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Abstract

In this work, we have outlined some tools to study dynamical systems, such as equilibrium

points, stability, bifurcations, and chaos, as well as some control methods, the chaotic attractor,

and Lyapunov exponents. As an application, we studied a duopoly model consisting of two

different equations, where each equation represents a player, and each player seeks to maximize

their profits and market share using different strategies. The results obtained in this work con-

tribute to a better understanding of complex financial markets and to the improvement of the

development of more accurate and efficient economic models. It is useful for financial analysts

and investors to improve their strategies and reduce risks. The results indicate several important

aspects: the stability of equilibrium points, bifurcations, and chaos, where the results indicate

the existence of bifurcations at equilibrium solutions (Flip, Neimark Sacker), as well as the

presence of a chaotic attractor that was controlled by the OGY method. In addition, numerical

simulation was used to confirm the results obtained theoretically.

Key words: discrete dynamic system, bifurcation, stability, chaos, attractors, Lyapunov

exponent, control.



Résumé

Dans ce mémoire, nous avons énoncé certains outils nécessaires pour étudier les systèmes

dynamiques, telles que les points d’équilibre, la stabilité, les bifurcations, le chaos, ainsi que

certaines méthodes de contrôle, l’attracteur chaotique et les exposants de Lyapunov. et comme

application, nous avons étudié un modèle de duopole constitué de deux équations aux dif-

férences, chaque équation représente un joueur et chaque joueur cherche à maximiser ses profits

et sa part de marché en utilisant des différentes stratégies. Les résultats obtenus dans ce travail

contribuent à une meilleure compréhension des marchés financiers complexes et à l’amélioration

du développement de modèles économiques plus précis et efficaces. Il est utile aux analystes

financiers et aux investisseurs pour améliorer leurs stratégies et réduire les risques. Les résul-

tats indiquent plusieurs aspects importants: la stabilité des points d’équilibre, les bifurcations,

le chaos, où les résultats indiquent l’existence de bifurcations aux solutions d’équilibre (Flip,

Neimark Sacker), ainsi que la présence d’une attracteur chaotique qui a été contrôlé par la méth-

ode OGY. De plus, la simulation numérique a été utilisée pour confirmer les résultats obtenus

théoriquement.

Les Mots Clés: système dynamique discret, bifurcation, stabilité, chaos, attracteur, exposant

de Lyapunov, controle.



صخلم

كلذيفامب،عطقتميكيمانيدماظنةساردلةيساسألاميهافملاضعبلوانتمت،ةركذملاهذهيف

سسأو،يوضوفلابذاجلا،اهيفمكحتلاقرطضعبوىضوفلا،تابعشتلا،رارقتسالا،نزاوتلاطاقن

نيتيلضافتنيتلداعمنمفلأتيثيحيئانثلاراكتحالاماظنةساردتمت،قيبطتلانمءزجك.فونوبايل

مادختسابةيقوسلاهتصحميظعتوحبرلاميظعتىلإىعسياًبعالةلداعملكلثمتو،(قورفيتلداعم)

،ةدقعملاةيلاملاقاوسألللضفأمهفيفلمعلااذهيفةدوجوملاجئاتنلامهاستثيح.ةفلتخمتايجيتارتسا

نيسحتلنيرمثتسملاونييلاملانيللحمللةديفميهو،ةيلاعفوةقدرثكأةيداصتقاجذامنريوطتيفدعاستو

تابعشتلا،نزاوتلاطاقنرارقتسا:ةمهمبناوجةدعىلعجئاتنلازكرت.رطاخملاليلقتومهتايجيتارتسا

نيبتامك،(ركاسكرامين،بيلف)نزاوتلالولحدنعتابعشتدوجوىلإجئاتنلاريشتثيح،ىضوفلاو

ديكأتلةيددعلاةاكاحملالامعتسامتامك،يجوأةقيرطمادختسابهيفمكحتلامتويوضوفبذاجدوجو

.اًيرظناهيلعلصحملاجئاتنلا

،فونوبايلسسأ،بذاجلا،ىضوفلا،رارقتسالا،بعشتلا،عطقتملايكيمانيدلاماظنلا:ةيحاتفملاتاملكلا

.مكحتلا
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INTRODUCTION

Dynamic systems are mathematical concepts that allow the study of phenomena that develop

over time [30]. This evolution can be expressed by a limited set of equations, which can be

ordinary differential equations, partial differential equations, or mappings (recurence iterations).

These phenomena originate from physics, chemistry, mechanics, biology, economy, or the en-

vironment [19]. Dynamical systems consist of a phase space (the space of possible states of

the phenomenon suitably parameterized), equipped with an evolution law that describes the

temporal variation of the system’s state [19].

The theory of dynamical systems, which can be traced back to around 1665 with Isaac Newton

[1], provides a mathematical framework for understanding how systems evolve over time. New-

ton initially described these systems using ordinary differential equations, giving rise to what

we now refer to as continuous dynamical systems [1]. In these systems, also known as flows,

the state of the system evolves continuously over time, with each point in the system following

a smooth path or curve [4].

In the 1880s, Poincaré found it convenient to replace certain dynamical systems with discrete

dynamical systems described by difference equations (or recurrences, or point transformations),

that is, systems in which time evolves in regular sequence breaks [38]. Thus, for more than a

hundred years, dynamical systems have been defined in two classes: continuous and discrete.

Dynamic system models generally depend on one or more parameters, and variations in the

parameters can cause qualitative and quantitative changes in their properties. This change pro-

i



Introduction

duces a phenomenon that we will call bifurcation. The types of bifurcation (local or global) are

determined by their effect on the system or by the way they occur, which is generally related to

their causes [24].

Around 1900, mathematician Henri Poincaré discovered what is called chaos in this system,

but the birth of the study of chaos dates back to 1963, thanks to meteorologist Edward Lorenz

[22]. The term chaos refers to a special state of a system whose behavior never repeats, is highly

sensitive to initial conditions, and is unpredictable in the long term [35]. It has been called a

chaotic dynamical system [22]. From his time to the present day, chaos remains an important

field of research, especially in terms of control and anti-control. This work is composed of an

introduction and four chapters organized as follows:

In the first chapter, we present some important notions about dynamical systems and the con-

cepts of stability of fixed points and periodic points.

The second chapter addresses bifurcation theory and its types, provides also various mathe-

matical properties that help us characterize chaotic behavior, and gives some examples.

In the third chapter, we indicate the existence of methods for controlling chaotic dynamical

systems, discuss some of these methods, and then provide an example.

Finally, we conclude our work with a chapter dedicated to the application of the previously

discussed theoretical tools (equilibrium points, stability, bifurcations, Lyapunov exponents, and

strange attractors) to analyze a discrete duopoly model.

The theoretical results obtained are confirmed by numerical simulations.

ii



CHAPTER 1

GENERALITIES ON DISCRETE

DYNAMICAL SYSTEMS
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CHAPTER 1. GENERALITIES ON DISCRETE DYNAMICAL SYSTEMS

In general, a dynamic system describes phenomena that evolve in space and/or time. They

were developed and specialized during the 19th century. The term "system" refers to a set of

state variables (whose value evolves over time) and the interactions between these variables.

Such a dynamic system has two aspects: its state and its dynamics that is, its evolution over time

[4]. Dynamic systems are classified into two categories:

• Discrete-time dynamic systems

• For a continuous-time dynamic system

1.1 Discrete and continuous dynamical systems
Definition 1.1.1. (Discrete autonomous dynamical system) [15] A discrete autonomous dy-

namical system of dimension 𝑛 is described by the following difference equation (recurrence,

iteration, or point transformation):

𝑥𝑡+1 = 𝑓 (𝑥𝑡), 𝑥0 = 𝑥(0) (1.1)

where 𝑓 : R𝑛 −→ R𝑛 is a differentiable function, and 𝑥0 ∈ 𝑋 ⊂ R𝑛 is an initial value, with

𝑥𝑛 ∈ 𝑋 being the vector of system state. Furthermore:

• 𝑥1 = 𝑓 (𝑥0) is called the first iteration of 𝑥0 by the function 𝑓 .

• 𝑥2 = 𝑓 (𝑥1) = 𝑓 ( 𝑓 (𝑥0)) = 𝑓 2(𝑥0) is called the second iteration of 𝑥0 by the function 𝑓 .

• 𝑥𝑛 = 𝑓 𝑛 (𝑥0), where 𝑓 𝑛 = 𝑓 ◦ 𝑓 ◦ · · · ◦ 𝑓 (𝑛 times), is called the 𝑛-th iteration of 𝑥0 by the

function 𝑓 .

The triplet (𝑋, 𝑁, 𝜑) defines a discrete autonomous dynamical system, where 𝜑 is given by:

𝜑(𝑥0, 𝑡) = 𝑓 𝑡 (𝑥0) (1.2)

Definition 1.1.2. (Continuous autonomous dynamical system) [10] In the continuous case, a

dynamical system is presented by a system of differential equations of the form:

𝑑𝑥

𝑑𝑡
= ¤𝑥(𝑡) = 𝑓 (𝑥, 𝜇) (1.3)

2



CHAPTER 1. GENERALITIES ON DISCRETE DYNAMICAL SYSTEMS

where 𝑥 ∈ R𝑛 and 𝜇 ∈ R𝑚, and 𝑓 : R𝑛 × R𝑚 → R𝑛 denotes the dynamics of the system.

Example 1.1.1. The Lorenz system is defined by the following equations:


𝑑𝑥
𝑑𝑡

= 𝜎(𝑦 − 𝑥),
𝑑𝑦

𝑑𝑡
= 𝑥(𝜌 − 𝑧) − 𝑦,

𝑑𝑧
𝑑𝑡

= 𝑥𝑦 − 𝛽𝑧,

where 𝑥, 𝑦, 𝑧 are the state variables of the system, 𝜎, 𝜌, 𝛽 are real parameters. The phase space

is R3 and the parameters space is R3.

1.2 Transition from continuous-time to discrete-time systems
There are several techniques for discretizing (sampling) systems. Here is a simple example,

often used: the Euler method. Consider a first-order differential equation:

¤𝑥 = 𝑓 (𝑥𝑡) (1.4)

We want to study the trajectory of this equation only at selected instances, equidistant 𝑡𝑛 =

𝑡0 +𝑛×Δ𝑡. If the sampling period Δ𝑡 is chosen small enough, we can approximate the derivative

of 𝑥(𝑡) by the difference:

¤𝑥 ≈ 𝑥(𝑡𝑛+1) − 𝑥(𝑡𝑛)
Δ𝑡

(1.5)

Then, the continuous-time dynamical system (1.4) can be approximated by the following discrete-

time dynamical system:

𝑥𝑡+1 = 𝑥𝑡 + Δ𝑡 𝑓 (𝑥𝑡) (1.6)

1.3 Fixed points and orbit
In the subsequent developments, our focus will primarily be on first-order systems. The aim

is to describe the evolution of system states based on initial conditions. To achieve this, it is

crucial to introduce the notion of trajectory (orbit) and fuxed points of the system. Let’s consider

3



CHAPTER 1. GENERALITIES ON DISCRETE DYNAMICAL SYSTEMS

a discrete dynamical system (DDS) of first order defined by the iteration of a function 𝑓 (𝑥):

𝑥𝑡+1 = 𝑓 (𝑥𝑡), 𝑥(0) = 𝑥0, 𝑡 ∈ N. (1.7)

Definition 1.3.1. (Fixed points)[4] A fixed point (or equilibrium point) of a dynamical system

is a value of the state variable 𝑥𝑡 that remains unchanged over time according to the system’s

dynamics. Mathematically: it is denoted by 𝑥 ∈ R𝑛 such that 𝑥 = 𝑓 (𝑥), where 𝑓 : R𝑛 → R𝑛

is a differentiable function. Geometrically(In one dimension): fixed points correspond to the

intersections of the function 𝑓 (𝑥) with the diagonal line 𝑦 = 𝑥.

In summary:

➤ A fixed point 𝑥 satisfies 𝑓 (𝑥) = 𝑥.

➤ It represents a state where the system remains unchanged under the dynamics defined by

𝑓 (𝑥).

Example 1.3.1. the fixed points of the cubic map 𝑓 (𝑥) = 𝑥3 can be obtained by solving the

equation 𝑥3 = 𝑥 or 𝑥3 − 𝑥 = 0. Hence, there are three fixed points -1 , 0 , 1 for this map.1.1

−1 −0.5 0.5 1

−1

−0.5

0.5

1

𝑥𝑡

𝑥𝑡+1

𝑥𝑡+1 = 𝑥𝑡

𝑓 (𝑥𝑡) = 𝑥3
𝑡

Figure 1.1: The fixed points of the cubic map
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CHAPTER 1. GENERALITIES ON DISCRETE DYNAMICAL SYSTEMS

Definition 1.3.2. (System orbit)

The orbit (or trajectory) of the system (1.7), given the initial point 𝑥0, is defined as the sequence:

O = {𝑥(0), 𝑥(1) = 𝑓 (𝑥(0)), 𝑥(2) = 𝑓 2(𝑥(0)), 𝑥(3) = 𝑓 3(𝑥(0)), . . . , 𝑥(𝑡) = 𝑓 𝑡 (𝑥(0)), . . .}.

Graphic representation of the orbit

𝑥

𝑦
𝑓

𝑦 = 𝑥

1 2

1

2

𝑥0 𝑥′4

• •

𝑥1

• •

𝑥2

• •

𝑥3

••

𝑥′3

•
•

𝑥′2

•
•

𝑥′1

•

• •

𝑥′0

Figure 1.2: The orbit of the system 𝑥𝑡+1 = 1
4 (𝑥

2
𝑡 − 1) (𝑥𝑡 − 2) + 𝑥𝑡

Definition 1.3.3. An orbit O(𝑥0) is said to be periodic if there exists an integer 𝑝 > 1 such that:

𝑥𝑛+𝑝 = 𝑥𝑛 (∀𝑛). (1.8)

• An orbit is said to be eventually periodic if there exist ( p > 0 ) and ( N > 0 ) such that

equality (1.8) is satisfied for all ( n > N )

• A periodic orbit O(𝑥0) is always a sequence of periodic points. All these points are called

periodic points of period ( p ) of the system.

Definitions 1.3.1. A set 𝐴 ⊂ 𝑋 is called invariant if 𝑓 (𝐴) ⊆ 𝐴, strongly invariant if 𝑓 (𝐴) = 𝐴,

and completely invariant if 𝑓 −1(𝐴) = 𝐴. When 𝑓 is a homeomorphism, these notions coincide.

5



CHAPTER 1. GENERALITIES ON DISCRETE DYNAMICAL SYSTEMS

Definitions 1.3.2. (The product of two dynamical systems) ((X, f)) and ((Y, g)) is the couple

((XY, fg)) where ( fg ) is a continuous application defined as follows:

𝑓 𝑔 : 𝑋 × 𝑌 → 𝑋𝑌, (𝑥, 𝑦) ↦→ ( 𝑓 (𝑥), 𝑔(𝑦)).

Examples of discrete-time dynamical systems

Here are some examples of discrete dynamical systems :

• Double Period System

The double period function, also known as the Baker function, is obtained by squaring on

the unit circle.

Let 𝑥 = exp(2𝑖𝜋𝜃). Squaring it yields 𝑥2 = exp(2𝑖𝜋(2𝜃)). Since the rotation period is 2𝜋,

we define the Baker function as:

∀𝑥 ∈ [0, 1[: 𝐵(𝑥) =


2𝑥, if 𝑥 ∈ [0, 1
2 [,

2𝑥 − 1, if 𝑥 ∈ [ 1
2 , 1[.

𝑋

𝑌
2𝑥 2𝑥 − 1

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 1.3: Baker Function
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CHAPTER 1. GENERALITIES ON DISCRETE DYNAMICAL SYSTEMS

• Rotation on the Circle

We adopt the notation [0, 1] to denote the unit circle.

[0, 1[×R𝛼, where R𝛼 is the function called "rotation by angle 𝛼" defined as follows:

𝑅𝛼 (𝑥) = (𝑥 + 𝛼) mod 1.

The rotation by angle 𝜃0 = 2𝜋𝛼 corresponds to successively applying the operation

𝑥0 = exp(2𝜋𝑖𝛼) on the unit circle. Let 𝑥 = exp(2𝜋𝑖𝜃), then:

𝑇𝛼 (𝑥) = 𝑥0 × 𝑥 = exp(2𝜋𝑖(𝛼 + 𝜃)).

As the rotation period is 2𝜋, we colloquially refer to the rotation by an angle 𝛼 (where

𝛼 ∈ [0, 1[).

Re

Im

𝑥0

T (𝑥)

𝛼

𝜃

Figure 1.4: Rotation on the unit circle
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• Tent Function

Let ( [0, 1], 𝑇) be the function called the "tent" function defined by:

𝑇 (𝑥) =


2𝑥, if 𝑥 ∈ [0, 1
2 [,

2 − 2𝑥, if 𝑥 ∈ [ 1
2 , 1] .

This function is illustrated graphically.

𝑋

𝑌

2𝑥

2 − 2𝑥

0
0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1

Figure 1.5: Fonction Tente

1.4 Notion of stability
The stability analysis of the system’s equilibrium points determines whether an equilibrium

point is attractive or repulsive for all or at least some set of initial conditions. It facilitates the

study of the local, and often the global, properties of a dynamical system, and it permits the

analysis of the implications of small, and sometimes large, perturbations that occur once the

system is in the vicinity of an equilibrium point.

Definition 1.4.1. [12] let 𝑓 : 𝐼 → 𝐼 be a map and 𝑥 be an equilibrium point of f, where 𝐼 ⊂ R𝑛

then :

1. The equilibrium point 𝑥 is stable if, given 𝜖 > 0, there exists 𝛿 > 0 such that

∀𝑥0 ∈ 𝐼 | |𝑥0 − 𝑥 | | < 𝛿 =⇒ || 𝑓 𝑛 (𝑥0) − 𝑥 | | < 𝜖

8
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for all 𝑛 > 0. If 𝑥 is not stable, then will be called unstable.

4 6 8 10

𝑥∗ − 𝜖
𝑥∗ − 𝜎

𝑥0
𝑥∗

𝑥∗ + 𝜎
𝑥∗ + 𝜖

𝑡

𝑥𝑡

(a) Stable fixed point 𝑥.

4 6 8 10

𝑥∗ − 𝜖
𝑥∗ − 𝜎

𝑥0
𝑥∗

𝑥∗ + 𝜎
𝑥∗ + 𝜖

𝑡

𝑥𝑡

(b) Unstable fixed point 𝑥.

2. The equilibrium point 𝑥 is a repelling fixed point if there exists 𝜖 > 0 such that

0 < | |𝑥0 − 𝑥 | | < 𝜖 =⇒ || 𝑓 (𝑥0) − 𝑥 | | > | |𝑥0 − 𝑥 | |

4 6 8 10

𝑥∗ − 𝜖
𝑥∗ − 𝜎

𝑥0
𝑥∗

𝑥∗ + 𝜎
𝑥∗ + 𝜖

𝑡

𝑥𝑡

Figure 1.7: Repelling fixed point 𝑥.

3. The point 𝑥 is an asymptotically stable (attracting) equilibrium point if it is stable and
there exists 𝜂 > 0 such that

| |𝑥0 − 𝑥 | | < 𝜂 =⇒ lim
𝑡→∞

𝑥𝑡 = 𝑥

If 𝜂 = ∞, then 𝑥 is globally asymptotically stable.

9
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2 4 6 8 10

𝑥∗ − 𝜂
𝑥1

0

𝑥∗

𝑥2
0

𝑥∗ + 𝜂

𝑡

𝑥𝑡

(a) Asymptotically stable fixed point 𝑥.

2 4 6 8 10

𝑥1
0

𝑥∗

𝑥2
0

𝑡

𝑥𝑡

(b) Globally asymptotically stable fixed point
𝑥.

1.4.1 Stability of linear systems

• Linear systems of dimension 1

Definition 1.4.2. [16] A linear discrete dynamical system of dimension 1 is defined by

the following difference equation:

𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑏, 𝑥0 ∈ R, 𝑡 ∈ N. (1.9)

Where:

– 𝑎, 𝑏 ∈ R are constants.

– 𝑥𝑡 ∈ R is the state variable.

– 𝑥0 is the initial value.

From the initial value 𝑥0, we can deduce from (1.9):

– At time 𝑡 = 0, 𝑥1 = 𝑎 · 𝑥0 + 𝑏.

– At time 𝑡 = 1: 𝑥2 = 𝑎 · 𝑥1 + 𝑏 = 𝑎(𝑎 · 𝑥0 + 𝑏) + 𝑏 = 𝑎2 · 𝑥0 + 𝑎𝑏 + 𝑏.

– At time 𝑡 = 2: 𝑥3 = 𝑎 · 𝑥2 + 𝑏 = 𝑎(𝑎2 · 𝑥0 + 𝑎𝑏 + 𝑏) + 𝑏 = 𝑎3 · 𝑥0 + 𝑎2 · 𝑏 + 𝑎𝑏 + 𝑏.

Similarly, the value of the state variable at time 3, 4, . . . , t, is

10
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𝑥3 = 𝑎 · 𝑥2 + 𝑏 = 𝑎(𝑎2 · 𝑥0 + 𝑎 · 𝑏 + 𝑏) + 𝑏 = 𝑎2 · 𝑥0 + 𝑎2 · 𝑏 + 𝑎 · 𝑏 + 𝑏,
...

...

𝑥𝑡 = 𝑎
𝑡 · 𝑥0 + 𝑎𝑡−1 · 𝑏 + 𝑎𝑡−2 · 𝑏 + . . . + 𝑎𝑏 + 𝑏,

Hence, for t = 1, 2, . . . ,

𝑥𝑡 = 𝑎
𝑡 · 𝑥0 + 𝑏 ·

𝑡−1∑︁
𝑖=0

𝑎𝑖, 𝑡 ∈ N∗.

Where
∑𝑡−1
𝑖=0 𝑎

𝑖 is a sum of a geometric series, so for 𝑡 ∈ N∗:

𝑥𝑡 =


𝑎𝑡 · 𝑥0 + 𝑏 (1−𝑎𝑡 )

1−𝑎 , if 𝑎 ≠ 1,

𝑥0 + 𝑏𝑡, if 𝑎 = 1.

Theorem 1.4.1. [12] For 𝑓 : R → R, let 𝑥 be a fixed point of (1.1). and 𝑓
′ (𝑥𝑡) = 𝑎 then,

the nature of the fixed point is classified as follows:

– asymptotically stable if |𝑎 | < 1

– unstable. if |𝑎 | > 1

– Indifferent if |𝑎 | = 1

Existence and Uniqueness of Fixed Point

Assuming that the system (1.9) is at equilibrium [23], i.e., for 𝑎 ≠ 1 we have: 𝑥 = 𝑏
1−𝑎 .

This implies 𝑥 = 𝑎𝑥 + 𝑏. Therefore, there exists a unique fixed point.

– For 𝑎 = 1 and 𝑏 = 0, we have: ∀𝑡 ∈ N.𝑥𝑘+1 = 𝑥𝑘 .

This means that every initial condition is a fixed point.

– For 𝑎 = 1 and 𝑏 ≠ 0, the fixed point does not exist.

11
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Finally, we deduce that:

𝑥 =


𝑏

1−𝑎 for 𝑎 ≠ 1,

𝑥0 for 𝑎 = 1 and 𝑏 = 0.

Proposition 1.4.1. [16] The fixed point of a discrete dynamical system 𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑏

exists only if 𝑎 ≠ 1 or (𝑎 = 1 and 𝑏 = 0).

Proposition 1.4.2. [16] The fixed point of a dynamic system 𝑥𝑡+1 = 𝑎𝑥𝑡 + 𝑏 is unique if

and only if 𝑎 ≠ 1.

Remark 1.4.2. [16] The solution of (1.9) can be written in terms of its fixed point and

the initial value 𝑥0 as follows:

𝑥𝑡 =


𝑎𝑡 (𝑥0 − 𝑥) + 𝑥 if 𝑎 ≠ 1,

𝑥0 + 𝑏𝑡 if 𝑎 = 1.

• Linear systems of dimension n

Definition 1.4.3. [16] A linear discrete dynamical system of dimension 𝑛 is a system of 𝑛 linear

first-order difference equations, i.e.:

𝑥1,𝑡+1 = 𝑎11𝑥1,𝑡 + 𝑎12𝑥2,𝑡 + · · · + 𝑎1𝑛𝑥𝑛,𝑡 + 𝑏1

𝑥2,𝑡+1 = 𝑎21𝑥1,𝑡 + 𝑎22𝑥2,𝑡 + · · · + 𝑎2𝑛𝑥𝑛,𝑡 + 𝑏2

... ,
...

𝑥𝑛,𝑡+1 = 𝑎𝑛1𝑥1,𝑡 + 𝑎𝑛2𝑥2,𝑡 + · · · + 𝑎𝑛𝑛𝑥𝑛,𝑡 + 𝑏𝑛

where 𝑡 ∈ N and 𝑋0 = (𝑥1,0, 𝑥2,0, . . . , 𝑥𝑛,0) are given. The matrix representation of a linear

discrete dynamical system of dimension 𝑛 is:


𝑋𝑡+1 = 𝐴𝑋𝑡 + 𝐵, 𝑡 ∈ N

𝑋0 given,
(1.10)

12
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where:

• 𝐴 ∈ 𝑀𝑛 (R): a matrix of real constants of size 𝑛 × 𝑛.

• 𝐵 ∈ R𝑛: a vector of constants.

• 𝑋𝑡 ∈ R𝑛: vector of states of the system.

• 𝑋0 ∈ R𝑛: initial vector.

• 𝑥𝑡 ∈ R: state variable.

𝐴 =

©«

𝑎11 𝑎12 · · · 𝑎1𝑛

𝑎21 𝑎22 · · · 𝑎2𝑛
...

...
...

...

𝑎𝑛1 𝑎𝑛2 · · · 𝑎𝑛𝑛

ª®®®®®®®¬
, 𝑋𝑡 =

©«

𝑥1,𝑡

𝑥2,𝑡
...

𝑥𝑛,𝑡

ª®®®®®®®¬
, 𝑋0 =

©«

𝑥1,0

𝑥2,0
...

𝑥𝑛,0

ª®®®®®®®¬
, 𝐵 =

©«

𝑏1

𝑏2
...

𝑏𝑛

ª®®®®®®®¬
.

Theorem 1.4.3. [7] if 𝑓 : R𝑛 → R𝑛, We calculate the eigenvalues 𝜆𝑖, 1 ≤ 𝑖 ≤ 𝑛, of the matrix A

of the system (1.10) .

If the eigenvalues 𝜆𝑖 are real:

• For 𝑖 = 1, 2, . . . , 𝑛, if |𝜆𝑖 | < 1, it is an attractive node (A sink).

−2 −1.5 −1 −0.5 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0.5

1

1.5

2

𝑥𝑛+1

𝑦𝑛+1

for ( 𝑓 : R2 → R2) A sink : |𝜆𝑖 | < 1, 𝑖 = 1, 2.

• For 𝑖 = 1, 2, . . . , 𝑛, if |𝜆𝑖 | > 1, it is a repulsive node(A source).
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−2 −1.5 −1 −0.5 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0.5

1

1.5

2

𝑥2𝑡

𝑥𝑡

for ( 𝑓 : R2 → R2) A source : |𝜆𝑖 | > 1, 𝑖 = 1, 2.

• For 𝑖, 𝑗 such that 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑛, if |𝜆𝑖 | < 1 and |𝜆 𝑗 | > 1, it is a saddle node.

−2 −1.5 −1 −0.5 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0.5

1

1.5

2

𝑥𝑛+1

𝑦𝑛+1

for ( 𝑓 : R2 → R2) A saddle: |𝜆𝑖 | > 1,𝑖 = 1, 2.

If the eigenvalues 𝜆𝑖 are complex :

• For 𝑖 = 1, 2, . . . , 𝑛, if |𝜆𝑖 | < 1, it is a spiral attractor(A spiral sink).

14



CHAPTER 1. GENERALITIES ON DISCRETE DYNAMICAL SYSTEMS

−2 −1.5 −1 −0.5 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0.5

1

1.5

2

𝑥𝑛+1

𝑦𝑛+1

for ( 𝑓 : R2 → R2) Spiral sink: |𝜆𝑖 | < 1,𝑖 = 1, 2.

• For 𝑖 = 1, 2, . . . , 𝑛, if |𝜆𝑖 | > 1, it is a spiral repulsor(A spiral source).

−2 −1.5 −1 −0.5 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0.5

1

1.5

2

𝑥2𝑡

𝑥𝑡

for ( 𝑓 : R2 → R2) Spiral Source : |𝜆𝑖 | > 1,𝑖 = 1, 2.

• For 𝑖 = 1, 2, . . . , 𝑛, if |𝜆𝑖 | = 1, it is a center .
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−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

𝑥𝑡

𝑦𝑡

for ( 𝑓 : R2 → R2) Center : |𝜆𝑖 | = 1,𝑖 = 1, 2

1.4.2 Stability of nonlinear systems

• Nonlinear systems of dimension 1

Definition 1.4.4. [16] A discrete nonlinear dynamical system of dimension 1 is defined

by the following difference equation:


𝑥𝑡+1 = 𝑓 (𝑥𝑡), 𝑡 ∈ N,

𝑥0 given ,
(1.11)

where 𝑓 : R → R is a differentiable function and 𝑥𝑡 ∈ R is the state variable.

Stability of fixed points

It is not easy to find solutions to nonlinear systems. Often, these solutions do not provide

enough informations about the factors that control the stability of the system. Therefore,

we need analytical methods to facilitate the study of the behavior of this nonlinear system.
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The linear approximation of the nonlinear system is one of the most effective ways to

study the stability of nonlinear systems.

Method of Linearization

Theorem 1.4.4. [31] Suppose that the non-linear system described by (1.11) admits a

limited development in the neighborhood of the fixed point 𝑥. Then:

𝑥𝑡+1 = 𝑓 (𝑥) + (𝑥 − 𝑥) 𝑓 ′(𝑥) +𝑂 ((𝑥𝑡 − 𝑥)2),

so :

𝑥𝑡+1 ≈ 𝑓 (𝑥) + (𝑥 − 𝑥) 𝑓 ′(𝑥) = 𝑎 · 𝑥𝑡 + 𝑏, (1.12)

where : 𝑎 = 𝑓 ′(𝑥) 𝑎𝑛𝑑 𝑏 = 𝑓 (𝑥) − 𝑥 𝑓 ′(𝑥).

Since in the vicinity of 𝑥, | |𝑥 − 𝑥 | | ≈ 0, by neglecting second-order terms, the system (1.11)

is linearized effectively.

The mapping 𝑋 ↦→ 𝐴𝑋 is called the linearized mapping of 𝑓 in the vicinity of the fixed

point 𝑥. We say that the system (1.11) is approximated in the vicinity of the equilibrium

point 𝑥 by the linear system (1.12).

Now we can use the stability results of the linear system to study the stability of the

nonlinear system .

Criteria for Stability

Fixed (equilibrium) points may be divided into two types: hyperbolic and nonhyperbolic.

Definition 1.4.5. [12] A fixed point 𝑥 of a map 𝑓 is said to be hyperbolic if | 𝑓 ′(𝑥) | ≠ 1.

Otherwise, it is nonhyperbolic. We will treat the stability of each type separately.

Hyperbolic Fixed Points

Theorem 1.4.5. Let 𝑥 be a hyperbolic fixed point of a map 𝑓 , where 𝑓 is continuously

differentiable at 𝑥. The following statements then hold true:

17
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– The equilibrium point of (1.11) is locally asymptotically stable if | 𝑓 ′(𝑥) | < 1.

– The equilibrium point of (1.11) is unstable if | 𝑓 ′(𝑥) | > 1.

Nonhyperbolic Fixed Points

The stability criteria for nonhyperbolic fixed points are more involved. They will be

summarized in the next two results, the first of which treats the case when 𝑓 ′(𝑥) = 1 and

the second for 𝑓 ′(𝑥) = −1.

• 1𝑠𝑡 case : for 𝑓 ′(𝑥) = 1

Theorem 1.4.6. Let 𝑥 be a fixed point of a map 𝑓 such that 𝑓 ′(𝑥) = 1. If 𝑓 ′(𝑥), 𝑓 ′′(𝑥),

and 𝑓 ′′′(𝑥) are continuous at 𝑥, then :

1. If 𝑓 ′′(𝑥) ≠ 0, then 𝑥 is unstable (semistable).

2. If 𝑓 ′′(𝑥) = 0 and 𝑓 ′′′(𝑥) > 0, then 𝑥 is unstable.

3. If 𝑓 ′′(𝑥) = 0 and 𝑓 ′′′(𝑥) < 0, then 𝑥 is asymptotically stable.

• 2𝑛𝑑 case : for 𝑓 ′(𝑥) = −1

The preceding theorem may be used to establish stability criteria for the case when

𝑓 ′(𝑥) = −1. But before doing so, we need to introduce the notion of the Schwarzian

derivative.

Definition 1.4.6. The Schwarzian derivative, 𝑆 𝑓 , of a function 𝑓 is defined by

𝑆 𝑓 (𝑥) = 𝑓 ′′′(𝑥)
𝑓 ′(𝑥) − 3

2

(
𝑓 ′′(𝑥)
𝑓 ′(𝑥)

)2

. And if 𝑓 ′(𝑥) = −1, then

𝑆 𝑓 (𝑥) = − 𝑓 ′′′(𝑥) − 3
2
( 𝑓 ′′(𝑥))2

.

Theorem 1.4.7. Let 𝑥 be a fixed point of a map 𝑓 such that 𝑓 ′(𝑥) = −1. If 𝑓 ′(𝑥), 𝑓 ′′(𝑥),

and 𝑓 ′′′(𝑥) are continuous at 𝑥, then:

18
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1. If 𝑆 𝑓 (𝑥) < 0, then 𝑥 is asymptotically stable.

2. If 𝑆 𝑓 (𝑥) > 0, then 𝑥 is unstable.

Example 1.4.1. Consider the map 𝑓 (𝑥) = 𝑥2 +3𝑥 on the interval [−3, 3]. The fixed points

of 𝑓 are obtained by solving the equation 𝑥2 + 3𝑥 = 𝑥. Thus, there are two fixed points:

𝑥1 = 0 and 𝑥2 = −2. So for 𝑥1, 𝑓 ′(0) = 3, which implies by Theorem 1.4.5 that 𝑥1 is

unstable. For 𝑥2, we have 𝑓 ′(−2) = −1, which requires the employment of Theorem 1.4.2

. We observe that

𝑆 𝑓 (−2) = − 𝑓 ′′′(−2) − 3
2
[ 𝑓 ′′(−2)]2 = −6 < 0.

Hence, 𝑥2 is asymptotically stable.

• Nonlinear systems of dimension n

Definition 1.4.7. A nonlinear discrete dynamical system of dimension 𝑛 is a system of 𝑛 nonlinear

first-order difference equations, i.e :

𝑥1,𝑡+1 = 𝑓1(𝑥1,𝑡 , 𝑥2,𝑡 , . . . , 𝑥𝑛,𝑡),

𝑥2,𝑡+1 = 𝑓2(𝑥1,𝑡 , 𝑥2,𝑡 , . . . , 𝑥𝑛,𝑡),
...

...

𝑥𝑛,𝑡+1 = 𝑓𝑛 (𝑥1,𝑡 , 𝑥2,𝑡 , . . . , 𝑥𝑛,𝑡),

where 𝑡 ∈ N and 𝑋0 = (𝑥1,0, 𝑥2,0, . . . , 𝑥𝑛,0) are given. This dynamical system is written as

follows: 
𝑋𝑡+1 = 𝑓 (𝑋𝑡), 𝑡 ∈ N.

𝑋0 given ,
(1.13)

where: - 𝑓 : R𝑛 → R𝑛 is a differentiable function.

- 𝑓 (𝑋𝑡) = ( 𝑓1(𝑋𝑡), 𝑓2(𝑋𝑡), . . . , 𝑓𝑛 (𝑋𝑡)).

- 𝑓𝑖 : R𝑛 → R for all 𝑖 = 1, . . . , 𝑛 is a differentiable function.

- 𝑋𝑡 ∈ R𝑛 is the vector of system states.

- 𝑋0 ∈ R𝑛 is the initial value.
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Local stability of fixed points

As we have seen in the case of a one-dimensional dynamical system, the dynamical system

(1.13) can also be approximated by a linear system.

Method of Linearization (Indirect method of Lyapunov) [16]

Suppose the dynamical system (1.13) has a fixed point �̄� , then the first-order Taylor expansion

of 𝑓𝑖 (𝑋𝑡) = 𝑥𝑖,𝑡+1 in the neighborhood of 𝑋 is:

𝑥𝑖,𝑡+1 = 𝑓𝑖 (𝑋𝑡) = 𝑓𝑖 (𝑋) +
𝑛∑︁
𝑘=1

𝜕 𝑓𝑖 (𝑋)
𝜕𝑥𝑘,𝑡

(𝑥𝑘,𝑡 − 𝑥𝑘 ) + 𝑜( | |𝑋𝑡 − 𝑋 | |)

=
𝜕 𝑓𝑖 (𝑥)
𝜕𝑥1,𝑡

𝑥1,𝑡 +
𝜕 𝑓𝑖 (𝑋)
𝜕𝑥2,𝑡

𝑥2,𝑡 + · · · + 𝜕 𝑓𝑖 (𝑋)
𝜕𝑥𝑛,𝑡

𝑥𝑛,𝑡 + 𝑓𝑖 (𝑋)

−
𝑛∑︁
𝑘=1

𝜕 𝑓𝑖 (𝑋)
𝜕𝑥𝑘,𝑡

𝑥𝑘 + 𝑜( | |𝑋𝑡 − 𝑋 | |)

or
𝑜(𝑋𝑡 − 𝑋)︸         ︷︷         ︸

𝑋𝑡→𝑋

→ 0 So, the first-order Taylor expansion of 𝑓 (𝑋𝑡) = 𝑋𝑡+1 in the neighborhood

𝑋 is:

©«

𝑥1,𝑡+1

𝑥2,𝑡+1
...

𝑥𝑛,𝑡+1

ª®®®®®®®¬
=

©«

𝜕 𝑓1 (𝑋)
𝜕𝑥1,𝑡

𝜕 𝑓1 (𝑋)
𝜕𝑥2,𝑡

· · · 𝜕 𝑓1 (𝑋)
𝜕𝑥𝑛,𝑡

𝜕 𝑓2 (𝑋)
𝜕𝑥1,𝑡

𝜕 𝑓2 (𝑋)
𝜕𝑥𝑖,𝑡

· · · 𝜕 𝑓2 (𝑋)
𝜕𝑥𝑖,𝑡

...
... · · · ...

𝜕 𝑓𝑛 (𝑋)
𝜕𝑥𝑛,𝑡

𝜕 𝑓𝑛 (𝑋)
𝜕𝑥𝑛,𝑡

· · · 𝜕 𝑓𝑛 (𝑋)
𝜕𝑥𝑛,𝑡

ª®®®®®®®¬
.

©«

𝑥1,𝑡

𝑥2,𝑡
...

𝑥𝑛,𝑡

ª®®®®®®®¬
+

©«

𝑓1(𝑥) −
∑𝑛
𝑘=1

𝜕 𝑓1 (𝑥)
𝜕𝑥𝑘,𝑡

𝑥𝑘

𝑓2(𝑥) −
∑𝑛
𝑘=1

𝜕 𝑓2 (𝑥)
𝜕𝑥𝑘,𝑡

𝑥𝑘
...

𝑓𝑛 (𝑥) −
∑𝑛
𝑘=1

𝜕 𝑓𝑛 (𝑥)
𝜕𝑥𝑘,𝑡

𝑥𝑘

ª®®®®®®®¬
. (1.14)

The nonlinear system is approximated in the neighborhood of the fixed point 𝑋 by a linear

system 𝑋𝑡+1 ≈ 𝐴𝑋𝑡 + 𝐵 where:

𝐴 =

©«

𝜕 𝑓1 (𝑋)
𝜕𝑥1,𝑡

𝜕 𝑓1 (𝑋)
𝜕𝑥2,𝑡

· · · 𝜕 𝑓1 (𝑋)
𝜕𝑥𝑛,𝑡

𝜕 𝑓2 (𝑋)
𝜕𝑥1,𝑡

𝜕 𝑓2 (𝑋)
𝜕𝑥2,𝑡

· · · 𝜕 𝑓2 (𝑋)
𝜕𝑥𝑛,𝑡

...
... · · · ...

𝜕 𝑓𝑛 (𝑋)
𝜕𝑥1,𝑡

𝜕 𝑓𝑛 (𝑋)
𝜕𝑥2,𝑡

· · · 𝜕 𝑓𝑛 (𝑋)
𝜕𝑥𝑛,𝑡

ª®®®®®®®¬
𝑎𝑛𝑑 𝐵 =

©«

𝑓1(𝑥) −
∑𝑛
𝑘=1

𝜕 𝑓1 (𝑥)
𝜕𝑥𝑘,𝑡

𝑥𝑘

𝑓2(𝑥) −
∑𝑛
𝑘=1

𝜕 𝑓2 (𝑥)
𝜕𝑥𝑘,𝑡

𝑥𝑘
...

𝑓𝑛 (𝑥) −
∑𝑛
𝑘=1

𝜕 𝑓𝑛 (𝑥)
𝜕𝑥𝑘,𝑡

𝑥𝑘

ª®®®®®®®¬
.
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The matrix A is called the Jacobian matrix of 𝑓 at the point 𝑋 , denoted by 𝐽 (𝑋).

We can therefore use the results of the linear system to study the stability of the nonlinear system

in the neighborhood of the fixed point 𝑋 .

Theorem 1.4.8. [7] Let 𝑓 : R𝑛 → R𝑛, to determine the nature of the point 𝑥 it is necessary to

find the eigenvalues of the Jacobian matrix 𝐽 ( �̄�). The point 𝑥 is:

1. is locally asymptotically stable If |𝜆𝑖 | < 1 for all 𝑖 = 1, . . . , 𝑛.

2. unstable If there exists an eigenvalue 𝜆𝑖 such that |𝜆𝑖 | > 1.

3. If max1≤𝑖≤𝑛 |𝜆𝑖 | = 1, we cannot conclude anything.

Liapunov function

In several cases, using singular points, we cannot conclude anything about stability. A new

method known as Liapunov ’s second method or direct method has emerged, allowing us to

analyze stability or instability of critical points by constructing a suitable auxiliary function

(from the recursive equations defining the system without having to calculate their solutions).

Let us consider the autonomous dynamical system

𝑥𝑡+1 = 𝑓 (𝑥𝑡), (1.15)

where 𝑓 : 𝐺 → R𝑛, 𝐺 ⊂ R𝑛 is a continuous function.

We assume that 𝑋 is a fixed point of this dynamical system.

Definition 1.4.8. [39] Let 𝐺 be an open set in R𝑛. A function 𝑉 from 𝐺 to R is a Liapunov

function on the set 𝐺 if:

• 𝑉 is continuous on 𝐺.

• Δ𝑉 (𝑋𝑡) = 𝑉 ( 𝑓 (𝑋𝑡)) −𝑉 (𝑋𝑡) = 𝑉 (𝑋𝑡+1) −𝑉 (𝑋𝑡) ≤ 0 for all 𝑋𝑡 , 𝑋𝑡+1 belong to 𝐺.

Definition 1.4.9. The Lyapunov function 𝑉 is said to be positive definite at the fixed point 𝑋 if

there exists an open ball 𝐵𝑟 (𝑋) centered at 𝑋 and with radius 𝑟 .

(i.e., 𝐵𝑟 (𝑋) = {𝑌 ∈ R𝑛, | |𝑋 − 𝑌 | | < 𝑟}).
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Such that:

• 𝑉 (𝑋) = 0.

• 𝑉 (𝑋𝑡) > 0 for all 𝑋𝑡 ∈ 𝐵𝑟 (𝑋), 𝑋𝑡 ≠ 𝑋 .

Theorem 1.4.9. [39] If there exists a Lyapunov function 𝑉 on an open ball 𝐵𝑟 (𝑋) positive

definite at 𝑋 where 𝑋 is the fixed point of (1.15), then 𝑋 is stable.

If additionally, Δ𝑉 (𝑋𝑡) < 0 for all 𝑋𝑡 , 𝑋𝑡+1 in𝐺, 𝑋𝑡 ≠ 𝑋 , then 𝑋 is locally asymptotically stable.

Moreover if this holds true when 𝐵𝑟 (𝑋) is extended to all R𝑛 and 𝑉 (𝑋𝑡) → ∞ as | |𝑋𝑡 | | → ∞,

then 𝑋 is globally asymptotically stable.

Examples 1.4.1. Consider the dynamical system:


𝑥𝑡+1 =

𝑥2𝑡
(1+𝑥2

2𝑡 )
,

𝑥2𝑡+1 =
𝑥𝑡

(1+𝑥2
2𝑡 )
.

We have: 
𝑥1 =

𝑥2
(1+𝑥2

2)
,

𝑥2 =
𝑥1

(1+𝑥2
2)
.

Therefore, the fixed point of this system is 𝑋 = (𝑥1, 𝑥2) = (0, 0). We define the function:

𝑉 (𝑥1, 𝑥2) = 𝑥2
1 + 𝑥

2
2

The function 𝑉 is continuous on R2 and 𝑉 (𝑋𝑡+1) =
𝑥2

2𝑡
(1+𝑥2

2𝑡 )2 +
𝑥2

1𝑡
(1+𝑥2

2𝑡 )2 =
𝑉 (𝑋𝑡 )
(1+𝑥2

2𝑡 )2 ≤ 𝑉 (𝑋𝑡),

∀𝑋𝑡 , 𝑋𝑡+1 ∈ R2. Thus, 𝑉 is a Liapunov function.

We also have 𝑉 (𝑋) = 0 and 𝑉 (𝑋𝑡) > 0 for all 𝑋𝑡 ∈ R2, 𝑋𝑡 ≠ 𝑋 . Therefore, 𝑉 is positive

definite. From Theorem (1.4.9), it follows that the fixed point 𝑋 = (0, 0) is asymptotically stable.
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2.1 Bifurcations
Another set of concepts useful for the analysis of dynamic systems is the theory of "bifur-

cation".The name "bifurcations" was first introduced by Henri Poincaré in 1885 This theory

focuses on families of dynamic systems (continuous or discrete) depending on a parameter

𝜇 ∈ R𝑚 . This theory refers to the study of changes in the behavior of a system when its

parameters change.

2.1.1 Definition of the bifurcation

consider a dynamical system that depends on parameters as follow :

𝑥𝑡+1 = 𝑓 (𝑥𝑡 , 𝜇). (2.1)

Where 𝑥 ∈ R𝑛 and 𝜇 ∈ R𝑚 represent phase variables and parameters, respectively. Consider

the phase portrait of the system. As the parameters vary, the phase portrait also varies. There

are two possibilities: either the system remains topologically equivalent to the original one, or

its topology changes.

Definition 2.1.1. [19] The appearance of a topologically nonequivalent phase portrait under

variation of parameters is called a bifurcation.

Thus ,a bifurcation is a change of the topological type of the system as its parameters pass

through a bifurcation (critical) value 𝜇0.

Definition 2.1.2. A bifurcation diagram of the dynamical system is a stratification of its param-

eter space induced by the topological equivalence, together with representative phase portraits

for each stratum. It is desirable to obtain the bifurcation diagram as a result of the qualitative

analysis of a given dynamical system. It classifies in a very condensed way all possible modes of

behavior of the system and transitions between them (bifurcations) under parameter variations.

Note that the bifurcation diagram depends in general on the considered region of phase space.
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2.1.2 Types of bifurcations

In this work,we explore briefly the bifurcation in two-dimensional system, associated to the one

parameter family of maps [12]:

𝐹 (𝜇, 𝑋) : R × R2 → R (2.2)

with 𝑋 = (𝑥, 𝑦) ∈ R2, 𝜇 ∈ R, and 𝐹 ∈ 𝐶𝑟 , 𝑟 ≥ 5. If ( �̄�, �̄�) is a fixed point, then we make a

change of variables so that our fixed point is (0, 0). Let 𝐽 = 𝐷𝑢𝐹 (0, 0). Then using the center

manifold theorem, we find a one-dimensional map 𝑓𝜇 (𝑥). There are several types of bifurcations

depending on the properties of the second derivatives of the family of functions 𝑓𝜇 (𝑥). Among

the different types of bifurcations observed in discrete dynamical systems we find :

1. When the Jacobian matrix J has an eigenvalue equal to 1 then we have :

(a) A Saddle-Node (Fold) Bifurcation :

This type of bifurcation is characterized by a sudden loss or acquisition of multiple

stable or unstable equilibrium solutions when a parameter value crosses a critical

threshold. it’s satisfied the following conditions :

𝜕 𝑓

𝜕𝜇
(0, 0) ≠ 0 𝑎𝑛𝑑

𝜕2 𝑓

𝜕𝑥2 (0, 0) ≠ 0

Figure 2.1: Saddle-Node Bifurcation diagram.
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(b) A Pitchfork Bifurcation :

In general, a pitchfork bifurcation occurs near the bifurcation point (𝑥0, 𝜇0). The

model has two curves of fixed points in the (𝑥𝑛, 𝜇) plane that pass through the bifur-

cation point, with one lying on each side of the line 𝜇 = 𝜇0. It is formed under the

following conditions :

𝜕 𝑓

𝜕𝜇
(0, 0) = 0 𝑎𝑛𝑑

𝜕2 𝑓

𝜕𝑥2 (0, 0) = 0

Figure 2.2: Pitchfork Bifurcation diagram.

(c) A Transcritical Bifurcation :

This type of bifurcation is characterized by an exchange of stability between two

equilibrium solutions. Initially, the system has one stable equilibrium solution and

one unstable equilibrium solution. As a parameter varies and reaches a critical value,

the stable equilibrium solution becomes unstable, while the unstable equilibrium be-

comes stable. This type satisfied the following conditions :

𝜕 𝑓

𝜕𝜇
(0, 0) = 0 𝑎𝑛𝑑

𝜕2 𝑓

𝜕𝑥2 (0, 0) ≠ 0
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Figure 2.3: Transcritical Bifurcation diagram.

2. If J has an eigenvalue equal to -1 then we have a period-Doubling (Flip) Bifurcation.

This bifurcation occurs when a stable k-order cycle has a multiplier that passes through

the value 𝜆 = −1 At this point: The cycle becomes unstable and gives rise to a stable

2k-order cycle. it’s satisfied the following conditions :
𝜕
𝜕𝑥
[ 𝑓 (𝑥, 𝜇) − 𝑥]

��
(0,0) ≠ 0 and 𝜕2 𝑓

𝜕𝜇𝜕𝑥
+ 1

2
𝜕 𝑓

𝜕𝜇

𝜕2 𝑓
𝜕𝑥2

���
(0,0)

≠ 0 and 1
3!
𝜕3 𝑓
𝜕𝑥3 + 1

2!

(
𝜕 𝑓

𝜕𝑥

)2
����
(0,0)

≠ 0.

−1 1

−1

1

period 1

period 1

period 2

period 2

period 1period 1 period 1 𝜇

𝑥𝑛

Figure 2.4: Period-Doubling Bifurcation diagram..

3. If J has a pair of complex conjugate eigenvalues of modulus 1, a new type of bifurcation

called the Neimark-Sacker bifurcation appears.
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Figure 2.5: Neimark-Sacker Bifurcation diagram.

The following plot illustrates these types in two dimensional systems :

−2 −1 1 2

−1

1

2

de
t 𝐴

=
(Tr𝐴

)2
4

det 𝐴
= −(Tr𝐴) − 1

de
t 𝐴

=
(Tr𝐴

) −
1

Neimark-Sacker Bifurcation
Period-Doubling Bifurcation Sa

dd
le-

Nod
e Bifu

rca
tio

n

Stability Region
Trace

Determinant

Figure 2.6: The occurrence of bifurcations in a two-dimensional discrete dynamical system.

Example 2.1.1. consider the dynamic system defined as follows :

𝐹 :


𝑥𝑛+1 = 𝜇𝑥𝑛 (1 − 𝑦𝑛), 𝜇 > 0,

𝑦𝑛+1 = 𝑥𝑛.
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This system has two fixed points :


(𝑥1, �̄�1) = (0, 0),

(𝑥2, �̄�2) = (1 − 1
𝜇
, 1 − 1

𝜇
).

The Jacobian matrix evaluated at the fixed point (𝑥2, �̄�2) is:

J(𝑥2, �̄�2) = ©«
1 1 − 𝜇

1 0
ª®¬ .

We can deduce the eigenvalues:

𝜆1,2 =
1
2
±

√︂
5
4
− 𝜇.

If 𝜇 > 5
4 , the eigenvalues are complex with |𝜆1,2 |2 = 𝜇 − 1. For 𝜇 = 2, the fixed point

(𝑥2, �̄�2) loses its stability. The eigenvalues are then 𝜆1,2 = 𝑒±𝑖
𝜋
3 , and the system presents

a Neimark bifurcation.

2.2 Chaos
In common usage, "chaos" means "a state of disorder" However, in chaos theory, the term

is defined more precisely, it is linked to unpredictability and the inability to predict long-term

development because the final state depends heavily on the initial state. Chaos theory is a field

of study in mathematics, with applications in several disciplines such as physics, engineering,

biology, and economics. Chaos theory examines the behavior of dynamic systems that are highly

sensitive to initial conditions.

2.2.1 Definitions of chaos

Several definitions of chaos are known, although they are not mathematical until R. L. Devaney

proposed a definition based on the following definitions:

Let (𝐼 ⊂ R, 𝑑) denote a compact metric space (where d represents a distance) and let f be the
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function defined as :

𝑓 : 𝐼 → 𝐼 ; 𝑥𝑘+1 = 𝑓 (𝑥𝑘 ) ; 𝑥0 ∈ 𝐼 . (2.3)

Definition 2.2.1. (Topological transitivity [21]) A map 𝑓 is said to be topologically transitive

on 𝐼 if for any two open sets𝑈,𝑉 ⊂ 𝐼 there exists 𝑘 ∈ N such that 𝑓 𝑘 (𝑈) ∩𝑉 ≠ ∅. The function

𝑓 is called totally transitive when the composition 𝑓 𝑛 is topologically transitive for all integer

𝑛 > 1.

Definition 2.2.2. (Sensitive dependence on initial conditions) An attribute for a chaotic system is

to exhibit exponentially fast separation of nearby trajectories for infinitesimally changed initial

conditions. Mathematically, this can be expressed as follows:

A map 𝑓 is said to have sensitive dependence on initial conditions if there exists a 𝛿 > 0 such

that for any 𝑥 ∈ 𝐼 and any neighborhood 𝑁𝜀 (𝑥) = (𝑥 − 𝜀, 𝑥 + 𝜀) of 𝑥, there exists 𝑦 ∈ 𝑁𝜀 (𝑥) and

an integer 𝑘 > 0 such that | 𝑓 𝑘 (𝑥) − 𝑓 𝑘 (𝑦) | > 𝛿.

Definition 2.2.3. (Dence set) In a topological space (𝐼, 𝜏), a subset 𝐴 of 𝐼 is said to be a dense

set (or an everywhere dense set) if 𝐴 = 𝑋 . In other words, 𝐴 is said to be a dense subset of 𝑋

if for any 𝑥 ∈ 𝐼, any neighborhood of 𝑥 contains at least one point of 𝐴. This is equivalent to

saying that 𝐴 is dense in 𝑋 if for every 𝑥 ∈ 𝐼, we can find a sequence of points 𝑎𝑛 ∈ 𝐴 converging

to 𝑥.

now we will state the definition of chaos, in the sense of Devaney [11].

Definition 2.2.4. Let 𝐼 be a set. 𝑓 : 𝐼 → 𝐼 is said to be choatic on 𝐼 if:

(i) The map function 𝑓 has sensitive dependence on initial conditions.

(ii) 𝑓 is topologically transitive .

(iii) The periodic points of 𝑓 are dense in 𝐼.

2.2.2 Characteristics of chaos

There is a set of properties that summarize the characteristics observed in chaotic systems. They

are considered as mathematical criteria that define chaos. The most well-known ones are:
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1. Sensitivity to initial conditions : The sensitivity to initial conditions was first discovered

at the end of the 19th century by Poincaré, and then rediscovered in 1963 by Lorenz during

his work in meteorology. This discovery led to a large number of important works, mainly

in the field of mathematics. This sensitivity explains the fact that, for a chaotic system,

a tiny modification of the initial conditions can lead to unpredictable results in the long

term. The degree of sensitivity to initial conditions quantifies the chaotic nature of the

system [27].

2. Lyapunov Exponents The Lyapunov exponents are used to measure the potential diver-

gence between two orbits originating from nearby initial conditions and allow quantifying

the sensitivity to initial conditions of a chaotic system. The number of Lyapunov expo-

nents is equal to the dimension of the phase space [27]. In this subsection, we will define

the concept of the Lyapunov exponent and show how it is used to study chaotic systems

and even detect the presence of chaos in systems.

(i) Case of one-dimensional discrete systems :

Theorem 2.2.1. [7] Let 𝑓 be a discrete function from R to R that applies 𝑥𝑛+1 to 𝑥𝑛. The

Lyapunov exponent 𝜆 indicating the average divergence rate is defined by:

𝜆 = lim
𝑛→∞

1
𝑛

𝑛−1∑︁
𝑖=0

ln | 𝑓 ′(𝑥𝑖) |.

Proof. Let’s choose two very close initial conditions 𝑥0 and 𝑥0
′, separated by a distance

𝑑0, and see how the trajectories arising from them behave.

we have 𝑑0 = |𝑥0
′ − 𝑥0 |.

After one iteration, the distance between the two trajectories becomes 𝑑1 = |𝑥1
′ − 𝑥1 |.

After 𝑛 iterations, the distance evolves to 𝑑𝑛 = |𝑥𝑛′ − 𝑥𝑛 |.

The ratio 𝑑𝑖
𝑑𝑖−1

describes the evolution of the error 𝑑𝑖 in the 𝑖-th iteration, otherwise

𝑑1
𝑑0

=
|𝑥1

′ − 𝑥1 |
|𝑥0′ − 𝑥0 |

=
| 𝑓 (𝑥0

′) − 𝑓 (𝑥0) |
|𝑥0′ − 𝑥0 |

=
| 𝑓 (𝑥0 + 𝑑0) − 𝑓 (𝑥0) |

𝑑0

and then lim𝑑0→0
𝑑1
𝑑0

= lim𝑑0→0
| 𝑓 (𝑥0+𝑑0)− 𝑓 (𝑥0) |

𝑑0
= | 𝑓 ′(𝑥0) |.
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This quantity is positive, so there exists a real 𝜆1 such that

lim
𝑑0→0

𝑑1
𝑑0

= | 𝑓 ′(𝑥0) | = 𝑒𝜆1 .

So the two trajectories diverge exponentially at the first iteration.

extract the value of 𝜆1 = ln | 𝑓 ′(𝑥0) |.

The evolution of the error after 𝑛 iteration:

𝑑𝑛

𝑑0
=

|𝑥𝑛′ − 𝑥𝑛 |
|𝑥0′ − 𝑥0 |

=
| 𝑓 (𝑥𝑛′) − 𝑓 (𝑥𝑛) |

|𝑥0′ − 𝑥0 |
=

| 𝑓 𝑛 (𝑥0
′) − 𝑓 𝑛 (𝑥0) |
𝑑0

=
| 𝑓 𝑛 (𝑥0 + 𝑑0) − 𝑓 𝑛 (𝑥0) |

𝑑0

When passing to the limit

lim
𝑑0→0

𝑑𝑛

𝑑0
= lim
𝑑0→0

| 𝑓 𝑛 (𝑥0 + 𝑑0) − 𝑓 𝑛 (𝑥0) |
𝑑0

=
𝑑𝑓 𝑛

𝑑𝑥
(𝑥0)

The error tends towards a limit 𝑒𝜆𝑛, then

lim
𝑑0→0

𝑑𝑛

𝑑0
= (𝑒𝜆)𝑛 = 𝑒𝑛𝜆 ≃ 𝑑𝑓 𝑛

𝑑𝑥
(𝑥0)

⇒ 𝑛𝜆 ≃ ln | 𝑑𝑓
𝑛

𝑑𝑥
(𝑥0) |

⇒ 𝜆 ≃ 1
𝑛

ln
����𝑑𝑓 𝑛𝑑𝑥 (𝑥0)

���� = 1
𝑛

ln
����𝑑𝑓 ( 𝑓 𝑛−1(𝑥0))

𝑑𝑥

����
using the chain rule for differentiation𝜆 ≃ 1

𝑛
ln | 𝑓 ′(𝑥𝑛−1) | | 𝑓 ′(𝑥𝑛−2) | · · · | 𝑓 ′(𝑥0) | =

∏𝑛−1
𝑖=0 | | 𝑓 ′(𝑥𝑖)

when 𝑛→ ∞:

𝜆 = lim
𝑛→∞

1
𝑛

ln
����𝑑𝑓 𝑛𝑑𝑥 (𝑥0)

���� = lim
𝑛→∞

1
𝑛

𝑛−1∑︁
𝑖=0

ln | 𝑓 ′(𝑥𝑖) | .

The quantity 𝜆 represents the Lyapunov exponent.

For an equilibrium point 𝑥

𝜆 = ln | 𝑓 ′(𝑥) |.

- If | 𝑓 ′(𝑥) | < 1, then 𝜆 < 0, so 𝑥 is asymptotically stable and the trajectory originating

from an initial condition 𝑥0 is asymptotically stable near 𝑥0.

- If | 𝑓 ′(𝑥)) | = 1, then 𝜆 = 0, so 𝑥 is stable, and consequently the trajectory originating
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from 𝑥0 is periodic, so stable.

- If | 𝑓 ′(𝑥) | > 1, then 𝜆 > 0, so 𝑥 is unstable as well as the trajectory originating from

𝑥0. □

Example 2.2.1. let 𝑓 (𝑥) = 2𝑥.

𝜆 = lim
𝑛→∞

1
𝑛

𝑛−1∑︁
𝑖=0

ln | 𝑓 ′(𝑥𝑖) |

= lim
𝑛→∞

1
𝑛

𝑛−1∑︁
𝑖=0

ln |2|

= ln 2 > 0

Therefore, the system is chaotic.

(ii) Case of multidimensional discrete systems :

Theorem 2.2.2. [7] Let 𝑓 : R𝑝 → R𝑝 be a discrete map such that 𝑥𝑛+1 = 𝑓 (𝑥𝑛). Then the

𝑝 Lyapunov exponents are defined as follows:

𝜆𝑖 = lim
𝑛→∞

1
𝑛

𝑝∑︁
𝑖=0

ln 𝑞𝑖 ( 𝑓 𝑛 (𝑥0)), 𝑖 = 1, · · · , 𝑝.

Where 𝑞𝑖, 𝑖 = 1, · · · , 𝑝 are the eigenvalues of the jacobian matrix 𝐽𝑛 (𝑥0).

Proof. Let’s start by specifying that a 𝑝-dimensional system will have 𝑝 Lyapunov expo-

nents 𝜆𝑖, 𝑖 = 1, 2, . . . , 𝑝. Each of them measures the divergence rate along one of the axes

of the system. we have

𝑑𝑛

𝑑0
=

|𝑥𝑛′ − 𝑥𝑛 |
|𝑥0′ − 𝑥0 |

=
| 𝑓 (𝑥𝑛′) − 𝑓 (𝑥𝑛) |

|𝑥0′ − 𝑥0 |

=
| 𝑓 𝑛 (𝑥0

′) − 𝑓 𝑛 (𝑥0) |
𝑑0

=
| 𝑓 𝑛 (𝑥0 + 𝑑0) − 𝑓 𝑛 (𝑥0) |

𝑑0
≃ (𝑒𝜆)𝑛

𝑠𝑜 𝑓 𝑛 (𝑥0 + 𝑑0) − 𝑓 𝑛 (𝑥0) ≃ 𝑑0𝑒
𝑛𝜆,
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applied the first-order Taylor expansion of the function 𝑓𝑛 (𝑥0) in the neighborhood of 𝑥0
′

𝑥𝑛 − 𝑥′𝑛 ≃ 𝑓 𝑛 (𝑥0) − 𝑓 𝑛 (𝑥′0) = (𝑥0 − 𝑥′0) [
𝑑𝑓 𝑛

𝑑𝑥
(𝑥0)]

= 𝑗 (𝑥0) 𝑗 (𝑥1) 𝑗 (𝑥2) · · · 𝑗 (𝑥𝑛) × (𝑥0 − 𝑥0
′)

=

𝑛∏
𝑖=0

𝐽 (𝑥𝑖) × (𝑥0 − 𝑥′0).

We denote
∏𝑛
𝑖=0 𝐽 (𝑥𝑖) by 𝐽𝑛 (𝑥0). Then we obtain 𝑥𝑛 − 𝑥′𝑛 = 𝐽𝑛 (𝑥0) × (𝑥0 − 𝑥′0), where

𝐽𝑛 (𝑥0) ∈ 𝑀𝑛×𝑛 represents the Jacobian matrix of 𝑓 𝑛 at the point 𝑥0.

If 𝐽𝑛 (𝑥0) is diagonalizable, then there exists an invertible matrix 𝑃 ∈ 𝑀𝑛×𝑛 such that :

𝐷𝑛 (𝑥0) = 𝑃−1𝐽𝑛 (𝑥0)𝑃.Where 𝐷𝑛 (𝑥0) is a diagonal matrix containing the eigenvalues of

𝐽𝑛 (𝑥0), then :

𝜆𝑖 = lim
𝑛→∞

1
𝑛

𝑝∑︁
𝑖=0

ln 𝑞𝑖 ( 𝑓 𝑛 (𝑥0)). (2.4)

□

This equation gives an estimation of the Lyapunov exponents for multidimensional sys-

tems. The Lyapunov exponents are positive, zero as well as negative.

- If a Lyapunov exponent is strictly positive, then the system has a large sensitivity to

initial conditions and is chaotic.

- If all Lyapunov exponents are negative or equal to zero , the system is stable or periodic.

Example 2.2.2. The Skinny-Baker map 𝐵(𝑥, 𝑦) is defined by

𝐵(𝑥, 𝑦) =



©«
1
3 0

0 2

ª®®¬
©«
𝑥

𝑦

ª®®¬ , if 0 ≤ 𝑦 ≤ 1
2 ,

©«
1
3 0

0 2

ª®®¬
©«
𝑥

𝑦

ª®®¬ +
©«

2
3

−1

ª®®¬ , if 1
2 < 𝑦 ≤ 1.

The Jacobian matrix of 𝐵(𝑥, 𝑦) at a point (𝑥, 𝑦) ∈ [0, 1] × [0, 1] is given by

𝐽 =
©«

1
3 0

0 2
ª®¬ .
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After 𝑛𝑡ℎ iterations, the Jacobian matrix is 𝐽𝑛 = ©«
1

3𝑛 0

0 2𝑛
ª®¬. The matrix 𝐽𝑛 has two distinct

eigenvalues, namely 𝑞1( 𝑓 𝑛 (𝑥0)) = 1
3𝑛 and 𝑞2( 𝑓 𝑛 (𝑥0)) = 2𝑛. Therefore, the map has two

distinct Lyapunov exponents given by

𝜆1 = lim
𝑛→∞

1
𝑛

ln
(

1
3𝑛

)
= − ln 3 < 0.

𝜆2 = lim
𝑛→∞

1
𝑛

ln(2𝑛) = ln 2 > 0.

Hence, the Skinny-Baker map is chaotic.

3. Fractal dimension :

Euclidean geometry is a magnificent concept to describe natural objects like roads, houses,

books, etc. But the methods of Euclidean geometry and calculus are not suitable to

describe all natural objects. There are objects, such as trees, coastlines, cloud boundaries,

monument ranges, river meanders, coral structures, etc., for which the knowledge of

Euclidean geometry is insufficient to describe them as they lacks order and are erratic

in shape. Such objects are called fractal objects or simply fractals and are described

by fractal geometry with fractional dimensions [21]. There are several types of fractal

dimensions (capacity dimension, information dimension, correlation dimension, etc.) for

chaotic attractors we can mention :

Hausdorff dimension :

Let 𝐴 be the space. We cover the space 𝐴 by means of a countable union of parts denoted

by 𝐴𝑖, each of which has a diameter less than 𝑟. For any real non-negative number 𝑠, we

consider the quantity
∑∞
𝑖=1 |𝐴𝑖 |𝑠. We introduce the quantity:

𝐻𝑠
𝑟 (𝐴) = inf

|𝐴𝑖 |<𝑟
{

∞∑︁
𝑖=1

|𝐴𝑖 |𝑠/𝐴 ⊂
∞⋃
𝑖=1

𝐴𝑖}

where |𝑁𝑖 | is the diameter of the non-empty set 𝑁𝑖.

The function 𝐻𝑠
𝑟 is decreasing, which ensures the existence of a limit (possibly infinite) as
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𝑟 tends to 0. Hence the definition:

𝐻𝑠 (𝑋) = lim
𝑟→0

𝐻𝑠
𝑟 (𝑋)

𝐻𝑠 is called the 𝑠-dimensional Hausdorff measure. The Hausdorff dimension relies on the

Hausdorff measure. The Hausdorff dimension of 𝐴 ⊂ R𝑛 is defined by :

𝐷𝐻 = sup {𝑠, 𝐻𝑠 (𝐴) = +∞} = inf {𝑠, 𝐻𝑠 (𝐴) = 0}

where 𝐻𝑠 (𝐴) is the Hausdorff measure of the set 𝐴. This type of dimension depends

solely on the metric properties of the space in which the set resides [8].

Lyapunov dimension :

The Lyapunov dimension is given by [27] :

𝐷𝐿 =

∑ 𝑗

𝑖=1 𝜆𝑖

|𝜆 𝑗+1 |
+ 𝑗

where 𝜆𝑛 ≤ . . . ≤ 𝜆1 are the Lyapunov exponents of a dynamical system’s attractor, and

𝑗 is the great natural number such that
∑ 𝑗

𝑖=1 𝜆𝑖 ≥ 0. This type of dimension takes into

account the system’s dynamics.

Box dimension :

Let us consider a geometric object and 𝜀 be the length of cells which covers the space

occupied by the object. The number 𝑁 (𝜀) is the minimum number of cells required to

cover the space. Now, for a line segment of length 𝐿, 𝑁 (𝜀) is proportional to 𝐿
𝜀
, and for a

plane area 𝐴, 𝑁 (𝜀) is proportional to 𝐴

𝜀2 .

In general, we can take 𝑁 (𝜀) as 𝑁 (𝜀) = 1
𝜀𝑑

.

Taking the logarithm of both sides, we get:

log 𝑁 (𝜀) = −𝑑 log 𝜀

⇒ 𝑑 = − log 𝑁 (𝜀)
log 𝜀

⇒ 𝑑 =
log 𝑁 (𝜀)
log(1/𝜀)
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If the limit of the above expression exists for 𝜀 → 0, then 𝑑 is called the capacity

dimension or the box dimension of the non-similar fractal. So, the box dimension (or

capacity dimension) of a fractal is given by:

𝑑 = lim
𝜀→0

log 𝑁 (𝜀)
log(1/𝜀)

The capacity or box dimension of a point in a two-dimensional space is 0, since in this

case 𝑁 (𝜀) = 1 for all 𝜀 [21].

2.2.3 Routes to chaos :

A route to chaos is a specific sequence of bifurcations leading from a completely predictable

evolution (such as having a stable fixed point) to a chaotic evolution. A remarkable characteristic,

discovered in the 1980s, is that these sequences are often qualitatively identical. This is known

as the universality of routes to chaos. Three major scenarios of transition from regular dynamics

to chaotic dynamics during the variation of a parameter have been identified :

Period-doubling route [34]: This route describes the passage from a situation where the system

reaches an equilibrium state (a stable fixed point) to a chaotic regime through a sequence of

period doublings. As the control parameter 𝜇 is increased, the fixed point is replaced in 𝜇 = 𝜇0

with a cycle having a certain period 𝐾 (the fixed point still exists for 𝜇 > 𝜇0 but it is then

unstable). Then, in 𝜇 = 𝜇1, this cycle looses its stability and is replaced by a stable cycle of

period 2k . And so on, until the system becomes chaotic.

Intermittency [27]: A stable periodic motion is interspersed with bursts of turbulence. As

the bifurcation parameter is increased, the bursts of turbulence become more frequent, and

eventually, turbulence dominates.

The Ruelle-Takens scenario [27]: This scenario, via quasi-periodicity, was elucidated by the

theoretical work of Ruelle and Takens. In a dynamical system exhibiting periodic behavior at

a single frequency, if we change a parameter, a second frequency appears. If the ratio between

the two frequencies is rational, the behavior is periodic. However, if the ratio is irrational, the

behavior is quasi-periodic. Then, if we change the parameter again, a third frequency appears,

and so on until chaos emerges.
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Since the work of Ott, Grebogi, and York in 1990, there has been considerable interest in the

control of chaotic systems [26]. Various studies on the subject have shown that a chaotic system

can be controlled in several ways, including:

• By perturbing one of the system’s parameters. This perturbation must be bounded and

very small compared to the perturbed parameter.

• By stabilizing one of the system’s unstable periodic orbits using a state feedback control

method. This method is simple to implement but requires careful selection of gain and

delay in the feedback loop.

3.1 Control methods
It is important to specify that the literature in this field is very extensive, and the method-

ologies described in this chapter represent only a part of it. we will introduce the principles of

a few methods.

3.1.1 The OGY method

The name OGY comes from its inventors: Edward Ott, Celso Grebogi and James Yorke. In

1990 they published an article showing that it was possible to control chaos, and thereby being

the first to achieve this with reasonable control efforts [26]. Ott, Grebogi and Yorke based their

theory on recent articles showing that a chaotic attractor has a large number of unstable periodic

orbits embedded within it. The essence of the OGY theory is simply to stabilize one (or more) of

these orbits by applying small perturbations. To apply these perturbations one of the parameters

of the system should be accessible, meaning that this parameter can be adjusted while the system

is running. This parameter thus becomes the input of the system[36].

The Principle Of The Method :

Let 𝐹 be a nonlinear dynamical system with chaotic behavior given by :

𝑥𝑛+1 = 𝐹 (𝑥𝑛, 𝑝), (3.1)
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where the vector 𝑥𝑛 represents the system’s state variables and 𝑝 is a control parameter accessible

from the outside for small adjustments.

Let 𝑥 𝑓 be an unstable fixed point embedded within the chaotic attractor.

𝑥 𝑓 = 𝐹 (𝑥 𝑓 , 𝑝0).

Since the system is ergodic the state 𝑥𝑖 will come very close to this point at some point in time,

while 𝑝 = 𝑝0.

Linearization of the system (3.1) around its fixed point is given by:

𝛿𝑥𝑛+1 = 𝐴𝛿𝑥𝑛 + 𝐵𝛿𝑝𝑛, (3.2)

where :

𝐴 = 𝐷𝑥𝐹 (𝑥) / 𝐵 = 𝜕𝐹/𝜕𝑝,

and :

𝛿𝑥𝑛 = 𝑥𝑛 − 𝑥 𝑓 / 𝛿𝑝𝑛 = 𝑝𝑛 − 𝑝0,

the Jacobian matrix (the matrix 𝐴) represents two eigendirections, one unstable (eigenvalue

strictly greater than 1 in absolute value) and the other stable (eigenvalue strictly less than 1 in

absolute value).

The corrections are to be applied to the unstable direction.

We introduce the following notations:

- 𝜆𝑠: Eigenvalue |𝜆𝑠 | < 1 (corresponding to the stable direction).

- 𝜆𝑢: Eigenvalue |𝜆𝑢 | > 1 (corresponding to the unstable direction).

- 𝑒𝑠: Eigenvector corresponding to the eigenvalue 𝜆𝑠.

- 𝑒𝑢: Eigenvector corresponding to the eigenvalue 𝜆𝑢.

Therefore, we can express the matrix 𝐴 in the form:

𝐴 = 𝜆𝑠𝑒𝑠 𝑓𝑠 + 𝜆𝑢𝑒𝑢 𝑓𝑢 .
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Where 𝑓𝑠 and 𝑓𝑢 represent covariance vectors.

and :

𝑓𝑠𝑒𝑠 = 𝑓𝑢𝑒𝑢 = 1,

𝑓𝑠𝑒𝑢 = 𝑓𝑢𝑒𝑠 = 0,

so the equation (3.2) becomes :

𝛿𝑥𝑛+1 = (𝜆𝑢𝑒𝑢 𝑓𝑢 + 𝜆𝑠𝑒𝑠 𝑓𝑠)𝛿𝑥𝑛 + 𝐵𝛿𝑝𝑛 (3.3)

By multiplying (3.3) by 𝑓𝑢:

𝑓𝑢𝛿𝑥𝑛+1 = 𝑓𝑢 [(𝜆𝑢𝑒𝑢 𝑓𝑢 + 𝜆𝑠𝑒𝑠 𝑓𝑠)𝛿𝑥𝑛 + 𝐵𝛿𝑝𝑛] . (3.4)

The OGY method strategy involves adjusting the control parameter 𝑝 to stabilize the system at

the point 𝑓𝑢. In other words, it is necessary for 𝛿𝑥𝑛+1 = 0.

so :

𝑓𝑢 [(𝜆𝑢𝑒𝑢 𝑓𝑢 + 𝜆𝑠𝑒𝑠 𝑓𝑠)𝛿𝑥𝑛 + 𝐵𝛿𝑝𝑛] = 0, (3.5)

and we have :

𝑓𝑠𝑒𝑠 = 𝑓𝑢𝑒𝑢 = 1,

𝑓𝑠𝑒𝑢 = 𝑓𝑢𝑒𝑠 = 0,

so :

𝑓𝑢𝜆𝑢𝛿𝑥𝑛 + 𝑓𝑢𝐵𝛿𝑝𝑛 = 0. (3.6)

The adjustment to the control parameter is given by:

𝛿𝑝𝑛 =
− 𝑓𝑢𝜆𝑢
𝑓𝑢𝐵

𝛿𝑥𝑛 = −𝐾𝛿𝑥𝑛. (3.7)
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The perturbation of p is assumed to be small so we have the following condition :

|𝑝𝑛 − 𝑝0 | < 𝜖,

where 𝜖 : a parameter which determines the neighborhood of 𝑥 𝑓 .

so we can write :

|𝐾𝛿𝑥𝑛 | < 𝜖.

The control increment is thus given by:

𝛿𝑝𝑛 =


−𝑘 (𝑥𝑛 − 𝑥 𝑓 ), if |𝑘 (𝑥𝑛 − 𝑥 𝑓 ) | < 𝜖.

0 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒.

• Example of control using the OGY method:

Let’s take as an example the control of the Hénon system using the OGY method.

The Hénon system is described by:


𝑥𝑛+1 = 𝑎 − 𝑥2

𝑛 + 𝑏𝑦𝑛,

𝑦𝑛+1 = 𝑥𝑛.

Where 𝑎 and 𝑏 represent the control parameters.

• Fixed points : let’s set 𝑥𝑛+1 = 𝑥𝑛 and 𝑦𝑛+1 = 𝑦𝑛, we obtain:


𝑥 𝑓 = 𝑎 − 𝑥2

𝑓
+ 𝑏𝑦 𝑓 ,

𝑦 𝑓 = 𝑥 𝑓 ,

so :

𝑥 𝑓 = 𝑦 𝑓 = − (1 − 𝑏)
2

±
√︂

(1 − 𝑏)2

4
+ 𝑎,

we set : 𝑐 = 1−𝑏
2 ,

we obtain :

𝑥 𝑓 = 𝑦 𝑓 = −𝑐 ±
√︁
𝑐2 + 𝑎.
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• Application of the control algorithm :

The control algorithm is applied to the system (with 𝑎 = 1.4 and 𝑏 = 0.3 to ensure the

presence of chaotic behavior).

Control using the OGY method involves performing the following operations :

1. Identification of periodic orbit to stabilize:

we substitute 𝑎 and 𝑏 into equation (3.1.1), we obtain:

𝑥 𝑓1 = 𝑦 𝑓1 = 0.8839,

𝑥 𝑓2 = 𝑦 𝑓2 = −1.5839,

In our case, we choose the point 𝑥 𝑓1 .

2. Calculation of matrices A and B:

We have 𝐴 = 𝐷𝑥𝐹 (𝑥) and 𝐵 = 𝜕𝐹/𝜕𝑝 (assuming 𝑎 as the accessible parameter).

𝐴 =
©«
−2𝑥 𝑓1 𝑏

1 0
ª®¬ , 𝐵𝑎 =

©«
1

0
ª®¬ ,

we have 𝑥 𝑓1 = 0.8839,

so :

𝐴 =
©«
−1.7678 0.3

1 0
ª®¬ .

3. Calculation of eigenvalues 𝜆𝑢 and 𝜆𝑠:

The eigenvalues 𝜆𝑢 and 𝜆𝑠 are defined by:

𝜆𝑢 , 𝑠 =
1
2
(𝜏 ±

√︁
𝜏2 − 4△)

= −𝑥 𝑓 1 ±
√︃
𝑥2
𝑓 1 + 𝑏.

So:

𝜆𝑠 = 0.1559 𝑎𝑛𝑑 𝜆𝑢 = −1.9237.
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4. Calculation of eigenvectors {𝑒𝑢, 𝑒𝑠} and the covariance vectors { 𝑓𝑢, 𝑓𝑠} :

The eigenvectors are calculated from the following equation:

[𝜆𝐼 − 𝐴]𝑒 = 0.

The eigenvector is chosen in the form:

𝑒 =
©«
𝜆

1
ª®¬ , With: 𝑒𝑠 =

©«
𝜆𝑠

1
ª®¬ and 𝑒𝑢 =

©«
𝜆𝑢

1
ª®¬ .

So:

𝑒𝑠 =
©«
0.1559

1
ª®¬ and 𝑒𝑢 =

©«
−1.9237

1
ª®¬ .

Knowing that: 𝑓𝑠𝑒𝑠 = 𝑓𝑢𝑒𝑢 = 1 and 𝑓𝑠𝑒𝑢 = 𝑓𝑢𝑒𝑠 = 0

This gives:

𝑓𝑠 =

(
1

𝜆𝑠−𝜆𝑢
𝜆𝑢

𝜆𝑢−𝜆𝑠

)
𝑎𝑛𝑑 𝑓𝑢 =

(
1

𝜆𝑢−𝜆𝑠
𝜆𝑠

𝜆𝑠−𝜆𝑢

)
,

𝑓𝑠 =

(
0.4808 0.9250

)
𝑎𝑛𝑑 𝑓𝑢 =

(
−0.4787 0.0746

)
.

5. Calculation of k :

The parameter 𝑘 is determined by:

𝑘 =
𝜆𝑢 𝑓𝑢

𝑓𝑢𝐵
=

𝜆𝑢

(
1

𝜆𝑢−𝜆𝑠
𝜆𝑠

𝜆𝑠−𝜆𝑢

)
(

1
𝜆𝑢−𝜆𝑠

𝜆𝑠
𝜆𝑠−𝜆𝑢

) ©«
1

0
ª®¬
=

(
𝜆𝑢 − 𝜆𝑢𝜆𝑠

)
,

𝑘 =

(
−1.9237 0.3011

)
.
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Figure 3.1: Control of the Hénon System using the OGY Method

3.1.2 The closed-loop control method (feedback) :

Feedback controls are used in many aspects of our lives, from the braking system of a car to

central air conditioning. The method has been used by engineers for many years. However, the

systematic study of stabilization by state feedback control is of more recent origin and dates to

the 1960s. The idea of state feedback is simple: This method involves perturbing the system

state variables 𝑥𝑛 and the control 𝑢𝑛 is adjusted based on this information to reach the target

orbit. It has the advantage of ensuring robust stability and strong noise rejection capability.

Generally, it is formulated as follows [13, 20]:

𝑥𝑛+1 = 𝑓 (𝑥𝑛, 𝑢𝑛), (3.8)

where 𝑓 : R𝑘 × R𝑚 → R𝑘 . The objective is to find a feedback control

𝑢𝑛 = ℎ(𝑥𝑛),
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in such a way that the equilibrium point 𝑥 = 0 of the closed-loop system

𝑥𝑛+1 = 𝑓 (𝑥𝑛), ℎ(𝑥𝑛)),

is locally asymptotically stable. We make the following assumptions:

(i) 𝑓 (0, 0) = 0

(ii) 𝑓 is continuously differentiable, 𝐴 =
𝜕 𝑓

𝜕𝑥
(0, 0) is a 𝑘 × 𝑘 matrix, 𝐵 =

𝜕 𝑓

𝜕𝑢
(0, 0) is a 𝑘 × 𝑚

matrix.

Under the above conditions, we have the following surprising result.

Theorem 3.1.1. If the pair {𝐴, 𝐵} is controllable, then the nonlinear system (3.8) is stabilizable.

Moreover, if 𝐾 is the gain matrix for the pair {𝐴, 𝐵}, then the control 𝑢(𝑛) = −𝐾𝑥(𝑛) may be

used to stabilize system (3.8).

Proof. Since the pair {𝐴, 𝐵} is controllable, there exists a feedback control 𝑢𝑛 = −𝐾𝑥𝑛 that

stabilizes the linear part of the system, namely,

𝑦𝑛+1 = 𝐴𝑦𝑛 + 𝐵𝑣𝑛.

We are going to use the same control on the nonlinear system. So let 𝑔 : R𝑘 → R𝑘 be a function

defined by 𝑔(𝑥) = 𝑓 (𝑥,−𝐾𝑥). Then system equation (3.8) becomes

𝑥𝑛+1 = 𝑔(𝑥𝑛) (3.9)

with
𝜕𝑔

𝜕𝑥

����
𝑥=0

= 𝐴 − 𝐵𝐾.

Since by assumption the zero solution of the linearized system

𝑦𝑛+1 = (𝐴 − 𝐵𝐾)𝑦𝑛,

is asymptotically stable, it follows that the zero solution of system (3.9) is also asymptotically

stable. This completes the proof of the theorem. □
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Recently, many countries have adopted the remanufacturing process in order to promote

their economies [33]. This process requires the remanufacturing of used or default products,

as remanufacturing is considered a friendly environmental process [25]. Indeed, the reman-

ufacturing process may be beneficial for some companies to increase their profits, but it may

be worse for other companies, especially those companies that produce new products [5]. The

USA Economy magazine reveals the fact that original product manufacturers face a competitive

threat from remanufacturer companies [32]. Such competition between those companies and

its complex dynamic characteristics can be described and investigated by duopoly games [6].

Competition in duopoly games includes only two competitors; it has also been shown that even

oligopolistic markets may become chaotic under certain conditions [2]. firms whose strategies

may be quantities (as in Cournot) or prices (as in Bertrand). In a duopoly game, the behavior of

each firm is closely intertwined with that of the other, as their strategic decisions such as pricing,

output levels, and marketing strategies directly impact each other’s outcomes and positions in

the market [29]. Recently, it has also been shown that even the Cournot model markets may

become chaotic under certain conditions [2]. The earliest oligopoly model was expectations

del proposed by Cournot in 1838, in which the two firms competed in output and were treated

with naïve expectation [9]. We considered that each player forms a different strategy in order

to compute its expected output. We assume that the first player represents a boundedly rational

player and the second player has local approximations [14]. The main aim of this work is to

investigate the dynamic behaviors of the two players using different expectation rules.

4.1 Model building
in [32] the authors considered an economic market populated by two competed firms. the first

firm is called a manufacturer and supports the market with new products, while the second firm is

called a third-party remanufacturer and supports the market with differentiated remanufactured

products. Customers distinguish between these two types of products based on their willingness

to pay, which varies between new and remanufactured products. the demand productions sent

to the market by firms are denoted by 𝑥1 and 𝑥2. the competition between these firms is carried

out in discrete time periods, 𝑡 = 0, 1, 2, ... the first firm sends the new quantity 𝑥1 for selling in

the market at time 𝑡, while the second firm can receive returned quantity 𝑥2 for remanufacturing

and sells it again in the market at time 𝑡 + 1 [5].The pricing equations for the new product 𝑥1 and
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the remanufactured product 𝑥2 are given by:

𝑝1 = 1 − 𝑥1 − 𝛿𝑥2

𝑝2 = 𝛿(1 − 𝑥1 − 𝑥2). (4.1)

Where 𝛿 is a parameter representes the valuation of the remanufactured products relative to

the new products, and it has an important meaning in this game. if 𝛿 = 0 customers are not

willing to pay anything for the remanufactured product, if 𝛿 = 1 customers are willing to pay the

same amount for new and remanufactured products. From an economic perspective, this may

not be approved. Because of the variety of customers, we restrict this parameter to 𝛿 ∈ (0, 1).

Assuming that 𝐶𝑖 (𝑥𝑖) refers to the cost of the quantity 𝑥𝑖 and is given by the following linear

form:

𝐶𝑖 (𝑥𝑖) = 𝑐𝑖𝑥𝑖, 𝑖 = 1, 2

where 𝑐1 and 𝑐2 refer to the marginal costs for both firms respectively. therefore, the profits of

both firms are given as follows:

𝜋1 = (1 − 𝑥1 − 𝛿𝑥2 − 𝑐1)𝑥1,

𝜋2 = (𝛿(1 − 𝑥1 − 𝑥2) − 𝑐2)𝑥2. (4.2)

And their marginal functions become as follows:

𝜕𝜋1
𝜕𝑥1

= 1 − 2𝑥1 − 𝛿𝑥2,𝑡 − 𝑐1,

𝜕𝜋2
𝜕𝑥2

= 𝛿(1 − 𝑥1 − 2𝑥2) − 𝑐2. (4.3)

Information in the game generally is deficient, so firms may utilize more complex strategies, for

example, bounded rationality method. So we assume that the two firms are heterogeneous and

adopt different adjustment mechanisms in order to update their productions. We presume that

the first firm will behave as a bounded rational firm and consequently will maximize its profit.

Firms with bounded rationality do not have the total information of the game, thus, the settling

yield choices depend on a local estimate of the marginal profit. It is easy to see that for 𝛿 ∈ (0, 1)
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and 𝑐1 > 𝑐2, the marginal profit 𝜕𝜋1
𝜕𝑥1

is always positive and lies within the first quadrant. When

companies make use of this type of adjustments, they are to be rational players. To describe

such firm’s behavior based on this reasoning the first firm will update its output at period 𝑡 + 1

according to the following form [5, 32]:

𝑥1,𝑡+1 = 𝑥1,𝑡 + 𝑘𝑥1,𝑡
𝜕𝜋1
𝜕𝑥1

(4.4)

where 𝑘 is a positive parameter which represents the relative speed of output adjustment. On

the other hand, we assume that the second firm seeks to share the market with a certain profit.

It starts with assuming that it seeks a complete market share maximization. Its profit becomes

zero ( 𝜋2 = 0). and then its optimum output becomes as follows:

𝑥2 = 1 − 𝑥1 −
𝑐2
𝛿
. (4.5)

But when it completely seeks profit maximization, its marginal profit will vanish and then we

have the following:

𝑥2 =
1
2

(
1 − 𝑥1 −

𝑐2
𝛿

)
. (4.6)

According to some weights, the second firm will be traded off between market share and profit

as follows:

𝑥2 = 𝜔𝑥2 + (1 − 𝜔) 𝑥2

=
1 + 𝜔

2

(
1 − 𝑥1 −

𝑐2
𝛿

)
. (4.7)

Where 𝜔 ∈ (0, 1) the attitude between the profit and market share. When 𝜔 = 0 it means

the second firm seeks profit maximization only, while 𝜔 = 1 that means it seeks market share

maximization. But as it trades off between both, we have restricted the parameter 𝜔 to the

interval (0, 1). Now we assume this firm updates its output according to the following adaptive

mechanism:

𝑥2,𝑡+1 = (1 − 𝛽)𝑥2,𝑡 + 𝛽𝑥2,𝑡 (4.8)
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where 𝛽 is a positive parameter representes the speed of adjustment and is restricted 𝛽 ∈ (0, 1).

Since the output of the second firm at time 𝑡 + 1 should be less than or equal to those of the first

firm at time 𝑡 (𝑥2,𝑡+1 ≤ 𝑥1,𝑡), therefore the equation (4.8) will be modified as follows:

𝑥2,𝑡+1 = min{(1 − 𝛽)𝑥2,𝑡 + 𝛽𝑥2 , 𝑥1,𝑡}, (4.9)

Using (4.4) and (4.9), we will define the map that describes this game as follows:

(𝑥1,𝑡+1, 𝑥2,𝑡+1) = 𝐹 (𝑥1,𝑡 , 𝑥2,𝑡) =

𝑥1,𝑡 + 𝑘𝑥1,𝑡 (1 − 2𝑥1 − 𝛿𝑥2,𝑡 − 𝑐1),

min{(1 − 𝛽)𝑥2,𝑡 + 𝛽𝑥2 , 𝑥1,𝑡},
(4.10)

the map (4.10) is a two-dimensional piecewise smooth map and is constructed to describe the

proposed duopoly game in this work. In order to study the stability of its fixed points we should

study it as a piecewise-smooth map. the stability of this map depends on the second equation

where the function 𝑓 = (1 − 𝛽)𝑥2,𝑡 + 𝛽𝑥2 exists. It means that any order pair (𝑥1, 𝑥2) belongs to

𝑓 < 𝑥1 gives only one part of the map to be dynamically studied, and while 𝑓 > 𝑥1 the other part

of the map should be studied. Hence, we get the fact that there is a borderline 𝑓 = 𝑥1 where the

map is continuous. Furthermore, the map’s phase plane will be divided by the border line into

two regions (Left regio 𝑅𝑙 and right region 𝑅𝑟) [5]. this borderline takes the following form:

𝑥1 =
1

2 + 𝛽(1 + 𝜔)

(
2(1 − 𝛽)𝑥2,𝑡 +

𝛽

𝛿
(1 + 𝜔) (𝛿 − 𝑐2)

)
= 𝑔(𝑥2). (4.11)

So the map (4.10) is modified to the following:

𝑥1,𝑡+1 = 𝑥1,𝑡 + 𝑘𝑥1,𝑡 (1 − 2𝑥1,𝑡 − 𝛿𝑥2,𝑡 − 𝑐1),

𝑥2,𝑡+1 =


(1 − 𝛽)𝑥2,𝑡 + 1

2 𝛽(1 + 𝜔) (1 − 𝑥1,𝑡 − 𝑐2
𝛿
), if 𝑥1,𝑡 ≥ 𝑔(𝑥2),

𝑥1,𝑡 , if 𝑥1,𝑡 ≤ 𝑔(𝑥2).
(4.12)

In the next sections, we will study the dynamical behaviors of the map (4.12).
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4.2 Stability analysis
Consider the following discrete dynamical system:

(𝑥1,𝑡+1, 𝑥2,𝑡+1) = 𝐹 (𝑥1,𝑡 , 𝑥2,𝑡) =

𝑥1,𝑡 + 𝑘𝑥1,𝑡 (1 − 2𝑥1 − 𝛿𝑥2,𝑡 − 𝑐1),

min{(1 − 𝛽)𝑥2,𝑡 + 1
2 𝛽(1 + 𝜔) (1 − 𝑥1,𝑡 − 𝑐2

𝛿
) , 𝑥1,𝑡}.

(4.13)

Fixed points

To study the system (4.13) we distinguish two cases:

(a) If 𝑥1,𝑡 ≤ 𝑔(𝑥2) (Region 𝑅𝑙 )

The system (4.13) is written as:


𝑥1,𝑡+1 = 𝑥1,𝑡 + 𝑘𝑥1,𝑡 (1 − 2𝑥1 − 𝛿𝑥2,𝑡 − 𝑐1),

𝑥2,𝑡+1 = 𝑥1,𝑡 .

(4.14)

The fixed points are solutions of the following equations:


𝑥1,𝑡+1 = 𝑥1,𝑡 ,

𝑥2,𝑡+1 = 𝑥2,𝑡 ,

we obtain : 
𝑥1,𝑡 + 𝑘𝑥1,𝑡 (1 − 2𝑥1,𝑡 − 𝛿𝑥2,𝑡 − 𝑐1) = 𝑥1,𝑡 ,

𝑥1,𝑡 = 𝑥2,𝑡 ,

so we have : 
𝑘𝑥1,𝑡 (1 − 2𝑥1,𝑡 − 𝛿𝑥2,𝑡 − 𝑐1) = 0,

𝑥1,𝑡 = 𝑥2,𝑡 ,

according to the first equation we obtain :

𝑘𝑥1,𝑡 = 0 𝑠𝑜 𝑥1,𝑡 = 𝑥2,𝑡 = 0 (𝑘 > 0)

𝑜𝑟 1 − (𝛿 + 2)𝑥1,𝑡 − 𝑐1 = 0 𝑠𝑜 𝑥1,𝑡 = 𝑥2,𝑡 =
1−𝑐1
𝛿+2

so we have two fixed points :
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𝐸1 = (0, 0),

𝐸𝑙 = ( 1−𝑐1
𝛿+2 ,

1−𝑐1
𝛿+2 ).

(b) If 𝑥1,𝑡 ≥ 𝑔(𝑥2) (Region 𝑅𝑟 )

The system (4.13) is written as:


𝑥1,𝑡+1 = 𝑥1,𝑡 + 𝑘𝑥1,𝑡 (1 − 2𝑥1 − 𝛿𝑥2,𝑡 − 𝑐1),

𝑥2,𝑡+1 = (1 − 𝛽)𝑥2,𝑡 + 𝛽(1+𝜔)
2 (1 − 𝑥1,𝑡 − 𝑐2

𝛿
).

(4.15)

The fixed points are solutions of the following equations:


𝑥1,𝑡+1 = 𝑥1,𝑡 ,

𝑥2,𝑡+1 = 𝑥2,𝑡 ,

we obtain : 
𝑥1,𝑡 + 𝑘𝑥1,𝑡 (1 − 2𝑥1,𝑡 − 𝛿𝑥2,𝑡 − 𝑐1) = 𝑥1,𝑡 ,

(1 − 𝛽)𝑥2,𝑡 + 1
2 𝛽(1 + 𝜔) (1 − 𝑥1,𝑡 − 𝑐2

𝛿
) = 𝑥2,𝑡 ,

so we have : 
𝑘𝑥1,𝑡 (1 − 2𝑥1,𝑡 − 𝛿𝑥2,𝑡 − 𝑐1) = 0,

−𝛽𝑥2,𝑡 + 1
2 𝛽(1 + 𝜔) (1 − 𝑥1,𝑡 − 𝑐2

𝛿
) = 0,

according to the first equation we obtain :

𝑘𝑥1,𝑡 = 0 𝑠𝑜 𝑥1,𝑡 = 0 (𝑘 > 0),

𝑜𝑟 1 − 2𝑥1,𝑡 − 𝛿𝑥2,𝑡 − 𝑐1 = 0 𝑠𝑜 𝑥1,𝑡 =
1−𝛿𝑥2,𝑡−𝑐1

2 .

For 𝑥1,𝑡 = 0 :

according to the second equation we have 𝑥2,𝑡 =
𝛽(1+𝜔) (1− 𝑐2

𝛿
)

2𝛽 .

For 𝑥1,𝑡 =
1−𝛿𝑥2,𝑡−𝑐1

2 :

according to the second equation we have :

−𝛽𝑥2,𝑡 + 1
2 𝛽(1 + 𝜔) (1 − 1−𝛿𝑥2,𝑡−𝑐1

2 − 𝑐2
𝛿
) = 0.

− 𝛽𝑥2,𝑡 + 1
2 𝛽(1 + 𝜔) ( 𝛿𝑥2,𝑡

2 ) + 1
2 𝛽(1 + 𝜔) (1 − 1−𝑐1

2 − 𝑐2
𝛿
) = 0.
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𝑥2,𝑡 (
𝛽𝛿(1 + 𝜔)

4
− 𝛽)︸               ︷︷               ︸

𝐵

= −1
2
𝛽(1 + 𝜔) (1 − 1 − 𝑐1

2
− 𝑐2
𝛿
)︸                                  ︷︷                                  ︸

𝐴

,

where :

𝐴 = −1
2
𝛽(1 + 𝜔) ( 𝛿(1 + 𝑐1) − 2𝑐2

2𝛿
) = 𝛽(1 + 𝜔) [𝛿(−1 − 𝑐1) + 2𝑐2]

4𝛿
,

𝐵 =
𝛽[𝛿(1 + 𝜔) − 4]

4
,

so we obatin :

𝑥2,𝑡 =
𝛽(1 + 𝜔) [𝛿(−1 − 𝑐1) + 2𝑐2]

4𝛿
× 4
𝛽[𝛿(1 + 𝜔) − 4]

=
(1 + 𝜔) [𝛿(1 + 𝑐1) − 2𝑐2]

[4 − (1 + 𝜔)𝛿]𝛿 .

We substitute the 𝑥2,𝑡 into 𝑥1,𝑡 :

𝑥1,𝑡 =
1 − 𝛿𝑥2,𝑡 − 𝑐1

2
=

1 − (1+𝜔) [𝛿(1+𝑐1)−2𝑐2]
4−(1+𝜔)𝛿 − 𝑐1

2

=
1

2[4 − (1 + 𝜔)𝛿] [4 − (1 + 𝜔)𝛿 − (1 + 𝜔) [(1 + 𝑐1)𝛿 − 2𝑐2] − 𝑐1 [4 − (1 + 𝜔)𝛿]]

=
1

2[4 − (1 + 𝜔)𝛿] [(1 + 𝜔) [−𝛿 − (1 + 𝑐1)𝛿 + 2𝑐2𝑐1𝛿] + 4 − 4𝑐1]

=
1

2[4 − (1 + 𝜔)𝛿] [(1 + 𝜔) [𝛿(−1 − 1 − 𝑐1 + 𝑐1) + 2𝑐2] + 4(1 − 𝑐1)]

=
1

2[4 − (1 + 𝜔)𝛿] [2(1 + 𝜔) (𝑐2 − 𝛿) + 4(1 − 𝑐1)]

=
(1 + 𝜔) (𝑐2 − 𝛿) + 2(1 − 𝑐1)

[4 − (1 + 𝜔)𝛿]

𝑥1,𝑡 =
2(1 − 𝑐1) − (1 + 𝜔) (𝛿 − 𝑐2)

[4 − (1 + 𝜔)𝛿] ,

so we have two fixed points :


𝐸2 =

(
0, 𝛽(1+𝜔) (1−

𝑐2
𝛿
)

2𝛽

)
,

𝐸𝑟 =

(
2(1−𝑐1)−(1+𝜔) (𝛿−𝑐2)

4−(1+𝜔)𝛿 ,
(1+𝜔) [𝛿(1+𝑐1)−2𝑐2]

[4−(1+𝜔)𝛿]𝛿

)
.
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The first point 𝐸2 =

(
0, 𝛽(1+𝜔) (1−

𝑐2
𝛿
)

2𝛽

)
is rejected because 𝑥1,𝑡 ≥ 𝑔(𝑥2)

and

𝐸𝑟 =

(
2(1−𝑐1)−(1+𝜔) (𝛿−𝑐2)

4−(1+𝜔)𝛿 ,
(1+𝜔) [𝛿(1+𝑐1)−2𝑐2]

[4−(1+𝜔)𝛿]𝛿

)
is called the Nash equilibrium point of the

game provided that :


2 − (1 + 𝜔)𝛿 − 2𝑐1 + (1 + 𝜔)𝑐2 > 0,

𝛿 + 𝛿𝑐1 − 2𝑐2 > 0.

It can be reduced to:
2𝑐2

1 + 𝑐1
< 𝛿 <

2(1 − 𝑐1)
1 + 𝜔 + 𝑐2. (4.16)

Stability

• Stability of the points 𝐸1 and 𝐸𝑙 :

To study the stability of 𝐸1 and 𝐸𝑙 , we use the Jacobian matrix of the map (4.14) :

𝐽𝑙 =
©«
1 + 𝑘 (1 − 4𝑥1,𝑡 − 𝛿𝑥2,𝑡 − 𝑐1) −𝛿𝑘𝑥1,𝑡

1 0
ª®¬ .

Stability of the point 𝐸1 = (0, 0)

The Jacobian matrix at The boundary equilibrium 𝐸1 = (0, 0) takes the form :

𝐽 (𝐸1) = ©«
1 + 𝑘 (1 − 𝑐1) 0

1 0
ª®¬ ,

which gives two eigenvalues :

𝜆1 = 1 + 𝑘 (1 − 𝑐1),

𝜆2 = 0.

We have |𝜆1 | > 1 due to 1 − 𝑐1 > 0, so the boundary equilibrium point 𝐸1 is unstable (saddle

point).
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Stability of the point 𝐸𝑙 = ( 1−𝑐1
𝛿+2 ,

1−𝑐1
𝛿+2 )

the Jacobian matrix of the map (4.14) at this point can be given by :

𝐽 (𝐸𝑙) =
©«
1 + 𝑘 (1 − (4 + 𝛿) 𝛼1

2+𝛿 − 𝑐1) −𝛿𝑘 𝛼1
2+𝛿

1 0
ª®¬

=
©«
1 + 𝑘 2+𝛿−(4+𝛿)𝛼1−𝑐1 (2+𝛿)

2+𝛿 − 𝛿𝛼1
2+𝛿 𝑘

1 0
ª®¬

=
©«
1 + 𝑘 (2+𝛿)𝛼1−(4+𝛿)𝛼1

2+𝛿 − 𝛿𝛼1
2+𝛿 𝑘

1 0
ª®¬

=
©«
1 + 𝑘 −2𝛼1

2+𝛿 − 𝛿𝛼1
2+𝛿 𝑘

1 0
ª®¬

=
©«
1 − 2𝛼1

2+𝛿 𝑘 − 𝛿𝛼1
2+𝛿 𝑘

1 0
ª®¬ .

The characteristic polynomial is given by:

𝑃1(𝜆) = 𝜆2 − Tr(𝐽 (𝐸𝑙))𝜆 + Det(𝐽 (𝐸𝑙)),

where Tr(𝐽 (𝐸𝑙)) and Det(𝐽 (𝐸𝑙)) are respectively the trace and determinant of the Jacobian

matrix, given by:

𝑡𝑟 (𝐽 (𝐸𝑙)) = 1 − 2𝛼1
2 + 𝛿 𝑘,

𝐷𝑒𝑡 (𝐽 (𝐸𝑙)) =
𝛿𝛼1

2 + 𝛿 𝑘,

then we have :

Δ𝑙 = 𝑡𝑟 (𝐽 (𝐸𝑙))2 − 4𝐷𝑒𝑡 (𝐽 (𝐸𝑙))

= (1 − 2𝛼1
𝛿 + 2

𝑘)2 − 4
𝛿𝛼1
𝛿 + 2

𝑘,
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and the eigenvalues are as follows:

𝜆1𝑙,2𝑙 =
1
2

(
𝑡𝑟 (𝐽 (𝐸𝑙)) ±

√︁
𝑡𝑟 (𝐽 (𝐸𝑙))2 − 4𝐷𝑒𝑡 (𝐽 (𝐸𝑙))

)
=

1
2

(
1 − 2𝛼1

2 + 𝛿 𝑘 ±
√︂
(1 − 2𝛼1

𝛿 + 2
𝑘)2 − 4

𝛿𝛼1
𝛿 + 2

𝑘

)
=

1
2

(
1 − 2𝛼1

2 + 𝛿 𝑘 ±
√︂

1 + 4( 𝛼1
𝛿 + 2

)2𝑘2 − 4𝛼1
𝛿 + 2

𝑙 − 4𝛿𝛼1
𝛿 + 2

𝑘

)
=

1
2

(
1 − 2𝛼1

2 + 𝛿 𝑘 ±
√︂

1 + 4( 𝛼1
𝛿 + 2

)2𝑘2 − 4𝛼1(1 + 𝛿)
𝛿 + 2

𝑘

)
𝜆1𝑙,2𝑙 =

1
2
− 𝛼1
𝛿 + 2

𝑘 ±
√︂

1
4
+ ( 𝛼1
𝛿 + 2

)2𝑘2 − 𝛼1(1 + 𝛿)
𝛿 + 2

𝑘.

Thus, the eigenvalues are real or complex conjugated. The local stability of Nash equilibrium is

given by using Jury’s conditions. Furthermore, the stability region of the fixed point 𝐸𝑙 is given

by the following:

𝑆𝑙 = {1 + 𝑡𝑟 (𝐽 (𝐸𝑙)) + 𝐷𝑒𝑡 (𝐽 (𝐸𝑙)) > 0, 1− 𝑡𝑟 (𝐽 (𝐸𝑙)) + 𝐷𝑒𝑡 (𝐽 (𝐸𝑙)) > 0, 1− 𝐷𝑒𝑡 (𝐽 (𝐸𝑙)) > 0},

(4.17)

where :

1 + 𝑡𝑟 (𝐽 (𝐸𝑙)) + 𝐷𝑒𝑡 (𝐽 (𝐸𝑙)) = 1 + 1 − 2𝛼1
𝛿 + 2

𝑘 + 𝛿𝛼1
𝛿 + 2

𝑘

= 2 − 2𝛼1 − 𝛿𝛼1
𝛿 + 2

𝑘

= 2 − 𝛼1(2 − 𝛿)
𝛿 + 2

𝑘,

1 − 𝑡𝑟 (𝐽 (𝐸𝑙)) + 𝐷𝑒𝑡 (𝐽 (𝐸𝑙)) = 1 − 1 + 2𝛼1
𝛿 + 2

𝑘 + 𝛿𝛼1
𝛿 + 2

𝑘

=
𝛼1(2 + 𝛿)

2 + 𝛿 𝑘

= 𝛼1𝑘,

1 − 𝐷𝑒𝑡 (𝐽 (𝐸𝑙)) = 1 − 𝛿𝛼1
𝛿 + 2

𝑘.

For the special case of the Jacobian matrix 𝐽 (𝐸𝑙), the stability conditions in (4.17) can be written

as follows:
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(1) : 2 − 𝛼1 (2−𝛿)

𝛿+2 𝑘 > 0,

(2) : 𝛼1𝑘 > 0,

(3) : 1 − 𝛿𝛼1
𝛿+2 𝑘 > 0,

(4.18)

the first condition is 2 − 𝛼1 (2−𝛿)
𝛿+2 𝑘 > 0 which implies that :

𝑘 <
2(2 + 𝛿)
𝛼1(2 − 𝛿) , (4.19)

the second condition is 𝛼1𝑘 > 0, then the second condition is satisfied.

Then the third condition 1 − 𝛿𝛼1
𝛿+2 𝑘 > 0. This inequality is equivalent to :

𝑘 <
2 + 𝛿
𝛿𝛼1

, (4.20)

Lemma 4.2.1. From (4.19) and (4.20) we obtain :

if Δ𝑙 > 0 the Nash equilibrium 𝐸𝑙 of the map (4.14) is asymptotically stable provided that

𝑘 <
2(2+𝛿)
𝛼1 (2−𝛿) and the system (4.14) undergoes a flip bifurcation at 𝐸𝑙 when 𝑘 =

2(2+𝛿)
𝛼1 (2−𝛿) . Moreover,

period-2 points bifurcate from 𝐸𝑙 when 𝑘 > 2(2+𝛿)
𝛼1 (2−𝛿) .

if Δ𝑙 < 0 the Nash equilibrium 𝐸𝑙 of the map (4.14) is asymptotically stable provided that

𝑘 < 2+𝛿
𝛿𝛼1

and the system (4.14) undergoes a Neimark-Sacker bifurcation at 𝐸𝑙 when 𝑘 = 2+𝛿
𝛿𝛼1

.

• Stability of the point 𝐸𝑟 :

In order to investigate the local stability of the equilibrium points 𝐸𝑟 , we need the Jacobian

matrix of the map (4.15) at this point :

𝐽𝑟 =
©«

𝐴 −𝛿𝑘𝑥1,𝑡

−1
2 𝛽(1 + 𝜔) 1 − 𝛽

ª®¬
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where :

𝐴 = 1 + 𝑘 (1 − 2𝑥1,𝑡 − 𝛿𝑥2,𝑡 − 𝑐1) − 2𝑘𝑥1,𝑡

= 1 + 𝑘 (1 − 8𝛼1 − 4𝛼2𝛼3
4 − 𝛼2𝛿

− 𝛼2((1 + 𝑐1)𝛿 − 2𝑐2)
4 − 𝛼2𝛿

− 𝑐1)

= 1 + 𝑘 (1 − 8𝛼1 − 4𝛼2𝛼3 + 𝛼2((1 + 𝑐1)𝛿 − 2𝑐2)
4 − 𝛼2𝛿

− 𝑐1)

= 1 + 𝑘 (4 − 𝛼2𝛿 − 8𝛼1 + 4𝛼2𝛼3 − 𝛼2((1 + 𝑐1)𝛿 − 2𝑐2) − 𝑐1(4 − 𝛼2𝛿)
4 − 𝛼2𝛿

)

= 1 + 𝑘 (𝛼2(−𝛿 + 4𝛼3 − (1 + 𝑐1)𝛿 + 2𝑐2 + 𝑐1𝛿) + 4 − 8𝛼1 − 4𝑐1
4 − 𝛼2𝛿

)

= 1 + 𝑘 (𝛼2(4𝛼3 + 𝛿(−1 − 1 − 𝑐1 + 𝑐1) + 𝑐2) + 4𝛼1 − 8𝛼1
4 − 𝛼2𝛿

)

= 1 + 𝑘 (𝛼2(4𝛼3 − 2𝛼3) − 4𝛼1
4 − 𝛼2𝛿

) = 1 + 𝑘 2𝛼2𝛼3 − 4𝛼1
4 − 𝛼2𝛿

𝐴 = 1 − 4𝛼1 − 2𝛼2𝛼3
4 − 𝛼2𝛿

𝑘,

so we have :

𝐽 (𝐸𝑟) = ©«
1 − 4𝛼1−2𝛼2𝛼3

4−𝛼2𝛿
𝑘 −2𝛼1−𝛼2𝛼3

4−𝛼2𝛿
𝛿𝑘

−𝛼2𝛽
2 𝛼4

ª®¬ , (4.21)

such :



𝛼1 = 1 − 𝑐1,

𝛼2 = 1 + 𝜔,

𝛼3 = 𝛿 − 𝑐2,

𝛼4 = 1 − 𝛽.

Eigenvalues for the above Jacobian matricx take the form :

𝜆1,2 =
1
2

(
𝑡𝑟 (𝐽 (𝐸𝑟)) ±

√︁
𝑡𝑟 (𝐽 (𝐸𝑟))2 − 4𝐷𝑒𝑡 (𝐽 (𝐸𝑟))

)
,
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where :

𝑡𝑟 (𝐽 (𝐸𝑟)) = 1 − 4𝛼1 − 2𝛼2𝛼3
4 − 𝛼2𝛿

𝑘 + 𝛼4

= 𝛼4 + 1 − 4𝛼1 − 2𝛼2𝛼3
4 − 𝛼2𝛿

𝑘,

𝐷𝑒𝑡 (𝐽 (𝐸𝑟)) = 𝛼4 − 2𝛼4
2𝛼1 − 𝛼2𝛼3

4 − 𝛼2𝛿
𝑘 − 2𝛼1 − 𝛼2𝛼3

4 − 𝛼2𝛿

𝛼2𝛽

2
𝛿𝑘

= 𝛼4 −
2𝛼1 − 𝛼2𝛼3

4 − 𝛼2𝛿

(
2𝛼4 +

𝛼2𝛽

2
𝛿

)
𝑘.

The discriminant Δ𝑟 is calculated as follows:

Δ𝑟 = 𝑡𝑟 (𝐽 (𝐸𝑟))2 − 4𝐷𝑒𝑡 (𝐽 (𝐸𝑟))

=

(
𝛼4 + 1 − 4𝛼1 − 2𝛼2𝛼3

4 − 𝛼2𝛿
𝑘

)2
− 4

(
𝛼4 −

2𝛼1 − 𝛼2𝛼3
4 − 𝛼2𝛿

(
2𝛼4 +

𝛼2𝛽

2
𝛿

)
𝑘

)
= 𝛼2

4 + 1 + 2𝛼4 + 4(2𝛼1 − 𝛼2𝛼3
4 − 𝛼2𝛿

)2𝑘2 − 2(1 + 𝛼4)
2(2𝛼1 − 𝛼2𝛼3)

4 − 𝛼2𝛿
𝑘 − 4𝛼4

+ 2(2𝛼1 − 𝛼2𝛼3) (4𝛼4 + 𝛼2𝛽𝛿)
4 − 𝛼2𝛿

𝑘 + 4(2𝛼1 − 𝛼2𝛼3
4 − 𝛼2𝛿

)2𝑘2

= 1 + 𝛽2 − 2𝛽 + 1 + 2𝛼4 − 4𝛼4 +
2(2𝛼1 − 𝛼2𝛼3)

4 − 𝛼2𝛿
𝑘 (−2 − 2𝛼4 + 4𝛼4 + 𝛼2𝛽𝛿) + 4(2𝛼1 − 𝛼2𝛼3

4 − 𝛼2𝛿
)2𝑘2

= 2 + 𝛽2 − 2𝛽 − 2(1 − 𝛽) + 2(2𝛼1 − 𝛼2𝛼3)
4 − 𝛼2𝛿

𝑘 (−2 + 2(1 − 𝛽) + 𝛼2𝛽𝛿) + 4(2𝛼1 − 𝛼2𝛼3
4 − 𝛼2𝛿

)2𝑘2

= 2 + 𝛽2 − 2𝛽 − 2 + 2𝛽 + 2(2𝛼1 − 𝛼2𝛼3)
4 − 𝛼2𝛿

𝑘 (−2 + 2 − 2𝛽 + 𝛼2𝛽𝛿) + 4(2𝛼1 − 𝛼2𝛼3
4 − 𝛼2𝛿

)2𝑘2

= 𝛽2 + 2(2𝛼1 − 𝛼2𝛼3)
4 − 𝛼2𝛿

𝑘 (−2 + 𝛼2𝛿)𝛽 + 4(2𝛼1 − 𝛼2𝛼3
4 − 𝛼2𝛿

)2𝑘2

= 𝛽2 + 2𝛽
(2𝛼1 − 𝛼2𝛼3) (𝛼2𝛿 − 2)

4 − 𝛼2𝛿
𝑘 + 4(2𝛼1 − 𝛼2𝛼3

4 − 𝛼2𝛿
)2𝑘2

= 𝛽2 − 2𝛽
(2𝛼1 − 𝛼2𝛼3) (2 − 𝛼2𝛿)

4 − 𝛼2𝛿
𝑘 + 4(2𝛼1 − 𝛼2𝛼3

4 − 𝛼2𝛿
)2𝑘2,

so :

𝜆1𝑟,2𝑟 =
𝛼4 + 1

2
− 2𝛼1 − 𝛼2𝛼3

4 − 𝛼2𝛿
𝑘 ±

√︂
𝛽2

4
− 𝛽

2
𝐴2𝑘 + 𝐴2

1𝑘
2

= 1 − 𝛽

2
− 𝐴1𝑘 ±

√︂
𝛽2

4
− 𝛽

2
𝐴2𝑘 + 𝐴2

1𝑘
2,
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such that : 
𝐴1 =

(2𝛼1−𝛼2𝛼3)
4−𝛼2𝛿

,

𝐴2 =
(2𝛼1−𝛼2𝛼3) (2−𝛼2𝛿)

4−𝛼2𝛿
.

Since Δ𝑟 > 0 (the jacobian matrices have positive discriminants), then we deduce that the

eigenvalues of Nash equilibrium are real. The local stability of Nash equilibrium is given by

using Jury’s conditions. Furthermore, the stability region of the fixed point 𝐸𝑟 is given by the

following:

𝑆𝑟 = {1+ 𝑡𝑟 (𝐽 (𝐸𝑟)) +𝐷𝑒𝑡 (𝐽 (𝐸𝑟)) > 0 , 1− 𝑡𝑟 (𝐽 (𝐸𝑟)) +𝐷𝑒𝑡 (𝐽 (𝐸𝑟)) > 0 , 1−𝐷𝑒𝑡 (𝐽 (𝐸𝑟)) > 0},

(4.22)

where :

1 + 𝑡𝑟 (𝐽 (𝐸𝑟)) + 𝐷𝑒𝑡 (𝐽 (𝐸𝑟)) = 1 + 𝛼4 + 1 − 2(2𝛼1 − 𝛼2𝛼3)
4 − 𝛼2𝛿

𝑘 + 𝛼4

− (2𝛼1 − 𝛼2𝛼3) (4𝛼4 + 𝛼2𝛽𝛿)
2(4 − 𝛼2𝛿)𝑘

= 2 + 2𝛼4 −
2𝛼1 − 𝛼2𝛼3

4 − 𝛼2𝛿

(
2 + 4𝛼4 + 𝛼2𝛽𝛿

2

)
𝑘

= 2 + 2𝛼4 −
2𝛼1 − 𝛼2𝛼3

4 − 𝛼2𝛿

(
4 + 4𝛼4 + 𝛼2𝛽𝛿

2

)
𝑘

= 2 + (1 − 𝛽) − 2𝛼1 − 𝛼2𝛼3
4 − 𝛼2𝛿

(
4 + 4𝛼4 + 𝛼2𝛽𝛿

2

)
𝑘

= 4 − 2𝛽 − (2𝛼1 − 𝛼2𝛼3) (𝛼2𝛽𝛿 + 4(1 + 𝛼4))
2(4 − 𝛼2𝛿)

𝑘,

1 − 𝑡𝑟 (𝐽 (𝐸𝑟)) + 𝐷𝑒𝑡 (𝐽 (𝐸𝑟)) = 1 − 𝛼4 − 1 + 2(2𝛼1 − 𝛼2𝛼3)
4 − 𝛼2𝛿

𝑘 + 𝛼4

− (2𝛼1 − 𝛼2𝛼3) (4𝛼4 + 𝛼2𝛽𝛿)
2(4 − 𝛼2𝛿)

𝑘

=
(2𝛼1 − 𝛼2𝛼3) (4 − 4𝛼4 − 𝛼2𝛽𝛿)

2(4 − 𝛼2𝛿)
𝑘

=
(2𝛼1 − 𝛼2𝛼3) (4(1 − 𝛼4) − 𝛼2𝛽𝛿)

2(4 − 𝛼2𝛿)
𝑘

=
(2𝛼1 − 𝛼2𝛼3) (𝛽(4 − 𝛼2𝛿))

2(4 − 𝛼2𝛿)
𝑘

=
𝛽

2
(2𝛼1 − 𝛼2𝛼3)𝑘,
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1 − 𝐷𝑒𝑡 (𝐽 (𝐸𝑟)) = 1 − (1 − 𝛽) + 2𝛼1 − 𝛼2𝛼3
4 − 𝛼2𝛿

(
2𝛼4 +

𝛼2𝛽

2
𝛿

)
𝑘

= 𝛽 + 2𝛼1 − 𝛼2𝛼3
4 − 𝛼2𝛿

(
𝛼2𝛽𝛿 + 4𝛼4

2

)
𝑘

= 𝛽 + (2𝛼1 − 𝛼2𝛼3) (𝛼2𝛽𝛿 + 4𝛼4)
2(4 − 𝛼2𝛿)

𝑘.

Proposition 4.2.1. The Nash equilibrium point𝐸𝑟 is asymptotically stable if 𝑘 < 2(4−2𝛽) (4−𝛼2𝛿)
(2𝛼1−𝛼2𝛼3) (𝛼2𝛽𝛿+4(1+𝛼4))

The system (4.15) undergoes a flip bifurcation at 𝐸𝑟 when 𝑘 =
2(4−2𝛽) (4−𝛼2𝛿)

(2𝛼1−𝛼2𝛼3) (𝛼2𝛽𝛿+4(1+𝛼4)) . Moreover,

period-2 points bifurcate from 𝐸𝑟 when 𝑘 > 2(4−2𝛽) (4−𝛼2𝛿)
(2𝛼1−𝛼2𝛼3) (𝛼2𝛽𝛿+4(1+𝛼4)) .

Proof. For the special case of the Jacobian matrix 𝐽𝑟 , the stability conditions in (4.22) can be

written as follows: 
(1) : 4 − 2𝛽 − (2𝛼1−𝛼2𝛼3) (𝛼2𝛽𝛿+4(1+𝛼4))

2(4−𝛼2𝛿) 𝑘 > 0,

(2) : 𝛽

2 (2𝛼1 − 𝛼2𝛼3)𝑘 > 0,

(3) : 𝛽 + (2𝛼1−𝛼2𝛼3) (𝛼2𝛽𝛿+4𝛼4)
2(4−𝛼2𝛿) 𝑘 > 0,

the first condition is 4 − 2𝛽 − (2𝛼1−𝛼2𝛼3) (𝛼2𝛽𝛿+4(1+𝛼4))
2(4−𝛼2𝛿) 𝑘 > 0 which implies that :

𝑘 <
2(4 − 2𝛽) (4 − 𝛼2𝛿)

(2𝛼1 − 𝛼2𝛼3) (𝛼2𝛽𝛿 + 4(1 + 𝛼4))
, (4.23)

the second condition is 𝛽

2 (2𝛼1 − 𝛼2𝛼3)𝑘 > 0, then the second condition is satisfied according to

(4.16) .

the third condition 𝛽 + (2𝛼1−𝛼2𝛼3) (𝛼2𝛽𝛿+4𝛼4)
2(4−𝛼2𝛿) 𝑘 > 0 this inequality is equivalent to :

𝑘 >
−2𝛽(4 − 𝛼2𝛿)

(2𝛼1 − 𝛼2𝛼3) (𝛼2𝛽𝛿 + 4𝛼4)
. (4.24)

From (4.23) and (4.24) , it follows that the Nash equilibrium 𝐸𝑟 is locally asymptotically stable

if
−2𝛽(4 − 𝛼2𝛿)

(2𝛼1 − 𝛼2𝛼3) (𝛼2𝛽𝛿 + 4𝛼4)
< 𝑘 <

2(4 − 2𝛽) (4 − 𝛼2𝛿)
(2𝛼1 − 𝛼2𝛼3) (𝛼2𝛽𝛿 + 4(1 + 𝛼4))
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𝑘 is a positive parameter which implies that

𝑘 <
2(4 − 2𝛽) (4 − 𝛼2𝛿)

(2𝛼1 − 𝛼2𝛼3) (𝛼2𝛽𝛿 + 4(1 + 𝛼4))
.

□

4.3 Bifurcation and Lyapunov exponents diagrams
The fixed point 𝐸1 is always unstable, so we will analyze the bifurcations through the other

two points 𝐸𝑟 and 𝐸𝑙 .

a) Bifurcations through the point 𝐸𝑙

the bifurcations of the point 𝐸𝑙 was studied through two sets of parameter values.

1) First set of parameter values

The construction of the first bifurcation diagram is done by varying the parameter 𝑘 ∈ [6.4, 7]

while the other parameters are fixed as follows:

(𝑐1, 𝑐2, 𝛿, 𝜔, 𝛽) = (0.5, 0.2, 0.5, 0.5, 0.5) (4.25)

Figure 4.1: Bifircation diagram versus 𝑘 ∈ [6.4, 7] for the set (4.25).
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Figure 4.2: Largest Lyapunov exponent diagram versus 𝑘 ∈ [6.4, 7] for the set (4.25).

Figure (4.1) shows the bifurcation diagram of 𝑥1 and 𝑥2 with respect to adjustment speed 𝑘

when the other parameters are set to (4.25). We can see that the system (4.14) is :

- Stable when 𝑘 < 6.666.

- Periodic when 𝑘 ∈ [6.666, 6.889[.

- Chaotique when 𝑘 ∈ [6.889, 6.94].

- Divergence when 𝑘 > 6.94.

The results obtained is confirmed by the largest lyapunov exponent diagram in Figure (4.2).

2) Second set of parameter values

The construction of the second bifurcation diagram is done by varying the parameter 𝑘 ∈

[6.8, 7.1] while the other parameters are fixed as follows:

(𝑐1, 𝑐2, 𝛿, 𝜔, 𝛽) = (0.5, 0.2, 0.8, 0.5, 0.5) (4.26)

Figure (4.3a) shows the bifurcation diagram of 𝑥1 and 𝑥2 with respect to adjustment speed 𝑘

when the other parameters are set to (4.26), so we can see :

1. For 𝑘 < 6.996, the fixed point 𝐸𝑙 is attractive.

2. For 𝑘 = 6.996, the eigenvalues are complex, so there is a Naimark-Sacker bifurcation.
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3. For 𝑘 ∈]6.996, 7.058] ∪ [7.076, 7.1], the system is quasi periodic alternate by some

windows periodic.

4. For 𝑘 ∈]7.058, 7.076[ the system is periodic.

The largest lyapunov exponent diagram in Figure (4.3b) confirme all the results we obtained.

(a)
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0.001
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0.017
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k
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E

(b)

Figure 4.3: Bifurcation and lyapunov exponents diagrams versus 𝑘 ∈ [6.8, 7.1] for the set (4.26)
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b) Bifurcations through the point 𝐸𝑟

The construction of the bifurcation diagram is done by varying the parameter 𝑘 ∈ [5, 7] while

the other parameters are fixed as follows:

(𝑐1, 𝑐2, 𝛿, 𝜔, 𝛽) = (0.6, 0.4, 0.6, 0.3, 0.6) (4.27)

(a) Bifurcation diagram.

LL
E

k
5                                          5.5                                                         6                                                         6.5                                                      7

0.3

0.1

-0.1

-0.3

-0.5

-0.7

(b) Largest lyapunov exponent diagram.

Figure 4.4: Bifurcation and largest lyapunov exponent diagrams versus 𝑘 ∈ [5, 7] for the set
(4.27).
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Figure (4.4a) shows the bifurcation diagram of 𝑥1 and 𝑥2 with respect to adjustment speed 𝑘

when the other parameters are set to (4.27), so we can see :

1. For 5 ≤ 𝑘 < 5.5, the fixed point 𝐸𝑙 is attractive (asymptotically stable).

2. For 5.5 ≤ 𝑘 < 6.14, the system has an attractor which is a periodic orbit of period 2.

3. For 6.14 ≤ 𝑘 < 6.6, the system has an attractor which is a periodic orbit of period 4.

4. For 6.6 ≤ 𝑘 < 6.68, the system has an attractor which is a periodic orbit of period 8.

5. For 𝑘 ≥ 6.68, the system has a chaotic attractor.

The transition to chaos in this case is through the scenario of period-doubling because we notice

that the period of the oscillator is doubled, then quadrupled, then octupled, and then it transitions

to chaos as the parameter 𝑘 ≥ 6.69.

we confirmed the obtained results by the largest lyapunov exponent diagram in Figure (4.4b).

Attractors
The phase portrait for the set parameter values

(𝑐1, 𝑐2, 𝛿, 𝜔, 𝛽) = (0.5, 0.2, 0.9, 0.5, 0.5) (4.28)

and 𝑘 = 6.47 is illustrated in Figure (4.5), in which we observe a closed invariant curve,

indicating that the behavior of the system (4.14) changes from stable to quasiperiodic through a

neimark–sacker bifurcation.
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Figure 4.5: Closed invariant curve with the set parameter values (4.28) and 𝑘 = 6.47

The diagram in Figure (4.6) illustrates a strange attractor within a 2-dimensional phase

portrait with the set parameter values

(𝑐1, 𝑐2, 𝛿, 𝜔, 𝛽) = (0.5, 0.2, 0.3, 0.5, 0.5) (4.29)

for 𝑘 = 5.9 which explain the details of the system (4.13) behavior.

Figure 4.6: Strange attractor with the set parameter values (4.29) for 𝑘 = 5.9
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4.4 Chaos control of a duopoly game using the OGY method
Chaotic behavior in economics poses significant challenges, including diminished investor

confidence, hindered economic growth, and increased operational difficulties. It amplifies

volatility and financial risks, making it imperative to mitigate its effects [3]. Chaos in duopoly

games results in unpredictable output decisions for both firms, stemming from their sensitivity

to even the smallest errors. Consequently, there’s a pressing need to devise methods to control

chaos within economic systems. Several approaches have been proposed, such as feedback

control, adaptive control, and the OGY method [36]. In this study, we opt for the OGY method

due to its non-invasive application (very small parameter adjustment during a very small time

period), ensuring that the game’s evolution between these two players will be stabilized without

great effort.

Stabilization of the unstable Nash equilibrium 𝐸 = (𝑥1, 𝑥2)

1. For 𝑔(𝑥2) > 𝑥1,𝑡 we have:

𝐴𝑐1 =
𝜕𝐹

𝜕𝑋
=

©«
1 − 2𝑘𝑥1 −𝛿𝑘𝑥1

1 0
ª®¬ 𝑎𝑛𝑑 𝐵𝑐1 =

𝜕𝐹

𝜕𝑐1
=

©«
−𝑘𝑥1

0
ª®¬ .

The 𝑐1 controllability matrix is:

𝑃𝑐1 =

(
𝐵𝑐1 𝐴𝑐1𝐵𝑐1

)
=

©«
−𝑘𝑥1 𝑘𝑥1(2𝑘𝑥1 − 1)

0 −𝑘𝑥1

ª®¬ ,
and its determinant is;

det(𝑃𝑐1) = 𝑘2𝑥2
1 ≠ 0.

Then, we conclude that the first firm can stabilize the game around the Nash equilibrium

𝐸 by adjusting its marginal cost 𝑐1.

2. If 𝑔(𝑥2) < 𝑥1,𝑡 . Then

𝐴𝑐2 =
𝜕𝐹

𝜕𝑋
=

©«
1 − 2𝑘𝑥1 −𝛿𝑘𝑥1

− (1+𝜔)
2 𝛽 1 − 𝛽

ª®¬ 𝑎𝑛𝑑 𝐵𝑐2 =
𝜕𝐹

𝜕𝑐2
=

©«
0

−(1 + 𝜔) 𝛽
𝛿

ª®¬ .
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The 𝑐2 controllability matrix is:

𝑃𝑐2 = [𝐵𝑐2 , 𝐴𝑐2𝐵𝑐2] =
©«

0 𝑘𝛽𝑥1(𝜔 + 1)

−(1 + 𝜔) 𝛽
𝛿

𝛽

𝛿
(𝛽 − 1) (𝜔 + 1)

ª®¬ ,
and its determinant is:

det(𝑃𝑐2) =
1
𝛿
𝑘𝛽2𝑥1(𝜔2 + 2𝜔 + 1) ≠ 0.

Thus, we conclude that the second firm can stabilize the Nash equilibrium E by adjusting

its marginal cost 𝑐2.

Numerical simulation

We conduct numerical simulations to confirm the theoretical findings. First, we use the marginal

cost of the first firm 𝑐1 as the control parameter, and then we use the marginal cost of the

manufactring firm 𝑐2 as the control parameter.

• Stabilizing the unstable Nash equilibrium using the marginal cost 𝑐1

Let us consider 𝑐1 as a control parameter and the other parameters are fixed as follows:

(𝑐2, 𝛿, 𝜔, 𝛽, 𝑘) = (0.2, 0.3, 0.5, 0.5, 5.9). (4.30)

For 𝑐1 = 0.5 we have 𝐸 = (0.2394, 0.0704).

The jacobian matrix is as follow :

𝐴𝑐1 =
©«
−1.8254 −0.4238

1 0
ª®¬ 𝑎𝑛𝑑 𝐵𝑐1 =

©«
−1.4127

0
ª®¬ ,

the matrix 𝐴𝑐1 has two eigenvalues 𝜆𝑢 = −1.5523 𝑎𝑛𝑑 𝜆𝑠 = −0.2730,

with two right eigenvectors

𝑣𝑢 =
©«
−0.84067

0.54155
ª®¬ 𝑎𝑛𝑑 𝑣𝑠 =

©«
0.26337

−0.96469
ª®¬ ,
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and two left eigenvectors

𝑤𝑢 =
©«
−0.96469

−0.26337
ª®¬ 𝑎𝑛𝑑 𝑤𝑠 =

©«
−0.54155

−0.84067
ª®¬ .

So the control gain 𝑘𝑇 =

(
1.0989 0.3

)
.

Figure 4.7: Response of the controlled duopoly game using the marginal cost 𝑐1 with the set
parameter values (4.30) for 𝑐1 = 0.5.

Figure (4.7) shows the response of the controlled duopoly game along with the applied

control efort.The control is activated when the system state approaches the unstable

equilibrium 𝐸 at 𝑡 = 42 and the marginal cost 𝑐1 is adjusted by a small perturbation of

order 10−3 during the time period 𝑡 ∈ [42, 55]. Subsequently, the control is established at

𝑡 = 56, stabilizing the duopoly game to its Nash equilibrium.

• Stabilizing the unstable Nash equilibrium point 𝐸 using the marginal cost 𝑐2

Let us consider 𝑐2 as a control parameter and the other parameters are fixed as follows:

(𝑐1, 𝛿, 𝜔, 𝛽, 𝑘) = (0.5, 0.3, 0.5, 0.5, 5.9). (4.31)
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For 𝑐2 = 0.2 we have 𝐸 = (0.2394, 0.0704).

The jacobian matrix is as follow :

𝐴𝑐2 =
©«
−1.8254 −0.4238

−0.375 0.5
ª®¬ 𝑎𝑛𝑑 𝐵𝑐2 =

©«
0

−1.25
ª®¬ ,

the matrix 𝐴𝑐2 has two eigenvalues 𝜆𝑢 = −1.8918 𝑎𝑛𝑑 𝜆𝑠 = 0.5664,

with two right eigenvectors

𝑣𝑢 =
©«
−0.98793

0.15489
ª®¬ 𝑎𝑛𝑑 𝑣𝑠 =

©«
0.17447

−0.98466
ª®¬ ,

and two left eigenvectors

𝑤𝑢 =
©«
−0.98466

−0.17447
ª®¬ 𝑎𝑛𝑑 𝑤𝑠 =

©«
0.15489

−0.98793
ª®¬ .

So the control gain 𝑘𝑇 =

(
8.5413 1.5134

)
.

Figure 4.8: Response of the controlled duopoly game using the marginal cost 𝑐1 with the set
parameter values (4.31) for 𝑐2 = 0.2.

72



CHAPTER 4. COMPLEXITY ANALYSIS OF A 2D-PIECEWISE SMOOTH DUOPOLY
MODEL

Figure(4.8) illustrates the response of the controlled duopoly game along with the applied

control efort. The control is activated when the system state approaches the unstable

equilibrium 𝐸 at 𝑡 = 188 and the marginal cost 𝑐2 is adjusted by a small perturbation of

order 10−3 during the time period 𝑡 ∈ [188, 192]. Subsequently, the control is established

at 𝑡 = 192.5 , stabilizing the duopoly game to its Nash equilibrium.

Results and discussion

Compared to other control methods, the application of the OGY method to stabilize markets

provides the advantage of achieving control with minimal effort from a single firm within a

short time frame. This implies that the method can guide the market towards stability smoothly

without compromising the participating firms in the game. For example, in the present study, the

control was realized through adjusting the marginal cost 𝑐1 by |Δ𝑐1 | < 5×10−3 over a short time.

Additionally, it was accomplished when adjusting the marginal cost of the second firm 𝑐2 by a

perturbation |Δ𝑐2 | < 3 × 10−3 over only 4 units of time. In the counter party. In [37] a Cournot

model was stabilized using a delay feedback control (Pyragas method) by adjusting the state of

the first firm during approximately 50 units of time. In [17], a Cournot model was stabilized

using the state variable feedback and parameter variation method during approximately 40 units

of time.
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GENERAL CONCLUSION
In this work, we focused on studying an economic model described by two-dimensional first-

order difference equations, which simulate the competition between two heterogeneous players,

the original manufacturer and a second-party remanufacturer. The stability of the equilibrium

points has been analyzed. From bifurcation diagrams, the maximal Lyapunov exponents, and

phase portraits, the basic properties of the game are presents. The results show that the adjustment

speed of the first player has an obvious impact on the stability of the players’ dynamic competition

model. When it continues to increase, a series of chaotic phenomena occur. By applying a control

law derived from the𝑂𝐺𝑌 method, the chaotic behavior is effectively eliminated, leading to the

stabilization of the duopoly game at its Nash equilibrium point. This study confers significant

importance on the economic market consists of: understanding economic changes, analysis of

economic stability, support for strategic planning, risk management, enhancement of economic

performance.
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