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ABSTRACT

In this thesis, first and second-order linear differential equations with constant
delay or two delays were studied. The collocation method using Taylor series was
applied to provide approximate solutions for second-order neutral linear differential
equations with constant delay as well as for first-order neutral differential equations
with two constant delays. Additionally, the convergence of the approximate solution
to the exact solution was studied using Gronwall’s inequalities, and it was proven that
the method has a convergence order. Finally, numerical examples were included to

confirm the theoretical results and the convergence of the proposed algorithm.

Key Words: Neutral delay linear differential equations, collocation method,

Taylor polynomials.



RESUME

Dans ce mémoire, des équations différentielles linéaires du premier et du
second ordre avec retard constant ou deux retards ont été étudiées. La méthode de
collocation utilisant les séries de Taylor a été appliquée pour fournir des solutions
approximatives aux équations différentielles linéaires neutres du second ordre avec
retard constant ainsi qu’aux équations différentielles neutres du premier ordre avec
deux retards constants. De plus, la convergence de la solution approximative vers la
solution exacte a été étudiée en utilisant les inégalités de Gronwall, et il a été prouvé
que la méthode posséde un ordre de convergence. Enfin, des exemples numériques
ont été inclus pour confirmer les résultats théoriques et la convergence de 1’algorithme

proposé.

Mots-clés: : Equations différentielles linéaires neutres a retard; Méthode de

collocation; Polynémes de Taylor.
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INTRODUCTION

Differential equations are essential for modeling various natural and engineering
phenomena. They articulate the relationship between functions and their derivatives,
capturing the dynamics of systems over time. Linear differential equations are par-
ticularly important due to their broad applicability and the relative simplicity of their

solutions.

This thesis delves into studying first- and second-order linear differential equations
with delays. Delayed differential equations incorporating terms dependent on past
states are crucial for modeling real-world systems where time delays are inherent, such

as in population dynamics, control systems, and physiological processes.

The primary goal of this research is to develop and analyze methods for obtaining
approximate solutions to these delayed differential equations. Specifically, the collo-
cation method using Taylor series is employed to derive approximate solutions for
second-order neutral linear differential equations with a constant delay and first-order

neutral differential equations with two constant delays.

To ensure the reliability of the proposed methods, the convergence of the approxi-
mate solutions to the exact solutions is rigorously examined using Gronwall’s inequal-

ities. This study demonstrates that the methods possess a convergence order, thereby
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validating their effectiveness in solving delayed differential equations.

Numerical examples not only support theoretical findings but also demonstrate
the practical applicability of the proposed algorithms. These examples confirm the
theoretical results, illustrating the accuracy and convergence of the methods developed

in this thesis, and underline their potential to be directly applied in real-world scenarios.

Through this research, we aim to contribute to differential equations by providing
robust techniques for solving delayed differential equations, thereby enhancing the

toolkit available to researchers and practitioners in time-delay systems.

The collocation method aims to approximate the exact solution of a differential
equation by employing a suitable function from a chosen finite-dimensional space.
The approximate solution must satisfy the differential equation at specific points on the

interval, known as collocation points.
Key advantages of this method include:

- It is a direct method providing explicit formulas for the approximate solution. -
The method has a convergence order. - Solving an algebraic system is unnecessary,

making the proposed algorithm highly effective and easy to implement.

The dissertation is structured as follows:

e Chapter One: This chapter covers fundamental notions, definitions, and neces-

sary theorems that will be utilized in the subsequent chapters.

e Chapter Two: Here, we use the Taylor collocation method to establish the nu-
merical solution of neutral linear differential equations with a constant delay. The
convergence of the approximate solution to the exact solution is proven. Numer-

ical examples support theoretical results.

e Chapter Three: We present the Taylor collocation method based on Taylor poly-
nomials. We construct a collocation solution in a piecewise polynomial spline

space for first-order linear differential equations with two constant delays.



CHAPTER 1

GENERALS AND NOTIONS
FUNDAMENTALS



Generals and notions fundamentals

1.1 Taylor series

The Taylor series is a representation of a function as an infinite sum of terms calcu-
lated from the values of its derivatives at a single point. If a function f is infinitely

differentiable at a point a, the Taylor series of f at a is given by:

()
f(x)—Zf D -ay

n=0

Here:
- f™(a) is the n-th derivative of f evaluated at the point a.
- n! (n factorial) is the product of all positive integers up to .

- (x — a)" is the n-th power of (x —a).

If the Taylor series is centered at a = 0, it is also called a Maclaurin series:

()
-3 L0

Examples of the Taylor series

1. Taylor series for ¢*

The exponential function ¢* has the same value for all its derivatives, i.e., f"(x) = ¢*.

Therefore, the Taylor series for e* centered at x = 0 (Maclaurin series) is:
y

This series converges for all x.



Generals and notions fundamentals

2. Taylor series for sin(x)

The sine function sin(x) has derivatives that cycle every four terms: sin(x), cos(x),

—sin(x), — cos(x). The Maclaurin series for sin(x) is:

- (_1)n x2n+l

sin(x) = — (20 + D)

This series converges for all x.

3. Taylor series for cos(x)

Similarly, the cosine function cos(x) has derivatives that cycle every four terms: cos(x),

—sin(x), — cos(x), sin(x). The Maclaurin series for cos(x) is:

cos(x) = Z ((;n; '

This series also converges for all x.

4. Taylor series for In(1 + x)

The natural logarithm function In(1 + x) can be represented by a Taylor series centered

at x = 0 (Maclaurin series) for -1 < x < 1:

In(1 +x) = i (=1 x"

n
n=1

This series converges for |x| < 1.
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1.2 Differential equations

A differential equation is a mathematical equation that relates a function with its deriva-
tives. Differential equations describe the rate of change of a quantity and are used to
model various physical, biological, and engineering systems. There are several types
of differential equations, including ordinary differential equations (ODEs) and partial

differential equations (PDEs).

Ordinary differential equations (ODEs)

An ordinary differential equation (ODE) involves functions of a single variable and

their derivatives. It can be expressed in the general form:

F (x, vy, y, ..., y(”)) =0

where y = y(x) is the unknown function, y’,y”, ...,y are the derivatives of y with

respect to x, and F is a given function.

Partial differential equations (PDEs)

A partial differential equation (PDE) involves functions of multiple variables and their

partial derivatives. It can be expressed in the general form:

Flxi,x2,...,%m,

y oL duou Pu Fu
"ox)" dx,” T Oy X2 dxidxy B

where u = u(xy, x,, ..., x,) is the unknown function, and % and higher-order partial

derivatives are the partial derivatives of u with respect to the variables xi, xy, ..., X.

8
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Examples

Example 1: First-Order ODE

A simple first-order ordinary differential equation is given by:

dy

E ty= 0
The solution to this equation is:

y(x) = Ce™

where C is a constant determined by initial conditions.

Example 2: Second-Order ODE

A second-order ordinary differential equation is given by:

The general solution to this equation is:

y(x) = Cie* + Coe™

where C; and C; are constants determined by initial conditions.

9
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Example 3:

A second-order ordinary differential equation is given by :

the particular solution can have the form:

yp(x) = Ae™
The general solution to this equation is:

1
y(x) = Cre* + Cre™ + 563”‘

Example 4: Partial differential equation

A common partial differential equation is the heat equation:

Ju u
—_— = 0—
ot ox?
where u = u(x, t) represents the temperature distribution over time, and « is the

thermal diffusivity constant.

1.3 Differential equations with delay

Differential equations with delay, also known as delay differential equations (DDEs),
are a type of differential equation in which the derivative of the unknown function at
a certain time is given in terms of the values of the function at previous times. These
equations are particularly useful in modeling real-world systems where time delays are

inherent, such as population dynamics, control systems, and physiological processes.

10
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General form of delay differential equations

A general first-order delay differential equation can be written as:

d
% = f(ty®), y(t — 1), y(t — 12), ..., y(t — 1a))

where:

e y(t) is the unknown function.
® T1,Ty,...,T, are the delay times.

e fisagiven function that describes the relationship between the current state and

the delayed states.

1.3.1 Types of delay differential equations
1. Constant delay

In this type, the delays 71, 72, ..., T, are constants. An example is:

dy(t)
—r S +byt-1)

where 2 and b are constants, and 7 is a constant delay.

2. Time-varying delay

In this type, the delays 71, 72, ..., T, are functions of time. An example is:

d
VD~ ay(o) + byte — 2

where 7(f) is a time-dependent delay.

11
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3. Neutral delay differential equations

In this type, the delays appear in the derivative terms. An example is:

dy(t
% = ay(t) + by'(t — 1)

where i/ (t — 7) is the derivative of y at t — 7.

1.3.2 Application of delay differential equations
Example 1: Population dynamics

A simple model of population dynamics with a constant delay is given by:

dP(t)
Tdar

= rP(t) (1 - P(tlz T))

where:

P(t) is the population at time ¢.

r is the growth rate.

K is the carrying capacity.

7 is the delay representing the time taken for the population to react to changes

in size.
Example 2: Control systems
A simple control system with a constant delay can be described by:

dx(t) B B
i kx(t) + u(t — 1)

12
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where:

x(t) is the state of the system at time .

e kis a constant.

u(t) is the control input.

7 is the delay in the control input.

1.4 Piecewise polynomial spaces

Definition 1.4.1 For a given mesh Ily the piecewise polynomial space Sf) (Iy) with u >

0,-1<d <y, is given by
S¥(Iy) = fv € C(IT) : vl,, € M (0 < < N = 1)},

Here, I1,, denotes the space of (real) polynomials of degree not exceeding u.

It is readily verified that Sifl)(HN) is a (real) linear vector space whose dimension is given by

dimSY(Iy) = N(u —d) +d + 1.

Piecewise polynomial spaces S,(;)(HN)

We suppose that T = rt, where r € {1,2,3,...}. Let Ily be a uniform partition of the
interval I = [0, T] defined by t =it+nh,n=0,1,.,N,i=0,1,.,r—1, where the stepsize
is given by h = . Define the subintervals o =[t; t;H),n =0,1,.,N-1,i=0,1,..,r-1

and o', = [t11, £171]. Moreover, denote by 7, the set of all real polynomials of degree

not exceeding m, with m > 2. We define the real polynomial spline space of degree m

as follows:

SS(Iy) = {u e C'(L,R) : u, = uly; € Mu,n=0,..,N-1,i=0,1,.,r—1}.

13
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This is the space of piecewise polynomials of degree (at most) m. Its dimension is

rNm—-1)+2

Piecewise polynomial spaces S,(S)(HN)

We suppose that T = (r+1)7,, wherer € {1, 2,3, ...}. Let I'ly be a uniform partition of the
interval I = [1,, T] defined by t =@G@+1)t+nh,n=0,1,.,N,i=0,1,.,r— 1, where the

step-size is given by h = #

11 — by and assume that h = - = % with N and N; positive

and integer. Define the subintervals ¢/, = [#,;¢ [[n=0,1,.,N—-1,i=0,1,.,r—2and
ot = [£51, £ 1]. Moreover, denote by ,, the set of all real polynomials of degree not

exceeding m. We define the real polynomial spline space of degree m — 1 as follows:
SV(y) = fu e CLR) : v, = ul,; €Mun=0,..,N-1,i=0,1,.,r—1} (1.4.1)

This is the space of piecewise polynomials of degree (at most) m. Its dimension is rNm,

1.5 Taylor collocation method

The Taylor collocation method is a numerical technique used to approximate solutions
to differential equations, particularly delay differential equations. This method com-
bines the principles of Taylor series expansion and collocation techniques to construct
an approximate solution that satisfies the differential equation at specific points within

the domain.

Principles of the Taylor Collocation Method

The main idea of the Taylor collocation method is to approximate the solution of a
differential equation by a Taylor series expansion and ensure that this approximation

satisfies the differential equation at a set of collocation points.

14
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Step-by-Step Procedure

1. Taylor Series Expansion: Assume the approximate solution y(t) can be expressed as

a finite Taylor series around a point ¢:

N o)t
y = Y Ly

n!
n=0

where y(ty) is the n-th derivative of y evaluated at .

2. Collocation Points: Choose a set of collocation points ty,t,,. .., ty within the

domain of interest.
3. differentiate the problem equation:

By differentiate problem equation j-times, we get, for j = 0,1,..., N — 1 the Taylor

series expansion and enforce the equation to be satisfied at each collocation point ¢;.
Advantages of the Taylor Collocation Method
The Taylor collocation method offers several advantages:

e Direct Method: It provides explicit formulas for the approximate solution.

e Convergence Order: The method has a known convergence order, which ensures

the accuracy of the approximation.

e Simplicity: There is no need to solve an algebraic system, making the algorithm
straightforward and easy to implement.
Example

Consider a first-order delay differential equation:

15
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dy(t
% = -y +y(t—1)

Using the Taylor collocation method, we approximate y(t) around ¢ as:

y” (to)

o (t—to)* +...+

y(t) = y(to) + v (fo)(t — to) +

Choose collocation points t, t5, . . ., tp and By differentiate problem equation j-times,
we get, for j = 0,1,..., N — 1 the Taylor series expansion, yielding the approximate

solution.

1.6 Comparison theorems

The following three lemmas will be used in the next chapter.

Lemma 1.6.1 (Discrete Gronwall-type inequality [[I]) Let {kj};?zo be a given non-negative se-

quence and the sequence {e,} satisfies g < po and

n—1
Snﬁpo-i'ZkiSi, n>1,
i=0

with py > 0. Then &, can be bounded by

n—

1
k]', n>1.
0

]:

& < Po exp[

Lemma 1.6.2 (Discrete Gronwall-type inequality [9]) If {fu}nz0, {Gntnz0 and {e,}n=0 are non-

negative sequences and

n-1
Ensfn‘i'zgigi/ 7’120,
i=0

16
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Then,
n—1 n—1
en < fu + Zﬁgiexp[ng], n>0.
i=0 k=0

Lemma 1.6.3 [[0)] Assume that the sequence {¢,},>0 of nonnegative numbers satisfies
n-1
En SAen_1+BZ€i+K, n>1,
i=0
where A, B and K are nonnegative constants, then

& " " K
R [(Ro = DRY+ (1= ROR{]+ o=

&y <

where

R, = (1+A+B— V(1 - AY + B>+ 2AB +2B) /2,

R, = (1+A+B++/(1-A)?+B+2AB+2B)/2,

therefore, 0 < Ry <1 < R,.

17



CHAPTER 2

NUMERICAL SOLUTION OF SECOND
ORDER DELAY DIFFERENTIAL
EQUATIONS USING TAYLOR
COLLOCATION METHOD
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NUMERICAL SOLUTION OF SECOND ORDER DDEs

2.1 Introduction

In this chapter, we consider the second order linear differential equations with constant

delay 7 > 0 of the form:

xX"(t) = g(t) + A1 (Dx(t) + Ax(t)x'(£) + Ba(D)x(t = 7) + Bo(B)x'(E — 1), (21.1)

for t € [0, T] and x(t) = ®(¢) for t € [-7,0]. In the following we assume that the given

functions g, A1, Az, By, B, and @ are sufficiently smooth. Furthermore, we suppose that
@”(0) = g(0) + A1(0)D(0) + A2(0)®’(0) + B1(0)D(—17) + B2(0)D'(—7)

Existence and uniqueness results for (T.T) can be easily proved by comparison with
the theory for differential equations (see for examplel[ll, 2]).

This method can be used to obtain numerical solutions of second order linear delay
differential equations (1), second order Initial Value Problems of ordinary differen-
tial equations (B; = B, = 0 in ().

Delay differential equations are widely used for modeling various problems from me-
chanics, control theory, biology, etc. (cf. [4, B, B]) and a detailed discussion of various
classes of DDEs can be found in Chapters 1 and 2 of the monograph [£].

There have been a lot of papers concerning numerical methods for delay differential
equations (cf. [0, I, 8]). For instance, Runge-Kutta methods for delay differential

equations have been investigated by Koto [7].

2.2 Description of the Method

We suppose that T = rt, where r € {1,2,3,...}. Let Ily be a uniform partition of the
interval I = [0, T] defined by tfi =it+nh,n=0,1,.,N,i=0,1,.,r—1, where the stepsize

19
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is given by I = £. Define the subintervals o/, = [t;;# ),n=0,1,.,N-1,i=0,1,.,r-1

and o', = [t11, £171]. Moreover, denote by 7, the set of all real polynomials of degree
not exceeding m, with m > 2. We define the real polynomial spline space of degree m

as follows:
Sy = fue C',R) : u, =ul,; €Muyn=0,..,N-1,i=0,1,.,r—1}

This is the space of piecewise polynomials of degree (at most) m. Its dimension is
rN(m — 1) + 2, i.e., the same as the total number of the coefficients of the polynomials
u,n=0,.,N-1,i=0,1,.,r — 1. To find these coefficients, we use Taylor polynomial

on each subinterval.

2.2.1 Approximate solution in the interval o}

First, we approximate x in the interval o)) by the polynomial,

2 x0(0) .
Y = f Vi ted, 2.2.1)

0
U (t)
=

where x(0),j = 0,..,m is the exact value of x') at 0 and the function x must be

differentiable around the zero point.

By differentiate equation (1) j-times, we get,

i,
20y =g (0) + Z (; ) (A(lf—l)(o)x(l)(()) + A(zj—l)(o)x(lﬂ)(()))
1=0
i

forj=0,1,..,m—2,x(0) = ®0) and x’(0) = ©’(0).

20
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2.2.2 Approximate solution in the interval o)

Second, for x to be approximated by u? (n € {1,2, ..., N — 1}) on the interval 09, x must

be approximated by 1, (0 < k < 1) on each interval o}, such that

m A(])
10 (t) :Z Byt (t—1£; ted, (2.2.2)
j=0

where i1, is the exact solution of the differential equation:

07(H) = g(t) + Ar(Do(t) + As(D1, (1) + B1(HD(t — ) + Boa(DP'( — 1), (2.2.3)

for t € ¢ such that i, o(t9) = ud_, (£)) and @/, ,(£3) = u>_ (9).
Now, for all j =0, 1,...,m — 2, the formula for computing the values of the coefficients
(] ) (to) can be obtained by employing similar arguments to those used for obtaining the

Values of x)(0) above, we get the following formula:

A(]+2)(t0) — (] (tO) +Z( ) A(] l)(tO) ~(I) (tO) +A(] l)(tO)A(lJrl)(tO))
(2.2.4)

j .
= Z( ) (B (1)@t - 7) + BY ()t - 1)),

=0

for j = 0,...,m — 2 such that @,0(t)) = u)_ (t3) and & ((t9) = u?_ (£)).

2.2.3 Approximate solution in the interval o

Third, for x to be approximated by ug (p €fl,2,..,r—1} ) on the interval og, x must be

approximated by u,{ (0<k<N-1and0 <j<p)oneachinterval oi such that,

THOEDY -t ted), (2.2.5)
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where 1, is the exact solution of the differential equation:

ﬁé’,p(t) = g(t) + Ar()ilo ,(t) + Az(t)ﬁ(’),p(t) + Bi(t)flopa(t — T) + Bz(t)ﬁ(),p_l(t -1), (22.6)

for t € o}, such that g, (i) = ul, tp) and 7l (tp) = up_ll(tp).
»

~(f) (

The coefficients 7 tp) is given by the followmg formula:

i,
A(]+2)(tl7 (]) tp) + Z( ) A(] l)(tp)ﬁ(l) (tP) +A(] l)(tp) A(l+1)(tp))
=0

: (2.2.7)

j .
+ Z( ) B(] l)(tp)Ag;D](tp 1) +B(] l)(t’g)Ag;l)l(tg_l)),
1=0

forj=0,...m- Zuop(t’])—u t) and i} (tp)—u (tp)

Finally, for x to be approximated by u, (n € {1,..,N -1} and p € {1,2,...,r — 1} ) on the
interval o}, x must be approximated by u,{ (0<k<nand0 < j<p)oneach interval a]{

such that,

uh(t) = - (t-ty, ted, (2.2.8)
=0 7

where ., is the exact solution of the differential equation:

7,(1) = g(t) + Av(Oilp(E) + Ao, (£) + By(D)ilpa (t = 7T) + Bo(B)il], ,(t— 1),  (2.29)

for t € of, i,y (th) = ul_ (th) and 0, () = v, (£)).

The coefficients u(] ) »(th) is given by the following formula:

i
A(]+2) ) + Z( ) ] l)(t (t )+A(] l)(t )u(l+1 A ))
=0

: (2.2.10)

j .
- Z( ) (BY(Eal 2 ) + By (eyal P ),

1=0

for j=0,..,m=2,,,(th) = u_ () and @, (£,) = ul,_ (t}).

22
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2.3 Boundedness of the approximate polynomial’s coeffi-

cients
Before starting the main result, we need the following lemma:

Lemma 2.3.1 Let g, Ay, Ay, B1, B, be m —1 times continuously differentiable and ® be m times
continuously differentiable on their respective domains. Then, there exists a positive number

a(m) such that foralln =0,1,..,N—-1,p=0,1,..,r=1,and j = 0,1, ...,m + 1, we have,
10wy < ()
provided that h is sufficiently small, where 1loo(t) = x(t) for t € o).

Proof. The proof is split into two steps.

Claim 1.There exists a positive constant a;(m) such that IIﬁZ)OIILm(Gg) < ai(m) for all
n=0,1,.,N-1land j=0,1,..,m+1.

Let ai = IIftff)olle(gg)f wehave forall j=0,1,..,.m+1,

a) < max{|[x?|| w0y, j = 0,1, ..., m + 1} = al(m). (23.1)
On the other hand, for n > 1, by differentiating equation (Z223) j-times, we obtain for
allj=1,..,m-1,

J
j+2
a,” <ci+ LZ (aﬁl + aifl)
=0

i (2.3.2)
<a+ 2L Y,
k=0
by
where
_ j G-D . 1.7 — o
L = max {(l) L, Lo j=1,..m-=11=0,..,j,v= 0,1},
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j

1 .
RO (;)Mé"‘”(t)@(”w(t -7

v=0 [=0

€1 =max ,]=0,..,.m—=1¢,

L=(a)

Now, for each fixed n > 1, we consider the sequence y; = a£+2 forj=0,..m-1,

then, from (Z32), the sequence (y;) satisfies for j = 1,...,m — 1
yi<ca+ bi(ay) + ay),
and for j = 0, we get from (Z23),

Yo =a’ < ¢+ Lad + La}

<o+ by(@ +ab).

Hence, by Lemma L&, forall j =0, ..., m -1

y; < crexp(bi(m — 1)) + by exp(bi(m — 1))(a)) + a;)
C2 b, (2.3.3)

<+ bZ(ﬂg + 11111)

m+1 .

Next, we consider the sequence z, = }| a, forn=0,..,N-1.
j=2

Then, from (Z33), z, satisfies forn =1,..., N — 1,

m—1
Zy= ) Y; < mey + mby (a4 +a,).
=0 —— Y——
cl b3

Moreover, from (Z37), we have zy < ma%(m) = cg.

Let c3 = max(cj, c3), we deduce, by Lemma [C672, that foralln = 0,.., N - 1,

Z, < C3+ bg(ag + aﬂl)
(2.3.4)
<y + b3(a +al),
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where ¢, is positive number. On the other hand, by integrating 4/, in (ZZ3) from t% to

t € 09, we get,
ay < |u% ()] + ch + Lha® + Lha),
m .
<a _,+h Z al_ + ch+2Lh(a) + a,) (2.3.5)
=

<al | +hz,q +ch+bh(a) +ay).

Now, by integrating twice #//, in (ZZ3) from f) to t € o), we obtain,

a?l < |u2_1(t2)| + h|u2'_1(t2)| + ch® + Lhzag + Lhzai

m

m
<a  +h Z al  +h [ai1 +h Z afql] +ch? + by h(a) + a))
=2

=1

n-1
< ”2—1 + Zha;_1 + (h+ h*)z,q + ch® + blhz(ag + ai) + h3d Z(u? + a;).
r=0

Using (Z3:3), it follows that,
a < (1+ (n+ Wbs) a)_, + (2 + (h + 1?)bs)al_, + hce

(2.3.6)
+bih? (@ +al).

Where c; is positive number, we deduce, from (Z335) and (Z36) that,

a+ay < (1+2(1+bs)h+ bsh®) (@, +a ) +h(cs + ce)
—_———— —_———
by c7

+by(h + W)@ +al).

Hence, there exists h; > 0 such that for all &2 € (0, 1],

hC7
T-b(h+ 1)

1+ byh + bsh?
@ +al) < w a  +a )+
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Then, by Lemma [C63, we obtain for alln € {0,1,...,N =1},

(ao + al) hC7[Rn - Ri’l]
0 4ql <07 VrR _1)R" 4 (1 -R,)R" 2
R T 3y (R R
2ai(m) hes[RY — R
< Ry = DR! + (1 = Ry)R"
B T o R )
where
1+b4h+b3h2
Ry=-—— 2250
1—by(h+ 2)
R, =1,

such that C is a positive number.

Since, 0 < R; <1 < Ry, then for all i € (0, 1], we have,
RI<1<RI<RY=Ri,n=0,1,.,N-1.
This implies that for all & € (0, 1], there exists a3(m) > 0 such that,
a)+a, <aj(m),n=0,1,..,N - 1.
Hence, from (Z34), that forall j =2,3,...,m+1landn=0,1,..,N -1,
@) < 2, < ¢4 + badP(m) + 1dyo’(m) = (m).

Then, the first step is completed by setting,

a1 (m) = max(a3(m), a3 (m)).

(2.3.7)

Claim 2. There exists a positive constant a(m) such that IIQL{LIILm(Gﬁ) < a(m) for all

n=01,.,N-1,j=0,1,..,m+landp=1,..,r-1.

Let afw = ||ﬁ§7];)p||Loc(gﬁ) and ¢, = max{a{p,j =0,..,m+1,i=0,..,N—-1}forp=0,..,r-1.

Similarly to Claim 1, by differentiating equation (ZZZ6) j-times, we obtain for all j =
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2,.m+1,
j-1

J !
@y, < €1+ dq Zao,p'

1=0
where ¢;, by, d; are positive numbers.

. . p p
On the other hand, by integrating (Z2Z6) from t; to t € 0;,, we get,
a(l),p <+ hdzag,p,

where ¢, by, d, are positive numbers.

. . . p p .
Then, by integrating twice (Z228) from ¢ to t € o;), we obtain,
ag,]ﬂ <c3+ hd3ﬂ8’p,

where c3, b3, d3 are positive numbers.
Hence, there exists h, € (0, h;] and positive numbers cs, b, d4 such that for all i € (0, h,],

we have
j-1

j !
@, <cyt+dy Z 0,

1=0
forall j €{0,1,...,m+1}.
Then, by Lemma [C&T, for all j € {0, 1, ..., m + 1}

aé,p < cyexp(da(m + 1)),

1

‘s

Hence, for c5 = max(a(m), Cé), wegetforallp=0,1,..,r—1,j€1{0,1,..,m+ 1}
< e (2.3.8)

Next, by differentiating (ZZ29) j-times, we obtainforalln =1,..,N-land j =2,..,m+1,

j-1
Ce + €4 a
1=0

I’lp— n,p’
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where cg, e are positive numbers.

Then, by Lemma [C&T, for all j € {2,...,m + 1}

aﬁ,p < ce exp(mee) + €5 exp(me(,)(tlglp + ai/P)'

c7 ey

m+1 .
Consider the sequence y, = }, ‘11]1,10' n=0,1,..,N -1, hence, by the above inequality,
j=2

the sequence (y,) satisfies foralln =1,..,N -1,

p-1 n—-1 n—-1
, 0 1 0 1 ‘
Yn < mc; + mby ; &i+ mey (ay, +a,,)+ mdy h;(ai,p +a;,)+ mdy hZZ:O: Yi.
c by es ds ds
(2.3.9)
Moreover, from (Z238), we obtain,
Yo < mcs . (2.3.10)
——
G
Let cs = max{cg, c3}
Then, from (Z39) and (Z310), we get foralln =0,1,...,N -1,
p—-1 n—1 n—1
Yo Sy +by ) &+ es(@), +ab,)+dsh ) (@, +al) +dsh ) v,
1:0 l=0 l=0
hence, by Lemma [CA72, we obtain
p-1 n-1
Yn < Co + by Z &i+es(a,, +a,,) + hdg Z(agp +a,)- (2.3.11)
i=0 i=0

Where cy, by, dy are positive numbers. On the other hand, by integrating (Z229) from t
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tot € of, we get

p-1 n-1 m
1 ' 2 0 1 2 I
Ay p < |Mfl_1(tfl)| + hcyo + by Z i+ h(eg + L)an,p + hLan,p + dyoh Z ai,p
j i=0 I=0

m+1

apth Y al | the +h b10251+h(e9+L)( L)
j=2 i=0
R —
Yn-1

—_

n-1 m+

+ dyoh? Z @), +al,) +dioh Y Y dl,

i=0 [=2

Yi

foralln =1, .., N -1, where cy, byo, d10, €9 are positive numbers.

Which implies, by using (22311, that

p-1
1 0 1
an,p < I’l@gﬂn_l,p + (1 + heS)ﬂn_Lp + hC11 + hbll Z &

i=0 (2.3.12)
n—1
+ h(€9 + L)(aglp + ail,p) + h2d11 Z(agp + a%p)/

i=0

where c13, b1y, dq; are positive numbers. Moreover, by integrating twice (Z29) from th

tot € of, we get

p-1
’ o 2
agrp < (ED+ Bl (E)] + Bcin + by Z &+ h(ew + L)ﬂg,p
n-1 m
+WPLal, + Wdp Y Y al,
i=0 1=0

m+1

p-1
0 1 2 j 2 3
<al,,+2hal - ()Y al | e + Hbn Y &
j=2 =

—_———
Yn-1
n—-1 n—1 m+1
+ h2(€10 + L)(aglp + a,lw) + h3d12 Z(ﬂ + azp) + ]’l3d12 Z Z zp’

i=0 [=2
~——

Yi
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foralln =1, .., N — 1, where c1,, b1, d12, €19 are positive numbers.

Which implies, by using (Z311), that

a° < ((h+h)es + 1)a2_1,p + h+ (h+ h)eg)al .+ hers

np — n—l,p
p—-1 n-1 (2313)
+hbis Y &+ W ew + A)ah, +a),) +diy Y (@, +al,),
i=0 i=0

where c13, b13, d13 are positive numbers. We deduce, from (Z312) and (ZZ313), that

ay, +ay,, < ((2h + h*)es + 1)‘12_1,;7 + (hPes + h2(eg + 1))al

n-1,p
——
€11
p-1
+h(ci1 + c13) +h (b1 + byz) Z &+ (h(eo + L) +h* (e10 + L))(ﬂg,p + ai,p)
— S— =0 ~——— ~————
C14 b1y e12 e13

n-1
+ ]’lz (dn + d13) Z(ﬂgp + a},p)
"0
dig
p-1
< (U+enh +ed®)@,, +at )+ hew +hbi Y &

i=0

n—1
+ (enph + 613’12)(”2,;7 + a111,p) + Wd1y Z(agp + ”},p)’
i=0

hence, there exists h3 € (0, h,] such that for all i € (0, i3], we have

1 1+ ellh + 88]’12 0

0 a

a,, +a

-1
Lyl Wi + b X2 &)
= a
P P 1- €12h — 613]’12

+
n=Lp 1- 612]1 - 613h2

-1
W2dyy \
0 1
* 1 — epph — ey3h? Z(ai’p * ai’p)'

i=0

n-1,p

Then, by Lemma [CA3, we get for alln € {0,1,..., N — 1}

0 1
ao,p + aO,P
A +a <L
p mp = R2 _Rl

L e +bu Y &)
(R2 — R1)(1 — exh — ey3h?)

[(Rz = DR, + (1 = Ry)Ry]

[R; = R,
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where
— 2
Ri=[1+ 1+ (er1 = VO + (es + dig)h /2,
1- 612]’1 - 613]’12
2
R, =1+ 1+ (611 + \/Z)I’l + (68 + d14)h /2,
1- 612h - 613]’12
such that,

C=en + e + 4diy + 2diu(en — er)h + (dra(1 + 2(es — e13)) + ex3 + eg)>.
Hence, similar as in (Z37), there exist R > 0 such that for all h € (0, 3], we have
p-1
0

Ay + @y, < (@0, + g, )R + (14 + bia Z &R,
i=0

which implies, by using(Z338), that foralln € {0,1,..,N-1}and p € {0,1, ...,r = 1},

p—-1
ﬂg/p + ()l,lqlp < (2C5 + C14)R + (2b5 + b14)R Z &
i=0

€15 b5
Then, from (Z311), we get foralln € {0,1,...,N-1},j € {2,..,m+1}andp € {0,1, ..., r—1},

p-1
y,, < Yn < (Co + €gC15 + Tdocrs) + (by + egbys + Tdobis) Z &
i=0

1 1
‘16 big

Let ¢ = max(cis, ¢}) and by = max(bys, by,).

We deduce that, forallp € {0,1, ...,r = 1},

p-1
Ep < 16+ bis Z &
i=0

Then, by Lemma 6T, we get for all p € {0,1,..,r =1}, n € {0,1,..,N -1} and j €
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{0,1,..,m+1},

a{;,p < & < cigexp(rbig) = a(m).

This completes the proof of Lemma P31, m

2.4 Order of convergence of the method

The following theorem describes the order of convergence of the method.

Theorem 2.4.1 Let g, A1, Ay, B1, B, be m—1 times continuously differentiable and @ be m times
continuously differentiable on their respective domains. Then equations (Z22T), ..., (Z2Z10)
define a unique approximation u € SW(IIy), and the resulting error function e :== x —u
satisfies:

llel|zeom < Ch™ !,

where C is a finite constant independent of h.

Proof. The proof is split into two steps.

Claim 1. There exists a constant C independent of & such that,
lle° o0y < Coh™ 1,

where the error ¢° = e|,0 which is defined on 69, by €°(t) = €2(t) = x(t) — ud(t) for all
ne{0,1,..,N-1}L
We define ¢’ := x’ — u’ on 69, by &% (t) = x'(t) — u% () for all n € {0,1, ..., N — 1}.

Lett e 08, we have from Lemma 237, for sufficiently small £,

[ Do 0) a(m)
0 0 0/ 3 m+1 m+1
D = Ix(t) - )| €« —————2& < h",
leg (D) = |x(£) — uy(H)] < (m+1)! = (m+1)!
and (m+1)
/ ) [l oo g0) a(m)
e§ ()] = ' (8) = up ()] < —————h" < ——Zh"
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In general forn =1,2,...,N — 1 and t € 0%, we have from (IZ23),

X" () = ity (8) = Ar(B)(x(E) = @ o(D)) + A2(E)(X'(E) = 1 5(£)),
this implies that,

74 24

I = 2 glligery < L (Il = tholliomugy + 11 = ) gllioeny)

where L = max {, A1l ||A2||L°°(I)}-

On the other hand, for t € 0%, we have

X () — 0 (F) = X'(12) — 2 (10) + f (2"(5) — 0y (6))ds

t
)+ f ("(5) — (),
tVl

and

(2.4.1)

X(E) — fyo(E) = 3(E0) — (1) + (£ — )@ () — (1)) + f f W) — 0y (P)drds

! S
=) (1) +(t—t)e) (19 + ﬁ ﬁ (" (r) — @, o(r))drds,
0 Jio
it follows that,
lIx" — ﬁ;,OHLw(ag) < ||e?1/_]||L°°(US’_1) + hllx” - a;q/,()”[f"’(gg)l
and

4

~ 0 0’ 2
llx — ”n,O”Loo(gg) < ||€n_1||Lw(g2_l) + h”en—lllL‘”(ag_l) + he||lx” — Mn,0||Lm(02).
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Hence, by using (ZZ22) and (Z43), we obtain

. . 0 o
[l = D 0ll o) + 1" = 1, ol o0y < ||€n_1||Lw(gg_1) +(1+ h)”en_l”Lw(ag_l)

F R+ B = gl
Therefore, by using (Z41), we have

. ;. 1 +h) 0 o

(1 + h)k, i1 .
1—-h(1 +h)(L + kh) ;‘ |le; ||Loo(0?).

Then, by using Lemma "3, we deduce that,

0 0’ ~ ~
||€n||L°°((72) + lle, ||L°o(gg) < lx - Mn,o||Loo<gg) + [[0 — ugllm(ag)
~ ~ o
+ " = a5 gllioogy + 1188, 0 = 14y o)

a(m) . am,,
(m+1)!h 1 "

<|lx - ﬁn,@”Lm(og) + []x” = ﬁn,OHLW(US) +

S&(
1—Lh(1 +h)
R (

1—Lh(1+h)

0 0’
led ooy + €% allimien )

0 0
€)1y + el )

where M = 2@t 11once by Lemma 63, for alln € {0,1, ..., N — 1}

(m+1)!

legllzex(og) + lleg 1oty

1oty + el Ty < [(R, = R} + (1 = Ry)RY |

R» - R
Mum
e |Rs - Ri] (2.4.4)
[(Ry = 1)R5 + (1 = Ry)RT] + [R} — R]]

< Mh"

Ry =Ry '
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where
B (1+h)—hC
Rl-(“m)/zf 01s)
Ry = (14 LEMEANT) B
a 1-hLA+h) )™

such that { = (L + 1)* + 2hL(L + 1) + h?L2.
Since 0 < R; £ 1 < Ry, then from (ZZ4), we get

(1= (1L + 1) ([(Ry = DR} + (1 = Ry)] + R})
- ,

we deduce that, there exist Cy and h; such that, for all & € (0, 4],

0 0o’ -1
llepllzesny + lleg ooy < MK™

0 o -1
e o0, + 11e ety < Col™ ™. (2.4.6)
Thus,
0 0 -1
lle” ||z 0y = n:{)naﬁ_lllenllma% < Coh™".

Claim 2. There exists a constant C independent of 1 such that |le||.~q < Ch"™~!. Define
the error ef(t) on o? by ef(t) = x(t) — uP(t) and on o}, by e’(t) = €,(t) = x(t) — ul,(t) for all
nef0,1,.,N-1}landp €{0,1,...,r—1}.

First, let t € ag, forallp € {1, ...,r — 1}. we have from (ZZZ86),

X () = () = AdB(E) = g, (B) + Ao (]) = 1 (1) + By(B)E) (¢ = 1)
+ Ba(B)el " (- 1),

such that x(£) — @, () = x(th) — u?~(t)) = e’ (t})

and x'(#) — ﬁé/p(tg) = x'(t) — urV (th) = e’ (8),
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this implies that,

Y4

I = 2 oy < L (Il = flopllier + I = Ml

- p—1 -1
Bl et + 15 T

On the other hand, we have

A1

N -1’
1" = Tl opy < e Mpooqormy + B = gl o),
and

24

l1x = Ao pllyoqory < ety + Blle” ™V llpssor1y + HIx" = A5l
hence, from (Z438), (Z49) and (Z24), we get

N N -1 -1
llx — uO,p”LOO(gg) + [l = ué/p”Lw(ag) < [le? llpeo(or1y + (1 + R)lle? Il (-1
+ h(1 + h)||Ix"” - ﬁé’/pHLoo(gg)

< (1 + k) (e sty + 117 Nl

(2.4.7)

(2.4.8)

(2.4.9)

~ ’ 4
+hL(1 + h) ((”x - MO,pHLw(Gg) +lx" - u0,p||Loo(gg)))

p-1
+ ML+ 1) Y (el + 11l
i=0

which implies that,

(1+h)

— 1 ' 1 -1 p—1’
e = ogllogy + 0 = 8, vy < T3+ (" lisor-1y + lle? ™ llpwory)

Mi(1+h) &, ,
T ([

1—-hL + h)

i=0

5 (1 +h)(1 + Mh

-1
)N (1 .
T 1-hL( +h) Z (”e Il oy + Ile ||L°°((;i)).

i=0
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Therefore, by Lemma 2371, we deduce that,

P’ 0 q P
”eg”Lw(gg) + lleg ||L°°(gg) <|lx- uO,p”Loo(gg) + [[flo,p — uO”L‘X’(gg)

+Ix" — ﬁf),p”po(gg) + ||7/Al(/)p - ug ||Lw(gg)
a(m)(t+m+1) oy
(m + 1)! (2.4.10)

S ”x - ﬁO,P”L“’(og) + ||x/ - ﬁ(,),p”Lw(Gg) +

M

_ (1+ )1+ Mh) it
1AL+ h) &

(le'llzoion + Nle” i) + MA™,

Next, lett € ¢! forn € {1,2,..., N — 1}, we have from (Z229),

X (1) = 0 up(B) = Ar(O@(E) = (1)) + As(DE (1) = (1)) + Bi(Del (= 7)
+Ba(t)e) V(- 1),

such that x(£) — i, ,(t7) = x(t) —u’ _ (th)
and x'(t}) — iy, () = x'(£,) — u_ (1)),

this implies that,

I = 22, ooy < L (I = i pllioery + 1 = 2, o)

= | (2.4.11)
+ MY (1o + 1 o)
i=0
On the other hand, we have
I = ey < 1l + B = 2, ey, (24.12)
and
llx = A pllosory < ||3Z_1||L°°(0Z71) + h||€Z_1||Lw(ng1) + 12N = )l orys (24.13)
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hence, from (Z412), (Z413) and (Z-41T), we obtain

N ~ p v’
1126 = T pllpoogory + 11 = 10 llo oy < (1 + 1) (”en-1||L°°<aZ,l> + ||en—1||L°°(UZ—1))

+ HL(L+ B) (1l = Byl + 11X = @ o))

p-1
+ ML+ 1) Y (Il + 11 o9
i=0
this implies that,
. , (1+h) /
e =l pllyry + I = ”quygT—7EITI750WZJth_)+”d;ﬂhwy_0

Mh(1 + h)
— hu1+m§:””“% e o) -

Therefore, by Lemma "3, we have

||efl||L°°(g§:) + ”e’:z ”Loo(gfl) <|lx - ﬁi’l,p”LD"(o“Z) + ”ﬁn,p - uZ”LO"(gZ)

~ ~ p
= 2l oty + 18, = 4 llopy
a(m)(t +m+ 1)

(m+1)! n

< ||X - ﬁn,p”Lw(g’;) + ||X’ - ﬁ/n,p”L“(aﬁ) +

M
(1+h) »
—1—hu1+m0U4W%in+WwNwﬁp)

— -1
Mh(1+h) © . .
+ m ; ||€ ||L°°(a’) + Mh™".
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It follows from Lemma [CA3, for all n € {0,1, ..., N — 1},

p p
||60||Lm(gg) + ”50 ||L°°(o'g)

€l oy + el lloory < [(Ry — DR, + (1 - Ry)R}]

R, — R4
hh+ DM p-1 ) m
T-hL(1+h) Zu‘:o l€'lles (@) + M [R! — R"]
R, R, 2 1
, (R:— DR} + (1= Ry)
p 2
< (”eOHLw(gg) + IIEg ”L‘”(Ug)) R, — R;

=0 z

A+ MY el + (1= BLA + k)MAr™
+ R3,
VC

where R; and R; are defined by (I43), and C = (L + 1)* + 2h(L(L + 1)) + h*(L* + AM).
So, there exist C; and h, such that, for all & € (0, 1],

p-1

4 ’ . _1
1oty + 1165 oty < [ne’gnmg) 16 oy + Y el + 1 [,
i=0

which implies, by (Z4110), that for all & < h,,

(1 + h)(1 + Mh)
1—hL(1 + h)

p-1

1h ey + 168 ey < ( ¥ 1) CL Y (Ielliioy + 11l
0

i

+ (Mt + DG

B ((1 + o) (1 + Mhy)

p-1
1- h2L(1 + h2) =

+ 1] G (”ei”L‘”(ai) + ”ei,”LD"(oi))
i=0
+ (Mt + 1)C ",

hence, for C, = max {(% + 1) Cy, (Mt + 1)C1}, we obtain,

p—1
bl + Nl ooy < Ca Y (leflion + Il lseqon) + Cah™ .
i=0
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We deduce that,

-1
el + " llsiory < Co ) (lllliogary + lle” i) + Cal™ 7, (24.14)

1

=

Il
o

where C; = max{C,, C,}.

Then, from (Z48), (Z4T4) and by using Lemma [C&T, we get,

¥ llLor) + lle” llisory < Ch™ " exp(rCa).

This implies that forallp =0,1,...,r -1,

lle? ||y < Cz exp(rC)h™ .

Thus, the proof is completed by taking C = C; exp(rC,). m

2.5 Numerical Examples

To illustrate the theoretical results, we present the following examples of numerically
solving some second-order linear DDEs (Examples Z51-757) and an ODE (Example
53).

The examples 5 1-75.3 compare the results obtained using our method with those
obtained using the Spline method [IT1], the Direct two-point fourth and fifth order
multistep block method [1?], and the Multistep method [T3].

It is evident that the results produced by our method significantly outperform
those obtained by the Spline method [11], the Direct two-point fourth and fifth order
multistep block method [17], and the Multistep method [13].
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Example 2.5.1 ([I'1]) Consider the second order linear delay differential equation

X" (t) = — 5sin(t)e® D — (cos(t) + sin(t)) x(t) — (6 + sin(t)) x'(t)

. Tt Tt by T
+ sin(t — Z)x(t - Z) + x'(t 4), t€[0,2],

and O(t) = eV for t € [-Z,0). The exact solution is x(t) = e«". The absolute errors for
m =11, h = 0.1, and h = 0.2 are compared with the absolute errors of the Spline method [11]
in Table 1.

Table 2.1: Comparison of the absolute errors of Example P51

t h=0,2 t h=0,1
Spline method | Present method Spline method | Present method

02| 1.15x107 347 x 1071 0.1 |232x107" 8.51x 1071°
0.4 | 5.80%x 10710 1.92 x 107" 0.2 | 5.07 x 107" 2.95x 10712
0.6 | 478 x 10710 9.18 x 1071 0.3 ]1.24x107" 210x 1071
08 |1.76 x 1077 8.08 x 107! 04 |225x1071 5.70 x 10711
1.0 | 442x107° 6.76 x 10711 05|7.68x1071 6.21 x 10711
1.2 1229%10°° 5.96 x 107! 0.6 | 1.97x 107" 5.80 x 1071
1.4 | 537 x 107 415x 1071 0.7 | 1.12x 107" 458 x 1071
1.6 | 1.93 x 107 1.83x 1071 0.8 | 6.16 x 107" 290 x 107!
1.8 [ 257 x 10710 9.85x 1077 09 |544x1071 322x 1071
20| 1.25%x107° 7.82x107° 1.0 [ 9.26 x 107! 5.90 x 10711

Example 2.5.2 ([I?]) We consider the second-order DDEs with constant delay

_%x(t) + %X(t - 7-(), te [O/ n]/

x"(t) = (2.5.1)
d(t) =1 —sin(t), t e [-m,0).
The exact solution is x(t) = 1 — sin(¢).
x(t—mn), tel0,m],
X'(f) = (2.5.2)

O(t) = sin(t), t € [-m,0).

The exact solution is x(t) = sin(t).
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Comparison of Absolute Errors (h = 0.2) Comparison of Absolute Errors (h = 0.1)
Spline method Spline method
—m— Present method _10| —®— Present method
10-10t
10—8 L
10—11 L
- 10—9,
e
|_|L_| 10—12 L
3
>
)
3
< 10710p 10-13¢
10-14}
10—11 L
10—15 L
025 050 075 1.00 125 150 175 2.00 0.2 0.4 0.6 0.8 1.0

t t

Figure 2.1: Comparison of the absolute errors of Example 2.5.1

In Table 2, we compare the maximum errors obtained for equations (Z51) and (Z52) with
m = 8 and h = 35 against the Two Point Direct Block Method of order 4 (2PDBM4) and order
5 (2PDBMS5) from [12].

We observe that the present method outperforms the direct two-point fourth and fifth order

multistep block methods [12] in terms of maximum error.

Table 2.2: Comparison of the maximum errors of Example 2’52

Method Max error of eq(ZZ51) | Max error of eq(ZZ5.2)
2PDBM4 1.50 x 10> 5.83 x 107
2PDBM5 293 x10°° 813 x10°°
Present Method 452 %107 5.38 x 10~°

Example 2.5.3 ([l13]) We consider the linear ODE for the instantaneous charge q(t) at time t

on the capacitor in an LRC series circuit, given by
1
Lg” +Rq + 1= Et), q0)=0, i0)=4'(0)=0, t>0

The exact solution is g(t) = %(1 — e 1% (cos(10¢) + sin(lOt))), where L, C, R, E(t), and i(t)
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m Max error of €d25.1
B Max error of eq25.2
10-5¢
.
g
u 107°
€
=]
£
X
©
=
1077
10—8 L

2PDBM4 2PDBM5 Present Method
Method

Figure 2.2: Comparison of of the maximum errors of Example 2.5.2

represent the inductance, capacitance, resistance, impressed voltage, and current, respectively.

We solve the problem with L =1, R = 20, C = 0.005, and E(t) = 150.

The absolute errors for m = 7, m = 10, and h = 0.1 are compared with the absolute errors

of the Multistep method [[L3] in Table I'3.
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Absolute Error

Table 2.3: Comparison of the absolute errors of Example P’53

t | Multistep method[13] | Present method | Present method

0.0 0.0 0.0 0.0

0.1 1.61 x 1073 292 x107* 1.10 x 107°

0.2 1.11x107° 1.00 x 107° 448 x 10°°

0.3 352x%x107* 7.05x 107* 2.22x10°°

0.4 2.25x 1073 1.62 x 10~* 3.31x10°8

0.5 2.81x107° 7.12x107° 5.20 x 1077

0.6 7.93 x107* 6.86 X 107 2.52x 1077

0.7 1.50 x 10> 1.94 x 107> 7.57 x 10~

0.8 292 x107* 3.35x10°° 9.15%x 10°°

0.9 2.43x 10~ 492 x10°° 454 %1078

1.0 571 x107° 1.63 x 107° 8.09 x 1078

1.1 9.21 x107° 9.39 x 1078 459 x 1078

1.2 1.48 x 107° 3.09 x 1077 3.81 x10°8

Multistep method
—#— Present method m=7
1073} —4— Present method m=10
1074F
1073}
1076¢
107}
10-8¢
010 012 0.I6 110 112

t

Figure 2.3: Comparison of the absolute errors of Example 2.5.3
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CHAPTER 3

NUMERICAL SOLUTION OF FIRST
ORDER DOUBLE DELAY
DIFFERENTIAL EQUATIONS USING
TAYLOR COLLOCATION METHOD
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3.1 Introduction

In this chapter, we apply a direct collocation method based on the use of Taylor poly-
nomials to approximate the solution of linear differential equations with two constant
delays in the polynomial spline S, (ITy). The approximate solution is given by using
iterative formulas, and we prove the convergence of the approximate solution to the

exact solution.

We consider the linear differential equation with two constant delays 7;, 7, of the

form:

X () = g(t) + A1(Dx(t — 1) + As(Dx(t — T2) + Bi(Dx (= T1) + Ba()x (F — 12),  (3.1.1)

for t € [1,, T] and x(t) = @(t) for t € [0, 72]. In the following we assume that the given

functions g, A1, Az, By, B, and @ are sufficiently smooth. Furthermore, we suppose that

D'(1) = g(12) + A1(T2)D(T2 — T1) + Aa(T2)D(0) + By(12)® (T2 — T1) + Ba(T2)®@ (0).

3.2 Description of the method

We suppose that T = (r+1)7,, wherer € {1,2, 3, ...}. Let Ily be a uniform partition of the
interval I = [1,, T] defined by t =(@{+1)1,+nh,n=0,1,.,N,i=0,1,.,r—1, where the

(51

— t, and assume that i =

step-size is given by h = #

" = % with N and N; positive

and integer. Define the subintervals ¢/, = [¢;# [[n=0,1,.,N—-1,i=0,1,.,r—2and

Ur—l — [4r-1

1 =[5, 151, Moreover, denote by 7, the set of all real polynomials of degree not

exceeding m. We define the real polynomial spline space of degree m — 1 as follows:
SO(Iy) = fu e CU,R) : v, = uly; €my,n=0,..,N-1,i=0,1,..,r—1}. (3.2.1)

This is the space of piecewise polynomials of degree (at most) m. Its dimension is

rNm, i.e., the same as the total number of the coefficients of the polynomials T
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0,..,N-=1,p=0,1,..,r—1. To find these coefficients, we use Taylor polynomial on each

subinterval.

3.2.1 Approximate solution in the interval o}

First, we approximate x in the interval ¢) by the polynomial

UG
u0(t) = Zx (@) _ 1) teol (3.2.2)
j=0

where x)(1,),j = 0,...,m is the exact value of xU) at 7, and the function x must be
differentiable around the 7, point. By differentiate equation (B-11) j-times, we get, for
j=0,1,.,m-1,

() =g0(8) + (A (OD(E = 1) + (As(OB(E - 7)) + (BB (¢ — 1))
+ (Bt - )" (),

which implies,

j .
x(e) g‘”(t)+Z() [A:(6]77 (0Ot - n)+Z( )[A O (Bt - 2)

1=0

i - i
+ Z( ) [Bi(H197 (1) [@]" (£ — 77) + Z( )[Bz(t 19 (1) [@]™D (£ - 1),

I= I=0
hence,
i |y
K0 (1) =90 (e2) + ) (;) [AO1 (22)0O(r, = 71) + ) | (;) [A2(0]7 (12)2(0)
=0 =0

j

j ] o
+ ; (;) [B ()] (1) [@]" (15 — 19) + ; (;) [Bo()]57 (1) [@]“ (0).
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3.2.2 Approximate solution in the interval o0

Second, for x to be approximated by 1 (n € {1,2,...,N — 1}) on the interval 09, x must

be approximated by u} (0 < k < n) on each interval ¢}, such that

m ,\(])
ug(t)=z ; )(t—to) teo, (3.2.3)

j=0

where 11, is the exact solution of the differential equation

forteo, nef(l,2,..,N; -1},

Muo(t) =g(t) + AL()D(t — 1) + Ap(D(t — T2) + Bi(HP (t — 11)
+ By(H)P'(t - 72),

and fort € 0%, n € {N;,N; +1,...,N — 1},

a0(t) =9(8) + As(O1_y, (¢ = 1) + Aa(DO(E = T2) + Ba(8) [y, ¢ = 72)]
+ Bz(t)q),(t - Tz).

(3.2.4)

Now, forall j =0, 1, ..., m—1, the formula for computing the values of the coefficients

(] ) (t)) can be obtained by employing similar arguments to those used for obtaining the

Values of x)(1,) above, we get the following formulas

forne{l,2,..,N; -1},

80370 =g7() + (AP =TI + [Ao(B0(t — T2)] + [Bu () (¢ — )]

+[Bah (- )],

which implies,
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oy i,
a0t =gt + Y ( ) [AO1T (@O —71) + ) ( ) [Ax(1)]77) ()DO(t — 13)

1=0 1=0

I ooy
+Z(§) [B(O1"™ () [1 (¢ - m+2({) [Bo(0]7 () [@7 (¢ - T2),

1=0 1=0
(3.2.5)

hence,

j .
GE <f><t">+Z( ) [AO1 (t) " (t”—71)+Z( )[Az(t) 1970 ()00t - 72)
1=0

j . j .
+Z(§)[B HIT (t) (01 (8 - T>+Z() [Bo(0)]7™" (&) [01*" (5 - 1),

=0 I=

and forn € {N;,N; +1,..,N -1},

. . i 0
50 =900 + (A1), (1= 1) + Azt = ) + (B [y, (6= )] )

+ (Bz(t)q)l(t — Tz))(j) .
(3.2.6)

which implies,
J

J . .
SRR +Z( )[A1<t)]<f—” () [u?z_N](t—n)]“HZ(]) 42017 (00t - )

=0 1=0

j . j
n Z (;) [B1(#)] (] D (t)[ =N, (t - Tl) + Z (;) [B2(1)] (] ) () [D] (l+1) (t - 72),

=0 1=0
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which implies,

®

P 0
2 0(t) =g (t)+ZZ() [A (5] (t)[ - Nlo(" Nl)(f—ﬁ—fg Nl)s}

=0 s=

+

(;) [Ax(H]5 (HDO (¢ - 1))

mo. e 0 (1)
Z() Bi()]"™ (1) [M(t—ﬁ —tg_Nl)S]

S=

|

+

- M -

— .

0
)Bz(t) [ (- 1),

1

I
o

which implies,

A(s

i m
A(]+1)(t) =g(t) + Z Z( ) N0 l;'Nl) [AO1 (1)t — 11 — £, )

I=0 s=

(] ) [A2(]07 (OOt - 1)

(3.2.7)
ahy jﬁS_Nllo(tg_Nl) i-D 0 s—1-1
+;Z(Z)—(s_ = B O - t- 6 y)

hence,

ﬁ%l)(to g0 + Z( ) O o) [A ()] (£)

~.

+ [Ax(1)]7) () @O (E) - 1)

—

oD @ O B (1)

~.

[Bo(1)]7" (£5) [@1"D (15 - 7).

+

+
- 1D -
—~—

~—

—
Il
o
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3.2.3 Approximate solution in the interval og

Third, for x to be approximated by ug (p €f{1,2,..,r—=1} ) on the interval og, x must be
approximated by u,{ (0<k<N-1and0 <j<p)oneachinterval oi such that,

m— 1
Wl (t) :Z 0" (t—t’”)] ted, (3.2.8)
j=0

where 1, is the exact solution of the differential equation

fl0,(8) =g() + Ar(OUEN (£ = 70) + Aa(Bul (¢ = 72) + Bu(t) [ul (¢ = )]

(3.2.9)
+ Ba(t) [ug (¢ - Tz)] .

The coefficients ﬁg ;1)(1?) is given by the following formula

)]

Ao g0 (t) + (Ao, - )+ (As(ud - 7)) + (Bl(t)[u N (= Tl)]')(j)

+ (Bz(t) [”g_l(t - Tz)]/)(j) :

(3.2.10)
which implies,
5, (1) =9"0) + Z]:( Jasor o, o)+ ) [ iaston @ - ]
=0 1=0
+ Z]](ﬁ) [Bi(017 (1) (b (e =)+ Z]: (;) B0 () (- )",

=0 1=0
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which implies,

ioom . A(s) tp_l ) o
(i1 N-N;,P-1\"N-N- —
ugf () =g(t) + Z Z( )[A 1197 (8) [ L - —(t—11 — ti_lNl)s}
I=0 s=
A(s P 1
0,P— 1( )

0
| Az ()[ (t-12- fg_l)s}

A(S) (tP—l ) (+1)

)[B (t)]] ) (t)[ N- Nl,P;!l N-N; (t— T, — ti—_lNl)s]

A(S) (P 1)

) (I+1
;) [B2(1"" () (La -T2 té"l)s] ,

+
D
—_—

which implies,

A(]+1) () L& LA‘;\S]) Nl,P—l(tIlz’_—ll\h) =) P-1 \s—I
0 gf<t>+ZZ() o AN e - - 1)
1=0 s=0 :

j om 0]. (()S)p 1( 4P~ 1) '

D IP M M e ey et SHGIRI OIS
I=0 s=0 '
L & J Az(\sl) ~up-1 () i

0 (sl—l— o [Bi(H17™ (1)t — 71 = )
1=0 s=0 :
Sk j uE)S;) 1( P_l) G- P-1\s—I-1

+ 2 ey B 0 - )
1=0 s=0 '
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hence,

ay"(th) =gV tP)+Z( );3 o (B LA (8D)

£ Y ()t [ 6

lOPl

. A(1+1 i—]
" oy () B 17 (85)

+

+
M- 2= 1D~
—

TSl ) Ba10 ).

~—
I
o

3.2.4 Approximate solution in the interval o/,

Finally, for x to be approximated by uh nefl,..,N-1}and peil,2..r—1})on the
interval o}, x must be approximated by u,]; (0<k<nand 0 <j<p)oneachinterval a]];

such that,

un
W) = Z (t—t’” ted, (3.2.11)
j=0

where #,,, is the exact solution of the differential equations

forted,ne(l,2,.,N; -1},

Bl () =900 + Ay (= 1) + As(Ol (t = 2) + Ba(O) [ul) (6 = 10)]

(3.2.12)
+By(t) [t - )],
and forn € {N;,N; +1,..,N -1},
() =9(8) + Ayt = T0) + AsOul ™ = 1) + Bu(t) [u0_y (¢ — 1) .

+By(t) [ (t - )]
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The coefficients u (tp ) is given by the following formula

forteo,ne(l,2,.,N; -1},

(00 =907 + (O, 0= )+ (a0 =) + (B [, = ) )m

+ (Bz(t) |7t = ) )(j),
(3.2.14)

which implies,

j

(V) =g0(0) + Z( )[A O @[] =+ Y (;) (A1 1) [17]” (¢ = 72)

1=0

i /
+z(;) (By()]5 (1 [”ﬁr__lNﬁn ( 1)( _1) +ZZ"( )[B 0197 ( )[ p- 1]( (t — 1),

1=0

which implies,

' ' Ly A;S])N 1(t?\l_lN ) !
i, (D (E) =g<f>(t)+ZZ()[A (B1" (t)l T (T — B 1N1+n)5‘

A(s) p-1
n,p—1 t )

V)
§[Az<t> o <t>l (-7 - t”ﬂ

] A(S ( (l+1)
N Ny+n,p—1V"N— N+n s

VL3 (oo st

=0 s=

_ (I+1

J u< (!
Y (;) B0)) () | (- - )|

=0 s= )
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which implies,

] m . "
np(OT(B) 9”““22() ~ N””S”_lE)T ) [0 (Bt = 71 = B )
1=0 s=0 ’
j m A\l l(P 1)
) l(’;fl)[ (D19 (1)t —1p — £y
=0 s=0 ’
L& +n, ( 1+n) i
I e o
1=0 s=0 ’
j0 mo. A(S) 1( P—l) '
DN ﬁ Bt (t)(¢t = w2 = £y,
1=0 s=0 ’

hence,

i .
06 =)+ 3 (T ) A1 )
1=0
+ {7 6 A1 (8)

0N (o) B (D107 (£

ot (7 a1 ().

+

+
- 1D~ I
o —~— .

—

—
Il
o
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And fort€ o), n e {N;,N; +1,..,N -1},

0, (1)) =g (1) + (Al(t)uﬁ_Nl(t - Tl))v‘) + (Az(t)uz—l(t _ Tz))m N (B1 " [”ﬁ_Nl(t ~ Tl)]/)m
(0~ o],
(3.2.15)

which implies,

jooys i
8O0 =g + ) (;) A O [ -+ Y (;) (A1 O[] ¢ - )
1=0

1=0

i I (i
+Y (;) BN O ] =+ ) (;) (B () [w ] = 7o),

l=0 l:O

which implies,

. N (] o [ ) !
(00 =g+ Y Y ( l) (A1 () [%(t —n-ty, )S}

joom a® (! ®
+ZZ( )[A ®197 (1) {WT(t—n —tZl)S}

=0 s=0 )

joom 09 () (+D)
+ZZ( )[B 7 @) |- —tZM)S}

=0 s=0 | ’

i m [ 46 1(tp 1) (1+1)
+ZZ( )[B O (1) ””T(t—n—ti’llf} ,

1=0 s=0 '
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which implies,

) ) jooom ﬁqul (t’:l_ )
ﬁwW“WDaﬁw+§lfxg_%%ﬁgLMwwﬂaw_q—aNf4
1=0 s=0 .

joom A tfl_l

My ; nip D! [A(0197 (1)t — T2 = £
=0 s=0
j m ]'ﬁqulNl,p z—Nl) i1 ; o

+;;; ! W[Bl(t)] OE=1 =)
ioom A ® tp—l

* Z Z ; ?S”il—()) [Bz(t)](] ) Bt -1 — tﬁ_l)s‘l‘l,
1=0 s=0

hence,

(D (8) g“a>+§]()9Np ) A1 (8)

a0 ) (4015 ()

+ lnpl

a0 () Bi®O17 ()

+

+
M- 1D 1M
—

—_—

ot @) (B &),

—
I
o

Remark 3.2.1 The proof of the convergence of the method related to equation (B1T) is in the
same way as the proof in Chapter 2, relying on the theorems of Cornwall L&, 62 and L3
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CONCLUSION

In this thesis, we investigated the numerical solutions of first and second-order linear
differential equations with delays using the Taylor collocation method. The main

contributions of this research can be summarized as follows:

e We formulated the Taylor collocation method for second-order neutral linear
differential equations with constant delay and for first-order neutral differential

equations with two constant delays.

e We derived approximate solutions using Taylor series expansions and validated

their accuracy through the convergence analysis.

e We utilized Gronwall’s inequalities to rigorously demonstrate that the proposed
methods possess a convergence order, ensuring the reliability of the approximate

solutions.

e We supported the theoretical findings with numerical examples, confirming the
effectiveness and practicality of the Taylor collocation method in solving delay

differential equations.

The results indicate that the Taylor collocation method is a robust and efficient
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technique for solving linear differential equations with delays, providing accurate and

reliable approximations.

While the research presented in this thesis has made significant strides in the nu-
merical analysis of delay differential equations, there remain several avenues for future

exploration:

e Extension to Nonlinear Equations: The methods developed in this thesis can
be extended to handle nonlinear delay differential equations, broadening their

applicability to a wider range of real-world problems.

e Higher-Order Delays: Investigating the performance of the Taylor collocation
method for differential equations with higher-order delays and exploring any

necessary modifications to the algorithm.

e Adaptive Collocation Points: Developing adaptive strategies for selecting col-
location points based on the behavior of the solution, which could enhance the

accuracy and efficiency of the method.

e Error Analysis: Conducting a more comprehensive error analysis to better un-
derstand the limitations and potential improvements of the Taylor collocation

method.

e Applications to Other Fields: Applying the Taylor collocation method to solve
delay differential equations arising in different scientific and engineering do-

mains, such as epidemiology, economics, and climate modeling.
By addressing these perspectives, future research can continue to enhance the capa-

bilities and applications of the Taylor collocation method, contributing to the advance-

ment of numerical analysis techniques for differential equations with delays.
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