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INTRODUCTION

Several years ago, extensive studies were conducted on various linear recursive re-
lations, such as the Fibonacci, Lucas, and Pell Lucas sequences, among others. The
purpose of these studies was to explore their solutions, the associated generating func-
tions, and their explicit forms. These explicit recursive relations are widely used in

numerous research fields, including economics and computer science.

However, in recent years, many researchers have sought to generalize several of
these recursive relations. One of the well-known is the generalization of the Fibonacci
sequence. This generalization has gained significant attention, and researchers are

familiar with it [14] .

Using this generalization, we can obtain numerous recursive relations and generat-

ing functions by utilizing the technique of symmetric functions [12] .

In the first chapter, we provide the necessary tools and background information to
comprehend the subsequent chapters. We begin by presenting definitions and prop-
erties of linear recurrence relations for some numbers and polynomials. Additionally,
we introduce ordinary generating functions for certain polynomials towards the end

of the chapter.

In the second chapter, we review the elementary and complete symmetric functions

along with their properties.

In the third chapter, we consider the previous theorems in order to derive new gen-

erating functions for the products of Gaussian numbers such as Gaussian Fibonacci,
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Gaussian Lucas, Gaussian Jacobsthal, Gaussian Jacobsthal Lucas, Gaussian Pell, Gaus-
sian Pell Lucas numbers, and Gaussian polynomials with symmetric functions in sev-

eral variables.



CHAPTER 1

NOTATIONS AND PRELIMINARIES

In this chapter, we solve linear recurrence relations with action of the constant form of
order k with a characteristic polynomial method, and some inportant definitions and

theorems related to formal series and generating functions.

1.1 Linear recurrence relations

Definition 1.1.1 [13] A linear recurrence relation of degree k is a recurrence relation of the

form

Up + fr(Mup- + (Mg + ... + fi(Mup— = g(n), (1.1)

where fi(n), f2(n), ..., f(n) et g(n) are functions of n and fi(n) # 0.

Remark 1.1.1

If g(n) = O, then the relation (1.1) is homogeneous, if not it says non-homogeneous.
Theorem 1.1.1 [13] The linear recurrence relation

Uy + i)y + (M) + ... + fi(Mu,_ = g(n),

with uy = ag, u1=1, ..., Ux_1 = ax_1, are constanés has a unique solution.
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Lemma 1.1.1 [13] Let u{ be the solution of the relation :

Uy + iy + (Mo + ... + fi(mu,_ = g1(n),

@

and u,;’ the solution of the relation :
Uy + frmun—1 + (Mg + ... + frl(M)y— = ga(n).
Then cyul’ + coul is the solution of

Uy + fi(Muy—1 + (M, + ... + i)y = c191(n) + c292(n).

Proof. We have

O M

[ciu,” + cou 2)] + fin)[ aqu +c u(Z)l] +ot fimM)[aw, ', +c u(z)k]

n— 1

(

—clu)+c1f(n)un1+ .+ 1 fi(n) )

2 2 2
L to u( )+ czf1(11)uf1_)1 + .+ csz(n)u(n_)k

= oy [ul! + fi (n)u(l) +. +f(n)u(1) 1+ co[u® +f1(n)u + ot fr(m)u; (2)

=c191(n) + c292(n).

This completes the proof m

1.2 Linear homogeneous recurrence relations with con-

stant coefficients

Definition 1.2.1 [10] A linear homogeneous recurrence relation of degree k with constant

coefficients is a recurrence relation of the form

Uy = CilUpy—1 + Colly—p + ... + Cily—y, (1.2)
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where ¢y, cy, ..., crare real numbers, and ¢, # 0

Example 1.2.1 The recurrence relation u, = 6u,_1+5u,_, is a linear homogeneous recurrence

relation of degree two.
Example 1.2.2 The recurrence relation u, = 3u,_q + ui_z is not linear.
Example 1.2.3 The recurrence relation u, = 5u,_1 + 3 is not homogeneous.

Example 1.2.4 The recurrence relation u, = 4nu, 1 + n’u>_, does not have constant coeffi-

cients.

Remark 1.2.1 [10] The basic approach for solving linear homogeneous recurrence relations is
to look for solutions of the forme u, = t" where t is a constant. Note that u, = t" is a solution

of the recurrence relation u, = cily—1 + Colly—p + ... + CklUy—y if and only if
=t 4 ot

when both sides of this equation are divided by t"™* and the right-hand side is subtracted from
the left, we obtain the equation e — = = 0. Consequently, the sequence u, with
u, = t" is a solution if and only if t a solution of this last equation. We call this the characteristic
equation of the recurrence relation. The solutions of this equation are called the characteristic
roots of the recurrence relation. As we will see, these characteristic roots can be used to give an

explicit formula for all the solutions of the recurrence relation is complexe.

1.3 Characteristic polynomial

Definition 1.3.1 [4] The characteristic polynomial of the reccurrence relation
Uy = ClUy—1 + CoUy— + ... + CxUp—k

18

pt) =t —ct" ' — .. — .
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Example 1.3.1 The characteristic polynomial of the reccurrence relation u, = 2u,_1 + 3u,_» is

P —-2t-3=0.

Example 1.3.2 The characteristic polynomial of the reccurrence relation u, = —3u,_1—3u,»—

2u, 3 is 2+ 37+ 3t +2 = 0.
Theorem 1.3.1 [10] Let c3, ¢y, ..., ¢k be real number. Suppose that the characteristic equation
el — = =0,
has k distinct roots ty, t,, .., tr. Then a sequence u, is a solution of the reccurrence relation
Uy = CilUp—1 + ColUy—p + oo + Cklhyy,

if and only if

U, = ait] + axt] + ayt,.
forn=0,1,2,..., where ay, s, ..., a, are constants.

Example 1.3.3 consider the following recurrence relation :

U, =3uy_ 1 +4u, ,,n>2

Uy = 0,u1 =1.

The characteristic equation is t* — 3t — 4 = 0. This can be factored as (t + 1)(t — 4), hence there

are two real roots :—1 and 4, then the general solution is
u, = 14" + co(-1)".
The initial conditions uy = 0, uy = 1 implies that

c1+c =0

4C1—C2=1

=

a1l

-1
Cr = —
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Thus the solution is

has r distenct roots ti, ty, ..., t, with multiplicities my, my, ..., m,, respectively, so that m; > 1

.
Yi=1,2,..,rand Z m; = k. Then a sequence u, is a solution of the recurrence relation
i=1

Uy, = C1Up—1 + CoUy_o + ... + CkUy—.
If and only if

— mi—=1\-n my—1\n
Uy = (10 + ann + .o + Q™ )z) + (A + @21l + .o+ Qo112

n

+ ..+ (a0+aoon+..+ a,mr_lnm’_l)z,

forn=0,1,2,. .., where a;; are constants for 1 <i <rand 0 < j <m; — 1.
Example 1.3.4 consider the following recurrence relation :

U, = 61,1 — U, r,n>2
Uy = 1, U = 6.
The characteristic equation is t* — 6t + 9 = 0. admits the number 3 as the root of multiplicity 2,

then the general solution is

u, = 13" + c,n3"

The initial conditions uy = 1, uy = 6 implies that

C1=1

3C1 +3C2 =6
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1 = 1
Cr = 1
Thus the solution is

u, =3"+n3"

1.3.1 Recurrence relations of some numbers and polynomials

Definition 1.3.2 [4] Generalized Fibonacci sequence (Gp)qen is defined by the following
recurrence relation

G,=vG,_1+9G,,n>2
Pl & (1.3)
G():(X,Glzﬁ.

withp,q € Ry and o, p € C.

Lemma 1.3.1 [4] Let z* — pz — q = 0, the characterisic equation of the recurrence relation
(1.3). Then

1. If the characteristic equation has two real solutions zq, and z, then the general solution

for (1.3) is given by:

_ /\12711 — Azz;‘
Z1— 22

with Ay=p — az, and A,=p — az;.

2. If the characteristic equation has only one real solution z, then the general solution for
(1.3) is given by :
Gy = (a1 +on)z”,

, -az
with ¢; =« and c;=

Definition 1.3.3 [3] The Gaussain Fibonacci numbers are defined by the following recurrence

relation:

GFpi1 = GFy + GFy1, ¥ > 1
(1.4)
GFy =i,GF, = 1.

The first terms of the Gaussain Fibonacci numbers are given by
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n 0| 1 2 3 4 5 6
GF o1 | 1| 14+7|24+1|3+2i|5+3i | 8+5i |13+ 8i

Definition 1.3.4 [3] The Gaussain Lucas numbers are defined by the following recurrence

relation:

GL,.1=GL,+GL,_1,Yn>1
(1.5)

GL0:2—i,GL1 =1+ 2i

The first terms of the Gaussain Lucas numbers are given by

n 0 1 2 3 4 5
GLyw1 | 1+20 |3+1|4+3i|7+4i|11+7i |18+ 11

Definition 1.3.5 [3] The Gaussian Jacobsthal numbers are defined by the following recurrence

relation :

G]n+1 = G]n + 2G]n—1/ Yn>1
. (1.6)

1
G]O - E/ G]l =1.

The first terme of the Gaussian Jacobsthal numbers are given by

n 0] 1 2 3 4 5 6
Glus1 | 1| 1+0|3+i|5+3i | 11+5:1 | 21 +11: | 43 + 21i

Definition 1.3.6 [3] The Gaussian Jacobsthal Lucas numbers are defined by the following

recurrence relation:

Gjnsr = Gjn + 2Gju, V1 > 1
Z. (1.7)
Gj() =2- E,Gjl =1+ 2.

The first terme of the Gaussian Jacobsthal Lucas numbers are given by

n 0 1 2 3 4 5
Gins1 | 1+21 | 5+i | 74+51 | 17+71| 31 +171 | 65+ 31i

Definition 1.3.7 [8] The Gaussian Pell numbers are defined by the following recurrence

relation:

GP,s1 = 2GP, + GP,_1,¥n > 1
(1.8)

Gpozi,Gpl :1.

9
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The first terme of the Gaussian Pell numbers are given by

n 0] 1 2 3 4 5 6
GPyiy | 1| 2+1|5+2i | 12+5i | 29+12i | 70 +29i | 169 + 70i

Definition 1.3.8 [8]The Gaussian Pell Lucas numbers are defined by the following recurrence

relation :

GQn+1 = ZGQn + GQn—ll Yn>1
(1.9)

GQoy =2 —2i,GQ; = 2 +2i.

The first terms of the Gaussian Pell Lucas numbers are given by

n 0 1 2 3 4 5
GQus1 | 2+2i | 6421 | 14+6i | 34 +14i | 82 +34i | 198 + 82i

Definition 1.3.9 [3]The Gaussian Jacobsthal polynomials are defined by the following recur-
rence relation :

G]n+1(x) = G]n(x) + ZxG]n—l(x)/ Yn>1

i (1.10)
GJo(x) = E,Gh(x) =1.

Definition 1.3.10 [3]The Gaussian Jacobsthal Lucas polynomials are defined by the following

recurrence relation :

Gin+1(x) = Gju(x) + 2xGjp—1(x), Vn > 1
. (1.11)

Gjo(x) =2 - % Gii(x) = 1 + 2ix.

Definition 1.3.11 [9]The Gaussian Pell polynomials are defined by the following recurrence

relation :

GP,41(x) = 2xGP,,(x) + GP,-1(x),Vn > 1
(1.12)

GPo(x) = i, GPy(x) = 1.
1.4 Generating functions

1.4.1 Formal series

Let K be a commutative field (IK=R or C).

10
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Definition 1.4.1 [4] The elements of the set K [[z]] = Z a,z",a, € K} are called formal
n=0
series with coefficients in C. for n € IN, z" called the monomial of degree n and a, it’s coefficient.

[S¢]

Definition 1.4.2 [4] Let a(z) = Z a,z" and B(z) = Z b,z" be two formal series. Then the
n=0 n=0

sun of a(z) and B(z) is given by

a(z) + p2) = Y (@ +by)z".
n=0

[e¢]

Definition 1.4.3 [4] Let a(z) = Z a,z" and B(z) = Z b,z" be two formal series. Then the
n=0 n=0

product of a(z) and B(z) is given by

[ee]

a(z)p(z) = Z c,z",

n=0

with

o0
Cy = Z akbn_k.
k=0

[se]

Definition 1.4.4 [4] Two formal series a(z) = Z a,z" and p(z) = Z b,z" are equal if and
n=0 n=0

only if for all n # 0, a,=b,,.

(o]

Definition 1.4.5 [4] We say that the series Z a,z" is the inverse of the series Z b,z" if :

n=0 n=0

o))

=0

Proposition 1.4.1 [4] A formal series Z a,z" is invertible if and only if a, # 0.
n=0 had
Proof. We need to determine whether or not there exists a formal series (z) = Z a,z"

n=0
, in K[[z]] such that a(z)p(z) =1. Expanding the product, we have

a(z)p(z) = [i anz”] (i bnz”)
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Comparing the coefficient of z" on both sides of a(z)f(z) =1, we see that (z) satisfies

the equation if and only if apby=1 and Z axb,_x = 0foralln > 1.
k=0

If ay is not invertible in K then the equation a(z)B(z) =1 can not solved for by, so that

B(z) does not exist and a(z) is not invertible in K[[z]].

If ay is invertible in K, then by= a;" exist. Each of the remaining equations (for n > 1)
n n

can be rewritten as ﬂobn=-z axby,_x, or upon multiplying by by, b, =—by Z agb,_r. These

k=0 k=0
equation can be solved by indication on k > 1, yielding a solution for f(z) which gives

the multiplicative inverse of a(z). Therefore (z) is invertible in K[[z]].
This completes the proof. m

Proposition 1.4.2 [4] If a(z) and B(z) are two nonzero formal series then a(z)p(z) is also

nonzero.

1.4.2 Ordinary generating functions (OGF)

Definition 1.4.6 [4] The OGF of the sequence (a,)nen=(a0, 11, a2, ...), is defined by :

G(z) = i a,z".

n=0

Example 1.4.1 The generating functions for the sequences (a,),en with a, = 6,a, = n+2and

a, =4" are Z 62", Z(n + 2)z" and Z 47",
n=0 n=0 n=0

Theorem 1.4.1 [6] Let A(z) the OGF of (a,)nen and B(z) the OGF of (b,)nen, S0
1. A(z) + B(z) is OGF of (a, + by)ax0-
2. zA(z) is the OGF of (0,a9, 41,4z, ..., Ay—1)
3. A(z)B(z) is the OGF of (ao, agby + a1by + a1by + azby, ...)

4. (1 — 2)A(z) is the OGF of (ap, a1 — ap, a2 — a1, ..., Ay — Ap_1, ...).

[o¢]

A(z) .
5. T—; (_1 is the OGF of (ap, ap + a1, a0 + a; + a,, ,Z Ak, ...)-

n=0

Theorem 1.4.2 [4] Let the sequence (G,,),en defined by the following recurrence relation

12
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G, =vG,_1 +gG,_
Pl & =2 (1.13)

(;0 ::(X/(;l ::ﬁ
withp,q € Cand a, p € C. So the generating function of (G,)uxo is given by

a+(f—-pa)z

G@) = 1-pz—gz2°

Proof. We have

[oe]

G(z) = Z G,2" = Go + Gz + i G,2"
n=0 n=2

a+pz+ Z(pGn_l +qG,0)Z"
n=2

(o) o0
-1 2 -2
a+Pz+pz Z Gz 4 gz Z G,_z"
n=2 n=2

a+pz+ pzi Guz" +qz* i Gnz"
n=1 n=0

a+pz+pz [Z Gnz" - aJ +qz° Z Gnz"
n=0 n=0

=a+ (B —ap)z+pzG(z) + quG(z).

Then
G)(1-pz—gz°) =a+ (B-ap)z
So
_a+(B-ap)ez
R e

This completes the proof. =

Theorem 1.4.3 [11] The generating function of the bivariate Fibonacci polynomials is given
by
Fu(x,y)z" =
Z T

13
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Proof. We have
G(z) = Z Fu(x,y)z" = Fo(x, y) + F1(x, y)z + Z Fu(x, y)z"
n=0 n=2

=24 Y (Fut (¥, y) + YFucalx, )"
n=2

[se]

=z+Xxz Z Foa(x, y)z"" + yz? Z Foa(x, y)z" 2
n=2

n=2

=z+xz Z Fu(x, y)z" + yz* Z Fu(x, y)z"
n=1 n=0

=z+xz [Z Fu(x, y)z" — 0] +yz* Z Fu(x, y)z"
n=0 n=0

=z + xzG(2) + yz*G(2).
Then
G(=2)(1 —xz - yzz) =z
So
Gz) = #—yﬁ

This completes proof m

Theorem 1.4.4 [11] The generating function of the bivariate Lucas polynomials is given by

Z Ln(x, y)z” = 12——.3(2

et —xz — yz?
Proof. we have
G(z) = i Lu(x, y)z"
n=2
= Lo(x,y) + Li(x, y)z + i L,(x, y)z"
n=2
=2+xz+ i(an_l(x, Y) + yL,_»(x, y))z"
n=2
=2+4+xz+xz i L, 1(x, y)z"_1 + yz2 i L, »(x, y)z”_2

n=2 n=2

=2+ XZ+2XZ Z La(x, y)z" + yz* Z La(x, y)z"
n=1 n=0

14
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=2+xz+xz [Z Lu(x, y)z" — 2] +yz? Z L, (x, y)z"
n=0 n=0

=2 — xz + x2G(2) + yz°G(z)

Then
GR)(1 —xz—yz*) =2 —xz.
So
2—-xz
6@ = 1—xz—yz?

This competes the proof m

Theorem 1.4.5 [11] The generating function of the bivariate Pell polynomials is given by

Proof. We have
G(z) = Z P,(x, y)z"
n=0

= Po(x, y) + P1(x, y)z + Z P, (x, y)z"

n=2

[ee]

=z+ Z(nyPn_l(x, Y) + yP,_o(x, y))z"

n=2

=z +2xyz Z P,_1(x, y)z”_1 + y22 Z P, o(x, y)z”_2

n=2 n=2

=z +2xyz Z P,(x, y)z" + yz* Z P,(x, y)z"
n=1 n=0

=z +2xyz P.(x,)z" = 0|+ yz* Y P(x,y)z"
Y y Y Y
n=0 n=0

=z + 2xyzG(2) + yz°G(2).
Then
G(z)(1 —2xyz — yzz) =z
So
G = 1- nyzz - yz?’

This completes the proof m

15
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Theorem 1.4.6 [11] The generating function of the bivariate Pell-Lucas polynomials is given
by

i ( . 2-2xyz
L Quly)z" = 1 - 2xyz — yz2

Proof. we have
G(z) = i Qu(x, y)z"
n=0
= Qo(x, y) + Qilx, y)z + i Qu(x, y)2"
n=2
=2+2xyz + i@nyn_l(x, Y) + yQu2(x, y)z"
n=2
=2+ 2xyz + 2xyz i Quo1(x, )z + yz2 i Qualx, y)z"2
n=2 n=2

=2+ 2xyz + 2xyz Z Qu(x, y)z" + yz* Z Qul(x, y)z"
n=1 n=0

=2 4 2xyz + 2xyz (Z Qulx, y)z" - 2) +yz° Z Qu(x, y)z"
n=0 n=0

=2 = 2xyz + 2xyzG(z) + yz°G(2).

Then,
G@)(1 - 2xyz — yz*) = 2 — 2xyz.
So,
Cla) = 2 —2xyz
@)= 1-2xyz —yz?

This completes the proof m

Theorem 1.4.7 [11] The generating function of the bivariate Jacobsthal polynomials is given
by

Proof. we have

GE) = ) T y)2"
n=0

= ]O(x/ ]/) + ]1(x1 y)Z + Z ]n(xl y)zn
n=2

16
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=z+ Z(xy]n_1(x, Y) + 2y]u2(x, )"
n=2
=z +xyz Z Jna(x, )2 + 2y2? Z Ju2(x, )22
n=2 n=2
=z ++xyz Z Ju(x, y)z" + Zyz2 Z Ju(x, y)z"
n=1 n=0

=z+xyz (Z Ju(x, y)z" — 0) +2yz? Z Ju(x, y)z"
n=0 n=0

=z + xyzG(z) + 2yz*G(2).
Then,
G()(1 — xyz — 2yz*) = z.
So,
6@ = 1- xyj— 2yz?

This completes the proof m

Theorem 1.4.8 [11] The generating function of the bivariate Jacobsthal-Lucas polynomials is
given by

Proof. we have
G@) =) julx, y)"
n=0

= Jo(x, y) + jalx, y)z + i jn(x, y)2"
n=2
=2+ xyz+ i(xyjn_1(x, Y) + 2y ju-a(x, y))z"
n=2

=2+ xyz + xyz i faa1(x, )z + 2y2? i fuoa(x, y)z"2

n=2 n=2
=2+ xyz+xyz i ju(x, y)2" + 2yZ? i jn(x, y)z"

n=1 n=0
=2+ xyz+xyz [i jn(x, y)z" — 2) +2yz* i Jn(x, y)Z"

n=0 n=0

=2 — xyz + xyzG(2) + 2yz°G(2).

17
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Then,

G(z)(1 — xyz — 2yz*) = 2 — xyz.

So,

This completes the proof m

2 —xyz

G(z) = 1o

xyz — 2yz?

From the previous theorems we deduce the following table [4]:

valeusof p, g, a, 8 cofficient of z" | generating function
p=kp=19=1a=0 Fien #
p=B=kg=1a=2 L %
a=0p=2,q9=kp=1 Pin ﬁ
a=Bf=p=2,9=k Qkn %
p=kqg=2,a=0,p=1 Jien ﬁ
p=f=ka=qg=2 Jien %

Tablel:Generating function of some k numbers.

For k=1 in Table 1 we obtain the following table [4]

valeus of p,q, a, p

cofficient of z"

generating function

p=1p=14=1a=0 by 1—;—22
p=p=lg=1la=2 L 1—2—_—222
a=0p=2q9=1p=1 P %z—zz
a=p=p=249=1 Qn %
p=19g=2a=0,p=1 Jn ﬁ
p=p=la=q=2 Jn %

Table2:Generating function of some numbers.
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CHAPTER 2

ELEMENTARY AND COMPLETE
SYMMETRIC FUNCTIONS

In this chapter, we mention some inportant definitions and properties elementary and

complete symmetric functions.

2.1 Symmetric functions

Definition 2.1.1 [12] A function f(x1,x, ..., X,) in n variables is symmetric if for all premu-

tations of the index set (1, 2,. . . n) the following equality holds:

f(xll X2y eeey xn) = f(xs(l)/ Xs(2)s ++er xs(n))-

which means, a function of several variables is symmetric if its values does not change when we

swap variables.
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Elementary and complete symmetric functions

2.1.1 Elementary symmetric functions

Definition 2.1.2 [4] Let k and n be tow positive integer and (A1, Ay, ..., A,) are the set of given

variables. Then the elementary symmetric function ex(A1, Ay, ...., Ay,) is defined by

€](<n) = ek(All AZ/ cesey An) = Z /\Z‘llAéz"’Ai?/O < k =n (2.1)

i1 +ip+...+i, =k

with il, iz, cerey in =0vVvl1.
Example 2.1.1 For an equation of degree 3 (n=3, roots:A1, A2, A3), we have
e(()?’) =1

653) =AM+ A+ A3

6(23) =MAr + Al/\:}, + /\2A3

eé‘o’) = /\1A2/\3

Proposition 2.1.1 [7] The generating function of the elementary symmetric functions is given

by:
E(z) = Z ezt = H(l + Aiz)
i=1

k>0

Proof. We have

e = e (A1, Agy ooy Ay) = Z ABAR Al e = 0ifk > n.

i +ip+...+i, =k

For n=2, we have
2
H(1 +A2) = (1 + A2)(1 + Ayz)
i=1
=1+ (A1 + A)z + 441,22
= ey + €12 + e,2°
2

=Y ez
k=0

So the assertion is true for n=2, Assume the proposition is true for n, i. e that

Z ezt = ﬁ(l + Aiz)
i1

n>0
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Elementary and complete symmetric functions

and we want prove that the proposition is true for n+1, i. e that

n+1 n+1
Z ezt = H(l + Aiz)
k=0 i=1
We have
n+1 n
[Ta+12 = [Ja+12)0 + Avaz)
i=1 i=1
= (Z ekzk] (1 + Ay112)
k=0
= Z ez’ + Ay Z e
k=0 k=0
n n
= Z ez’ + Ay ex_12¢
k=0 k=1

S|

n

= Z e+ Ay Y 2
k=0 k=0

=Y €@ + A7
k=0

— (n+1) k
=) 4
=
n+1

= E Eka.

k=0
Thus the proposition is true foralln > 0 m
2.1.2 Complete symmetric functions

Definition 2.1.3 [4] Let k and n be tow positive integer and (A1, Ay, ..., A,) are the set of given
variables. Then the complete symmetric functions hi(A1, Ay, ...., Ay) is defined by

K = (A, Agy ooy A) = Z AAR A, (2.2)

i1+ip+...+i=k

with iy, iy, ...i, > 0 and I = 0,Yk < 0.
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Elementary and complete symmetric functions

Example 2.1.2 For an equation of degree (n=4, roots:A1, A2, A3, A4), we have

@) _
h =1
h§4) =AM+ A+ A3+ Ay
B = A2+ 224 A2+ A2+ Aida + Aids + Ay + Aads + AaAy + AsAy

EY = A3+ A3+ A3+ A% + 4 A0As + AAsAy + Aidody + Aodsdy + A2A0 + A2A5 + A2A4 + ...

B = AT+ A5+ A3+ A0+ MAadsdy + A2A2 + A2A2 + 202 4 202+ 222 + A202 + A3, + ...

Proposition 2.1.2 [7] The generating function of the completes symmetric function is given
by
1
H@) =) = ———

=0 [Ta-22
i=1

Proof. We have
K" = (A, Agy ooy A) = Z AlAR A,

i1+ip+...+i=k

for n=2, we have:

Y =4z

k>0

=1+ (A +A)z+ (A2 + AAda + A5)Z% + ...

=(1+Mhz+ A2 + )1+ Aoz + A2Z% +..)

- [Z(Alz)k) + (Z(Azz)k]

k>0 k>0
1

T (-1 - A2
1

ﬁ(l - Aiz)
=1

So the assertion is true for n=2, Assume the proposition is true for n, i. e that

i h(ﬂ)zk = — 1 ,
k=0 ‘ H(1 —A2)

i=1
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Elementary and complete symmetric functions

and we want proove that the proposition is true for n+1, i. e that

1
Z hl(cnﬂ)zk - !
=0 [[a-22)

i=1

We have
1 1
HD = A D+ B,
Thus
1) _k 1
YR = ¥ (A 4 B
k=0 k=0
_ A”“Z B Z B2
k>0 k>0
An+1Zhn 1) k_l_Zh(n) k
k=1 k>0
= Ay1Z Z hl((””)zk + Z h,(:l)zk
k=0 k>0
Which gives
Y 2 = Az Y I = Y 2
k=0 k=0 k=0
Thus
1
YR = A) = Y N =
k=0 k=0 H(]- _ /\iz)
i=1
Then

Zh(ﬂ+1) k n+1z) !
k>0 H(]- _ /\ Z)

1

n+1

[Ja-12

i=1

Thus the proposition is true foralln > 0 m

Proposition 2.1.3 [4] For all n > 0, we have

1. H(z). E(-z)=1.
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Elementary and complete symmetric functions

Proof.
1. We have
E(z) = Z ezt = H(l + Aiz)
k>0 i>1
E(-2)= ) a2 = [[a-A2)
k>0 i>1
H@) =) (-2 = [ [ +12)"
k>0 i>1
Then,
H(z).E(~z) = (Ha - /\iz)‘l) (Ha - /L-z)) =1
i>1 i>1

This completes the proof m

2.2 Some properties on symmetric functions

Definition 2.2.1 [4] Let n be positive integer and A = {ay,a,} is set of given variables, then

the symmetric function S, is defined by

n+l _ an+1

_ _n 2
Sn(A) = Su(ar + a2) = PR

with

S()(Cll + le) =1, 51(111 + 112) =m +ap, Sz(lll + Elz) = ll% + aia, + ll%.

Definition 2.2.2 [1] Let A and B be any two alphabets. We define S, (A — B) by the following

form

Z S{(A - B)z/ = E(-2)H(2). (2.3)

j=0
with
He) = | (1 - b2 and E(~z) = H(1 — az)
B

be acA

Proposition 2.2.1 [12] By taking A = ¢ in (2.3), we obtain

i Si(-B)2 = [ [ -ba), (2.4)
j=0

beB
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Elementary and complete symmetric functions

Proposition 2.2.2 [12] By taking B=¢ in (2.3), we obtain

j=0

Z Si(A)zl = H“ 5

acA

Lemma 2.2.1 [4] Given two alphabet A = {x} and B = {by, s, ..., b}, we have

Susk(x —B) = kan(x - B),
forall k > 0.

Proposition 2.2.3 [4] If A is of cardinal 1 (i. e. A=x), so

H(l — bz)
Si(x—B)

beB
L R— S B)+2 22"~
(1 - xz) 25l =B) +z (1 -xz)

Proof. According to (2.3) we have :

Thus
Z Si(x—B)zl =1+...+S;4(x— B)zI " + ;1 (x — B)z*" +
=0
=1+..+S(x - Bz " +2/(Si(x = B) + Sjs1(x = B)z + ...)
=1+..+54(x- B)z ! + zj(S]-(x —B)+xSi(x—B)z+...)
=1+..+S5(x~— B)z ™! + szj(x ~B)(1 +xz +x°2% + ..)
, Si(x—B)
— i-1g. _ j
1+..+2754(x-B)+z d-x2)
Then
H(1 — bz)
. Si(x—B
bep = 1+...+z]‘1Sj_1(x—B)+zf i )

(1-x2)

This completes the proof m

(1-xz)°

(2.5)

(2.6)

2.7)

Proposition 2.2.4 [2] Considering successively the case A = ¢, B = ¢, we get the following
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Elementary and complete symmetric functions

factorization

Thus

Corollary 2.2.1
by

Corollary 2.2.2

Corollary 2.2.3
by

Corollary 2.2.4
is given by

Corollary 2.2.5

Corollary 2.2.6
by

Corollary 2.2.7
given by

[e¢]

i S{(A—-B)z = i S(A)Z/ Z S(-B)z.

j=0 j=0 j=0

S(A-B) = Z]‘ S;-«(A)Sk(-B).
k=0
[5] the symmetric function of bivariate Gaussian Fibonacci numbers is given
GEy = iSu(p1 + [=p2]) + (1 = D)Su-a(pr + [=p2])-
[5] the symmetric function of bivariate Gaussian Lucas numbers is given by
GLy = 2= )Su(p1 + [=p2]) + (=1 + 30)S,a(p1 + [-p2]).
[5] the symmetric function of bivariate Gaussian Jacobsthal numbers is given
Gl = 55u(p1 + [-p2D) + (1= $)S11(p1 + 2.
[5] the symmetric function of bivariate Gaussian Jacobsthal-Lucas numbers
Gin = 2= )Sulpr +1-paD) + Gi = DSy + [
[5], the symmetric function of bivariate Gaussian Pell numbers is given by
GP, =iS,(p1 + [-p2]) + 1 = 20)S,—1(p1 + [—p2)).
[5], the symmetric function of bivariate Gaussian pell-Lucas numbers is given
GQu = (2= 205u(p1 + [=p2]) + (61 = 2)S,1(p1 + [=p2]).
[5] the symmetric function of bivariate Gaussian Jacobsthal polynomial is

GI() = 25,1 + [=paD) + (1= )S,aps + [-p2)).
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Corollary 2.2.8 [5] the symmetric function of bivariate Gaussian Jacobsthal-Lucas polynomial

is given by
. i o
Gj(x) = (2 - E)Sn(Pl +[=p2]) + 2ix + 5~ DSp-1(p1 + [=p2D).
Corollary 2.2.9 [5] the symmetric function of bivariate Gaussian Pell polynomial is given by

GP(x) = iSu(pr + [-p2]) + (1 = 2ix)Sya(pr + [=p2)).

In the following table we give symmetric functions of some numbers and polynomial[5]

Sequences symmetric functions

GF, iS,(p1 + [=p2]) + (1 = 1)Syca(p1 + [-p2])

GLy, (2 =D)Su(p1 + [=p2)(=1 + 30)S-1(p1 + [=p2])

Gl 2Sup + [=paD) + (1= 215,41 + 1)

Gjn iSy(p1 + [=pa) + (1= 205, 1(p1 + =)

GP, = iSu(pr + [=pal) + (1 = 20)Sya(p1 + [=p2])
GQi | @=20Supr + [-paD) + (6= DS, (s + [pa))
GI) 2Supr+ Tpa) + (1= )S01(pn + =)
G iSu(pr + [=p2D) + (1= 2005, 1(p1 + =)
Gi) | @ )Su(pr + [-p2D) + Qi+ 5 = DS,y + [-p2)

Tablel:Symmetric functions of some numbers and polynomial.
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CHAPTER 3

ORDINARY GENERATING
FUNCTIONS OF THE PRODUCTS OF
GAUSSIAN NUMBERS WITH
SYMMETRIC FUNCTIONS IN
SEVERAL VARIABLES

In this chapter, we introduce some new generating functions for the products of Gaus-
sian numbers such as Gaussian Fibonacci, Gaussian Lucas, Gaussian Jacobsthal, Gaus-
sian Jacobsthal Lucas, Gaussian Pell, Gaussian Pell Lucas numbers, and Gaussian

polynomials with symmetric functions in several variables.

3.1 Definitions and some properties

Definition 3.1.1 [4] Let f be a function on R", the divided difference 0,,,,,, is defined by

_ f(all cer iy Ait1y oy an) - f(al/ vy Ai—1,Ai+1, 44y alfl)
ai — di+1

aﬂilllm (f )

3.1)
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Ordinary generating functions of the products of Gaussian numbers with symmetric
functions in several variables

Definition 3.1.2 [4] The symmetrizing operator 5];1@ is defined by

kf(al) - ﬂgf(ﬂz)

ay —az

aluzf( 1) - Vk € N. (32)

Theorem 3.1.1 [12] Let P = {p;, po} and A = {a1,a,, a3, a4}, be two alphabets, then we have

Z Sp(@+ay+as+as)S,(p1+p2)z" = (3.3)
n=0
1- (Plpz)e( 22 + [(Ple)(Pl +p2)] ez

11 (1 -apz) ]:_{ (1 —-aipyz)

B (p1p2) [(p1 + p2)* = pap2] eff)z‘L
4 4 .
11 (1 -apz) 1—_[1 (1 - apyz)

Theorem 3.1.2 [12] Let P = {p;, po} and A = {a1,a,, as, a4}, be two alphabets, then we have

Z Su(@r+ay+az+as)Sy1(p1 +p2)z" = (3.4)

n=0

()2 ()3

— (P +p2)e; [(Pl +p2)* = pip2] e

ljl (1 —aip12) 1_—{ (1 —aipsz2)

4

(pr+p) [+ p2) = 2pipa] 2
4 4
11 (1—-aip1z) U1 (1 —aipyz)

By changing p, by (—p») in relationssips, we obtain

()2

(P p2)e; [(p1p2)(p1 — riQ)]e(3 23

H(l — (p1 — p2aiz — p1paa; 2°)

Z Su(ar + az + a3 + a4)S,(p1 + [-p2])2" =

(3.5)
N (P1p2)[(p1 — Pz) + pip2le
4
[T = 1 = p2)az = pipaaiz?)

i=1
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functions in several variables

0 @ 4,2 2 4,3
e, 'z— - e, 'z-+ - + e,z
Y 5,001 + a3 + s + 4)Sys (1 + [-pal)2” = (p1 —p2)ey 2" + [(p1 — p2)” + papale;

n=0

4
H(l — (p1 — p2aiz — p1paa;z°)
i=1
_ (p1 — p2)l(p1 — p2)* + 2?’1192]3514)24

4
[ 10 - @1 - poaiz - pipaaiz?)
i=1

(3.6)

3.2 Main results

3.2.1 On the generating functions of numbers

In this part, we now conider the previous theoremes in order to derive a new generating
functions for the products of the symmetric functions in several variables with Gaussian
Fibonacci, Gaussian Lucas, Gaussian Jacobsthal, Gaussian Jacobsthal Lucas, Gaussian

Pell, Gaussian Pell Lucas numbers.

Theorem 3.2.1 Provided that n be a natural number, the novel generating function for the

product of Gaussian Fibonacci numbers and symmetric function in multipe variables is

; N (4 N (4 N, (4 APRCY!
i+ (1—i)e;'z—(1-2i)e,’z> + (2 — 3i)e; 'z — (3 — Si)e, 'z*

Z Su(a1 +ap +az +ay)GF,z" = "
n=0 H(l —a;z — a’z%)

=1

Z (3.7)

Proof. . We notice that
GF, = i5,(p1 + [-p2]) + 1 = )S,-1(p1 + [-p2])

Then,

[>1s

S.(ai + ar + a3 + a,)GF,z"

=
I
o

Sn(ar + ax + az + a4) (iSu(p1 + [-p2]) + (1 = )S,a(p1 + [-p2]) 2"

3
1l
(=]

12

Su(ar + ax + az + a4)S,(p1 + [—-p2])Z"

B
Il
[=]
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+(1-1) Z Su(m + az + a3 + a4)S,—1(p1 + [-p2])Z"

n=0
1+e(4) 2 (4) 3+2€ z4

H(l —-a;z — al.zz2)

6(4)2 (4)22 +2€ z3 36() 4

H(l —a;z — a;z%)

i+(1- 1)6(4) — (1 =2i)el"22 + (2 - 3i)el’2® - (3 - 5i)elVz*

H(l —az — a’z%)
i=1

=1

+(1—z)

This complet the proof m

Theorem 3.2.2 Provided that n be a natural number, the novel generating function for the

product of Gaussian Lucas numbers and symmetric function in multipe variables is

2—i+ (- 1+31)e()z+(3 41)6() 2

H(l —-a;z — aizZZ)

( —4 + 71)6(4)23 +(7 - 111)6(4) 4

H(l —-a;z — afzz)
i=1

Z S.(a1 +a, +as +a,)GL,Z" =

n=0

(3.8)

Proof. . We notice that

GL, = 2 =1)Su(p1 + [-p2]) + (=1 + 30)S,,1(p1 + [-p2])

Then,
Z S.(a1 +ar + as + a,)GL,z"
n=0
= Z Sn(lll +a, +asz + 614)((2 — Z)Sn(pl + [—pz]) + (—1 + 3i)Sn—1(p1 + [_pZ]))Zn
n=0

= 2-1) ) Sulmy + a2 + a3 + a9)S,(p1 + [-p2)2"

+ (=1 + 3i) Z Su(@r +ay + a3 +a4)S, -1 (p1 + [-p2))2"

n=0
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4,3 4),4

1+e( — e, z3 +Ze

= @-i)—;

1_[ —az—az

=1
<4> — 22 4 2973 — 304

H(l —az — a’z%)
i=1

2—i+(-1+ 3i)e§4)z + (3 — 4i)elz?
- 4
H(l —aiz —a’z%)

( 4+7z)e(4) S+ (7 - 111)6(4) 4

H(l —-a;z — aizzz)
i=1

+ (- 1+3z)

This complete the proof m

Theorem 3.2.3 Provided that n be a natural number, the novel generating function for the

product of Gaussian Jacobsthal numbers and symmetric function in multipe variables is

E +(1- )e(4)z +(-1+ 1)6(4) 2

Z Sp(ay +ax +as +ay)GJ,z" =
B H(l — a;z — 2a77°)

3.9
@) _3 11 @4 59
(3- z)e z+(5+2)

H(l — a;z — 2a77°)
i=1

Proof. . We notice that

GJ, = ésn(Pl +[-p2]) + (1 - %)Sn—l(pl +[-p2])

Then,
Z Su(a1 + ar + az + a,)GJ,z"

n=0

= Z Su(ar +ap +az + ay) (ésn(Pl +[-p2]) + (1 - é)sn—l(pl + [—Pz]))zn
n=0
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= % Z Su(ar + a + a3 + a4)S,(p1 + [-p2])2"

n=0
i (o8]
+a—?z;&%+@+%+hﬁmwh+men

i1+ 26(24) 2 26(4)2 + 6e )74

2 4
H(l —-a;z — 2afzz)
i=1
i 6Pz o2 4 367 — 308
+(1-=2)

2

H(l —-a;z — 2011.222)
i=1

. . "
S+-3)elz+ (145 )e<4> 24 (3- i)e(34)z3 +(-5+ i)z

H(l —-a;z — Zafzz)
i=1

This complete the proof m

Theorem 3.2.4 Provided that n be a natural number, the novel generating function for the

product of Gaussian Jacobsthal Lucas numbers and symmetric function in multipe variables is

= 2- % +(-1+ gi)eg‘*)z +(5- z)e<4> :
Z Su(ar + ax + a3 + a4)Gj,z" =
n=0

1
H(l —a;z — 2a7z%)
i=1

(3.10)
17
(-7 + 71’)824)23 + (17 - 3 1)6(4) 4

4
H(l —a;z — 2a7z%)
i=1

Proof. . We notice that

Gju = 2= HSulpr + [-p2D) + (i = DS,1(p1 + [-p2)
Then,

Z Sp(ar + ax + a3 + a4)Gj,z"

n=0

Z Sp(ar +ap +az +ag)((2 — —)5 (p1 + [-p2]) + ( i—1)S,-1(p1 + [=p2])2"
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. [ee]

Z n(a1 + ax + a3 + a4)S,(p1 + [-p2])Z"

n=0

I\JIN

(o]

+ ( i— 1)2 Sn(ar + az + a3 + a1)S,-1(p1 + [-p2])2"
i 1+ 26(4) 2 26(4)2 + 6e )74
2
H(l —a;z — 2afzz)
5 Wz e®2 4 36 5l

+ ( i— 1)
H(l —-a;z — 2a1.222)
i=1
: 7
2— 4+ (-1+ gi)e§4)z +(5 - S22

2
4
H(l —-a;z — Zafzz)

=1

1
(=7 + z)e<4>z3+(17 32 el?z*

H(l —-a;z — Zaizzz)
i=1

This complete the proof m

Theorem 3.2.5 Provided that n be a natural number, the novel generating function for the

product of Gaussian Pell numbers and symmetric function in multipe variables is

z+(1—21)e4z+( 2 + 5i)el) 22

4
H(l - 20,z — az”)
i=1

(5 - 12i)el"2% + (=12 + 29i)elVz*
+

1
H(l — 20,z — a;z”)
i1

Z S.(ai + ap + az + ay)GP,z" =

(3.11)

Proof. . We notice that

GP, =iS,(p1 + [-p2]) + (1 = 20)S,-1(p1 + [—p2])

Then,
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o0
Z Su(ay + ap + az + ay)GP,z"
n=0

= ) Sular + a2 + a5+ a3) (iSu(pr + [—pal) + (1 = 208, 1(pr + [-pa])) 2"

n=0

i} Sul@r + a2 + s+ a)Su(pr + [-p2))2"

n=0

(o]

+ (1 - 2i) Z Su(ar + ay + az + ay)S,—1(p1 + [-pa2])Z"

n=0
1+e 22 - 2e7° + 5elVz*

H(l —2a;z — a’z?)
i=1

(4)2 26(4)22 +5€(4) 3 126(4) 4

H(l —2a;z — aizzz)
i=1

: N (4 N (4 4 4
it (1 -2i)e"z + (=2 + 5i)e, 2 + (5 — 12i)e; 2% + (=12 + 29i)e, 'z*
1

H(l —2a;z — afzz)

i=1

+(1 - 2i)2L

This complete the proof m

Theorem 3.2.6 Provided that n be a natural number, the novel generating function for the

product of Gaussian Pell Lucas numbers and symmetric function in multipe variables is

2 - 2i+ (=2 + 6i)e'Yz + (6 — 14i)elV2?

H(l —2a;z — az”)
i=1

(—14 + 34i)elVz? + (34 — 82i)elVz*
+

1
H(l —2a;z — az?)
i=1

Z Su(ay + ax + az + a,)GQ,z" =
n=0

(3.12)

Proof. . We notice that

= (2= 20)5u(p1 + [=p2]) + (6 = 2)S1(p1 + [-p2])

Then,
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functions in several variables

o0
Z Su(ay + ax + as + a,)GQ,z"
n=0

= ) Sulan + a2 + a5 +a) (2= 20)Su(pr + [-p2)) + (6i = 2)S,1

n=0
(p1 + [=p2])) 2"
=(2-20) ) Sular + > + a5 +a)Su(pr + [-pa])2”
n=0
+(6i=2) ) Sular + a2 + a5+ 23)S, 1 (p1 + [-pa])2”
n=0

RET 26(34)23 + 5elz4
= (2 - 2i) :

H(l —2a;z — a;z”)

i=1
ez 2e8022 4 5elP23 — 12624
+ (61 — 2) 7
2.2
H(l —2a;z — a;z")

i=1
2= 2i+ (=2 + 6i)el’z + (6 — 14i)e}’ 22
= 4
H(l —2a;z — aizzz)
i=1

(=14 + 34i)e¥23 + (34 — 82i)et24
3 4
+

4
H(l —2a;z — afzz)
i=1

This complete the proof m

Theorem 3.2.7 Provided that n be a natural number, the novel generating function for the

product of Gaussian Jacobsthal polynomials and symmetric function in multipe variables is

L+ (1= 5)ez+ (-1 +i(x + 1))el’z?

Z Sp(ay + ar + az + a,)GJ,(x)z" = T
n=0 H(l —a;z — 2xa>z”)
i=1

(1+2x —i(2x + 1))el’2% + (=1 — dx + (222 + 3x + L)elV'z*

4
H(l —a;z — 2xaz”)
i=1

(3.13)
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Proof. . We notice that

GI(®) = 25,1+ [-paD) + (1= 2)Suaps + [p2])

Then,
Z Su(ay + ap + az + a,)GJ,(x)z"

n=0

= Y Sular + 0z + a3+ ) (34001 + [=p2D) + (1= )Sua(ps + [paD)) 2"
n=0

= % ZS Su(a + ap + as + a4)S,(p1 + [—p2])Z"

i o0
+(1- E) nz:(; Su(ay + ax + a3 + a4)S,1(p1 + [-p2])2"

i1+ 2xe§4)z 2xe(4)z3 +(2x + 4x2)ei4)z4
2

H(l —a;z — 2xa>z”)

(4) 6(4)22 +(1+ 2x)e(4) S—(1+ 4x)efl4)z4

H1- 92
H(l - a;z — 2xa’z%)

L+ (1 =52+ (=1 +i(x + 1))el?2?
4

H(l —-a;z — 2xaz.222)

i=1
4) 4
(1+2x—1(2x+2))e 22+ (=1 —4x +i(2x% + 3x + 3)e, 'z*

+

H(l —-a;z — 2xafzz)
i=1

This complete the proof m

Theorem 3.2.8 Provided that n be a natural number, the novel generating function for the

product of Gaussian Jacobsthal Lucas polynomials and symmetric function in multipe variables

18

2= &)+ (=1 +iQx + 1))elz + (4x + 1 - i(Bx + 1))elz?

Z Su(ar + a2 + a3 + 15)Gju(x)2" =
n=0

H(l —az — 2xa:z%)
i=1
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4 4)
(—6x — 1+ i(4x? + 4x + 3))ey 2% + (8x2 + 8x + 1 — i(10x* + 5x + 3)e; 'z*

4

H(l —az — 2xa’z%)

i=1

Proof. . We notice that

Gin() = (2= )Sulpr + [-paD) + Qix-+ 5 = DS,y + 2]

Then,
Z Su(a + ap + a3 + a4)Gj,(x)z"

=Y 5.0+t a3 + @)@ 2)Sulps + [pal) + Qi + 3~ DS, + [-paD)e"
n=0
= (2 - %) nZ:O Sn(al +a, +as + ﬂ4)5n(}71 + [—pz])Zn

o .
+ (21x + E - 1) Z Sn(ﬂll +a, +a3+ a4)Sn_1(p1 + [—le)zn

o 1)1 + 2xe( ) 2 er( 128 + (2x + 4x?)
2

H(l —-a;z— 2xa1.222)

654)2 e(4)221 + 2xe<4)z3 +(1- 4x)e(4) 4

i
+Q2ix+ = -1
(2ix > )

H(l —-a;z — 2xafzz)

_e- D+ (=1 +i2x + 1))z + (dx + 1= iBx + 1))elz?

l_[(l —a;z — 2xa’z%)

4)
(=6x — 1 + i(4x? +4x+2))e 22+ (8x% + 8x + 1 — i(10x? + 5x + 3)e, z*

H(l —a;z — 2xa>z”)
i=1

This complete the proof m
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Theorem 3.2.9 Provided that n be a natural number, the novel generating function for the

product of Gaussian Pell polynomials and symmetric function in multipe variables is

: ) : @)
i+ (1-2ix)e; 'z + (=2x + i(4x* + 1))e, 2>

Z Su(ay + ax +as + ay)GP,(x)z" =

1
=0 H(l — 2xa;z — a’z%)
i=1
N (4x? +1—4i(2x% + Jc))e(34)z3
4 (3.14)

H(l — 2xa;z — a’z%)

i=1
2x(4x? +2) +i(16x* + 12x% + 1)6514)24
4

l_[(l — 2xa;z — a:z%)

i=1

Proof. . We notice that

GP,(x) = iS,(p1 + [-p2]) + (1 = 2ix)S,—1(p1 + [-p2])

Then,

Z Su(ay + ap + a3 + a4)GP,(x)Z"

n=0

=Y Sular + @ + a3 + a)(iSu(pr + [=pa]) + (1 = 2i)S, 1(p1 + [-paD)2"
n=0

iy Su(ay +ay+as+as)Sy(p1 + [-pa])2"
=0

n

+ (1 - 2ix) Z Su(@ + az + as + a4)S, 1 (p1 + [—pa])2"
n=0

4 4 4
_ i1 + eg )72 — erg )28+ (42 + 1)efl )74

4
H(l - 2xa;z — a:z%)
i=1

e§4)z - 2xe§4)z2 + (4x% + 1)e§)4)z3 — (2x(4x* + 2))efl4)z4

+ (1 - 2ix) -

H(l — 2xa;z — a>z”)

i=1
. .\ (4 . (4)
i+ (1-2ix)e) 'z + (=2x + i(4x* + 1))e, 'z

- 4
H(l — 2xa;z — a°z%)
i1
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(4x? +1 —4i(2x% + x))e(34)23 —2x(4x? + 2) + i(16x* + 12x> + 1)3514)24
+

4
H(l - 2xa;z — a:z%)

i=1

This complete the proof m
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CONCLUTION

In this work, the use of symmetric functions we have derived some new generating
functions for the products of Gaussian numbers such as Gaussian Fibonacci, Gaus-
sian Lucas, Gaussian Jacobsthal, Gaussian Jacobsthal Lucas, Gaussian Pell, Gaussian
Pell Lucas numbers. and Gaussian polynomials with symmetric functions in several

variables.
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ABSTRACT

In this dissertation, we present a theorems in order to calculate new generating functions
for second-order recurrences relations. The presented theorem is based on symmetric
functions, we gived the generating functions of the products of Gaussian numbers
Gaussian Fibonacci, Gaussian Lucas, Gaussian Jacobsthal, Gaussian Jacobstal Lucas,
Gaussian Pell, Gussian Pell Lucas and Gaussian Polynomials with symmetric functions

in several variables.

Key Words: Recurrence relations, symmetric functions, generating functions
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RESUME

Dans ce mémoire, nous présentons un théoréme afin de calculer des nouvelles fonctions
génératrices pour les relations de récurrences du second ordre, le théoréme présenté est
basé sur les fonctions symétriques, nous permet d’obtenir les fonctions génératrices des
produits de nombres de Gauss, les nombers Gauss Fibonacci, les nombers Gauss Lucas,
les nombres Gauss Jacobsthal, les nombres Gauss Jacobstal Lucas, les nombres Gauss
Pell, les nombres Gauss Pell Lucas et Polyndme Gauss avec les functions symétriques

plusieurs variables.

Mots-clés: Relations de récurrences, fonctions génératrices, functions symétriques.
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