

 الجمهوريـة الجزائـريـة الديمقراطيـة الشعبيـة
République Algérienne Démocratique et Populaire

 وزارة التعليــم العالـي والبحـث العلمـي
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

No Ref :……………

 Centre Universitaire

 Abd elhafid boussouf Mila

Institut de Mathématiques et d'Informatique Département d'Informatique

Mémoire préparé En vue de l’obtention du diplôme de Master

 En : Informatique

Spécialité : Sciences et Technologies de l’Information et de la Communication

(STIC)

Préparé par : Kennouche Wiam

 Merabet Nouhad

 Soutenue devant le jury :

Boufaghes Hamida MAA C. U. Abdelhafid Boussouf, Mila Président

Aouag Mouna MCB C. U. Abdelhafid Boussouf, Mila Rapporteur

Meghzili Said MCB C. U. Abdelhafid Boussouf, Mila Examinateur

Année universitaire :2023/2024

Formal Verification and validation of object-

aspect oriented models, an approach based on

graph transformation

 ﷽

ACKNOWLEDGEMENTS

First and foremost, we thank Allah for the energy He has given us over

these five years, as well as for the patience that allowed us to complete

this work.

We would also like to particularly thank our supervisor, Mrs. Aouag

Mouna, for her advice, encouragement, and trust, which enabled us to

accomplish this work.

We also wish to express our deep gratitude to all the members of our jury

for agreeing to examine this work.

We do not forget to thank all the teachers who contributed to our

training over these five years.

Finally, we extend our most sincere thanks to all our families for their

unwavering encouragement.

 Wiam & Nouhad

Dedication

 هو الله من يشكر آناء الليل وأطراف النهار، الحمد لله حبا وشكرا وامتنانا على البدء والختام

ِّ العَالمين()وآخرُ دعَوَاهم أن الحَمدُ لله رَب

إلى الذي أقسمت أن أبدأ به كل أعمالي، إلى من علمني أن النجاح لا يأتي إلا بالصبر والإصرار، إلى

 من علمني أن الدنيا كفاح سلاحها العلم والمعرفة)أبي الغالي رحمه الله(

إلى التي ظلت دعواتها تضم اسمي دائما، إلى من كانت الداعمة الأولى، أهديك هذا الإنجاز الذي لولاك

أمي الحبيبة(لم يكن، أهديك مراحلي وانجازاتي كلها فالفضل والثناء للمولى ثم لكفاحك لأجلي)

 إلى من قيل فيهم :)سنشُدُ عضدك بأخيك(

 إلى الكتف الذي لا يميل والظل الذي احتمي به، إلى العمود الثابت في الحياة)أخي الغالي(

 إلى فراشة بيتنا، إلى القلب النابض بصدق الحب والمشاعر، إلى من آمنت بقدراتي)أختي الحبيبة(

إلى ذلك الشخص الذي بفضله أنا هنا اليوم، إلى من شجعني لخوض هذه التجربة، إلى من أوقن على

 أنني أستطيع الوصول إلى ما وصلت له اليوم ...

 إلى مؤنستي ورفيقة عمري، داعمتي، بئر أسراري وغيمة قلبي)لينة(

 إلى الحاملة لاسمي بين كفوف أدعيتها، لنجمتي المضيئة)وئام(

 إلى رفيقة هذا المشوار، شريكة الليالي الصعبة)نهاد(

 إلى أفراد عائلتي، إلى من حملوني بين طيات دعواتهم، إلى من كنت فرحتهم الأولى،

، شرطيوي زهية وعبيدة()الغاليتان إلى جدتاي

إلى اعمامي واخوالي، عماتي وخالاتي،

)خالتي الحبيبة مريم(و)عمتي الغالية أمال(وصديقتاي خاصة إلى داعمتاي

 إلى من وثقت في قدراتنا وشجعتنا لاتمام هذا العمل مشرفتنا)الأستاذة عواق منى(

راجية من الله تعالى ان يوأخيرا وصلت لما تمنيت وحلمت وطمحت له، ها أنا اليوم اتممت أول ثمرات

 ينفعني بما علمني وان يعلمني ما أجهل ويجعله حجة لي لا علي

الحمد لله الذي ما نجحنا ولا تفوقنا الا برضاه، الحمد لله الذي ما اجتزنا دربا ولا تخطينا جهدا الا

 بفضله واليه ينسب الفضل والكمال.

وئام

Dedication

الحمد لله الذي يسر البدايات وأكمل النهايات وبلغنا الغايات، الحمد لله ما تناهى درب ولا ختم جهدا ولا

 .. تم سعي الا بفضله اللهم ليس بجهدي واجتهادي انما بفضلك وتوفيقك وكرمك.

 هدي هذا النجاح الى التي تحارب الضغوطات والكتب والأيام الصعبة أ

 نا أوتركز على أهدافها ومستقبلها بدون تراجع....

بي أن الدنيا كفاح وسلاحها العلم والمعرفة.... أ لى الذي علمني إ لي الذي زين اسمي بأجمل الألقاب،إ

 الغالي

 مي الغاليةألى الشمعة التي كانت لي في الليالي المظلمات، سر قوتي ونجاحي ومصباح دربي.... إ

خي ألى من شهدوا معي متاعب الدراسة وسهر الليالي.... إلى من عشت معهم أجمل لحظات حياتي، إ

 ختي أو

ن يراني خريجة ألى الذي توسده التراب قبل إلى روح جدي الغالي الذي لطالما تمنى لحظة تخرجي، إ

)رحمه الله(

 لى رفيقة مشواري التي قاسمتني لحظاته.... وئام إ-

 عواق منى ستاذتناأمانة أأدت واجبها بكل اتقان وو لى من غرست فينا حب التميز،إ

كمال إلى من شجعوني على المثابرة وإلى رفقاء الروح الذين شاركوني خطوات هذا الطريق، إ

 ياسمين ورشا ...المسيرة

لا إ لا بعفوك.... ولا تطيب الجنة إخرة لآلا بذكرك وشكرك.... ولا تطيب اإإلهي لا تطيب اللحظات

 برؤيتك...

 نهاد

Abstract

 Modeling plays a fundamental role in the software development process. When Object-

Oriented Modeling (OOM) presents certain limitations, these restrictions pose problems,

especially with the rapid advancement of computing. Aspect-oriented modeling (AOM)

offers solutions to these problems, although it lacks semantics. This is why formal

modeling, which possesses this semantics, is important.

 In this memory, we propose an approach to transform a detailed object-oriented

sequence diagram into a detailed aspect-oriented sequence diagram, based on graph

grammar. Then, we propose a method to transform the aspect-oriented sequence diagram

into a Petri net. Our work begins with a single Meta modeling for the first approach, using

graph grammar to achieve an aspect-oriented model. Then, we apply the second approach

to the result of the first one, using two Meta modeling and the transformation, which

results in a Petri net, we use the AToMPM modeling tool. Finally, we perform a property

analysis with the TINA tool.

Keywords: object-oriented modeling, aspect-oriented modeling, detailed sequence

diagram, graph grammar, Petri nets, MDA, AToMPM, TINA.

Résumé

 La modélisation joue un rôle fondamental dans le processus de développement logiciel.

Lorsque la Modélisation Orientée Objet (MOO) présente certaines limites, ces restrictions

posent des problèmes, surtout avec l'avancement rapide de l'informatique. La Modélisation

Orientée Aspect (MOA) propose des solutions à ces problèmes, bien qu'elle manque de

sémantique. C'est pourquoi la modélisation formelle, qui possède cette sémantique, est

importante.

 Dans ce mémoire, nous proposons une approche pour transformer un diagramme de

séquence détaillé orienté objet vers un diagramme de séquence détaillé orienté aspect, en

se basant sur une grammaire de graphes. Ensuite, nous proposons une méthode pour

transformer le diagramme orienté aspect vers un réseau de Petri. Notre travail commence

par une seule méta-modélisation pour la première approche, qui utilise une grammaire de

graphes pour aboutir à un modèle orienté aspect. Ensuite, nous appliquons la deuxième

approche sur le résultat de la première, en utilisant deux méta-modélisations et des règles

de transformation, ce qui aboutit à un réseau de Petri, nous utilisons l'outil de modélisation

AToMPM. Finalement, nous faisons une analyse de propriété avec l'outil TINA.

Mots clés: modélisation orientée objet, modélisation orientée aspect, diagramme séquence

détaillé, grammaire de graph, réseaux de pétri, MDA, AToMPM, TINA.

 ملخص

(بعض OOM) الأشياءالموجه نحو التصميمقدم يدوراً أساسياً في عملية تطوير البرمجيات. عندما التصميملعب ي

ظهر الموجه الم تصميمتثير مشاكل، خاصة مع التقدم السريع في مجال الحوسبة. وقد استطاع لنقائصوهذه ا ،نقائص

(AOMأن) اليقدم حلولا لهذه المشاكل، على الرغم من أنه ي ال التصميم. لهذا السبب فإن معانيفتقر إلى ذي الرسمية

 ضرورية.المهمة وال متلك هذه الدلالاتي

 ، وذلك المظهر الموجهإلى مخطط مفصل للأشياء، نقترح نهجاً لتحويل مخطط تسلسل مفصل موجه مذكرةفي هذه ال

 إلى شبكة بيتري. يبدأ عملناالمظهر الموجه يل مخططبالاعتماد على قواعد الرسم البياني. بعد ذلك نقترح طريقة لتحو

نموذج (meta-model)واحدة وصفيةبنمذجة إلى للوصول البياني الرسم قواعد استخدام على تعتمد الأول، للنهج

وقواعد الرسم البياني، وصفيتين النهج الثاني على نتيجة الأول وذلك باستخدام نمذجتين . بعد ذلك، نطبقالمظهر الموجه

في النهاية، نقوم بإجراء تحليل للخصائص باستخدام .AToMPM)أداة النمذجة) مبيتري. نستخدمما يؤدي إلى شبكة

 . TINAأداة

البياني، الموجه، مخطط تسلسلي مفصل، قواعد الرسمتصميم المظهر ، شياءالموجه نحو الأ التصميمالكلمات الرئيسية:

 MDA ،AToMPM،.TINAشبكات بيتري،

I

Contents

GENERAL INTRODUCTION .. 1

1.INTRODUCTION: ... 1

2.PROBLEMATIC: .. 1

3.CONTRIBUTIONS: ... 2

4.MEMORY ORGANIZATION: ... 3

ASPECT-ORIENTED MODELING ... 1

INTRODUCTION: .. 4

1 THE MODEL: .. 4

2 MODELING: .. 4

2.1 Goals of Modeling: .. 5

2.2 Types of Languages: .. 5

3 OBJECT-ORIENTED MODELING: ... 5

4 LIMITATIONS OF THE OBJECT-ORIENTED APPROACH: .. 6

5 DEFINITION OF ASPECT-ORIENTED MODELING: .. 6

5.1 The Purpose of Aspect-Oriented Modeling: .. 6

5.2 Basic Concepts: ... 6

6 ASPECT-ORIENTED APPROACHES: .. 8

6.1 Aspect oriented Requirements Engineering: ... 8

6.2 Aspect oriented Architecture: .. 8

6.3 Aspect oriented Design:... 8

6.4 Aspect oriented Programming: ... 9

6.5 Verification of Aspect oriented Programs: .. 9

6.6 Aspect oriented Middleware:... 9

7 INCONVENIENTS OF ASPECT-ORIENTED MODELING: .. 9

CONCLUSION: .. 10

PETRI NETS ... 1

INTRODUCTION: .. 11

1 PETRI NETS: .. 11

2 BASIC CONCEPTS OF PETRI NETS:.. 11

2.1 Formal Definition: ... 11

2.2Graphical Definition: ... 11

2.3 Marking of a Petri net: .. 12

2.4 Matrix Representation of a Petri Net: ... 13

3 THE EVOLUTION OF STATES IN A PETRI NET: .. 14

4 PETRI NET PROPERTIES: ... 15

4.1 Liveliness: .. 15

4.2 Boundedness: ... 15

4.3 Reachability: .. 15

4.4 Blocking: .. 15

5 CATEGORIES OF PETRI NETS: ... 16

6 THE TYPES OF PN: ... 19

6.1 Ordinary Petri Net: ... 19

6.2 Generalized Petri Net: ... 19

6.3 Timed Petri Net: .. 19

6.4 Colored Petri Net: ... 19

II

6.5 Continuous Petri Net: .. 20

CONCLUSION: .. 20

GRAPH TRANSFORMATI-ON AND VERIFICATION ... 20

INTRODUCTION: .. 21

1 MODEL DRIVEN ARCHITECTURE (MDA): .. 21

1.1 Basic Concepts of MDA: ... 21

1.2 The MDA Approach: ... 21

1.3 Model Driven Architecture:... 22

1.4 Types of MDA Approaches: ... 23

1.5 The tools of MDA: ... 25

2 MODEL TRANSFORMATIONS: .. 25

3 GRAPH TRANSFORMATIONS: ... 26

3.1 Graph Concepts: ... 26

3.2 Subclass of a Graph: ... 27

3.3 Graph Transformation Tools: ... 27

4 ATOMPM: ... 27

5 ANALYSIS OF PETRI NETS: ... 28

5.1 Analysis Techniques: ... 28

5.2 Analysis tools for PN: .. 28

6 TINA: ... 29

CONCLUSION: .. 29

PROPOSED APPROACHES ... 29

INTRODUCTION: .. 30

1 TRANSFORMATION OF DETAILED OBJECT-ORIENTED SEQUENCE DIAGRAMS INTO

DETAILED ASPECT-ORIENTED SEQUENCE DIAGRAMS: ... 30

1.1 Meta-modeling: ... 30

1.2 The proposed graph grammar: ... 35

1.3 Explanatory example: .. 42

2 TRANSFORMATION OF ASPECT-ORIENTED DETAILED SEQUENCE DIAGRAMS INTO

RDPS: .. 43

2.1 Model Transformation Process: .. 43

2.2 Meta-modeling: ... 45

2.3 The proposed graph grammar: ... 46

3 REPRESENTATION OF THE TINA TOOL: .. 49

4 EXPLANATORY EXAMPLE: ... 50

5 RESULTS AND DISCUSSION: .. 51

CONCLUSION: .. 53

CASE STUDIES .. 53

INTRODUCTION: .. 54

1 CASE STUDY ON BOOKING IN A TOURIST AGENCY: ... 54

1.1 Transformation from Object-Oriented to Aspect-Oriented: 54

1.2 Transformation from Aspect-Oriented to Petri Nets: .. 56

1.3 Verification of the Petri Net: ... 56

2 CASE STUDY ON THE MANAGEMENT OF A SHOPPING MALL: 57

2.1 Transformation from Object-Oriented to Aspect-Oriented: 57

2.2 Transformation from Aspect-Oriented to Petri Nets: .. 59

2.3 Verification of the Petri Net: ... 59

III

CONCLUSION: .. 60

CONCLUSION AND PERSPECTIVES ... 60

CONCLUSION: .. 61

PERSPECTIVES: ... 61

BIBLIOGRAPHIC REFERENCES: ... 62

IV

List of Figures

1 Principle of Transformation of a Detailed Object-Oriented Sequence Diagram into a

Detailed Aspect-Oriented Sequence Diagram………………………………………………2

2 Principle of Transformation from a Detailed Aspect-Oriented Sequence Diagram to a

Petri Net……………………………………………………………………………………..2

1.1 Representation of Modeling………………………………………………………….....4

1.2 Classification of Languages or Methods……………………………………………..…5

1.3 The Aspect-Oriented Modeling Process. ………………………………………….…....8

2.1 (a) Graphical representation of a place with one token, (b) transition……………..….12

2.2 Example of a Petri net………………………………………………………………....12

2.3 Example of a Petri net………………………………………………………………....13

2.4-a Example of a Marked Petri Net……………………………………………………..14

2.4-b Incidence Matrix………………………………………………………………..…...14

2.5 The Evolution of States in a Petri Net…………………………………..……………..14

2.6 Example of Petri Net Blocking………………………………………………………..16

2.7 State Graph. ………………………………………………………………….………..16

2.8 Event Graph. …………………………………………………………………………..16

2.9 conflict-free PN. …………………………………………………..…………………..17

2.10 Free Choice PN .……………………………………………………………………..17

2.11 Simple PN. …………………………………………………………………………..17

2.12 Pure PN..……………………………………………………………………………..17

2.13 Limited Capacity Petri Net. ………………………………..………………………..18

2.14 Priority PN…………………………………………………………….……………..18

2.15 Inhibitory Arcs in Petri Nets. ………………………………………………………..19

2.16 Petri Net (left) and Colored Petri Net (right). ………...……………………………..20

3.1 The model transformation process in the MDA approach…………………………….22

3.2 The four abstraction levels for MDA. ……………………………………………..….23

3.3 The model transformation approaches. ……………………………………………….24

3.4 Types of transformations and their main uses. ………………………………………..26

3.5 (a) Undirected graph G, (b) Directed graph, (c) Subgraph of G. ………...…………...26

3.6 Presentation of the AToMPM tool. ……………………………………………….…..27

3.7 Presentation of the TINA tool…………………………………………………………29

4.1 Meta-model of the detailed sequence diagram..…………………..……………..…….31

4.2 The tool generated for the detailed aspect-oriented sequence diagram..………..….….35

4.3 The motif of transformation of approach..…………………………………………….35

4.4 Application of category 1 with Aspect.PJ == Actor and Aspect.Ad== linevieAct.…..36

4.5 The LHS of the first create rule(Python code)………………………………………...36

4.6 The RHS of the first create rule (Python code)………………………………………..37

4.7 Application of category 1 with Aspect.PJ== Control Zone et Aspect.AD==

CreateDlg……………………………………………………………………………...…...37

4.8 Application of category 2 with Aspect.PJ== Control Zone, Entity Zone and

Aspect.AD== Asynchrone2E. ……………………………………………….……………38

V

4.9 The LHS of the first link rule (Python code)…………………………………………38

4.10 The RHS of the first Link rule (Python code)……………………………………….39

4.11 Application of category 2 with Aspect.PJ== Synchrone message et Aspect.AD==

Cntrl. ………………………………………………………………………………………39

4.12 Application of category 3 with Aspect.PJ== Zone Actor et Aspect.type==

delet……………………………………………………………………………………..…40

4.13 The LHS of the first delete rule (Python code)………………………………………40

4.14 The RHS of the first delete rule (Python code)………………………………………41

4.15 Application of category 3 with Aspect.PJ== Destroy et Aspect.type==

delet……………………………………………………………………………………......41

4.16 Basic Authentication Model. ……………………………………………..……….…42

4.17 Authentication Aspect Model. …………………………………………………….…42

4.18 The weaver model. ……………………………………………………………….….43

4.19 Meta-model of Petri Nets. ………………………………………………..…….……45

4.20 The generated tool for Petri Nets. ……………………………………..…………….46

4.21 The transformation pattern of the approach. ………………………………..……….47

4.22 Application of Category 1 on the actor. ……………………………………….…….47

4.23 Application of Category 1 on the actor Activity Zone. …………..………………….48

4.24 Application of Category 2 on the lifeline boundary. …………………..…………….48

4.25 Application of Category 2 on the synchronous message. ……………..…………….48

4.26 Application of Category 3 on "destroy".……………………………………….…….49

4.27 Application of Category 3 on "Entity"……………………………………………….49

4.28 Representation of the TINA tool (Input) …………………………………………… 50

4.29 Representation of the TINA tool (Output) …………………………………………..50

4.30 Authentication Petri Net. …………………………………………………………….51

4.31 Analysis of the Authentication Petri Net ………………………………………….....51

5.1 The Basic Model. ………………………………………………………………….….54

5.2 The Aspect Model. …………………………………………………………...……….55

5.3 The Weaver. ……………………………………………………………………….….55

5.4 The Petri Net of the reservation modification case………………...………………….56

5.5 The result of the verification of the Petri Net for the reservation modification case in

TINA………..……………………………………………………………………………..56

5.6 The Basic Model. ……………………………………………………………….…….57

5.7 The Aspect Model. ………………………………………………………...………….58

5.8 The Weaver..…………………………………………………………….…………….58

5.9 The Petri Net of the promotion addition case……………………….…………………59

5.10 The result of verification of Petri Net for the promotion addition case with TINA

………..…………………………………………………………………………………....59

VI

List of Tables

4.1 Expresses the semantics of this approach...45

4.2 Comparison of Approaches for Transforming into Aspect-Oriented Diagrams............52

4.3 Comparison of Petri Net Transformation and Verification Approaches........................53

General

Introduction

General Introduction

1

1.Introduction:
 The modeling of computer systems is a crucial step in their design and verification.

Although it can be challenging, precise and rigorous modeling is essential to ensure that

systems meet the needs and requirements of their application domain.

 Among the many modeling languages available, UML (Unified Modeling Language)

stands out as one of the most widely used and recognized. UML is a standardized modeling

language widely employed in the field of software engineering and computer systems.

In our work, we used modeling with UML 2.0 diagrams. UML 2.0 comprises thirteen types

of diagrams, each dedicated to representing specific concepts of a software system. These

types of diagrams are divided into two main groups: six structural diagrams and seven

behavioral diagrams. The sequence diagram is a type of interaction diagram in UML 2.0

that illustrates the chronological sequence of messages exchanged between different

objects interacting within a system. Three types of analysis classes are used: dialogues,

controls, and entities [Pascal Roque, 2008].

 Despite the many advantages of Object-Oriented languages, the management of cross-

cutting concerns remains a challenge, and the aspect-oriented paradigm emerges as a

complementary solution. The aspect-oriented paradigm was initially proposed in 1997 by

Kiczales and his team. It has since become a popular approach for modeling and managing

cross-cutting concerns in software.

 We will transform from object-oriented to aspect-oriented UML models to achieve

significant advantages in handling cross-cutting concerns. This transformation will reduce

code duplication, enhance maintainability, and improve scalability.

 Formal methods enable the verification of systems using mathematical notations and

formal techniques. One of the most interesting formal methods is Petri nets. Petri nets are

graphical and mathematical modeling tools used to represent and analyze discrete systems.

The transition from aspect-oriented modeling to formal methods aims to overcome the

limitations of semi-formal approaches, such as ambiguity and verification difficulty.

Formal methods offer a rigorous framework for the specification and verification of

systems.

 To transform aspect-oriented sequence diagrams into Petri nets, it is essential to follow a

methodology to ensure the accuracy of the resulting model. Once the transformation is

completed, the resulting Petri net must be verified using a specialized tool such as TINA

(Time Petri Net Analyzer). TINA is a software tool for the modeling and analysis of Petri

nets, allowing for the formal verification of essential properties such as liveness,

boundedness, and safety.

2.Problematic:
 Despite the use of all the power of object-oriented languages, certain limitations persist,

notably the difficulty in effectively managing cross-cutting concerns and excessive code

duplication. To address these drawbacks, the aspect-oriented modeling approach offers a

promising solution. Aspect-oriented modeling allows the separation of functional and non-

functional concerns in models, using an integration mechanism to achieve a unified model.

Although UML is a powerful tool for modeling, its lack of formal semantics limits its

ability to provide rigorous guarantees about the models. Formal methods, such as Petri

nets, are often used as a solution to this problem. They offer a formal and mathematical

General Introduction

2

representation for specifying, analyzing, and verifying systems, ensuring more precise and

reliable models. These resulting models will be verified using the TINA verification tool.

3.Contributions:
 In this memory, we propose two contributions:

 The first is a transformation of object-oriented sequence diagrams into aspect-

oriented sequence diagrams based on the graph transformation paradigm. Our

approach involves proposing a meta-model, a graph grammar, and rules for the

transformation from object-oriented to aspect-oriented. We use the AToMPM

meta-modeling tool. The transformation is performed automatically by applying the

graph grammar to the input models, which is the basic model (MB), plus the aspect

model (MA), which automatically generates the output model.

Figure (1) illustrates the principle of transforming an object-oriented sequence diagram

into an aspect-oriented sequence diagram.

Figure 1: Principle of Transformation of a Detailed Object-Oriented Sequence Diagram

into a Detailed Aspect-Oriented Sequence Diagram.

 The second contribution consists of the transformation of aspect-oriented sequence

diagrams into Petri nets based on graph transformation. Our approach involves

proposing two meta-models: one for aspect-oriented sequence diagrams and the

other for Petri nets, along with a graph grammar and rules for the transformation

from aspect-oriented to Petri nets. We use the AToMPM meta-modeling tool and

have used the TINA tool for the verification of properties.

Figure (2) illustrates the principle of transforming an aspect-oriented sequence diagram

into a Petri net.

Figure 2: Principle of Transformation from a Detailed Aspect-Oriented Sequence Diagram

to a Petri Net.

General Introduction

3

4.Memory organization:
We start with a general introduction addressing the importance of modeling computer

systems for their design and verification. We emphasize the necessity of precise and

rigorous modeling to ensure that systems meet the specific needs of their application.

Chapter 01: Aspect-Oriented Modeling

The first chapter is dedicated to aspect-oriented modeling. We will begin by defining the

basic concepts of modeling, starting with the notions of model and modeling, as well as

their importance in software development. Next, we will examine the different types of

modeling, focusing on object-oriented modeling and its limitations. We will then discuss

aspect-oriented modeling, describing its objectives, fundamental concepts, and associated

techniques and technologies. Finally, we will discuss the main Inconvenients of this

approach.

Chapter 02: Petri Nets

This chapter is dedicated to Petri nets. First, we will define Petri nets and present their

basic concepts. Next, we will explore the state evolution of a Petri net, their properties, and

the different categories of Petri nets. We will also discuss some specific types of Petri nets.

Finally, we will examine the modeling of complex systems using Petri nets.

Chapter 03: Graph Transformation and verification

In the third chapter, we will discuss Model-Driven Architecture (MDA). We will begin by

presenting the fundamental concepts of the MDA approach, including its architecture and

various types. Next, we will introduce the tools available for applying MDA. We will then

detail model transformation, a key concept in MDA. This will start with a definition of

model transformation, followed by the different types of transformations, basic concepts of

graphs, and graph transformation tools. In addition, we will introduce the AToMPM work

environment. Finally, we briefly discussed the analysis techniques and tools for Petri nets,

and we will focus on verification and validation techniques. The verification tool used is

TINA.

Chapter 04: Proposed Approaches

In this chapter, we will present our two proposed approaches. The first approach aims to

transform object-oriented sequence diagrams into aspect-oriented sequence diagrams. We

have proposed a meta-model for the detailed sequence diagram, accompanied by a graph

grammar that will be applied to the base model and the aspect model to obtain the aspect-

oriented sequence diagram. In the second approach, we will take the result of the first

transformation, which is an aspect-oriented sequence diagram, and apply a set of rules to

transform it into a Petri net. Then, we will present the tool used to verify the obtained Petri

nets. For both transformations, we will provide illustrative examples to explain the two

approaches more clearly. The generated Petri nets from the example will be verified by

TINA. Finaly, we make a comparison between works related to our work and discuss this

comparison.

Chapter 05: Case Studies

We detail two case studies illustrating our transformation approach, which include a

reservation system in a travel agency and the management of a shopping center, using the

AToMPM transformation tool, the generated Petri nets will be analyzed by TINA.

We conclude with a general conclusion that highlights the contributions of this memory

and outlines future perspectives.

Chapter1

Aspect-

oriented

Modeling

Chapter 1: Aspect-oriented Modeling

4

Introduction:
 Despite harnessing the full power of object-oriented languages, certain limitations

persist, notably the challenge of effective managing cross-cutting concerns and excessive

code duplication. To address these drawbacks, the approach of aspect-oriented modeling

offers a promising solution. In this chapter, we started our exploration with a precise

definition of the model and modeling, emphasizing their importance in software

development, along with the various types of modeling. After that, we briefly discussed the

object-oriented modeling, highlighting its limitations in handling cross-cutting concerns.

We then clarify aspect-oriented modeling before delving into its objectives. Subsequently,

we examine its core concepts and move on to associated techniques and technologies.

Finally, we identify the key drawbacks of this approach to better understand its potentials

challenges.

1 The Model:
 A model is an abstraction of a system constructed for a specific purpose. It is an

abstraction in the sense that each model contains a limited set of information about a

system. It is constructed for a specific purpose in that the information, its content is chosen

to be relevant to its intended use. It is then said that the model represents the system.

[khalfaoui,2014]

2 Modeling:
 Modeling is an essential component of human activity, begins when humans attempt to

understand, interpret various phenomena of the world, and make predictions. In general,

modeling can be seen as "the action of modeling or the result of this action," where

modeling consists of "designing, elaborating a model to understand, act, achieve a goal." In

the context of computing, modeling is understood as the construction of a schematic

representation (the model) in a formal or semi-formal language, based on specifications

given in natural language. [Ludovic,2009]

Figure 1.1: Representation of Modeling. [Dib et Saadaoui, 2023]

Chapter 1: Aspect-oriented Modeling

5

2.1 Goals of Modeling:

 In order to understand better the functioning of the system and master its complexity

with the assurance of its coherence, modeling is indispensable. Therefore, it allows:

[Audibert,2008]

▪ Better distribution and automation of some tasks.

▪ Reduction of costs and delays.

▪ Ensuring a high level of quality and effective maintenance.

A model serves as a common, precise language known by all team members and it

becomes as a result a privileged vector for communication.

2.2 Types of Languages:

Figure 1.2: Classification of Languages or Methods.

Semi-Formal Language: A language that has a defined syntax to specify the conditions

under which constructions are permitted, such as Entity-Relationship Diagram, Object

Diagram.

Formal Language: A language that has rigorously defined syntax and semantics. There

exists a theoretical model that can be used to validate a construction, such as Petri nets

[Bahri,2010].

Informal Language: Informal language is a familiar way of communicating among

people [Dib et Saadaoui,2023]. It includes two types: [Bahri, 2010]

▪ Simple Language: A language that does not have a complete set of rules to restrict

a construction, such as natural language.

▪ Standardized Language: A language with a structure, format, and rules for

composing a construction, such as structured text in natural language.

3 Object-Oriented Modeling:
 Object-oriented modeling is often approached after an initial exposure to object-oriented

programming (using a first programming language). Learners thus have basic knowledge

of concepts such as classes, objects, encapsulation, and inheritance that they refine during

the learning of OOM (Object-Oriented Modeling). [Ludovic,2009]

Chapter 1: Aspect-oriented Modeling

6

The object-oriented approach is classified in the category of semi-formal modeling. It

represents a way of conceptualizing problems by applying models organized around real-

world concepts. Object orientation views software as a collection of dissociated objects,

and consequently, its fundamental concept is the object, which combines both a data

structure and behavior. The functionality of the software emerges from the interaction

between the different objects that constitute it. [Aouag,2014]

4 Limitations of the Object-Oriented Approach:
The limitations of the object-oriented approach are as follows: [Aouag,2014]

▪ The resolution model is difficult to read and understand, and it may lead to errors.

▪ Objects cannot handle deletion.

▪ Duplication of cross-cutting functionalities also exists in the application model.

▪ The model is neither structured nor organized coherently.

▪ Reusing models is complex.

Therefore, aspect-oriented emerges to improve and address the limitations of the

object-oriented paradigm.

5 Definition of Aspect-Oriented Modeling:
 The definition of aspect in the analysis and design phases has attracted the interest of

several researchers. Several works have been proposed to define the aspect (as an entity) in

the analysis and design phases. They focused on separating cross-cutting concerns

(aspects) throughout the software development lifecycle, particularly at the design phase.

Most existing approaches are based on extending the UML meta-model to define their

aspect concepts and relationships. UML, the standard object modeling language, is most

often used for defining an aspect modeling language. [LAOUAR,2013]

5.1 The Purpose of Aspect-Oriented Modeling:

 Since its early years, the aspect-oriented approach has been used slowly in programming

languages during the coding stage. However, the aspect-oriented paradigm now extends to

upstream phases of software development and it is no longer limited to programming.

Nowadays, at every phase of software development—requirements analysis, design, and

even implementation—aspect-oriented approaches are available. Transitioning between

phases while preserving previously known aspects remains a major, understudied

challenge. An iterative approach focused on concerns aims to automate the transformation

from an object-oriented requirements model to an aspect-oriented design model. [Dib et

Saadaoui,2023]

5.2 Basic Concepts:

Concern: A concern is an interest related to the development of a system, its operation, or

any other issues that are essential or important to one of the participants in the system.

[Boubendir,2011]

There are two types of concerns: cross-cutting concerns or aspect concerns, and non-cross-

cutting concerns or base concerns: [Aouag,2014]

❖ Base Concern: It represents a non-cross-cutting (functional) concern with

traditional approaches such as object-oriented approach. [Zerara et Megrous,2020]

Chapter 1: Aspect-oriented Modeling

7

❖ Aspect Concern: It represents a cross-cutting (non-functional) concern with

traditional approaches such as the object-oriented approach. [Zerara et

Megrous,2020]

Aspect: Analogous to the object-oriented approach that provides explicit mechanisms for

encapsulation and inheritance of objects, the aspect-oriented approach provides first-class

explicit mechanisms that explicitly capture and encapsulate the structure of cross-cutting

concerns. We call a module encapsulating a cross-cutting concern: an aspect.

[Boubendir,2011]

An aspect is a software entity that captures a non-functional functionality. [Boualita et

Laggoune,2021]

Join Point (PJ): A location in the model where advices should be inserted. [Aouag,2014]

There are several types of join points, depending on what the developer wishes to intercept.

Thus, a join point can occur for: [Otmane Rachedi, 2015]

• A class

• An interface

• Method execution

• Access to a class variable

• Execution of a code block

• Execution of a language keyword (condition, loop, ...)

Point cut (PC): A point cut is used to select join points by specifying positions in the

primary models to which the corresponding advice for the cross-cutting concern should be

applied. [LAOUAR,2013]

Advice: Represents a particular technical behavior of an aspect. In concrete terms, it is a

code block that will be grafted into the application at the execution of a join point defined

in a point cut. [Otmane Rachedi, 2015]

Weaver: The aspect weaver is an operation that takes as input base modules and aspect

modules, and aims to apply and attach aspects to the base modules at specific join points

corresponding to the aspect's cut specification. [Boubendir,2011]

So, an Aspect = Join points + Advice. [Aouag,2014]

Point cut = Σ join points. [Aouag,2014]

In Figure (2.3), we present the aspect-oriented modeling process such as e1, e2, and e3 are

states, are aspects, e1 and e2 in the aspect model are join points.

Chapter 1: Aspect-oriented Modeling

8

Figure 1.3: The Aspect-Oriented Modeling Process.

6 Aspect-Oriented Approaches:

6.1 Aspect oriented Requirements Engineering:

 These approaches provide a representation of cross-cutting concerns present in

requirement artifacts. They clearly acknowledge the importance of identifying and

addressing cross-cutting concerns early on. Cross-cutting concerns can be both non-

functional and functional requirements, also their early identification enables early analysis

of their interactions. These approaches focus on the principle of composing all concerns to

have the complete system under construction. This allows understanding the interactions

and trade-offs between concerns. Composing requirements not only allows examining

requirements as a whole but also detecting potential conflicts early on, so that the right

decisions can be made for the next steps. [Boubendir,2011]

6.2 Aspect oriented Architecture:

 An architectural aspect is an architectural module that has a significant influence on other

architectural modules. Aspect-oriented architecture design approaches therefore describe

the steps for identifying architectural aspects and their intertwined components. This

information is used to redesign a given architecture while making the architectural aspects

explicit. This is different from traditional approaches where architectural aspects are

implicit information in the architecture specification. [Aouag,2014]

6.3 Aspect oriented Design:

 These design approaches focus on the explicit representation of cross-cutting concerns

using suitable design languages. Initially, designers simply used object-oriented methods

and languages (such as UML) for designing their aspects. This proved challenging since

Chapter 1: Aspect-oriented Modeling

9

UML was not designed to provide constructs for describing aspects. The main contribution

of aspect-oriented design was therefore to provide designers with explicit means to model

systems by aspect. [Boubendir,2011]

In our work, we are interested in this approach.

6.4 Aspect oriented Programming:

 Aspect orientation manifests at the programming level through aspect-oriented

programming languages. Most of these aspect-oriented languages are existing (object-

oriented) languages extended with aspect-oriented features to represent aspects, express

point cuts, join points, and advices, etc. For example, AspectJ is based on Java.

[Aouag,2014]

6.5 Verification of Aspect oriented Programs:

 New challenges in software verification and validation techniques arise in the aspect-

oriented approach to ensure that the desired functionality is satisfied by the system.

Aspects could potentially compromise the reliability of a system to which they are woven,

and may invalidate essential properties of the system that were correct before aspect

weaving. To ensure the accuracy of aspect-oriented software, there is extensive research on

the use of formal methods and testing techniques specifically tailored to aspects.

[Boubendir,2011]

6.6 Aspect oriented Middleware:

 Although middleware is not a step in the software lifecycle, it is an important and

extensive area for aspect-oriented ideas. Many software developers have adopted

middleware approaches to aid in the construction of large-scale distributed systems.

Middleware facilitates the development of distributed software systems by supporting

heterogeneity, hiding distribution details, and providing a set of specific services for a

common domain. [Aouag,2014]

7 Inconvenients of Aspect-Oriented Modeling:

 Aspect-oriented modeling has limitations that make its application elegant in all possible

problem situations. [Aouag,2014]
-Transaction management, through cross-cutting, presents challenges to be isolated into a

distinct aspect.

- AOM (Aspect-Oriented Modeling) is mostly appropriated for a large-scale software

development projects.

-In distributed systems, aspect-oriented modeling poses particular challenges regarding

testing and debugging. This it is due to side effects emanating from the dynamic injection

of the model, which can in the worst-case scenarios, lead to semantic ambiguities in the

control flow of an aspect-oriented model.

-Different aspects can effectively harm even the join points in weaving. Thus, AOM may

violate the principle of encapsulation, albeit in a fairly systematic and well-controlled

manner.

Chapter 1: Aspect-oriented Modeling

10

Conclusion:

 In this chapter, we have provided an explanation of a model and modeling, followed by

an overview of different types of modeling. We then explored object-oriented modeling

and its limitations. Subsequently, we presented aspect-oriented modeling, starting with a

precise definition and not neglecting its main objective. We moved into the basic concepts

of aspect-oriented modeling, exploring the various techniques and technologies used in this

field. Finally, we identified the main drawbacks associated with this approach. Aspect-

oriented models lack’s behavior verification tools, which are available in Petri nets,

defined in the next chapter.

Chapter2

Petri Nets

Chapter 2: Petri Nets

11

Introduction:
 Petri nets, which allow both a graphical representation and a formal mathematical

description of systems, were introduced by Carl Adam Petri in his thesis entitled

"Communication with Automata" at the University of Darmstadt in Germany in 1962

(Tran, 2005). In this chapter, we will explore a definition of Petri nets (PNs) and their basic

concepts. Then, we will present the state evolution of a PN, their properties, the different

categories of PNs.Finally, we will conclude with some specific types of PNs.

1 Petri nets:
 The Petri net is a graphical and mathematical tool for modeling and analyzing discrete

systems, particularly concurrent systems, parallel, non-deterministic, etc. As a graphical

tool, it helps us to easily understand the modeled system, and furthermore, it enables us to

simulate dynamic and concurrent activities. With its role as a mathematical tool, it allows

us to analyze the modeled system through graph models and algebraic equations.

[Hettab,2009]

2 Basic concepts of Petri nets:

2.1 Formal Definition:

 Formally, a marked Petri net is a 5-tuple, PN = (P, T, F, W, M0) where:

[GUERROUF,2011]

❖ P = {P1, P2, · · ·, Pm} is a non-empty finite set of places P.

❖ T = {t1, t2, · · ·, tn} is a non-empty finite set of transitions T.

❖ F ⊆ (P × T) ∪ (T × P) is a set of arcs where:

• (P × T) is the arc going from P to T.

• (T × P) is the arc going from T to P.

❖ W: F → {1, 2, 3, · · ·}is a weight function where:

• W (P, T): “Pre (p, t)” is the weight of the arc going from P to T.

• W (T, P): “Post (p, t)” is the weight of the arc going from T to P.

❖ M0: P → {0, 1, 2, 3, · · ·}is the initial marking.

❖ P ∩ T = φ and P ∪ T ≠ φ.

2.2Graphical Definition:

 A Petri net is a bipartite directed valued graph. It has two types of nodes: [CHERIEF et

MELIANI,2020]

 Places: graphically represented by circles. Each place contains an integer

number (positive or zero) of tokens. These tokens are represented by black

dots.

 Transitions: graphically represented by a rectangle or a bar. A transition that

has no input place is called a source transition, and a transition that has no

output place is called a sink transition.

Chapter 2: Petri Nets

12

Figure 2.1: (a) Graphical representation of a place with one token, (b) transition.

 Places and transitions are connected by directed arcs where:

• An arc connects either a place to a transition or a transition to a place, but never a

place to a place or a transition to a transition.

• Each arc is labeled with a value (or weight), which is a positive integer. An arc with

a weight of k can be interpreted as a set of k parallel arcs. An arc without a label is

an arc with a weight equal to 1.

Figure 2.2 illustrates the graphical notation of a Petri net:

Figure 2.2: Example of a Petri net. [CHERIEF et MELIANI,2020]

2.3 Marking of a Petri net:

 A PN is a bipartite graph, i.e. places and transitions alternate on a path made up of

consecutive arcs. It is compulsory for each arc to have a node at each of its ends. (From a

node k, place or transition, to a node h, transition or place, there is at most one arc). [David

et Alia,2005]

 Figure 2.3(a) represents a PN with 7 places, 6 transitions and 15 directed arcs. The set of

places of a PN will be called P and its set of transitions will be called T. For the example in

question, we thus have P = {Pu P2, P3, PA, P5, P6 P7} and T = {TU T2, T3, T4, T5, T6}.

[David et Alia,2005]

 Place P3 is said to be upstream or an input of transition T3 because there is a directed arc

from P3 to T3. Place Ps is said to be downstream or an output of transition T3 because

there is a directed arc from T3 to Ps. In a similar way, a transition is said to be an input

(upstream) or an output (downstream) of a place. A transition without an input place is a

source transition. A transition without an output place is a sink transition. [David et

Alia,2005]

Chapter 2: Petri Nets

13

Figure 2.3: Example of a Petri net. [David et Alia,2005]

 Figure 2.3(b) represents a marked Petri net. Each place contains an integer (positive or

zero) number of tokens or marks. The number of tokens contained in a place Pi, will be

called either m(Pi) or mi. For the example in question, we have m1 = m3 = 1, m6 = 2 and

m2 = m4 = m5 = m7 = 0. The net marking, m, is defined by the vector of these markings,

i.e., m = (m1, m2, m3, m4, m5, m6, m7). The marking of the PN in Figure 2.3(b) is thus m

= (1, 0, 1, 0, 0, 2, 0). The marking defines the state of the PN, or more precisely the state of

the system described by the PN. The evolution of the state thus corresponds to an evolution

of the marking, an evolution which is caused by firing of transitions, as we shall see.

[David et Alia,2005]

2.4 Matrix Representation of a Petri Net:

 The matrix representation of a Petri net is used to facilitate the analysis and verification

of Petri net models. Working with a graphical representation of a Petri net model is a

challenging task compared to a matrix representation. [kerkouche,2011]

Consider a Petri net 𝑅= (𝑃, 𝑇, 𝑊) where 𝑃= {𝑝1, 𝑝2,…, 𝑝𝑚} and 𝑇= {𝑡1, 𝑡2,…,𝑡𝑛}. The

pre-condition matrix, denoted as pre, is a 𝑚×𝑛 matrix with coefficients in 𝑁, such that pre

(𝑖, 𝑗) =𝑊 (𝑝𝑖, 𝑡𝑗), indicating the number of marks needed in place 𝑝𝑖 for transition 𝑡𝑗 to

become enabled. Similarly, the post-condition matrix, denoted as post, is a 𝑛×𝑚 matrix

such that post (𝑖, 𝑗) =𝑊 (𝑡𝑗, 𝑝𝑖) containing the number of marks deposited in 𝑝𝑖 when

transition 𝑡𝑗 fires. The matrix 𝐶=post−pre is termed as the incidence matrix of the net

(where 𝑚 represents the number of places in a Petri net and 𝑛 represents the number of

transitions).

 The marking of a Petri net is represented by a vector of dimension m with coefficients in

𝑁. The firing rule of a Petri net is defined as: 𝑀′(𝑝)=𝑀(𝑝)+𝐶 (𝑝, 𝑡).
The matrix representation of the Petri net in the following figure:

Chapter 2: Petri Nets

14

Figure 2.4-a: Example of a Marked Petri Net. [kerkouche,2011]

Figure 2.4-b: Incidence Matrix. [kerkouche,2011]

3 The Evolution of States in a Petri Net:
 The evolution of the Petri net state corresponds to a marking evolution. The tokens,

which indicate the state of the network at a given time, can move from one place to another

through a firing or transition. In the case of networks known as simple arc or with equal

weights of 1 (Figure 2.5), firing a transition involves removing one token from each input

place of the transition and adding one token to each output place of that transition.

[BAHRI,2010]

Figure 2.5: The Evolution of States in a Petri Net. [BAHRI,2010]

In general, the evolution of states in a simple marked Petri net follows the following rules:

[BAHRI,2010]

• A transition is enabled or fireable when each of its input places has at least the

number of tokens corresponding to the weight of the arc connecting it to the

transition.

Chapter 2: Petri Nets

15

• The network can evolve only by firing one transition at a time, selected from

among all those enabled at the time of selection.

• Firing a transition is indivisible and null duration

These rules introduce some indeterminism in the evolution of Petri nets, as they can

pass through different states whose occurrence is conditioned by the choice of fired

transitions. This functioning reflects well the real situations, where there is no priority

in the succession of events.

4 Petri Net Properties:

4.1 Liveliness:

 A transition tj is said alive if, for any reachable marking, we can construct a firing

sequence that includes transition tj. A Petri net is said alive if all of its transitions are alive.

[HAMRI, 2017]

4.2 Boundedness:

 The boundedness of PN expresses that the number of states that can be taken by the

system modeled by this Petri net are finite. When the Petri net is unbounded, the number of

states is infinite, and this is due to the fact that some parameters of this system are

unbounded. For example, if we model a queuing system using Petri nets, then the

parameter "Queue size" can be unlimited, which introduces the unboundedness of the

model. [MEDJANI,2020]

✓ K-bounded place:

A place p ∈ P is called k-bounded for an initial marking M0 if and only if: ∃k ∈ N, ∀M0

∈A(M0), M0(p) ≤ k.

Where: A(M0) is the set of reachable markings. If k = 1, we say that place p is safe.

[MEDJANI,2020]

✓ K-bounded Petri net:

 A Petri net is called k-bounded (or bounded) for an initial marking M0 if and only if all

its places are k-bounded. The 1-bounded Petri net is called a binary Petri net (safe).

[MEDJANI,2020]

4.3 Reachability:

 The verification of reachability in a marked Petri net involves determining whether a

marking Mk can be reached from a marking M0. Marking Mk is reachable from M0 if

there exists a firing sequence that leads from marking M0 to marking Mk. [Hamri,2017]

4.4 Blocking:

 A marking M in a network (N, M0) is called a "deadlock" marking if no transition is

enabled from M. A network is said to be deadlock-free if every reachable marking from

M0 is not a "deadlock" marking. [Guerrouf,2011]

The marked Petri net represented in Figure 6.2 for blocking the marking:

M4 = [1, 0, 0, 3]

Chapter 2: Petri Nets

16

Figure 2.6: Example of Petri Net Blocking. [Guerrouf,2011]

5 Categories of Petri Nets:
a) State Graph: In this case, each transition has only one input place and one

output place. [HADDOUCHE et DAHAMNA,2022]

Example: Transitions T1, T2, T3, T4, and T5 have one input place and one

out place.

Figure 2.7: State Graph. [SAGGADI, 2007]

b) Event Graph: A Petri net is an event graph if and only if each place has

exactly one input transition and one output transition. [LAOUAR,2013]

Figure 2.8: Event Graph. [LAOUAR,2013]

c) Conflict-free Petri Net: Each place is associated with only one output

transition. [HADDOUCHE et DAHAMNA,2022]

Chapter 2: Petri Nets

17

Figure 2.9: conflict-free PN. [LAOUAR,2013]

d) Free Choice Petri Net: A Free Choice Petri Net is a network in which for any

conflict (K = (Pi, {T1, T2,...,Tn})) none of the transitions T1, T2, ..., Tn has

any other input place than Pi. [kerkouche,2011]

Figure 2.10: Free Choice PN. [David et Alia,2005]

e) Simple Petri Net: is a Petri Net in which each transition can be involved in at

most one conflict. In other words, if a transition T1 and two conflicts (P1 {T1,

T2, ...}) and {P2, {T1, T3, ...}} exist, then the Petri Net is not simple. [Rene et

Hassane, 2005]

Figure 2.11: Simple PN. [LAOUAR, 2013]

f) Pure Petri Net: In a Petri Net, a transition is pure if it has no place that acts

both as input and output. If all transitions in the Petri Net are pure, then the

Petri Net is pure. [SAGGADI, 2007]

Figure 2.12: Pure PN. [SAGGADI, 2007]

Chapter 2: Petri Nets

18

g) Limited Capacity Petri Net: In ordinary Petri Nets, the capacity of places is

not limited. Here, a capacity is assigned, defined by a positive integer

associated with places. Thus, the firing of a transition is conditioned by the

capacity of the places downstream. This limitation can illustrate the capacity

of a stock, for example. [HAOUES,2006].

Figure 2.13: Limited Capacity Petri Net. [LAOUAR, 2013]

h) Priority Petri Net: In this type of network, if we reach a marking where

multiple transitions are enabled, we must fire the transition with the highest

priority. In the following example, a Petri Net with priorities is illustrated.

[LAOUAR,2013]

Figure 2.14: Priority PN. [LAOUAR, 2013]

i) Inhibitory Arcs in Petri Nets: An inhibitory arc is a directed arc that starts

from a place and ends at a transition (rather than the reverse). Its end point is

marked by a small circle. The presence of an inhibitory arc between a place Pi

and a transition Tj signifies that transition Tj is enabled only if place Pi

contains no tokens. The firing of transition Tj involves removing a token from

each place upstream of the transition except place Pi, and adding a token to

each place downstream of the transition. [Aouag,2023]

Chapter 2: Petri Nets

19

Figure 2.15: Inhibitory Arcs in Petri Nets. [Aouag,2023]

6 The types of PN:

6.1 Ordinary Petri Net:

 The arc with weight n = 1 is an ordinary arc. So, if all arcs in a network are ordinary, the

network will be called ORDINARY. The formal description of this model is defined by a

6-tuple: P N =< P, T, M0, A, Pre, Post > with: [CHERIEF et MELIANI,2020]

• P, a finite set of places,

• T, a finite set of transitions,

• M0, the initial marking of the network,

• A, a finite set of arcs such that P \ T = P \ A = T \ A = 0

• Pre, indicates how many tokens are consumed from a place to a transition.

• Post, indicates how many tokens are produced by a transition into the downstream

place.

6.2 Generalized Petri Net:

 In a Petri Net, each arc is assigned with a weight (positive integer associated with arcs).

This weight indicates the number of tokens consumed or produced when a transition is

fired. These weights are found in the incidence matrix. This is a simplification by

aggregation of an ordinary Petri Net [HAOUES,2006]

6.3 Timed Petri Net:

 In this model of Petri net, the duration of an activity is explicitly integrated. Timing can

concern either the places (P-timed Petri nets) or the transitions (T-timed Petri nets)

depending on the modeled events. [Bahri,2010]

6.4 Colored Petri Net:

 The modeling of large systems is facilitated by the use of colored Petri nets. They are of

great interest in modeling certain complex systems. The principle consists of representing

information by place/mark sets. Each place's marks are associated with a color (or

identifier). The transition of these marks can be performed in several ways depending on

the colors associated with transitions. The relationship between transition colors and

colored markings is defined by functions associated with arcs. [Aouag,2023]

Chapter 2: Petri Nets

20

Figure 2.16: Petri Net (left) and Colored Petri Net (right).[Hettab, 2009]

6.5 Continuous Petri Net:

 In a continuous Petri Net, the markings of places are no longer integers but positive real

numbers. This type of Petri Net offers performance analysis in terms of through put. It is

highly useful when the number of markings in a classical Petri Net becomes too large or to

represent continuous processes. [HAOUES,2006]

Conclusion:
 In this chapter, we have provided an explanation of Petri nets, followed by their basic

concepts. We then explored the various properties and state evolution of Petri nets.

Delving into the categories of Petri nets. Finally, we examined their different types of PNs.

We emphasized that aspect-oriented models have shortcomings in terms of behavior

verification tools, unlike Petri nets, whose tools are defined in the next chapter. The next

chapter will focus on graph transformation.

Chapter3

Graph

Transformati-

on and

verification

Chapter 3: Graph Transformation and verification

21

Introduction:
 Model-Driven Architecture (MDA), proposed and endorsed by the OMG (Object

Management Group), is based on the use of models at different stages of the application

development cycle. This approach primarily relies on high-level abstract representations of

the system, which are the models. It emphasizes automating the system development

process, including verification, which involves analyzing the system properties, thus

ensuring the reliability of the modeled system. This approach enables formal verifications

to be conducted and ensures the correct behavior of the system.

 This chapter aims to provide fundamental concepts about Model-Driven Architecture,

explaining the MDA approach and illustrating MDA architecture as well as its different

types. Additionally, we discuss the available tools for MDA. Model transformation is a key

concept in MDE (Model-Driven Engineering). We present a definition along with the

various types of existing model transformations. Then, we are interested into graph

transformation, starting with some basic concepts about graphs and graph transformation

tools. Then, we introduce the ATOMPM tool. Following that, we conduct an analysis of

Petri nets focusing on verification and validation. Finally, we present Petri Net analysis

tools and concentrate on the Tina tool.

1 Model Driven Architecture (MDA):
 Model-Driven Architecture, or MDA, is a software development approach proposed and

endorsed by the OMG. It is a specific variant of Model-Driven Engineering.

[ElMansouri,2009]

1.1 Basic Concepts of MDA:

• System: A system is a set of elements interacting with each other according to a

certain number of principles and rules with the aim of achieving a goal.

[Aouag,2023]

• The boundary of a system determines its membership criteria.

• The environment refers to the part of the world outside the system.

• Systems are often hierarchically organized using subsystems.

❖ Model: A model is an abstraction of reality; it emphasizes certain aspects of the

system while ignoring others (it is a simplified representation). Its purpose is to

facilitate a simpler study within a controlled context other than the actual context.

[Hachichi,2013]

❖ Meta-model: A meta-model is both a model that defines the language of

expression or the structure of a model, and a specification of the syntax and

semantics of a system. [Aouag,2014]

❖ Meta-Meta-Model: A specification language for meta-models. [Zerara et

Megrous,2020]

1.2 The MDA Approach:

 The CIM (Computational Independent Model): This is the requirements

model. It describes the functional needs of the application independently

of the details related to its implementation. The technical independence

Chapter 3: Graph Transformation and verification

22

of this model allows it to maintain its relevance over time. It is only

modified if knowledge or business needs change. [Khelfaoui,2014]

 The PIM (Platform Independent Model) corresponds to the specification

of the "business" part of an application, in accordance with a computer

analysis seeking to meet business needs independently of the

implementation technology. [Hettab,2009]

 The PSM (Platform Specific Model) is the most delicate phase of MDA.

Code generation can begin from the analysis and design models. The

main difference between a code model and an analysis and design model

lies in the fact that the code model is tied to a specific platform.

[Aouag,2014]

There are model transformations from the system to other models of the same system,

As example: [Zerara et Magrous,2020]

• Transformations from CIM models to PSM

• Transformations from CIM models to PIM

• Transformations from PIM models to PSM

• Transformations from UML 2.0 diagrams to Petri nets

The following figure provides an overview of the model transformation process in the

MDA approach:

Figure 3.1: The model transformation process in the MDA approach. [Aouag,2014]

1.3 Model Driven Architecture:

 The OMG has established four-level abstraction architecture as a general framework for

integrating meta-models, based on the MOF (Meta-Object Facility) as depicted in Figure

3.2.

Chapter 3: Graph Transformation and verification

23

 In this architecture, models at adjacent levels are connected by an instantiation

relationship. [Bahri,2010]

Figure 3.2: The four abstraction levels for MDA. [Dib et Saadaoui, 2023]

The four abstraction levels for MDA are as follows: [Bahri, 2010]

▪ Level M0: Instance level of models. It defines information for modeling real-world

objects.

▪ Level M1: This level represents all instances of a meta-model. Models of M1 level

must be expressed in a language defined at level M2. UML is an example of

models of M1 level.

▪ Level M2: This level represents all instances of a meta-meta-model. It consists of

languages for specifying information models. The UML meta-model, described in

the UML standard and defining the internal structure of UML models, belongs to

level M2.

▪ Level M3: This level defines a single language for specifying meta-models. The

MOF, a reflective element of M3 level, defines the structure of all meta-models of

M2 level.

1.4 Types of MDA Approaches:

 According to the classification by Czarnecki and Helsen, model transformations can be

grouped into two main categories: 'Model to Model' transformations and 'Model to Code'

transformations (Figure 3.3). [BENDIAF, 2018]

Chapter 3: Graph Transformation and verification

24

Figure 3.3: The model transformation approaches. [BENDIAF, 2018]

 Model to Code Transformations: There are two different approaches

for model to code transformations: visitor-based approaches or

template-based approaches.

▪ Visitor-based approaches: involve traversing the model by

adding elements (visitor’s mechanisms) that reduce the

semantic gap between the model and the target

programming language. Code is generated by traversing the

enriched model to create a text stream.

▪ Template-based approaches: are currently the most widely

used. The target code contains snippets of meta-code used to

access information from the source model. The majority of

commonly available MDA tools support this principle of

code generation from models. Among the tools based on this

principle are: OptimalJ, XDE (Extended Development

Environment) (which also provide model-to-model

transformation), JET (Java Emitter Templates), ArcStyler,

AndroMDA (Andromeda Model-Driven Architecture) (a

code generator that relies on open technology such as

Velocity for template writing), Acceleo, and XPand.

 Model-to-Model transformations: involve converting a source model

into a target model, which can be instances of different meta-models.

They offer more modular and easier-to-maintain transformations. In

cases where there is a significant abstraction gap between PIMs and

PSMs, it is easier to generate intermediate models than to go directly to

the target PSM. Intermediate models can be useful for optimization or

debugging purposes. Moreover, model-to-model transformations are

Chapter 3: Graph Transformation and verification

25

useful for computing different system views and their synchronization.

[HAMROUCHE, 2010]

The techniques for transformations of this type can be classified into five categories:

[BENDIAF,2018]

• Direct manipulation approaches.

• Relational approaches.

• Graph transformation-based approaches.

• Hybrid approaches.

• Structure-driven approaches.

1.5 The tools of MDA:

 To achieve such efficiency, various conceptual tools are available. The Model Driven

Architecture technology is supported by the OMG, which also provides UML and CORBA

(Common Object Request Broker Architecture). These tools are: [Hettab,2009]

a) UML, widely used elsewhere, which facilitates easy implementation of MDA by

providing familiar support.

b) XMI (XML Metadata Interchange), which offers a formalism for structuring XML

(eXtensible Markup Language) documents in such a way that they can represent

application metadata in a compatible manner.

c) MOF (Meta Object Facility), a specification that enables the storage, access,

manipulation, and modification of metadata. MOF allows for a unified expression

of meta-models, whether they are subsequently used as UML profiles or not.

d) CWM (Common Warehouse Metamodel), database for meta-data.

2 Model Transformations:
 Model transformation is a key concept in MDE. It involves making models

productive (operational). Indeed, the interest lies in transforming a model Ma into a

model Mb, whether the respective meta-models MMa and MMb are identical

(endogenous transformation) or different (exogenous transformation).

[AMROUNE,2014]

 In other words, a model transformation is defined by the operation of generating one

or more target models from one or more source models, in accordance with a

transformation definition. [AMROUNE,2014]

In the literature, three types of transformations can be distinguished: [Kerkouche,2011]

1) Les Vertical transformations: The source and target of a vertical

transformation are defined at different levels of abstraction. A transformation

that decreases the level of abstraction is called a refinement. A transformation

that increases the level of abstraction is called an abstraction.

2) Horizontal transformations: A horizontal transformation modifies the source

representation while retaining the same level of abstraction. The modification

can involve adding, modifying, deleting, or restructuring information.

3) Oblique transformations: An oblique transformation integrates both

horizontal and vertical transformations. This type of transformation is notably

used by compilers, which perform optimizations on the source code before

generating executable code.

Chapter 3: Graph Transformation and verification

26

Figure 3.4: Types of transformations and their main uses. [Aouag,2014]

3 Graph Transformations:
 Before we begin discussing graph transformation, let's cover some basic concepts of

graphs. [ElMansouri,2009]

3.1 Graph Concepts:

• A graph consists of nodes that are connected by edges.

• Two nodes connected by an edge are adjacent.

• The number of nodes present in a graph is called the order of the graph.

• The degree of a node is the number of edges incident to that node.

• A subgraph of a graph G is a graph G' composed of certain nodes of G,

such that all the edges connecting these nodes are also present in G'.

There are two types of graphs: undirected graphs (where nodes are connected by edges)

and directed graphs (where nodes are connected by arcs, which are edges with a direction).

Figure3.5: (a) Undirected graph G, (b) Directed graph, (c) Subgraph of G.

[ElMansouri,2009]

Chapter 3: Graph Transformation and verification

27

3.2 Subclass of a Graph:

 A labeled graph: is a directed graph in which the arcs are assigned labels. If all

labels are positive numbers, it is called a weighted graph. [Kerkouche,2011]

 An attributed graph: is a graph that can contain a predefined set of attributes.

[Kerkouche,2011]

3.3 Graph Transformation Tools:

 Among the many tools available for graph transformation, such as AGG (Attributed

Graph Grammar), TGG (Triple Graph Grammars), Fujaba (From UML to Java And Back

Again), and AToM³ ((A Tool for Multi-formalism and Meta-Modeling), we have selected

AToMPM for its distinctive advantages. [Syriani et al,2013]

• Performs transformations, controls, and processes models.

• Works on the web, independent of operating systems and platforms.

• Philosophy: explicit modeling, high level of abstraction, adapted formalisms and

processes, autonomous

4 AToMPM:
 AToMPM ("A Tool for Multi-Paradigm Modelling") is a (Meta) modelling workstation

that enables language developers to create domain-specific visual languages, and domain

experts to use these languages. A language is defined by its abstract syntax in a meta-

model, its one or more concrete syntaxes, which define how each element of abstract

syntax is visualized, and its semantic definitions, either operational (a simulator) or

translational (by mapping them onto a known semantic domain). AToMPM supports

model transformations for modeling semantics. [AToMPM Documentation]

AToMPM is developed to satisfy three main functionalities:

▪ Meta-modelling.

▪ Model transformation.

▪ Execution of transformation on a model.

Figure 3.6: Presentation of the AToMPM tool.

Chapter 3: Graph Transformation and verification

28

5 Analysis of Petri nets:
 The transformation from aspect-oriented diagrams to formal models, such as Petri nets,

often suffers from a lack of verification to preserve the important properties of the system

and to ensure that the model transformation is correct, as well as to check if they meet the

system requirements. There are several Properties to Verify: [Aouag,2023]

• Termination of the transformation.

• Preservation of the semantics of the source model.

• Confluence.

• Invariants.

• Completeness.

• Absence of deadlock & infinite loop...

5.1 Analysis Techniques:

 As systems become more complex, ensuring the quality of the model becomes more

challenging. To address this, various techniques are used for analysis, such as verification,

validation, qualification, and certification. In our work, we primarily focus on verification

and validation: [Elmansouri,2009]

 Verification: answers the question "Are we building the model correctly?"

Verification encompasses review, inspection, testing, automated proof, or other

appropriate techniques to establish and document the compliance of development

artifacts with predefined criteria. ISO 8402 defines verification as "confirmation

through examination and provision of tangible evidence (information whose

accuracy can be demonstrated, based on facts obtained through observation,

measurement, testing, or other means) that specified requirements have been

fulfilled."

 Validation: involves assessing the suitability of the developed system in relation to

the needs expressed by its future users. Validation seeks to answer the question

"Are we building the right model?" ("is the right system being built?"). By

definition, validation is "confirmation through examination and provision of

tangible evidence that specific requirements for an intended specific use are

satisfied. Multiple validations can be performed if there are different intended uses"

[ISO 8402].

5.2 Analysis tools for PN:

 Among the many analysis tools available, such as PEP (Programming Environment

based on Petri nets) and INA (Integrated Net Analyzer), we have selected TINA for its

distinctive advantages:

• TINA is easy to use thanks to its user-friendly and easy-to-understand interface.

• Providing users with great flexibility to customize the tool to their specific needs.

• TINA provides advanced features for editing and analyzing Petri networks, making

it a powerful tool for complex analysis tasks.

Chapter 3: Graph Transformation and verification

29

6 TINA:

 (Time Petri Net Analyzer) is a toolbox for editing and analyzing Petri Nets. It supports

features such as inhibitor and read arcs, Time Petri Nets with priorities and stopwatches,

and an extension of Time Petri Nets with data handling, known as Time Transition

Systems. [TINA Documentation]

Figure 3.7: Presentation of the TINA tool.

Conclusion:
 In this chapter, we have explored the key concepts of Model-Driven Engineering. By

detailing the Model-Driven Architecture approach along with the four-level architecture of

MDA, and examining its various variants, we have also looked into the tools available to

support this methodology. Model transformation has been highlighted as a central element

of MDE, with an overview of the various forms of model transformations. Finally, we have

covered the basic concepts and relevant tools in the field of graph transformation. These

insights provide a solid foundation for understanding and effectively applying the

principles of MDE in software development. Thus, we presented the tool used in the

implementation of our work, AToMPM. Next, we introduce the techniques for analyzing

Petri nets and the analysis tools, concluding with the presentation of the tool used in our

work.

The next chapter (Chapter 4) presents our model transformation approach that is based on

the concepts introduced previously.

Chapter4

Proposed

Approaches

Chapter 4: Proposed Approaches

30

Introduction:

 In this chapter, we present our approach aimed at transforming a source model into a

target model based on graph transformation. The chapter contains two approaches:
 Transformation of detailed object-oriented sequence diagrams into detailed aspect-

oriented sequence diagrams.

 Transformation of detailed aspect-oriented sequence diagrams into Petri nets.

 We begin our approach with meta-modeling that includes classes and associations. Next,

we propose a graph grammar for each approach to transform an object-oriented model into

an aspect-oriented model. The target model of the first approach serves as the basis for the

second approach, which results in Petri nets. In this transformation, we use the modeling

tool AToMPM. Additionally, we used the TINA tool to verify the properties of the

transformation results. Finally, we make a comparison between works related to our work

and discuss this comparison.

1 Transformation of detailed object-oriented sequence diagrams into

detailed aspect-oriented sequence diagrams:

 In this approach, we transform a detailed object-oriented sequence diagram into a

detailed aspect-oriented sequence diagram by combining the base model of the detailed

sequence diagram with the aspect model. This results in weaving (the composite model,

which is the detailed aspect-oriented sequence diagram). We perform this transformation

using a single meta-modeling. The transformation method takes as input a source model

that includes the base detailed sequence diagram and the aspect model. After executing the

graph grammar rules, we obtain the detailed aspect-oriented sequence diagram as output.

1.1 Meta-modeling:

 The meta-modeling of the aspect-oriented detailed sequence diagram contains seventeen

classes, forty-three associations, and five inheritances. In Figure 4.1, we present the meta-

model for aspect-oriented detailed sequence diagrams.

Chapter 4: Proposed Approaches

31

Figure 4.1: Meta-model of the detailed sequence diagram.

Classes:

• Seq: This class represents the aspect-oriented detailed sequence diagram. It

contains an attribute <Diagram> of type String displaying by default

"detailed_sequence_diagram" and an attribute <Model> of type String

displaying by default "basic_model" before the transformation. After the

transformation, it is modified to "Weaver". Graphically, it is represented by a

large blue rectangle.

• MA: This class represents the aspect model. It contains an attribute <MA> of

type String displaying by default "Aspect_Model". Graphically, it is represented

by a large red rectangle.

• Actor: This class represents the actor. It contains an attribute <NameAct> of

type string. Graphically, it is represented by a simple shape such as a blue stick

figure.

• ZoneAct: This class represents the actor's activity zone. It contains an attribute

<NomZoneAct> of type string. Graphically, it is represented by a small black

rectangle.

• Dialogue: This class represents the boundary. It contains an attribute

<NameDialogue> of type string. Graphically, it is represented by a blue circle

with two horizontal and vertical lines.

• ZoneDialogue: This class represents the boundary activity zone. It contains an

attribute <NameDialogueZone> of type string. Graphically, it is represented by

a small black rectangle.

Chapter 4: Proposed Approaches

32

• Contrôleur: This class represents the Controller. It contains an attribute

<NameCntrl> of type string. Graphically, it is represented by a blue circle with

two diagonal lines inside and outside the circle.

• ZoneCntrl: This class represents the controller activity zone. It contains an

attribute <NameCntrlZone> of type string. Graphically, it is represented by a

small black rectangle.

• Entity: This class represents the entity. It contains an attribute <NameEntity> of

type string. Graphically, it is represented by a blue circle with a line at the

bottom.

• ZoneEntity: This class represents the entity activity zone. It contains an

attribute <NameEntityZone> of type string. Graphically, it is represented by a

small black rectangle.

• Destroy: This class represents the destruction. It contains an attribute <D> of

type string. Graphically, it is represented by a black cross.

• Aspect: This class represents the aspect. It contains attributes <AD>, <PJ>,

<Type>, and <Name>, all of type string. Graphically, it is represented by a

class.

• Operation: This class represents an operation. It inherits from the <Actor> class

and contains an attribute <idop> of type string. Graphically, it is represented by

a large black rectangle.

• Ref: This class represents the reference operation. It inherits from the <

Operation> class and contains attributes <Nameref> and <ref>, both of type

string. Graphically, it is represented by a small black rectangle.

• Opt: This class represents the optional operation and inherits from the <

Operation> class. It contains an attribute <opt> of type string. Graphically, it is

represented by a small black rectangle.

• Loop: This class represents the loop operation and inherits from the <

Operation> class. It contains attributes <N> and <Loop>, both of type string.

Graphically, it is represented by a small black rectangle.

• Alt: This class represents the alternative operation and inherits from the <

Operation> class. It contains an attribute <Alt> of type string. Graphically, it is

represented by a small black rectangle.

Associations:

• MA2act: connects class <MA> and class <Actor>, It represents an invisible

link.

• MB2act: connects class <Seq> and class <Actor>, It represents an invisible

link.

• Aspt2act: connects class <Aspect> and class <Actor>. It contains an attribute

<Aspt2act> of type string.

• Act2zoneAct: connects class <Actor> and class <ZoneAct>. It contains an

attribute <Act2zoneAct> of type string.

• linedevieActeur: connects class <ZoneAct> and class <ZoneAct>. It contains

an attribute <linedevieActeur> of type string.

• Aspt2zoneAct: connects class <Aspect> and class <ZoneAct>. It contains an

attribute <Aspt2zoneAct> of type string.

Chapter 4: Proposed Approaches

33

• Retour2Act: connects class <ZoneDialogue> and class <ZoneAct>. It contains

an attribute <Retour2Act> of type string.

• Aspt2D: connects class <Aspect> and class <Dialogue>. It contains an attribute

<Aspt2D> of type string.

• CreateDialogue: connects class <ZoneCntrl> and class <Dialogue>. It contains

an attribute <Aspt2D> of type string.

• Aspt2C: connects class <Aspect> and class <Controller>. It contains an

attribute <Aspt2C> of type string.

• Aspt2E: connects class <Aspect> and class <Entity>. It contains an attribute

<Aspt2E> of type string.

• CntrlCreateEnt: connects class <ZoneCntrl> and class <Entity>. It contains an

attribute <CntrlCreateEnt> of type string.

• EntCreateEnt: connects class <ZoneEntity> and class <Entity>. It contains an

attribute <EntCreateEnt> of type string.

• Aspt2zoneD: connects class <Aspect> and class <ZoneDialogue>. It contains

an attribute <Aspt2zoneD> of type string.

• Synchrone2Dialogue: connects class <ZoneAct> and class <ZoneDialogue>. It

contains an attribute <Synchrone2Dialogue> of type string.

• Asynchrone2Dialogue: connects class <ZoneAct> and class <ZoneDialogue>.

It contains an attribute <Asynchrone2Dialogue> of type string.

• RecursifDlg: connects class <ZoneDialogue> and class <ZoneDialogue>. It

contains an attribute <RecursifDlg> of type string.

• linevie_Dialogue: connects class <ZoneDialogue> and class <ZoneDialogue>.

It contains an attribute <linevie_Dialogue> of type string.

• Retour2Dialogue: connects class <ZoneCntrl> and class <ZoneDialogue>. It

contains an attribute <Retour2Dialogue> of type string.

• Dialogue2zonedialogue: connects class <Dialogue2zonedialogue> and class

<ZoneDialogue>. It contains an attribute <Dialogue2zonedialogue> of type

string.

• Aspt2zoneC: connects class <Aspect> and class <ZoneCntrl>. It contains an

attribute <Aspt2zoneC> of type string.

• cntrl2Zonecontrleur: connects class <Controller> and class <ZoneCntrl>. It

contains an attribute <cntrl2Zonecontrleur> of type string.

• Synchrone2cntrl: connects class <ZoneDialogue> and class <ZoneCntrl>. It

contains an attribute <Synchrone2cntrl> of type string.

• Asynchrone2cntrl: connects class <ZoneDialogue> and class <ZoneCntrl>. It

contains an attribute <Asynchrone2cntrl> of type string. • linevie_cntrl:

connects class <ZoneCntrl> and class <ZoneCntrl>. It contains an attribute

<linevie_cntrl> of type string.

• Recursif : connects the class <ZoneCntrl> and the class <ZoneCntrl>. It

contains an attribute <Recursif> of type string.

• SynchroneC2C: connects the class <ZoneCntrl> and the class <ZoneCntrl>. It

contains an attribute <SynchroneC2C> of type string.

• AsynchroneC2C: connects the class <ZoneCntrl> and the class <ZoneCntrl>. It

contains an attribute <AsynchroneC2C> of type string.

Chapter 4: Proposed Approaches

34

• RetourC2C: connects the class <ZoneCntrl> and the class <ZoneCntrl>. It

contains an attribute <RetourC2C> of type string.

• Retour2Cntrl: connects the class <ZoneEntity> and the class <ZoneCntrl>. It

contains an attribute <Retour2Cntrl> of type string.

• Aspt2zoneE: connects the class <Aspect> and the class <ZoneEntity>. It

contains an attribute <Aspt2zoneE> of type string.

• Synchrone2Entity: connects the class <ZoneCntrl> and the class

<ZoneEntity>. It contains an attribute <Synchrone2Entity> of type string.

• Asynchrone2Entity: connects the class <ZoneCntrl> and the class

<ZoneEntity>. It contains an attribute <Asynchrone2Entity> of type string.

• linevie_entity: connects the class <ZoneEntity> and the class <ZoneEntity>. It

contains an attribute <linevie_entity> of type string.

• RetourE2E: connects the class <ZoneEntity> and the class <ZoneEntity>. It

contains an attribute <RetourE2E> of type string.

• SynchroneE2E: connects the class <ZoneEntity> and the class <ZoneEntity>.

It contains an attribute <SynchroneE2E> of type string.

• AsynchroneE2E: connects the class <ZoneEntity> and the class <ZoneEntity>.

It contains an attribute <AsynchroneE2E> of type string.

• Entity2Zonentity: connects the class <ZoneEntity> and the class

<ZoneEntity>. It contains an attribute <Entity2Zonentity> of type string.

• Act2Distroy: connects the class <ZoneAct> and the class <Distroy>. It contains

an attribute <Act2Distroy> of type string.

• Dlg2Distroy: connects the class <ZoneDialogue> and the class <Distroy>. It

contains an attribute <Dlg2Distroy> of type string.

• Aspt2Distory: connects the class <Aspect> and the class <Distroy>. It contains

an attribute <Aspt2Distory> of type string.

• CreateDistroy: connects the class <ZoneCntrl> and the class <Distroy>. It

contains an attribute <CreateDistroy> of type string.

• Ent2Distroy: connects the class <ZoneEntity> and the class <Distroy>. It

contains an attribute <Ent2Distroy> of type string.

Inheritance: is a relationship between two classes. Graphically, it is represented by an

arrow.

Figure 4.2 illustrates the tool generated for manipulating detailed aspect-oriented sequence

diagrams.

Chapter 4: Proposed Approaches

35

Figure 4.2: The tool generated for the detailed aspect-oriented sequence diagram.

1.2 The proposed graph grammar:

 In this approach, we present a grammar composed of eighty-eight (88) rules. These rules

will be executed in an order determined by the pattern (T). Each rule consists of two parts:

a left-hand side (LHS) and a right-hand side (RHS). These rules are then divided into three

categories based on the type of aspect, which are defined as follows:

Aspect.type: the action of the aspect is a creation, deletion, or connection between two

objects.

In the following figure, the pattern (T_O2A) of this graph grammar for this

approach:

Figure 4.3: The motif of transformation of approach.

Chapter 4: Proposed Approaches

36

Category 1: Rules that have the aspect type "create" are applied to create an aspect

according to the PJ and AD.

 In the following figures, we depict the rules of the first category:

 Figure 4.4: Application of category 1 with Aspect.PJ == Actor and Aspect.Ad==

linevieAct.

In Figure 4.4, for the application of the first category, in this rule we positioned the aspect

on the actor (the join point) and added an activity zone (advice) with the aspect type set to

‘create’

In Figures 4.5 and 4.6, the Python code for the first creation rule:

Figure 4.5: The LHS of the first create rule(Python code).

Chapter 4: Proposed Approaches

37

Figure 4.6: The RHS of the first create rule (Python code).

Figure 4.7: Application of category 1 with Aspect.PJ== Control Zone et Aspect.AD==

CreateDlg.

In Figure 4.7, for the application of the first category, in this rule we positioned the aspect

on the Controller zone (the join point) and added boundary (advice) with the aspect type

set to ‘create’

Category 2: Rules with the aspect type "lien" are applied to add an aspect to a link

between two objects.

In the following figure, we depict the rules of the second category:

Chapter 4: Proposed Approaches

38

Figure 4.8: Application of category 2 with Aspect.PJ== Control Zone, Entity Zone and

Aspect.AD== Asynchrone2E.

In Figure 4.8, for the application of the second category, in this rule we positioned the

aspect on the Controller zone and entity zone (the join points) and added asynchronous

message (advice) with the aspect type set to ‘lien’

In Figures 4.9 and 4.10, the Python code for the first link rule:

Figure 4.9: The LHS of the first link rule (Python code).

Chapter 4: Proposed Approaches

39

Figure 4.10: The RHS of the first Link rule (Python code).

Figure 4.11: Application of category 2 with Aspect.PJ== Synchrone message et

Aspect.AD== Cntrl.

In Figure 4.11, for the application of the second category, in this rule we positioned the

aspect on the boundary zone and controller zone (the join points) and added a controller

(advice) with the aspect type set to ‘lien’

Chapter 4: Proposed Approaches

40

Category 3: Rules with the aspect type "Delete" are applied respectively to delete an

object automatically delete the relations associated with it.

In the following figures, we depict the rules of the third category:

Figure 4.12: Application of category 3 with Aspect.PJ== Zone Actor et Aspect.type==

delet.

In Figure 4.12, for the application of the third category, in this rule we positioned the

aspect on the actor zone (the join point) with the aspect type set to ‘delet’

In Figures 4.13 and 4.14, the Python code for the first Delet rule:

Figure 4.13: The LHS of the first delete rule (Python code).

Chapter 4: Proposed Approaches

41

Figure 4.14: The RHS of the first delete rule (Python code).

Figure 4.15: Application of category 3 with Aspect.PJ== Destroy et Aspect.type== delet.

In Figure 4.15, for the application of the third category, in this rule we positioned the

aspect on destroy (the join point) with the aspect type set to ‘delet’

Chapter 4: Proposed Approaches

42

1.3 Explanatory example:

 To highlight our approach, we have chosen to explore a case study example to

demonstrate the transformation steps (the rules). We applied our approach to a detailed

sequence diagram of the authentication case. We proposed a base model as well as an

aspect model for this diagram. The aspect model includes three aspects:

• Dialogue-Script: This aspect allows verifying the information entered in the

authentication form

• Verify Security: for information security.

• Deleting the "destroy" object.

In Figure (4.10), we present the base model.

Figure 4.16: Basic Authentication Model.

In Figure (4.11), we present the aspect model of authentication.

Figure 4.17: Authentication Aspect Model.

Chapter 4: Proposed Approaches

43

The integration between the base model (an Object-Oriented Sequence Diagram) and the

aspect model is achieved by executing T_O2A, which contains the proposed graph

grammar. Thus, we obtain the composite model represented in Figure (4.12).

Figure 4.18: The weaver model.

2 Transformation of Aspect-Oriented Detailed Sequence Diagrams into

RDPs:
 In this approach, we perform the transformation of an aspect-oriented detailed sequence

diagram into PN (Petri Nets) by composing the source model (the composite model

containing the aspect-oriented detailed sequence diagram). This yields the target model

(the Petri Nets). We conduct this transformation through meta-modeling. The

transformation method takes as input a source model that includes the aspect-oriented

detailed sequence diagram. After applying the rules of graph grammar, we obtain PN as

output.

2.1 Model Transformation Process:

 In this approach, the transformation relies on transformation rules. These rules express

the semantics in the following table:

Chapter 4: Proposed Approaches

44

Source state and notation: Description Target state and notation

Actor

That transforms the actor

into a place because there is

no change in state.

Place

Actor activity zone

That transforms the actor’s

activity zone into a

transition because it

performs a state change.

Transition

Boundary

That transforms the

boundary into a place

because there is no change

in state.
Place

Boundary activity zone

That transforms the

boundary’s activity zone

into a transition because it

performs a state change.

Transition

Control

That transforms the control

into a place because there is

no change in state.
Place

Control activity zone

That transforms the

control’s activity zone into

a transition because it

performs a state change.

Transition

Entity

That transforms the entity

into a place because there is

no change in state.

Place

Entity activity zone

That transforms the entity’s

activity zone into a

transition because it

performs a state change.

Transition

Destroy

That transforms the destroy

into a place and a transition

because it is a final state.
Place and transition

Chapter 4: Proposed Approaches

45

diagram framework

That transforms the

diagram framework into a

Petri net framework

Petri-Net framework

Loop operation

That transforms the Loop

operation into a place and a

transition as it's performed

in a loop.

Place and transition

Table 4.1: Expresses the semantics of this approach.

2.2 Meta-modeling:

 The meta-modeling of Petri Nets consists of three classes and three associations. In

Figure 4.13, we present the meta-model for Petri Nets.

Figure 4.19: Meta-model of Petri Nets.

Classes:

• PN: This class represents the Petri Net framework. It contains an attribute <PN> of

type string, displaying "Petri-Net" by default. Graphically, it is represented by a

black rectangle.

• Place: This class represents the place. It contains an attribute <Pname> of type

string, displaying "P" by default, and an attribute <Tokens> of type string.

Graphically, it is represented by a green circle.

• Transition: This class represents the Transition. It contains an attribute <Tname>

of type string, displaying "T" by default. Graphically, it is represented by a pink

rectangle.

Associations:

• Condition: Connects the <Place> class and the <Transition> class. It contains an

attribute <Condition> of type string.

Chapter 4: Proposed Approaches

46

• Action: Connects the <Transition> class and the <Place> class. It contains an

attribute <Action> of type string.

• 2p: Connects the <PN> class and the <Place> class. The link is invisible.

Figure 4.14 illustrates the generated tool for manipulating Petri Nets:

Figure 4.20: The generated tool for Petri Nets.

2.3 The proposed graph grammar:

 In this approach, we introduce a grammar consisting of fifty-six (56) rules. These rules

will be executed in an order determined by the motif (T). Each rule consists of two parts: a

left-hand side (LHS) and a right-hand side (RHS). These rules are then divided into three

categories based on the transformation of objects, defined as follows:

 Creation: For transforming, the object and aspect in the aspect-oriented detailed

sequence diagram into a PN.

 Linking: to connect the PN objects and aspect from the aspect-oriented detailed

sequence diagram.

 Deletion: for removing the aspect-oriented detailed sequence diagram that

conclude the transformation.

In the following figure, the pattern (T_OA2RDP) of this graph grammar for this approach

is represented:

Chapter 4: Proposed Approaches

47

Figure 4.21: The transformation pattern of the approach.

Category1: the creation rules are applied to create a PN based on an aspect-oriented

sequence diagram.

In the following figures, we illustrate the rules of the first category:

Figure 4.22: Application of Category 1 on the actor.

Chapter 4: Proposed Approaches

48

Figure 4.23: Application of Category 1 on the actor Activity Zone.

Category2: The linking rules are applied to connect Petri net based on the linking of

object and aspect from the aspect-oriented detailed sequence diagram.

In the following figures, we represent the rules of the second category:

Figure 4.24: Application of Category 2 on the lifeline boundary.

Figure 4.25: Application of Category 2 on the synchronous message.

Chapter 4: Proposed Approaches

49

Category3: the deletion rules are applied to remove objects and aspects from the aspect-

detailed sequence diagram after the transformation.

 In the following figures, we represent the rules of the third category:

Figure 4.26: Application of Category 3 on "destroy"

Figure 4.27: Application of Category 3 on "Entity"

3 Representation of the TINA tool:
The figure 4.27 and 4.28 illustrates the tool used to verify the Petri nets obtained from the

transformation.

Chapter 4: Proposed Approaches

50

Figure 4.28: Representation of the TINA tool (Input).

Figure 4.29: Representation of the TINA tool (Output).

4 Explanatory Example:
 To illustrate our approach, we chose to explore an example case study to demonstrate the

transformation steps (the rules). We applied our approach to an aspect-oriented detailed

sequence diagram of the authentication case. In Figure (4.18), we present the composite

model (Weaver) of the authentication case after executing T_OA2RDP, which contains the

proposed graph grammar. We obtain the Petri net, represented in Figure (4.30).

Chapter 4: Proposed Approaches

51

Figure 4.30: Authentication Petri Net.

Figure 4.30 shows the result of the verification of the Authentication Petri Net in the TINA

tool.

Figure 4.31: Analysis of the Authentication Petri Net.

5 Results and Discussion:
a) Results:

 In this memory, we propose two new approaches. There are several previous studies that

are related to our approaches:

 The works related to the first approach, which involves transforming object-

oriented diagrams into aspect-oriented diagrams, include the work of M. Aouag

(2014) titled "Des diagrammes UML 2.0 vers les diagrammes orientés aspect à

l’aide de transformation de graphes". In addition, the work of A. Zerara (2020)

titled "La génération d’un outil de transformation des diagrammes UML 2.0 vers

Chapter 4: Proposed Approaches

52

les diagrammes orientés aspect, basée sur la transformation de graphes". We have

conducted a comparison with the works related to our research in Table 4.2.

The comparaison

work

Comparison

Points

M.Aouag,2013 A. Zerara,2020 Our Approach

Design Model Class diagram,

Activity diagram,

and Communication

diagram.

State-transition

diagram.

Detailed sequence

diagram.

Join point Any part of the

model.

Any part of the

model.

Components of

detailed sequence

diagram.

Advice Any part of the

model.

Any part of the

model.

Components of

detailed sequence

diagram.

Aspect A graphical model

contains the join

points and advices to

be added.

A graphical model

contains the join

points and advices to

be added.

A graphical model

contains the join

points and advices to

be added.

Graph Based on graph

transformation.

Based on graph

transformation.

Based on graph

transformation.

Graph grammar By given execution

order.

From a graph

grammar and by

given execution

order.

From a graph

grammar and a (T)

pattern.

Modeling tool ATOM³ ATOM³ ATOMPM

Table 4.2: Comparison of Approaches for Transforming into Aspect-Oriented Diagrams.

 The works related to the second approach, which involves transformation into Petri

nets for verification purposes, include M. Bouarioua (2013) with his approach

based on graph transformations for generating analyzable Petri net models from

UML diagrams, and R. El Mansouri (2009) with his work on modeling and

verifying business processes in virtual enterprises using a graph transformation-

based approach. We have conducted a comparison with the works related to our

research in Table 4.3.

The comparaison

work

Comparison

Points

M.Bourioua,2013 R. Elmansouri, 2009 Our Approach

Transformation

Approach

Modeling and

verification of UML

diagrams

Modeling and

verification of

business processes

Modeling and

verification of

UML2.0 diagrams

Chapter 4: Proposed Approaches

53

Design Model Simple sequence

diagram, State

transition diagram

Simple sequence

diagram, Business

processes

Detailed sequence

diagram

Graph Based on graph

transformation

Based on graph

transformation

Based on graph

transformation

Verification Method Transformation to

Petri nets
Transformation to

Petri nets
Aspect-oriented

transformation to

Petri nets
Modeling Tool ATOM³ ATOM³ ATOMPM

Verification Tool TINA INA TINA

Table 4.3: Comparison of Petri Net Transformation and Verification Approaches

b) Discussion:

 In the first approach, the focus is on detailed sequence diagrams, providing a finer

granularity for aspect-oriented transformations. It specifies these elements within

the components of the detailed sequence diagram, thereby allowing a more precise

localization of variation points. Additionally, our method integrates a (T) pattern to

structure the transformation, which could offer extra flexibility in defining the

transformations. Our approach also stands out by using ATOMPM, a tool that

could provide additional or enhanced functionalities tailored to our specific needs.

In conclusion, our method proposes specific improvements, including finer

granularity with detailed sequence diagrams and the use of a potentially more

suitable modeling tool, ATOMPM. These distinctions can lead to more precise and

flexible transformations, better meeting the specific requirements of certain

modeling projects.

 In the second approach, we rely on the use of detailed sequence diagrams, allowing

for a finer and more precise analysis. Furthermore, we take it a step further by

transforming them into aspect-oriented diagrams for Petri nets, thereby providing a

more nuanced perspective on verification. To achieve this, we use ATOMPM, a

tool specifically adapted to our method. In summary, our approach offers a more

detailed and specific method for modeling and verifying aspect-oriented diagrams

into Petri nets, enhancing the accuracy and scope of verification.

Conclusion:
 In this chapter, we have proposed two approaches to transform a source model into a

target model based on graph transformations. The two approaches are:

• Transformation from object-oriented detailed sequence diagrams to aspect-oriented

detailed sequence diagrams.

• Transformation from aspect-oriented detailed sequence diagrams to Petri nets.

 We have proposed a meta-model for the input model and the output model for the first

approach, as well as two meta-models for the second approach. Then, we have formulated

a graph grammar to perform the transformation from an object-oriented detailed sequence

diagram to an aspect-oriented detailed sequence diagram. The result is then transformed

into Petri nets using the AToMPM modeling tool. The obtained Petri nets are then verified

using the TINA verification tool. Finally, we discuss our work in relation to other works

related to our research.

Chapter5

Case Studies

Chapter 5: Case Studies

54

Introduction:
 In this chapter, we implemented our transformation method on two case studies. The

first one aimed to convert detailed object-oriented sequence diagrams into detailed aspect-

oriented sequence diagrams. Subsequently, we applied a second approach to transform the

obtained diagrams (the detailed aspect-oriented sequence diagrams) into Petri nets for

verification. The first case study focuses on reservation in a travel agency, and the second

on managing a shopping center.

1 Case Study on Booking in a Tourist Agency:

1.1 Transformation from Object-Oriented to Aspect-Oriented:

 To demonstrate our approach, we applied it to booking in a tourist agency. We employed

the detailed sequence diagram to represent the base model. Then, we introduced the aspect

model representing the following three aspects: Security, VerifyInformation and

DeleteDestroy.

a) Security: This aspect allows verifying authentication security, positioned on the

client

b) VerifyInformation: This aspect verifies whether the information entered by the

client is correct or not, positioned on the actor zone za2 and the boundary zone zd2.

c) DeleteDestroy: This aspect facilitates deleting the reservation database once its

usage is completed. , positioned on the destroy

❖ Base and Aspect Models for the Detailed Sequence Diagram:

▪ Basic Model:

In Figure (5.1), we present the basic model for the detailed sequence diagram.

Figure 5.1: The Basic Model.

▪ The Aspect Model:

In Figure (5.2), we present the aspect model of the detailed sequence diagram.

Chapter 5: Case Studies

55

Figure 5.2: The Aspect Model.

❖ Composite Model for the Detailed Sequence Diagram:

In Figure 5.3, we present the composite model, This model results from the integration of

the basic model and the aspect model, which is a detailed aspect-oriented sequence

diagram where we add:

o The actor zone to the client.

o Recursive messages to the boundary zone zd2.

o And remove the destroy.

Figure 5.3: The Weaver.

Chapter 5: Case Studies

56

1.2 Transformation from Aspect-Oriented to Petri Nets:

 In the second approach, we used the detailed aspect-oriented sequence diagram obtained

from the first transformation of the reservation modification case. We then applied the

proposed graph grammar to this diagram to generate the corresponding Petri net.

Figure 5.4: The Petri Net of the reservation modification case.

1.3 Verification of the Petri Net:

 Finally, we perform a verification on the result of the second approach (on the Petri net)

of the reservation modification case.

In the following figure, we present the result of verification:

Figure 5.5: The result of the verification of the Petri Net for the reservation modification

case in TINA.

Chapter 5: Case Studies

57

 Based on the results:

▪ Bounded = Y: The network is bounded.

▪ Live = N: The network is not live.

▪ Reversible = N: The network is not reversible

▪ From the "dead" column, we deduce that there exists a dead state and 10

transitions are unreachable.

2 Case Study on the management of a shopping mall:

2.1 Transformation from Object-Oriented to Aspect-Oriented:

 To demonstrate our approach, we applied it to mall management (Adding a promotion).

We employed the detailed sequence diagram to represent the base model. Then, we

introduced the aspect model representing the following four aspects: decision evaluation,

update, product availability, and Validate Information.

a) decision evaluation: Allows making decisions based on the entered information,

positioned on the controller zone zc1.

b) update: This aspect updates the entries in the database table by adding a

promotion, positioned on the entity promotion.

c) product availability: Verifies the availability of products before adding a

promotion, positioned on the controller zone zc1.

d) Validate Information: Validates the information for adding a promotion,

positioned on the actor zone za1 and the boundary zone zd1

❖ Base and Aspect Models for the Detailed Sequence Diagram:

▪ Basic Model:

In Figure (5.6), we present the basic model for the detailed sequence diagram.

Figure 5.6: The Basic Model.

Chapter 5: Case Studies

58

▪ The Aspect Model:

In Figure (5.7), we present the aspect model of the detailed sequence diagram.

Figure 5.7: The Aspect Model.

❖ Composite Model for the Detailed Sequence Diagram:

In Figure (5.8), we present the composite model, which is an aspect-oriented detailed

sequence diagram where we add:

o Controller zone to zc1.

o Entity zone to the entity promotion.

o Controller with his zone to zc1.

o Asynchronous Message to the actor zone za1 and the boundary zone zd1.

Figure 5.8: The Weaver.

Chapter 5: Case Studies

59

2.2 Transformation from Aspect-Oriented to Petri Nets:

 We transformed the composite model, which is an aspect-oriented sequence diagram of

the promotion addition case, into a Petri net.

Figure 5.9: The Petri Net of the promotion addition case.

2.3 Verification of the Petri Net:

 Finally, we perform a verification on the result of the second approach (on the Petri net)

of the promotion addition case.

In the following figure, we present the result of verification:

Figure 5.10: The result of verification of Petri Net for the promotion addition case with

TINA.

Chapter 5: Case Studies

60

 Based on the results:

▪ Bounded = Y: The network is bounded.

▪ Live = N: The network is not live.

▪ Reversible = Y: The network is reversible

▪ From the "dead" column, we deduce that there exists a dead state and 13

transitions are unreachable.

Conclusion:
 In this chapter, we applied our transformation method to two case studies: the first

concerning reservations in a travel agency, and the second related to the management of a

shopping center. For each case study, we first converted the detailed object-oriented

sequence diagrams into detailed aspect-oriented sequence diagrams. Then, we used the

resulting diagrams to apply the proposed graph grammar and generate the corresponding

Petri nets. Finally, we performed a verification on the Petri nets for each case.

Conclusion

and

Perspectives

Conclusion and Perspectives

61

Conclusion:
 Object-oriented modeling has long been favored in the field of software engineering for

the design and development of software systems. Despite its clear advantages in

representing system structures and behaviors, this approach does have certain limitations.

One of its main shortcomings lies in its ability to effectively manage cross-cutting

concerns. In light of these challenges, aspect-oriented modeling emerges as a promising

solution. By introducing the notion of aspects, this approach allows for better separation of

concerns and more efficient management of cross-cutting aspects, leading to clearer and

more modular software design, reducing complexity, and improving system

maintainability.

 In this memory, we proposed an approach based on graph transformation to generate

aspect-oriented sequence diagrams from object-oriented sequence diagrams. This approach

relies on meta-modeling, with the definition of a meta-model for the sequence diagram.

Then, we presented a set of rules for the transformation, carried out using the AToMPM

modeling tool.

 After performing the transformation of object-oriented sequence diagrams into aspect-

oriented sequence diagrams, we applied our approach to several representative case

studies. Finally, we proposed an extension of our approach by suggesting the

transformation of the obtained aspect-oriented sequence diagram model into formal

models, such as Petri nets, to enable system verification and validation. This approach aims

to enhance the reliability and robustness of the developed software, thereby contributing to

ensuring its quality and compliance with specified requirements. Our proposed approach

involves defining a meta-model for Petri nets and proposing a graph grammar. We take as

input the result of the first transformation (the aspect-oriented sequence diagram). Then,

we apply this graph grammar to obtain the corresponding Petri net. Then, we make a

comparison between works related to our work and discuss this comparison. Finally, we

applied our approach to case studies.

 Verification is essential to ensure that the transformed Petri net respects the essential

properties, thereby ensuring the accuracy and reliability of the modeled system. To

conclude our work, we verified the generated Petri nets using the TINA tool.

Perspectives:
 As perspectives, we propose to:

Study in detail how to transform the interaction frames of the detailed sequence diagram,

whether alt, ref, loop, or opt, into Petri nets.

To develop a fully automated approach and generalize it to other types of UML diagrams,

we plan to continue transforming other aspect-oriented UML diagrams into Petri nets using

graph transformation and the AToMPM tool. Additionally, we intend to transform the

aspect-oriented UML models into BPMN (Business Process Model and Notation) models,

and subsequently convert these BPMN models into Petri nets.

Concurrently, we will work on integrating our approach into existing software

development tools to facilitate its use by practitioners in the field. LOTOS (Language Of

Temporal Ordering Specification) is a formal specification language widely used for the

verification and validation of Petri nets. We propose in our future works to use LOTOS to

verify our Petri nets. In addition, we can propose using the TGG (Triple Graph Grammar)

modeling tool for model transformations, as it is considered the best among the others.

Bibliographic References

62

Bibliographic References:

[AMROUNE,2014] AMROUNE, Mohammed. (2014). VERS UNE APPROCHE

ORIENTÉE ASPECT D’INGÉNIERIE DES BESOINS DANS LES ORGANISATIONS

MULTI ENTREPRISES. Thèse de Doctorat. UNIVERSITÉ DE TOULOUSE. Pp : 50

[Aouag,2023] Course support Aouag Mouna 2023 Disponible sur :

https://elearning.centre-univ-

mila.dz/a2024/pluginfile.php/69978/mod_resource/content/0/Chapitre%2002_%20Les%20

R%C3%A9seaux%20de%20P%C3%A9tri%20_RDP.pdf (Consulté le 01/06/2024)

[Aouag,2014] Aouag, Mouna. (2014). Des diagrammes UML 2.0 vers les diagrammes

orientés aspect à l’aide de transformation de graphes. Thèse de doctorat, Université de

Mentouri, Constantine. Pp :11-33

[Audibert,2008] https://www.fichier-pdf.fr/2011/05/08/cours-uml/preview/page/14/

[AToMPM Documentation] AToMPM Documentation — AToMPM 0.10.0

documentation (Consulté le 05/05/2024)

[BAHRI,2011] BAHRI, Mohamed Redha. (2011). Une approche intégrée Mobile-

UML/Réseaux de Petri pour l'Analyse des systèmes distribués à base d'agents mobiles.

Thèse de doctorat, Université Mentouri Constantine. Pp: 32-68

[Boualita et Laggoune,2021] Boualita, Salim. Et Laggoune, Fouad. La génération d'un

outil de transformation des modèles orientés aspect vers des modèles formels. Une

approche basée sur la transformation de graphes. Mémoire de master. Centre universitaire

Mila. Pp :6

[Boubendir,2011] Boubendir, Amel. (2011). Un cadre générique pour la détection et la

résolution des intéraction entre les aspects. Thèse de doctorat, Université de Mentouri,

Constantine. Pp: 19-36

[BENDIAF,2018] BENDIAF, Messaoud. (2018). SPÉCIFICATION ET VÉRIFICATION

DES SYSTÈMES EMBARQUÉS TEMPS RÉEL EN UTILISANT LA LOGIQUE DE

RÉÉCRITURE. Thèse de Doctorat. UNIVERSITE MOHAMED KHIDER BISKRA. Pp:

78-79

[CHERIEF et MELIANI,2020] CHERIEF,Saliha. Et MELIANI,Toufik. (2020). Une

Approche De transformation et D'analyse Des Diagrammes D'activités. Mémoire de

Master. Université Djilali Bounaama-Khemis Miliana. Pp: 62-74

[David et Alia,2005] Rene David et Hassane Alia.”Discrete, Continuous, and Hybrid Petri

Nets”. New York: Springer Berlin Heidelberg. 2005. 524p.

[Dehimi,2014] Dehimi,Nardjess,Tissilia.(2014). Un Cadre Formel pour La Modélisation et

L’analyse Des Agents Mobiles. Thèse de Doctorat. Université de Mentouri Constantine. Pp

: 66-67

[Dib et Saadaoui,2023] Dib, Wiam.et Saadaoui, Amani. Spécification formelle des

modèles orientés aspect, une approche basée sur la transformation de graphes et le langage

Maude. Mémoire de master. Center universitaire Mila. Pp :4-9

[ElMansouri,2009] ElMansouri, R. (2009). Modélisation et Vérication des processus

métiers dans les entreprises virtuelles : Une approche basée sur la transformation de

graphes. [En ligne]. Available: https://bu.umc.edu.dz/theses/informatique/ELM5432.pdf.

[Accès le 1 juin 2024].

[Guerrouf,2011] GUERROUF FAYÇAL. (2011). Une approche de transformation des

Diagrammes d’Activités d’UML Mobile 2.0 vers les Réseaux de Petri. Memoire de

magistere. Université El Hadj Lakhdar BATNA. Pp :28-32

https://elearning.centre-univ-mila.dz/a2024/pluginfile.php/69978/mod_resource/content/0/Chapitre%2002_%20Les%20R%C3%A9seaux%20de%20P%C3%A9tri%20_RDP.pdf
https://elearning.centre-univ-mila.dz/a2024/pluginfile.php/69978/mod_resource/content/0/Chapitre%2002_%20Les%20R%C3%A9seaux%20de%20P%C3%A9tri%20_RDP.pdf
https://elearning.centre-univ-mila.dz/a2024/pluginfile.php/69978/mod_resource/content/0/Chapitre%2002_%20Les%20R%C3%A9seaux%20de%20P%C3%A9tri%20_RDP.pdf
https://atompm.readthedocs.io/en/latest/
https://atompm.readthedocs.io/en/latest/

Bibliographic References

63

[HACHICHI,2013] HACHICHI, Hiba. (2013). Test formel des systèmes temps réel:

Approche de transformation de graphes. Thèse de Doctorat. Université Mentouri de

Constantine. Pp : 25

[HADDOUCHE, DAHAMNA,2022] HADDOUCHE, MEBARKA. Et DAHAMNA,

NOURA ELALDJA. (2022). La transformation automatique des diagrammes d’états-

transitions vers les réseaux de Petri. Mémoire de Master. Université Mohamed El Bachir

ElIbrahimi de Bordj Bou Arreridj. Pp15

[Hamri,2017] HAMRI, Hakima. (2017). Contribution à la commande des systèmes à

événements discrets soumis à des contraintes temporelles. Thèse de doctorat.

UNIVERSITÉ MOULOUD MAMMERI DE TIZI-OUZOU. Pp :10

[HAMROUCHE,2010] HAMROUCHE, Houda. (2010). Une Approche de transformation

des diagrammes D’activité d’UML vers CSP basée sur la transformation de graphes.

Memoire de magistere. UNIVERSITE 20 AOUT 1955 SKIKDA. Pp : 42-43

[HAOUES,2006] HAOUES, MOHAMMED. (2006). L’UTILISATION CONJOINTE

DES RÉSEAUX DE PETRI STOCHASTIQUES ET DES PROCESSUS DE MARKOV

POUR LA MODÉLISATION, L’ANALYSE ET L’ÉVALUATION DES

PERFORMANCES D’UN SYSTÈME DE PRODUCTION : LIGNE D’EMBOUTISSAGE

DE L’ENTREPRISE B.A.G BATNA. Mémoire de Magister. UNIVERSITÉ EL-HADJ

LAKHDAR BATNA. Pp: 27

[Hettab,2009] HETTAB ABDELKAMEL. (2009). De M-UML vers les réseaux de pétri «

Nested Nets »: une approche basée sur la transformation de graphes. Thèse de doctorat.

Université de mentouri Constantine. Pp:58-74

[Kerkouche,2011] Kerkouche, Elhillali. (2011). Modélisation Multi-Paradigme : Une

Approche Basée sur la Transformation de Graphes. Thèse de doctorat. Université de

Mentouri, Constantine. Pp: 9-52

[Khalfaoui,2014] khalfaoui, Khaled. (2014). Une Approche de Spécification des

Changements des Besoins Basée Transformation de Graphes. Thèse de doctorat,

UNIVERSITE MOHAMED KHIDER BISKRA. Pp : 21-25

[Laouar,2013] Laouar, Adnane. (2013). Une approche de transformation de diagrammes

d’activités oriente aspects vers les réseaux de pétri colores basée sur la transformation de

graphes. Mémoire de master. Université de constantine2. Pp :16-33

[Ludovic,2009] Ludovic, Auxepaules. (2009). Analyse des diagrammes de l’apprenant

dans un EIAH pour la modélisation orientée objet - Le système ACDC. Thèse de doctorat.

Université du Maine USA. Pp :19-28

[MEDJANI,2020] MEDJANI, Djedjiga. (2020). Analyse des Performances d’un Système

de Gestion de Stocks à Produits Périssables par les RdPSG. Mémoire de Master. Université

Abderahmane Mira de Béjaia. Pp : 31-32

[Otmane Rachedi,2015] Otmane rachedi, Soumeya. (2015). Apports des Approches de

Séparation Avancée des Préoccupations: Une Etude Comparative Fondée sur les Modèles

de Conception. Thèse de doctorat. Université de Badji Mokhtar Annaba. Pp :17-18

[Pascal Roque, 2008] Pascal roques, Uml 2 par la pratique, Paris : Eyrolles, 2008, 246p.

[SAGGADI,2007] SAGGADI, Samira. (2007). Optimisation des temps d’attente des

systèmes flexibles de production basée sur les réseaux de Petri. Mémoire de Magister.

Université M’hamed Bougara Boumerdès. Pp :25

[Syriani et al,2013] Eugene, Syriani. Hans, Vangheluwe. Raphael, Mannadiar. Conner,

Hansen. Simon Van, Mierlo. And Huseyin, Ergin. AToMPM: A Web-based Modeling

Environment [en ligne]. 2013.vol 1080. Disponible sur : https://ceur-ws.org/Vol-

1115/demo4.pdf (Consulté le 05/05/2024)

[TINA Documentation] The TINA toolbox Home Page - TIme petri Net Analyzer - by

LAAS/CNRS (Consulté le 01/06/2024)

https://ceur-ws.org/Vol-1115/demo4.pdf
https://ceur-ws.org/Vol-1115/demo4.pdf
https://projects.laas.fr/tina/index.php
https://projects.laas.fr/tina/index.php

Bibliographic References

64

 [Zerara et Megrous,2020] Zerara, Ahmed. Et Megrous, Fares. (2020). La génération

d’un outil de transformation des diagrammes UML2.0 vers les diagrammes orientés aspect

basé sur la transformation de graphes. Mémoire de master. Centre universitaire Mila.

Pp :23-28

