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Dedication 

 بسم الله الرحمن الرحيم

"نالها" من قال أنا لها  

 وأنا لها إن أبت رغما عنها أتيت بها.

الحمد لله الذي ما نجحنا وما علونا ولا تفوقنا إلا برضاه الحمد لله الذي ما اجتزنا دربا ولا تخطينا 

 جهدا إلا بفضله وإليه ينسب الفضل والكمال والإكمال؛

ل سندي وقوتي وملاذي إلى من زين اسمي بأجمل الألقاب, من دعمني بلا حدود وأعطاني بلا مقاب

 بعد الله. فخري واعتزازي؛

؛ي"حفظك الله لوالدي"الطيب  

ي. جنتيإلى من جعل الله الجنة تحت أقدامها, من سهلت لي الشدائد بدعائها, سر قوتي ونجاح  

 والدتي "نور الهدى" متعها الله بالصحة و العافية؛

 إلى ضلعي الثابت وأمان أيامي إلى قرة عيني 

الرؤوف , طه" و أختي "ياسمين" إخواني "عبد  

 إلى عائلتي 

للأصدقاء الأوفياء ورفقاء السنين لأصحاب الشدائد  .....إلى من كان عونا وسندا في هذا الطريق

 والأزمات؛

 إلا من ضاقت السطور عن ذكرهم فوسعهم قلبي؛

 إلى أصدقائي, عائلتي الثانية, من جعلتم هذه الرحلة جميلة ومثمرة؛ 

ممت أول ثمراته بفضل من الله تالإنجاز وثمرة نجاحي الذي لطالما تمنيته ,ها أنا اليوم أاهديكم هذا 

 عز وجل؛

  فالحمد لله على ما وهبني وأن يعينني ويجعلني مباركة أينما كنت.

 

 

  تقوى حداد

 

 

 
 



 

 

Abstract 

Forest fires are a chronic and recurring phenomenon, with their intensity increasing. 

Developing reliable tools for simulating forest fires will allow for a better understanding 

and prediction of their spread, and consequently, better management of this scourge. 

Therefore, the simulation of forest fires has been of interest to the scientific community for 

decades, with a variety of models proposed to study this phenomenon. 

This thesis aims to develop and calibrate a forest fire spread simulator utilizing cellular 

automata and metaheuristics. The simulator will be based on an existing model and 

optimized using Simulated Annealing. It will feature configurable simulation settings and 

include visualization of results through graphs. 

 

       Keywords: Simulation, Cellular Automata, Metaheuristics, Simulated Annealing. 

 

 

 

 

 



 

 

Résumé 

 

      Les incendies de forêt sont un phénomène chronique et récurrent, dont l'intensité 

augmente. Développer des outils fiables de simulation des incendies de forêt permettra de 

mieux comprendre et prévoir leur propagation, et par conséquent, de mieux gérer ce fléau. 

Par conséquent, la simulation des incendies de forêt intéresse la communauté scientifique 

depuis des décennies, avec une variété de modèles proposés pour étudier ce phénomène.  

     Cette thèse vise à développer et calibrer un simulateur de propagation des feux de forêt 

utilisant des automates cellulaires et des métaheuristiques. Le simulateur sera basé sur un 

modèle existant et optimisé à l'aide d'un recuit simulé. Il comportera des paramètres de 

simulation configurables et inclura la visualisation des résultats sous forme de graphiques.  

 

Mots clés: Simulation, Automates Cellulaires, Méta euristique, Recuit Simulé. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 ملخص

 
 

 

 

تعتبر حرائق الغابات ظاهرة مزمنة ومتكررة. إن تطوير أدوات موثوقة لمحاكاة حرائق الغابات من شأنه أن يسمح      

بفهم أفضل والتنبؤ بانتشارها، وبالتالي إدارة هذه الآفة بشكل أفضل. لذلك، ظلت محاكاة حرائق الغابات موضع اهتمام 

.المجتمع العلمي منذ عقود، مع وجود نماذج متنوعة مقترحة لدراسة هذه الظاهرة  

. يستكسية والميتاهيرباستخدام الآلي الخلولغابات انتشار حرائق اتهدف هذه الأطروحة إلى تطوير ومعايرة محاكي       

ين بلة للتكواكاة قا. سيضم إعدادات محنموذج موجود ويتم تحسينه باستخدام محاكاة التلدينسيعتمد جهاز المحاكاة على 

 ويتضمن تصور النتائج من خلال الرسوم البيانية.

 

 . محاكاة التلدين , الميتاهيريستكس ,الآلي الخلوي ,محاكاة :كلمات البحث      
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General introduction 

Forest fires, which occur frequently in different regions of the world, represent a 

serious threat to ecosystems, human life and material goods. Such fires can spread quickly 

and unexpectedly, resulting in significant losses and significant environmental 

disturbances. Understanding and modelling the spread of forest fires is therefore critical to 

preventing and managing these natural disasters.  

 Modelling the spread of forest fires has become an important area of research due to 

the increasing impact of fires on the environment and human communities. Many 

mathematical and computer solution have been developed to understand and predict the 

spread of fires. 

To overcome these limitations, alternative approaches such as cellular automata (CA) 

have been proposed. Cellular automata, introduced by von Neumann in 1966, provide a 

more detailed and localized representation of complex systems, such as forest fires. 

Cellular automata model the phenomena of proliferation using a network of cells, each of 

which can adopt different states depending on the rules of transition and the states of 

neighboring cells. These models make it possible to capture local interactions and observe 

how they affect the overall behavior of the system, thereby providing a better 

understanding of the spread of fires.  

However, the accuracy and reliability of these models depend on their calibration. 

Calibration involves adjusting the model parameters to align simulations with observed 

data, ensuring that the model accurately reflects real-world fire dynamics. This process can 

be challenging due to the intricate nature of forest fires and the multitude of factors 

influencing their behavior. 
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Metaheuristic optimization techniques, such as Simulated Annealing, offer a robust 

solution for calibrating forest fire simulation models. These techniques are designed to 

efficiently explore the parameter space and find optimal or near-optimal solutions, making 

them well-suited for the complex and non-linear nature of fire spread phenomena. 

The goal of our work is to develop and calibrate a wildfire simulation model, starting 

from a prototype to be proposed by the supervisor. The simulator to be realized is based on 

a probabilistic cellular automaton model, which contains several parameters that we will 

optimize using simulated annealing algorithm. These simulators will integrate a graphical 

interface, to visualize the simulation of fire propagation in time and space.  

This thesis is organized as follow: 

Chapter 1 introduce the basic concepts of modeling and simulation, with a special 

focus on cellular automata.  

 Chapter 2 provide an overview of forest fires simulation, discusses how cellular 

automata can be applied to simulate forest fires and explores the role of metaheuristic 

techniques in model calibration. 

 Chapter 3 presents the methodology for developing and implementing the forest fire 

simulation model. It describes the model's structure, the calibration process using 

Simulated Annealing, and the results obtained from the simulations. 

Finally, the dissertation ends with a general conclusion summarizing the main 

contributions of our work and proposing perspectives for future research. 



 Modelling, 

Simulation and Cellular 

Automata 
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1. Introduction 

Modelling and simulation offer powerful tools for predicting the spread and behavior of 

fires, enabling more effective planning and response strategies. This chapter begins by 

exploring the foundational concepts of modelling and simulation, providing an overview of 

the different types of models and the steps involved in the simulation process. A particular 

emphasis is placed on cellular automata, which are discrete-time systems efficient for 

simulating complex spatio-temporal phenomena like forest fires. Key concepts such as 

cells, grids, neighbourhoods, and transition functions are presented. Additionally, the 

chapter covers elementary and probabilistic cellular automata, highlighting their 

applicability and importance. 

2. Modelling & Simulation 

    A dictionary definition of simulation is “the technique of imitating the behavior of some 

situation by means of an analogous situation or apparatus to gain information more 

conveniently or to train (or entertain) personnel.” “Some situation” in the definition 

corresponds to a source system, and an apparatus is a simulator. As elaborated in the 

definition, there are two types of simulation objectives: one is to gain information and the 

other is to train or entertain personnel. The former is often called an analytic simulation 

and the latter a virtual environment simulation. 

    The main purpose of an analytic simulation is the quantitative analysis of the source 

system based on “exact” data. Thus, the simulation should be executed in an as-fast-as 

possible manner and be able to precisely reproduce the event sequence of the source 

system. An analytic simulation is often referred [1]. 

2.1. Basic Concepts 

Here are some basic concepts related to simulation: 

 

Figure 1.1 Basic concepts related to simulation 
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2.1.1. System 

    A system refers to the entity or phenomenon being modeled or simulated. It can be 

physical, such as a manufacturing plant or a natural ecosystem, or abstract, such as a 

computer network or a financial market. 

2.1.2. Model 

    A model is a simplified representation of a system that captures its essential features and 

relationships. It defines the structure and behavior of the system in a mathematical or 

computational form, allowing researchers to study its dynamics and make predictions. 

2.1.3. Simulator 

    A simulator is a software or hardware tool used to execute a simulation model and 

generate results. It provides the computational environment necessary to simulate the 

behavior of the system and analyze its performance under various conditions. 

2.1.4. Modeling 

    Within the realm of simulation and various other disciplines, entails the creation of 

representations that mirror real-world systems, facilitating the analysis, comprehension, 

and prediction of their behavior. It serves as a pivotal process whereby intricate systems 

are condensed into models that encapsulate key attributes for analysis and simulation 

objectives. 

2.1.5. Model translation  

    Model translation denotes the procedure of converting or adapting models from one 

format or representation to another. This approach finds extensive application across 

diverse domains such as performance modeling and machine translation, enabling the 

adjustment of models to cater to distinct purposes or languages. 

2.2. Types of Simulation Models 

    Simulation models play a crucial role in various fields, offering insights into real-world 

systems. Here are some common types of simulation models [1]: 
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2.2.1. Continuous time Simulation 

    In Continuous Time Simulation approach, the state of the system is updated 

continuously over time according to a set of equations, typically involving differential 

equations, that represent the relationships between different variables and how they change 

continuously (see Figure 1.2). Continuous Time Simulation is particularly used when 

system changes are smooth and continuous. They are commonly applied in engineering, 

physics, and environmental studies, such as fluid dynamics simulations, climate and 

weather prediction, and population dynamics.  

 

Figure 1.2 Continuous time Simulation [1]. 

2.2.2. Discrete Event Simulation 

    Discrete-event simulation focuses on events that happen at specific points in time and 

change the state of the system, such as the arrival of a customer in a queue, the completion 

of a task, or the failure of a machine (see Figure 1.3). Discrete event models are suitable 

for processes with distinct events such as queuing systems in service industries, call 

centers, hospitals, etc. 

 



Chapter 01:                                                                                         Modelling, Simulation and Cellular Automata 

17 

 

 

Figure 1.3 Discrete Event Simulation [22]. 

2.2.3. Discrete time Simulation 

    In Discrete Time Simulation, the state of the system is updated at fixed time intervals 

(see Figure 1.4). This approach contrasts with Continuous Time Simulation, where 

variables are monitored continuously, and Discrete Event Simulation (DES), where the 

system state is updated solely at the occurrence of specific events. Discrete Time 

Simulation is particularly advantageous for systems characterized by changes that occur at 

specific intervals or time steps, or where regular, periodic updates are more appropriate or 

simpler to implement. This method facilitates the modeling of systems in a manner that 

aligns with their natural temporal resolution, thereby simplifying analysis and 

implementation. 

 

Figure 1.4 Discrete time Simulation [3]. 
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2.2.4. Agent-Based Simulation: 

    Agent-based simulation extends the capability of entities to allow autonomy and 

intelligence. The resulting autonomous objects (called agents) are able to proactively 

interact with other agents and the environment in which they situate. If an agent-based 

simulation model includes both discrete and continuous state variables, it is a hybrid 

discrete-continuous simulation model with proactive autonomous entities [2]. 

Agent-based models are used in systems where individual behaviors and interactions 

between them are critical to understanding the overall system dynamics, such as social 

systems modeling, traffic flow simulations, and market dynamics. 

2.2.5. Monte Carlo Simulation: 

    The Monte Carlo simulation is a class of computational algorithms that relies on 

repeated random sampling to compute the numerical integration of functions arising in 

engineering and science. These functions are often impossible to evaluate using direct 

analytical methods, such as reliability analysis of mechanical and electrical systems. In 

recent years, Monte Carlo simulation has also been utilized as a technique to comprehend 

the impact of risk and uncertainty in financial, project management, and other forecasting 

models [1]. Figure 1.5 illustrates an example of applying Monte Carlo simulation to 

estimate π. 

 

Figure 1.5 A circle of unit radius to compute the value of π via Monte Carlo simulation [1]. 
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2.3.  Steps in the Simulation Process 

    A simulation study involves systematic steps from problem formulation to reporting (see 

Figure 1.6). Each step is crucial for ensuring that the simulation model is accurate, reliable, 

and useful for decision-making. The steps in a simulation study are as follows [3]:  

2.3.1. Problem formulation 

    Every study begins with a statement of the problem, provided by policy makers. Analyst 

ensures it is clearly understood. If it is developed by analyst policy makers should 

understand and agree with it [3]. 

2.3.2. Setting of objectives and overall project plan 

    In this step, we define the objectives of the simulation study, specifying the questions 

that the simulation aims to answer. The overall project plan should include [3]: 

 Alternative systems to be considered. 

 Methods for evaluating their effectiveness. 

 Staffing plans. 

 Study costs. 

 Timeline for each phase anticipated results. 

2.3.3. Model conceptualization 

    Create an abstract representation of the system, identifying key components and their 

interactions. This involves outlining assumptions, key components, their interactions, and 

the variables of interest. It is best to start with a simple model and build toward greater 

complexity. However, the model complexity need not exceed that required to accomplish 

the purposes for which the model is intended.  

    It is not necessary to have a one-to-one mapping between the model and the real system. 

Only the essence of the real system is needed. It is advisable to involve the model user in 

model conceptualization. Involving the model user will both enhance the quality of the 

resulting model and increase the confidence of the model user in the application of the 

model [3]. 
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2.3.4. Data collection 

    This step involves gathering the necessary data to build and validate the model. This 

includes input data (e.g., arrival rates, service times) and historical data for validation. 

Accurate and comprehensive data is crucial for creating a realistic model [3]. 

2.3.5. Model translation 

    This step consists of converting the conceptual model into computational model using 

simulation software or programming language. This step involves coding the model logic, 

defining parameters, and setting up the simulation environment. The translation should 

faithfully represent the conceptual model [3]. 

2.3.6. Verification 

    The aim of this step is to ensure the model is built correctly according to its 

specifications.  We check if the code is functioning as intended and produces the expected 

outputs for given inputs [3]. 

2.3.7. Validation 

    This step confirms that the model accurately reflects the real-world system it represents. 

You compare the model's outputs with real-world data or the behavior of the actual system. 

Validation usually is achieved through the calibration of the model, an iterative process of 

comparing the model against actual system behavior and using the discrepancies between 

the two, and the insights gained, to improve the model. This process is repeated until 

model accuracy is judged acceptable [3]. 

2.3.8. Experimental design 

    In this step, we define how we will use the simulation to answer research questions. This 

involves determining input variables, the length of simulation runs, and the number of 

replications to be made of each run [3]. 

2.3.9. Production runs and analysis 
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    Conduct simulation runs to according to experimental design, to estimate measures of 

performance for the system designs that are being simulated [3]. 

2.3.10. More Runs 

    Given the analysis of runs that have been completed, the analyst determines whether 

additional runs are needed and what design those additional experiments should follow [3]. 

2.3.11. Documentation and reporting 

    There are two types of documentation: program documentation and process 

documentation. 

 Program documentation: Can be used again by the same or different analysts to 

understand how the program operates. Further modification will be easier. Model 

users can change the input parameters for better performance. 

 Process documentation: Gives the history of a simulation project. The result of all 

analysis should be reported clearly and concisely in a final report. This enables to 

review the final formulation and alternatives, results of the experiments and the 

recommended solution to the problem. The final report provides a vehicle of 

certification [3]. 

2.3.12.  Implementation 

    Implementation refers to putting the simulation model into use. This might involve 

integrating it with other systems, deploying it for users, or using it for ongoing analysis and 

decision-making. The success of the implementation phase depends on how well the 

previous eleven steps have been performed. If the model user has been thoroughly 

involved and understands the nature of the model and its outputs, likelihood of a vigorous 

implementation is enhanced [3]. 
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Figure 1.6. Steps in the Simulation Process [3]. 
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3. Cellular automata 

    Cellular Automata (CA) are mathematical models emerged from the work of J. von 

Neumann [4], and used to simulate complex systems by means of a regular network of 

simple uniform entities interacting locally in a synchronous and manner (Figure 1.7). They 

are widely applied in various fields, from biology to computer science, and even in 

modelling social systems.  

3.1. Definition  

A cellular automaton consists of a regular grid of “cells”, each containing a “state” 

chosen from a finite set, which can evolve over time. The state of a cell at time 𝑡 + 1 is a 

function of the state at time 𝑡 of a finite number of cells called its “neighborhood”. At each 

new unit of time, the same rules are applied simultaneously to all the cells in the grid, 

producing a new “generation” of cells entirely dependent on the previous generation. The 

elements of the cellular automaton are cells, grid, neighbourhood, and transition rules. 

 

Figure 1.7 Cycle of cellular automaton simulation. 

3.2. Cell 

    The fundamental element of a cellular automaton is the cell. A cell is defined by its 

coordinates. For example, in a two-dimensional grid, a cell is defined by two integers(𝑖, 𝑗), 

where 𝑖 is the row number and 𝑗 is the column number. Each cell can be in a finite number 

of states [5]. 
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3.3. Grid 

    The cells are arranged on a regular grid of dimension 𝑑 [5]. The grid can be in any finite 

number of dimensions, but the most commonly studied CA are one-dimensional (𝑑 = 1) 

and two-dimensional (𝑑 = 2). 

3.4. Neighborhood 

    The neighborhood of a cell refers to the set of cells that could potentially interact with it 

at a given time. This neighborhood encapsulates all the information required for updating 

the cell's state at each time step, with the cell itself being included in its own 

neighborhood. The most common neighborhood types, as described by Neumann in 1966 

[4], include: 

o Von Neumann: Considers only the immediate North, South, East, and West 

neighbors of the cell. 

o Moore: Expands upon the Von Neumann neighborhood by also incorporating the 

diagonal cells. 

o Extended Moore: Further extends the neighborhood distance beyond the 

immediate cells to encompass a wider area. 

These neighborhood configurations are illustrated in Figure 1.8 (a), (b), and (c) 

respectively. 

 

Figure 1.8 The most commonly used neighborhoods [5]. 

3.5. Transition function 

    The evolution rule determines the state of each cell at time step 𝑡 + 1 based on the state 

of the cells in its neighborhood at time 𝑡 (see Figure 1.9). 
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    As an example, we present the cellular automaton: Conway's Game of Life. It was 

proposed by John Horton Conway in 1970. The elements of the Game of Life can be 

outlined as follows: 

 

Figure 1.9 Example of applying the rules of the Game of Life [5]. 

 A cell can take two states: 0 (dead or inactive), and 1 (a live or active). 

 The Game of Life evolves on a two-dimensional square grid (𝒅 = 𝟐). 

 The Game of Life uses the Moore neighborhood. 

 The evolution rules of the Game of Life are: 

1. An inactive cell surrounded by 3 active cells becomes active; 

2. An active cell surrounded by 2 or 3 active cells remains active; 

3. In all other cases, the cell becomes or remains inactive. 

3.6. Formal definition of cellular automata 

    Formally, a cellular automaton is defined as a 4-tuple (𝑑, 𝑄, 𝑁, 𝛿) where: 

 𝒅 is the dimension of the automaton, and its grid is denoted as 𝒁𝒅, the discrete 

space of dimension 𝒅. 

 𝑸, is a finite the set of states that the cells can take.  

 𝑵 ⊆  𝒁𝒅 is a finite subset of 𝒁𝒅, representing the neighborhood of each cell 𝒊: 

𝑵(𝒊)   =  (𝑵𝟏, 𝑵𝟐, … , 𝑵𝒂)  =  (𝑵𝒋 ∈   𝒁𝒅;  𝟏 ≤  𝒋 ≤  𝒂) 

 𝜹 ∶   𝑸𝒂 →  𝑸 Is a transition rule, where 𝒂 =  |𝑵|.  

    A configuration of cellular automata assigns a state to each cell of the grid: a 

configuration is a function from 𝑍𝑑 to  𝑄.  
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3.7. Elementary Cellular Automata 

    Elementary Cellular Automata (ECA) is a cellular automaton  𝐴 = ( 𝑍𝑑, 𝑄, 𝑁, 𝛿) where: 

- 𝒅 = 𝟏 

- 𝑸 =  {𝟎, 𝟏} 

- 𝑵 = {−𝟏, 𝟎, 𝟏}: The neighborhood of a cell 𝒊 consists of the cell itself and its two 

immediate neighbors (left and right):  𝒊, 𝒊 −  𝟏, 𝒊 +  𝟏.  

- Transaction rule 𝜹: The state of each cell in the next time step depends on its 

current state and the states of its two neighbors. Since there are 3 cells in the 

neighborhood and each can be in one of 2 states, there are 𝟐𝟑= 8 possible 

combinations of neighborhood states: 111, 110, 101, 100, 011, 010, 001, 000. 

    The transition rule δ associates a state with each configuration of neighborhood. There 

are 28 = 256 possible transition rules. Each transition rule can be seen as writing an 

integer between 0 and 255. 

Example . The following table corresponds to the rule: 𝟎𝟏𝟎𝟏𝟏𝟎𝟏𝟎𝟐 = 𝟗𝟎 

Neighbourhood (𝑞1, 𝑞2, 𝑞3) 111 110 101 100 011 010 001 000 

𝛿(𝑞1, 𝑞2, 𝑞3): next state of central cell 0 1 0 1 1 0 1 0 

 

 

Figure 1.10 Space-time diagram of Rule 90 [5]. 

3.8. Probabilistic cellular automaton 

    A probabilistic (or stochastic) cellular automaton (PCA) is a variant of cellular 

automaton where the state transitions of cells are governed by probabilistic rules rather 
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than deterministic ones, as seen in traditional cellular automata like Conway's Game of 

Life [6]. 

 

 Probabilistic Transition Rules: 

    In an PCA, each cell's state transition is determined by probabilistic rules. The state of a 

cell of cell 𝑖  at time 𝑡 + 1  𝑠𝑖(𝑡 + 1) in a probabilistic cellular automaton can be 

represented as a random variable that depends on the state of its neighbourhoods 𝒩𝑖(𝑡) at 

time. The transition probability can be written as: 

𝑃( 𝑠𝑖(𝑡 + 1) =  𝑆 ∣∣ 𝒩𝑖(𝑡)) =  𝑁 ) 

    Where 𝑆 is the new state and 𝑁 is the neighborhood configuration. The collection of 

these probabilities for all possible neighborhood configurations defines the probabilistic 

transition rule.  

 Modeling Complex Systems 

    Many real-world systems exhibit inherent randomness. PCA incorporate stochastic 

elements into their transition rules, making them suitable for modeling systems where 

outcomes are not deterministic but probabilistic. PCA are used to model and simulate 

complex systems in physics, biology, ecology, and social sciences: 

- Ecology and Biology: Modeling forest fires, disease spread, and population 

dynamics. 

- Physics: Simulating diffusion, phase transitions, and fluid dynamics. 

- Social Sciences: Analyzing opinion dynamics, crowd behavior, and other social 

phenomena influenced by probabilistic interactions. 

4. Conclusion  

In summary, this chapter has started by explaining basic concepts and types of 

simulation models, providing a foundation for understanding modelling and simulations. 

By examining cellular automata in detail, including their components like cells, grids, and 

transition functions, and probabilistic cellular automata, we've seen their potential for 

simulating fire spread. These discussions will guide us in the step of developing a forest 

fire simulation model based cellular automata. 
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 Introduction 

Having presented modelling and simulation in general, and cellular automata in 

particular, in the previous chapter, we present a forest fire simulation. Understanding the 

dynamics of forest fires is crucial for effective management and mitigation strategies. This 

chapter explores the fundamental concepts surrounding forest fires, including the fire 

triangle and the mechanisms behind ignition and spread. We also discuss the role of 

wildfire simulation in aiding decision-making processes for fire management. Then, the 

chapter narrows down to forest fire modelling based on cellular automata, a powerful 

approach for simulating fire behaviour. Finally, we introduce metaheuristics, a class of 

optimization algorithms used in calibrating forest fire simulation models. 

 Overview of Forest Fire 

 What Is a Fire?  

    A fire is made up of glowing, red-hot material and often flames. These give off heat and 

normally produce smoke. Fire happens when a material burns. Burning is a chemical 

reaction between a material and oxygen, which is one of the gases in the air. Burning is 

also called combustion [7]. 

 The fire triangle 

    For ignition and combustion to occur, three factors need to be present at the same time: 

fuel which can be any material that can burn, an external heat source (flame), and 

oxygen, which is needed to fuel the fire. These three elements are represented in the fire 

triangle (Figure 2.1). The fire triangle is a simple model for understanding the elements 

required for most fires.  
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Figure 2.1.The fire triangle [7]. 

 What Is a Forest Fire? 

    The sight of a fire sweeping furiously through a forest is both frightening and 

spectacular. Forest fires (also called wildfires) are devastating events. Their intense heat 

burns leaves and branches to a crisp before making them explode, roaring and crackling, 

into flames. Giant flames leap hundreds of feet into the air, along with columns of thick, 

black smoke. In the biggest fires, spinning tornadoes are created by the rapidly rising heat 

[7]. 

 

 

Figure 2.2. Forest Fire (Wildfire) [7]. 
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 How Forest Fires Start 

    Two conditions are needed for a forest fire to start. First, the forest fuel (the trees, other 

plants, and dead matter on the forest floor) must be dry. Second, there must a source of 

heat to ignite the fuel and start the fire. Fires are either started by natural events or by 

people, either accidentally or deliberately. By far the most common natural fire starter is 

lightning. Lightning hits the earth about 100,000 times every day. It is the major cause of 

fire in remote areas. Fires are occasionally started by volcanic eruptions. Another cause is 

the buildup of heat from rotting vegetation on the forest floor, known as spontaneous 

combustion [7]. 

 

Figure 2.3 Lightning [7]. 

 Forest Fires Spreading 

    Heat produced by a fire moves by convection (hot air currents) and radiation (heat rays). 

This makes the surrounding fuel hot enough to catch fire. The fuel burns too, first making 

flames and then smoldering, until the fuel is used up. In this way, a line of flames called a 

flame front moves through the forest, spreading in every direction from the source of the 

fire [7]. 

    Several factors contribute to the spread of wildfires, including fuel density, landscape 

slope, and wind. Let's delve into each of these spreading factors: 
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 Fuel Density 

    The density and arrangement of fuel, such as vegetation and organic matter, play a 

significant role in determining how quickly a fire spreads. Higher fuel densities provide 

more material for the fire to burn, leading to faster spread rates. Different types of fuel, 

from fine grasses to dense forests, can influence fire behavior and intensity. 

 

 Landscape Slope 

    The slope of the terrain affects the speed and direction of fire spread. Fires tend to 

spread more rapidly uphill due to the preheating of fuel ahead of the fire, increased wind 

speeds, and the stacking effect of flames. Conversely, fires may spread more slowly or 

even stall on flat terrain or when moving downhill, depending on other factors like wind 

and fuel moisture. 

 Wind 

    Wind is one of the most critical factors influencing fire behavior and spread. Wind can 

accelerate the rate at which a fire spreads by supplying oxygen to the flames and by 

carrying embers ahead of the fire front, igniting new spots. Wind can also influence the 

direction of fire spread, causing fires to move more quickly in the direction of the wind and 

creating erratic fire behavior. Additionally, strong winds can make firefighting efforts 

more challenging by spreading embers over long distances, increasing the likelihood of 

spot fires, and causing fires to behave unpredictably. 

 Type of Vegetation 

    The type of vegetation present in an area affects its flammability and the rate at which 

fire can spread through it. Different vegetation types have varying fuel characteristics, 

including moisture content, density, and chemical composition, which influence their 

flammability. Grasslands, for example, typically burn more quickly than forests due to 

their lower fuel moisture content and greater surface area. Forests with dense vegetation 

can sustain more intense fires that spread both on the ground and through the canopy, 

while shrublands may burn more rapidly due to the high oil content in some species. 

Understanding the types of vegetation present in an area is essential for predicting fire 
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behavior and implementing effective wildfire management strategies tailored to the 

specific fuel conditions. 

 Wildfire Simulation for Decision-Making 

Simulation is essential for comprehending fire behavior and aiding decision-making 

across various aspects of fire management. Here's why simulation matters: 

 Understanding Fire Behavior: Simulation models enable researchers and fire 

managers to explore the complex dynamics of fire behavior in diverse 

environments. By inputting data such as weather conditions, topography, fuel types, 

and ignition sources, simulation models can predict how a fire might spread, its 

speed, and its potential direction. This understanding is crucial for devising 

effective strategies to combat wildfires and minimize their impact. 

 Risk Assessment: Simulation models help assess the risk of wildfires in specific 

areas. By analyzing factors like fuel load, weather patterns, and historical fire data, 

fire managers can identify areas prone to wildfires and prioritize resources for 

prevention and mitigation efforts. 

 Resource Allocation: Simulation optimizes the allocation of firefighting resources. 

By simulating different scenarios, fire managers can determine the most effective 

deployment of personnel, equipment, and resources to contain and suppress 

wildfires. This ensures efficient resource utilization to minimize damage and 

protect lives and property. 

 Evacuation Planning: During wildfires, evacuation planning is critical for 

ensuring the safety of affected residents. Simulation models can simulate real-time 

fire spread and predict its movement. This information guides decisions about when 

and where to evacuate people and how to manage evacuation routes to ensure 

timely and safe evacuations. 

 Training and Education: Simulation provides a safe environment for training 

firefighters and emergency responders. Fire behavior simulators allow trainees to 

experience realistic firefighting scenarios without actual fire risks, helping them 

develop the skills needed to respond effectively to wildfires. 
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    Overall, simulation enhances our understanding of fire behavior, supports informed 

decision-making, and improves the effectiveness of wildfire management strategies, 

ultimately reducing the impact of wildfires on communities and the environment. 

 Forest fire modelling based cellular automata 

    Forest fire simulator is a computational model designed to predict the spread of fires 

based on environmental or contextual conditions (weather conditions, topography of the 

landscape, fire sources, etc.). Forest fire simulation models are importance tools for 

understanding fire dynamics, predicting fire behaviour in order to implement preventive 

and operational policies that aim to minimize fire risks and limit damage.  

    The first models developed were mathematic models, developed based on physics, 

combustion, fluid dynamics [8], [9]. However, the phenomenon of forest fires depends on 

many factors, between them there are complex interactions, which makes it particularly 

difficult to formulate effective and reliable mathematical models, which motivated the 

emergence of new approaches to model this phenomenon. 

    Cellular automata (CA) models simulate fire spread by dividing the landscape into a grid 

of cells. Each cell’s state changes based on predefined rules and the states of neighbouring 

cells. Models based cellular automata can capture complex spatial interactions and 

heterogeneity of factors affecting the spread of forest fires (vegetation types, weather 

conditions, and landscape topography) [10], [11], Consequently, many cellular automata-

based wildfire models have been proposed [10], [12], [13], [14]. 
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Burned cell 

A Tree cell (combustible) 

Empty (non-combustible) 

Figure 2.4  Representation of forest area using a grid. 
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 Metaheuristics for calibrating forest fire simulation models 

In forest fire simulation model based on probabilistic cellular automata, the transition 

probability of a cell to the burning state, is governed by a formula involving multiple 

interacting parameters, such as wind speed, ground elevation, vegetation density, and 

humidity. These parameters exhibit non-linear and potentially stochastic relationships with 

the model's output, making conventional optimization methods less effective. 

Metaheuristics, such as Genetic Algorithms, Particle Swarm Optimization, and Simulated 

Annealing, offer robust solutions for exploring vast solution spaces and identifying optimal 

or near-optimal configurations within reasonable time frames. In this section, we will 

review the basic concepts of metaheuristics, and then conclude with the most common 

metaheuristics algorithms.  

 Definition  

    A metaheuristic is a meta-process or a high-level process that can be used and/or 

adapted to solve optimization problems. In general, this process has a set of mechanisms 

and techniques necessary to guide and reinforce a heuristic search procedure, such as: 

diversification and intensification mechanisms, techniques for escaping local optima etc... 

These Mechanisms and techniques enable metaheuristics to efficiently exploit and 

explore the search space and find high-quality solutions [18]. 

    Many classification criteria may be used for metaheuristics: 

• Nature inspired versus non nature inspired: Many metaheuristics are inspired by 

natural processes: evolutionary algorithms and artificial immune systems from biology; 

ants, bees colonies, and particle swarm optimization from swarm intelligence into different 

species (social sciences); and simulated annealing from physics. 

• Population-based search versus single-solution based search: Single-solution based 

algorithms (e.g., local search, simulated annealing) manipulate and transform a single 

solution during the search while in population-based algorithms (e.g., particle swarm, 

evolutionary algorithms) a whole population of solutions is evolved. These two families 

have complementary characteristics: single-solution based metaheuristics are exploitation 

oriented; they have the power to intensify the search in local regions. Population-based 

metaheuristics are exploration oriented; they allow a better diversification in the whole 

search space. In fact, the algorithms belonging to each family of metaheuristics share many 

search mechanisms. 
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 Neighborhood principle 

    The general principle most widely used in the development of metaheuristics is that of 

neighborhood. Each solution 𝑠 of the problem is associated with a subset N(S) of solutions.        

A neighborhood method generally starts with an initial configuration s, which is subjected 

to an iterative process. It seeks to improve the current configuration by replacing it with 

one of its neighbors, taking into account the objective function. This process stops and 

returns to the best solution found when the stopping criterion is reached. This stopping 

condition generally concerns a limit on the number of iterations or on the objective to be 

achieved. Neighborhood methods differ mainly in the neighborhood used and the strategy 

for traversing a neighboring solution [12].  

 General concepts 

    Several important concepts related to meta-heuristics can be highlighted: 

 Metaheuristics are typically applied to problems that cannot be optimized using 

traditional mathematical methods. Although they may not perform as well as 

specialized heuristics designed for specific problems, they offer a versatile 

approach. 

 Metaheuristics are commonly used in combinatorial optimization but can also 

address continuous or mixed problems involving both discrete and continuous 

variables. 

 Certain metaheuristics are theoretically "convergent" under specific conditions, 

ensuring that they will find the global optimum within a finite time. Convergence is 

typically guaranteed under the condition of ergodicity, meaning the algorithm can 

reach any solution with every move. However, in practice, achieving quasi-

ergodicity (the ability to reach any solution within a finite number of moves) is 

often sufficient and practical. 

 Classification of Metaheuristics 

    Metaheuristic algorithms can be broadly classified into two main categories: population-

based methods, known as evolutionary algorithms, which include genetic algorithms and 

other related techniques, and single-solution methods, such as simulated annealing. 
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Figure 2.5 Classification of Metaheuristic 

 Single-Based Metaheuristics 

    Single-solution-based metaheuristics start the search with a single initial solution. They 

rely on the concept of neighborhood to improve the quality of the current solution. In fact, 

the initial solution undergoes a series of modifications based on its neighborhood. The goal 

of these local modifications is to explore the neighborhood of the current solution in order 

to progressively improve its quality over the different iterations [13].  

4.4.1.1. Tabu Search 

    A very well-known and widely used metaheuristic in the field of optimization. TS was 

proposed by Fred Glover in 1986. The basic idea of this metaheuristic is to use a memory 

called the tabu list which contains the solutions visited during the previous x iterations. 

    During the search procedure, the algorithm is prohibited from returning to a solution that 

belongs to the tabu list in order to: (1) avoid cycles, (2) escape local optima and (3) d 

explore the search space in an efficient manner. The x value is called the size of the tabu 

list. 

     Formally, the TS begins with an initial solution s. At each iteration, the TS constructs 

the neighborhood structure N(s) of the current solution s and chooses the best non-Tabu 

solution 𝑆𝑛 (which does not belong to the tabu list) in N(s). Then the solution was replaced 

by the new solution 𝑆𝑛and declared itself forbidden or taboo. The tabu list is updated by 

adding s and deleting the oldest solution if the size of L exceeds a maximum fixed at the 
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beginning. The TS ends when the stopping criterion is satisfied. The best solution found 𝑏 

is updated at each iteration [18]. 

4.4.1.2. Simulated Annealing 

    The simulated annealing algorithm was developed by Kirkpatrick, Gelatt, and Vecchi. 

[17].It is inspired by the annealing process in metallurgy, where a metal is heated to a high 

temperature and then cooled slowly to achieve a defect-free alloy. This process is based on 

the principles of thermodynamics, where a sudden drop in temperature can lead to a local 

optimum, whereas a gradual cooling process can result in a global optimum. Metallurgists 

understand that rapid cooling can introduce microscopic defects, whereas slow cooling can 

produce a well-ordered structure. This concept is applied in simulated annealing to 

optimize complex problems by gradually reducing the temperature and accepting worse 

solutions to avoid local optima and converge to the global optimum.  

 

 The pseudo code of simulated annealing: 

Begin 

Let 𝑆 be an initial solution and an initial temperature T ; 

While (the stopping criterion is not satisfied) Do 

Randomly select a solution 𝑆′ close to S ; 

  r = a random number between 0 and 1.  

  Calculate  𝛥; 

  If (𝑆′ is better than 𝑆 or r < 𝑒−
𝛥

𝑇    ) Then 

      𝑆 = 𝑆′ ; 

      If (𝑆 is better than 𝑆′′) Then 

          𝑆′′ = 𝑆; 

     End if 

   End if 

  Update T ; 

return 𝑆′′ ; 

End 

 

 

 Some applications of simulated annealing: 

- Image processing. 

- Scheduling problems. 

- Electronic circuit design (placement and routing problems). 

- Lottery (France) computer network organization. 



Chapter 02:                                                                                                 Forest Fire Simulation and Metaheuristic 

40 

 

- Garbage collection. 

 Advantages of the method: 

- Good quality solutions. 

- General method and easy to program. 

- Flexibility: New constraints can be easily incorporated. 

 Disadvantages: 

- Computation time: excessive in some applications. 

 

 Population-Based Metaheuristics 

    Population-based metaheuristics initiate the search with a diverse set of solutions. They 

operate on a set of solutions to extract the best one (global optimum), which represents the 

solution to the problem at hand. The idea of using a set of solutions instead of a single 

solution enhances the diversity of the search and increases the possibility of discovering 

high-quality solutions. 

4.4.2.1. Genetic Algorithm 

    The Genetic Algorithm is an optimization method inspired by the natural evolution of 

species. It uses a population of potential solutions, known as individuals, that evolve from 

generation to generation through selection, crossover, and mutation operations. The main 

objective of this algorithm is to identify an approximate solution for a problem, even if not 

necessarily the optimal one. 

    The theory of Darwin on the evolution of species provides the foundations of the genetic 

algorithm, which rests upon three key principles: the principle of variation, the principle of 

adaptation, and the principle of heredity. 

 Variation: There are more or less significant differences between individuals in a 

population (of the same species). 

 Adaptation: Some individuals possess characteristics that give them a better 

chance of surviving and reproducing compared to others. 

 Heredity: The characteristics of individuals in a population are transmitted to their 

offspring. In other words, these characteristics must be hereditary [14]. 



Chapter 02:                                                                                                 Forest Fire Simulation and Metaheuristic 

41 

 

    This figure, utilizing genetic terminology, facilitates the application of genetic 

algorithms by defining key concepts: 

 Population: The entire set of potential solutions. 

 Individual: Represents a single solution within the population. 

 Chromosome: A segment of the solution, often a string of genes in genetic 

algorithms. 

 Gene: Represents a specific characteristic or trait within an individual or 

chromosome. 

 

Figure 2.6 Genetic terminology TSP as example [18]. 

4.4.2.2. Particle Swarm Optimization (PSO) 

    Particle Swarm Optimization (PSO) is a swarm intelligence algorithm inspired by the 

dynamic social behavior and emergent behavior that arises in socially organized colonies. 

           

 PSO is a population-based algorithm, meaning it exploits a population of 

individuals to explore promising regions of the search space. In this context, the population 

is referred to as swarms and the individuals (i.e., the search points) are referred to as 

particles. Each particle moves with an adaptable velocity within the search space and 

maintains a memory of the best position it has encountered. In the global variant of PSO, 

the best position retained by swarm individuals is communicated to other particles. In the 

local variant, each particle is assigned to a topological neighborhood consisting of a 

predefined number of particles. In this case, the best position retained by particles within 

the neighborhood is communicated among them [15]. 

The movement of each particle is influenced by the following three components: 
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 A physical component: the particle tends to follow its current direction of 

movement. 

 A cognitive component: the particle tends to move towards the best site it has 

encountered. 

 A social component: the particle tends to move towards the best site reached by its 

neighbors. 

 Conclusion 

In this chapter, we explored the fundamentals of computer modeling and simulation, 

focusing on simulating forest fires using cellular automata. This approach provided us with 

the necessary knowledge for our project and helped us choose a suitable simulation model 

for our application. 
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1. Introduction 

In this chapter, we detail our approach to calibrate a forest fire simulation model based 

on cellular automaton using the Simulated Annealing (SA) metaheuristic. The chapter 

begins with an overview of the basic model description, delineating the fundamental 

components of the wildfire simulation model. We discuss the grid definition, cell states 

representing different fire stages, and rules of evolution governing fire spread dynamics. 

Then, we present the model implementation, detailing the choice of programming language 

and libraries, also we elucidate the user interface for visualizing and interpreting simulated 

fire behavior. 

We delineate the definition of the objective function, control parameters of the SA 

algorithm, and data pre-processing steps to prepare input data for the calibration process to 

enhance the accuracy of the wildfire simulation model. 

Finally, we evaluate the calibration results to assess the performance of the calibrated 

model, by comparing simulated fire spread against observed data and employing various 

metrics. 

 

2. The basic Model Description 

The model we will implement and calibrate is proposed by Alexandridis (2008) [10]. 

This model uses cellular automata associated with geographic information (land elevation, 

vegetation, etc.) and meteorological data (wind direction and speed) to predict the 

evolution of fire fronts in heterogeneous forest landscapes. This section provides a detailed 

description of the grid, the states of cells, the rules governing their evolution, and the 

variables influencing fire spread 

2.1. Grid Definition 

 A landscape is represented by a two-dimensional grid, where each cell represents a 

portion of the surface. These cells are square, allowing for eight possible directions of fire 

propagation (see Figure 3.1). 

2.2. State of cells 

Each cell in the grid can exist in one of the following states: 

 Unburned: The cell contains vegetation that has not yet burned. 
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 Burning: The cell is currently on fire. 

 Burned: The cell has already burned and no longer contains flammable material. 

 Empty: The cell contains no vegetation or flammable material. 

Transitions between these states are governed by the rules of evolution described in the 

next section. 

2.3. Rules of evolution 

At each time step 𝑡, the following rules are applied to all cells (𝑖, 𝑗) in the grid. 

 Rule 1: if the state of cell (𝒊, 𝒋) at time 𝒕 is Empty, then the state does not change at 

time t+1. 

 Rule 2: if the state of cell (𝒊, 𝒋) at time 𝒕 is Burning, then the state of this cell at 

time 𝒕 + 𝟏 becomes Burned. 

 Rule 3: if the state of cell (𝒊, 𝒋) at time 𝒕 is Burned, then its state does not change at 

time 𝒕 + 𝟏. 

  Rule 4: if the state of cell (𝒊, 𝒋) at time 𝒕 is Burning, then the state of a neighboring 

cell (𝒊 ± 𝟏, 𝒋 ± 𝟏) becomes Burning at time 𝒕 + 𝟏 with probability 𝑷𝒃𝒖𝒓𝒏 (equation 

1). 

Rule 4 implies that when a given cell is in a state of Burning at the current time step, the 

fire can spread to neighboring cells at the next time step with probability 𝑃𝑏𝑢𝑟𝑛. This 

probability is a function of various parameters that affect fire propagation, and will be 

analyzed in the following paragraphs. 

 

Figure 3.1 Possible directions of fire propagation on a square grid [10]. 
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2.4. Variables affecting fire spread 

The methodology proposed by Alexandridis et al. [10] takes into account several 

variables that can affect both the shape and rate of forest fire propagation: vegetation type, 

vegetation density, wind speed and direction, and ground elevation. 

Variables specific to the terrain, such as vegetation type, vegetation density, and ground 

elevation, are also encoded in matrices similar to the state matrix. The probability 𝑃𝑏𝑢𝑟𝑛 is 

calculated by: 

   𝑃𝑏𝑢𝑟𝑛 =  𝑃ℎ(1 + 𝑃𝑣𝑒𝑔)(1 + 𝑃𝑑𝑒𝑛)𝑃𝑤𝑃𝑠                                                      (1) 

Where: 

 𝑷𝒉: is the constant probability that a cell adjacent to a burning cell, containing a 

given type of vegetation with a specific density, will catch fire in the next time step 

without any wind and on flat landscape. 

 𝑷𝒅𝒆𝒏: is the probability of fire spread depending on vegetation density. 

 𝑷𝒗𝒆𝒈: is the probability of fire spread depending on vegetation type. 

 𝑷𝑾: is the probability of fire spread depending on wind speed. 

 𝑷𝑺: is the probability of fire spread depending on the slope of the terrain. 

Note that these probabilities are multiplied by the constant probability 𝑃ℎ to obtain the 

adjusted probability that accounts for all the aforementioned factors. 

2.4.1. Effect of the type and density of vegetation 

The effects of vegetation type and density are represented by the probabilities 𝑃𝑣𝑒𝑔  and 

𝑃𝑑𝑒𝑛 respectively. Specifically, the type and density of vegetation on the surface are 

divided into several distinct categories. Vegetation types are grouped into three categories: 

(1) agricultural, (2) thickets, and (3) HallepoPine trees. Vegetation density is classified into 

three categories: sparse, normal, and dense. Each vegetation type is assigned a value for 

𝑃𝑣𝑒𝑔  (see Table 1), and each density category is assigned a value for 𝑃𝑑𝑒𝑛 (see Table 2). 

 

Category                                         Type                                                                   𝑃𝑣𝑒𝑔  

1                                                 agricultural                                                              -0.4  

2                                                  Thickets                                                                    0 

3                                                 HallepoPine                                                              0.3 
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Table 1 Different 𝑃𝑣𝑒𝑔  values in different vegetation types. 

Category                                         Density                                                             𝑃𝑑𝑒𝑛 

1                                                        Sparse                                                               -0.4 

2                                                       Normal                                                                0           

3                                                        Dense                                                                0.3 

Table 2 Different 𝑃𝑑𝑒𝑛values at different vegetation density. 

2.4.2. Effect of the wind speed and direction 

𝑃𝑤  =  𝑒𝑥𝑝(𝑐1𝑉)𝑓𝑡                                                                              (2) 

𝑓𝑡 = 𝑒𝑥𝑝(𝑉𝑐2(𝑐𝑜𝑠(𝜃) − 1))                                                                   (3) 

 

𝑐1 𝑐2

𝑃𝑤

𝑐1 𝑐2

 

Parameter                                                                                                                value                                                                                                                           

𝑃ℎ                                                                                                                             0.58 

a                                                                                                                              0.078 

𝑐1                                                                                                                             0.045 

𝑐2                                                                                                                             0.131 

Table 3 The different values of the constant 𝑃ℎ , a,𝑐1, and 𝑐2. 

2.4.3. Effect of the ground elevation 

𝑅𝑠 = 𝑅0𝑠𝑒𝑥𝑝(𝑎 θ𝑠)                                                                        (4) 

 

 𝑅0𝑠 : is the spread rate when the slope angle is zero, 

 θ𝑠  : is the slope angle. 
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 𝑎:  is a constant that can be adjusted based on experimental data. 

 According to equation (4), the probability of modeling the slope effect is calculated as: 

 

 𝑃𝑠 =  𝑒𝑥𝑝 (𝑎  θ𝑠  )                                                                         (5) 

 

It is important to note that due to the square grid, the slope angle is calculated 

differently depending on whether the two neighboring cells are adjacent or diagonal to the 

burning cell. Specifically, for adjacent cells, the slope angle is given by: 

 θ𝑠  = tan−1 (
E1 − E2

L
)                                                                (6) 

 

Where E1and E2are the elevations of the two cells, and 𝐿 is the length of the square side. 

For diagonal cells, the formula transforms into: 

 θ𝑠  = tan−1 (
E1 − E2

L√2
)                                                                (7) 

3. Model calibration using Simulated Annealing 

This section outlines the process of calibrating the wildfire simulation model presented 

in section 2, using the simulated annealing metaheuristic. The calibration aims to optimize 

model parameters to enhance the accuracy of the simulation results compared to observed 

wildfire data. The section details the definition of the objective function, the control 

parameters of simulated annealing, the data pre-processing steps, the calibration process, 

and the evaluation of the calibration results. 

3.1. Definition of Objective function  

The objective function in the simulated annealing process quantifies the difference 

between the simulated and observed wildfire behaviors. The objective function (equation 

11) used is calculated using F1-score, which is proposed to measure predictive 

performance of a binary classification [20], it is particularly relevant in applications where 

the positive class is rare relative to the negative class.  Nowadays, the F1-score is widely 

used in most application areas, including to measure the performance of forest fire 

simulations [21].  

The F1-score (equation 10) is the harmonic mean of precision (equation 8) and recall 

(equation 9): 
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Precision: Measures the proportion of cells identified as burning that actually are 

burning (accuracy of positive predictions). It's calculated as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

(𝑇𝑃 +  𝐹𝑃)
                                                                (8) 

Recall: Measures the proportion of actual burning cells that are correctly identified by 

the simulation (completeness of positive predictions). It's calculated as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

(𝑇𝑃 +  𝐹𝑁)
                                                                (9) 

Where: 

-  TP (True Positive): True positives are the number of cells that are correctly 

classified as belonging to the burned area. 

- TN (True Negative): True negatives are the number the cells that are correctly 

classified as not belonging to the burned area. 

- FN (False Negative): False negatives are the number of cells that are incorrectly 

classified as not belonging to the burned area. 

- FP (False Positive): False positives are the number of cells that are incorrectly 

classified as belonging to the burned area. 

 

F1-score: Combines precision and recall into a single metric, providing a balanced view 

of the model's performance. It's calculated as: 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙)
                                              (10) 

The objective function 𝑭(𝑷) is the average of the F1-scores from the 10 simulation 

runs. This averaging process helps to smooth out the effects of model stochasticity and 

provides a more reliable estimate of the model's accuracy: 

𝑭(𝑷) =
1

10
∑ 𝐹𝑆𝑖(𝑷)

10

𝑖=1

                                                         (11) 

Where: 

 𝑷 represents the vector of model parameters to be calibrated (see section 3.2). 

 𝐹𝑆𝑖(𝑷) is the F1-score of the i-th simulation run with parameters 𝑷. 
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3.2. Model Parameters to Calibrate 

The parameters of the model to be calibrated are those which are used to calculate the 

𝑃𝑏𝑢𝑟𝑛 probability (see equation 1), and determine the impact of the different factors which 

influence the fire spread (type and density of vegetation, elevation, speed and direction the 

wind): 

 𝑷𝒉  is a constant, the value 0.58. 

 𝒂  is a constant parameter in the model with a value of 0.078.

  the minimum value of  𝑷𝒗𝒆𝒈 (see equation 1).

  the maximum value of 𝑷𝒗𝒆𝒈 (see equation 1).

 the minimum value of  𝑷𝒅𝒆𝒏𝒔 (see equation 1).

 the maximum value of 𝑷𝒅𝒆𝒏𝒔 (see equation 1).

 𝒄𝟏  is a constant parameter in the model with a value of 0.045.

 𝒄𝟐  is a constant parameter in the model with a value of 0.131. 

Table 4 summarizes the parameters of the model and their corresponding ranges used in 

the simulated annealing process. 

Parameter 
Value in the 

basic model 
Equation Table Range 

𝑃ℎ 0.58 equation 1 Table 3.1 [0.01 , 1.5] 

a 0.078 equation 4 (Effect elevation) Table 3.1 [0,001 , 0.5] 

  equation 1 (Type of vegetation effect) Table 3.1 [−1. −0.1] 

 0.3 equation 1 (Type of vegetation effect) Table 3.1 [0.1 , 1.5] 

  equation 1 (density of vegetation effect) Table 3.2 [−1. −0.1] 

 0.4 equation 1 (density of vegetation effect) Table 3.2 [0.1 , 1.5] 

𝑐1 0.045 equation 2 (Effect of wind) Table 3.3 [0,001 , 0.05] 

𝑐2 0.131 equation 3 (Effect of wind) Table 3.3 [0,001 , 0.3] 

Table 4  Model parameters to calibrate 

3.3. Data pre-processing  

Data normalization is a crucial step in the pre-processing phase of model calibration. It 

involves transforming the raw data into a format compatible with the models. For our 

forest fire simulation model, we need to normalize the vegetation density and type values 

from the data to match the parameter ranges used in the model. 
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3.3.1. Normalizing Vegetation type 

The vegetation type data in the dataset ranges from 0 to 0.5. However, the model 

parameter  must lie between 

 

We apply a linear normalization formula to have a  in the range [

]. The transformation is as follows: 

 = (
𝑡𝑦𝑝𝑒𝑉𝑒𝑔−𝑀𝑖𝑛𝑡𝑦𝑝𝑒𝑉𝑒𝑔 

𝑀𝑎𝑥𝑡𝑦𝑝𝑒𝑉𝑒𝑔−𝑀𝑖𝑛𝑡𝑦𝑝𝑒𝑉𝑒𝑔
) × ( ) +                          (12)

𝑡𝑦𝑝𝑒𝑉𝑒𝑔: The vegetation type value in the data set 

𝑀𝑖𝑛𝑡𝑦𝑝𝑒𝑉𝑒𝑔: The minimum value of vegetation type in the data set 

𝑀𝑎𝑥𝑡𝑦𝑝𝑒𝑉𝑒𝑔: The minimum value of vegetation type in the data set 

Given that 𝑀𝑖𝑛𝑡𝑦𝑝𝑒𝑉𝑒𝑔 = 0 and 𝑀𝑎𝑥𝑡𝑦𝑝𝑒𝑉𝑒𝑔 = 0.5, we obtain: 

 = (
𝑡𝑦𝑝𝑒𝑉𝑒𝑔 

0.5
) × ( ) +                          (13)

3.3.2. Normalizing Vegetation Density 

 The vegetation density data in the dataset ranges from 0 to 100. However, the model 

parameter  must lie between 

 

We apply a linear normalization formula to have a  in the range [

]. The transformation is as follows: 

 = (
𝑑𝑒𝑛−𝑀𝑖𝑛𝑑𝑒𝑛 

𝑀𝑎𝑥𝑑𝑒𝑛−𝑀𝑖𝑛𝑑𝑒𝑛
)  × ( ) +                          (14)

𝑑𝑒𝑛: The density value in the data set 

𝑀𝑖𝑛𝑑𝑒𝑛: The minimum value of density in the data set 

𝑀𝑎𝑥𝑑𝑒𝑛: The minimum value of density in the data set 

Given that 𝑀𝑖𝑛𝑑𝑒𝑛 = 0 and 𝑀𝑎𝑥𝑑𝑒𝑛 = 100, we obtain: 

 = (
𝑑𝑒𝑛

100
)  × ( ) +                          (15)
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3.4. Calibration Process 

The calibration aims to enhance the accuracy of the wildfire simulation model. Using 

the Simulated Annealing (SA) metaheuristic, we systematically adjust the model 

parameters to minimize the discrepancy between the simulated fire spread and observed 

data. This section details the steps involved in the calibration process. 

3.4.1. Initialization 

The calibration process begins with choosing the initial solution, setting the initial 

temperature and cooling schedule for the Simulated Annealing algorithm. 

 Initial solution: The parameters to be calibrated are defined in Section. The initial 

values of these parameters are the values from the original model (see Table 5). 

Parameter Initial value 

𝑃ℎ 0.58 

a 0.078 

  

 0.3 

  

 0.4 

𝑐1 0.045 

𝑐2 0.131 

Table 5 The initial solution 

 Initial Temperature: Temperature is a control parameter that starts high and 

gradually decreases. It determines the probability of accepting worse solutions. In 

the experiments, we tested different temperature values (see Table 6). 

3.4.2. Iterative Optimization 

The heart of the calibration process lies in the iterative optimization steps of the SA 

algorithm. 
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1. Perturbation: Slightly alter the current set of parameters to explore the solution 

space. We select one of the parameters at random and give it a random number 

from here range (see Table 4). 

2. Simulation: Run 10 wildfire simulation model using the perturbed parameters. 

Calculate the F1-score for each simulation (see equation 10). 

3. Objective Function Evaluation: Compute the objective function, which is the 

average of F1-scores of the 10 performed simulations (see equation 11). 

4. Acceptance Criterion: Determine whether to accept the new parameters based on 

the Metropolis criterion: 

        𝑷𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒐𝒇 𝑨𝒄𝒄𝒆𝒑𝒕𝒂𝒏𝒄𝒆 = {
 𝒊𝒇  ∆> 𝟎

𝒓𝒂𝒏𝒅𝒐𝒎 𝒓 > 𝒆𝒙𝒑 (
−∆

𝑻
)
                          (12) 

Where ∆ is the change in the objective function, and 𝑻 the current temperature. 

5. Cooling: The temperature is decreased at each iteration according to exponential 

cooling schedule:   𝑇𝑡 =  𝑇0 × 𝛼. Where 𝑇𝑡 the temperature at iteration  𝑡, 𝑇0 the 

initial temperature, and 𝛼 the cooling rate. We set the cooling rate to  𝛼 = 0.9. 

6. Iteration Termination: Repeat steps 1-5 until a stopping criterion is met. The 

stopping criterion that we used is 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 ≤ 1.  

3.4.3. Finalization 

Upon completing the iterative optimization, finalize the calibration by recording the 

best parameters set achieved, that maximizes the objective function. 

3.5. Model Implementation  

 

 Python Language  

We chose Python to develop our fire simulation application. Its clean syntax makes 

coding a breeze, and its extensive libraries offer ready-made tools for data handling, 

control flow, and more, streamlining development.  This versatile language transcends 

platforms, running seamlessly on Windows, Mac OS, Linux, and even embedded systems 

without rewrites. Finally, Python's object-oriented nature perfectly aligns with the fire 
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simulation model. Cells become objects, encapsulating their state, behavior, and interaction 

with the environment. This structured approach simplifies code creation, improves 

radability, and ensures long-term maintainability. 

 Libraries  

The model is implemented in Python using libraries such as: 

 Random (random): This library provides functions for generating random numbers. 

It's commonly used for simulating random events or creating random data for 

testing purposes. 

 Math (math): This library offers various mathematical functions, constants, and 

tools. It includes basic mathematical operations like sine, cosine, square root, as 

well as more advanced functions like logarithms and factorials. 

 Pygame: This library is specifically designed for multimedia programming in 

Python. It provides functionalities for creating graphical user interfaces (GUIs), 

handling game input (key presses, mouse clicks), rendering graphics (images, 

shapes, text), and playing sounds. 

 NumPy (numpy): This library is a fundamental package for scientific computing in 

Python. It offers powerful tools for working with multi-dimensional arrays and 

matrices. NumPy provides efficient operations on numerical data, linear algebra 

functions, and random number generation with better performance compared to the 

standard random library. 

 Matplotlib (matplotlib.pyplot): Matplotlib is a plotting library for creating static, 

animated, and interactive visualizations in Python. pyplot is a module in Matplotlib 

that provides a MATLAB-like interface. 

3.5.2. User interface and model Outputs 
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Figure 3.2 Simulation prototype interface

 

Figure 3.3 A forest fire simulation at the start
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Figure 3.4 End of a forest fire simulation 

 

3.6.  Results and Discussion 

To investigate the influence of the initial temperature parameter on the calibration 

process, multiple calibration runs were conducted with varying initial temperaturevalues. 

The objective function values obtained from each run were compared to assess the quality 

of the calibration outcomes. Table 6 show the obtained results. 

Temperature Initial Solution 
Objective function 

of solution 

 

Precision 

 

Recall 

10000 0,22116842 0,37504769 0,39701437 0,35797556 

20000 0,29757718 0,4231854 0,30122987 0,72265271 

50000 0,24361159 0,45424251 0,5427411 0,64453752 

100000 0,12103862 0,47621206 0,64696614 0,489808 

200000 0,19405749 0,5095584 0,37052151 0,827993 

500000 0,2722253 0,4035089 0,2996045 0,6190226 

1000000 0,2604095 0,44537249 0,42730215 0,7854101 

2000000 0,2213882 0,431391 0,3995544 0,76195462 
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5000000 0,24048865 0,407254 0,3630723 0,46530541 

10000000 0,20406134 0,55264836 0,48065506 0,6985689 

20000000 0,2581559 0,50353073 0,37167377 0,804188 

50000000 0,25732287 0,41452274 0,27560422 0,85849912 

Table 6 Model calibration results applying different initial temperatures     

The relationship between temperature and objective function of solution: We note that 

the value of the objective function generally increases with increasing temperature, starting 

from 0.37504769 at a temperature of 10000 and reaching 0.55264836 at a temperature of 

10000000.  Which shows In (Figure 3.2) However, there are some fluctuations at different 

temperatures, such as a decrease in the value of the objective function at 5,000,000 and 

50,000,000.  

 

Figure 3.5 Variation of Objective Function with Temperature 

The differences between the initial solution and the optimized solution are significant 

across various performance metrics, indicating substantial improvements through the 

optimization process. Here’s a detailed explanation of each metric: 

The difference between the initial solution and the optimized solution is significant, 

reflecting a substantial improvement in the objective function. For instance, at a 
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temperature of 10,000, the initial solution value is 0.22116842, while the objective 

function value is 0.37504769. This significant increase indicates the effectiveness of the 

optimization process in enhancing the overall performance of the solution. 

Although the precision decreases from 0.73179714 in the initial solution to 0.48065506 

in the optimized solution, this trade-off is often necessary to improve other metrics. The 

decrease in precision suggests that the optimized solution makes more positive predictions, 

including more false positives, but it is part of a broader strategy to improve the overall 

performance. 

The increase in recall from 0.17336823 to 0.6985689 indicates a substantial 

improvement in the ability of the optimized solution to identify true positives. This 

significant increase demonstrates the optimization process's success in enhancing the 

solution’s comprehensiveness in identifying relevant positives. 

Objective Function: The significant improvement in the objective function highlights 

the optimization process's effectiveness in enhancing the overall solution quality. 

Precision: The trade-off in precision indicates a shift towards a more inclusive 

prediction strategy, accepting more false positives to improve recall. 

Recall: The marked increase in recall underscores the optimization process's success in 

identifying a greater number of true positives. 

Overall, the table (Table 7) and the histogram (see Figure 3.3) analysis demonstrate that 

the optimization process has led to a solution with a significantly better objective function 

and recall, despite a decrease in precision. This reflects the effectiveness of the 

optimization strategy in improving the overall solution quality. 

 

 Objective function Precision Recall 

Initial solution 0,20406134 0,73179714 0,17336823 

Optimised solution 0,55264836 0,48065506 0,6985689 
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Table 7 The difference between the initial solution and the optimized solution 

     

Figure 3.6 Histogram displaying objective function, precision and recall using Initial parameters 

(Table 5) and optimized parameters (Table 8) 

     This diagram provides a comprehensive view of how the objective function, recall, and 

precision metrics vary with changes in temperature during the optimization process. (see 

Figure 3.4).  

 

Figure 3.7 Variation of Objective Function , recall, and precision with Temperature 
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     Recall, representing the ability to identify true positives, shows variability with 

changing temperatures. At low temperatures (e.g., 10,000), recall is relatively low 

(0.35797556), but it improves significantly at 20,000 (0.72265271), indicating a robust 

identification of true positives. This trend continues, with recall reaching its highest value 

of 0.85849912 at 50,000,000. However, there are fluctuations at intermediate temperatures, 

such as a decrease at 100,000 (0.489808), showing the importance of balancing 

temperature settings to maintain high recall. 

    Precision, indicating the accuracy of true positive identification relative to false 

positives, also varies with temperature. At lower temperatures, precision is moderate, with 

a value of 0.39701437 at 10,000. It reaches a peak of 0.64696614 at 100,000, indicating a 

high accuracy of true positive identification. However, at very high temperatures, precision 

tends to become unstable. For instance, at 50,000,000, precision drops to 0.27560422, 

reflecting the random search behavior of the algorithm. 

    Combined Analysis: The combined analysis of the objective function, recall, and 

precision across different temperatures illustrates the dynamic interplay between these 

metrics. The optimal temperature of 10,000,000 stands out as it achieves a favorable 

objective function (0.55264836), high recall (0.6985689), and balanced precision 

(0.48065506), demonstrating the effectiveness of the algorithm at this setting. This 

temperature allows the algorithm to effectively explore the solution space without 

excessive randomness, leading to high-quality solutions. 

    The best values of parameters that give high objective function value are given in the 

Table 8. 

Parameter best value 

𝑃ℎ 0.68 

a 0.086 

  

 0.473 

  

 0.292 

𝑐1 0.001 
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𝑐2 0.035 

Table 8 The best parametres values that give high objective function value. 

Figure 3.5 illustrates the simulation results using the initial parameters (Table 5), while 

Figure 3.6 presents the simulation results with the optimized parameters (Table 8). The 

comparison reveals a significant improvement in the model's ability to identify true 

positives (TP) after calibration using Simulated Annealing. This enhancement 

demonstrates the effectiveness of the optimization process in refining the model's accuracy 

and predictive capability. 

 

 

Figure 3.8 Simulation results using the initial parameters (Table 5) 

 



Chapter 03:                                                            Implementation and Calibration of the Forest Fire Simulation Model 

62 

 

 

Figure 3.9 Simulation results using the best parameters (Table 8) 

4. Conclusion  

This chapter has provided a comprehensive overview of our approach conducted to 

develop and calibrate a wildfire simulation model based on cellular automata and the SA 

metaheuristic, by systematically outlining the model description, implementation details, 

calibration process, and evaluation of calibration results. 

The calibration process using the SA algorithm has enabled the refinement of model 

parameters to accurately replicate observed fire behavior.  

The calibration process for the wildfire simulation model using the Simulated 

Annealing (SA) metaheuristic yielded promising results, with notable improvements 

observed across different temperature value. 
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General conclusion 
Forest fires are a critical environmental challenge, exacerbated by climate change and 

human activities, demanding sophisticated tools for prediction and management. This 

master's thesis has explored the development and calibration of a forest fire simulation 

model using cellular automata and optimization techniques, specifically Simulated 

Annealing. 

The research began with a comprehensive review of modeling and simulation 

principles, highlighting the suitability of cellular automata for capturing the complex 

dynamics of forest fire spread. Cellular automata offer a straightforward yet powerful 

framework, allowing for the simulation of fire behavior through localized interactions 

within a grid system. 

Subsequent chapters detailed the implementation of a forest fire simulation model 

based on cellular automata. Key components, such as grid definition, cell states, evolution 

rules, and variables influencing fire spread, were meticulously defined. The model's 

development aimed to provide a configurable and user-friendly simulation environment, 

complete with graphical visualization of results. 

A significant focus of the thesis was the calibration of the simulation model using 

Simulated Annealing, a metaheuristic optimization technique. Calibration is essential for 

aligning the model's output with real-world observations, thereby enhancing its predictive 

accuracy. Despite the complexity of forest fire dynamics and the numerous variables 

involved, the application of Simulated Annealing provided a systematic approach to 

exploring the parameter space and optimizing the model. 

The results of the calibration process, while preliminary, demonstrated the potential of 

combining cellular automata with metaheuristic techniques for forest fire simulation. The 

calibrated model showed improved alignment with observed fire patterns, though further 

refinement is needed to achieve higher accuracy and reliability. These preliminary results 

underscore the challenges inherent in modeling such a complex and stochastic 

phenomenon but also highlight the progress made in this study. 
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In conclusion, this thesis has made an interesting contribution to forest fire modeling 

by developing a cellular automata-based simulation model and employing Simulated 

Annealing for its calibration. While the results obtained are preliminary, they provide a 

foundation for future research and improvements. Continued efforts in this direction, 

including the incorporation of more detailed data and advanced optimization techniques, 

will further enhance the model's capabilities and its application in forest fire management 

and mitigation strategies. 
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