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Abstract

Optimizationis a critical tool in the scientific community, driving advancements
and solving complex problems across various domains. Among the various
optimization techniques, metaheuristics have gained prominence for their flex-
ibility and effectiveness. Differential Evolution (DE), a leading metaheuristic
algorithm, is widely used due to its efficiency and robustness in handling di-
verse optimization challenges. DE has been successfully applied in numerous
real-world applications, including engineering design, machine learning, and
financial modeling. Despite its strengths, DE faces many challenges such as
balancing exploration and exploitation and maintaining performance in high-
dimensional spaces. The performance of DE is largely attributed to the param-
eters and operators used. Motivated by this, we combine ideas from different
existing approaches to enhance DE'’s capabilities. This includes modifying the
basic fixed population size and employing various operator strategies with pa-
rameter control techniques. By doing this, we aim to improve the efficiency of
DE across diverse optimization scenarios. Through extensive experimentation
using the BBOB benchmarking environment, the new approach demonstrates

promising results.

Keywords: Optimization, Differential Evolution (DE), Parameter Control.



Résumé

L'optimisation est un outil essentiel dans la communauté scientifique, favorisant
les avancées et résolvant des problémes complexes dans divers domaines.
Parmi les différentes techniques d’optimisation, les métaheuristiques ont gagné
en importance grace a leur flexibilité et leur efficacité. L'évolution différentielle
(DE), un algorithme métaheuristique de premier plan, est largement utilisée en
raison de son efficacité et de sa robustesse a traiter divers défis d’optimisation.
La DE a été appliquée avec succes dans de nombreuses applications réelles, y
compris la conception d’ingénierie, I’apprentissage automatique et la modéli-
sation financiere. Malgré ses forces, la DE fait face a de nombreux défis, tels
quel’équilibre entre exploration et exploitation et le maintien des performances
dans des espaces de haute dimension. La performance de la DE est en grande
partie attribuée aux parameétres et aux opérateurs utilisés. Motivés par cela,
nous combinons des idées de différentes approches existantes pour améliorer
les capacités de la DE. Cela inclut la modification de la taille de la population
fixe de base et 'utilisation de diverses stratégies d’opérateurs avec des tech-
niques de controle des parametres. En faisant cela, nous visons a améliorer
I'efficacité de la DE dans divers scénarios d’optimisation. Grace a des expéri-
mentations approfondies utilisant I’environnement de benchmarking BBOB, la

nouvelle approche démontre des résultats prometteurs.

Mots clés : Optimisation, Evolution Différentielle (DE), Controle des

Parametres.
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General Introduction

Optimization is becoming increasingly vital in the scientific community, driving advance-
ments and solving complex problems and The more complex the difficulties, the more
crucial it becomes. Various methods are employed to tackle optimization problems includ-
ing exact algorithms which systematically explore the solution space to guarantee optimal
solutions. In contrast, approximate methods such as heuristics and metaheuristics do not
guarantee optimal solutions but are often more practical for large or complex problems.
Heuristic approaches apply rules of thumb to quickly find good-enough solutions by
focusing on local searches and exploiting problem-specific knowledge. Metaheuristics
on the other hand, employ more flexible and advanced techniques, inspired by natural
processes like evolution or swarm behavior, to explore and exploit the search space effi-
ciently. Our focus lies on these metaheuristic methods, aiming to leverage their robust
mechanisms to find high-quality solutions in diverse optimization scenarios.

As a new branch of evolutionary algorithms (EA), the Differential Evolution (DE)
algorithm shares a similar structure with EA, including three important evolutionary op-
erators: mutation, crossover, and selection. The performance of DE primarily relies on
these operators and their associated parameter settings. DE has attracted great attention
from scientific researchers due to its success in solving various numerical and real-world
problems, ease of use, speed, and robustness. Despite its proven performance in optimiza-
tion, DE suffers from an imbalance between the exploration of the search space and the
exploitation of promising regions. Additionally, its performance decreases with increas-
ing dimensions, Further limitations are discussed in [22]. To address these limitations,
several variants have been proposed. Some focus on fine-tuning the parameters of DE,
while others propose novel crossover or mutation strategies to optimize its performance.

Motivated by the limitations of DE, we have proposed a variant of this algorithm that
divides the parent population into three sub-populations based on fitness values. Each

sub-population employs a different mutation strategy, responsible for either exploitation



or exploration. Additionally, we incorporate an adaptive control of parameters /' and CR
in each sub-population.

To present our work, we have organized it as follows:

Chapter 1 discusses the definitions of optimization problems and various resolution
methods, including exact and approximate methods. It also covers the classification of
resolution methods, single-solution metaheuristics like Simulated Annealing and Tabu
Search, and population-based metaheuristics such as Genetic Algorithms, Differential
Evolution, and Particle Swarm Optimization. Additionally, it includes a critical review of
some metaheuristics based on metaphor.

Chapter 2 delves into Differential Evolution (DE) variants, discussing various adapta-
tions of the DE algorithm. It covers DE with adaptation of F and Cr parameters, adaptive
population size control, new or improved mutation strategies, new or improved crossover
strategies, and hybrid DE algorithms. Additionally, it explores the applications of DE.

In Chapter 3, we present the main contributions of our work. We begin by discussing
the motivations that led us to study the parameters and operators of the Differential
Evolution (DE) algorithm. Following this, we introduce the variants of DE that we have
developed. We then present the experimental results of the proposed approaches, tested
and validated using COCO platform.

Finally, our manuscript concludes with a general summary that recapitulates our work

and the results obtained, while also suggesting potential future directions for research.



CHAPTER

1

Optimization and Metaheuristics

Introduction

Optimization is essential in many fields, providing a framework for addressing complex
tasks by modeling them as problems with defined objectives, such as minimizing cost
or maximizing quality. Problems are categorized into discrete and continuous domains,
allowing for the selection of appropriate algorithms. Continuous optimization, which
deals with solutions that vary across a range of values, is particularly important for
real-world issues like parameter tuning in machine learning [60] and optimal resource
allocation in engineering [5]. Thus, the subsequent sections primarily focus on continuous
optimization.

This chapter covers optimization problem definitions and classifications, resolution
methods (both exact and approximate), and metaheuristic approaches. We will analyze
single-solution strategies like Simulated Annealing (SA) and Tabu Search (TS), as well as
population-based techniques like Genetic Algorithms (GA), Differential Evolution (DE),
and Particle Swarm Optimization (PSO). Finally, we will critically examine metaphor-

based metaheuristics from the perspective of experts.

1.1 Definitions of an optimization problem

Optimization is the process of finding the best solution or achieving the optimal out-
come from a set of feasible alternatives. In the context of single-objective continuous
optimization problems:

min f(x), st. z€S

where x = (21,9, ..., 2p) represents a candidate solution to the D-dimensional opti-
mization problem defined by the objective function f(-), which we aim to minimize (or

maximize). The search space S is defined by the upper bound vector a = (ay, as, ..., ap)
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Figure 1.1: Classical optimization methods [71].

and the lower bound vector b = (by,bs,...,bp), such that a; < x; < b; for all i €
{1,2,...,D}. These constraints, also known as bound constraints, give rise to the term

continuous optimization with bound constraints.

1.2 Resolution methods

In optimization, resolution methods refer to a range of strategies and algorithms used to
identify the best solutions to challenging problems. These methods are often classified
into two categories: exact methods and approximate methods. Each method within these

categories has its algorithm to guide the optimization process, as illustrated in figure 1.1:

1.2.1 Exact Methods

In the context of optimization, exact methods refer to algorithms or approaches designed
to find the best solution to a given optimization problem within a finite amount of time.
Typically, these techniques involve exhaustive search across the entire space of feasible
solutions or direct computation using mathematical formulas to determine the optimal
solution. They stand in contrast to heuristic or approximation approaches, which are
often faster and more scalable for complex or large-scale problems, although they may

not always guarantee optimality [33].



1.2.2 Approximate Methods

Approximate methods, such as heuristics and simulations, often provide solutions to
optimization problems that are potentially suboptimal. These methods use computational
techniques to find feasible solutions within a reasonable timeframe [33]. Within the
category of approximate methods, two subclasses of algorithms can be distinguished:

approximation algorithms and heuristic algorithms.

1.2.2.1 Heuristics

When tackling large-scale problems, heuristics perform well by providing adequate per-
formance at reasonable costs across various problem types, although they usually do not

guarantee optimal or near-optimal solutions [71].

1.2.2.2 Metaheuristics

Researchers have defined metaheuristics in various ways. Here, we will present some of
these definitions:

According to Talbi [70], the term "heuristic" originates from the ancient Greek word
"heuriskein," which means the art of discovering new strategies or rules to solve problems.
The suffix "meta", also a Greek word, means "upper level methodology".

In 2003, Blum and Roli [7] defined a metaheuristic as "a high-level problem-independent
algorithmic framework that provides a set of guidelines or strategies to develop heuris-
tic optimization algorithms". The objective is to effectively search the space in order to
identify nearly ideal solutions.

Metaheuristics are defined by Michel Gendreau [50] as "strategies that guide the search
process by learning from the generated solutions so far". Stated differently, they utilize
the data gathered throughout the search process to concentrate their efforts on more
promising areas within the solution space.

In general, a metaheuristic method is particularly relevant for solving search and
optimization problems. This approach utilizes one or more heuristics, inheriting three
key properties [4]: (i) it aims to find a near-optimal solution rather than the exact optimal
solution, (ii) it typically lacks a rigorous proof of convergence to the optimal solution, and

(iii) it is usually computationally faster than exhaustive search.

1.2.2.3 Classification for Metaheuristic Optimization Methods

[4] states that there are multiple criteria that can be used to classify optimization methods.

Below, we discuss a few popular standards for grouping these algorithms:



1. Categorizing metaheuristics according to the domain that they mimic: For metaheuris-
tics, catch-all phrases like "nature-inspired” and "bio-inspired" are frequently em-
ployed. They can be further divided into three subcategories: algorithms based on

physical phenomena, swarm intelligence, and evolution.

2. Another often used criterion for categorizing metaheuristic methods is the number of
initial solutions that are changed in successive rounds. Single-solution metaheuristics
begin with a single starting solution that is iteratively changed. It should be noted
that while several solutions may be used throughout the modification process, each
subsequent iteration will only employ one solution. Multiple starting solutions are
used to begin optimization in population-based metaheuristics. Many solutions are

updated in each iteration, and some of them move on to the next.

3. Deterministic versus stochastic methods: Deterministic approaches depart from the
random initial solution(s) in a predetermined direction. Probabilistic jumps from the
present solution(s) to the next are possible using stochastic methods, also referred

to as discontinuous methods.

4. Greedy versus non-greedy methods: Greedy algorithms typically start their search
near the current solution solution and switch to a superior one as soon as it is
discovered. This behavior often leads to a local optimum. Non-greedy approaches
either offer a mechanism to escape from a local optimum or delay changing the

solution(s) for a few iterations.

1.3 Single-Solution Metaheuristics

In optimization, a class of techniques known as single-solution metaheuristics is devoted

to iteratively refining a single solution.

1.3.1 Simulated Annealing Algorithm

Kirkpatrick et al. [45] were the first to propose simulated annealing (SA) as a method
for solving discrete optimization problems. SA has also been applied to continuous
optimization problems. While the theoretical aspects of continuous simulated annealing
have been explored by fewer researchers compared to its discrete counterpart, significant
research on continuous simulated annealing was conducted by Dekkers and Aarts [29],
who not only provided a theoretical convergence proof but also developed an algorithm
for solving continuous optimization problems.

Most notably, there are similarities between the discrete simulated annealing process

and the continuous SA algorithm, but also differences. When comparing discrete and



continuous optimization problems, SA uses distinct definitions for neighbors of solutions
in the design space. A small variation in the configuration defines the neighborhood of
a solution for combinatorial optimization problems (e.g., a 2-change neighborhood for
the traveling salesman problem). However, in continuous optimization problems, the
neighborhood of a solution is defined by distances in the design space, which makes it
easier to consider than in combinatorial problems. Determining the neighborhood range
for generating the next point is crucial for continuous optimization problems [39]. If
the neighborhood range is set at a fixed range, each problem should have its own range
established.[51]

The advantages and disadvantages of SA are well summarized in [39]. Among its no-
table disadvantages are the substantial time required to find the optimum solution and the
difficulty in determining the appropriate cooling schedule. Despite these challenges, SA is
theoretically sound, efficient, and simple to implement [36]. By accepting moves that dete-
riorate the objective function value in the pursuit of finding a global optimum, simulated
annealing offers a method to escape local optima, which is its primary characteristic.

The pseudo code 1.1 outlines the key steps of the Simulated Annealing algorithm.

Algorithme 1.1 Simulated Annealing Algorithm.

Initialize current solution Seyrrent

Initialize temperature T’

Initialize cooling rate a

Initialize stopping criteria

while 7' > stopping criteria do
Generate a new solution Syew by making a small change to Scurrent
Calculate energy difference AE = energy(Snew) — energy (Scurrent)
if AE < 0or e 2E/T > random number between 0 and 1 then

Accept Shew as the current solution: Scurrent <= Snew

end if
Reduce temperature: 7' <— a x T

: end while

: return S.yrrent

o

1.3.1.1 Variants of Simulated Annealing Algorithm

Over time, numerous variants and improvements to the basic Simulated Annealing (SA)
algorithm have been introduced to enhance its efficacy in tackling diverse optimization
challenges. [36] provides a comprehensive overview of SA and its enhanced variants,
including Fast Simulated Annealing (FSA), Sequential Monte Carlo simulated annealing

(SMC-5A), and a newly proposed scheme called Curious Simulated Annealing (CSA).



1.3.2 Tabu Search Algorithm

A metaheuristic called Tabu Search (TS) was first created by Glover [34]. It has been
effectively used to solve a number of combinatorial optimization issues. On the other
hand, its application to the global minimization of functions dependent on continuous
variables is the subject of very few works. Let us briefly review the adaptation of Glover’s
concept to the continuous case in [65]. The algorithm, called CTS, begins with an initial
solution s that is chosen at random. This present solution, s, generates a collection of
neighbors, s’, from it. The neighbors of the current solution, which are part of a later
established "tabu list", are systematically removed in order to prevent the risk of a cycle
arising. For every generated solution s’, the objective function to be minimized is assessed,
and even if the best neighbor of s is worse than s, it becomes the new current solution.
S is added to a circular list of tabu solutions following each ‘move’; when the list is full,
the initial solution entered is removed. Then, a fresh "iteration" is carried out, where the
prior process is repeated beginning from the new current position,until some stopping
condition is reached. Usually, the algorithm terminates without improving the value of
the objectif function after a predetermined number of rounds. The main steps of the Tabu

Search algorithm are described in the pseudo code 1.2.

Algorithme 1.2 Tabu Search Algorithm.

0: Choose an initial solution curr

1: N(curr) < Find a subset of f(curr), neighbors of curr that are not in the tabu list

2: Find the best one (next) in set N(curr)

3: If f(next) < f(curr) then set curr = next > positive move
4: If f(next) > f(curr) > negative move
5. Update tabu list, curr < next

6: Go to second step, till the stopping condition.

1.3.2.1 Variants of Tabu Search Algorithm

TS has several variants to tackle complex optimization problems. Jaeggi et al [41] de-
veloped Multi-Objective Tabu Search (MOTS) and Pareto Ranked Multi-Objective Tabu
Search (PRMOTYS) for continuous multi-objective optimization. Additionally, Chelouah
and Siarry [13] introduced a hybrid method combining Continuous Tabu Search (CTS)
with the Nelder-Mead Simplex algorithm to enhance global optimization of multiminima
(multimodal functions) functions. These adaptations showcase the versatility of TS in

optimizing various challenges.



1.4 Population-Based Metaheuristics

These algorithms operate on a population of candidate solutions, drawing inspiration
from (1) evolutionary biology principles such as selection, mutation, and crossover; (2)
swarm intelligence behaviors observed in flocks of birds, schools of fish, and colonies of
ants; and (3) other natural phenomena like the immune system’s response to pathogens. Let

us now explore a few notable examples:

1.4.1 Genetic Algorithm

Genetic algorithms (GAs) are based on the natural reproduction and evolution of living
organisms. Populations change over many generations according to "survival of the fittest"
and natural selection theories. Holland [42] developed the basic ideas of GAs in detail,
and they have been successful in resolving a wide range of combinatorial optimization
issues.

Holland’s concept is modified for the continuous case as follow: An initial population
of n "individuals" is used by the algorithm at the beginning, each individual is made up of
real coordinates that are correspondingly linked to the variables of the current objective
function. This population uses the reproduction operators, which are motivated by genet-
ics, children are produced from parents. The best individuals are chosen to constitute the
new population. One wants to gradually enrich the population with the most productive
individuals by repeating this process. The "crossover," which involves transferring certain
coordinates between two individuals, and the "mutation,” which involves creating a new
coordinate at a specific location for one individual, are the typical methods of reproduction

[12]. This process is illustrated in pseudocode 1.3.

Algorithme 1.3 Classical Genetic Algorithm.

Initialize necessary parameters;
Initialize a population of n individuals;
Evaluate the n individuals;
while The stopping condition is not satisfied: do
Use the selection operator to select K individuals;
Apply the crossover operator on the selected K individuals with probability F,;
Apply the mutation operator on the individuals with probability P,,;
Use the evaluation operator to evaluate the offspring;
Use the selection operator to replace some parent individuals with offspring indi-
viduals;
10: end while
11: Return the best solution(s);

Genetic Algorithms (GAs) utilize various operators during the search process, includ-



ing encoding schemes, crossover, mutation, and selection. In the following, we will focus

exclusively on the mutation and crossover operators.

1.4.1.1 Genetic Algorithm Crossover Operators

Crossover operators generate offspring by combining the genetic information of two or

more parents. Here are some of the well-known crossover operators:

» Heuristics Crossover (HX): It was introduced in [75]. This operator creates a

biased offspring from a pair of parents by favoring the superior one. Specifically, an

offspring y = (y1,%2, ..., yn) is formed from parents xV = (z{" 2V .. 21} and
x® = (2P 2P, .. 4?)). Therefore, each offspring element y; is defined as:
yi =u- (2 — 2y 4 2 (1.1)

where u represents a uniformly distributed random number within the interval [0, 1],
and the parent z(? has a fitness value that is not worse than that of parent x(!.

» Arithmetical Crossover: This operator performs a linear combination of genetic
information from two chromosomes (parent solutions) to produce offspring with

new genetic traits[49]. It is expressed mathematically as :
g = e+ (1= Nz (1.2)

y? =M+ (1= N)z? (1.3)

)

where x(

and x represent the i-th design variables of parents from the previous
generation, and yl- ) and yi ) denote the i-th design variables of the childs in the
current generation. \ is random number within the range [0, 1].

» Laplace Crossover (£LX): The Laplace crossover, introduced by the authors of [28] for
real coded genetic algorithms (RGAs), utilizes the Laplace distribution (also known
as the double exponential distribution). The Laplace distribution’s probability den-

sity function (pfd) is defined as:

flz) = 2ibexp (_]a:_;cd) , —oo<x<oo (1.4)

and its cumulative distribution function (CDF) is given by:

exp <M> if r < a;
F(z) = (1.5)
1—%exp <—@) if x> a;

where a € R is the location parameter and b > 0 is the scale parameter.

10



In the Laplace crossover (LX), two offspring are generated from a pair of parents
x® = @V 2 2y and x®@ = @ 2P 2P) as follows: Initially, a uni-
form random number u is generated within the interval [0, 1]. Using the inverse
of the Laplace distribution’s cumulative distribution function, a Laplace-distributed

random number 3 is computed:

a—blog,(u) ifu<i;
= i (1.6)

a+blog, (u) ifu> 3.
The offspring are then calculated using the following equations:

o =4 B o — ) a7)

y® =2 1+ 5. |z — 2@ (1.8)

For smaller values of /3, the offspring are expected to be generated close to the parents,

whereas larger values of j lead to offspring that are from the parent solutions.

1.4.1.2 Genetic Algorithm Mutation Operators

Mutation is an operator that maintains genetic diversity from one population to the next.

The well-known mutation operators are:

» Non-uniform mutation: Maintaining the same level of random mutations all over
the evolutionary process could result in an ineffective search. In fact, while bigger
mutations might be required early on to promote exploration, smaller mutations
might be helpful later on to promote exploitation and improve the search. The Non-
Uniform Mutation (NUM) operator for real-coded GA has been proposed in [48] to
achieve this adaptive behavior. This operator is defined:

Let x; = 21,...,21,...,2p € RP denote the real-coded vector representing the
current solution at the ¢-th iteration (where ¢ is the iteration counter), with x;, being
the element selected randomly for variation through this mutation.

NUM generates the offspring solution: x;1 = {z1,...,2},...,2p}, where:

xr + At U, —x ifn=1;
a={ " (U —a0) it (1.9)

$k—A(t,$k—Lk) 1f77: —1;

The variable 7 is a random digit that takes either the value —1 or 1, and L; and
Uy are the lower and upper bounds of the variable z;, respectively. The function
A(t,y) given below takes value in the interval [0, y]. A(t,y) = y(1 — u'~7)" where u

is a uniformly distributed random number in the interval [0, 1], 7" is the maximum
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number of iterations, and b is a parameter, determining the strength of the mutation
operator.

» Direction-based Exponential Mutation: Direction-based exponential mutation (DEM),
introduced in [21], creates shifted solutions by using exponential functions and the
directional information of the variables. It mostly consists of two parts: A. Obtain-
ing directional information of the variables: The mutation operator uses variable
directional information to guide algorithms to reach globally optimal solutions. It
calculates average values in each generation, compares them with previous ones,
and considers positive or negative directional information, except for the first and
second generations.

B. Generating mutated solutions using directional information and exponential func-
tions: The mutation operator applies variable-wise independently, biasing mutated
solutions to the search direction. A probability value of mutation P,,, directional

probability P, is introduced to ensure the accuracy of the obtained information.

® When directional information is positive
A mutated solution Y, is generated from a parent solution Y, using equation
(1.10) if a randomly generated number r; (ranging from 0 to 1) is less than or

equal to P;. Otherwise, Y, is derived from equation (1.2).
Y, =Y,+Bl-(Y,-Y,) (1.10)

Y=Y, — B2- (Y, ~ Y1) (1.11)

® When directional information is negative
The mutated solution Y,, is computed using equation (1.3) if r; < P;. Other-

wise, if r; > P, Y, is obtained using equation (1.4).
Yo=Y, — Bl (Y, — Yy) (1.12)

Y, =Y, + B2 (Y, —Y,) (1.13)

where Y, and Y}, are the upper and lower limits of the variable,respectively.B1
and B2 represent two different perturbation values for mutation, calculated as

follows:
bl =e¢" - el?) (1.14)

bl = e L gD (1.15)

» Polynomial Mutation: The polynomial mutation operator proposed in [27] perturbs

a solution in the region of a parent using a polynomial probability distribution. The
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mutation operator modifies the probability distribution to the left and right of a
variable value so that no value is produced beyond the given range [a,b]. The
mutant solution y; for a given variable is constructed for a random integer u created

within [0, 1] for a given parent solution z; € [a, b], as follows:

z; + 07 - (v, —a;), foru<0.5,
Yi = (1.16)

€T; — SR . (bz — ZL'Z'), for u > 0.5.
Then, either of the two parameters (3, or dp) is calculated, as follows:

85, = (2u)Tm, foru < 0.5 (1.17)

Sp=1—(2(1—u))™m, foru> 0.5 (1.18)

1.4.1.3 Genetic Algorithm Variants

Researchers have proposed numerous variants of Genetic Algorithms (GAs). These vari-
ants can be broadly categorized into five main types: real and binary coded GAs, multi-
objective GAs, parallel GAs, chaotic GAs, and hybrid GAs. For more details about these

categories and the approaches they encompass, refer to [43].

1.4.2 Differential Evolution Algorithm

Price and Storn [68] introduced Differential Evolution (DE) as an evolutionary algorithm
tailored for optimizing continuous domain problems. DE evolves dynamically by adjust-
ing its search strategy: initially, it introduces significant perturbations due to the large
distances between parent populations. As evolution continues, populations converge, and
perturbations decrease adaptively. This leads to focused exploitation in mature stages and
extensive exploration in the early phases. DE’s distinctive selection process creates each
offspring by mutating and recombining current population members, directly comparing
it with its parent [59]. For a deeper understanding of DE’s principles, operators, and

variants, refer to Chapter 02.

1.4.3 Particle Swarm Optimization Algorithm

In [44] Drs. Russell C. Eberhart and James Kennedy developed the Particle Swarm Op-
timization (PSO) technique as an approach inspired by how schools of fish and flocks
of birds behave. In this algorithm each particle in a search space represents a possible

solution. The location and velocity vector of the i particle in dimensional space can
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be written as: z; = (@1, T2, ..., 2ip) and v; = (vi1, Vo, ..., vip), respectively. After the
particles are randomly initialized the position and velocity of the particle indexed as ™"

are updated in accordance with the following equations:

vi(t + 1) = wvi(t) + err(pi — (L)) + cara(pg — (1)) (1.19)

where w, the inertia’s weight, can be utilized to regulate how much the old speed
influences the current one. The weights of p; and p, are determined by two constants,
c; and c;. Whereas p, indicates the best prior location of all the particles in the current
generation, and p; represents the best previous position of each particle. As a result, two
independently produced random variables with uniform distributions in the interval [0, 1]
are represented by r; and r,. To illustrate the previously indicated description, Algorithm

1.4 presents the pseudo-code.

Algorithme 1.4 Pseudo-code of Particle Swarm Optimization Algorithm.

1: 1. Initialization
2: 1.1. Find the initial population by clustering method
3: 1.2. Calculate the objective function of initial solutions (f)
4: 1.3. Set initial velocity vector equal to zeros
5: 1.4. Set P, = f, G, = min(f), (G, is Gbest and P, is Pbest)
6: 2. Repeat the following steps until the stopping condition is met
7: a) Update G}, and Py:
8: fori =1: PS (Population Size) do
9: if f; < Py(i) then
10 Py(i) = f;
11: end if
12: end for
13: b = min(f), (bis the best solution of the current generation)
14: if b < G} then
15: Gy=2>
16: end if
17: b) Generate nest population by using (2) and (3)

—
0]

: ¢) Checking the feasibility of generated solutions (f)
: 3. Report the best solution

—_
\O

1.4.4 Metaphor-based metaheuristics

With the rapid increase in metaphor-based metaheuristic algorithms in recent years, the
prevalence of algorithms that are markedly similar yet differently named has become a

common issue. This raises a critical question: can an optimization technique truly be
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deemed 'novel’ if its search characteristics are only slightly modified or nearly identical to
those of existing methods? To address this question, a critique of metaphor-based meta-
heuristics was provided in [2] by optimization experts, who presented several arguments

and points:

1. Useless metaphor: The use of metaphors to inspire numerous metaheuristics re-
mains highly debated. A comprehensive compilation of "novel" algorithms (source:
https:/ /github.com/fcampelo/EC-Bestiary) indicates that developing metaheuris-
tics which only partially mimics a real-world process may not merit their inclusion
in the scientific literature. Furthermore, the mathematical model and the implemen-

tation of the algorithm often fail to accurately reflect the intended metaphor.

2. Lack of novelty: Evidence suggests that the rationale for introducing new metaphor-
based metaheuristics based on innovative behavioral concepts is often unfounded. It
is increasingly common to find that concepts claimed as novel in these metaheuristics
have already been proposed in earlier publications, sometimes years earlier. What
typically differentiates these "novel" metaheuristics is their adoption of non-standard
terminology, which leads to misunderstandings in the literature, complicates un-
derstanding of existing metaheuristics, and hinders theoretical and experimental
comparisons.

3. Poor experimental validation and comparison: Biased computational experiments
can yield misleading results, often comparing the performance of "novel" meta-
heuristics run on newer processors against those on older ones, and/or limit ex-
perimentation, creating an inaccurate picture of performance . Additionally, rather
than testing new metaheuristics against the best-performing algorithms on standard
benchmarks, comparisons are frequently made with algorithms, which are far from
the state-of-the-art.

1.5 Conclusion

This chapter has provided the foundation for understanding what optimization is. We
have discussed the difference between exact methods and approximate methods used to
solve these problems. Additionally, we have explored single-solution metaheuristics and
population-based metaheuristics in detail, emphasizing their importance in addressing
various optimization challenges.

In the next chapter, we will explore various versions of the Differential Evolution (DE)

algorithm in detail and, clarifying their specific applications.
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CHAPTER

2

Differential Evolution Variants

2.1 Introduction

With all its nuances, novelties, and abstract computational structure, the differential evo-
lution algorithm takes the idea of evolutionary computation to the next level. Arguably
one of the most formidable meta-heuristic algorithms for tackling complex real-world
problems, DE has undergone significant development since the publication of the first
comprehensive survey article by Das and Suganthan in 2011. Over the past 13 years, nu-
merous advancements have emerged across various facets of the algorithm, culminating
in an impressive state of research and application. Unlike several other evolutionary com-
putation techniques, basic DE stands out for its simplicity, requiring only a few lines of
code in any standard programming language for implementation. Moreover, the canoni-
cal DE boasts minimal control parameters—precisely three: the scale factor, the crossover
rate, and the population size—rendering it easily accessible to practitioners.

In this chapter, we explore various DE variants and their practical uses in solving
optimization problems. We will look into the details of some of these variants, including

adaptations of parameters, new mutation and crossover strategies, and hybrid methods.

2.2 Principle of Differential Evolution

Price and Storn [68] introduced Differential Evolution (DE) as a kind of evolutionary algo-
rithm for solving optimization problems across a continuous domain. DE’s key principle
is to modify the search strategy as it grows. Due to the parent populations’ great distances
from one another, there are significant perturbations early in the evolution. The popu-
lation converges to a small region when the evolutionary process reaches maturity, and
the perturbations reduce to an adaptive level. Consequently, the evolutionary algorithm

performs a local exploitation in the mature stage of the search and a global exploratory
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search in the early phases of the evolutionary process. In Differential Evolution (DE),
the process of selecting individuals for the next generation is unique compared to other
evolutionary algorithms. each offspring (child) is generated by mutating and recombin-
ing the current population members. After creating an offspring, it is directly compared
to its corresponding parent (the specific individual from which it was generated). This
means the offspring does not compete with the entire population but only with its direct

predecessor (the parent) [59]. The basic DE algorithm is presented in Pseudo-code 2.1.

Algorithme 2.1 Basic Differential Evolution (DE) Algorithm.

1: t+1

2: Initialize P, = {x14, ..., xn+} randomly

3: while The termination criteria are not met do
4: fori e {1,....,N} do

5 Generate the mutant vector v;; using a mutation strategy with F
6: Generate the trial vector u;, by crossing z;, and v;; using a crossover method
with CR
7: end for
8: foric {1,..,N} do
9: if f(uiy) < f(xi,) then
10: Titr1 < Uit
11: else
12: Tit+1 € Tig
13: end if

14: end for
15: t+—t+1
16: end while

2.3 Differential Evolution operators

Various types of crossovers and mutations operators are employed in Differential Evolu-
tion (DE), each playing a crucial role in the optimization process to to effectively explore
and exploit the search space. Among them, the DE/rand/1 mutation and binomial

crossover are widely recognized as two of the most commonly used strategies.

» DE/rand/1 Mutation: The differential evolution algorithm’s mutation strategy is
represented by the notation DE/x/y where x stands for the reference vector in
the mutation operation, y for the number of differential vectors in the mutation
operation, and DF for differential evolution algorithm. The most popular method
of mutation is to take two individuals at random from the population, measure the

differences in their vectors, and then use another random individual to do vector
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creation. The following is the obtained mutation individual V;:
VAt = XS+ F- (X5 - X5%) (2.1)

where r1, r2, and r3 are randomly generated integers ranging from 1 to NP, and
rl # r2 # r3 # i; G represents the current generation number; and F' denotes the

scaling factor.

Binomial Crossover (uniform): Following the mutation phase, a crossover operation
is performed to produce a trial vector for each pair of the target X; - and the matching

mutant vector V; g:

Usz - (UZ{G, UiG, ceey U,EG)
In the basic version, DE employs the binomial (uniform) crossover defined as follows:

‘ v ., if (rand; < CR) or (j = jean
u‘iG — ’L,G ( ] — ) (] ] d) (2.2)

xif’G, otherwise

where the crossover rate C'R, a user-specified constant in the interval [0, 1], de-
termines the percentage of parameter values that are replicated from the mutant
vector, and j = 1,2,...,D. An integer j.q,q is selected at random from the set [1,
D]. If rand;[0,1] < CR Or j = jana, then the binomial crossover operator duplicates
the j'h parameter of the mutant vector V ¢ to the corresponding element in the trial
vector U; . If not, it is taken from the matching target vector X ..

Exponential Crossover: The exponential crossover was created to resemble the one-
point and two-point crossover variants found in genetic algorithms. As a result, the
trial vector includes a sequence of consecutive components (in a circular manner)
taken from the mutant vector[78]. The structure of the trial vector can be described as

shown in Equation where j is random number between (1,D) and D is the dimension

V. wherej =1+ j mod Dif rand[0,1] < CRorj =D — 1;
t 2y}
Ul = ’ (2.3)

J .
r;,, otherwise,

Selection: The target vector X and the trial vector U{"' are compared using the
greedy selection approach in DE, and the vector with the better fitness value is

chosen.

G+1 G+1 G

XG

7

otherwise

where f(.) stands for the fitness value.
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Figure 2.1: Variants of DE algorithm.

2.4 Differential Evolution Variants

2.4.1 Differential Evolution with Adaptation of F and CR Parameters

A DE variation with an adaptive parameter control mechanism was reported in [30]. The
trial vector is generated using the DE/rand/1/bin strategy (two vectors are randomly
selected from the population, while the base is selected from the solutions in the range
of top 10% to 40% performing individualsand the authors defined two sets of allowable
values for F' and Cr. For every combination of F' and Cr values in the set, a counter
is first assigned and then reset to zero. A trial vector is created by randomly selecting
a set of control parameters; if that combination is chosen to go to the next generation,
the counter associated with that combination is incremented by one. The top half of the
performing combinations are chosen at each generational break, their counters are reset
to zero and the remaining combinations are deleted. The iteration count and combination
counters are reset to zero, signaling a restart, if the number of generations surpasses a
certain threshold.

The authors in [63] enhanced the previously described work by Elsayed et al. [30] by
dynamically identifying and utilizing the optimal set of DE control parameters, namely
NP, F, and Cr. The value of DE is reduced by the algorithm following a recurring se-

quence of generations. While the remaining solutions are archived, the superior solutions
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are retained in the smaller population. The DE corresponding to the best improved pop-
ulation is chosen as the current population size when the least value of DE is attained.
The average fitness improvement by the populations with varying numbers of members
is then determined. The maximum number of people needed from the archive is added
to the population. The mutation scheme used by Elsayed et al. [30] remains unchanged.
Das et al [25] proposed a straightforward DE strategy to solve large-scale optimization
problems where the values of the F'and C'r are switched uniformly randomly between two
extreme corners of their feasible ranges for different population members. This approach
avoids the need for complex parameter adaptation schemes or the addition of additional
local search methods. Additionally, every member of the population is modified using
either the DE /best/1 scheme or the DE/rand/1 method. The population member is
exposed to the same mutation technique that produced the previous successful update at
the same population index. On the high-dimensional functions generated under the CEC
(Congress on Evolutionary Computation) 2008 and 2010 competition on large-scale global
optimization, this technique demonstrated very competitive performance. The findings
show that solving benchmark functions can benefit greatly from combining the low value
(=0.5) with the large and unusual value of F' (= 2). The work of Das et al.[25] indicates
that much of the valuable information about F and Cr values can remain attached to the
borders of their feasible regions, in contrast to the standard DE algorithms that sample F'

values from the interval of (0.4, 1) and C'r values from (0, 1).

2.4.2 Differential Evolution with Adaptive Population Size Control

Three options for parameter adaptation were proposed together with a new population
reduction technique by Brest and Maucec [9]. The authors refer to these techniques
as jDEbin (self-adaptive DE/rand/1/bin), jDEexp (self-adaptive DE/rand/1/exp), and
jDEDbest (self-adaptive DE/best/1/bin). They all make use of the fundamental jDE (Brest
et al., [8]) type randomization of F' and Cr. One of these three approaches is used
in every algorithm iteration. The population reduction mechanism essentially lowers
the size of DE’s population on a predetermined timeline. The computational budged is
separated into periods more precisely. Each phase begins with a halving of the population.
Each individual is permitted to compete with another individual who follows the same
offspring generation strategy as the previous one in the suggested population reduction
process. By doing this, the DE seems to gradually narrow down the search and avoid the
undesirable stagnation effect.

Yang et al. [77] suggested a technique to modify the same based on population
diversity. Using the pair-wise Euclidean distance between each individual, their method

may determine whether there is insufficient diversity in the population. Once the right
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time has been found, the population is regenerated to increase diversity and reduce
the likelihood of stagnation. However, because Euclidean distances must be calculated

multiple times, this method can be somewhat costly for high-dimensional problems.

2.4.3 DE with New or Improved Mutation Strategies

In order to reduce the constraint violation of new solutions produced during the searching
process, Hamza et al. [37] suggested a new mutation technique that was influenced by
the constraint consensus (CC) method and integrated into DE. The CC technique actively
participated in the mutation process to lower the amount of new solutions that broke the
predefined constraints, in contrast to the majority of previous works that only took the
constraint violation issue into consideration during the ranking and selection processes
of solutions. During the search phase, the CC-based mutation technique was notably
limited to specific unfeasible solutions in order to retain population variety while reducing
runtime. According to simulation tests, the CC-based mutation technique can drastically
reduce runtime up to 44.7% and 10.6% for problems with dimensional sizes of 10 and
30, respectively, while improving DE in terms of solution quality. However, because of
the quick loss of population variety in the initialization phase, which determines the
possible search area of specified optimization issues, the CC-based mutation technique is
not effective in handling multimodal problems.

According to Gong and Cai (2013) [35], a mutation may be more successful if the base
vector and one of the difference vector’s terminal vectors are chosen at random, while the
third is chosen based on fitness. Nevertheless, a vector will only have a probability of
being chosen as a base or a terminal in order to reduce the process’s greed. The authors
suggested that the chance of a vector being chosen in a mutation can be computed based
on its fitness rank in the population, rather than using randomized or proximity-based
approaches. Thus, the suggested approach requires less computing power and is quicker.
It is necessary to sort the population in ascending order of fitness values, with the best
individuals at the top of the list. The rank value R; for the i™ solution is thus defined as

R,

NP - i. Then, we define p; = +% as the probability of choosing the i solution. The first

two vectors are picked in proportion to their likelihood of selection when three are chosen
for the DE/rand /1 method.

By referring to their individual cumulative scores, Sun et al. [69] changed standard

mutation schemes and presented a novel Gaussian mutation in their proposed Gaussian
Mutation and Dynamic Parameter Adjustment Differential Evolution (GPDE) to develop
new mutant vectors in a collaborative and adaptive manner. The scaling factor needed to
achieve the right balancing of exploration and exploration strengths was generated using

a periodic function. The fluctuant crossover rate derived from the Gaussian function was
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utilized to further improve the population diversity of GPDE and guarantee its strong

performance when handling intricate challenges.

2.4.4 DE with New or Improved Crossover Strategies

A variance-based DE method with an optional crossover (VDEO) was suggested by Al-
swaitti et al. [1] to handle data clustering optimization problems with better convergence
speed and solution quality. Initially, VDEO used a single-solution representation strat-
egy to get around the drawbacks of population-based solution strategies for formulating
and initializing the clustering optimization issues. To properly balance exploration and
exploitation searches, a vector-based mutation factor estimation and a switchable scheme
comprising of two mutation methods were then integrated into VDEO. The suggested
method sped up the algorithm’s convergence by comparing the fitness of the mutant and
trial solutions before moving on to the selection stage, taking into account the possibility
that a mutant solution would be more fit than its trial counterpart.

An epistatic arithmetic crossover operator, or eXEDE (Epistatic Arithmetic Crossover
Operator based on Cartesian Graph Product in Ensemble Differential Evolution), was
introduced by Fister et al.[32] into an ensemble DE variant. The impact of epistatic genes
in the context of evolutionary computation was taken into consideration by the epistatic
arithmetic operators, in contrast to the standard arithmetic crossover, by expressing the
epistatic as a graph product of two linear graphs represented by the candidate solutions
that are involved in the crossover process.

In order to address large-scale continuous optimization challenges, Mohamed et al.
[52] introduced a DE version called as adaptive novel DE (ANDE). In order to strike
the right balance between improved convergence speed and effective population variety
preservation, a new adaptation strategy was added to ANDE. This scheme allows each

solution’s crossover rate to be adjusted based on its historical searching experience.

2.4.5 Hybrid DE Algorithms

Hybridization is another popular method used to improve DE’s search performance by
combining the strengths of search operators from other computational intelligence algo-
rithms. Here are some examples of this approach:

2.4.5.1 Differential Evolution with Artificial Neural Networks

Mason et al. [47] introduced a hybrid approach termed multiobjective ANN (Artificial

Neural Network) with DE to lower the system’s cost and emissions. It is capable of
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solving DEED (Dynamic Economic Emission Dispatch) problems and approximating them
simultaneously.

A hybrid surrogate model of DE and ANN was created by Saporetti et al. [62] to
automatically classify petrophysical data and enhance reservoir characterization methods

in the oil sector.

2.4.5.2 Differential Evolution with Particle Swarm Optimization

To optimize the PID (Proportional-Integral-Derivative) controller’s parameter settings,
Moharam et al. [53] introduced a hybrid algorithm called aging leader and challengers
PSO and DE (ALC-PSODE). ALC-PSODE’s adoption of the aging leader and challenger
principles was helpful in resolving PSO and DE’s premature convergence problems, re-
sulting in a PID controller with reliable performance.

Song et al. [67] improved the design of a 3D wind turbine system using PSO and DE

to maximize output power and reduce costs.

2.4.5.3 Differential Evolution with with Genetic Algorithm

Hybridizing GA with DE as hGADE, Trivedi et al. [73] solved the unit commitment
scheduling problem. To further improve hGADE performance, a heuristic was added to
the population initialization approach.

To solve cloud computing applications, Li et al. [46] presented a hybridization of GA

and DE as part of a multi-objective optimization algorithm.

2.5 The Applications of Differential Evolution

Differential Evolution (DE) finds extensive application across various domains, owing to
its robustness and versatility in solving complex optimization problems, as presented in
Table 2.1.

Domains of Applica- | Problems Algorithms Name References
tion
Image DE/rand/1/bin [3]
Watermarking DE/target-to-best/1/bin | [3]
Image registration DE/rand/1/bin [31]
Pattern Recognition and
. and enhancement DE with chaotic local | [17]
Image Processing
search
DE/rand/1/bin [58]

Data clustering
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Domains of Applica- | Problems Algorithms Name References
tion
DE with neighborhood- | [24]
based mutation
DE with random scale | [23]
factor and time-varying
crossover rate
Controller Self adaptive DE [55]
design and DE/rand/1 with arith- | [40]
Control Systems and tuning metic crossover
Robotics DE/rand/1/bin with ran- | [6]
dom scale factor and time-
varying C,
. | DE/rand/1/bin and | [18]
Optimal contro DE /best/2,/bin
problems
modified DE with ad- | [19]
justable control weight gra-
dient methods
System identification Conventional [14] [11]
DE/rand/1/bin
Gene regulatory DE with adaptive local | [56]
networks search
Bioinformatics .
hybrid of DE and PSO [76]
Protein folding DE/rand/1/bin [66]
Bioprocess optimization | DE/rand/1/bin [54]
' Economic dispatch DE/rand/1/bin [57]
Electrical Power Systems
variable scaling hybrid DE | [15]
) Hybrid of ant system and | [16]
Capacitor placement
DE
DE/target-to-best/1/bin [10]
Optimal power
DE with random localiza- | [64]
flow

tion

Table 2.1: Classification of DE Applications [26].
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2.6 Conclusion

This chapter has examined various versions of the Differential Evolution (DE) algorithm.
We have looked closely at each variant, discussing how parameters can be adapted, new
mutation and crossover strategies, and how hybrid approaches are used. Additionally,
we have explored where these different DE variants are applied, showing the specific
problems they can solve.

In the next chapter, we will present an enhanced version of the DE algorithm.
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CHAPTER

3

Contribution: Boosting

Differential Evolution Performance

Introduction

The Differential Evolution (DE) algorithm remains a novel and ever-evolving method,
which researchers find interesting due to its potential for further improvement. In this
chapter, we aim to enhance the algorithm’s performance.We combines different strategies
from various variants to leverage the advantages of each, focusing on different aspects of
DE such as its operators and parameter setting. We will present the motivations behind
this approach, provide a detailed explanation of the techniques used and discuss of the

obtained results.

3.1 Motivation

Most variants of the DE algorithm evolve a single population using specific DE operators.
However, as nature has shown, the concept of work specialization—whereby a group is
divided into multiple smaller groups, each assigned a specific task based on its capabili-
ties—can enhance working efficiency, akin to the division of tasks among different types
of bees in a colony. Worker bees perform specialized roles such as foraging for nectar
and pollen, nursing larvae, and defending the hive. This division of labor significantly
boosts the overall efficiency and survival of the colony. Drawing inspiration from this
phenomenon, [20] divides the population into three sub-populations according to their
fitness values. Each sub-population is assigned specific tasks tailored to the capabili-
ties of its members. The primary reason for this division is to apply different mutation
strategies to each sub-population according to their characteristics. By doing so, we en-
sure a proper balance between exploration (searching for new solutions) and exploitation
(refining existing solutions). In our approach, we have adopted a similar strategy.

On the other hand, since the performance of DE is highly sensitive to its associated
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control parameters, numerous Parameter Control Methods (PCMs) have been proposed
for adjusting the scale factor and crossover rate to enhance DE performance. Based on
experiments conducted in [72], which extracted 24 PCMs for the scale factor and crossover
rate from their original complex DE algorithms and provided an in-depth benchmarking
study of them, we observed that generating F' and C'R from COBIDE (noting that this
method was proposed in DE variant called COvariance matrix learning and BImodal
distribution parameter setting (COBIDE) [74]) yielded superior results. Consequently,
we integrate COBIDE into our proposed variant as an integral component, enabling our

variant to dynamically adjust /" and C'R.

3.2 Description of the proposal

The following is a description of our proposal, termed the Cauchy-Partitioned Differential
Evolution algorithm (CPDE), which features parameter control based on the Cauchy
distribution.

After all the individuals are sorted in ascending order based on their fitness values, the
entire population is divided into three sub-populations, referred to as inferior, medium,
and superior sub-populations, as stated in the motivation. The rationale behind this di-
vision is as follows. The inferior sub-population, which includes individuals with better
fitness values that may be close to the global optimum, is responsible for exploitation.
A tiny perturbation is performed in the local area of the inferior sub-population to find
a better local or global optimum point. The medium sub-population, consisting of in-
dividuals with moderate fitness values, balances between exploration and exploitation
by performing moderate perturbations. This helps to maintain diversity while refining
potential solutions. The superior sub-population, composed of individuals with worse
fitness values that may be far from the global optimum, undertakes the task of exploration.
These individuals generally undergo larger perturbations to escape the local region and
approach a more promising area.

Heterogeneous mutation strategies are used to achieve the task of each sub-population.
Specifically, the worst individuals, constituting the superior sub-population, employ the
DE/rand/1 strategy (see Equation 3.1) to enhance exploration by making large perturba-
tions. Although this mutation has a slow convergence rate, it has a significant exploration

potential to avoid premature as indicated in [61].

V; = Tp1 + F- (IETQ - I,«g) (31)

The best individuals, in the inferior sub-population, adopt the DE /best/1 strategy (see

Equation 3.2) which has proven to have a quick convergence rate and excellent perfor-
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mance. It employ the best solution found so far to conduct additional research.

V; = Tpest T F- (wrl - er) (32)

The medium sub-population uses the DE /rand—to—best/1 strategy (see Equation 3.3),
This mutation combines elements from both the DE/rand/1 and DE /best/1 strategies.
By doing so, it uses the difference between randomly selected individuals to introduce
variability (exploration) while also incorporating information from the best solution found

so far to refine the search (exploitation).

V; =T + F - (Test — x3) + F - (201 — T792) (3.3)

As such, with the heterogeneous mutation schemes used, our variant is expected to
strike to attain a favorable equilibrium between exploitation and exploration in order to
be able to achieve good optimization performance.

After each sub-population generates its own mutant vector, we apply a repair strategy
to ensure the solutions remain within bounds. This strategy involves checking each
component of the vector: if a component is less than the lower bound, it is adjusted to the
lower bound; if it exceeds the upper bound, it is adjusted to the upper bound.

Next, the mutant vector is combined with a target solution (parent vector) using bino-
mial crossover (Note that we experimented with both binomial and exponential crossover
to create two variants.) to produce a trial solution. This process generates offspring that
inherit beneficial traits from both parents, potentially leading to improved solutions (see
Chapter1 for more details).

At the end of the evolutionary process, a selection operator is applied to determine
which individuals survive to the next generation. In our proposed variant, we use greedy
selection, which involves comparing the objective function values of two competing solu-
tions (the target vector and the trial vector). If the trial solution improves upon the target
solution, it is accepted; otherwise, the target vector is retained.

As for the parameter settings, a Bimodal Distribution is incorporated into the control
parameters of the mutation and crossover operators, following the same approach used
in COBIDE. We first randomly generate F' and C'R values from a Bimodal Distribution
composed of two Cauchy Distributions (see Equations 3.4,3.5). Subsequently, in each
iteration, the algorithm updates its parameters such that successful pairs of /' and C'R
values are inherited by each individual in the next iteration. Conversely, unsuccessful

pairs of F'and C'RR parameter pairs are replaced with newly generated values.
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randC(0.65,0.1) if randU(0,1) < 0.5
F = (3.4

randC(1.0,0.1)  otherwise

randC(0.1,0.1)  if randU(0,1) < 0.5
CR;; = (3.5)

randC(0.95,0.1) otherwise

Regarding the populationsize N, itis determined by N = 5xdimension if dimension >=
5 else 20, as used in [72]. For problems with a dimension of 5 or more, the population size
is set to 5 times the dimension. This scaling ensures that as the problem becomes more
complex (with increasing dimensions), the population size increases proportionally. A
larger population helps maintain diversity and improves the chances of finding a global
optimum in high-dimensional spaces. For problems with dimensions less than 5, the
population size is fixed at 20. This ensures that even for lower-dimensional problems, the
population size is sufficiently large for effective exploration and exploitation of the search
space.

The principle described above is illustrated in pseudo-code 3.1.

3.3 Description of the platform used in the experiments

3.3.1 Benchmark functions

An essential task in optimization research is identifying the strengths and weaknesses of
existing algorithms and comparing their performance, which in turn helps improve the
design of new algorithms. This task has been significantly automated in recent years with
the development of tools like the Comparing Continuous Optimizers platform (COCO).
COCO is an open-source platform designed for comparing continuous optimizers in a
black-box setting. It aims to automate the tedious and repetitive task of benchmarking
numerical optimization algorithms to the greatest extent possible. The platform and its
underlying methodology allow benchmarking of both deterministic and stochastic solvers
for single and multi-objective optimization within the same framework. Additionally,
COCO provides a growing archive of comparative benchmarking datasets to the scientific
community [38].

A testbed or benchmark suite consists of a collection of problems across various di-
mensions, typically ranging from 1000 to 5000 problems (number of dimensions x number

of functions x number of instances). The COCO framework provides several test suites:

1. BBOB: This suite includes 24 functions with 15 instances for each function across

dimensions 2, 3, 5, 10, 20, and 40. The functions are categorized into five subgroups:
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Algorithme 3.1 Cauchy-Partitioned Differential Evolution algorithm (CPDE)

1: Initialize:
2: Define dimension D and population size V.
3: Initialize population P = {1, ..., 2} randomly within bounds.
4: Initialize fitness values f(x;) for each z; in P.
5: Initialize function evaluation counter func_eval < N.
6: while termination criteria are not met do
7. Sort population P by fitness values f(z;).
8: Divide population into sub-populations: inferior, medium, superior.
9: Generate adaptive parameters F' and C'R for each sub-population.
10: for each individual z; in P do
11: Mutation:
12: if z; belongs to the inferior sub-population then
13: v; < bestl_mutation_strategy (P, best_individual, F;).
14: else if z; belongs to the medium sub-population then
15: v; < rand_to_best]l_mutation_strategy (P, best_individual, 7, F;).
16 else if z; belongs to the superior sub-population then
17: v; < rand1_mutation_strategy(P, i, F}).
18: end if
19: Repair:
20: Apply repair strategy to v;.
21: Crossover:
22: u; < binomialCrossover(z;, v;, CR;).
23: Evaluation:
24: Compute f(u;).
25: Selection:
26: if f(u;) < f(x;) then
27 Replace x; with u;.
28: end if
29: Increment function evaluation counter:
30: func_eval + func_eval + 1.
31: end for
32 Update adaptive parameters:

33: Update F' and C'R based on success rates.
34: end while

35: Return best solution and fitness:

36: best_solution - argmin f(z;).

37: best_fitness <— min f(z;).

38: End of Algorithm
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separable (f1 to f5), moderate (f6 to f9), ill-conditioned (f10 to f14), multi-modal
weakly structured (f15 to f19), and multi-modal with global structure (£20 to 24).

BBOB-largescale: This suite also includes 24 functions categorized in the same way
as the BBOB suite, but specifically designed for larger dimensions: 20, 40, 80, 160,
320, and 640.

BBOB-mixint: This suite comprises 24 mixed-integer single-objective functions
across dimensions 5, 10, 20, 40, 80, and 160. It follows the same subgroup cate-

gorization as the BBOB suite.

In our study, we benchmark our proposed variants as a solvers using the BBOB suite

of benchmark functions

3.3.2 Symbols, Constants, and Parameters

| 2

| 2

fopt: Optimal function value, defined individually for each benchmark function.
Af: Precision to reach, representing the difference to the smallest possible function
value f,,;.

Jrarget = fopr + A f: Target function value to achieve. The final, smallest considered
target function value is firger = fopr + 1078, but larger values for fi,,.4e are also
evaluated.

Niriat = 15: Number of trials for each single setup, i.e., each function and dimension-
ality. A different function instance is used in each trial. Performance is evaluated
over all N, trials.

D = 2,3,5,10,20,40: Search space dimensionalities used for all functions. Dimen-

sionality 40 is optional and can be omitted according to the to the benchmark criteria.

3.3.3 PostProcessing

In this step, COCO collects runtime data to generate various HTML figures and compar-

ison tables. Post-processed data from over 300 officially supported algorithm datasets is

available on the COCO platform for various test suites.

Postprocessing is a straightforward process that takes several minutes to generate results.
The COCOPP Python package needs to be installed first. After installation, execute the

required commands from a Python shell.

3.3.4 Algorithms used in comparison

The following algorithms have been used in comparison, along with their parameters.
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1. BasicDE1: This is a straightforward implementation of the Differential Evolution
(DE) algorithm with fixed parameters: Population Size: 100, Scaling Factor (F): 0.5,
and Crossover Rate (CR): 0.9. The values of F and CR are based on recommendations
from Storn (1997) [68]. BasicDE1 utilizes the DE/rand/1 mutation strategy and

binomial crossover.

2. BasicDE2: This variant shares the same parameters as BasicDE1 but dynamically
adjusts the population size based on the problem dimension: Population Size:
5xdimension 5xdimension if the dimension is 5 or greater; otherwise, it is set to
2.

3. COBIDE: Based on BasicDE2 with an incorporated parameter control method of F'
and C'R [74].

4. CPDE: Our proposed variant that incorporates binomial crossover. It partitions the
population into three sub-populations, each utilizing a specific mutation strategy.
CPDE also integrates COBIDE for dynamically generating F and CR values. The

population size is determined as in COBIDE.

5. CPDEE: Another proposed variant similar to CPDE but uses exponential crossover

instead of binomial crossover.

Note that for BasicDE1 and BasicDE2 algorithms, we implemented them from scratch
using the COCO framework, generating the dataset ourselves. In contrast, for COBIDE,

we utilized an existing dataset that we found.

3.4 Experimental Results and discussion

In the following, we will interpret and discuss the experimental results of our study,
summarized by Figure 3.1 and the table ??, across dimensions 2, 3, 5, 10, 20, and 40.
All algorithms in comparison use the same budget of F'E's = 10000 * D. The graphs in
the figure display the empirical cumulative distribution functions (ECDF) of predicted
running times (ERT), which are expressed as function evaluations divided by dimension.
The "Best 2009” line represents the best ERT (Expected Running Time) recorded since
BBOB 2009.

The performance resulting from the comparison of the BasicDE1, BasicDE2, and CPDE
and COBIDE algorithms in dimensions 2 and 3 is illustrated in Figures 3.1 (a) and (b).
We observe that our variant shows performance levels that are closely comparable with
all other algorithms. While CPDE and BasicDE2 consistently outperform BasicDE1. This
can be attributed to the fact that CPDE and BasicDE2 utilize a smaller population size

(20 individuals) compared to BasicDE1, which employs a larger fixed population size of

32



1.0 bbob f1-f24, 2-D
51 targets: 100..1e-08
- 15 instances

o
)
|

o
<
or

Ky

o
N
f

Fraction of function,target pairs
o
[N}
%,

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

1.0

(a) D2: F1-F24

51 targets: 100..1e-08
- 15 instances

0.6-
0.4~

0.2-

Fraction of function,target pairs

"0 1 2 3 4 5 6 17
log10(# f-evals / dimension)

(c) D5: F1-F24

1.0

*bbob f1-f24, 20D |
" 51 targets: 100..1e-08
- 15 instances

0.2-

Fraction of function,target pairs

0 1 2 3 4 5 6 7
logl0(# f-evals / dimension)

(e) D20: F1-F24

, ‘ 7
0.8- A | S.cPDE

(BasicDE2

(MBasicDE1

0.8- fCPDEE

-0+ bbb fitza, 35 |
best 2009 1.0-Foit

" 51 targets: 100..1e-08
- 15 instances

o
o0
A

o
o
R

OBIDE 0.4-

0.2-

Fraction of function,target pairs

2 3 4 5 6
logl0(# f-evals / dimension)

(b) D3: F1-F24

best 2009 1.0-gopiha o

51 targets: 100..1e-08
- 15 instances

0.8-
0.6-
0.4-

0.2-

Fraction of function,target pairs

v2.6.3

=00

log10(# f-evals / dimension)

(d) D10: F1-F24

1.0

0 1 2 3 4 5 & 7

(")CPDEE

1'tCOBIDE

BasicDE1

best 2009

()BasicDE2

(DBasicDE1

bbob f1-f24, 40-D
" 51 targets: 100..1e-08
- 15 instances

best 2009

e o
o o0
S

I
S
o

BasicDE2

o
N
h

Fraction of function,target pairs

best 2009

PDEE

PDE

(pBasicDE1

BasicDE2

asicDEl —T7QT = T =cmmntlll bl ; |
0 1 2 3 4 5 6
log10(# f-evals / dimension)

(f) D40: F1-F24
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dimensions 2, 3, 5, 10, 20, 40
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100 individuals. This highlights the significant effect of smaller populations in enhancing
the efficiency of exploration and exploitation within the search space. CPDE and Ba-
sicDE2 capitalize on this strategic advantage, enabling them to converge more rapidly and
achieve higher success rates earlier in the optimization process compared to BasicDEL.
Additionally, our variant appears to have similar performance to COBIDE.

In (c), which compares the performance across dimension 5, it is notable that all three
algorithms experience a deterioration in performance. This can be attributed to the overall
increase in problem complexity with higher dimensions. Despite this challenge, CPDE
typically outperforms BasicDEs by solving approximately 75% of the problems. The
difference between CPDE and COBIDE in this dimension is consistent with the previous
dimension.

From the results presented in (d) and (e) for dimensions 10 and 20, we observe a
significant impact on the performance of our variant CPDE compared to BasicDEs. In
dimension 10, CPDE solves over 65% of the problems, while BasicDEs solve 45%. Similarly,
in dimension 20, CPDE solves 50% of the problems, whereas BasicDEs solve 33% .This
failure of BasicDEs can be attributed to its lack of adaptive parameters.

In the other hand, both CPDE and COBIDE exhibit similar trends in their performance
in dimension 10, but with some notable differences. At the budget of 10* function evalu-
ations, COBIDE shows a slight advantage over CPDE. However, as the budget increases,
CPDE begins to outperform COBIDE.

In dimension 20, the difference between their performances becomes more pronounced.
CPDE demonstrates approximately a 10% better performance compared to COBIDE within
the same budget range. Furthermore, CPDE maintains a higher fraction of function/tar-
get pairs achieved across almost the entire range of function evaluations compared to its
competitors, highlighting its superior effectiveness in this higher dimensions.

In (f) that shows comparaison for dimension 40, the CPDE algorithm clearly outper-

forms both BasicDE1 and BasicDE2. The ECDF curve for CPDE rises significantly faster.
The primary reason for CPDE’s superior performance is its adaptive mechanisms, includ-
ing the COBI parameter control method and diverse mutation strategies, which enhance
its ability to explore and exploit the search space efficiently. In contrast, BasicDE1 and
BasicDE2 suffer from less effective parameter control and mutation strategies, resulting in
reduced efficiency and slower progress.
We also noticed that BasicDE1, with its fixed population size, outperforms BasicDE2 de-
spite having a smaller population size. This observation confirms that increasing the
population size does not necessarily lead to better performance and can, in fact, diminish
efficiency.

It was also observed that, even as the dimension increases, our variant maintains its supe-
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riority over COBIDE. Where CPDE solves 30% of the problems, compared to only 20% by
COBIDE. The split strategy appears to assist CPDE stay with better diversity and exploring
the search space more effectively specially in higher dimensions.

This part compares CPDE and CPDEE. Both algorithms exhibit similar performance
across dimensions 2 to 10. However, a significant distinction emerges in dimensions 20
and 40, where CPDEE demonstrates superior performance over CPDE. The remarkable
performance boost of CPDEE in higher dimensions can be attributed to the fundamental
difference between binomial and exponential crossover. While binomial crossover ran-
domly selects components from the mutant vector, exponential crossover arranges these
components into one or two contiguous subsequences. This unique characteristic of expo-
nential crossover seems to play a crucial role in enhancing the effectiveness of differential
evolution, especially in larger dimensions.

In the context of function subgroups, we observed that our proposed variants, CPDE
and CPDEE, excel across most functions. They demonstrate notable performance in
moderate and ill-conditioned functions in dimension 20, as well as in separable functions

in dimension 40, Specially for CPDEE.(see figures 3.2,3.3)

Conclusion

In this chapter, we presented a comparison of the BasicDE algorithms, COBIDE, and
our proposed variants (CPDE and CPDEE) on a set of test BBOB functions. We began
by introducing the motivation behind our variants, followed by a detailed description,
including the pseudo-code. We then defined the COCO platform used for benchmarking
and analyzed the results. These results demonstrate the superior performance of our
variants, especially in higher dimensions, compared to their competitors. If we had
results for the large-scale BBOB, we might have drawn even better conclusions regarding
higher dimensions (>40). One needs to realize that the increased complexity in higher

dimensions poses significant challenges.
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General Conclusion

The optimization problems are and will remain difficult regardless of the algorithmic
methods developed to solve them. It is clear that it is unrealistic to imagine that the DE
algorithm, or any other single algorithm, could be universally effective for all types of
problems. Our work focuses on specifically improving the Differential Evolution (DE)
algorithm.

We introduced a new variant called CPDE, which classifies individuals into three
distinct sub-populations, each utilizing unique DE mutation strategies tailored to their ca-
pabilities. We chose to integrate simple, well-known mutation strategies (DE/rand/1,
DE/best/1, and DE/rand-to-best/1) and dynamically adjusted parameters using the
PCM-COBI parameter setting used in COBIDE.

Conducting research inevitably presents various challenges, and our project was no

exception. We encountered several significant obstacles throughout our work:

> One of the main difficulties was the limited access to articles and resources, especially
the most recent publications. This limitation constrained our ability to integrate the
latest findings and advancements into our research. Plus, it’s worth noting that not

all metaheuristics codes are readily accessible online.

> Another challenging aspect is writing the master’s thesis in English, given that the
majority of resources and tutorials are also in English. Thisis particularly challenging
due to our educational background, which is primarily in French.

> We encountered difficulties in installing the cocoex package, a well-known issue
among users of the COCO platform in Python. This problem has been commonly
discussed in the issues section on GitHub.

» The lack of powerful equipment capable of providing a suitable environment for
running our codes posed another challenge. Unfortunately, we couldn’t use Google
Colab to mitigate this issue due the necessity of Colab Pro for accessing its shell.

This limitation resulted in significant delays as we had to wait longer for the results.
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The results we have achieved show promise; however, it is important to acknowledge
that they are based on specific assumptions that may limit their applicability. Explor-
ing alternative research avenues could lead to further improvements. One such av-
enue involves investigating alternative selection operators instead of relying solely on
the greedy approach. Integrating deep learning techniques, such as reinforcement learn-
ing, to dynamically switch between different operators—by designing a reward function
that evaluates the DE algorithm’s performance and favors strategies yielding better out-
comes—holds significant potential. Additionally, evaluating our algorithm on diverse
benchmarks like the CEC testbed would provide valuable insights. Another intriguing
direction is leveraging large language models (LLMs) to adaptively adjust parameters like
F, CR, and population size based on real-time optimization dynamics. This innovative
approach has the potential to advance optimization algorithms, yielding more efficient
and effective results.

This project has been highly beneficial for us on several fronts. It has allowed us
to acquire new knowledge and enhance existing skills, particularly in the field of meta-
heuristics, with a specific emphasis on the Differential Evolution algorithm and some of its
variants. Examining existing literature was crucial, given that these topics were novel and
outside the scope of our Master’s program. This deep dive into metaheuristics not only ex-
panded our theoretical understanding but also sharpened our practical problem-solving
skills. We achieved this through hands-on experimentation and study of various algo-
rithms to enhance performance and solution quality. Additionally, the project provided
an opportunity to learn a new programming language, Python, and familiarize ourselves
with the COCO framework. This experience has been instrumental in developing our
skills and knowledge in the field of optimization research. Overall, this project has been
a significant stepping stone in our academic and professional development, providing us

with a solid foundation in metaheuristics and optimization algorithms.
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Annex

Based on the analysis of the Tables: 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6, we observe that in
dimensions 2 and 3, the performances of the five algorithms are relatively close, with
varying rates of solving instances. However, starting from dimension 5, the performance
of COBIDE declines compared to the other algorithms; this decline is notable in all in-
stances. Notably, CPDE, demonstrates superior performance by solving more instances
of problems than the other algorithms, especially as the dimension increases. And what
sets CPDEE apart is its ability to solve some instances of functions in dimensions 20 and
40, whereas the other algorithms fail to do so. This highlights the effectiveness of CPDE,
whether it uses binomial or exponential crossover, particularly when the dimensions

increase.

40



Algorithm Separable Moderate
1ol 3 ol s | e | s ] o8] 9
BasicDE1 | 15/15 | 15/15 | 15/15 | 15/15 | 15/15 | 15/15 | 15/15 | 15/15 | 15/15
BasicDE2 | 15/15 | 15/15 | 14/15 | 11/15 | 15/15 | 12/15 | 15/15 | 14/15 | 12/15
COBIDE | 6/15 | 6/15 | 7/15 | 7/15 | 3/15 | 3/15 | 5/15 | 6/15 | 5/15
CPDE 15/15 | 15/15 | 15/15 | 13/15 | 15/15 | 15/15 | 15/15 | 15/15 | 15/15
CPDEE 15/15 | 15/15 | 15/15 | 14/15 | 15/15 | 15/15 | 15/15 | 15/15 | 15/15
Algorithm Il-conditioned Multi-modal weakly structured
F T S R 2 U B T R VO NS V- S S T R S VA S T
BasicDE1 | 15/15 | 15/15 | 15/15 | 15/15 | 15/15 | 15/15 | 6/15 | 11/15 | 1/15
BasicDE2 | 15/15 | 15/15 | 14/15 | 15/15 | 15/15 | 13/15 | 12/15 | 15/15 | 14/15
COBIDE | 8/15 | 6/15 | 8/15 | 6/15 | 3/15 | 10/15 | 10/15 | 6/15 | 6/15
CPDE 15/15 | 14/15 | 15/15 | 15/15 | 15/15 | 12/15 | 12/15 | 15/15 | 15/15
CPDEE | 14/15 | 15/15 | 15/15 | 15/15 | 15/15 | 13/15 | 9/15 | 15/15 | 15/15
Algorithm Multi-modal with global structure
719 | 20 | po1 | o2 | f23 | fo4
BasicDE1 | 4/15 | 15/15 | 15/15 | 15/15 | 0/15 | 0/15
BasicDE2 | 13/15 | 13/15 | 14/15 | 13/15 | 13/15 | 3/15
COBIDE | 6/15 | 10/15 | 11/15| 13/15| 1/15 | 5/15
CPDE 9/15 | 14/15 | 14/15 | 13/15 | 2/15 | 2/15
CPDEE 14/15 | 13/15 | 15/15 | 13/15 | 0/15 | 3/15

Table 3.1: Success rates for the algorithms BasicDE1, BasicDE2, COBIDE, CPDE, and
CPDEE for each function group in dimension 2.
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Algorithm Separable Moderate
1ol 3 ol s | e | s ] o8] 9
BasicDE1 | 15/15 | 15/15 | 15/15 | 7/15 | 15/15 | 15/15 | 15/15 | 15/15 | 15/15
BasicDE2 | 15/15 | 15/15 | 14/15 | 6/15 | 15/15| 8/15 | 15/15| 7/15 | 5/15
COBIDE | 4/15 | 8/15 | 6/15 | 6/15 | 2/15 | 2/15 | 5/15 | 7/15 | 6/15
CPDE 15/15 | 15/15 | 15/15 | 12/15 | 15/15 | 15/15 | 15/15 | 15/15 | 15/15
CPDEE 15/15 | 15/15 | 14/15 | 15/15 | 15/15 | 15/15 | 15/15 | 15/15 | 15/15
Algorithm Il-conditioned Multi-modal weakly structured
F T S R 2 U B T R VO NS V- S S T R S VA S T
BasicDE1 | 15/15 | 15/15 | 7/15 | 15/15 | 15/15 | 1/15 | 1/15 | 6/15 | 0/15
BasicDE2 | 14/15 | 14/15 | 3/15 | 14/15 | 15/15 | 10/15 | 6/15 | 15/15 | 13/15
COBIDE | 6/15 | 1/15 | 7/15 | 3/15 | 4/15 | 5/15 | 6/15 | 2/15 | 4/15
CPDE 15/15 | 15/15 | 13/15 | 15/15 | 15/15 | 6/15 | 4/15 | 15/15 | 15/15
CPDEE | 15/15 | 15/15 | 14/15 | 15/15 | 15/15 | 6/15 | 6/15 | 15/15 | 14/15
Algorithm Multi-modal with global structure
719 | 20 | po1 | o2 | f23 | fo4
BasicDE1 | 0/15 | 15/15 | 15/15 | 15/15 | 0/15 | 0/15
BasicDE2 | 2/15 | 11/15 | 11/15 | 8/15 | 10/15 | 0/15
COBIDE | 0/15 | 3/15 | 11/15| 9/15 | 0/15 | 0/15
CPDE 1/15 | 12/15 | 13/15 | 10/15 | 2/15 | 0/15
CPDEE 2/15 | 13/15 | 11/15| 9/15 | 1/15 | 0/15

Table 3.2: Success rates for the algorithms BasicDE1, BasicDE2, COBIDE, CPDE, and
CPDEE for each function group in dimension 3.
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Algorithm Separable Moderate
1ol 3 ol s | e | s ] o8] 9
BasicDE1 | 15/15 | 15/15| 0/15 | 0/15 | 15/15 | 15/15 | 15/15 | 15/15 | 14/15
BasicDE2 | 15/15 | 15/15 | 11/15 | 2/15 | 15/15 | 8/15 | 15/15 | 0/15 | 0/15
COBIDE | 3/15 | 2/15 | 2/15 | 2/15 | 0/15 | 0/15 | 6/15 | 2/15 | 3/15
CPDE 15/15 | 15/15 | 13/15 | 9/15 | 15/15 | 15/15 | 15/15 | 12/15 | 15/15
CPDEE 15/15 | 15/15 | 15/15 | 14/15 | 15/15 | 15/15 | 15/15 | 14/15 | 15/15
Algorithm Il-conditioned Multi-modal weakly structured
F T S R 2 U B T R VO NS V- S S T R S VA S T
BasicDE1 | 15/15 | 15/15| 3/15 | 0/15 | 15/15| 0/15 | 0/15 | 0/15 | 0/15
BasicDE2 | 3/15 | 3/15 | 0/15 | 0/15 | 6/15 | 1/15 | 2/15 | 13/15 | 11/15
COBIDE | 0/15 | 7/15 | 1/15 | 3/15 | 1/15 | 0/15 | 1/15 | 2/15 | 0/15
CPDE 15/15 | 15/15 | 14/15 | 15/15 | 15/15 | 1/15 | 3/15 | 11/15| 9/15
CPDEE | 15/15 | 15/15 | 15/15 | 15/15 | 15/15 | 1/15 | 0/15 | 10/15 | 10/15
Algorithm Multi-modal with global structure
719 | 20 | po1 | o2 | f23 | fo4
BasicDE1 | 0/15 | 0/15 | 13/15| 9/15 | 0/15 | 0/15
BasicDE2 | 0/15 | 8/15 | 4/15 | 3/15 | 0/15 | 0/15
COBIDE | 0/15 | 3/15 | 3/15 | 6/15 | 0/15 | 0/15
CPDE 0/15 | 4/15 | 4/15 | 6/15 | 0/15 | 0/15
CPDEE 0/15 | 10/15 | 8/15 | 6/15 | 0/15 | 0/15

Table 3.3: Success rates for the algorithms BasicDE1, BasicDE2, COBIDE, CPDE, and
CPDEE for each function group in dimension 5.
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Algorithm Separable Moderate
il o2l sl o s oe | s | s | fo
BasicDE1 | 15/15 | 15/15| 0/15 | 0/15 | 15/15 | 0/15 | 15/15| 0/15 | 0/15
BasicDE2 | 15/15 | 15/15 | 1/15 | 0/15 | 15/15 | 15/15 | 14/15| 1/15 | 0/15
COBIDE | 1/15 | 1/15 | 0/15 | 0/15 | 0/15 | 0/15 | 7/15 | 0/15 | 1/15
CPDE 15/15 | 15/15 | 12/15 | 9/15 | 15/15 | 15/15 | 14/15 | 15/15 | 14/15
CPDEE 15/15 | 15/15 | 15/15 | 15/15 | 15/15 | 15/15 | 12/15 | 15/15 | 13/15
Algorithm Il-conditioned Multi-modal weakly structured
f0 | 1| o2 a3 | o4 | oss | e |7 |18
BasicDE1 | 0/15 | 0/15 | 0/15 | 0/15 | 5/15 | 0/15 | 0/15 | 0/15 | 0/15
BasicDE2 | 1/15 | 0/15 | 0/15 | 0/15 | 1/15 | 0/15 | 0/15 | 15/15 | 0/15
COBIDE | 1/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15
CPDE 15/15 | 15/15| 9/15 | 10/15 | 15/15 | 0/15 | 0/15 | 1/15 | 0/15
CPDEE | 15/15 | 15/15| 9/15 | 7/15 | 14/15 | 0/15 | 0/15 | 3/15 | 0/15
Algorithm Multi-modal with global structure
19 | f20 | 21 | f22 | f23 | o4
BasicDE1 | 0/15 | 0/15 | 5/15 | 1/15 | 0/15 | 0/15
BasicDE2 | 0/15 | 2/15 | 3/15 | 0/15 | 0/15 | 0/15
COBIDE | 0/15 | 0/15 | 2/15 | 1/15 | 0/15 | 0/15
CPDE 0/15 | 1/15 | 2/15 | 1/15 | 0/15 | 0/15
CPDEE 0/15 | 2/15 | 4/15 | 1/15 | 0/15 | 0/15

Table 3.4: Success rates for the algorithms BasicDE1, BasicDE2, COBIDE, CPDE, and
CPDEE for each function group in dimension 10.
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Algorithm Separable Moderate
il o2l sl ol s | e | 7] s8] 9
BasicDE1 | 15/15 | 15/15| 0/15 | 0/15 | 15/15| 0/15 | 15/15| 0/15 | 0/15
BasicDE2 | 15/15 | 15/15 | 0/15 | 0/15 | 15/15| 0/15 | 13/15| 0/15 | 0/15
COBIDE | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15
CPDE 15/15 | 15/15 | 13/15 | 4/15 | 15/15 | 15/15 | 1/15 | 15/15 | 0/15
CPDEE 15/15 | 15/15 | 15/15 | 15/15 | 15/15 | 4/15 | 2/15 | 14/15 | 3/15
Algorithm I1l-conditioned Multi-modal weakly structured
0 | o2 | a3l osa | ogs | opie | opir |
BasicDE1 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15
BasicDE2 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15
COBIDE | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15
CPDE 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15
CPDEE 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15
Algorithm Multi-modal with global structure
719 | 20 | po1 | o2 | f23 | fo4
BasicDE1 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15
BasicDE2 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15
COBIDE | 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15
CPDE 0/15 | 0/15 | 0/15 | 0/15 | 0/15 | 0/15
CPDEE 0/15 | 2/15 | 4/15 | 0/15 | 0/15 | 0/15

Table 3.5: Success rates for the algorithms BasicDE1, BasicDE2, COBIDE, CPDE, and
CPDEE for each function group in dimension 20.
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Algorithm Separable Moderate

1l o2l 3 el s | 6| 7] o8] po

BasicDE1 | 15/15 | 15/15| 0/15 | 0/15 | 15/15| 0/15 | 0/15 | 0/15 | 0/15

BasicDE2 | 0/15 | 0/15 | 0/15 | 0/15| 0/15 | 0/15|0/15| 0/15 | 0/15

COBIDE | 0/15 | 0/15 | 0/15 | 0/15| 0/15 | 0/15|0/15 | 0/15 | 0/15
CPDE 15/15 | 15/15 | 0/15 | 0/15 | 15/15 | 0/15 | 0/15 | 0/15 | 0/15
CPDEE 15/15 | 15/15 | 15/15 | 0/15 | 15/15 | 0/15 | 0/15 | 0/15 | 0/15

Algorithm Il-conditioned Multi-modal weakly structured
f0 | 1| o2 | 3| o4 | oss | fe |7 | o8
BasicDE1 | 0/15 | 0/15 | 0/15 | 0/15| 0/15 | 0/15|0/15| 0/15 | 0/15
BasicDE2 | 0/15 | 0/15 | 0/15 | 0/15| 0/15 | 0/15|0/15| 0/15 | 0/15
COBIDE | 0/15 | 0/15 | 0/15 | 0/15| 0/15 | 0/15 | 0/15 | 0/15 | 0/15

CPDE 0/15 | 0/15 | 0/15 | 0/15| 0/15 | 0/15|0/15| 0/15 | 0/15
CPDEE 0/15 | 0/15 | 0/15 | 0/15| 0/15 | 0/15| 0/15 | 0/15| 0/15

Algorithm Multi-modal with global structure
719 | 20 | 21 | 22| f23 | fu
BasicDE1 | 0/15 | 0/15 | 0/15 | 0/15| 0/15 | 0/15
BasicDE2 | 0/15 | 0/15 | 0/15 | 0/15| 0/15 | 0/15
COBIDE 0/15 | 0/15 | 0/15 | 0/15| 0/15 | 0/15

CPDE 0/15 | 0/15 | 1/15 | 0/15| 0/15 | 0/15

CPDEE 0/15 | 0/15 | 3/15 | 0/15| 0/15 | 0/15

Table 3.6: Success rates for the algorithms BasicDE1, BasicDE2, COBIDE, CPDE, and
CPDEE for each function group in dimension 40.
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Acronyms

EA Evolutionary Algorithm

SA Simulated Annealing

FSA Fast Simulated Annealing

SMC-SA Sequential Monte Carlo simulated annealing
CSA Curious Simulated Annealing

TS Tabu Search

CTS Continuous Tabu Search

MOTS Multi-Objective Tabu Search

PRMOTS Pareto Ranked Multi-Objective Tabu Search
GA Genetic Algorithm

HX Heuristics Crossover

NUM Non-Uniform Mutation

LX Laplace Crossover

RGA Real coded Genetic Algorithm

DEM Direction-based Exponential Mutation

PM Polynomial Mutation

DE Differential Evolution

CR Crossover Rate
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F Mutation Factor

P Population

NP, N Population size

PSO Particle Swarm Optimization

BBOB Black Box Optimization Benchmarking

COCO COmparing Continuous Optimizers platform

JADE Adaptive Differential Evolution with Optional External Archive

CEC Congress on Evolutionary Computation

JDE self-adaptive DE

JDEbin self-adaptive DE/rand/1/bin

JDEexp self-adaptive DE/rand/1/exp

JDEbest self-adaptive DE/best/1/bin

CC Constraint Consensus

GPDE Gaussian Mutation and Dynamic Parameter Adjustment Differential Evolution
VDEO Variance-based Differential Evolution Algorithm with Optional Crossover

eXEDE Epistatic Arithmetic Crossover Operator based on Cartesian Graph Product in

Ensemble Differential Evolution
ANDE Adaptive Novel Differential Evolution
ANN Artificial Neural Network
DEED Dynamic Economic Emission Dispatch
PID Proportional-Integral-Derivative

ALC-PSODE Aging Leader and Challengers Particle Swarm Optimization with Differ-

ential Evolution
D Dimensional size of a given problem
HGADE Hybridizing Genetic Algorithm with Differential Evolution

PCM Parametre Control Methode
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COBIDE Covariance Matrix Learning and Bimodal Distribution Parameter Setting Dif-

ferential Evolution
CPDE Cauchy Partitioned Differential Evolution
CPDEE Cauchy Partitioned Exponential Differential Evolution
HTML HyperText Markup Language
ECDF Empirical Cumulative Distribution Function
COCOPP COCO Post Processing
ERT Expected Running Time

LLM Large Language Model
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