior of the solutions of IDEs. Indeed, through-

out the whole thesis we used Mathematica 7.0 software package for numerical ex-

periment. In this section, based on RKHS method, we will introduce an effective

algorithm for the following nonlinear IDE


u′ = F (x, u(x)), 0 ≤ x ≤ 1;

u(0) = 0,

(2.1)

where F (x, u(x)) = f(x) +
∫ x

0
h(x, t)N(u(t)) dt ∈ W 1

2 [a, b], f(x) and h(x, t) are

known functions, N(u(x)) is a nonlinear function of u, u(x) ∈ W 1
2 [a, b] is unknown

function to be determined. We suppose that IDE (2.1) has a unique solution.

The analytical and approximate solutions are represented in terms of series in the

RKHS. The n−term approximation is obtained and is proved to converge to the

analytical solution. In the meantime, an iterative method of obtaining the solution

is presented in the RKHS. Further, implementations of the method on a nonlinear

IDE of Volterra type

u′(x) = f(x) +

∫ x

a

F (x, t, u(t), u′(t)) dt, x ∈ [a, b], (2.2)

and Fredholm type

u′(x) = f(x) +

∫ b

a

G(x, t, u(t), u′(t)) dt, x ∈ [a, b], (2.3)
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will be given in the space W 2
2 [a, b].

The aim of the next algorithm is to implement a procedure to solve IDE (2.1) based

on RKHS method that described in previous chapter.

Algorithm 1: To approximate the solution of the IDE (2.1) based on RKHS

method, there are five main steps:

Input: integer n, the functions f (x) , k1 (x, y)andk2 (x, y); the differential operator

L; the inner product 〈u(x), v(x)〉W 2
2

.

Output: Approximate solutions un(x) of the IDE (2.1).

• Stepe A: Fixed x and set x, y ∈ [0, 1];

For i = 1, 2, ..., n do stepes(1, 2 &3) ;

– stepe 1: set xi = i−1
n−1

;

– stepe 2: if y ≤ x then set K (x, y) = k1 (x, y) else set K (x, y) = k2 (x, y) ;

– stepe 3: Set ψi(x) = Ly[K(x, y)]|y=xi ;

Output the orthogonal functions system ψi(x).

• Stepe B: For i = 1, 2, ..., n;

For j = 1, 2, ..., i set Cij = 〈ψj, ψi〉W 2
2

, set β11 = 1
Sqrt(C11)

;

Output Cij and β11.

• Stepe C: For i = 2, 3, ..., n, do stepes (1◦ & 2◦) ;

– stepe 1◦: For k = 1, 2, ..., i− 1 set CCik =
∑k

m=1 βkmCim;

– stepe 2◦: For j = 1, 2, ..., i, if j 6= i;

then set βij = −(
∑i−1

k=j CCikβkj).(Cii −
∑i−1

k=1 CC
2
ik)
−1
2 ;
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else set βii = (Cii −
∑i−1

k=1 CC
2
ik)
− 1

2 ;

Output the orthogonalization coefficients βij.

• Stepe D: For i = 1, 2, ..., n set ψi(x) =
∑i

k=1 βikψi(x);

Output the orthonormal functions system ψi(x);

• Stepe E: Set u0(x1) = 0;

For i = 1, 2, ..., n do stepes(1∗, 2∗ & 3∗) ;

– stepe 1∗: Set u(xi) = ui−1(xi);

– stepe 2∗: Set Bi =
∑i

k=1 βikF(xk, uk−1(xk));

– stepe 3∗: Set ui(x) =
∑i

k=1 Bkψk(x).

The n-term approximate solution un(x) of IDE (2.1) is obtained.

2.1 Volterra Integro-Differential Equation

This section studies the RKHS method solutions for the first-order Volterra IDEs.

In the space W 2
2 [a, b], the analytical solution u(x) and the approximation solution

un(x) are represented as a series. The existence of solutions for Equation (2.2)

based on RKHS is then explained using this technique. Additionally, we provide

an iterative solution for a first-order nonlinear Volterra IDE. In terms of the norm

of W 2
2 [a, b], the approximation solution’s error is monotone decreasing. At the end

of this section, a number of numerical examples are provided to show the accuracy

and computing efficiency of the suggested method.
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Consider the following Volterra Integro-Differential Equation:


u′(x) = F (x, u(x), T u(x)), a ≤ x ≤ b;

u(a) = u0,

(2.4)

such the T u(x) =
∫ x
a

h(x, t)u(t) dt, a, b, u0 are real finite constants, h(x, t)

is known continuous function, u(x) is unknown function to be determined and

F (x, t, u(t), T u(x)) is a linear or nonlinear function depending on the problem dis-

cussed. We suppose that IDE (2.4) have a unique solution.

Now, we construct several reproducing kernels of the space

W 2
2 [a, b] = {u| u, u′ is Abs.C, u, u′, u′′ ∈ L2[a, b], u(a) = 0}

in order to solve IDE (2.4). Taking the following inner product and the norm of the

space W 2
2 [a, b]

〈u, v〉 = u(a)v(a) + u′(a)v′(a) +
∫ x
a
u′′(t)v′′(t) dt;

‖u‖W 2
2

=
√
〈u, u〉W 2

2

(2.5)

and by applying the same steps in chaper one we get the following kernel function

of the space W 2
2 [a, b]

Kx(y) =


1
6
(y − a)(2a2 − y2 + 3x(2 + y)− a(6 + 3x+ y)), y ≤ x;

1
6
(x− a)(2a2 − x2 + 3y(2 + x)− a(6 + 3y + x)), x < y,

(2.6)

It is clear that the kernel functionKx(y) is symetric that isKx(y) = Ky(x), ∀x, and y,

and Kx(y) ≥ 0, for any fixed x ∈ [a, b]. Moreover, in case we are redefining the inner

product in (2.5) as follow

〈u, v〉 = u(a)v(a) + u(b)v(b) +
∫ b
a
u′′(t)v′′(t) dt, u, v ∈ W 2

2 [a, b]
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then the space W 2
2 [a, b] is a RKHS, and its reproducing kernel is given by

Rx(y) =





−2a3(b− x)(b− y) + a2(6 + 2b3 + x3 + 3xy2

−3b(x2 + y2)) + y(−3b2x2 + bx3 − b2y2 + x

(6 + 2b3 + by2))− a((−3bx2 + x3)(b+ y) + y

(6 + 2b3 − 3b2y − by2) + x(6 + 2b3 + 3by2 + y3))


, y ≤ x



−2a3(b− y)(b− x) + a2(6 + 2b3 + y3 + 3yx2

−3b(y2 + x2)) + x(−3b2y2 + by3 − b2x2 + y

(6 + 2b3 + bx2))− a((−3by2 + y3)(b+ x) + x

(6 + 2b3 − 3b2x− bx2) + y(6 + 2b3 + 3bx2 + x3))


, y > x

2.1.1 The Analytical Solution and Theoretical Basis

The solution of equation (2.4) is given in the space W 2
2 [a, b], we define a differ-

ential operator L : W 2
2 −→ W 1

2 such that Lu(x) = u′(x). After homogenization

of the initial condition of Equation (2.4), the IDE (2.4) can be converted into the

equivalent form as follows:


Lu(x) = F (x, u(x), T u(x));

u(a) = 0,

(2.7)

It is obvious that the operator L is bounded, By reproducing property of Kx(y) and

Schwarz inequality, we obtain

|u(x)| = |〈u(y), Kx(y)〉|W 2
2

=≤ ‖Kx(y)‖W 2
2
‖u(y)‖W 2

2
≤M0 ‖u(y)‖W 2

2

|u′(x)| = |〈u(y), K ′x(y)〉|W 2
2

=≤ ‖K ′x(y)‖W 2
2
‖u(y)‖W 2

2
≤M1 ‖u(y)‖W 2

2
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Since K
(i)
x (y), i = 1, 2 is uniformly bounded about x and y, we have

∣∣u(i)(x)
∣∣ ≤

Mi ‖u(y)‖W 2
2

. Hence ‖Lu(x)‖2
W 1

2
= ‖u′(x)‖2

W 1
2

=
∫ b
a

(u′(t))2+(u′′(t))2dt ≤M ‖u(x)‖2
W 2

2
,

where M = (b− a)(M2
1 +M2

2 ).

In order to solve the equation (2.4), we applying the steps of algorithm 1.

Theorem 2.1.1. If {xi}∞i=1 is dense on [a, b], then for IDE (2.4)

1. the exact solution of Equation (2.4) could be represented by

u (x) =
∑∞

i=1

∑i
k=1 βikF (xk, u (xk) , T u (xk)) ψi (x),

2. the approximate solution:

un (x) =
∑n

i=1

∑i
k=1 βikF (xk, u (xk) , T u (xk)) ψi (x),

and u′n (x) are converging uniformly to the exact solution u (x) and its derivative

u′ (x) respectively, as n→∞:

Proof : See (5)

Theorem 2.1.2. Assume u(x) is the solution of IDE (2.4) and rn is the approximate

error of un(x). Then the error rn(x) is monotone decreasing in sense of the norm

of W 2
2 [a, b].

Proof : See (5)

2.1.2 Numerical Examples

Some numerical examples are examined to show the accuracy of the present

approach and to provide a clear overview of it. When the method’s results are com-

pared to each example’s analytical solution, they are found to be in good agreement

with each other.
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Example 2.1.1. Consider the following linear Volterra IDE

u′(x) = 1−
∫ x

0
u(t) dt, 0 ≤ x ≤ 1

u(0) = 0

The exact solution is u(x) = sin x. By using the RKHSM, and taking xi =
i− 1

n− 1
, i =

1, · · · , n with the reproducing kernel kx(y) on [0, 1], for n = 51, and n = 101, we get

the following results:

Table 2.1: Numerical results for Example 2.1.1.

x Exact Solution Absolute Error for n = 51 Absolute Error for n = 101
0. 0 0 0
0.1 0.099833 3.3278× 10−6 8.31947× 10−7

0.2 0.198669 6.62236× 10−6 1.65558× 10−6

0.3 0.295520 9.85074× 10−6 2.46267× 10−6

0.4 0.389418 1.29807× 10−5 3.24516× 10−6

0.5 0.479426 1.5981× 10−5 3.99522× 10−6

0.6 0.564642 1.88215× 10−5 4.70536× 10−6

0.7 0.644218 2.14741× 10−5 5.36849× 10−6

0.8 0.717356 2.3912× 10−5 5.97798× 10−6

0.9 0.783327 2.61111× 10−5 6.52774× 10−6

1. 0.841471 2.80492× 10−5 7.01227× 10−6

Example 2.1.2. Consider the nonlinear Volterra IDE

u′(x) = −1 +
∫ x

0
u2(t) dt, 0 ≤ x ≤ 1

u(0) = 0

The exact solution is u(x) =
1
28
x4 − x

1
21
x3 + 1

, using RKHSM, taking xi =
i− 1

n− 1
, i =

1, · · · , n, we get the following results for n = 51

Table 2.2: Numerical results for Example 2.1.2.

x Exact Solution Aprroximate solution Absolute Error Relative Error
0. 0 0 0 Indeterminate
0.1 −0.0999917 −0.0999913 3.33242× 10−7 −3.3327× 10−6

0.2 −0.199867 −0.199865 1.33047× 10−6 −6.6568× 10−6

0.3 −0.299326 −0.299323 2.97841× 10−6 −9.95038× 10−6

0.4 −0.397873 −0.397868 5.24281× 10−5 −1.31771× 10−5

0.5 −0.494822 −0.494814 8.0591× 10−6 −1.62868× 10−5

0.6 −0.58931 −0.589299 1.13246× 10−5 −1.92167× 10−5

0.7 −0.680313 −0.680298 1.48938× 10−5 −2.18926× 10−5

0.8 −0.766679 −0.76666 1.85778× 10−5 −2.42315× 10−5

0.9 −0.847159 −0.847137 2.21478× 10−5 −2.61436× 10−5

1. −0.920455 −0.920429 2.53429× 10−5 −2.7533× 10−5
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Example 2.1.3. Consider the nonlinear Volterra IDE

u′(x) = 2 sinx cosx−
∫ x

0
3 cos(x− t)u2(t) dt, 0 ≤ x ≤ 1

u(0) = 1

The exact solution is u(x) = cos(x). Using RKHS method, taking xi =
i− 1

n− 1
, i =

1, · · · , n, the following table shows the numerical results for n = 11 and we compare

its with results obtained by using other methods

Table 2.3: Numerical results for Example 2.1.3.

x Exact Sol RKHSM Method (15) BPFs method (38) Adomian’s M (39)
0. 1.000000 1.000000 1.000000 1.000000 1.000000
0.1 0.995004 0.995058 0.994555 0.995141 0.994951
0.2 0.980067 0.98028 0.979825 0.975784 0.980303
0.3 0.955336 0.955796 0.955174 0.960386 0.955685
0.4 0.921061 0.921795 0.920861 0.918443 0.921165
0.5 0.877583 0.878479 0.877921 0.862193 0.877048
0.6 0.825336 0.826005 0.825397 0.828963 0.822596
0.7 0.764842 0.764416 0.765164 0.752929 0.755333
0.8 0.696707 0.693569 0.697142 0.710418 0.667739
0.9 0.621610 0.613055 0.622057 0.617232 0.547241
1. 0.540302 0.522129 0.541102 0.566917 0.364798

2.2 Fredholm Integro-Differential Equation

In this part, the replicating kernel approach is used to analyze the numerical so-

lutions to the first-order Fredholm IDEs. It’s a somewhat recent analytical method.

The analytical solution u(x) and approximate solution un(x) are represented in the

form of series in W 2
2 [a, b].

We consider the Fredholm IDE of the following form:


u′ (x) = F (x, u (x) , T u (x)) , a ≤ x ≤ b;

u (a) = u0,

(2.8)
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such that T u(x) =
∫ b
a
h(x, t)u(t)dt, a, b and u0 are real finite constants, h(x, t)

is known continuous function, u(x) is unknown function to be determined and

F (x, t, u(t), T u(x)) is a linear or nonlinear function depending on the problem dis-

cussed. We assume that IDE (2.8) have a unique solution.

We also construct the reproducing kernel spaces W 1
2 [a, b] and W 2

2 [a, b] in a similar

way. The IDE (2.8), once the starting condition has been homogenized, may be

transformed into the corresponding form:


Lu(x) = F (x, u (x) , T u (x)) , a ≤ x ≤ b;

u(a) = 0.

(2.9)

where x ∈ [a, b] , u (x) ∈ W 2
2 [a, b] and F (x, u (x) , T u (x)) ∈ W 1

2 [a, b].

Consider the bounded linear operator L : W 2
2 [a, b] −→ W 1

2 [a, b] such that Lu (x) =

u′ (x). let
{
ψi (x)

}∞
i=1

be a complete orthonormal system in W 2
2 [a, b] and it’s given

by ψi (x) =
∑i

k=1 βikψk (x) , where βik are the coefficients of the Gram-Schmidt

orthonormalization.

The analytical solution u (x) and approximate solution un (x) are represented in the

form of series in W 2
2 [a, b]. That means, the analytical solution u (x) and approximate

solution un (x) are given respectively by :

u (x) =
∑∞

i=1

∑i
k=1 βik [F (xk, u (xk) , T u (xk))]ψi (x).

u (x) =
∑n

i=1

∑i
k=1 βik [F (xk, u (xk) , T u (xk))]ψi (x).

Moreover, Theorem (2.1.1) hold. Therefore, if Equation (2.8) is nonlinear, the ap-

proximate solution uNn (x) can be obtained by taking finitely many terms in the series
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representation of un(x), using the iterative method, and

uNn (x) =
n∑
i=1

i∑
k=1

βikF (xk, un−1(xk), T un−1(xk))ψi(x). (2.10)

2.2.1 Numerical Experiment

Several numerical examples are provided in this part to demonstrate the method’s

excellent accuracy. The outcomes of the cases demonstrate how helpful our tech-

nique is for computing the numerical solution of a nonlinear IDE.

Example 2.2.1. Consider the following nonlinear Fredholm IDE

u′(x) = 1− 1

3
x3 +

∫ 1

0
x3u2(t) dt, 0 ≤ x ≤ 1

u(0) = 0

The exact solution is u(x) = x, by using RKHS method, and taking xi =
i− 1

n− 1
, i =

1, · · ·n, we get the following results for n = 11

Table 2.4: Numerical results for Example 2.2.1.

x Exact Solution Aprroximate solution Absolute Error Relative Error
0. 0 0 0 Indeterminate
0.1 0.1 0.1 8.27199× 10−10 8.27199× 10−9

0.2 0.2 0.2 8.27199× 10−9 4.13599× 10−8

0.3 0.3 0.3 3.72239× 10−8 1.2408× 10−7

0.4 0.4 0.4 1.12499× 10−7 2.81248× 10−7

0.5 0.5 0.5 2.6884× 10−7 5.37679× 10−7

0.6 0.6 0.599999 5.50914× 10−7 9.18191× 10−7

0.7 0.7 0.699999 1.01332× 10−6 1.4476× 10−6

0.8 0.8 0.799998 1.72057× 10−6 2.15072× 10−6

0.9 0.9 0.899997 2.74713× 10−6 3.05236× 10−6

1. 1 0.999996 4.17735× 10−6 4.17735× 10−6

Example 2.2.2. Consider the linear Fredholm IDE

u′(x) = xex + ex − x+
∫ 1

0
xu(t) dt, 0 ≤ x ≤ 1

u(0) = 0
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The exact solution is u(x) = xex, by using RKHS method, and taking xi =
i− 1

n− 1
, i =

1, · · ·n, we get the following results for n = 11 and we compare its with results ob-

tained by using other methods

Table 2.5: Numerical results for Example 2.2.2.

x Exact Sol Appr sol RKHSM Method in (32) Method in (42)
0. 0.000000 0.000000 0.000000 0.000000 0.000000
0.1 0.110517 0.110366 1.50879× 10−4 1.001183× 10−2 1.34917637× 10−3

0.2 0.244281 0.244068 2.12891× 10−4 2.786514× 10−2 1.15960044× 10−3

0.3 0.404958 0.404777 1.8104× 10−4 5.087309× 10−2 5.67152531× 10−3

0.4 0.59673 0.59668 4.97023× 10−5 7.553563× 10−2 5.93105645× 10−2

0.5 0.824361 0.824548 1.8746× 10−4 9.718886× 10−2 1.32330751× 10−2

0.6 1.09327 1.09381 5.37579× 10−4 1.095517× 10−1 4.39287720× 10−2

0.7 1.40963 1.41064 1.00868× 10−3 1.041332× 10−1 1.41201624× 10−2

0.8 1.78043 1.78204 1.6098× 10−3 0.945127× 10−2 1.34514117× 10−2

0.9 2.21364 2.21599 2.3511× 10−3 1.000343× 10−2 1.32045209× 10−2

1. 2.71828 2.72153 3.244× 10−3 1.551477× 10−1 −−−
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Conclusion

Analytically solving the majority of IDEs is generally difficult. Obtaining the

approximate solutions is often necessary. Our aim is to create a new RKHS and

provide a method for expressing the reproducing kernel function Kx(y). by adding

the initial and BC’s to the space W m
2 [a, b], we also utilized a reproducing kernel and

its conjugate operator to build the complete orthonormal basis in that space.

The ability to build a global approximation over the whole solution domain and

uniform convergence are the primary characteristics of the RKHS approach. On the

basis of this, a novel numerical approach is introduced and solved analytically for a

class of IDEs in the space W m
2 [a, b]. The analytical solution u(x) and approximate

solution un(x) are represented in the form of series in the space W m
2 [a, b]. More-

over, the approximate solution and its derivatives converge uniformly to the exact

solution and its derivatives, respectively. Meanwhile, the error of the approximate

solution is monotone decreasing in the sense of the norm of W m
2 [a, b].

The experimental findings demonstrate that a high degree of precision can only be

achieved by using a small number of repetition steps. As such, the current approach

represents a precise and trustworthy analytical method for first IDEs.

As a follow-up to our study, we plan to do more research and investigations in the
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near future with the goal of solving mixed Fredholm-Volterra IDEs. A few of these

studies are highlighted here: second, third and fourth order of integro-differential

equations, mixed integro-differential equations, system of first and second-order

IDEs, integro-differential equations of fractional order.
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