) Akl JRagal) Ay 0 3ad) 4 gganl)
République Algérienne Démocratique et Populaire
alad) Ciand) g lad) alail) 3) 59

Ministere de I’Enseignement Supérieur et de la Recherche Scientifique

Centre Universitaire
Abd elhafid boussouf Mila

Institut de Mathématiques et d'Informatique Département d'Informatique

Mémoire préparé En vue de I’obtention du diplome de Master
En : Informatique

Spécialité : Sciences et Technologies de I’Information et de la Communication
(STIC)

Formal Verification and validation of object-
aspect oriented models, an approach based on
graph transformation

\

Préparé par : Kennouche Wiam
Merabet Nouhad

Soutenue devant le jury:

Boufaghes Hamida MAA C. U. Abdelhafid Boussouf, Mila Président
Aouag Mouna MCB C. U. Abdelhafid Boussouf, Mila Rapporteur
Meghzili Said MCB C. U. Abdelhafid Boussouf, Mila Examinateur

Année universitaire :2023/2024

ACKNOWLEDGEMENTS

First and foremost, we thank Allah for the energy He has given us over
these five years, as well as for the patience that allowed us to complete
this work.

We would also like to particularly thank our supervisor, Mrs. Aouag
Mouna, for her advice, encouragement, and trust, which enabled us to
accomplish this work.

We also wish to express our deep gratitude to all the members of our jury
for agreeing to examine this work.

We do not forget to thank all the teachers who contributed to our
training over these five years.

Finally, we extend our most sincere thanks to all our families for their
unwavering encouragement.

Wiam & Nouhad

Dedication

aliall g eanl) e Ulite) 5) S g Lis b daal) ¢ jleall ol plal 5 Jalll Ul Sy (e 4l 58
(Ol Gy i Aaall o aal 523 JaT)
ol maYls saale W) LY sl G e e) o el S 4 Tadl o caandl G301
(4 dan 5 Al) D8 paall 5 aladl LaDlo #US Laall G ale (e
Y o) Al Sl 18 claal o W) daclall CuilS (e () Ll sl i Ll se o calla 3l)
(oall o) aY alisl 5 Y gall U 5 Juzailld LIS 30 el 5 s e cloal (0S5 ol
(elals dlacac Mai): agad J8 (e)
(A al) sball 8 il o pead)) ey aind 52 Jlall 5 Jaay Y 2 sl)
(sl 8T) 31508 cuial (g M e e liall g nll Banay (il Q)) el 450 53)
e sl e) Aall o (Al e e () ca sl Ua Ul aliasy (o2l) (adidll elld)
epsd A Clia s e) J g sl kil
(R (ol At 5 (sl ml S Fae s g me Ahd 5 (Fnise)
(b 5)lisaall jiaadl dgiueal Casi€ G e dldal))
(L) Apmall Ml 4S5 5d ¢) el 2 A8)
o pein 8 S e) epatl s il slea g) eilile o 3]
((Bane 54) g b) Q) gliaa
(YA lee ¢ Al g alec))
(e Al S8 5 (Jlel A0 Jiee) liaa g slincly) dals
(e (31 se B3N Liih e Jard) 138 AlasY Uiieadi o L) ja8 6 i g (g]
O (i) (e) 1 pad I Craal a5l Ul L el Camala g Caala g i Lal il g) sl
o ¥ (ina dlang s deal Lo ialey 0l Jale Loy (Sindy
VI haga Ldass W g Lyo U jiad Le (o2 4 daall coliza o) L 55 Y 5 Linai La (5201) 2eall
Sl Jaadll sty 4]l 5 aliady

ol

Dedication

Vgl 2B Vg o0 oAl Le) deal) cclladl Liady g clleal) JaST g culyladl usy (52 4 2aal)

e S e g g elliady Lail (salgial 5 (gaems Gl pelll abiady V) a3
Al LT il g il giall s 1) sl 34 (s

5 Ul a5 O Lol s Lgblaal e S 55
@ A paall g aladl LeaBlu s~ Liall o)) pale s3l) () el daaly pand 02 g3 ()
Sl
uu\) et plan s ealais S8 ju cclallaall JUW 8) q.}ls S daadll)
‘ il
A A (S O 8 ol sl sans 5 () () o A Adaald e Lallal (gl () (g2a 7 55 ()
(413\ AAAJ)

el .. Adlal i Al (5) e 484) -

e (3 s Ll Aalal 5) JS0 Lgaa) 5 <al 5 ¢ uaill can Ll Gy (e
JuesS] 5 Bl e Jgrad e Al (Gl 1 @il ghad 56 LS dll =)l a8)
L) Cpanly, B ypsal)

V) Aall cudai Wy b W) 3 AY i Wy K g el S0 W) laalll culai Y)
ey

g

Abstract

Modeling plays a fundamental role in the software development process. When Object-
Oriented Modeling (OOM) presents certain limitations, these restrictions pose problems,
especially with the rapid advancement of computing. Aspect-oriented modeling (AOM)
offers solutions to these problems, although it lacks semantics. This is why formal
modeling, which possesses this semantics, is important.

In this memory, we propose an approach to transform a detailed object-oriented
sequence diagram into a detailed aspect-oriented sequence diagram, based on graph
grammar. Then, we propose a method to transform the aspect-oriented sequence diagram
into a Petri net. Our work begins with a single Meta modeling for the first approach, using
graph grammar to achieve an aspect-oriented model. Then, we apply the second approach
to the result of the first one, using two Meta modeling and the transformation, which
results in a Petri net, we use the AToMPM modeling tool. Finally, we perform a property
analysis with the TINA tool.

Keywords: object-oriented modeling, aspect-oriented modeling, detailed sequence
diagram, graph grammar, Petri nets, MDA, AToMPM, TINA.

Résumé

La modélisation joue un role fondamental dans le processus de développement logiciel.
Lorsque la Modélisation Orientée Objet (MOO) présente certaines limites, ces restrictions
posent des problémes, surtout avec I'avancement rapide de l'informatique. La Modélisation
Orientée Aspect (MOA) propose des solutions a ces problemes, bien qu'elle manque de
sémantique. C'est pourquoi la modélisation formelle, qui posséde cette sémantique, est
importante.

Dans ce mémoire, nous proposons une approche pour transformer un diagramme de
séquence détaillé orienté objet vers un diagramme de séquence détaillé orienté aspect, en
se basant sur une grammaire de graphes. Ensuite, nous proposons une méthode pour
transformer le diagramme orienté aspect vers un réseau de Petri. Notre travail commence
par une seule méta-modélisation pour la premiére approche, qui utilise une grammaire de
graphes pour aboutir a un modele orienté aspect. Ensuite, nous appliquons la deuxiéme
approche sur le résultat de la premiére, en utilisant deux méta-modélisations et des régles
de transformation, ce qui aboutit a un réseau de Petri, nous utilisons I'outil de modélisation
AToMPM. Finalement, nous faisons une analyse de propriété avec l'outil TINA.

Mots clés: modélisation orientée objet, modélisation orientée aspect, diagramme séquence
détaillé, grammaire de graph, réseaux de pétri, MDA, AToOMPM, TINA.

uadla

U2z (OOM) sLi¥) 5o aa sal) apanadll ady Ladie il) o skt Aglee 8 Tl 1 50 apanadll Canly
ansall elaall maanad g Uaind 85 Al Jlae 8 gyl a2l g dals (JSUe i Gailiil] oda 5 ¢ il
W dpans) ppanail) (6 o) 3gd | Jlaall) iy 43 (g a2l e (JSLE 03] Y sla o35 G (AOM)
Ayl s degall VYA 028 el
Glly g dn sall jelaall Juain Jalaia) oLuiBU 4 50 Joate Julosi Jaladie (ol Tag - 5 3 S0 028 8
Lilee Tay (5 i 405 (V) s sl Jgdaall Jalads Jysail 46, pla = s lld amy | Al s 201 8 e alaie Wy
zisal A Jsmasll Al an il 2ol 8 aladiud e adiad (Y] melll (Meta-model)sas)s dia s daden
() an 2ol g a5 Ciadal aladiuly @l g J Y dags Lo S gl Gada celld aay Aa sall jedadll
Py atlasll dilas ol ol o 88 el (3 (ATOMPM) Aot 8l padiass (g jin 4S5) (535 Law
TINA 3l

(ol il 3ol g8 cJemie Lulis Taladie cda pall elaal msaai ol sa da pall aranalll s) LS|
TINAATOMPM (MDA ¢ sin ci\Su

cContents

GENERAL INTRODUCTION ...occ ittt sttt s eavte e aban e 1
L INTRODUCTION: . uttitieiitteeeeiittereesiteteessabbeesssasbseeessabbeeeesasbaeeesssbaseeesasbeeeesasbaneessarssesenns 1
A = (0 =T I = Y 1oy [T 1
S C ONTRIBUTIONS: ..ittttieeiittteeeeetreeeeeibereessetbreeeaabbeeeesaabaseessbbseeesasbbeeeessabaaeessbbaeeesansrenas 2
4. MEMORY ORGANIZATION: . .iiiiiiiiiiiiii ittt ettt et ee e e e e ereaeeeees 3

ASPECT-ORIENTED MODELINGcoiiitiii ittt 1
N {01010 o i [0] IS 4
R I 1=\, (o] o) = ISR UPPRR 4
P22 1Y/ (0o =T 1 N T 4

2 €T T= 1 3] 1Y oo (=] 1T o SR 5
2.2 TYPES OF LANQUAGES:eeieeiieeeie sttt bbbt 5
3 OBJIECT-ORIENTED MODELING: 1.iiiiitiiieiiittiieesettee e e seivaee e s stvae e s s ebbes s s s sabaneessenbaeeessnsrenas 5
4 LIMITATIONS OF THE OBJECT-ORIENTED APPROACH:tttiiiiie ettt eee e eevvvreee s 6
5 DEFINITION OF ASPECT-ORIENTED MODELING:cooivviieiiitiieeescitie e irvee e seivae e enveeas 6
5.1 The Purpose of Aspect-Oriented Modeling:cocviiiiiiiiiini e, 6
I =T T [0 004 Tor=T o] £SO 6
6 ASPECT-ORIENTED APPROACHES:coittetttteiiiee e e e seetbtrieesse e s s s sssbsbeees e s s s s sssassbsserssassssins 8
6.1 Aspect oriented Requirements ENGIiNEEring:ccccovevvevieiieve e seece e 8
6.2 Aspect oriented ArChItECTUIE:ooi i 8
6.3 ASPECE OFIENTEA DESIGN:iiieieieiectie ettt e sreesre e ans 8
6.4 Aspect oriented Programming:cooceeeeeeereneniesiesiesie e 9
6.5 Verification of Aspect oriented Programs:...........cccocvevveieiieeieeiiesee e 9
6.6 Aspect oriented MIdAIBWANE:oiiiiiiiie e 9
7 INCONVENIENTS OF ASPECT-ORIENTED MODELING: .1vvviiieiiiiiiitiieieee e ssiiirriene e e e 9
L@ 0] (o1 I UL [0 10

o I B AL OSSR 1
LN 200] 516 Lo i 1] 11
I = = I V= SO 11
2 BASIC CONCEPTS OF PETRINE TS 1ttiiiiiiiiiiiittttiiii e e e s s e sirbrree e e e s e s s s e ssbbbssee s s e s e s s seabsbaeesesas 11

2.1 FOrmal DefiNITION:viii it be e e eabae e e 11
2.2Graphical DefiNITION:ooiiiiee s 11
2.3 Marking of @ Petri NeL:coi i 12
2.4 Matrix Representation of & Petri Net: ... 13
3 THE EVOLUTION OF STATES IN A PETRINET: 1oviiiiiiiiiciie it 14
e N I N 0] o = = | =53 15
AL LIVEIINESS: ..ttt e s e e e e e e e s abarr e e 15
N = 1o 1010 (<10 [T 15
4.3 ReaChability:........coviiii 15
4.4 BIOCKING: .ttt bbbttt bbbt 15
5 CATEGORIES OF PETRINETS: 1ttt sabb b te s e e ababaaen s 16
O I =i 2 I T A T 19
6.1 Ordinary Petri NEL:cvi it 19
6.2 GENEraliZed Petri NEL: .. .eeie ittt e e s e r e e ee e e e 19
6.3 TIMEU PIIT NEL: ..ot s e e e e s sbae e e e 19
I OTo] o] g=To I =11 T NN [=1 SRR 19

——
| —

6.5 CONtINUOUS Petri NOL: ... 20

1070] (o1 I U] [0] N Lo O TSP P PP PR PTROPPI 20
GRAPH TRANSFORMATI-ON AND VERIFICATION.....cccoiiiieiiie e, 20
INTRODUCTION: ..ttt e bttt bttt ekttt sb ettt e ke e bt et e e bt et e et e sb e e nbe et e enneneeas 21
1 MODEL DRIVEN ARCHITECTURE (MDA): ...ttt 21
1.1 Basic Concepts Of MDA ...t ne e 21
1.2 The MDA APPIOACI: ...t 21
1.3 Model Driven ArChiteCIUIE:......ccviiiiieie e 22
1.4 Types Of MDA APPIOACNES:oiiiiiiiieieiere sttt 23
1.5 The toOIS OF MDA ...t reeae e 25
2 MODEL TRANSFORMATIONS: ...utiiititeiieeesiteeesiteeessseesssseesssseessssesssssesasssssssssssssssssansnees 25
3 GRAPH TRANSFORMATIONS: ...ceutiiiteitiettaseesteesteassesieesteasesieesbesssesseesbeesesseesseessesnnessens 26
3.1 Graph CONCEPLS:viiiieiiieiieiet ettt bbbt 26
3.2 SUbClass 0f @ Graph:ccvciiie e 27
3.3 Graph Transformation TOOIS:ccoiiiiiiiiie e 27
A ATOMPIM: L.ttt b et 27
O ANALYSIS OF PETRINETS: 1iiiiittiieeiiiiieeeititeeesssteeesssstseeessssseessssssesssssssssssssnssssessnssens 28
5.1 ANAlYSIS TECANIQUES:veieieiecie et 28
5.2 Analysis t00IS TOr PN ..o s 28
B T I A e bbbt b e bt bbb b be e b e 29
(7] N[0 I U 5] [0 N SR UPSSUPRTI 29
PROPOSED APPROACHES ...t 29
L\ (@] 01103 i [0 SRR 30
1 TRANSFORMATION OF DETAILED OBJECT-ORIENTED SEQUENCE DIAGRAMS INTO
DETAILED ASPECT-ORIENTED SEQUENCE DIAGRAMS:coiieieirieiteesieseesseeneesneesseeneennes 30
1.1 Meta-modeliNg: ..cveoeeeee e 30
1.2 The proposed graph grammalr:cccooerererienine e 35
1.3 EXPlanatory eXampPIe:........cooiieiieiiiie et 42
2 TRANSFORMATION OF ASPECT-ORIENTED DETAILED SEQUENCE DIAGRAMS INTO
R P S bbbt b e e bt et nenees 43
2.1 Model Transformation PrOCESS:ccvivueiierieeieseeie e e e e sie e sree e eeesneenneens 43
2.2 Meta-MOUEIING: ...t 45
2.3 The proposed graph grammalr:coeeeeieenenesese e 46
3 REPRESENTATION OF THE TINA TOOL ..ttt 49
A EXPLANATORY EXAMPLE: .. .ciiiiiiiiiie ittt siee sttt e ssbe e ssa e e ssae e s snessseeesnneeeas 50
O RESULTS AND DISCUSSIONcutiiiiitiieiitieesitee ettt sttt et esssr e e sbneesnn e e s e e snneeeas 51
(O70] N[0 I U] [N PSP UPRPPRTIS 53
CASE STUDIES ..ottt ettt e e teebe e st e sra e teeneesreenneans 53
TN 0] 01U o i (0] P SUPRUPRRTRN 54
1 CASE STUDY ON BOOKING IN A TOURIST AGENCY: ...voiiiiiiieiiieeiee et siee st 54
1.1 Transformation from Object-Oriented to Aspect-Oriented:............cccccovvevvernenne. 54
1.2 Transformation from Aspect-Oriented to Petri NetS:........cccooeviviiinininiccien, 56
1.3 Verification of the Petri NEt:coiiiiiiiie e 56
2 CASE STUDY ON THE MANAGEMENT OF A SHOPPING MALL: ..cccveiiiiiiiieniiesiee e 57
2.1 Transformation from Object-Oriented to Aspect-Oriented:...........ccccevvveiieennne, 57
2.2 Transformation from Aspect-Oriented to Petri NetS:.......ccccovvveienininiiicie 59
2.3 Verification of the Petri Net: ... 59

——
| —

(070)] N[I U L] 0] N TR 60

CONCLUSION AND PERSPECTIVES ... 60
(070) N[I U L] 0] N HTTTT TR 61
P E R S P E T IV E S, .ttt 61
BIBLIOGRAPHIC REFERENCES : ... oottt 62

——
| —

List of Figures

1 Principle of Transformation of a Detailed Object-Oriented Sequence Diagram into a

Detailed Aspect-Oriented Sequence Diagram..............c.ooeiiiiiiiiiiiiiiiiiiiiaiieanan.. 2
2 Principle of Transformation from a Detailed Aspect-Oriented Sequence Diagram to a
Pl N L. ..o 2
1.1 Representation of Modeling............oooiiiii i, 4
1.2 Classification of Languages or Methods.cooiiiii i, 5
1.3 The Aspect-Oriented Modeling ProCeSS.cuiriniirii i 8
2.1 (a) Graphical representation of a place with one token, (b) transition..................... 12
2.2 Example Of @ Petri Net........oi e 12
2.3 Example of a Petri Net. 13
2.4-a Example of a Marked Petri Net. ..ot 14
2.4-D INCIAENCE MALTIX. ...\ttt e e 14
2.5 The Evolution of States ina Petri Net......... ..o, 14
2.6 Example of Petri Net BIOCKING. ... 16
2.7 SHALE GraPN. ...t 16
2. 8 EVENL GrapN. ..., 16
2.9 CONTHCE-TIEE PIN. ... 17
2.10 Free ChoiCe PN ... e e, 17
2. 00 SIMPIE PN 17
2.0 PUIE PN e e 17
2.13 Limited Capacity Petri Net. e 18
2. LA PIIONIEY PN .o e 18
2.15 Inhibitory Arcs in Petri Nets. ... 19
2.16 Petri Net (left) and Colored Petri Net (right).cccoovriiiiiiiia, 20
3.1 The model transformation process in the MDA approach...............cccoeeviiiininnn.. 22
3.2 The four abstraction levels for MDA 23
3.3 The model transformation approaches.ccoeeevriiiiiiiiiii e 24
3.4 Types of transformations and their main USes.ccoovviiiiiiiiiiiiieeeen 26
3.5 (a) Undirected graph G, (b) Directed graph, (c) Subgraph of G.ooeei. 26
3.6 Presentation of the ATOMPM t00L. ..o, 27
3.7 Presentation of the TINA t0O0].......oouiiiiiii e 29
4.1 Meta-model of the detailed sequence diagram................ccoooviiiiiiiiiiiiin e, 31
4.2 The tool generated for the detailed aspect-oriented sequence diagram..................... 35
4.3 The motif of transformation of apProach.....cceeeieiiieiiiiiiiiiiiieiieiienrenecencennen. 35
4.4 Application of category 1 with Aspect.PJ == Actor and Aspect.Ad== linevieAct......36
4.5 The LHS of the first create rule(Python code)............coooiiiiiiiiiii e, 36
4.6 The RHS of the first create rule (Pythoncode)............ccooiiiiiiiiii 37
4.7 Application of category 1 with Aspect.PJ== Control Zone et Aspect. AD==

CrRALEDIg. .o, 37
4.8 Application of category 2 with Aspect.PJ== Control Zone, Entity Zone and

ASPect. AD==ASYNChIONE2E. e 38

——
<
| —

4.9 The LHS of the first link rule (Python code)...........c.ooiiiiiiiii e 38

4.10 The RHS of the first Link rule (Pythoncode)..............oooiiiiiiii, 39
4.11 Application of category 2 with Aspect.PJ== Synchrone message et Aspect. AD==

O 11 PPN 39
4.12 Application of category 3 with Aspect.PJ== Zone Actor et Aspect.type==

0[] PPN 40
4.13 The LHS of the first delete rule (Pythoncode)............ccoooiiiiiiiiii 40
4.14 The RHS of the first delete rule (Python code).............ccooiiiiiiiiiiiii. 41
4.15 Application of category 3 with Aspect.PJ== Destroy et Aspect.type==

(0121 PR 41
4.16 Basic Authentication Model. ... 42
4.17 Authentication Aspect Model.o 42
4.18 The weaver MOCEL. ... e 43
4.19 Meta-model of Petri NetS. ..o e 45
4.20 The generated tool for Petri Nets. ..o e, 46
4.21 The transformation pattern of the approach. ..., 47
4.22 Application of Category 1 onthe aCtor.cooviiiiiiiiiiiiee e 47
4.23 Application of Category 1 on the actor Activity Zone.cccoeeviiiiiiiiiininn.n. 48
4.24 Application of Category 2 on the lifeline boundary. ..., 48
4.25 Application of Category 2 on the synchronous message.cccceevvevinenn.n.. 48
4.26 Application of Category 3 0n "destroy".........cooiiriiii e 49
4.27 Application of Category 3 on "Entity" 49
4.28 Representation of the TINA tool (Input)ooeviiiiiiiiiiiiiieeene 50
4.29 Representation of the TINA tool (Output)coeeieiiiiiiiiiiiiiiieean, 50
4.30 Authentication Petri NEtL.o.oiii e 51
4.31 Analysis of the Authentication Petri Net ..., 51
5.1 The BasiC MOUEL. ... e 54
5.2The ASPeCt MOdel. ... e 55
B 3 ThE WAV, .ottt e 55
5.4 The Petri Net of the reservation modification Case...............cveieiiiiiiinennanen.n. 56
5.5 The result of the verification of the Petri Net for the reservation modification case in
TN A e e 56
5.6 The BasiC MOUEL. ... e 57
5.7 The ASpeCt MOdel. . ..o 58
5.8 TNE VWAVo 58
5.9 The Petri Net of the promotion addition case...............ccoviiiiiiiiiiiiiie 59

5.10 The result of verification of Petri Net for the promotion addition case with TINA

——
<
| —

List of Tables

4.1 Expresses the semantics of this approach.............ccceeviieiiiii i 45
4.2 Comparison of Approaches for Transforming into Aspect-Oriented Diagrams............ 52
4.3 Comparison of Petri Net Transformation and Verification Approaches................c....... 53

Vi

——
| —

General
Introduction

General Introduction

1.Introduction:

The modeling of computer systems is a crucial step in their design and verification.
Although it can be challenging, precise and rigorous modeling is essential to ensure that
systems meet the needs and requirements of their application domain.

Among the many modeling languages available, UML (Unified Modeling Language)

stands out as one of the most widely used and recognized. UML is a standardized modeling
language widely employed in the field of software engineering and computer systems.
In our work, we used modeling with UML 2.0 diagrams. UML 2.0 comprises thirteen types
of diagrams, each dedicated to representing specific concepts of a software system. These
types of diagrams are divided into two main groups: six structural diagrams and seven
behavioral diagrams. The sequence diagram is a type of interaction diagram in UML 2.0
that illustrates the chronological sequence of messages exchanged between different
objects interacting within a system. Three types of analysis classes are used: dialogues,
controls, and entities [Pascal Roque, 2008].

Despite the many advantages of Object-Oriented languages, the management of cross-
cutting concerns remains a challenge, and the aspect-oriented paradigm emerges as a
complementary solution. The aspect-oriented paradigm was initially proposed in 1997 by
Kiczales and his team. It has since become a popular approach for modeling and managing
cross-cutting concerns in software.

We will transform from object-oriented to aspect-oriented UML models to achieve
significant advantages in handling cross-cutting concerns. This transformation will reduce
code duplication, enhance maintainability, and improve scalability.

Formal methods enable the verification of systems using mathematical notations and
formal techniques. One of the most interesting formal methods is Petri nets. Petri nets are
graphical and mathematical modeling tools used to represent and analyze discrete systems.
The transition from aspect-oriented modeling to formal methods aims to overcome the
limitations of semi-formal approaches, such as ambiguity and verification difficulty.
Formal methods offer a rigorous framework for the specification and verification of
systems.

To transform aspect-oriented sequence diagrams into Petri nets, it is essential to follow a
methodology to ensure the accuracy of the resulting model. Once the transformation is
completed, the resulting Petri net must be verified using a specialized tool such as TINA
(Time Petri Net Analyzer). TINA is a software tool for the modeling and analysis of Petri
nets, allowing for the formal verification of essential properties such as liveness,
boundedness, and safety.

2.Problematic:

Despite the use of all the power of object-oriented languages, certain limitations persist,
notably the difficulty in effectively managing cross-cutting concerns and excessive code
duplication. To address these drawbacks, the aspect-oriented modeling approach offers a
promising solution. Aspect-oriented modeling allows the separation of functional and non-
functional concerns in models, using an integration mechanism to achieve a unified model.
Although UML is a powerful tool for modeling, its lack of formal semantics limits its
ability to provide rigorous guarantees about the models. Formal methods, such as Petri
nets, are often used as a solution to this problem. They offer a formal and mathematical

General Introduction

representation for specifying, analyzing, and verifying systems, ensuring more precise and
reliable models. These resulting models will be verified using the TINA verification tool.
3.Contributions:

+ In this memory, we propose two contributions:
The first is a transformation of object-oriented sequence diagrams into aspect-
oriented sequence diagrams based on the graph transformation paradigm. Our
approach involves proposing a meta-model, a graph grammar, and rules for the
transformation from object-oriented to aspect-oriented. We use the AToMPM
meta-modeling tool. The transformation is performed automatically by applying the
graph grammar to the input models, which is the basic model (MB), plus the aspect
model (MA), which automatically generates the output model.

Figure (1) illustrates the principle of transforming an object-oriented sequence diagram
into an aspect-oriented sequence diagram.
Object-oriented UML models Transformation Aspect-oriented UML models

ATEMPM

The detailed Object- The result of the transformation
Oriented sequence diagrams My W
‘eaver

The detailed Aspect-
Oriented sequence diagrams

The proposed graph
Aspect models grammar

Figure 1: Principle of Transformation of a Detailed Object-Oriented Sequence Diagram
into a Detailed Aspect-Oriented Sequence Diagram.

+ The second contribution consists of the transformation of aspect-oriented sequence
diagrams into Petri nets based on graph transformation. Our approach involves
proposing two meta-models: one for aspect-oriented sequence diagrams and the
other for Petri nets, along with a graph grammar and rules for the transformation
from aspect-oriented to Petri nets. We use the AToOMPM meta-modeling tool and
have used the TINA tool for the verification of properties.

Figure (2) illustrates the principle of transforming an aspect-oriented sequence diagram
into a Petri net.

The result of the first transformation '
The detailed Aspect- The Petri Net
Oriented sequence diagrams
The proposed graph
grammar

Figure 2: Principle of Transformation from a Detailed Aspect-Oriented Sequence Diagram
to a Petri Net.

General Introduction

4.Memory organization:

We start with a general introduction addressing the importance of modeling computer
systems for their design and verification. We emphasize the necessity of precise and
rigorous modeling to ensure that systems meet the specific needs of their application.

Chapter 01: Aspect-Oriented Modeling

The first chapter is dedicated to aspect-oriented modeling. We will begin by defining the
basic concepts of modeling, starting with the notions of model and modeling, as well as
their importance in software development. Next, we will examine the different types of
modeling, focusing on object-oriented modeling and its limitations. We will then discuss
aspect-oriented modeling, describing its objectives, fundamental concepts, and associated
techniques and technologies. Finally, we will discuss the main Inconvenients of this
approach.

Chapter 02: Petri Nets

This chapter is dedicated to Petri nets. First, we will define Petri nets and present their
basic concepts. Next, we will explore the state evolution of a Petri net, their properties, and
the different categories of Petri nets. We will also discuss some specific types of Petri nets.
Finally, we will examine the modeling of complex systems using Petri nets.

Chapter 03: Graph Transformation and verification

In the third chapter, we will discuss Model-Driven Architecture (MDA). We will begin by
presenting the fundamental concepts of the MDA approach, including its architecture and
various types. Next, we will introduce the tools available for applying MDA. We will then
detail model transformation, a key concept in MDA. This will start with a definition of
model transformation, followed by the different types of transformations, basic concepts of
graphs, and graph transformation tools. In addition, we will introduce the AToOMPM work
environment. Finally, we briefly discussed the analysis techniques and tools for Petri nets,
and we will focus on verification and validation techniques. The verification tool used is
TINA.

Chapter 04: Proposed Approaches

In this chapter, we will present our two proposed approaches. The first approach aims to
transform object-oriented sequence diagrams into aspect-oriented sequence diagrams. We
have proposed a meta-model for the detailed sequence diagram, accompanied by a graph
grammar that will be applied to the base model and the aspect model to obtain the aspect-
oriented sequence diagram. In the second approach, we will take the result of the first
transformation, which is an aspect-oriented sequence diagram, and apply a set of rules to
transform it into a Petri net. Then, we will present the tool used to verify the obtained Petri
nets. For both transformations, we will provide illustrative examples to explain the two
approaches more clearly. The generated Petri nets from the example will be verified by
TINA. Finaly, we make a comparison between works related to our work and discuss this
comparison.

Chapter 05: Case Studies

We detail two case studies illustrating our transformation approach, which include a
reservation system in a travel agency and the management of a shopping center, using the
AToMPM transformation tool, the generated Petri nets will be analyzed by TINA.

We conclude with a general conclusion that highlights the contributions of this memory
and outlines future perspectives.

Chapterl

Aspect-
oriented
Modeling

Chapter 1: Aspect-oriented Modeling

Introduction:

Despite harnessing the full power of object-oriented languages, certain limitations
persist, notably the challenge of effective managing cross-cutting concerns and excessive
code duplication. To address these drawbacks, the approach of aspect-oriented modeling
offers a promising solution. In this chapter, we started our exploration with a precise
definition of the model and modeling, emphasizing their importance in software
development, along with the various types of modeling. After that, we briefly discussed the
object-oriented modeling, highlighting its limitations in handling cross-cutting concerns.
We then clarify aspect-oriented modeling before delving into its objectives. Subsequently,
we examine its core concepts and move on to associated techniques and technologies.
Finally, we identify the key drawbacks of this approach to better understand its potentials
challenges.

1 The Model:

A model is an abstraction of a system constructed for a specific purpose. It is an
abstraction in the sense that each model contains a limited set of information about a
system. It is constructed for a specific purpose in that the information, its content is chosen
to be relevant to its intended use. It is then said that the model represents the system.
[khalfaoui,2014]

2 Modeling:

Modeling is an essential component of human activity, begins when humans attempt to
understand, interpret various phenomena of the world, and make predictions. In general,
modeling can be seen as "the action of modeling or the result of this action,” where
modeling consists of "designing, elaborating a model to understand, act, achieve a goal."” In
the context of computing, modeling is understood as the construction of a schematic
representation (the model) in a formal or semi-formal language, based on specifications
given in natural language. [Ludovic,2009]

Reality
. modelling Models
{(Mental representations._
(schematic representations
knowledge, Regulations.)
rigorous formulations.)
Implementation

Figure 1.1: Representation of Modeling. [Dib et Saadaoui, 2023]

Chapter 1: Aspect-oriented Modeling

2.1 Goals of Modeling:

In order to understand better the functioning of the system and master its complexity
with the assurance of its coherence, modeling is indispensable. Therefore, it allows:
[Audibert,2008]

= Better distribution and automation of some tasks.
= Reduction of costs and delays.
= Ensuring a high level of quality and effective maintenance.

A model serves as a common, precise language known by all team members and it
becomes as a result a privileged vector for communication.

2.2 Types of Languages:
Categories of languages
Informal language Semi-formal language Formal language
Simple Standardized

Figure 1.2: Classification of Languages or Methods.

Semi-Formal Language: A language that has a defined syntax to specify the conditions
under which constructions are permitted, such as Entity-Relationship Diagram, Object
Diagram.
Formal Language: A language that has rigorously defined syntax and semantics. There
exists a theoretical model that can be used to validate a construction, such as Petri nets
[Bahri,2010].
Informal Language: Informal language is a familiar way of communicating among
people [Dib et Saadaoui,2023]. It includes two types: [Bahri, 2010]
Simple Language: A language that does not have a complete set of rules to restrict
a construction, such as natural language.
» Standardized Language: A language with a structure, format, and rules for
composing a construction, such as structured text in natural language.

3 Object-Oriented Modeling:

Object-oriented modeling is often approached after an initial exposure to object-oriented
programming (using a first programming language). Learners thus have basic knowledge
of concepts such as classes, objects, encapsulation, and inheritance that they refine during
the learning of OOM (Object-Oriented Modeling). [Ludovic,2009]

Chapter 1: Aspect-oriented Modeling

The object-oriented approach is classified in the category of semi-formal modeling. It
represents a way of conceptualizing problems by applying models organized around real-
world concepts. Object orientation views software as a collection of dissociated objects,
and consequently, its fundamental concept is the object, which combines both a data
structure and behavior. The functionality of the software emerges from the interaction
between the different objects that constitute it. [Aouag,2014]

4 Limitations of the Object-Oriented Approach:
The limitations of the object-oriented approach are as follows: [Aouag,2014]
= The resolution model is difficult to read and understand, and it may lead to errors.
= Objects cannot handle deletion.
= Duplication of cross-cutting functionalities also exists in the application model.
= The model is neither structured nor organized coherently.
= Reusing models is complex.

Therefore, aspect-oriented emerges to improve and address the limitations of the
object-oriented paradigm.

5 Definition of Aspect-Oriented Modeling:

The definition of aspect in the analysis and design phases has attracted the interest of
several researchers. Several works have been proposed to define the aspect (as an entity) in
the analysis and design phases. They focused on separating cross-cutting concerns
(aspects) throughout the software development lifecycle, particularly at the design phase.
Most existing approaches are based on extending the UML meta-model to define their
aspect concepts and relationships. UML, the standard object modeling language, is most
often used for defining an aspect modeling language. [LAOUAR,2013]

5.1 The Purpose of Aspect-Oriented Modeling:

Since its early years, the aspect-oriented approach has been used slowly in programming
languages during the coding stage. However, the aspect-oriented paradigm now extends to
upstream phases of software development and it is no longer limited to programming.
Nowadays, at every phase of software development—requirements analysis, design, and
even implementation—aspect-oriented approaches are available. Transitioning between
phases while preserving previously known aspects remains a major, understudied
challenge. An iterative approach focused on concerns aims to automate the transformation
from an object-oriented requirements model to an aspect-oriented design model. [Dib et
Saadaoui,2023]

5.2 Basic Concepts:

Concern: A concern is an interest related to the development of a system, its operation, or
any other issues that are essential or important to one of the participants in the system.
[Boubendir,2011]
There are two types of concerns: cross-cutting concerns or aspect concerns, and non-cross-
cutting concerns or base concerns: [Aouag,2014]
«» Base Concern: It represents a non-cross-cutting (functional) concern with
traditional approaches such as object-oriented approach. [Zerara et Megrous,2020]

Chapter 1: Aspect-oriented Modeling

« Aspect Concern: It represents a cross-cutting (non-functional) concern with
traditional approaches such as the object-oriented approach. [Zerara et
Megrous,2020]

Aspect: Analogous to the object-oriented approach that provides explicit mechanisms for
encapsulation and inheritance of objects, the aspect-oriented approach provides first-class
explicit mechanisms that explicitly capture and encapsulate the structure of cross-cutting
concerns. We call a module encapsulating a cross-cutting concern: an aspect.
[Boubendir,2011]
An aspect is a software entity that captures a non-functional functionality. [Boualita et
Laggoune,2021]
Join Point (PJ): A location in the model where advices should be inserted. [Aouag,2014]
There are several types of join points, depending on what the developer wishes to intercept.
Thus, a join point can occur for: [Otmane Rachedi, 2015]

e Aclass

e Aninterface

e Method execution

e Access to a class variable

e Execution of a code block

e Execution of a language keyword (condition, loop, ...)

Point cut (PC): A point cut is used to select join points by specifying positions in the
primary models to which the corresponding advice for the cross-cutting concern should be
applied. [LAOUAR,2013]

Advice: Represents a particular technical behavior of an aspect. In concrete terms, it is a
code block that will be grafted into the application at the execution of a join point defined
in a point cut. [Otmane Rachedi, 2015]

Weaver: The aspect weaver is an operation that takes as input base modules and aspect
modules, and aims to apply and attach aspects to the base modules at specific join points
corresponding to the aspect's cut specification. [Boubendir,2011]

So, an Aspect = Join points + Advice. [Aouag,2014]

Point cut = X join points. [Aouag,2014]

In Figure (2.3), we present the aspect-oriented modeling process such as el, e2, and e3 are
states, are aspects, el and e2 in the aspect model are join points.

——
~
| —

Chapter 1: Aspect-oriented Modeling

The aspect model
The basic model ASPVerify
ATY =
=1 FI:-el

ez

a3

Weaver

The Integration of the two modelz (bazic + azpect)

=1 — to verify T ARE Vet

i/

X
vy

A

ez

T— Werify the sacurity

(—;s?%c_;n:/* -— =2

Figure 1.3: The Aspect-Oriented Modeling Process.
6 Aspect-Oriented Approaches:

6.1 Aspect oriented Requirements Engineering:

These approaches provide a representation of cross-cutting concerns present in
requirement artifacts. They clearly acknowledge the importance of identifying and
addressing cross-cutting concerns early on. Cross-cutting concerns can be both non-
functional and functional requirements, also their early identification enables early analysis
of their interactions. These approaches focus on the principle of composing all concerns to
have the complete system under construction. This allows understanding the interactions
and trade-offs between concerns. Composing requirements not only allows examining
requirements as a whole but also detecting potential conflicts early on, so that the right
decisions can be made for the next steps. [Boubendir,2011]

6.2 Aspect oriented Architecture:

An architectural aspect is an architectural module that has a significant influence on other
architectural modules. Aspect-oriented architecture design approaches therefore describe
the steps for identifying architectural aspects and their intertwined components. This
information is used to redesign a given architecture while making the architectural aspects
explicit. This is different from traditional approaches where architectural aspects are
implicit information in the architecture specification. [Aouag,2014]

6.3 Aspect oriented Design:
These design approaches focus on the explicit representation of cross-cutting concerns

using suitable design languages. Initially, designers simply used object-oriented methods
and languages (such as UML) for designing their aspects. This proved challenging since

Chapter 1: Aspect-oriented Modeling

UML was not designed to provide constructs for describing aspects. The main contribution
of aspect-oriented design was therefore to provide designers with explicit means to model
systems by aspect. [Boubendir,2011]

In our work, we are interested in this approach.

6.4 Aspect oriented Programming:

Aspect orientation manifests at the programming level through aspect-oriented
programming languages. Most of these aspect-oriented languages are existing (object-
oriented) languages extended with aspect-oriented features to represent aspects, express
point cuts, join points, and advices, etc. For example, Aspect] is based on Java.
[Aouag,2014]

6.5 Verification of Aspect oriented Programs:

New challenges in software verification and validation techniques arise in the aspect-
oriented approach to ensure that the desired functionality is satisfied by the system.
Aspects could potentially compromise the reliability of a system to which they are woven,
and may invalidate essential properties of the system that were correct before aspect
weaving. To ensure the accuracy of aspect-oriented software, there is extensive research on
the use of formal methods and testing techniques specifically tailored to aspects.
[Boubendir,2011]

6.6 Aspect oriented Middleware:

Although middleware is not a step in the software lifecycle, it is an important and
extensive area for aspect-oriented ideas. Many software developers have adopted
middleware approaches to aid in the construction of large-scale distributed systems.
Middleware facilitates the development of distributed software systems by supporting
heterogeneity, hiding distribution details, and providing a set of specific services for a
common domain. [Aouag,2014]

7 Inconvenients of Aspect-Oriented Modeling:

Aspect-oriented modeling has limitations that make its application elegant in all possible
problem situations. [Aouag,2014]
-Transaction management, through cross-cutting, presents challenges to be isolated into a
distinct aspect.
- AOM (Aspect-Oriented Modeling) is mostly appropriated for a large-scale software
development projects.
-In distributed systems, aspect-oriented modeling poses particular challenges regarding
testing and debugging. This it is due to side effects emanating from the dynamic injection
of the model, which can in the worst-case scenarios, lead to semantic ambiguities in the
control flow of an aspect-oriented model.
-Different aspects can effectively harm even the join points in weaving. Thus, AOM may
violate the principle of encapsulation, albeit in a fairly systematic and well-controlled
manner.

Chapter 1: Aspect-oriented Modeling

Conclusion:

In this chapter, we have provided an explanation of a model and modeling, followed by
an overview of different types of modeling. We then explored object-oriented modeling
and its limitations. Subsequently, we presented aspect-oriented modeling, starting with a
precise definition and not neglecting its main objective. We moved into the basic concepts
of aspect-oriented modeling, exploring the various techniques and technologies used in this
field. Finally, we identified the main drawbacks associated with this approach. Aspect-
oriented models lack’s behavior verification tools, which are available in Petri nets,
defined in the next chapter.

10

——
| —

Chapter?
Petri Nets

Chapter 2: Petri Nets

Introduction:

Petri nets, which allow both a graphical representation and a formal mathematical
description of systems, were introduced by Carl Adam Petri in his thesis entitled
"Communication with Automata™ at the University of Darmstadt in Germany in 1962
(Tran, 2005). In this chapter, we will explore a definition of Petri nets (PNs) and their basic
concepts. Then, we will present the state evolution of a PN, their properties, the different
categories of PNs.Finally, we will conclude with some specific types of PNs.

1 Petri nets:

The Petri net is a graphical and mathematical tool for modeling and analyzing discrete
systems, particularly concurrent systems, parallel, non-deterministic, etc. As a graphical
tool, it helps us to easily understand the modeled system, and furthermore, it enables us to
simulate dynamic and concurrent activities. With its role as a mathematical tool, it allows
us to analyze the modeled system through graph models and algebraic equations.
[Hettab,2009]

2 Basic concepts of Petri nets:
2.1 Formal Definition:

Formally, a marked Petri net is a 5-tuple, PN = (P, T, F, W, MO0) where:
[GUERROUF,2011]
s P={P1,P2, - - Pm}isanon-empty finite set of places P.
o T={t1,t2, - - -, tn}is a non-empty finite set of transitions T.
s FCS (PxT)U (T xP)isasetof arcs where:
e (PxT)isthearcgoing fromPtoT.
e (T x P)isthe arc going from T to P.

S

% W:F—{1,2,3, - -}is aweight function where:
e W (P, T): “Pre (p, t)” is the weight of the arc going from P to T.
e W (T, P): “Post (p, t)” is the weight of the arc going from T to P.
% MO:P— {0,1,2,3, - -}is the initial marking.
 PNT=¢pandPUT#o.

2.2Graphical Definition:

A Petri net is a bipartite directed valued graph. It has two types of nodes: [CHERIEF et
MELIANI,2020]

+ Places: graphically represented by circles. Each place contains an integer
number (positive or zero) of tokens. These tokens are represented by black
dots.

+ Transitions: graphically represented by a rectangle or a bar. A transition that
has no input place is called a source transition, and a transition that has no
output place is called a sink transition.

11

——
| —

Chapter 2: Petri Nets

Place
Token

o N

(a) (b)

Figure 2.1: (a) Graphical representation of a place with one token, (b) transition.
Places and transitions are connected by directed arcs where:
e An arc connects either a place to a transition or a transition to a place, but never a
place to a place or a transition to a transition.
e Each arc is labeled with a value (or weight), which is a positive integer. An arc with
a weight of k can be interpreted as a set of k parallel arcs. An arc without a label is
an arc with a weight equal to 1.

Figure 2.2 illustrates the graphical notation of a Petri net:

0 == r— 3 s U3
= 2 hooe SN
P () p: (@ () ps
. — -
3
2 Y s

Figure 2.2: Example of a Petri net. [CHERIEF et MELIANI,2020]
2.3 Marking of a Petri net:

A PN is a bipartite graph, i.e. places and transitions alternate on a path made up of
consecutive arcs. It is compulsory for each arc to have a node at each of its ends. (From a
node Kk, place or transition, to a node h, transition or place, there is at most one arc). [David
et Alia,2005]

Figure 2.3(a) represents a PN with 7 places, 6 transitions and 15 directed arcs. The set of
places of a PN will be called P and its set of transitions will be called T. For the example in
question, we thus have P = {Pu P2, P3, PA, P5, P6 P7}and T = {TU T2, T3, T4, T5, T6}.
[David et Alia,2005]

Place P3 is said to be upstream or an input of transition T3 because there is a directed arc
from P3 to T3. Place Ps is said to be downstream or an output of transition T3 because
there is a directed arc from T3 to Ps. In a similar way, a transition is said to be an input
(upstream) or an output (downstream) of a place. A transition without an input place is a
source transition. A transition without an output place is a sink transition. [David et
Alia,2005]

12

——
| —

Chapter 2: Petri Nets

(ah (b
Figure 2.3: Example of a Petri net. [David et Alia,2005]

Figure 2.3(b) represents a marked Petri net. Each place contains an integer (positive or
zero) number of tokens or marks. The number of tokens contained in a place Pi, will be
called either m(Pi) or mi. For the example in question, we have m1 =m3 =1, m6 = 2 and
m2 = m4 =m5 = m7 = 0. The net marking, m, is defined by the vector of these markings,
i.e., m=(ml, m2, m3, m4, m5, m6, m7). The marking of the PN in Figure 2.3(b) is thus m
=(1,0,1,0,0, 2,0). The marking defines the state of the PN, or more precisely the state of
the system described by the PN. The evolution of the state thus corresponds to an evolution
of the marking, an evolution which is caused by firing of transitions, as we shall see.
[David et Alia,2005]

2.4 Matrix Representation of a Petri Net:

The matrix representation of a Petri net is used to facilitate the analysis and verification

of Petri net models. Working with a graphical representation of a Petri net model is a
challenging task compared to a matrix representation. [kerkouche,2011]
Consider a Petri net R= (P, T, W) where P= {p1, p2,..., pm} and T= {t1, t2,....,tn}. The
pre-condition matrix, denoted as pre, is a mxn matrix with coefficients in N, such that pre
(i, j) =W (pi, tj), indicating the number of marks needed in place pi for transition tj to
become enabled. Similarly, the post-condition matrix, denoted as post, is a nxm matrix
such that post (i, j) =W (tj, pi) containing the number of marks deposited in pi when
transition tj fires. The matrix C=post—pre is termed as the incidence matrix of the net
(where m represents the number of places in a Petri net and n represents the number of
transitions).

The marking of a Petri net is represented by a vector of dimension m with coefficients in
N. The firing rule of a Petri net is defined as: M'(p)=M(p)+C (p, t).

The matrix representation of the Petri net in the following figure:

13

——
| —

Chapter 2: Petri Nets

Py P;

Figure 2.4-a: Example of a Marked Petri Net. [kerkouche,2011]

~ T
110 L0 o
P=(p1, p, ps, 4l 001 100
Pré= o o Post=| o | |
T=t, 2, 13 00
000
~ - I
0o -1 0 0
0 - M= 0
C=fo 1 0 .
0o 0 1
. =
La matrice d'incidence Le vecteur de marquage M

Figure 2.4-b: Incidence Matrix. [kerkouche,2011]

3 The Evolution of States in a Petri Net:

The evolution of the Petri net state corresponds to a marking evolution. The tokens,
which indicate the state of the network at a given time, can move from one place to another
through a firing or transition. In the case of networks known as simple arc or with equal
weights of 1 (Figure 2.5), firing a transition involves removing one token from each input

place of the transition and adding one token to each output place of that transition.
[BAHRI,2010]

Avant Apreas
Franchizzemenrt Franchizsemenrt
~ 7N 2 N
(@) o) ' - (e
A N NS h

P Yy =\ oy’
\®) __/ \ o8 \®)

M,=(1,2,1,0) === M,,=(0,1,2 1)

Figure 2.5: The Evolution of States in a Petri Net. [BAHRI,2010]
In general, the evolution of states in a simple marked Petri net follows the following rules:
[BAHRI,2010]
e A transition is enabled or fireable when each of its input places has at least the
number of tokens corresponding to the weight of the arc connecting it to the
transition.

14

——
| —

Chapter 2: Petri Nets

e The network can evolve only by firing one transition at a time, selected from
among all those enabled at the time of selection.
e Firing a transition is indivisible and null duration

These rules introduce some indeterminism in the evolution of Petri nets, as they can
pass through different states whose occurrence is conditioned by the choice of fired
transitions. This functioning reflects well the real situations, where there is no priority
in the succession of events.

4 Petri Net Properties:
4.1 Liveliness:

A transition tj is said alive if, for any reachable marking, we can construct a firing
sequence that includes transition tj. A Petri net is said alive if all of its transitions are alive.
[HAMRI, 2017]

4.2 Boundedness:

The boundedness of PN expresses that the number of states that can be taken by the
system modeled by this Petri net are finite. When the Petri net is unbounded, the number of
states is infinite, and this is due to the fact that some parameters of this system are
unbounded. For example, if we model a queuing system using Petri nets, then the
parameter "Queue size™ can be unlimited, which introduces the unboundedness of the
model. [MEDJANI,2020]

v" K-bounded place:
A place p € P is called k-bounded for an initial marking MO if and only if: 3k € N, vMO
€A(MO), MO(p) <k.
Where: A(MO) is the set of reachable markings. If k = 1, we say that place p is safe.
[MEDJANI,2020]

v K-bounded Petri net:

A Petri net is called k-bounded (or bounded) for an initial marking MO if and only if all
its places are k-bounded. The 1-bounded Petri net is called a binary Petri net (safe).
[MEDJANI,2020]

4.3 Reachability:

The verification of reachability in a marked Petri net involves determining whether a
marking Mk can be reached from a marking M0O. Marking MKk is reachable from MO if
there exists a firing sequence that leads from marking MO to marking Mk. [Hamri,2017]

4.4 Blocking:

A marking M in a network (N, MO) is called a "deadlock™ marking if no transition is
enabled from M. A network is said to be deadlock-free if every reachable marking from
MO is not a "deadlock™ marking. [Guerrouf,2011]

The marked Petri net represented in Figure 6.2 for blocking the marking:
M4 =[1,0,0, 3]

15

——
| —

Chapter 2: Petri Nets

Figure 2.6: Example of Petri Net Blocking. [Guerrouf,2011]

5 Categories of Petri Nets:
a) State Graph: In this case, each transition has only one input place and one

output place. [HADDOUCHE et DAHAMNA,2022]
Example: Transitions T1, T2, T3, T4, and T5 have one input place and one
out place.

Figure 2.7: State Graph. [SAGGADI, 2007]

b) Event Graph: A Petri net is an event graph if and only if each place has
exactly one input transition and one output transition. [LAOUAR,2013]

T1

T2

Figure 2.8: Event Graph. [LAOUAR,2013]
¢) Conflict-free Petri Net: Each place is associated with only one output
transition. [HADDOUCHE et DAHAMNA,2022]

16

——
| —

Chapter 2: Petri Nets

P3

Figure 2.9: conflict-free PN. [LAOUAR,2013]
d) Free Choice Petri Net: A Free Choice Petri Net is a network in which for any
conflict (K = (Pi, {T1, T2,...,Tn})) none of the transitions T1, T2, ..., Tn has
any other input place than Pi. [kerkouche,2011]

: -
R
T Ty e
I i

Figure 2.10: Free Choice PN. [David et Alia,2005]
e) Simple Petri Net: is a Petri Net in which each transition can be involved in at
most one conflict. In other words, if a transition T1 and two conflicts (P1 {T1,
T2,..}) and {P2, {T1, T3, ...}} exist, then the Petri Net is not simple. [Rene et

Hassane, 2005]
P1 P2
T1 : : T2 :

Figure 2.11: Simple PN. [LAOUAR, 2013]
f) Pure Petri Net: In a Petri Net, a transition is pure if it has no place that acts
both as input and output. If all transitions in the Petri Net are pure, then the
Petri Net is pure. [SAGGADI, 2007]

P1
() es
T2
T
P2 =]

Figure 2.12: Pure PN. [SAGGADI, 2007]

Chapter 2: Petri Nets

g) Limited Capacity Petri Net: In ordinary Petri Nets, the capacity of places is
not limited. Here, a capacity is assigned, defined by a positive integer
associated with places. Thus, the firing of a transition is conditioned by the
capacity of the places downstream. This limitation can illustrate the capacity
of a stock, for example. [HAOUES,2006].

P2 __)cap(PZ) 2 P2 cap(P2) 2 Lo])cap(PZ) 2

Flgure 2.13: Limited Capauty Petri Net. [LAOUAR 2013]

h) Priority Petri Net: In this type of network, if we reach a marking where
multiple transitions are enabled, we must fire the transition with the highest
priority. In the following example, a Petri Net with priorities is illustrated.

[LAOUAR,2013]

T1 T2

P2 P3 P4

Avant franchissement Aprés franchissement

Figure 2.14: Priority PN. [LAOUAR, 2013]

i) Inhibitory Arcs in Petri Nets: An inhibitory arc is a directed arc that starts
from a place and ends at a transition (rather than the reverse). Its end point is
marked by a small circle. The presence of an inhibitory arc between a place Pi
and a transition Tj signifies that transition Tj is enabled only if place Pi
contains no tokens. The firing of transition Tj involves removing a token from
each place upstream of the transition except place Pi, and adding a token to
each place downstream of the transition. [Aouag,2023]

18]

——

Chapter 2: Petri Nets

Transition Transition

Franchissable Mon Franchissable

Figure 2.15: Inhibitory Arcs in Petri Nets. [Aouag,2023]

6 The types of PN:
6.1 Ordinary Petri Net:

The arc with weight n = 1 is an ordinary arc. So, if all arcs in a network are ordinary, the
network will be called ORDINARY. The formal description of this model is defined by a
6-tuple: P N =< P, T, MO, A, Pre, Post > with: [CHERIEF et MELIANI,2020]
e P, afinite set of places,

T, a finite set of transitions,

e MO, the initial marking of the network,

o A afinitesetofarcssuchthat P\T=P\A=T\A=0

e Pre, indicates how many tokens are consumed from a place to a transition.

e Post, indicates how many tokens are produced by a transition into the downstream
place.

6.2 Generalized Petri Net:

In a Petri Net, each arc is assigned with a weight (positive integer associated with arcs).
This weight indicates the number of tokens consumed or produced when a transition is
fired. These weights are found in the incidence matrix. This is a simplification by
aggregation of an ordinary Petri Net [HAOUES,2006]

6.3 Timed Petri Net:

In this model of Petri net, the duration of an activity is explicitly integrated. Timing can
concern either the places (P-timed Petri nets) or the transitions (T-timed Petri nets)
depending on the modeled events. [Bahri,2010]

6.4 Colored Petri Net:

The modeling of large systems is facilitated by the use of colored Petri nets. They are of
great interest in modeling certain complex systems. The principle consists of representing
information by place/mark sets. Each place's marks are associated with a color (or
identifier). The transition of these marks can be performed in several ways depending on
the colors associated with transitions. The relationship between transition colors and
colored markings is defined by functions associated with arcs. [Aouag,2023]

19

——
| —

Chapter 2: Petri Nets

-::a-\-.-:h:\-

Figure 2.16: Petri Net (left) and Colored Petri Net (right).[Hettab, 2009]

6.5 Continuous Petri Net:

In a continuous Petri Net, the markings of places are no longer integers but positive real
numbers. This type of Petri Net offers performance analysis in terms of through put. It is
highly useful when the number of markings in a classical Petri Net becomes too large or to
represent continuous processes. [HAOUES,2006]

Conclusion:

In this chapter, we have provided an explanation of Petri nets, followed by their basic
concepts. We then explored the various properties and state evolution of Petri nets.
Delving into the categories of Petri nets. Finally, we examined their different types of PNs.
We emphasized that aspect-oriented models have shortcomings in terms of behavior
verification tools, unlike Petri nets, whose tools are defined in the next chapter. The next
chapter will focus on graph transformation.

20

——
| —

Chaptera3

Graph
Transformati-
on and
verification

Chapter 3: Graph Transformation and verification

Introduction:

Model-Driven Architecture (MDA), proposed and endorsed by the OMG (Object
Management Group), is based on the use of models at different stages of the application
development cycle. This approach primarily relies on high-level abstract representations of
the system, which are the models. It emphasizes automating the system development
process, including verification, which involves analyzing the system properties, thus
ensuring the reliability of the modeled system. This approach enables formal verifications
to be conducted and ensures the correct behavior of the system.

This chapter aims to provide fundamental concepts about Model-Driven Architecture,
explaining the MDA approach and illustrating MDA architecture as well as its different
types. Additionally, we discuss the available tools for MDA. Model transformation is a key
concept in MDE (Model-Driven Engineering). We present a definition along with the
various types of existing model transformations. Then, we are interested into graph
transformation, starting with some basic concepts about graphs and graph transformation
tools. Then, we introduce the ATOMPM tool. Following that, we conduct an analysis of
Petri nets focusing on verification and validation. Finally, we present Petri Net analysis
tools and concentrate on the Tina tool.

1 Model Driven Architecture (MDA):

Model-Driven Architecture, or MDA, is a software development approach proposed and
endorsed by the OMG. It is a specific variant of Model-Driven Engineering.
[EIMansouri,2009]

1.1 Basic Concepts of MDA:

e System: A system is a set of elements interacting with each other according to a
certain number of principles and rules with the aim of achieving a goal.
[Aouag,2023]

e The boundary of a system determines its membership criteria.

e The environment refers to the part of the world outside the system.

e Systems are often hierarchically organized using subsystems.

« Model: A model is an abstraction of reality; it emphasizes certain aspects of the
system while ignoring others (it is a simplified representation). Its purpose is to
facilitate a simpler study within a controlled context other than the actual context.
[Hachichi,2013]

s Meta-model: A meta-model is both a model that defines the language of
expression or the structure of a model, and a specification of the syntax and
semantics of a system. [Aouag,2014]

s Meta-Meta-Model: A specification language for meta-models. [Zerara et
Megrous,2020]

1.2 The MDA Approach:

+ The CIM (Computational Independent Model): This is the requirements
model. It describes the functional needs of the application independently
of the details related to its implementation. The technical independence

21

——
| —

Chapter 3: Graph Transformation and verification

of this model allows it to maintain its relevance over time. It is only
modified if knowledge or business needs change. [Khelfaoui,2014]

+ The PIM (Platform Independent Model) corresponds to the specification
of the "business™ part of an application, in accordance with a computer
analysis seeking to meet business needs independently of the
implementation technology. [Hettab,2009]

+ The PSM (Platform Specific Model) is the most delicate phase of MDA.
Code generation can begin from the analysis and design models. The
main difference between a code model and an analysis and design model
lies in the fact that the code model is tied to a specific platform.
[Aouag,2014]

There are model transformations from the system to other models of the same system,
As example: [Zerara et Magrous,2020]
e Transformations from CIM models to PSM

e Transformations from CIM models to PIM
e Transformations from PIM models to PSM
e Transformations from UML 2.0 diagrams to Petri nets

The following figure provides an overview of the model transformation process in the
MDA approach:

N [1 CIM
v,,-J) | I l J {Computational Independant Model)
[V
&1 Lj [S
N ’ (Platform Independant Model)
/) \ =
:‘li/ ./' \]
| = J. 2
- 1 PSM
] \ | ’ (Platform Specific Model)

-

.\‘ |: ‘[Code
N
~J &

Figure 3.1: The model transformation process in the MDA approach. [Aouag,2014]

1.3 Model Driven Architecture:

The OMG has established four-level abstraction architecture as a general framework for
integrating meta-models, based on the MOF (Meta-Object Facility) as depicted in Figure
3.2.

22

——
| —

Chapter 3: Graph Transformation and verification

In this architecture, models at adjacent levels are connected by an instantiation
relationship. [Bahri,2010]

Niveau Le MOF
M3 Le MMM
MOF| y
/‘ e //
e
- I \ Le meta-modéle UML
> et outres MMs
N:;Aaou Le MM UPM Le | Le MM
e (SPEM) g cwm
T A ~”
=X
Niveau Des modéles UML et
M Un Autre d'autres formalismes
modéle modéle
CRT VT /s UML y

Différentes
utilisations de
ces modéles

Niveau B

information
= réelles

Figure 3.2: The four abstraction levels for MDA. [Dib et Saadaoui, 2023]

The four abstraction levels for MDA are as follows: [Bahri, 2010]

= Level MO: Instance level of models. It defines information for modeling real-world
objects.

= Level M1: This level represents all instances of a meta-model. Models of M1 level
must be expressed in a language defined at level M2. UML is an example of
models of M1 level.

= Level M2: This level represents all instances of a meta-meta-model. It consists of
languages for specifying information models. The UML meta-model, described in
the UML standard and defining the internal structure of UML models, belongs to
level M2.

= Level M3: This level defines a single language for specifying meta-models. The
MOF, a reflective element of M3 level, defines the structure of all meta-models of
M2 level.

1.4 Types of MDA Approaches:

According to the classification by Czarnecki and Helsen, model transformations can be
grouped into two main categories: 'Model to Model' transformations and 'Model to Code'
transformations (Figure 3.3). [BENDIAF, 2018]

23

——
| —

Chapter 3: Graph Transformation and verification

Les approches de
transformation de modéles

A
|

l Modéle vers Modéle] | Modéle vers Code I

Manipulation Transforma Dirigée par la
directe de graphes structure

tion
| Relationnelle I I Hybride

Basée sur le Basée sur les
visiteur templates

Figure 3.3: The model transformation approaches. [BENDIAF, 2018]

+ Model to Code Transformations: There are two different approaches
for model to code transformations: visitor-based approaches or
template-based approaches.

= Visitor-based approaches: involve traversing the model by
adding elements (visitor’s mechanisms) that reduce the
semantic gap between the model and the target
programming language. Code is generated by traversing the
enriched model to create a text stream.

= Template-based approaches: are currently the most widely
used. The target code contains snippets of meta-code used to
access information from the source model. The majority of
commonly available MDA tools support this principle of
code generation from models. Among the tools based on this
principle are: Optimall, XDE (Extended Development
Environment) (which also provide model-to-model
transformation), JET (Java Emitter Templates), ArcStyler,
AndroMDA (Andromeda Model-Driven Architecture) (a
code generator that relies on open technology such as
Velocity for template writing), Acceleo, and XPand.

+ Model-to-Model transformations: involve converting a source model
into a target model, which can be instances of different meta-models.
They offer more modular and easier-to-maintain transformations. In
cases where there is a significant abstraction gap between PIMs and
PSMs, it is easier to generate intermediate models than to go directly to
the target PSM. Intermediate models can be useful for optimization or
debugging purposes. Moreover, model-to-model transformations are

24

——
| —

Chapter 3: Graph Transformation and verification

useful for computing different system views and their synchronization.

[HAMROUCHE, 2010]
The techniques for transformations of this type can be classified into five categories:
[BENDIAF,2018]

¢ Direct manipulation approaches.

¢ Relational approaches.

e Graph transformation-based approaches.

e Hybrid approaches.

e Structure-driven approaches.

1.5 The tools of MDA:

To achieve such efficiency, various conceptual tools are available. The Model Driven
Architecture technology is supported by the OMG, which also provides UML and CORBA
(Common Object Request Broker Architecture). These tools are: [Hettab,2009]

a) UML, widely used elsewhere, which facilitates easy implementation of MDA by
providing familiar support.

b) XMI (XML Metadata Interchange), which offers a formalism for structuring XML
(eXtensible Markup Language) documents in such a way that they can represent
application metadata in a compatible manner.

c) MOF (Meta Object Facility), a specification that enables the storage, access,
manipulation, and modification of metadata. MOF allows for a unified expression
of meta-models, whether they are subsequently used as UML profiles or not.

d) CWM (Common Warehouse Metamodel), database for meta-data.

2 Model Transformations:

Model transformation is a key concept in MDE. It involves making models
productive (operational). Indeed, the interest lies in transforming a model Ma into a
model Mb, whether the respective meta-models MMa and MMb are identical
(endogenous transformation) or different (exogenous transformation).
[AMROUNE,2014]

In other words, a model transformation is defined by the operation of generating one
or more target models from one or more source models, in accordance with a
transformation definition. [AMROUNE,2014]

In the literature, three types of transformations can be distinguished: [Kerkouche,2011]

1) Les Vertical transformations: The source and target of a vertical
transformation are defined at different levels of abstraction. A transformation
that decreases the level of abstraction is called a refinement. A transformation
that increases the level of abstraction is called an abstraction.

2) Horizontal transformations: A horizontal transformation modifies the source
representation while retaining the same level of abstraction. The modification
can involve adding, modifying, deleting, or restructuring information.

3) Obligue transformations: An oblique transformation integrates both
horizontal and vertical transformations. This type of transformation is notably
used by compilers, which perform optimizations on the source code before
generating executable code.

25

——
| —

Chapter 3: Graph Transformation and verification

PIM
PIM PIM

Horizontal Vertical

PSM PSM PSh

Pl
Restructuring
<<Conform to>>
Normalization Refinement
Mt
Ma Mb Pattern integration
Endogenous transformation
Mvia MMb
Software migration Generation
==Conform to=> Mt <<Conform to>>
Model fusion Reverse engineering
Ma Mb

Exogenous transformation

Figure 3.4: Types of transformations and their main uses. [Aouag,2014]
3 Graph Transformations:
Before we begin discussing graph transformation, let's cover some basic concepts of
graphs. [EIMansouri,2009]

3.1 Graph Concepts:

A graph consists of nodes that are connected by edges.
Two nodes connected by an edge are adjacent.
The number of nodes present in a graph is called the order of the graph.
The degree of a node is the number of edges incident to that node.
A subgraph of a graph G is a graph G' composed of certain nodes of G,
such that all the edges connecting these nodes are also present in G'.

There are two types of graphs: undirected graphs (where nodes are connected by edges)
and directed graphs (where nodes are connected by arcs, which are edges with a direction).

=\
—CE D)~
=
3 %0
° ! '(\!)/‘ °
/ P
| /“.\‘7 ‘ c
\ L)
/ =N\

(@) (b) ()

Figure3.5: (a) Undirected graph G, (b) Directed graph, (c) Subgraph of G.
[EIMansouri,2009]

26

——
| —

Chapter 3: Graph Transformation and verification

3.2 Subclass of a Graph:

+ A labeled graph: is a directed graph in which the arcs are assigned labels. If all
labels are positive numbers, it is called a weighted graph. [Kerkouche,2011]

+ An attributed graph: is a graph that can contain a predefined set of attributes.
[Kerkouche,2011]

3.3 Graph Transformation Tools:

Among the many tools available for graph transformation, such as AGG (Attributed
Graph Grammar), TGG (Triple Graph Grammars), Fujaba (From UML to Java And Back
Again), and AToM:? ((A Tool for Multi-formalism and Meta-Modeling), we have selected
AToMPM for its distinctive advantages. [Syriani et al,2013]

e Performs transformations, controls, and processes models.

e Works on the web, independent of operating systems and platforms.

¢ Philosophy: explicit modeling, high level of abstraction, adapted formalisms and
processes, autonomous

4 AToMPM:

AToMPM ("A Tool for Multi-Paradigm Modelling™) is a (Meta) modelling workstation
that enables language developers to create domain-specific visual languages, and domain
experts to use these languages. A language is defined by its abstract syntax in a meta-
model, its one or more concrete syntaxes, which define how each element of abstract
syntax is visualized, and its semantic definitions, either operational (a simulator) or
translational (by mapping them onto a known semantic domain). AToMPM supports
model transformations for modeling semantics. [AToMPM Documentation]

AToMPM is developed to satisfy three main functionalities:
= Meta-modelling.
= Model transformation.
= Execution of transformation on a model.

< : A Tool for Multi-Paradigm Modelling _"“>

Flace

+ Pname : string =P
+ Tokens : string

- = & L
-/
TEansition
+ Tname - string =T

Transition

Placeo

Figure 3.6: Presentation of the AToOMPM tool.

l'u.;I

i

27

——
| —

Chapter 3: Graph Transformation and verification

5 Analysis of Petri nets:

The transformation from aspect-oriented diagrams to formal models, such as Petri nets,
often suffers from a lack of verification to preserve the important properties of the system
and to ensure that the model transformation is correct, as well as to check if they meet the
system requirements. There are several Properties to Verify: [Aouag,2023]

Termination of the transformation.

Preservation of the semantics of the source model.
Confluence.

Invariants.

Completeness.

Absence of deadlock & infinite loop...

5.1 Analysis Techniques:

As systems become more complex, ensuring the quality of the model becomes more
challenging. To address this, various techniques are used for analysis, such as verification,
validation, qualification, and certification. In our work, we primarily focus on verification
and validation: [Elmansouri,2009]

+ Verification: answers the question "Are we building the model correctly?"

Verification encompasses review, inspection, testing, automated proof, or other
appropriate techniques to establish and document the compliance of development
artifacts with predefined criteria. 1ISO 8402 defines verification as "confirmation
through examination and provision of tangible evidence (information whose
accuracy can be demonstrated, based on facts obtained through observation,
measurement, testing, or other means) that specified requirements have been
fulfilled."

+ Validation: involves assessing the suitability of the developed system in relation to

the needs expressed by its future users. Validation seeks to answer the question
"Are we building the right model?" ("is the right system being built?"). By
definition, validation is "confirmation through examination and provision of
tangible evidence that specific requirements for an intended specific use are
satisfied. Multiple validations can be performed if there are different intended uses"
[1SO 8402].

5.2 Analysis tools for PN:

Among the many analysis tools available, such as PEP (Programming Environment
based on Petri nets) and INA (Integrated Net Analyzer), we have selected TINA for its
distinctive advantages:

TINA is easy to use thanks to its user-friendly and easy-to-understand interface.
Providing users with great flexibility to customize the tool to their specific needs.
TINA provides advanced features for editing and analyzing Petri networks, making
it a powerful tool for complex analysis tasks.

28

——
| —

Chapter 3: Graph Transformation and verification

6 TINA:

(Time Petri Net Analyzer) is a toolbox for editing and analyzing Petri Nets. It supports
features such as inhibitor and read arcs, Time Petri Nets with priorities and stopwatches,
and an extension of Time Petri Nets with data handling, known as Time Transition
Systems. [TINA Documentation]

Time Petri Net Analvzer

[places I 3 tramsiioms I 2

digest
abstraction count
states |]
pﬂ p-l help | translions | 14
sSEace o
props L.s =L b A
Erans © ELSE
scate
props L a*5 p*2 pl p2
TaT tis9

10 t1

propa L.acc*8 pd*3 p3
Trans ToS4
|:|2 scace 3

props L.ass3 pd pl p2el
Grans wiSE GLAE

-

e 4
amns G S

| bounded | ¥ live [N reversible [N ||
psets dead live

| e |1 |

| 2 I I

Al
Figure 3.7: Presentation of the TINA tool.

Conclusion:

In this chapter, we have explored the key concepts of Model-Driven Engineering. By
detailing the Model-Driven Architecture approach along with the four-level architecture of
MDA, and examining its various variants, we have also looked into the tools available to
support this methodology. Model transformation has been highlighted as a central element
of MDE, with an overview of the various forms of model transformations. Finally, we have
covered the basic concepts and relevant tools in the field of graph transformation. These
insights provide a solid foundation for understanding and effectively applying the
principles of MDE in software development. Thus, we presented the tool used in the
implementation of our work, ATOMPM. Next, we introduce the techniques for analyzing
Petri nets and the analysis tools, concluding with the presentation of the tool used in our
work.

The next chapter (Chapter 4) presents our model transformation approach that is based on
the concepts introduced previously.

29

——
| —

Chapter4

Proposed
Approaches

Chapter 4: Proposed Approaches

Introduction:

In this chapter, we present our approach aimed at transforming a source model into a
target model based on graph transformation. The chapter contains two approaches:
+ Transformation of detailed object-oriented sequence diagrams into detailed aspect-
oriented sequence diagrams.
+ Transformation of detailed aspect-oriented sequence diagrams into Petri nets.

We begin our approach with meta-modeling that includes classes and associations. Next,
we propose a graph grammar for each approach to transform an object-oriented model into
an aspect-oriented model. The target model of the first approach serves as the basis for the
second approach, which results in Petri nets. In this transformation, we use the modeling
tool AToMPM. Additionally, we used the TINA tool to verify the properties of the
transformation results. Finally, we make a comparison between works related to our work
and discuss this comparison.

1 Transformation of detailed object-oriented sequence diagrams into
detailed aspect-oriented sequence diagrams:

In this approach, we transform a detailed object-oriented sequence diagram into a
detailed aspect-oriented sequence diagram by combining the base model of the detailed
sequence diagram with the aspect model. This results in weaving (the composite model,
which is the detailed aspect-oriented sequence diagram). We perform this transformation
using a single meta-modeling. The transformation method takes as input a source model
that includes the base detailed sequence diagram and the aspect model. After executing the
graph grammar rules, we obtain the detailed aspect-oriented sequence diagram as output.

1.1 Meta-modeling:
The meta-modeling of the aspect-oriented detailed sequence diagram contains seventeen

classes, forty-three associations, and five inheritances. In Figure 4.1, we present the meta-
model for aspect-oriented detailed sequence diagrams.

30

——
| —

Chapter 4: Proposed Approaches

Seq Dialogue Controleur Entity
+Diagram : string = detailed |sequence_diagram : +NameDialogue : string + NameCir: sring +NameEntity : string
+Model : string = basic_modgl B '
7 %
£ FAN

MA

Al

4

e ‘
%,
k4

+MA : siring = Aspect_Mode}

NE

Operation

+idop : string

 —
i Ry pnojay 3 s
N/’,‘hw % , *
i
1)

Ak

R
o™

eyt

5

———S—% I
Irm\cll-.w'\ ZoneEntity /;\sy““mom
5 mch!
E 3 i \anmeZnneEntiw:strmg 7
A Asynehrone = RetourE2E
+NameZoneCnrl : string / J
% N "
- oW
W .

s

¢
Aspect
Actor ‘
&_\ +AD: string
')
£

glﬁa’nei\m 1 8tring +PJ : siring
+Type : fring
+Name : string

™
o
=
>
b=)
=
=

ZTonehet 3

N

+NameZoneA&;‘strin anehrone s i 3
2 L Asynehronc? Dl.h,'{WZDﬂeDIﬂ‘Oﬂue :string

Classes:

+Loop : string = Loop

7
2 @&
4 Ao 2 /8 5
Ag 1 0f & 1
ref / opt\ ey D 0y g g
+ Nameref : string +0pt; sirigg = opt =1 ‘vs
+1ef : string = ref ?
= >
A @
2} -
g) "
] L i 5 Distroy N*
LOC!FI Alt g B +D:sting
" £
+N: string +Alt: string = Alt

Figure 4.1: Meta-model of the detailed sequence diagram.

Seq: This class represents the aspect-oriented detailed sequence diagram. It
contains an attribute <Diagram> of type String displaying by default
"detailed_sequence_diagram” and an attribute <Model> of type String
displaying by default "basic_model” before the transformation. After the
transformation, it is modified to "Weaver". Graphically, it is represented by a
large blue rectangle.

MA: This class represents the aspect model. It contains an attribute <MA> of
type String displaying by default "Aspect_Model". Graphically, it is represented
by a large red rectangle.

Actor: This class represents the actor. It contains an attribute <NameAct> of
type string. Graphically, it is represented by a simple shape such as a blue stick
figure.

ZoneAct: This class represents the actor's activity zone. It contains an attribute
<NomZoneAct> of type string. Graphically, it is represented by a small black
rectangle.

Dialogue: This class represents the boundary. It contains an attribute
<NameDialogue> of type string. Graphically, it is represented by a blue circle
with two horizontal and vertical lines.

ZoneDialogue: This class represents the boundary activity zone. It contains an
attribute <NameDialogueZone> of type string. Graphically, it is represented by
a small black rectangle.

31

——
| —

Chapter 4: Proposed Approaches

Controleur: This class represents the Controller. It contains an attribute
<NameCntrl> of type string. Graphically, it is represented by a blue circle with
two diagonal lines inside and outside the circle.

ZoneCntrl: This class represents the controller activity zone. It contains an
attribute <NameCntrlZone> of type string. Graphically, it is represented by a
small black rectangle.

Entity: This class represents the entity. It contains an attribute <NameEntity> of
type string. Graphically, it is represented by a blue circle with a line at the
bottom.

ZoneEntity: This class represents the entity activity zone. It contains an
attribute <NameEntityZone> of type string. Graphically, it is represented by a
small black rectangle.

Destroy: This class represents the destruction. It contains an attribute <D> of
type string. Graphically, it is represented by a black cross.

Aspect: This class represents the aspect. It contains attributes <AD>, <PJ>,
<Type>, and <Name>, all of type string. Graphically, it is represented by a
class.

Operation: This class represents an operation. It inherits from the <Actor> class
and contains an attribute <idop> of type string. Graphically, it is represented by
a large black rectangle.

Ref: This class represents the reference operation. It inherits from the <
Operation> class and contains attributes <Nameref> and <ref>, both of type
string. Graphically, it is represented by a small black rectangle.

Opt: This class represents the optional operation and inherits from the <
Operation> class. It contains an attribute <opt> of type string. Graphically, it is
represented by a small black rectangle.

Loop: This class represents the loop operation and inherits from the <
Operation> class. It contains attributes <N> and <Loop>, both of type string.
Graphically, it is represented by a small black rectangle.

Alt: This class represents the alternative operation and inherits from the <
Operation> class. It contains an attribute <Alt> of type string. Graphically, it is
represented by a small black rectangle.

Associations:

MAZ2act: connects class <MA> and class <Actor>, It represents an invisible
link.

MB2act: connects class <Seg> and class <Actor>, It represents an invisible
link.

Aspt2act: connects class <Aspect> and class <Actor>. It contains an attribute
<Aspt2act> of type string.

Act2zoneAct: connects class <Actor> and class <ZoneAct>. It contains an
attribute <Act2zoneAct> of type string.

linedevieActeur: connects class <ZoneAct> and class <ZoneAct>. It contains
an attribute <linedevieActeur> of type string.

Aspt2zoneAct: connects class <Aspect> and class <ZoneAct>. It contains an
attribute <Aspt2zoneAct> of type string.

32

——
| —

Chapter 4: Proposed Approaches

e Retour2Act: connects class <ZoneDialogue> and class <ZoneAct>. It contains
an attribute <Retour2Act> of type string.

e Aspt2D: connects class <Aspect> and class <Dialogue>. It contains an attribute
<Aspt2D> of type string.

e CreateDialogue: connects class <ZoneCntrl> and class <Dialogue>. It contains
an attribute <Aspt2D> of type string.

e Aspt2C: connects class <Aspect> and class <Controller>. It contains an
attribute <Aspt2C> of type string.

e Aspt2E: connects class <Aspect> and class <Entity>. It contains an attribute
<Aspt2E> of type string.

e CntriCreateEnt: connects class <ZoneCntrl> and class <Entity>. It contains an
attribute <CntrlCreateEnt> of type string.

e EntCreateEnt: connects class <ZoneEntity> and class <Entity>. It contains an
attribute <EntCreateEnt> of type string.

e Aspt2zoneD: connects class <Aspect> and class <ZoneDialogue>. It contains
an attribute <Aspt2zoneD> of type string.

e Synchrone2Dialogue: connects class <ZoneAct> and class <ZoneDialogue>. It
contains an attribute <Synchrone2Dialogue> of type string.

e Asynchrone2Dialogue: connects class <ZoneAct> and class <ZoneDialogue>.
It contains an attribute <Asynchrone2Dialogue> of type string.

e RecursifDIg: connects class <ZoneDialogue> and class <ZoneDialogue>. It
contains an attribute <RecursifDIg> of type string.

e linevie_Dialogue: connects class <ZoneDialogue> and class <ZoneDialogue>.
It contains an attribute <linevie_Dialogue> of type string.

e Retour2Dialogue: connects class <ZoneCntrl> and class <ZoneDialogue>. It
contains an attribute <Retour2Dialogue> of type string.

e Dialogue2zonedialogue: connects class <Dialogue2zonedialogue> and class
<ZoneDialogue>. It contains an attribute <Dialogue2zonedialogue> of type
string.

e Aspt2zoneC: connects class <Aspect> and class <ZoneCntrl>. It contains an
attribute <Aspt2zoneC> of type string.

e cntrl2Zonecontrleur: connects class <Controller> and class <ZoneCntrl>. It
contains an attribute <cntrl2Zonecontrleur> of type string.

e Synchrone2cntrl: connects class <ZoneDialogue> and class <ZoneCntrl>. It
contains an attribute <Synchrone2cntrl> of type string.

e Asynchrone2cntrl: connects class <ZoneDialogue> and class <ZoneCntrl>. It
contains an attribute <Asynchrone2entrl> of type string. * linevie cntrl:
connects class <ZoneCntrl> and class <ZoneCntrl>. It contains an attribute
<linevie_cntrl> of type string.

e Recursif: connects the class <ZoneCntrl> and the class <ZoneCntrl>. It
contains an attribute <Recursif> of type string.

e SynchroneC2C: connects the class <ZoneCntrl> and the class <ZoneCntrl>. It
contains an attribute <SynchroneC2C> of type string.

e AsynchroneC2C: connects the class <ZoneCntrl> and the class <ZoneCntrl>. It
contains an attribute <AsynchroneC2C> of type string.

33

——
| —

Chapter 4: Proposed Approaches

e RetourC2C: connects the class <ZoneCntrl> and the class <ZoneCntrl>. It
contains an attribute <RetourC2C> of type string.

e Retour2Cntrl: connects the class <ZoneEntity> and the class <ZoneCntrl>. It
contains an attribute <Retour2Cntrl> of type string.

e Aspt2zoneE: connects the class <Aspect> and the class <ZoneEntity>. It
contains an attribute <Aspt2zoneE> of type string.

e Synchrone2Entity: connects the class <ZoneCntrl> and the class
<ZoneEntity>. It contains an attribute <Synchrone2Entity> of type string.

e Asynchrone2Entity: connects the class <ZoneCntrl> and the class
<ZoneEntity>. It contains an attribute <Asynchrone2Entity> of type string.

e linevie_entity: connects the class <ZoneEntity> and the class <ZoneEntity>. It
contains an attribute <linevie_entity> of type string.

e RetourE2E: connects the class <ZoneEntity> and the class <ZoneEntity>. It
contains an attribute <RetourE2E> of type string.

e SynchroneE2E: connects the class <ZoneEntity> and the class <ZoneEntity>.
It contains an attribute <SynchroneE2E> of type string.

e AsynchroneE2E: connects the class <ZoneEntity> and the class <ZoneEntity>.
It contains an attribute <AsynchroneE2E> of type string.

e Entity2Zonentity: connects the class <ZoneEntity> and the class
<ZoneEntity>. It contains an attribute <Entity2Zonentity> of type string.

e Act2Distroy: connects the class <ZoneAct> and the class <Distroy>. It contains
an attribute <Act2Distroy> of type string.

e DlIg2Distroy: connects the class <ZoneDialogue> and the class <Distroy>. It
contains an attribute <DIg2Distroy> of type string.

e Aspt2Distory: connects the class <Aspect> and the class <Distroy>. It contains
an attribute <Aspt2Distory> of type string.

e CreateDistroy: connects the class <ZoneCntrl> and the class <Distroy>. It
contains an attribute <CreateDistroy> of type string.

e Ent2Distroy: connects the class <ZoneEntity> and the class <Distroy>. It
contains an attribute <Ent2Distroy> of type string.

Inheritance: is a relationship between two classes. Graphically, it is represented by an
arrow.

Figure 4.2 illustrates the tool generated for manipulating detailed aspect-oriented sequence
diagrams.

34

——
| —

Chapter 4: Proposed Approaches

detailed sequence_ diagram :

e ~

Seturty
linevisAct
Cllent d
creats delet
L 7

Aspect Model

basic_model

Figure 4.2: The tool generated for the detailed aspect-oriented sequence diagram.
1.2 The proposed graph grammar:

In this approach, we present a grammar composed of eighty-eight (88) rules. These rules
will be executed in an order determined by the pattern (T). Each rule consists of two parts:
a left-hand side (LHS) and a right-hand side (RHS). These rules are then divided into three
categories based on the type of aspect, which are defined as follows:

Aspect.type: the action of the aspect is a creation, deletion, or connection between two

objects.
In the following figure, the pattern (T_O2A) of this graph grammar for this

approach:
DYMEEEoOEnAkGEs 0 REE AP MR BEWER t >/ oo _;.©® |

%

| :R_ﬁlcmrmpr#-n R f%cmonez[ilgl R%/ynchmne*f | R ﬂASVnthm+ZCmr\ R %Synchmn*ZC | R}#e[Dlsmrylim
| ﬁf{ealeEnmyl | y{fLV“Chmm‘*‘gl /;rzﬂemuﬂE | | /sj’JRetourZD\{ |]AZPJAsynchlovleCZC |/}i DE‘E[ZD””D‘*Dzl /7/ DeletZoneEn'ZD

|/ /? Retour?Act | |/ /I Synchmnec* | f 5 PJCreateD\aIIsgue /R PJReluur'Clq /R DIetZoneDmIlZ }//R DeletZoneEnl
[;

[y X
m /R_Synchrone2+tr /R Asynchrone

——]
E=]
=]
&
=
R
=)
s
=
=

Lo
T~

r
R PsznchronEntny |/ :R_PJRecursifCll[lI

e

e

‘ R Dlstory[\prlcihctl RZonC?‘r\Ag,‘ | :R_zonEn prE | R Sync/ronelﬂ fD"J

‘ R Dla)égueA{l | R CntrllﬁonCnyAgI R ZO”EAEAWZOF | R Asy/ﬂchron ZIE \ﬁ_{
d

~v
L
/P,

: F
F 0 l sznch bCntrl
CreateE 3 ’ SY"':hTO

F F

i | 7 | :R_Del74ZuneC
i . 7T

. | R D E[ZDHA#D | :R_De) IZDneC/nlrI

F
A R

Figure 4.3: The motif of transformation of approach.

35

——
| —

Chapter 4: Proposed Approaches

Category 1: Rules that have the aspect type "create™ are applied to create an aspect
according to the PJ and AD.
In the following figures, we depict the rules of the first category:

0 0

Diagram

Dlagram

Model

Model

Namoe
AD

]
Type

Figure 4.4: Application of category 1 with Aspect.PJ == Actor and Aspect.Ad==
linevieAct.
In Figure 4.4, for the application of the first category, in this rule we positioned the aspect
on the actor (the join point) and added an activity zone (advice) with the aspect type set to
‘create’

In Figures 4.5 and 4.6, the Python code for the first creation rule:

0
0
Diagram
(. Dlagram
A [k
“T ...'\.\._ a
R N

edit LHS #8
(Fa=getattr("P1", 6"}
AD=getALLr("AD" 6")
| Type=petALLr(Type ,'6")
Condition Kl=getAlir("Mamedcl','27)
X2=getAlir("MameZoneAct” "3)
Ki=getAttr("MameAct' "5)
|result=((PI==X3} arnd (Type=="create”) and (¥1==X3) and (AD=="linewieAct™}))
[ok | canesl |

Figure 4.5: The LHS of the first create rule(Python code).

36

——
| —

Chapter 4: Proposed Approaches

Diagram
”~ B
Dlagram
—_—
2
8
i
edit RHS £20
.5Q-I_.',,EL:-L|.I {Actlzonedel" 4"}
setdtir] "linedeviefctews' 50, "18')
. A=getAttr(Mame' ,"6")
Action seltALr] "MameZonelol” ("ASP &4, "B")
Hodel=getittr("Model® ,"@")
setAttr] "Model ", "WEAVER" , 8")
A
[ok | conee! |

= T i
Figure 4.6: The RHS of the first create rule (Python code).

9
Diagram
. 9
i Diagram
3 Model
4
NameZoneCrtd Name
PJ
Type

Figure 4.7: Application of category 1 with Aspect.PJ== Control Zone et Aspect. AD==
CreateDlg.
In Figure 4.7, for the application of the first category, in this rule we positioned the aspect
on the Controller zone (the join point) and added boundary (advice) with the aspect type

set to ‘create’

Category 2: Rules with the aspect type "lien" are applied to add an aspect to a link

between two objects.
In the following figure, we depict the rules of the second category:

37

——
| —

Chapter 4: Proposed Approaches

0
Diagram 0
; 2 Dlagram
—] —f
1 2
Maodel
e Asynchrane?Entity
3 Bl_lud-
4
NameZaneCalrd
Iodel

Figure 4.8: Application of category 2 with Aspect.PJ== Control Zone, Entity Zone and
Aspect. AD== Asynchrone2E.
In Figure 4.8, for the application of the second category, in this rule we positioned the
aspect on the Controller zone and entity zone (the join points) and added asynchronous
message (advice) with the aspect type set to ‘lien’

In Figures 4.9 and 4.10, the Python code for the first link rule:

0
?_D agram
1 ‘ E'I'-"lglar"’l

edit LHS #0

I'-J-g-:-L.ﬂ.'l'.r'['l'-J' ""l
AD=getAtte("AD ")
Type=getattr]"® T_-.'pl:' » 5
Condition xl getaAttr("NameZonelntrl®, "17)
N2=getAttr("MameZoneEnti I.:f | o
NilzgetAttr("MeameZonelntrl’ .'3']
| Md=getAttr("NameZoneEntity' ,"4") o

b2
5
\ I Nodel
M

Figure 4.9: The LHS of the first link rule (Python code).

38

——
| —

Chapter 4: Proposed Approaches

0
Diagram D
Diagram
i 2
edit RHS #1
..f-- getALLr{ "Mame" ,"'5")
setALLr ["Asynchrone2Entity " "ASP™ =4, '8")
. Hodel=-getAtir("Model” ,"8")
AN | setAtte ["Model”, "WEAVER", "8)
]
[Lok | canee! |
5 i ’ﬁ:u} L
IModel
N
AD
PJ
Type

Figure 4.10: The RHS of the first Link rule (Python code).

Clagram

1
2

Model

~ Diagram

Model

Figure 4.11: Application of category 2 with Aspect.PJ== Synchrone message et
Aspect. AD== Cntrl.
In Figure 4.11, for the application of the second category, in this rule we positioned the
aspect on the boundary zone and controller zone (the join points) and added a controller
(advice) with the aspect type set to ‘lien’

39

——
| —

Chapter 4: Proposed Approaches

Category 3: Rules with the aspect type "Delete” are applied respectively to delete an
object automatically delete the relations associated with it.
In the following figures, we depict the rules of the third category:

) 0
Diagram
2 - Dlagram

Model

Model
g\‘
]

AD
RJ

Type

Figure 4.12: Application of category 3 with Aspect.PJ== Zone Actor et Aspect.type==
delet.
In Figure 4.12, for the application of the third category, in this rule we positioned the
aspect on the actor zone (the join point) with the aspect type set to ‘delet’

In Figures 4.13 and 4.14, the Python code for the first Delet rule:

r .
| o
z] . Diagram
| —F= [

edit LHS #8

Fl=getAtir("F1', 7"}
AD=getAUte("AD", "7}
Type=getAtr{ "Typa™, 771

Condition :(:I _gehl'_ tr(” Hellf_-;ullrﬁ-id'_ug_Je P]
Hl=getAttr("MameZonelntrl' ,"27)
NizgetAttr("MameZoneDialogue” "4")
| Md=getAtir ["MameZonelntrl', "'5") o

| Name”™ | " Model

=M

PJ

Type

Figure 4.13: The LHS of the first delete rule (Python code).

40

——
| —

Chapter 4: Proposed Approaches

0
p)
_ ~ Diagram
| -m—l% [

edit RHE #22

A=getltter] 'Mane' ,'7")
cetAttr ["MamaCnterl ', "ASP"24, "137)
. S=getattr{ SynchroneZontrl”,"3°)
Action setAttr "Synchroneentrl’ 5, °117)
HModel=getitir("Model”,'@")
setAttr("Model® , "WEAVER", 8")

ok | coneet]

’&3”“‘/ Model
AD

PJ
Type

Figure 4.14: The RHS of the first delete rule (Python code).

0 0
Diagram)
Diagram
2
—
4]
H 2
|
D
Model
8
T
[Name Model
[5) AD
J
Type

Figure 4.15: Application of category 3 with Aspect.PJ== Destroy et Aspect.type==

In Figure 4.15, for the application of the third category, in this rule we positioned the

aspect on destroy (the join point) with the aspect type set to ‘delet’

delet.

41

——
| —

Chapter 4: Proposed Approaches

1.3 Explanatory example:

To highlight our approach, we have chosen to explore a case study example to
demonstrate the transformation steps (the rules). We applied our approach to a detailed
sequence diagram of the authentication case. We proposed a base model as well as an

aspect model for this diagram. The aspect model includes three aspects:

e Dialogue-Script: This aspect allows verifying the information entered in the

authentication form
e Verify Security: for information security.
e Deleting the "destroy" object.

In Figure (4.10), we present the base model.

detailed sequence diagram

~

s =) o [)

i:
ofessapy on3 |'g - l

basic__model

Figure 4.16: Basic Authentication Model.
In Figure (4.11), we present the aspect model of authentication.

-

.y 1.1 Tvarityyy

Di ue-Script

linevieDilg
Authentication-form
create

Aspect Model
Figure 4.17: Authentication Aspect Model.

42

——
| —

Chapter 4: Proposed Approaches

The integration between the base model (an Object-Oriented Sequence Diagram) and the
aspect model is achieved by executing T_O2A, which contains the proposed graph
grammar. Thus, we obtain the composite model represented in Figure (4.12).

detailed sequence diagram

% category2

. i, O [
| Corttr

'| i] ot
' categoryl a’ ‘
| | Sacaty

i .

e 7
r Aklt 111 category3

Pl Mli

" I oy - I .

' i —
) t oBesseyy oug |'g @ l
..: =)
VWEAVER

Figure 4.18: The weaver model.

2 Transformation of Aspect-Oriented Detailed Sequence Diagrams into
RDPs:

In this approach, we perform the transformation of an aspect-oriented detailed sequence
diagram into PN (Petri Nets) by composing the source model (the composite model
containing the aspect-oriented detailed sequence diagram). This yields the target model
(the Petri Nets). We conduct this transformation through meta-modeling. The
transformation method takes as input a source model that includes the aspect-oriented
detailed sequence diagram. After applying the rules of graph grammar, we obtain PN as
output.

2.1 Model Transformation Process:

In this approach, the transformation relies on transformation rules. These rules express
the semantics in the following table:

43

——
| —

Chapter 4: Proposed Approaches

Source state and notation:

Description

Target state and notation

Actor

That transforms the actor
into a place because there is
no change in state.

[

Place

Actor activity zone

That transforms the actor’s
activity zone into a
transition because it
performs a state change.

‘-

Transition

@

Boundary

That transforms the
boundary into a place
because there is no change
in state.

@

Place

Boundary activity zone

That transforms the
boundary’s activity zone
into a transition because it
performs a state change.

‘-

Transition

O

Control

That transforms the control
into a place because there is
no change in state.

[

Place

Control activity zone

That transforms the
control’s activity zone into
a transition because it
performs a state change.

‘-

Transition

[]

That transforms the entity
into a place because there is
no change in state.

@

Entity
Place
That transforms the entity’s
l activity zone into a
transition because it
) I performs a state change. T
Entity activity zone
Transition

X

Destroy

That transforms the destroy
into a place and a transition
because it is a final state.

e g

Place and transition

44

——
| —

Chapter 4: Proposed Approaches

That transforms the Petri-Net
diagram framework into a
Petri net framework

T Petri-Net framework
diagram framework

Loop That transforms the Loop
operation into a place and a
transition as it's performed
in a loop.

P

Loop operation Place and transition

Table 4.1: Expresses the semantics of this approach.
2.2 Meta-modeling:

The meta-modeling of Petri Nets consists of three classes and three associations. In
Figure 4.13, we present the meta-model for Petri Nets.

Place

Conditign

+ Pname : string = P -'\ Transition
+ Tokens : string

+ Tname : string=T

%

;|

Loy

FN
+ PN : string = Petri-Net

Figure 4.19: Meta-model of Petri Nets.
Classes:

e PN: This class represents the Petri Net framework. It contains an attribute <PN> of
type string, displaying "Petri-Net" by default. Graphically, it is represented by a
black rectangle.

e Place: This class represents the place. It contains an attribute <Pname> of type
string, displaying "P" by default, and an attribute <Tokens> of type string.
Graphically, it is represented by a green circle.

e Transition: This class represents the Transition. It contains an attribute <Tname>
of type string, displaying "T" by default. Graphically, it is represented by a pink
rectangle.

Associations:
e Condition: Connects the <Place> class and the <Transition> class. It contains an
attribute <Condition> of type string.

45

——
| —

Chapter 4: Proposed Approaches

e Action: Connects the <Transition> class and the <Place> class. It contains an
attribute <Action> of type string.
e 2p: Connects the <PN> class and the <Place> class. The link is invisible.

Figure 4.14 illustrates the generated tool for manipulating Petri Nets:

DWMZF EEREnAhaE=0 BEEH A> HussBSMER +> @ 1

Figure 4.20: The generated tool for Petri Nets.
2.3 The proposed graph grammar:

In this approach, we introduce a grammar consisting of fifty-six (56) rules. These rules
will be executed in an order determined by the motif (T). Each rule consists of two parts: a
left-hand side (LHS) and a right-hand side (RHS). These rules are then divided into three
categories based on the transformation of objects, defined as follows:

+ Creation: For transforming, the object and aspect in the aspect-oriented detailed
sequence diagram into a PN.

+ Linking: to connect the PN objects and aspect from the aspect-oriented detailed
sequence diagram.

+ Deletion: for removing the aspect-oriented detailed sequence diagram that
conclude the transformation.

In the following figure, the pattern (T_OA2RDP) of this graph grammar for this approach
is represented:

46

——
| —

Chapter 4: Proposed Approaches

: ' VA 4 i brd 9
F F r i F F . F F
R_Act?P :R_f(}JtZZoneA :R_?ﬂtZZoneE :R_Ré¢tour2DIg :R_# nchroneH2E :R_déletDlg ‘R_
—v X FHe—X T lg—X [— “Lj :
%_ﬁetourEZE i :#_ﬁeleionenlg /‘Z?lv/x
Alt
i [T

F F
:R_DIg2P " :)!ljioneMZone. :: [;oneEzzonej :/E{ _/?ecursiantr
—g—X [T—X —
R_S

F
F F . F o X F F i F
‘R_Cntri2P :H_ZoneA2Destrpy / ﬁ_ZoneEZDestr ‘ : / :?(_Cntrmreaten / -ﬁ_deletCntﬂ
1 ‘ [—g X emerm— [/ —— X
F
P
ni

<

F F 2
‘R_Ent2P /R_DIBZZoneDIgl / :R_Synchroneztiu ‘R_Asynchrone? f:R_CntrICreateE i / ‘R_deletZoneCniy!
m—r [AT —X f | —g—X L T | “—g—X
[F
:R_ZonAct2T / .R_ZoneDZZon* :R_Asynchrone!gg :R_Relour2Cntry / :R_EntCreateEﬂ ‘R_deletEnt

X | g X X %] X [Ty X]
:R_deletZonf/En !

—1

[x]
20
[
Q
=]
o
I~

F F

R ZonDIg2}1 "| :RZoneD2fest :R_RetourZA?[‘R_Synchrone(3

[m— =g
F .

:R_Cntrl;%one(y ‘R_RecursjiDlg R Asynchfonedzq| ‘R-Rdp / 7 :R_Dest?{y

]

J\VVK / W / F F il F F
R ZgnEnt2T / F :R_Zyﬁeczzo){e ‘R_Synchrone2dntrl | R Retgurcac :R_delf/t.l\ct /l R_Logp /l
et I e | %’ = g vy S]|
:F}ZDestrov?”T |1 :%ZCntrICre te2 :aiuu :I?/_Asynchr neZCntrl :I?/_Synchro?{eEﬁ :sfdeletZor,AAc :I?{ref /

7 X b3 ’ A L X

v X

~

|
|

:R_Zoan{irIZT

—

7 v X

Figure 4.21: The transformation pattern of the approach.

Categoryl: the creation rules are applied to create a PN based on an aspect-oriented

sequence diagram.
In the following figures, we illustrate the rules of the first category:

Figure 4.22: Application of Category 1 on the actor.

47

et

——

Chapter 4: Proposed Approaches

1] 0
l .
9
Trame

Figure 4.23: Application of Category 1 on the actor Activity Zone.

Category2: The linking rules are applied to connect Petri net based on the linking of
object and aspect from the aspect-oriented detailed sequence diagram.
In the following figures, we represent the rules of the second category:

e ® \\ e
._,._.,.... . 1 a
' & —1

Figure 4.25: Application of Category 2 on the synchronous message.

uojjpuo)

i

48

——
| —

Chapter 4: Proposed Approaches

Category3: the deletion rules are applied to remove objects and aspects from the aspect-
detailed sequence diagram after the transformation.
In the following figures, we represent the rules of the third category:

Figure 4.26: Application of Category 3 on "destroy"

Figure 4.27: Application of Category 3 on "Entity"
3 Representation of the TINA tool:
The figure 4.27 and 4.28 illustrates the tool used to verify the Petri nets obtained from the
transformation.

——
N
©

| —

Chapter 4: Proposed Approaches

File Edit View Tocls Help

& FOeE—&Lk XDEH ©

Figure 4.28: Representation of the TINA tool (Input).

ChUsers\hp\Desktop\Verification\OutileGenerer\buffer ktz - O *
digESt | places 3 transitions 2 net |b0unded ¥ live | M reversible | M
abstraction count props peets dead live

help states |] | 3 | 6 | 1 | 1
| 7 | 2 | 2 | o | o

transitions

state 0
props L.scc*S p0*2 pl
trans t0/1 tl/2

state 1

props L.scc*3 p0 pl p2
trans t0/3 tl/4

state 2

props L.scc*4 pl*2 p2 —
trans t0/4

state 3
props L.scc pl p2*2
trans tl/5

state 4 :‘
Kl

Figure 4.29: Representation of the TINA tool (Output).

4 Explanatory Example:

To illustrate our approach, we chose to explore an example case study to demonstrate the
transformation steps (the rules). We applied our approach to an aspect-oriented detailed
sequence diagram of the authentication case. In Figure (4.18), we present the composite
model (Weaver) of the authentication case after executing T_OA2RDP, which contains the
proposed graph grammar. We obtain the Petri net, represented in Figure (4.30).

50

——
| —

Chapter 4: Proposed Approaches

Petri-Net

/‘

\ Tes3 P5.1 Error Message i _//

Figure 4.30: Authentication Petri Net.

Figure 4.30 shows the result of the verification of the Authentication Petri Net in the TINA
tool.

& Ch\Users\hph\Desktop\\Verification\Exemple Explicatiflbuffer.kiz

= P | places 18 transitions 11 net | bounded ,T live | M reversible | M

abstraction count props psets dead live

help states | 2 | 18 | 2 [1 [1
| 1 | 1 | 11 | |

transitions

state 0O
props L.scc PClient
trans Tzal/l

state 1
props {PEnter information (UsserMName & password)l pl
trans

Figure 4.31: Analysis of the Authentication Petri Net.

5 Results and Discussion:
a) Results:

In this memory, we propose two new approaches. There are several previous studies that
are related to our approaches:

+ The works related to the first approach, which involves transforming object-
oriented diagrams into aspect-oriented diagrams, include the work of M. Aouag
(2014) titled "Des diagrammes UML 2.0 vers les diagrammes orientés aspect a
I’aide de transformation de graphes". In addition, the work of A. Zerara (2020)
titled "La génération d’un outil de transformation des diagrammes UML 2.0 vers

o1

——
| —

Chapter 4: Proposed Approaches

les diagrammes orientés aspect, basée sur la transformation de graphes”. We have
conducted a comparison with the works related to our research in Table 4.2.

he comparaison
work

Comparison

M.Aouag,2013

A. Zerara,2020

Our Approach

Points

Design Model Class diagram, State-transition Detailed sequence
Activity diagram, diagram. diagram.
and Communication
diagram.

Join point Any part of the Any part of the Components of
model. model. detailed sequence

diagram.

Advice Any part of the Any part of the Components of
model. model. detailed sequence

diagram.

Aspect A graphical model A graphical model A graphical model
contains the join contains the join contains the join
points and advices to | points and advices to | points and advices to
be added. be added. be added.

Graph Based on graph Based on graph Based on graph

transformation.

transformation.

transformation.

Graph grammar

By given execution
order.

From a graph
grammar and by
given execution
order.

From a graph
grammar and a (T)
pattern.

Modeling tool

ATOM3

ATOM?

ATOMPM

Table 4.2: Comparison of Approaches for Transforming into Aspect-Oriented Diagrams.

+ The works related to the second approach, which involves transformation into Petri
nets for verification purposes, include M. Bouarioua (2013) with his approach
based on graph transformations for generating analyzable Petri net models from
UML diagrams, and R. ElI Mansouri (2009) with his work on modeling and
verifying business processes in virtual enterprises using a graph transformation-
based approach. We have conducted a comparison with the works related to our
research in Table 4.3.

*
he comparaison | M.Bourioua,2013 R. Elmansouri, 2009 | Our Approach
work
Comparison
Points
Transformation Modeling and Modeling and Modeling and
Approach verification of UML | verification of verification of

diagrams

business processes

UML2.0 diagrams

52

——

et

Chapter 4: Proposed Approaches

Design Model Simple sequence Simple sequence Detailed sequence
diagram, State diagram, Business diagram
transition diagram processes

Graph Based on graph Based on graph Based on graph

transformation

transformation

transformation

Verification Method

Transformation to

Transformation to

Aspect-oriented

Petri nets Petri nets transformation to
Petri nets
Modeling Tool ATOM? ATOM? ATOMPM
Verification Tool TINA INA TINA

Table 4.3: Comparison of Petri Net Transformation and Verification Approaches

b) Discussion:

+ In the first approach, the focus is on detailed sequence diagrams, providing a finer
granularity for aspect-oriented transformations. It specifies these elements within
the components of the detailed sequence diagram, thereby allowing a more precise
localization of variation points. Additionally, our method integrates a (T) pattern to
structure the transformation, which could offer extra flexibility in defining the
transformations. Our approach also stands out by using ATOMPM, a tool that
could provide additional or enhanced functionalities tailored to our specific needs.
In conclusion, our method proposes specific improvements, including finer
granularity with detailed sequence diagrams and the use of a potentially more
suitable modeling tool, ATOMPM. These distinctions can lead to more precise and
flexible transformations, better meeting the specific requirements of certain
modeling projects.

+ In the second approach, we rely on the use of detailed sequence diagrams, allowing
for a finer and more precise analysis. Furthermore, we take it a step further by
transforming them into aspect-oriented diagrams for Petri nets, thereby providing a
more nuanced perspective on verification. To achieve this, we use ATOMPM, a
tool specifically adapted to our method. In summary, our approach offers a more
detailed and specific method for modeling and verifying aspect-oriented diagrams
into Petri nets, enhancing the accuracy and scope of verification.

Conclusion:
In this chapter, we have proposed two approaches to transform a source model into a
target model based on graph transformations. The two approaches are:
e Transformation from object-oriented detailed sequence diagrams to aspect-oriented
detailed sequence diagrams.

e Transformation from aspect-oriented detailed sequence diagrams to Petri nets.

We have proposed a meta-model for the input model and the output model for the first
approach, as well as two meta-models for the second approach. Then, we have formulated
a graph grammar to perform the transformation from an object-oriented detailed sequence
diagram to an aspect-oriented detailed sequence diagram. The result is then transformed
into Petri nets using the AToOMPM modeling tool. The obtained Petri nets are then verified
using the TINA verification tool. Finally, we discuss our work in relation to other works
related to our research.

53

——
| —

Chapters
Case Studies

Chapter 5: Case Studies

Introduction:

In this chapter, we implemented our transformation method on two case studies. The
first one aimed to convert detailed object-oriented sequence diagrams into detailed aspect-
oriented sequence diagrams. Subsequently, we applied a second approach to transform the
obtained diagrams (the detailed aspect-oriented sequence diagrams) into Petri nets for
verification. The first case study focuses on reservation in a travel agency, and the second
on managing a shopping center.

1 Case Study on Booking in a Tourist Agency:

1.1 Transformation from Object-Oriented to Aspect-Oriented:

To demonstrate our approach, we applied it to booking in a tourist agency. We employed
the detailed sequence diagram to represent the base model. Then, we introduced the aspect
model representing the following three aspects: Security, Verifylnformation and
DeleteDestroy.

a) Security: This aspect allows verifying authentication security, positioned on the
client

b) Verifylnformation: This aspect verifies whether the information entered by the
client is correct or not, positioned on the actor zone za2 and the boundary zone zd2.

c) DeleteDestroy: This aspect facilitates deleting the reservation database once its
usage is completed. , positioned on the destroy

+ Base and Aspect Models for the Detailed Sequence Diagram:
» Basic Model:

In Flgurg5 .1), we present the basic model for the detailed sequence diagram.
etailled_ _sequence_ diagram :

basic _model
Figure 5.1: The Basic Model.
= The Aspect Model:

In Figure (5.2), we present the aspect model of the detailed sequence diagram.

54

——
| —

Chapter 5: Case Studies

linevieAct
Cllent

create

Aspect Model

Figure 5.2: The Aspect Model.
+«+ Composite Model for the Detailed Sequence Diagram:

In Figure 5.3, we present the composite model, This model results from the integration of
the basic model and the aspect model, which is a detailed aspect-oriented sequence
diagram where we add:

o The actor zone to the client.

o Recursive messages to the boundary zone zd2.

o And remove the destroy.

detailed_sequence_diagram :

T e

- f——

(

4.

l®
S

WEAVER
Figure 5.3: The Weaver.

55

——
| —

Chapter 5: Case Studies

1.2 Transformation from Aspect-Oriented to Petri Nets:

In the second approach, we used the detailed aspect-oriented sequence diagram obtained
from the first transformation of the reservation modification case. We then applied the
proposed graph grammar to this diagram to generate the corresponding Petri net.

@, ;
- - - "
Ommasd €11 .-
" . "
= ' @
) A
T2 PLiactlam cumeon Lucatord - . \
PR)
O o -
: L
N @
4
@ - @ 0
@ i
Vet
’ |
P Crr e o
ST /

Figure 5.4: The Petri Net of the reservation modification case.
1.3 Verification of the Petri Net:

Finally, we perform a verification on the result of the second approach (on the Petri net)
of the reservation modification case.

In the following figure, we present the result of verification:

digest

help

| places | 26

transitions | 13

net

| bounded | v live [N

reversible M

abstraction
states

transitions

count

props

psets

dead

live

[4

[26

4

1

[1

[3

[13

13

10

[0

state 0

props
trans

statce
props
trans

statce
props
crans

statce
props
crans

K

L.scc*3 PClient
TLSPSecuritv/1l

1
L.scc*2 pl
Tzal/2

2
L.scc {Pl.Select()}
TzaZ/3

3
{P1l.Select ()}

B2

{P2 . Modify (Date,

duration, Location)} p3

Figure 5.5: The result of the verification of the Petri Net for the reservation modification

case in TINA.

56

——
| —

Chapter 5: Case Studies

+ Based on the results:

Bounded = Y: The network is bounded.

Live = N: The network is not live.

Reversible = N: The network is not reversible

From the "dead" column, we deduce that there exists a dead state and 10
transitions are unreachable.

2 Case Study on the management of a shopping mall:
2.1 Transformation from Object-Oriented to Aspect-Oriented:

To demonstrate our approach, we applied it to mall management (Adding a promotion).
We employed the detailed sequence diagram to represent the base model. Then, we
introduced the aspect model representing the following four aspects: decision evaluation,
update, product availability, and Validate Information.

a) decision evaluation: Allows making decisions based on the entered information,
positioned on the controller zone zcl.

b) update: This aspect updates the entries in the database table by adding a
promotion, positioned on the entity promotion.

c) product availability: Verifies the availability of products before adding a
promotion, positioned on the controller zone zc1.

d) Validate Information: Validates the information for adding a promotion,
positioned on the actor zone zal and the boundary zone zd1

+ Base and Aspect Models for the Detailed Sequence Diagram:
= Basic Model:

In Figure (5.6), we present the basic model for the detailed sequence diagram.
detailed sequence diagram

~ ~
T i

Authenticate

basic model
Figure 5.6: The Basic Model.

S7

——
| —

Chapter 5: Case Studies

= The Aspect Model:

In Figure (5.7), we present the aspect model of the detailed sequence diagram.

f‘ ™
uet
(U
linevieEntity
Promotion
Ve
rify() o
lien
e >

Aspect Model
Figure 5.7: The Aspect Model.

«+ Composite Model for the Detailed Sequence Diagram:

In Figure (5.8), we present the composite model, which is an aspect-oriented detailed
sequence diagram where we add:

o Controller zone to zcl.

o Entity zone to the entity promotion.

o Controller with his zone to zcl.

o Asynchronous Message to the actor zone zal and the boundary zone zd1.

detailed sequence diagram :

d 0 e . L.
)| | | |
Authenticate
- !H_:_I:_:L_:EI = = -]
L= e
T — | J
WEAVER T

Figure 5.8: The Weaver.

[=)

Chapter 5: Case Studies

2.2 Transformation from Aspect-Oriented to Petri Nets:

We transformed the composite model, which is an aspect-oriented sequence diagram of
the promotion addition case, into a Petri net.

/ e
F2Varity() Py}
,,
TAEPproduct avalablily
wvaluaticn

Figure 5.9: The Petri Net of the promotion addition case.

\\

Nl

2.3 Verification of the Petri Net:

Finally, we perform a verification on the result of the second approach (on the Petri net)
of the promotion addition case.

In the following figure, we present the result of verification:

digest places I 22 transitions | 13 net bounded IT live IT reversible IT
abstraction count props pets dead live
help | states 1 22 1 1 1
transitions 0 13 13 13 0
state 0
props PSeller
trans

Figure 5.10: The result of verification of Petri Net for the promotion addition case with
TINA.

59

——
| S—

Chapter 5: Case Studies

+ Based on the results:

= Bounded = Y: The network is bounded.

= Live = N: The network is not live.

= Reversible = Y: The network is reversible

= From the "dead" column, we deduce that there exists a dead state and 13
transitions are unreachable.

Conclusion:

In this chapter, we applied our transformation method to two case studies: the first
concerning reservations in a travel agency, and the second related to the management of a
shopping center. For each case study, we first converted the detailed object-oriented
sequence diagrams into detailed aspect-oriented sequence diagrams. Then, we used the
resulting diagrams to apply the proposed graph grammar and generate the corresponding
Petri nets. Finally, we performed a verification on the Petri nets for each case.

60

——
| —

Conclusion
and
Perspectives

Conclusion and Perspectives

Conclusion:

Object-oriented modeling has long been favored in the field of software engineering for
the design and development of software systems. Despite its clear advantages in
representing system structures and behaviors, this approach does have certain limitations.
One of its main shortcomings lies in its ability to effectively manage cross-cutting
concerns. In light of these challenges, aspect-oriented modeling emerges as a promising
solution. By introducing the notion of aspects, this approach allows for better separation of
concerns and more efficient management of cross-cutting aspects, leading to clearer and
more modular software design, reducing complexity, and improving system
maintainability.

In this memory, we proposed an approach based on graph transformation to generate
aspect-oriented sequence diagrams from object-oriented sequence diagrams. This approach
relies on meta-modeling, with the definition of a meta-model for the sequence diagram.
Then, we presented a set of rules for the transformation, carried out using the AToMPM
modeling tool.

After performing the transformation of object-oriented sequence diagrams into aspect-
oriented sequence diagrams, we applied our approach to several representative case
studies. Finally, we proposed an extension of our approach by suggesting the
transformation of the obtained aspect-oriented sequence diagram model into formal
models, such as Petri nets, to enable system verification and validation. This approach aims
to enhance the reliability and robustness of the developed software, thereby contributing to
ensuring its quality and compliance with specified requirements. Our proposed approach
involves defining a meta-model for Petri nets and proposing a graph grammar. We take as
input the result of the first transformation (the aspect-oriented sequence diagram). Then,
we apply this graph grammar to obtain the corresponding Petri net. Then, we make a
comparison between works related to our work and discuss this comparison. Finally, we
applied our approach to case studies.

Verification is essential to ensure that the transformed Petri net respects the essential
properties, thereby ensuring the accuracy and reliability of the modeled system. To
conclude our work, we verified the generated Petri nets using the TINA tool.

Perspectives:

As perspectives, we propose to:
Study in detail how to transform the interaction frames of the detailed sequence diagram,
whether alt, ref, loop, or opt, into Petri nets.
To develop a fully automated approach and generalize it to other types of UML diagrams,
we plan to continue transforming other aspect-oriented UML diagrams into Petri nets using
graph transformation and the AToMPM tool. Additionally, we intend to transform the
aspect-oriented UML models into BPMN (Business Process Model and Notation) models,
and subsequently convert these BPMN models into Petri nets.
Concurrently, we will work on integrating our approach into existing software
development tools to facilitate its use by practitioners in the field. LOTOS (Language Of
Temporal Ordering Specification) is a formal specification language widely used for the
verification and validation of Petri nets. We propose in our future works to use LOTOS to
verify our Petri nets. In addition, we can propose using the TGG (Triple Graph Grammar)
modeling tool for model transformations, as it is considered the best among the others.

61

——
| —

Bibliographic References

Bibliographic References:

[AMROUNE,2014] AMROUNE, Mohammed. (2014). VERS UNE APPROCHE
ORIENTEE ASPECT D’INGENIERIE DES BESOINS DANS LES ORGANISATIONS
MULTI ENTREPRISES. Thése de Doctorat. UNIVERSITE DE TOULOUSE. Pp : 50
[Aouag,2023] Course support Aouag Mouna 2023 Disponible sur:
https://elearning.centre-univ-
mila.dz/a2024/pluginfile.php/69978/mod_resource/content/0/Chapitre%2002_%20Les%20
R%C3%A9seaux%20de%20P%C3%A9tri%20 RDP.pdf (Consulté le 01/06/2024)
[Aouag,2014] Aouag, Mouna. (2014). Des diagrammes UML 2.0 vers les diagrammes
orientés aspect a 1’aide de transformation de graphes. These de doctorat, Université de
Mentouri, Constantine. Pp :11-33

[Audibert,2008] https://www.fichier-pdf.fr/2011/05/08/cours-uml/preview/page/14/
[AToMPM Documentation] AToMPM Documentation — AToMPM 0.10.0
documentation (Consulté le 05/05/2024)

[BAHRI,2011] BAHRI, Mohamed Redha. (2011). Une approche intégrée Mobile-
UML/Réseaux de Petri pour I'Analyse des systemes distribués a base d'agents mobiles.
Theése de doctorat, Université Mentouri Constantine. Pp: 32-68

[Boualita et Laggoune,2021] Boualita, Salim. Et Laggoune, Fouad. La génération d'un
outil de transformation des modeles orientés aspect vers des modeles formels. Une
approche basée sur la transformation de graphes. Mémoire de master. Centre universitaire
Mila. Pp :6

[Boubendir,2011] Boubendir, Amel. (2011). Un cadre générique pour la détection et la
résolution des intéraction entre les aspects. Thése de doctorat, Université de Mentouri,
Constantine. Pp: 19-36

[BENDIAF,2018] BENDIAF, Messaoud. (2018). SPECIFICATION ET VERIFICATION
DES SYSTEMES EMBARQUES TEMPS REEL EN UTILISANT LA LOGIQUE DE
REECRITURE. Thése de Doctorat. UNIVERSITE MOHAMED KHIDER BISKRA. Pp:
78-79

[CHERIEF et MELIANI,2020] CHERIEF,Saliha. Et MELIANI,Toufik. (2020). Une
Approche De transformation et D'analyse Des Diagrammes D'activités. Mémoire de
Master. Université Djilali Bounaama-Khemis Miliana. Pp: 62-74

[David et Alia,2005] Rene David et Hassane Alia.”Discrete, Continuous, and Hybrid Petri
Nets”. New York: Springer Berlin Heidelberg. 2005. 524p.

[Dehimi,2014] Dehimi,Nardjess, Tissilia.(2014). Un Cadre Formel pour La Modélisation et
L’analyse Des Agents Mobiles. Thése de Doctorat. Université de Mentouri Constantine. Pp
: 66-67

[Dib et Saadaoui,2023] Dib, Wiam.et Saadaoui, Amani. Spécification formelle des
modeles orientés aspect, une approche basée sur la transformation de graphes et le langage
Maude. Mémoire de master. Center universitaire Mila. Pp :4-9

[EIMansouri,2009] EIMansouri, R. (2009). Modélisation et Vérication des processus
métiers dans les entreprises virtuelles : Une approche basée sur la transformation de
graphes. [En ligne]. Available: https://bu.umc.edu.dz/theses/informatique/ELM5432.pdf.
[Accés le 1 juin 2024].

[Guerrouf,2011] GUERROUF FAYCAL. (2011). Une approche de transformation des
Diagrammes d’Activités d’UML Mobile 2.0 vers les Réseaux de Petri. Memoire de
magistere. Université EI Hadj Lakhdar BATNA. Pp :28-32

62

https://elearning.centre-univ-mila.dz/a2024/pluginfile.php/69978/mod_resource/content/0/Chapitre%2002_%20Les%20R%C3%A9seaux%20de%20P%C3%A9tri%20_RDP.pdf
https://elearning.centre-univ-mila.dz/a2024/pluginfile.php/69978/mod_resource/content/0/Chapitre%2002_%20Les%20R%C3%A9seaux%20de%20P%C3%A9tri%20_RDP.pdf
https://elearning.centre-univ-mila.dz/a2024/pluginfile.php/69978/mod_resource/content/0/Chapitre%2002_%20Les%20R%C3%A9seaux%20de%20P%C3%A9tri%20_RDP.pdf
https://atompm.readthedocs.io/en/latest/
https://atompm.readthedocs.io/en/latest/

Bibliographic References

[HACHICHI,2013] HACHICHI, Hiba. (2013). Test formel des systemes temps réel:
Approche de transformation de graphes. These de Doctorat. Université Mentouri de
Constantine. Pp : 25

[HADDOUCHE, DAHAMNA,2022] HADDOUCHE, MEBARKA. Et DAHAMNA,
NOURA ELALDJA. (2022). La transformation automatique des diagrammes d’états-
transitions vers les réseaux de Petri. Mémoire de Master. Université Mohamed EI Bachir
Ellbrahimi de Bordj Bou Arreridj. Pp15

[Hamri,2017] HAMRI, Hakima. (2017). Contribution a la commande des systémes a
événements discrets soumis a des contraintes temporelles. Thése de doctorat.
UNIVERSITE MOULOUD MAMMERI DE TI1ZI-OUZOU. Pp :10
[HAMROUCHE,2010] HAMROUCHE, Houda. (2010). Une Approche de transformation
des diagrammes D’activitét d’UML vers CSP basée sur la transformation de graphes.
Memoire de magistere. UNIVERSITE 20 AOUT 1955 SKIKDA. Pp : 42-43
[HAOUES,2006] HAOUES, MOHAMMED. (2006). L’UTILISATION CONJOINTE
DES RESEAUX DE PETRI STOCHASTIQUES ET DES PROCESSUS DE MARKOV
POUR LA MODELISATION, L’ANALYSE ET L’EVALUATION DES
PERFORMANCES D’UN SYSTEME DE PRODUCTION : LIGNE D’EMBOUTISSAGE
DE L’ENTREPRISE B.A.G BATNA. Mémoire de Magister. UNIVERSITE EL-HADJ
LAKHDAR BATNA. Pp: 27

[Hettab,2009] HETTAB ABDELKAMEL. (2009). De M-UML vers les réseaux de pétri «
Nested Nets »: une approche basée sur la transformation de graphes. Thése de doctorat.
Université de mentouri Constantine. Pp:58-74

[Kerkouche,2011] Kerkouche, Elhillali. (2011). Modélisation Multi-Paradigme : Une
Approche Basée sur la Transformation de Graphes. These de doctorat. Université de
Mentouri, Constantine. Pp: 9-52

[Khalfaoui,2014] khalfaoui, Khaled. (2014). Une Approche de Spécification des
Changements des Besoins Basée Transformation de Graphes. These de doctorat,
UNIVERSITE MOHAMED KHIDER BISKRA. Pp : 21-25

[Laouar,2013] Laouar, Adnane. (2013). Une approche de transformation de diagrammes
d’activités oriente aspects vers les réseaux de pétri colores basée sur la transformation de
graphes. Mémoire de master. Université de constantine2. Pp :16-33

[Ludovic,2009] Ludovic, Auxepaules. (2009). Analyse des diagrammes de 1’apprenant
dans un EIAH pour la modélisation orientée objet - Le systeme ACDC. These de doctorat.
Université du Maine USA. Pp :19-28

[MEDJANI,2020] MEDJANI, Djedjiga. (2020). Analyse des Performances d’un Systéme
de Gestion de Stocks a Produits Périssables par les RAPSG. Mémoire de Master. Université
Abderahmane Mira de Béjaia. Pp : 31-32

[Otmane Rachedi,2015] Otmane rachedi, Soumeya. (2015). Apports des Approches de
Séparation Avancée des Préoccupations: Une Etude Comparative Fondée sur les Modéles
de Conception. Thése de doctorat. Université de Badji Mokhtar Annaba. Pp :17-18

[Pascal Roque, 2008] Pascal roques, Uml 2 par la pratique, Paris : Eyrolles, 2008, 246p.
[SAGGADI,2007] SAGGADI, Samira. (2007). Optimisation des temps d’attente des
systemes flexibles de production basée sur les réseaux de Petri. Mémoire de Magister.
Universit¢ M’hamed Bougara Boumerdes. Pp :25

[Syriani et al,2013] Eugene, Syriani. Hans, Vangheluwe. Raphael, Mannadiar. Conner,
Hansen. Simon Van, Mierlo. And Huseyin, Ergin. ATOMPM: A Web-based Modeling
Environment [en ligne]. 2013.vol 1080. Disponible sur: https://ceur-ws.org/Vol-
1115/demo4.pdf (Consulté le 05/05/2024)

[TINA Documentation] The TINA toolbox Home Page - TIme petri Net Analyzer - by
LAAS/CNRS (Consulté le 01/06/2024)

63

https://ceur-ws.org/Vol-1115/demo4.pdf
https://ceur-ws.org/Vol-1115/demo4.pdf
https://projects.laas.fr/tina/index.php
https://projects.laas.fr/tina/index.php

Bibliographic References

[Zerara et Megrous,2020] Zerara, Ahmed. Et Megrous, Fares. (2020). La génération
d’un outil de transformation des diagrammes UML2.0 vers les diagrammes orientés aspect

basé sur la transformation de graphes. Mémoire de master. Centre universitaire Mila.
Pp :23-28

64

