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ABSTRACT 
 

 

 

 This thesis aims to present a straightforward, convergent, and readily applicable 

numerical method for computing approximate solutions to linear two-dimensional 

first-order and second-order partial Volterra integro-differential equations, along 

with a class of high-order linear and non-linear partial Volterra integro-

differential equations in two dimensions. We construct algorithms based on 

Taylor polynomials of two variables to address these equations numerically, and 

a rigorous convergence analysis with error estimates are discussed in details to 

validate the convergence of the approximate solution to the exact solution. The 

theoretical findings are reinforced with several numerical examples to test the 

efficiency of the proposed scheme and to confirm the reliability of the 

convergence analysis of the proposed convergent algorithms. 

 

Key words: Volterra integro-differential equation, Linear partial Volterra 

integro-differential equation, Two-dimensional equations, Collocation method, 

Taylor polynomials, Convergence analysis, Error estimation. 
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RÉSUMÉ 

 

 

  L'objectif de cette thèse est de proposer et appliquer une méthode numérique 

directe, convergente et facilement applicable pour calculer les solutions 

approchées des équations intégro-différentielles partielles linéaires de Volterra du 

premier et du second ordre en deux dimensions, ainsi qu'une classe d'équations 

intégro-différentielles partielles de Volterra linéaires et non linéaires d'ordre  

supérieur en deux dimensions. Nous construisons des algorithmes basés sur les 

polynômes de Taylor en deux dimensions pour aborder ces équations 

numériquement, et une analyse de convergence rigoureuse ainsi que des 

estimations d'erreur sont discutées en détail. Pour valider la convergence de la 

solution approximative à la solution exacte, les résultats théoriques sont renforcés 

par plusieurs exemples numériques pour confirmer l'efficacité du schémas 

proposés. 
 

     Mots-clés : Équation intégro-différentielle de Volterra, Équation intégro-

différentielle partielle linéaire de Volterra, Équations à deux dimensions, Méthode 

de collocation, Polynômes de Taylor, Analyse de convergence, Estimation 

d'erreur. 

  



V 
 

 

 ملخص

 

  

لحساب    لتطبيق ا  سهلةطريقة عددية مباشرة، متقاربة، و   طروحةقدمنا في هذه الا 

التفاضلية الجزئية الخطية ثنائية الأبعاد  -التكاملية   فولتيراالحلول التقريبية لمعادلات  

والثانية،   الأولى  الدرجة  الى  من  الت بالإضافة  المعادلات  من  فاضلية  الت-كاملية فئة 

ال  الجزئية  ببناء    قمنا ثنائية الأبعاد.    ولتيرافل  ة العالي  درجة الخطية وغير الخطية ذات 

  طريقة التجميع   وباستخدام   تايلور ثنائية الأبعاد   كثيرات حدود   باستعمال خوارزميات  

المعادلات عددياً وتم  ب  ايضا  لمعالجة هذه  الخطأ  تقديرات  لتأكيد  المناقشة  تفصيل 

النظرية بعدة أمثلة عددية  تقارب الحل التقريبي إلى الحل الدقيق. يتم تعزيز النتائج  

 ة. المقترح نهجلاختبار كفاءة ال

 

 الافتتاحية: الكلمات    

التكاملية فولتيرا  التكاملية-معادلة  فولتيرا  معادلة  الجزئية  -التفاضلية،  التفاضلية 

التقارب،    دراسةالخطية، معادلات ثنائية الأبعاد، طريقة التجميع، كثيرات حدود تايلور،  

 تقدير الخطأ. 
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Introduction

The concept of integral equations (IEs) arose from the mathematical modelling of various real-
life problems in physics and biology. Consequently, it stands as a vital tool in mathematical

physics, astrophysics, and notably in applied mathematics. Integral equations play a significant
role in addressing a variety of problems within the theory of differential equations, they also
intersect with orthogonal systems theory and spectral theory. Furthermore, integral equations
maintain close connections with functional analysis, a fundamental field in mathematics.

Integral equations highlights a profound and extensive history tracing back to the early de-
velopments of calculus and mathematical analysis, emerging as a natural extension of differential
equations. The groundwork for integral equations was laid by mathematicians such as John Wallis
(1616-1703) and James Gregory (1638-1675) in the 17th century who explored problems involving
continuous quantities. In the 18th century, Leonhard Euler (1707-1783) introduced integral equa-
tions of the first kind, while Daniel Bernoulli (1700-1782) encountered them during his study on
the oscillation of a stretched string. Mathematicians like Joseph Fourier (1768-1830) and Joseph
Liouville (1809-1882) further advanced the theory through their work on solving differential equa-
tions and modelling various physical phenomena such as the heat equation in 1822. One of the
earliest documented integral equations in mathematical literature dates back to Abel’s problem
in mechanics which involved finding the trajectory along which a material point should slide to
make the time of descent an initially given function of the altitude in 1826 [1, 2].

The development of integral equations truly began towards the latter part of the 19th century,
largely attributed to the works of Italian mathematician Vito Volterra (1860-1940), and notably
to Swedish mathematician Ivar Fredholm (1866-1927). Fredholm’s seminal work [3], published in
1900, introduced a ground-breaking method for solving the Dirichlet problem. In 1902, his sub-
sequent contributions [4] introduced the concept of compact operators. These concepts laid the
foundation for Fredholm integral equations (FIEs) and established conditions for their solvability.
Since then, integral equations have been the subject of continuous research by numerous mathe-
maticians up to the present moment. Pioneers in this field include Henri Poincaré (1854-1912),
Maurice Fréchet (1878-1973), David Hilbert (1862-1943), Godfrey Harold Hardy (1877-1947),
Frigyes Riesz (1880-1956) and Erhard Schmidt (1876-1959), who contributed significantly to this
evolving area of study.

However, in the realm of mathematical modelling, understanding complex dynamics often
requires more than just integral or differential equations alone. A new class, integrating both
differential and integral aspects, has emerged as a powerful tool to provide a more comprehensive
framework to describe processes where both rates of change (described by differential equations)
and accumulated quantities (described by integral equations) are important. These equations,
known as integro-differential equations (IDEs), have extensive applications across physics, biol-
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Introduction

ogy, chemistry, and engineering [5–9]. The comprehension and resolution of IDEs are pivotal in
driving progress in these scientific fields, fostering the advancement of sophisticated mathematical
methodologies. J. Fourier and Pierre-Simon Laplace (1749-1827) were among the pioneers who
initially investigated their fundamental properties in the 20th century. Through their integral
transforms, these equations can be converted from integro-differential forms into simpler algebraic
equations, thereby facilitating their analysis and resolution. Mathematicians such as Oliver Heavi-
side (1850-1925) and Jan Mikusinski (1913-1987) significantly contributed to operational calculus,
offering a systematic approach to address complex integro-differential equations.

The rising necessity to depict more complex phenomena characterized by spatial variations
(illustrated by partial derivatives) and interactions with past states (expressed through integral
terms) underscores the development of partial integro-differential equations (PIDEs). Throughout
the years, the advancement of PIDEs has positioned it as a pivotal area of research in applied
mathematics and engineering. It has yielded significant contributions across diverse domains in-
cluding stochastic processes and probability theory, control theory and optimization, and has
influenced the approach to modelling biological processes with memory effects such as financial
mathematics [10, 11], fluid dynamics [12], population dynamics [13, 14], and disease spread [15].
Additionally, in physics, they are instrumental in describing phenomena involving non-local inter-
actions and memory effects, such as anomalous diffusion and viscoelastic materials [16].

The wide-ranging applications of Volterra integro-differential equations (VIDEs) and partial
Volterra integro-differential equations (PVIDEs) has spurred researchers to devise advanced and
efficient solution methods for this category of equations. Finding their analytical solutions has
proven challenging for the majority as exact solutions are often unattainable. Therefore, with
the emergence of computers in the mid-20th century, numerical methods and computational tech-
niques became essential for resolving them. Numerous studies have focused on numerical solutions
for VIDEs, as exemplified by works such as [17–21]. However, research on numerical solutions
for PVIDEs still remains limited [22–26], especially for multidimensional partial Volterra integro-
differential equations (2D-PVIDEs), which have recently garnered increasing interest in their
numerical solutions [27–31]. Zheng et al. presented a Legendre spectral method for solving multi-
dimensional PVIDEs in their work [28]. Aziz et al. [29] introduced a collocation technique utilizing
the Haar wavelet approach to obtain numerical solutions for diffusion and reaction-diffusion 2D-
PVIDES. Similarly, Kumar and Vijesh [30] employed Haar wavelets to tackle nonlinear PVIDEs.
In a separate study [31], Wang et al. utilized two-dimensional Bernoulli polynomials to address a
subset of 2D-PVIDEs with fractional order.

The aim of this thesis is to develop direct collocation approaches using two-dimensional Taylor
polynomials to obtain approximate solutions for a range of 2D-PVIDEs of first, second, and higher
order, each with its own set of initial conditions. These approaches revolve around the concept
of approximating the exact solution of a given PVIDE within a bounded domain using elements
from the designated collocation space, i.e. the piecewise polynomial space. This approximation
that conforms to the equation and the initial conditions on collocation points is referred to as the
collocation solution.

Methods based on Taylor analysis have been integrated into approximation theory, facilitating
the discovery of numerical solutions for various equations [32–35]. For example, Darania et al. [34]
applied a differential transform method utilizing Taylor series expansion to solve two-dimensional
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nonlinear VIDEs. Similarly, Gurbuz and Sezer [35] utilized a matrix collocation technique incorpo-
rating Laguerre and Taylor polynomials to address specific nonlinear PVIDEs. In this thesis, our
focus is on the Taylor piecewise collocation method utilizing Taylor polynomials. This proposed
method offers an approximate solution through explicit formulas, providing several advantages
such as the high accuracy and high convergence rate. The lack of need to solve any algebraic
systems makes the process of finding numerical solutions to such problems using the Taylor col-
location method easy and does not cost much computation. Therefore, in recent years, there
has been significant attention on utilizing the Taylor collocation method to numerically solve
various types of differential, integral, and integro-differential equations, including the complex
differential equations for a rectangular domain [36], Bagley-Torvik equation [37], high-order linear
differential-difference [38], Volterra-Fredholm integral [39], IDEs [40, 41], systems of IDEs [42, 43]
and others [44,45]. Moreover, Laib et al. [46] have recently investigated two-dimensional Volterra
integral equations. In this pursuit, we extend the Taylor collocation method previously intro-
duced for one-dimensional VIDEs in [41], and for two-dimensional VIEs in [46] to tackle a variety
of 2D-PVIDEs.

This thesis is organized into four carefully structured chapters, outlined as follows:
Chapter 1: we provide general concepts, definitions, and auxiliary facts related to VIDEs

and PVIDEs, laying the groundwork for subsequent chapters. This chapter covers topics such
as the classification of integral and integro-differential equations, accompanied by real-life exam-
ples illustrating their application. Additionally, we explore the significant relation between these
equations and differential equations, focusing on the conversion between the two. We also include
a brief review of spline collocation methods and some discrete and integral inequalities that are
necessary for later use.

Chapter 2: we expand the Taylor collocation method to two dimensions to explore a col-
location solution within the piecewise polynomial spline space S(−1)

p−1,p−1 for first-order linear 2D-
PVIDEs. We validate the convergence of the approximate solution to the exact solution, with an
order of convergence equal to p. Furthermore, we reinforce our theoretical findings with numerous
numerical examples.

Chapter 3: we introduce a novel direct numerical approach designed to solve second-order
linear 2D-PVIDEs within the same piecewise polynomial spline space S(−1)

p−1,p−1 using Taylor poly-
nomials in two dimensions. Our thorough analysis confirms the convergence of this algorithm,
and we offer numerical results to validate the effectiveness of our proposed approach.

Chapter 4: we build upon the fundamental concepts established in the previous chapters
and extend their application to a class of high order 2D-PVIDEs. Employing Taylor polynomials
in two dimensions, we create a collocation solution within the piecewise polynomial spline space
S
(−1)
p−1,p−1. Furthermore, we conduct an error analysis that demonstrates the convergence of the

approximate solution and its derivatives. The inclusion of numerical examples serves to validate
the theoretical results.

Ultimately, in Conclusion and perspectives we encapsulate the contributions made within
this thesis and propose new avenues for future research, along with suggestions for improvements
and perspectives in the field.
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Chapter 1

Preliminary and auxiliary results

This chapter serves as an initial exploration within the framework of our thesis investigations.
The focus here lies on the classifications of integral equations and their connections with differ-
ential equations. Additionally, we delve into the examination of collocation methods employed
in handling integro-differential equations with a particular attention on the Taylor collocation
method. Furthermore, we present specific discrete and integral inequalities that will prove essen-
tial in our theoretical analysis of the approaches we propose. To begin our exploration, let us
address the main question: what is an integral equation ?

An integral equation is an equation in which the unknown function of one or more variables,
denoted as µ(x), is situated beneath the integral sign as follows:

α(x)µ(x) = ℏ(x) +
∫ b(x)

a(x)
H(x, t, µ(t))dt, (1.1)

where α(x) and ℏ(x) represent known functions, and H(x, t, µ(t)) serves as the kernel of the in-
tegral equation over the interval [a, b]. Additionally, a(x) and b(x) denote the integration limits,
and they may be either variables, constants, or a combination of both.

This general definition encompasses various specific forms that emerge from modeling diverse
problems in physics and biology. In our subsequent exploration, we will concentrate on the linear
case of equation (1.1), where the kernel H(x, t, µ(t)) fulfills

H(x, t, µ(t)) = H(x, t)µ(t).

1.1 Classification of integral equations

Integral equations can be classified according to three main characteristics: integration bounds,
the kind of the equation determined by the location of the unknown function, and the singularity
adjective used in cases where one or both integration bounds are infinite, or when the equation’s
kernel is unbounded.
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Chapter 1. Preliminary and auxiliary results

1.1.1 Fredholm integral equations

A linear Fredholm integral equation takes the following form:

α(x)µ(x) = ℏ(x) +
∫ b

a
H(x, t)µ(t)dt, (1.2)

where the integration bounds a and b are fixed, with ℏ(x) representing a predefined function
at each point x within the bounded interval [a, b]. The function H(x, t) is also predefined and
applicable to every pair of points x and t within the same interval.
Equation (1.2) with α(x) ̸= 0 represents a FIE of the second kind. In contrast, a FIE of the first
kind take the form:

−ℏ(x) =
∫ b

a
H(x, t)µ(t)dt,

where the unknown function µ(x) appears solely under the integral sign (α(x) = 0).

Fredholm integral equation (1.2) is labeled singular, as previously mentioned, if its integration
domain is unbounded or if its kernel is unbounded. In the latter case, the kernel can be represented
as:

H(x, t) = β(x, t)K(x, t),

with β(x, t) represents the singular component specifically chosen such that K(x, t) remains
bounded. Nevertheless, Equation (1.2) can be expressed as a weakly singular FIE if the inte-
gral of the square of the kernel’s modulus exists, even if the kernel itself is unbounded. Such
equations can be represented in the following form:

µ(x) = ℏ(x) +
∫ b

a

K(x, t)

|x− t|ω
µ(t)dt,

where K is a predefined bounded function of two variables within the interval [a, b] and 0 < ω < 1.
All the concepts discussed earlier concerning Fredholm integral equations can be extended to

multidimensional contexts by considering the integration domain [a, b] as Λ, i.e.,

α(x)µ(x) = ℏ(x) +
∫
Λ
H(x, t)µ(t)dt,

where Λ can adopt the structure of a multidimensional domain or a combination of multiple non-
overlapping multidimensional domains. For a more in-depth discussion and analysis of FIEs refer
to ref. [2].

1.1.2 Volterra integral equations

A linear Volterra integral equation (VIE) takes the following form:

α(x)µ(x) = ℏ(x) +
∫ x

a
H(x, t)µ(t)dt, a ≤ x ≤ b, (1.3)

where at least one of the integration limits x is a variable. Here, the functions ℏ(x) and the kernel
H(x, t) are both predefined within the interval [a, b].

7



Chapter 1. Preliminary and auxiliary results

Likewise, Equation (1.3) with α(x) ̸= 0 characterizes a VIE of the second kind. Moreover, a
fundamentally distinct category of equations arises when α(x) = 0, leading to the VIE of the first
kind:

−ℏ(x) =
∫ x

0
H(x, t)µ(t)dt.

Volterra integral equation (1.3) is also labeled singular if its kernel H(x, t) is unbounded, while
it is termed weakly singular if its integrands are unbounded yet integrable. One of the earliest
integral equations studied, serving as a notable example of a Volterra singular integral equation
of the first kind, is Abel’s equation∫ x

0

µ(t)dt

(x− t)ω
= ℏ(x), 0 < ω < 1.

This equation models the problem of determining the trajectory along which a material point
should slide to ensure that the time of descent becomes a specified function of the initial altitude.
For a comprehensive understanding of this equation and its solution, refer to [2].

Remark 1.

• The classical Fredholm theory is applicable to Volterra equations as they can be viewed as
a particular case of Fredholm equations. However, this application diminishes some of its
efficacy, as direct study of Volterra equations often yields numerous outcomes that cannot be
derived through Fredholm Theory alone.

• In academic literature, Equation (1.3) is categorized as a third-kind Volterra integral equation
if for ω ∈ [0, 1), β > 0, ω + β ≥ 1, it is represented in the following format:

xβµ(x) = xβℏ(x) +
∫ x

a

1

(x− t)ω
H(x, t)µ(t)dt, x ∈ [a, b], (1.4)

where ℏ(x) and H(x, t) = tω+β−1H ′(x, t) are known continuous functions on [a, b] and
Λ = {(x, t)|a ≤ t < x ≤ b} respectively. The distinctive feature of third-kind Volterra
integral equations lies in the coefficient α(x) = xβ on the left-hand side of the equation. For
further information on these equations refer to refs. [47–49].

Based on the aforementioned exploration, a fundamental differentiation between these two
integral equations categories is established: in the Fredholm integral equation the integration
bounds are constant, whereas in the Volterra integral equation one of them is a variable. However,
there are scenarios where mixed equations occur, blending characteristics of both types.
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Chapter 1. Preliminary and auxiliary results

Fredholm-Volterra integral equations

Fredholm-Volterra integral equations arise from boundary value problems and are employed
in mathematical models that depict the spatio-temporal evolution of epidemics. They are also
used in the study of predator-prey interactions within population dynamics, where population
growth rates are shaped by a combination of fixed and variable factors. Additionally, these mixed
integral equations have applications in diverse fields including physical, economic, and biological
models [50].

Fredholm-Volterra integral equations can be encountered in one of two forms: either as separate
Fredholm and Volterra integral equations

µ(x) = ℏ(x) +
∫ b

a
H1(x, t)µ(t)dt+

∫ x

a
H2(x, t)µ(t)dt,

or as mixed Fredholm-Volterra integral equations

µ(x, y) = ℏ(x, y) +
∫ b

a

∫ x

a
H(x, y, t, s)µ(t, s)dtds.

Here ℏ(x), ℏ(x, y), H1(x, t), H2(x, t) andH(x, y, t, s) are known and well-defined analytic functions
of one or multiple variables within their respective domains. Furthermore, the unknown functions
µ(x) and µ(x, y) appear both inside and outside the integral signs. This characteristic feature
identifies the equation as a second-kind integral equation. In contrast, if the unknown functions
only appear inside the integral signs, the resulting equations are of first kind.

Systems of integral equations

More generally, the above mentioned integral equations can be extended to systems of integral
equations by considering µ(x), H(x, t), and ℏ(x) as vector-valued functions. Using equation (1.3)
with α(x) = 1 as a model, this extension results in the following linear system of the second kind:

µ(x) = ℏ(x) +
∫ x

a
H(x, t)µ(t)dt, x ⩾ a,

where
ℏ(x) = (ℏ1(x), ℏ2(x), ...ℏn−1(x), ℏn(x))T ,

µ(x) = (µ1(x), µ2(x), ...µn−1(t), µn(t))
T ,

and

H(x, t) =


H1(x, t)

H2(x, t)
...

Hn(x, t)

 .

With this notation, the steps involved in proving results for systems are often formally the same
as those for single equations.

9



Chapter 1. Preliminary and auxiliary results

1.1.3 Integro-differential equations

Integro-differential equations are equations in which the unknown function’s derivatives are
involved alongside the integral terms, often accompanied by associated initial or boundary condi-
tions. A VIDE of first-order can be expressed as:

µ′(x) = ℏ(x) +
∫ x

a
H(x, t)µ(t)dt, x ∈ [a, b], (1.5)

subject to initial condition µ(a) = β. Furthermore, a second-order VIDE can be represented as:

µ′′(x) = ℏ(x) + α1(x)µ
′(x) + α2(x)µ(x) +

∫ x

a
H1(x, t)µ(t)dt+

∫ x

a
H2(x, t)µ

′(t)dt

+

∫ x

a
H3(x, t)µ

′′(t)dt,

for all x ∈ [a, b], subject to initial conditions

µ(a) = β1, µ′(a) = β2.

In a broader context, the Volterra integro-differential equation is expressed as

µ(n)(x) = ℏ(x) +
∫ x

a
H(x, t)µ(t)dt, x ∈ [a, b],

where µ(n) indicates the nth derivative of µ(x) subject to n initial conditions. Other derivatives
of less order may appear at the left side.

The combination of derivatives and integrals allows for a profusion of various forms. However,
due to the absence of a widely adopted classification convention, reducing IDEs to systems of
integral equations becomes a valuable approach for their analysis. For certain cases of linear
VIDEs, the reduction can be made directly through integration. For example, consider the linear
VIDE:

µ′(x) = ℏ(x) +
∫ x

0
H(x, t)µ(t)dt,

with µ(0) = µ0. Through direct integration, we obtain

µ(x) = Φ(x) +

∫ x

0

∫ z

0
H(z, t)µ(t)dtdz,

where Φ(x) = µ0 +
∫ x
0 ℏ(z)dz. Thus the obtained equation is a VIE of the second kind.

By employing an alternative approach, the conversion of VIDEs into systems of VIEs can be
achieved through the introduction of a new function that eliminates the need for derivative terms
in the equation. For instance, consider the following non-linear VIDE:

µ′(x) = ℏ(x) +
∫ x

0
H(x, t, µ(t))dt,

with µ(0) = µ0.

10
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Introducing the new function µ′(x) = ω(x) results in: ω(x) = ℏ(x) +
∫ x
0 H(x, t, µ(t))dt,

µ(x) = µ0 +
∫ x
0 ω(t)dt.

Thus, the non-linear VIDE converts into a system of second-kind VIEs.
Similar reasoning can be employed to reduce integro-differential equations of higher order into

integral equations.

1.1.4 Partial integro-differential equations

When the variable x is of multiple dimensions, the integro-differential equation is referred to
as a partial integro-differential equation. For instance, the linear PVIDE of the first order in a
two-dimensional space can be expressed as follows:

∂µ(x, y)

∂x
= ℏ(x, y) +

∫ x

0

∫ y

0
H(x, y, t, s)µ(t, s)dtds, (x, y) ∈ [0, a1]× [0, a2], (1.6)

subject to inital condition µ(0, y) = µ0(y). Likewise, a second-order general linear PVIDE with
two independent variables is of form

∑
0≤i+j≤2

αi,j(x, y)
∂i+jµ(x, y)

∂xi∂yj
= ℏ(x, y) + λ

∫ x

0

∫ y

0
H(x, y, t, s)µ(t, s)dsdt, (1.7)

subject to appropriate initial conditions.

Partial integro-differential equations (PIDEs) encompass various types, including elliptic, hy-
perbolic, and parabolic equations in one or multiple dimensions. Consequently, solving PIDEs
poses significant challenges both analytically and numerically. In Chapter 2 of our thesis, we will
utilize a novel numerical algorithm to solve the two-dimensional linear PVIDE (1.6) of first-order.
Furthermore, in Chapter 3, we will tackle a similar second-order linear 2D-PVIDE analogous to
Equation (1.7).

Before delving deeply into the study of VIDEs and PVIDEs, it’s valuable to briefly explore
some real-world scenarios where these equations are encountered. The examples provided offer a
glimpse into a variety of intricate and complex history-dependent models.

1.2 Applications of Volterra integro-differential equations in real-
life scenarios

VIEs, VIDEs and PVIDEs naturally emerge in specific varieties of time-dependent issues where
the behavior at a particular time t is influenced by both its present and past conditions, in situ-
ations where understanding the present state alone is insufficient and it is crucial to comprehend
how the state was reached in order to predict future outcomes.

11



Chapter 1. Preliminary and auxiliary results

Example 1.1 (The renewal equation).
In the realm of probability theory and stochastic processes, the study of processes involving repeated
events is facilitated through the use of the renewal equation given by

ℏ(t) = ρ(t) +

∫ t

0
ℏ(t1)ρ(t− t1)dt1,

which is a VIE of the second kind.
To illustrate its derivation, consider a scenario where a component within a machine is sus-

ceptible to failure over time. The failure time of the component is denoted by a probability density
variable ρ(t). Over short time intervals, the probability of a new component failing at time t1 is
ρ(t− t1)∆t. If each component ultimately fails, then∫ ∞

t1

ρ(t− t1)dt = 1.

Now, envision a situation where a failing component is promptly replaced by a new one. This
process repeats cyclically as the new component itself will be replaced upon its failure. In this con-
text, ℏ(t) represents the renewal density signifying the probability of needing a replacement at time
t. The probability of requiring a replacement is composed of two elements: firstly, the likelihood
of the initial failure within a brief time interval, and secondly the probability of a replacement
occurring at time t1 accompanied by another failure after a subsequent time t2 = t − t1. These
probabilities combined form the renewal equation.

Example 1.2 (Population dynamics).
In the realm of the study of population dynamics lies a fundamental equation that may be expressed
as 

dN(t)
dt = αN(t), t ≥ 0,

N(0) = N0,
(1.8)

where N(t) represents the count of individuals within a population that are alive at a given time
t, and the constant α represents the growth factor.

Equation (1.8) posits that the rate of population change is solely contingent on the number
of individuals alive at a given time t, However this assumption proves unrealistic in many real-
world scenarios. External factors like the depletion of food resources can significantly impact
the population’s environment. Consequently, the growth factor α might vary, influenced by these
changing environmental conditions, which in turn are shaped by the population’s past history.
To accommodate this complexity, a variable growth factor is introduced incorporating a history-
dependent term. For instance:

α(t) = α0 −
∫ t

0
H(t− ξ)N(ξ)dξ.

Taking this variable growth factor into account, coupled with the competition among individuals
within the population, Equation (1.8) transforms into the VIDE

dN(t)

dt
= N(t)

[
α0 − α1N(t)−

∫ t

0
H(t− ξ)N(ξ)dξ

]
.

12
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Example 1.3 (The Compression of Poro-Viseoelastic Media ).
Predictions regarding the compression progress of a water-saturated porous medium rely on the
theory of consolidation, which posits that the porous mass behaves as a two-phase continuum. In
this continuum, the fluid phase is considered incompressible, while the porous matrix follows a
linear, time-dependent volumetric deformation relationship

e = mv(t)σ
′
.

In this context, e represents the dilatation of the porous matrix, mv denotes the compressibility of
the matrix, and σ′ signifies the effective stress. The general linear relationship between dilatation
and effective stress over time is represented by a model consisting of an infinite number of Kelvin
units, all interconnected in series, as

e = aσ
′
+

M∑
k=1

λk

∫ t

0
σ

′
exp

[
−−λk

bk
(t− τ)

]
dτ,

where a denotes the instantaneous elastic compressibility, bk represents the retarded elastic com-
pressibility, λk symbolizes the fluidity of the soil skeleton, and M stands for the number of Kelvin
viscoelastic elements in the system. The corresponding governing differential equation is:

k
∂2σ

′

∂z2
= a

∂σ
′

∂t
+

M∑
k=1

λkσ
′ −

M∑
k=1

λ2k
bk

∫ t

0
σ

′
exp

[
λk
bk

(t− τ)

]
dτ.

This, combined with the appropriate boundary and initial conditions, constitutes a comprehensive
mathematical formulation of the one-dimensional partial integro-differential equation of secondary
consolidation in a compressible porous medium. For a better understanding of this modeling ap-
proach, please refer to references [51] and [52].

Example 1.4 (Problems in heat conduction and diffusion).
Consider a situation found in nuclear reactor dynamics where the intricate interplay between the
reactor temperature, indicated as T (y, t), and the generated power µ(t) can be described by a system
of PIDEs: 

dµ(t)
dt =

∫∞
−∞ α(y)T (y, t)dy,

∂T (y,t)
∂t = ∂2T (y,t)

∂y2
+ n(y)µ(t), −∞ < y <∞, t > 0,

(1.9)

subject to the following conditions

µ(0) = 0, T (y, 0) = f0(y),

lim
y→±∞

T (y, t) = lim
y→±∞

∂

∂y
T (y, t) = 0.

Here, the first equation represents power production in terms of temperature while the second is
essentially a diffusion equation enriched with a source term originating from the reactor’s generated
power.

Additional examples can be found in refs. [7, 9, 53].
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Differential and integral equations are universally recognized as foundational concepts in math-
ematics, serving as the catalyst for numerous theoretical breakthroughs in analysis. Their broad
applications across various contexts in the natural and social sciences formed a seamless connection
between them, a topic we will delve into further in our next sections.

1.3 The connection between integral equations and differential
equations

Our primary focus is on the convertion between differential equations and integral equations.
However, in the course of this process, there may arises a need to differentiate integrals with
varying limits of integration. In such cases, we depend on the following rule

Theorem 1.1. [54,55](Leibniz integral rule)
Consider a continuous function ψ(x, y) with the assume that its partial derivative ∂ψ

∂x is con-
tinuous within the domain [a1, b1]× [a2, b2]. Let

Ψ(x) =

∫ b(x)

a(x)
ψ(x, t)dt,

where the limits of integration a(x) and b(x) are defined functions having continuous derivatives
for a1 < x < b1. Hence, differentiation of the integral yields its derivative as follows:

Ψ′(x) = ψ(x, b(x))b
′
(x)− ψ(x, a(x))a

′
(x) +

∫ b(x)

a(x)

∂ψ(x, t)

∂x
dt.

When a(x) = a and b(x) = b are constant values, the Leibniz rule simplifies to

Ψ′(x) =

∫ b

a

∂ψ(x, t)

∂x
dt.

We may also require the following lemma.

Lemma 1.1. [54] For any function Ψ(x)∫ x

a

∫ z

a
Ψ(t)dtdz =

∫ x

a
(x− t)Ψ(t)dt.

In general, we have:∫ x

a

∫ x1

a
...

∫ xn−1

a
Ψ(xn)dxndxn−1...dx1 =

1

(n− 1)!

∫ x

a
(x− x1)

(n−1)Ψ(x1)dx1.

1.3.1 Relationship between integral equations and ordinary differential equa-
tions

The analysis of differential equations relies significantly on the use of integral equations. A
fundamental observation is that any differential equation can be transformed into an integral
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Chapter 1. Preliminary and auxiliary results

equation (and vice versa). In fact, Fredholm and Volterra integral equations exhibit a parallel dis-
tinction to the differentiation between boundary and initial value problems in ordinary differential
equations (ODEs), which often serves as the initial step in exploring their solutions.

Initial value problems

The conversion of initial value problems (IVPs) leads to Volterra integral equations, making
this type of integral equations an extension of initial value problems. This feature simplifies the
process of finding solutions for IVPs related to ODEs of any order. For instance, consider the
linear ODE of the nth order:

dnµ(x)

dxn
+ α1(x)

dn−1µ(x)

dxn−1
+ · · ·+ αn−1(x)

dµ(x)

dx
+ αn(x)µ(x) = ℏ(x), (1.10)

where α1(x), α2(x), ..., αn(x) and ℏ(x) are functions defined and continuous within the closed
interval [a, b]. We are interested in finding a solution µ(x) of Equation (1.10) that satisfies the
predetermined initial conditions at a specific point x0 within the same interval [a, b]

µ(x0) = β0, µ′(x0) = β1, · · · , µ(n−1)(x0) = βn−1. (1.11)

Considering the function ω(x) = dnµ(x)
dxn and the initial conditions, we obtain:

dn−1µ(x)

dxn−1
=

∫ x

x0

ω(t)dt+ βn−1,

dn−2µ(x)

dxn−2
=

∫ x

x0

(x− t)ω(t)dt+ βn−1(x− x0) + βn−2,

...

dµ(x)

dx
=

∫ x

x0

(x− t)n−2

(n− 2)!
ω(t)dt+

βn−1

(n− 2)!
(x− x0)

n−2 + · · ·+ β2(x− x0) + β1,

µ(x) =

∫ x

x0

(x− t)n−1

(n− 1)!
ω(t)dt+

βn−1

(n− 1)!
(x− x0)

n−1 + · · ·+ β1(x− x0) + β0.

Hence, if µ(x) fulfills Equation (1.10) with the initial conditions (1.11), then ω(x) satisfies the
resulting VIE

ω(x)+

∫ x

x0

[
α1(x) + α2(x)(x− t) + · · ·+ αn−1(x)

(x− t)n−2

(n− 2)!
+ αn(x)

(x− t)n−1

(n− 1)!

]
ω(t)dt

+ α1(x)βn−1 + α2(x)[βn−1(x− x0) + βn−2] + · · ·

+ αn(x)

[
βn−1

(n− 1)!
(x− x0)

n−1 + · · ·+ β1(x− x0) + β0

]
= ℏ(x).

(1.12)

Conversely, if ω(x) satisfies the integral equation (1.12), then µ(x) defined by

µ(x) =

∫ x

x0

(x− t)n−1

(n− 1)!
ω(t)dt+

βn−1

(n− 1)!
(x− x0)

n−1 + · · ·+ β1(x− x0) + β0, (1.13)
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fulfills Equation (1.10) along with initial conditions (1.11).

Boundary value problems

Converting boundary value problems (BVPs) often results in Fredholm integral equations,
which simplifies the process of finding solutions for an nth-order ODE within a specific interval.
At the boundaries of this interval, the solution and its derivatives up to order n− 1 are specified
at certain values or satisfy given relations. For example, consider the following boundary value
problem in the theory of deformation of an elastic rod supported at two points

d2µ(x)

dx2
= α1(x)µ(x) + α2(x), (1.14)

subject to boundary conditions:
µ(a) = 0, µ(b) = 0, (1.15)

where the functions α1(x) and α2(x) are continuous and predefined within the interval [a, b].
Equation (1.14) admits a general solution in the form of:

µ(x) =

∫ x

a

∫ z

a
α1(t)µ(t)dtdz +

∫ x

a

∫ z

a
α2(t)dtdz + β1x+ β2

=

∫ x

a
(x− t)α1(t)µ(t)dt+

∫ x

a
(x− t)α2(t)dt+ β1x+ β2,

where β1 and β2 represent arbitrary constants. By selecting these constants in a manner that
fulfills the boundary conditions (1.15), the solution to Equation (1.14) is derived as follows:

µ(x) =

∫ b

a
G(x, t)α1(t)µ(t)dt+

∫ b

a
G(x, t)α2(t)dt. (1.16)

G(x, t) is known as the Green’s function and defined by

G(x, t) =


(x−a)(t−b)

b−a , when x ≤ t,

(x−b)(t−a)
b−a , when x ≥ t.

Therefore, we can deduce that µ(x), the solution to Equation (1.14) with boundary conditions
(1.15), fulfills the Equation (1.16) and vice versa. Hence, the problem’s solution is equivalent to
solving the FIE of the second kind (1.16).

1.3.2 Relationship between integro-differential equations and partial differen-
tial equations

The relationship between integral equations and ordinary differential equations extends far
beyond into addressing fundamental challenges in partial differential equations (PDEs) and pro-
viding significant practical benefits. Notably, this connection simplifies numerical computations
by reducing the dimensionality of specific partial differential equations and enables the solution
of various problems. Usually, problems linked to elliptic equations lead to FIEs, while those asso-
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ciated with parabolic and hyperbolic equations yield VIEs.

Here, we will delve deeply into these advantages, examining the relationship between IDEs and
PDEs step by step. We will begin by exploring the connection IEs and IDEs have with PDEs of
the hyperbolic type, followed by the parabolic type, and finally, the elliptic type. Throughout our
study, our focus will primarily be on understanding the association between Volterra-type integro-
differential equations and these differential equations, rather than the Fredholm-type. For a more
comprehensive understanding, readers are encouraged to refer to refs. [2, 53, 56] for additional
details.

Applications to hyperbolic type

Considering the hyperbolic linear initial value problem known as the linear form of Darboux
problem:

∂2µ(x, y)

∂x∂y
= α1(x, y)

∂µ(x, y)

∂x
+ α2(x, y)

∂µ(x, y)

∂y
+ α3(x, y)µ(x, y) + ℏ(x, y), (1.17)

subject to initial conditions

µ(x, 0) = β1(x), µ(0, y) = β2(y). (1.18)

In the defined domain Λ = [0, a]× [0, b], the functions α1(x, y), α2(x, y), α3(x, y) and ℏ(x, y) are
continuous and known. Furthermore, the functions β1(x) and β2(x) are in C2([0, a]) and C2([0, b]),
respectively.

Solving the Darboux problem entails finding a function µ(x, y), that is continuous along with
its first and mixed derivatives within the closed region Λ and satisfies both the given equation and
its initial conditions. Employing similar logic as discussed earlier, this problem can be reformulated
as a linear 2D-VIDE by double integration:

µ(x, y) = Φ(x, y) +

∫ x

0

∫ y

0

[
α1(t, s)

∂µ(t, s)

∂t
+ α2(t, s)

∂µ(t, s)

∂s
+ α3(t, s)µ(t, s)

]
dsdt, (1.19)

where Φ(x, y) is defined by the formula

Φ(x, y) = β1(x) + β2(y)− β1(0) +

∫ x

0

∫ y

0
ℏ(t, s)dsdt.

Clearly, if µ(x, y) satisfies Equation (1.17) in Λ along with the inital conditions (1.18), it also
satisfies the VIDE (1.19) and vice versa. The resulting VIDE (1.19) can be solved through various
methods, such as seeking the solution in the form of a power series sum (refer to ref. [2] for more
details) or using numerical approaches such as collocation methods.

Equation (1.17) along with the initial conditions (1.18) can also be reformulated into a 2D-VIE,
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by defining a new function ω(x, y) = ∂2µ(x,y)
∂x∂y , given by

ω(x, y) =Φ(x, y) + α1

∫ y

0
ω(x, s)ds+ α2

∫ x

0
ω(t, y)dt+ α3

∫ x

0

∫ y

0
ω(t, s)dsdt,

where Φ is a term obtained by using the initial values conditions.

Remark 2.

• The discussed Darboux problem can be generalized to encompass a nonlinear hyperbolic equa-
tion expressed as:

∂2µ

∂x∂y
= H

(
x, y, µ,

∂µ

∂x
,
∂µ

∂y

)
, (1.20)

where H
(
x, y, µ, ∂µ∂x ,

∂µ
∂y

)
is a known function in Λ and µ is described on the two charac-

teristics x = 0 and y = 0. This relates to the task of ascertaining the angular orientation
of a rigid body in space using its known angular velocity and initial position, expressed in
quaternion form.
Several researchers have explored solutions to Equation (1.20), among whom is Dobner, who
investigated it utilizing modified fixed point theorems and approximated operators. For further
details, refer to ref. [57].

• If we consider the case where the closed region Λ is a triangle enclosed by two characteristics
x = x0 and y = y0 passing through a constant point A0(x0, y0), along with an arc BC of a
line B0C0, we get the Cauchy problem

∂2µ(x, y)

∂x∂y
= λ

[
α1(x, y)

∂µ(x, y)

∂x
+ α2(x, y)

∂µ(x, y)

∂y
+ α3(x, y)µ(x, y)

]
+ ℏ(x, y). (1.21)

The task of solving involves finding a function µ(x, y) within the region Λ. This function
must be continuous, along with its first and mixed derivatives, satisfying Equation (1.21)
within Λ along with it’s associated initial conditions at every point on the line B0C0.
Equation (1.21), after integrating over the triangle Λ, which defines the Cauchy problem,
yields to∫ ∫

Λ

∂2µ(t, s)

∂x∂y
dsdt = λ

∫ ∫
Λ

[
α1(t, s)

∂µ(t, s)

∂x
+ α2(t, s)

∂µ(t, s)

∂y
+ α3(t, s)µ(t, s)

]
dsdt

+

∫ ∫
Λ
ℏ(t, s)dsdt,

Thus, it fulfills the following VIDE

µ(x, y) = Φ(x, y) + λ

∫ ∫
Λ

[
α1(t, s)

∂µ(t, s)

∂t
+ α2(t, s)

∂µ(t, s)

∂s
+ α3(t, s)µ(t, s)

]
dsdt,

(1.22)
where Φ(x, y) arises from the integration of ℏ(x, y) and the Cauchy conditions. This reduc-
tion simplifies the problem to solving the VIDE (1.22), and thus its solution can be examined
further. For in-depth information, please refer to ref. [2].

18



Chapter 1. Preliminary and auxiliary results

Applications to parabolic type

Reducing PDEs as IDEs extends beyond simple cases like direct integration. Often, for certain
parabolic partial differential equations found in heat conduction and diffusion problems, this
transformation utilizes Fourier transforms, although Laplace transforms can also be employed in
certain cases.

Consider the basic heat conduction equation:
∂2µ(x,t)
∂x2

= ∂µ(x,t)
∂t , 0 ≤ x <∞, t > 0

µ(x, 0) = 0, 0 ≤ x <∞
∂µ(0,t)
∂x = −β(t), t > 0

(1.23)

with the further assumption that,

lim
x→∞

µ(x, t) = 0 = lim
x→∞

∂µ(x, t)

∂x
.

When Fourier cosine transformation

µ̂c(w) =

√
2

π

∫ ∞

0
µ(x)cos(ωx)dx,

is applied to Equation (1.23), we obtain∫ ∞

0

∂2µ(x, t)

∂x2
cos(ωx)dx =

∫ ∞

0

∂µ(x, t)

∂t
cos(ωx)dx.

By performing two integration by parts and considering the relevant prescribed conditions and
the assumptions at infinity, we obtain:

β(t)− ω2

∫ ∞

0
µ(x, t)cos(ωx)dx =

∂

∂t

∫ ∞

0
µ(x, t)cos(ωx)dx,

however, √
π

2

∂

∂t
µ̂c(ω, t) = β(t)−

√
π

2
ω2µ̂c(ω, t).

Furthermore, given the initial condition, Equation (1.23) meets the specified criteria and possesses
a straightforward solution provided by

µ̂c(ω, t) =

√
2

π
e−ω

2t

∫ t

0
β(s)eω

2sds.

Now, employing the inversion formula

µ(x) =

√
2

π

∫ ∞

0
µ̂c(ω) cos(ωx)dω,

we obtain,

µ(x, t) =
2

π

∫ t

0
β(s)

∫ ∞

0
e−ω

2(t−s) cosωxdωds,
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hence, through explicit simplifications

µ(x, t) =
1√
π

∫ t

0
β(s)(t− s)−

1
2 e

−x2

4(t−s)ds,

which is a Volterra integral equation of the first kind.

Remark 3. In real-world situations, the adopted boundary condition which prescribes the trans-
fer rate as a constant function of time might not be entirely realistic, especially when µ denotes
temperature or concentration. Typically, the gradient relies on the surface temperature or concen-
tration, necessitating the substitution of β(t) with a function that accounts for this dependency,
supposily B(µ(0, t), t), and v(t) for µ(0, t) . As a result, this gives rise to a nonlinear weakly
singular VIE of the second kind

v(t) =
1√
π

∫ t

0

B(v(s), s)√
t− s

ds.

Utilizing the complete Fourier transform, Equation (1.9) can be reformulated into a direct
Volterra integro-differential equation. Through integration by parts, consideration of the condition
at infinity, and incorporation of the initial conditions, the resulting expression is obtained as
follows:

dµ(t)

dt
=

∫ t

0
H(t, s)µ(s)ds+ β(t),

with
H(t, s) = −

∫ ∞

−∞
α̂(−ω)n̂(ω)e−ω2(t−s)dω,

and
β(t) = −

∫ ∞

−∞
α̂(−ω)µ̂(ω)e−ω2tdω.

For a more in-depth exploration, refer to [53].

Applications to elliptic type

Consider the elliptic PIDE [58]:

∇2µ(x, t) = ℏ(x, t) +
∫ t

0

[
∇2µ(x, s)H(t, s)

]
ds, (1.24)

where x = (x1, x2), and

∇2µ(x, t) =
∂2µ(x, t)

∂x21
+
∂2µ(x, t)

∂x22
.

Equation (1.24) is subject to homogeneous Dirichlet boundary condition in a rectangular domain
Λ with known smooth functions ℏ and H. By defining the new function ω(x, t) = ∂2µ(x,t)

∂x21
+ ∂2µ(x,t)

∂x22
,

Equation (1.24) transforms into the following integral equation:

ω(x, t) = Φ(x, t) +

∫ t

0
ω(x, s)H(t, s)ds.
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However, problems linked to elliptic equations are usually expressed as Fredholm equations,
although these are not the primary focus of this thesis. An illuminating exploration of the re-
lationship between IDEs and elliptic-type PDEs is exemplified by the Dirichlet and Neumann
problems.
The essence of the Dirichlet problem lies in discovering a harmonic function within a region that
is continuous in its closure, while adhering to prescribed boundary values. On the other hand,
the von Neumann problem revolves around establishing a harmonic function within a region,
continuous in its closure, with a pre-determined set of boundary values for its derivative. While
both problems are effectively addressed through the theory of Fredholm equations, they are intri-
cately connected and can be collectively approached. A comprehensive solution to these problems,
particularly in the context of a three-dimensional region, is provided in ref. [2].

The significant relevance of integral equations, particularly VIDEs, in modelling real-life phe-
nomena has led to the formulation of complex equations that are challenging to solve directly.
Hence, numerical methods become essential for their resolution [59, 60]. In the following section,
we will delve into one of the key techniques employed for solving VIDEs: "collocation methods".

1.4 Collocation methods for integral equations

A collocation method is a numerical approach employed to approximate solutions for func-
tional equations such as VIDEs. It involves converting the given equations into a set of algebraic
equations by evaluating them at designated points within the problem domain, known as collo-
cation points. For example, Chebyshev collocation methods that provide solutions represented in
Chebyshev series form, and Bernstein collocation method which utilizes Bernstein polynomials as
its foundation.

The utilization of polynomial or piecewise polynomial collocation spaces for approximating
solutions of functional equations traces back to the 1930s. When employing the collocation method
to solve a problem within an interval Λ, it involves approximating the solution of the functional
equation, such as a VIDE, with an element µh belonging to a designated piecewise polynomial
space (the collocation space). This approximation that conforms to the equation and, if present,
the initial (or boundary) conditions on collocation points is known as the collocation solution.
However, what exactly is a piecewise polynomial space?

1.4.1 Piecewise polynomial spaces

Consider the grid (mesh) Ih = {xn : 0 = x0 < x1 < · · · < xN = a} of the the given interval
I = [0, a]. Let

κn := (xn, xn+1), hn := xn+1 − xn, h := maxhn hmin := minn hn.

Piecewise spaces are defined by four types of grid sequences, as follows:

• The mesh Ih is considered uniform if it satisfies

hn = hmin = h =
a

N
, n = 0, 1, · · · , N − 1.
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• The mesh Ih is considered quasi-uniform if it satisfies

hn
hmin

≤ h

hmin
≤ γ, n = 0, 1, · · · , N − 1.

• The mesh Ih is considered graded if it satisfies

xn :=
( n
N

)α
a, n = 0, 1, · · · , N − 1, α > 1.

Here, α is a real number known as the grading exponent. It’s important to note that when
α = 1, this mesh simplifies into a uniform one.

• The mesh Ih is considered geormetric if it satisfies

xn := γN−na, n = 0, 1, · · · , N − 1.

The parameter γ, 0 < γ < 1, varies based on N .

This enables us to define the desired spaces. Given a mesh Ih, the real linear vector space
S
(d)
r (Ih), known as the piecewise polynomial space, is defined as follows:

S(d)
r (Ih) := {ν ∈ Cd(I) : v|κn ∈ πr (0 ≤ n ≤ N − 1)}.

Here, πr represents the space of real polynomials of degree not exceeding r, where r ≥ 0 and
0 ≤ d ≤ r. Furthermore,

dimS(d)
r (Ih) = N(r − d) + d+ 1.

In our investigation, we focus on the uniform mesh. However, different mesh types are used
in specific contexts. For example, quasi-uniform meshes are utilized to assess the convergence of
collocation solutions for first-kind VIEs. Graded meshes are employed to examine the achievable
order of collocation solutions for VIEs with weakly singular kernels. Geometric meshes are applied
to explore the optimal local superconvergence of collocation solutions for functional equations fea-
turing vanishing proportional delays.

On the other hand, the scenario where r = p + d, with p ≥ 1 and d ≥ −1, will be considred.
This results in

dimS
(d)
p+d(Ih) = Np+ d+ 1.

We can broaden the definition of the piecewise polynomial space to two dimensions within the
interval I = [0, a]× [0, b] in the following manner:
Consider real polynomial spline space S(d)

p+d,q+d for given meshes Ih and Ik. These partitions are
uniform divisions of the intervals [0, a] and [0, b], respectively. Here, the step sizes are denoted by
h = a

N and k = b
M . The space is defined as follows:

S
(d)
p+d,q+d(Ih,k) = {v ∈ Cd(I) : vn,m = v|Λn,m ∈ πp+d,q+d, n = 0, ..., N − 1; m = 0, 1, ..,M − 1},

where Ih,k = Ih × Ik = {(xn, ym), 0 ≤ n ≤ N, 0 ≤ m ≤M}.
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Here, πp+d,q+d represents the set of all real polynomials of degree not exceeding p + d in x and
q + d in y. Additionally, we define the grid

Λn,m := κn × δm (n = 0, 1, .., N − 1;m = 0, 1, ..,M − 1),

with the subintervals κn = (xn;xn+1), and δm = (ym; ym+1).

S
(d)
p+d,q+d(Ih,k), the space of bivariate polynomial spline functions have a dimension of

dimS
(d)
p+d,q+d(Ih,k) = (Np+ d+ 1)(Mq + d+ 1).

Remark 4. The choice of the appropriate collocation space for approximating solutions to initial-
value problems for ODEs or VIEs is determined by the regularity degree (d) which, in turn, is
influenced by the number of specified initial conditions.

• In situations without initial conditions, such as in Volterra integral equations, we specifically
choose d = −1. This selection leads us to the designated collocation space S(−1)

p−1 (Ih).

• In situations involving a single initial condition, such as in VIDEs, we set d = 0. This
selection leads us to the designated collocation space S(0)

p (Ih).

• In situations involving more than one initial condition, such as in VIDEs of order n, we set
d = n− 1. This selection leads us to the designated collocation space S(n−1)

p+n−1(Ih).

To explore more information on collocation methods for integral equations, consult [61].

1.4.2 Taylor collocation method

During the last decades, the Taylor collocation method has been developed rapidly for a
number of advantages, such as the high accuracy and high convergence rate. The lack of need to
solve any algebraic systems makes the process of finding numerical solutions to these problems by
the Taylor collocation method easy and does not cost much computation.

The Taylor collocation method relies on Taylor polynomials to approximate the exact solution
within a specified polynomial spline space. For example, in the real polynomial spline space
S
(0)
m (ΠN ) of degree not exceeding m in x, we approximate the exact solution in each rectangle

Λn, n = 0, 1, · · · , N − 1 of the grid by the Taylor polynomials

µn(x) =
m∑
j=0

µ̂
(j)
n (xn)

j!
(x− xn)

j ; x ∈ Λn,

where µ̂n represents the precise solution of the discretized integral equation within each rectangle,
and µ̂

(j)
n (xn)
j! are the unknown coefficients to be determined through differentiation.

In the upcoming chapters, we will extend the Taylor collocation method from one-dimensional
to two-dimensional, aiming to approximate the exact solutions of first, second, and high-order
two-dimensional PVIDEs.
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1.5 Some useful discrete and integral inequalities

In the upcoming chapters, we embark on the quest for numerical solutions to carefully chosen
PVIDEs using the Taylor collocation method. The obtained results will undergo rigorous the-
oretical validation incorporating the application of diverse discrete and integral inequalities. In
this section, we present the essential inequalities in the form of lemmas while a broader range of
discrete and integral inequalities for both one-dimensional and multidimensional differential and
integral equations can be explored in the works of B. G. Pachpatte [62–65].

1.5.1 Discrete inequalities

Lemma 1.2. [64] ( Sugiyama’s inequality )

Let Ψi, αi and βi be non-negative sequences. If Ψi satisfies

Ψi ≤ αi +
i−1∑
κ=0

βκΨκ,

∀i ∈ N. Therefore

Ψi ≤ αi +

i−1∑
κ=0

[
ακβκ

i−1∏
σ=κ+1

[1 + βσ]

]
, i ∈ N.

Lemma 1.3. [65] Let βi be a given positive sequence and the sequence Ψi satisfies Ψ0 ≤ α such
that

Ψi ≤ α+
i−1∑
κ=0

βκΨκ, i ≥ 1,

with α ≥ 0. Then Ψi can be bounded by

Ψi ≤ α exp

(
i−1∑
ι=0

βι

)
, i ≥ 1.

Lemma 1.4. [66] Let Ψij ( i = 0, 1, ..., N ; j = 0, 1, ...,M) be a non-negative sequence on Λ =

[0, T ]× [0, S] satisfying

Ψij ≤ α+ hβ1

i−1∑
κ=0

Ψκj + kβ2

j−1∑
ι=0

Ψiι + hkβ3

i−1∑
κ=0

j−1∑
ι=0

Ψκι,

with h, k ≥ 0 such that βi (i = 1, 2, 3) and α are both positive and independent of h and k. Then

Ψij ≤ αeλ(Nh+Mk),

where

λ =
1

2

(
β1 + β2 +

√
(β1 + β2)2 + 4β3

)
.
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1.5.2 Integral inequalities

Lemma 1.5. [66] (Gronwall-type inequality )

Let α and βi (i = 1, 2, 3) be a non negative constants, and Ψ be a non-negative, integrable, and
bounded function defined on Λ = [0, T ]× [0, S] where

Ψ(x, y) ≤ α+ β1

∫ x

0
Ψ(ν, y)dν + β2

∫ y

0
Ψ(x, ξ)dξ + β3

∫ x

0

∫ y

0
Ψ(ν, ξ)dξdν,

for (x, y) ∈ Λ. Then Ψ satisfies
Ψ(x, y) ≤ αeλ(x+y),

where

λ =
1

2

(
β1 + β2 +

√
(β1 + β2)2 + 4β3

)
.

Lemma 1.6. [67] ( Generalization of Lemma 1.5)
Suppose that α and βi (i = 1, 2, 3) are non-negative constants, and Ψ is a non-negative,

integrable, and bounded function defined on Λ = [a, b]× [c, d] such that

Ψ(x, y) ≤ α+ β1

∫ x

a
Ψ(ν, y)dν + β2

∫ y

c
Ψ(x, ξ)dξ + β3

∫ x

a

∫ y

c
Ψ(ν, ξ)dνdξ, (x, y) ∈ Λ, (1.25)

then it satisfies
Ψ(x, y) ≤ αeλ(x+y),

where

λ =
1

2

(
β1 + β2 +

√
(β1 + β2)2 + 4β3

)
.

We will also require the use of the following lemma:

Lemma 1.7. [54] (Taylor’s Theorem for functions of two independent variables )

Set Ψ be a p times continuously differentiable function on Λ = [A1, B1] × [A2, B2] and let
(x0, y0) ∈ Λ. Therefore, for every (x, y) ∈ Λ, the following holds:

Ψ(x, y) =

p−1∑
κ+ι=0

1

κ!ι!

∂κ+ιΨ(x0, y0)

∂xκ∂yι
(x− x0)

κ(y − y0)
ι +

∑
κ+ι=p

1

κ!ι!

∂κ+ιΨ(x1, y1)

∂xκ∂yι
(x− x0)

κ(y − y0)
ι,

where {
x1 = θx+ (1− θ)x0 ∈ [A1, B1],

y1 = θy + (1− θ)y0 ∈ [A2, B2],
θ ∈ (0, 1).
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Chapter 2

Numerical solution of first order two-dimensional partial

Volterra integro-differential equations

In this chapter, our objective is to utilize the Taylor collocation method to investigate a
numerical approach for the first-order two-dimensional linear PVIDE represented as:

∂µ(y1, y2)

∂y1
= ℏ(y1, y2) +

∫ y1

0

∫ y2

0
H(y1, y2, v1, v2)µ(v1, v2)dv2dv1, (y1, y2) ∈ Λ, (2.1)

with the initial condition:
µ(0, y2) = µ0(y2), (2.2)

within the corresponding piecewise polynomial space.
Here, the function µ represents the unknown real function that needs to be determined, while
the functions ℏ and H are assumed to be known and sufficiently smooth, ensuring the existence
and uniqueness of the solution within the domain Λ := [0, A1] × [0, A2] ⊂ R2 and the set S :=

{(y1, y2, v1, v2) : 0 ≤ v1 ≤ y1 ≤ A1, 0 ≤ v2 ≤ y2 ≤ A2}, respectively.
The equation presented in (2.1) has been investigated by various researchers using diverse

methodologies. Hussain et al. explored it in [68] employing an iterative variational approach.
Berenguer and Gamez [69] utilized biorthogonal systems and fixed point theory in Banach spaces
to address analogous equations. Singh et al. investigated PVIDEs similar to (2.1) with weakly
singular kernels employing an operational matrix approach based on 2D-shifted Legendre polyno-
mials in [70,71]. Furthermore, in [72], Singh et al. addressed equations resembling (2.1) using an
operational matrix approach employing 2D Legendre and Chebyshev wavelets collocation method.

This chapter is structured into four main sections, each following a logical structure to intro-
duce the proposed method, establish its theoretical foundations, and demonstrate its practical ap-
plication through numerical examples. In Section 2.1, we explore the application of the proposed
method to solve linear 2D-PVIDEs of the form (2.1). Section 2.2 delves into the convergence
analysis and error estimates. Additionally, Section 2.3 provides numerous numerical examples
and illustrations, showcasing the method’s effectiveness and applicability, as well as validating
the theoretical results. Finally, the chapter concludes with a summary of the research and its
contributions.
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integro-differential equations

2.1 Description of the method

This section is devoted to discussing the Taylor collocation approach to solve the linear first-
order 2D-PVIDE (2.1). To address the provided problem using this method, we perform direct
integration transforming equation (2.1) with the initial condition (2.2) into the two-dimensional
Volterra integral equation:

µ(y1, y2) = Φ(y1, y2) +

∫ y1

0

∫ z

0

∫ y2

0
H(z, y2, v1, v2)µ(v1, v2)dv2dv1dz, (y1, y2) ∈ Λ, (2.3)

where Φ(y1, y2) = µ0(y2) +
∫ y1
0 ℏ(z, y2)dz.

According to Volterra’s classical theory, Equation (2.3) has a unique solution µ ∈ C(Λ). To
demonstrate its existence and uniqueness, we utilize a technique similar to the one described
in [1, 73], employing Banach’s fixed point theorem.

In order to use Taylor polynomials as the basis functions of the presented approach, we suppose
ΠN = {y1,i = ih, i = 0, 1, 2, . . . , N} and ΠM = {y2,j = jk, j = 0, 1, 2, . . . ,M} are two uniform

partitions of the intervals [0, A1] and [0, A2], where h =
A1

N
and k =

A2

M
, and define ΠN,M as

ΠN,M = ΠN ×ΠM = {(y1,n, y2,m), 0 ≤ n ≤ N, 0 ≤ m ≤M}.

For n = 0, 1, 2, . . . , N − 1, set

κ1,n = [y1,n, y1,n+1), κ1,N−1 = [y1,N−1, y1,N ],

and for m = 0, 1, 2, . . . ,M − 1, set

κ2,m = [y2,m, y2,m+1), κ2,M−1 = [y2,M−1, y2,M ].

Denote by πp−1,p−1 the set of all real polynomials of degree not exceeding p − 1 in the two
dimensions y1 and y2. The real polynomial spline space of degree p− 1 in y1 and y2 is defined by

S
(−1)
p−1,p−1(ΠN,M ) = {v : Λ → R : vn,m = v|Λn,m ∈ πp−1,p−1, n = 0, ..., N − 1; m = 0, 1, ..,M − 1},

(2.4)
where

Λn,m = κ1,n × κ2,m, n = 0, 1, 2, . . . , N − 1, m = 0, 1, 2, . . . ,M − 1.

We approximate the unknown function µ(y1, y2) within each rectangle Λn,m, n = 0, 1, 2, . . . , N−
1, m = 0, 1, 2, . . . ,M − 1, by the Taylor polynomial

µn,m(y1, y2) =

p−1∑
i+j=0

1

i!j!

∂i+jµ̂n,m(y1,n, y2,m)

∂yi1∂y
j
2

(y1 − y1,n)
i(y2 − y2,m)

j ; (y1, y2) ∈ Λn,m,

where
∂i+jµ̂n,m(y1,n, y2,m)

∂yi1∂y
j
2

are unknown coefficients to be determined in the sequel.
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Step 1: For n = m = 0, we approximate the function µ(y1, y2) within the rectangle Λ0,0 as
the Taylor polynomial

µ0,0(y1, y2) =

p−1∑
i+j=0

1

i!j!

∂i+jµ(0, 0)

∂yi1∂y
j
2

yi1y
j
2 ; (y1, y2) ∈ Λ0,0, (2.5)

where ∂i+jµ(0,0)

∂yi1∂y
j
2

represents the precise value of ∂i+jµ

∂yi1∂y
j
2

at the point (0, 0). To determine it, we

differentiate Eq. (2.3) j−times in terms of y2

∂jµ(y1, y2)

∂yj2
= ∂

(j)
2 Φ(y1, y2) +

∫ y1

0

∫ z

0

j−1∑
r=0

∂r

∂yr2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)µ(v1, y2)

]
dv1dz

+

∫ y1

0

∫ z

0

∫ y2

0

∂
(j)
2 H(z, y2, v1, v2)µ(v1, v2)dv2dv1dz

= ∂
(j)
2 Φ(y1, y2) +

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

0

∫ z

0

∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)

] ∂lµ(v1, y2)
∂yl2

dv1dz

+

∫ y1

0

∫ z

0

∫ y2

0

∂
(j)
2 H(z, y2, v1, v2)µ(v1, v2)dv2dv1dz. (2.6)

By differentiating Eq. (2.6) for y1, we obtain

∂1+jµ(y1, y2)

∂y1∂y
j
2

= ∂
(1)
1 ∂

(j)
2 Φ(y1, y2) +

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

0

∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

] ∂lµ(v1, y2)
∂yl2

dv1

+

∫ y1

0

∫ y2

0

∂
(j)
2 H(y1, y2, v1, v2)µ(v1, v2)dv2dv1. (2.7)

Now, we differentiate Eq. (2.7) i-times in terms of y1, we obtain

∂i+1+jµ(y1, y2)

∂yi+1
1 ∂yj2

= ∂
(i+1)
1 ∂

(j)
2 Φ(y1, y2)

+

j−1∑
r=0

r∑
l=0

(
r

l

) i−1∑
q=0

∂q

∂yq1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

]) ∂lµ(y1, y2)

∂yl2


+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

0

∂i

∂yi1

[
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

]] ∂lµ(v1, y2)
∂yl2

dv1

+

∫ y2

0

i−1∑
q=0

∂q

∂yq1

[
∂
(i−1−q)
1 ∂

(j)
2 H(y1, y2, y1, v2)µ(y1, v2)

]
dv2

+

∫ y1

0

∫ y2

0

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1, v2)µ(v1, v2)dv2dv1,

which implies

∂i+1+jµ(y1, y2)

∂yi+1
1 ∂yj2

= ∂
(i+1)
1 ∂

(j)
2 Φ(y1, y2)

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η
1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

]) ∂l+ηµ(y1, y2)

∂yη1∂y
l
2

+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

0

∂i

∂yi1

[
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

]] ∂lµ(v1, y2)
∂yl2

dv1
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+

∫ y2

0

i−1∑
q=0

q∑
η=0

(
q

η

)
∂q−η

∂yq−η
1

[
∂
(i−1−q)
1 ∂

(j)
2 H(y1, y2, y1, v2)

] ∂ηµ(y1, v2)
∂yη1

dv2

+

∫ y1

0

∫ y2

0

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1, v2)µ(v1, v2)dv2dv1.

Hence

∂i+j+1µ(0, 0)

∂yi+1
1 ∂yj2

= ∂
(i+1)
1 ∂

(j)
2 Φ(0, 0)

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η
1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

])
y1=y2=0

×

∂l+ηµ(0, 0)

∂yη1∂y
l
2

.

Moreover, from Eqs. (2.6) and (2.7), we deduce that

∂1+jµ(0, 0)

∂y1∂y
j
2

= ∂
(1)
1 ∂

(j)
2 Φ(0, 0),

∂jµ(0, 0)

∂yj2
= ∂

(j)
2 Φ(0, 0).

Step 2: For n = 1, · · · , N − 1 and m = 0, we approximate the function µ(y1, y2) within the
rectangles Λn,0 by the Taylor polynomial

µn,0(y1, y2) =

p−1∑
i+j=0

1

i!j!

∂i+jµ̂n,0(y1,n, 0)

∂yi1∂y
j
2

(y1 − y1,n)
iyj2 ; (y1, y2) ∈ Λn,0. (2.8)

Here, µ̂n,0 represents the precise solution of the integral equation:

µ̂n,0(y1, y2) = Φ(y1, y2) +

n−1∑
ξ=0

ξ−1∑
σ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2

0
H(z, y2, v1, v2)µσ,0(v1, v2)dv2dv1dz

+

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ z

y1,ξ

∫ y2

0
H(z, y2, v1, v2)µξ,0(v1, v2)dv2dv1dz

+
n−1∑
σ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2

0
H(z, y2, v1, v2)µσ,0(v1, v2)dv2dv1dz

+

∫ y1

y1,n

∫ z

y1,n

∫ y2

0
H(z, y2, v1, v2)µ̂n,0(v1, v2)dv2dv1dz. (2.9)

To find ∂j µ̂n,0(y1,y2)

∂yj2
, we differentiate Eq. (2.9) j-times in terms of y2 to get

∂jµ̂n,0(y1, y2)

∂yj2
= ∂

(j)
2 Φ(y1, y2) +

n−1∑
ξ=0

ξ−1∑
σ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2

0
∂
(j)
2 H(z, y2, v1, v2)µσ,0(v1, v2)dv2dv1dz

+

n−1∑
ξ=0

ξ−1∑
σ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

j−1∑
r=0

∂r

∂yr2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)µσ,0(v1, y2)

]
dv1dz

+

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ z

y1,ξ

j−1∑
r=0

∂r

∂yr2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)µξ,0(v1, y2)

]
dv1dz
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+
n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ z

y1,ξ

∫ y2

0
∂
(j)
2 H(z, y2, v1, v2)µξ,0(v1, v2)dv2dv1dz

+

n−1∑
σ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

j−1∑
r=0

∂r

∂yr2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)µσ,0(v1, y2)

]
dv1dz

+

n−1∑
σ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2

0
∂
(j)
2 H(z, y2, v1, v2)µσ,0(v1, v2)dv2dv1dz

+

∫ y1

y1,n

∫ z

y1,n

j−1∑
r=0

∂r

∂yr2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)µ̂n,0(v1, y2)

]
dv1dz

+

∫ y1

y1,n

∫ z

y1,n

∫ y2

0
∂
(j)
2 H(z, y2, v1, v2)µ̂n,0(v1, v2)dv2dv1dz

=∂
(j)
2 Φ(y1, y2) +

n−1∑
ξ=0

ξ−1∑
σ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2

0
∂
(j)
2 H(z, y2, v1, v2)µσ,0(v1, v2)dv2dv1dz

+
n−1∑
ξ=0

ξ−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)

] ∂lµσ,0(v1, y2)
∂yl2

dv1dz

+
n−1∑
ξ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∫ z

y1,ξ

∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)

] ∂lµξ,0(v1, y2)
∂yl2

dv1dz

+
n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ z

y1,ξ

∫ y2

0
∂
(j)
2 H(z, y2, v1, v2)µξ,0(v1, v2)dv2dv1dz

+

n−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∫ y1,σ+1

y1,σ

∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)

] ∂lµσ,0(v1, y2)
∂yl2

dv1dz

+
n−1∑
σ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2

0
∂
(j)
2 H(z, y2, v1, v2)µσ,0(v1, v2)dv2dv1dz

+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∫ z

y1,n

∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)

] ∂lµ̂n,0(v1, y2)
∂yl2

dv1dz

+

∫ y1

y1,n

∫ z

y1,n

∫ y2

0
∂
(j)
2 H(z, y2, v1, v2)µ̂n,0(v1, v2)dv2dv1dz. (2.10)

We differentiate Eq. (2.10) for y1, we get

∂j+1µ̂n,0(y1, y2)

∂y1∂y
j
2

= ∂
(1)
1 ∂

(j)
2 Φ(y1, y2) +

n−1∑
σ=0

∫ y1,σ+1

y1,σ

∫ y2

0

∂
(j)
2 H(y1, y2, v1, v2)µσ,0(v1, v2)dv2dv1

+

n−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,σ+1

y1,σ

∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

] ∂lµσ,0(v1, y2)

∂yl2
dv1

+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

] ∂lµ̂n,0(v1, y2)

∂yl2
dv1

+

∫ y1

y1,n

∫ y2

0

∂
(j)
2 H(y1, y2, v1, v2)µ̂n,0(v1, v2)dv2dv1. (2.11)
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Now, we differentiate Eq. (2.11) i-times in terms of y1

∂i+j+1µ̂n,0(y1, y2)

∂yi+1
1 ∂yj2

= ∂
(i+1)
1 ∂

(j)
2 Φ(y1, y2)

+

n−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,σ+1

y1,σ

∂i

∂yi1

[
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

]] ∂lµσ,0(v1, y2)

∂yl2
dv1

+

n−1∑
σ=0

∫ y1,σ+1

y1,σ

∫ y2

0

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1, v2)µσ,0(v1, v2)dv2dv1

+

j−1∑
r=0

r∑
l=0

(
r

l

) i−1∑
q=0

∂q

∂yq1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

]) ∂lµ̂n,0(y1, y2)

∂yl2


+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∂i

∂yi1

[
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

]] ∂lµ̂n,0(v1, y2)

∂yl2
dv1

+

∫ y2

0

i−1∑
q=0

∂q

∂yq1

[
∂
(i−1−q)
1 ∂

(j)
2 H(y1, y2, y1, v2)µ̂n,0(y1, v2)

]
dv2

+

∫ y1

y1,n

∫ y2

0

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1, v2)µ̂n,0(v1, v2)dv2dv1,

which implies

∂i+j+1µ̂n,0(y1, y2)

∂yi+1
1 ∂yj2

= ∂
(i+1)
1 ∂

(j)
2 Φ(y1, y2) +

n−1∑
σ=0

∫ y1,σ+1

y1,σ

∫ y2

0

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1, v2)µσ,0(v1, v2)dv2dv1

+

n−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,σ+1

y1,σ

∂i

∂yi1

[
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

]] ∂lµσ,0(v1, y2)

∂yl2
dv1

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η
1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

]) ∂l+ηµ̂n,0(y1, y2)

∂yη1∂y
l
2

+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∂i

∂yi1

[
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

]] ∂lµ̂n,0(v1, y2)

∂yl2
dv1

+

∫ y2

0

i−1∑
q=0

q∑
η=0

(
q

η

)
∂q−η

∂yq−η
1

[
∂
(i−1−q)
1 ∂

(j)
2 H(y1, y2, y1, v2)

] ∂ηµ̂n,0(y1, v2)

∂yη1
dv2

+

∫ y1

y1,n

∫ y2

0

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1, v2)µ̂n,0(v1, v2)dv2dv1. (2.12)

Hence

∂i+j+1µ̂n,0(y1,n, 0)

∂yi+1
1 ∂yj2

= ∂
(i+1)
1 ∂

(j)
2 Φ(y1,n, 0)

+

n−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,σ+1

y1,σ

∂i

∂yi1

[
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

]]
y1=y1,n,y2=0

∂lµσ,0(v1, 0)

∂yl2
dv1

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η
1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

])
y1=y1,n,y2=0

×

∂l+ηµ̂n,0(y1,n, 0)

∂yη1∂y
l
2

.
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Moreover, from Eq. (2.10), we deduce that

∂j µ̂n,0(y1,n, 0)

∂yj2
= ∂

(j)
2 Φ(y1, y2)

+

n−1∑
ξ=0

ξ−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)

]
y1=y1,n,y2=0

∂lµσ,0(v1, 0)

∂yl2
dv1dz,

and from Eq. (2.11), we get

∂j+1µ̂n,0(y1,n, 0)

∂y11∂y
j
2

= ∂
(i+1)
1 ∂

(j)
2 Φ(y1,n, 0)

+

n−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,σ+1

y1,σ

[
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

]]
y1=y1,n,y2=0

∂lµσ,0(v1, 0)

∂yl2
dv1.

Step 3: For n = 0, ..., N − 1 and m = 1, ...,M − 1, we approximate the function µ(y1, y2) within each
rectangle Λn,m by the Taylor polynomial

µn,m(y1, y2) =

p−1∑
i+j=0

1

i!j!

∂i+j µ̂n,m(y1,n, y2,m)

∂yi1∂y
j
2

(y1 − y1,n)
i(y2 − y2,m)j ; (y1, y2) ∈ Λn,m, (2.13)

where µ̂n,m stands for the exact solution of the integral equation:

µ̂n,m(y1, y2) = Φ(y1, y2) +

n−1∑
ξ=0

ξ−1∑
σ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

H(z, y2, v1, v2)µσ,ρ(v1, v2)dv2dv1dz

+

n−1∑
ξ=0

ξ−1∑
σ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2

y2,m

H(z, y2, v1, v2)µσ,m(v1, v2)dv2dv1dz

+

n−1∑
ξ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ z

y1,ξ

∫ y2,ρ+1

y2,ρ

H(z, y2, v1, v2)µξ,ρ(v1, v2)dv2dv1dz

+

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ z

y1,ξ

∫ y2

y2,m

H(z, y2, v1, v2)µξ,m(v1, v2)dv2dv1dz

+

n−1∑
σ=0

m−1∑
ρ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

H(z, y2, v1, v2)µσ,ρ(v1, v2)dv2dv1dz

+

n−1∑
σ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2

y2,m

H(z, y2, v1, v2)µσ,m(v1, v2)dv2dv1dz

+

m−1∑
ρ=0

∫ y1

y1,n

∫ z

y1,n

∫ y2,ρ+1

y2,ρ

H(z, y2, v1, v2)µn,ρ(v1, v2)dv2dv1dz

+

∫ y1

y1,n

∫ z

y1,n

∫ y2

y2,m

H(z, y2, v1, v2)µ̂n,m(v1, v2)dv2dv1dz, (2.14)

for (y1, y2) ∈ Λn,m, n = 0, ..., N − 1 and m = 1, ...,M − 1.
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To find ∂j µ̂n,m(y1,y2)

∂yj2
, we differentiate Eq. (2.14) j-times in terms of y2

∂j µ̂n,m(y1, y2)

∂yj2
= ∂

(j)
2 Φ(y1, y2) +

n−1∑
ξ=0

ξ−1∑
σ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

∂
(j)
2 H(z, y2, v1, v2)µσ,ρ(v1, v2)dv2dv1dz

+

n−1∑
ξ=0

ξ−1∑
σ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

j−1∑
r=0

∂r

∂yr2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)µσ,m(v1, y2)

]
dv1dz

+

n−1∑
ξ=0

ξ−1∑
σ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2

y2,m

∂
(j)
2 H(z, y2, v1, v2)µσ,m(v1, v2)dv2dv1dz

+

n−1∑
ξ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ z

y1,ξ

∫ y2,ρ+1

y2,ρ

∂
(j)
2 H(z, y2, v1, v2)µξ,ρ(v1, v2)dv2dv1dz

+

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ z

y1,ξ

j−1∑
r=0

∂r

∂yr2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)µξ,m(v1, y2)

]
dv1dz

+

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ z

y1,ξ

∫ y2

y2,m

∂
(j)
2 H(z, y2, v1, v2)µξ,m(v1, v2)dv2dv1dz

+

n−1∑
σ=0

m−1∑
ρ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

∂
(j)
2 H(z, y2, v1, v2)µσ,ρ(v1, v2)dv2dv1dz

+

n−1∑
σ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

j−1∑
r=0

∂r

∂yr2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)µσ,m(v1, y2)

]
dv1dz

+

n−1∑
σ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2

y2,m

∂
(j)
2 H(z, y2, v1, v2)µσ,m(v1, v2)dv2dv1dz

+

m−1∑
ρ=0

∫ y1

y1,n

∫ z

y1,n

∫ y2,ρ+1

y2,ρ

∂
(j)
2 H(z, y2, v1, v2)µn,ρ(v1, v2)dv2dv1dz

+

∫ y1

y1,n

∫ z

y1,n

j−1∑
r=0

∂r

∂yr2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)µ̂n,m(v1, y2)

]
dv1dz

+

∫ y1

y1,n

∫ z

y1,n

∫ y2

y2,m

∂
(j)
2 H(z, y2, v1, v2)µ̂n,m(v1, v2)dv2dv1dz

=∂
(j)
2 Φ(y1, y2) +

n−1∑
ξ=0

ξ−1∑
σ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

∂
(j)
2 H(z, y2, v1, v2)µσ,ρ(v1, v2)dv2dv1dz

+

n−1∑
ξ=0

ξ−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)

] ∂lµσ,m(v1, y2)

∂yl2
dv1dz

+

n−1∑
ξ=0

ξ−1∑
σ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2

y2,m

∂
(j)
2 H(z, y2, v1, v2)µσ,m(v1, v2)dv2dv1dz

+

n−1∑
ξ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ z

y1,ξ

∫ y2,ρ+1

y2,ρ

∂
(j)
2 H(z, y2, v1, v2)µξ,ρ(v1, v2)dv2dv1dz

+

n−1∑
ξ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∫ z

y1,ξ

∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)

] ∂lµξ,m(v1, y2)

∂yl2
dv1dz

+

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ z

y1,ξ

∫ y2

y2,m

∂
(j)
2 H(z, y2, v1, v2)µξ,m(v1, v2)dv2dv1dz
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+

n−1∑
σ=0

m−1∑
ρ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

∂
(j)
2 H(z, y2, v1, v2)µσ,ρ(v1, v2)dv2dv1dz

+

n−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∫ y1,σ+1

y1,σ

∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)

] ∂lµσ,m(v1, y2)

∂yl2
dv1dz

+

n−1∑
σ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2

y2,m

∂
(j)
2 H(z, y2, v1, v2)µσ,m(v1, v2)dv2dv1dz

+

m−1∑
ρ=0

∫ y1

y1,n

∫ z

y1,n

∫ y2,ρ+1

y2,ρ

∂
(j)
2 H(z, y2, v1, v2)µn,ρ(v1, v2)dv2dv1dz

+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∫ z

y1,n

∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)

] ∂lµ̂n,m(v1, y2)

∂yl2
dv1dz

+

∫ y1

y1,n

∫ z

y1,n

∫ y2

y2,m

∂
(j)
2 H(z, y2, v1, v2)µ̂n,m(v1, v2)dv2dv1dz. (2.15)

By differentiating for y1, we obtain

∂j+1µ̂n,m(y1, y2)

∂y1∂y
j
2

= ∂
(1)
1 ∂

(j)
2 Φ(y1, y2) +

n−1∑
σ=0

m−1∑
ρ=0

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

∂
(j)
2 H(y1, y2, v1, v2)µσ,ρ(v1, v2)dv2dv1

+

n−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,σ+1

y1,σ

∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

] ∂lµσ,m(v1, y2)

∂yl2
dv1

+

n−1∑
σ=0

∫ y1,σ+1

y1,σ

∫ y2

y2,m

∂
(j)
2 H(y1, y2, v1, v2)µσ,m(v1, v2)dv2dv1

+

m−1∑
ρ=0

∫ y1

y1,n

∫ y2,ρ+1

y2,ρ

∂
(j)
2 H(y1, y2, v1, v2)µn,ρ(v1, v2)dv2dv1

+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

] ∂lµ̂n,m(v1, y2)

∂yl2
dv1

+

∫ y1

y1,n

∫ y2

y2,m

∂
(j)
2 H(y1, y2, v1, v2)µ̂n,m(v1, v2)dv2dv1. (2.16)

Now, we differentiate Eq. (2.16) i-times for y1, we obtain

∂i+j+1µ̂n,m(y1, y2)

∂yi+1
1 ∂yj2

= ∂
(i+1)
1 ∂

(j)
2 Φ(y1, y2)

+

n−1∑
σ=0

m−1∑
ρ=0

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1, v2)µσ,ρ(v1, v2)dv2dv1

+

n−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,σ+1

y1,σ

∂i

∂yi1

[
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

] ∂lµσ,m(v1, y2)

∂yl2

]
dv1

+

n−1∑
σ=0

∫ y1,σ+1

y1,σ

∫ y2

y2,m

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1, v2)µσ,m(v1, v2)dv2dv1

+

m−1∑
ρ=0

∫ y2,ρ+1

y2,ρ

i−1∑
q=0

∂q

∂yq1

[
∂
(i−1−q)
1

(
∂
(j)
2 H(y1, y2, y1, v2)µn,ρ(y1, v2)

)]
dv2

+

m−1∑
ρ=0

∫ y1

y1,n

∫ y2,ρ+1

y2,ρ

[
∂
(i)
1 ∂

(j)
2 H(y1, y2, v1, v2)µn,ρ(v1, v2)

]
dv2dv1
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+

j−1∑
r=0

r∑
l=0

(
r

l

) i−1∑
q=0

∂q

∂yq1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

] ∂lµ̂n,m(y1, y2)

∂yl2

)
+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∂i

∂yi1

(
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

] ∂lµ̂n,m(v1, y2)

∂yl2

)
dv1

+

∫ y2

y2,m

i−1∑
q=0

∂q

∂yq1

[
∂
(i−1−q)
1

(
∂
(j)
2 H(y1, y2, y1, v2)µ̂n,m(y1, v2)

)]
dv2

+

∫ y1

y1,n

∫ y2

y2,m

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1, v2)µ̂n,m(v1, v2)dv2dv1

=∂
(i+1)
1 ∂

(j)
2 Φ(y1, y2) +

n−1∑
σ=0

m−1∑
ρ=0

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1, v2)µσ,ρ(v1, v2)dv2dv1

+

n−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,σ+1

y1,σ

∂i

∂yi1
[
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)]

∂lµσ,m(v1, y2)

∂yl2

]
dv1

+

n−1∑
σ=0

∫ y1,σ+1

y1,σ

∫ y2

y2,m

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1, v2)µσ,m(v1, v2)dv2dv1

+

m−1∑
ρ=0

i−1∑
q=0

q∑
η=0

(
q

η

)∫ y2,ρ+1

y2,ρ

∂q−η

∂yq−η
1

[
∂
(i−1−q)
1 ∂

(j)
2 H(y1, y2, y1, v2)

] ∂ηµn,ρ(y1, v2)

∂yη1
dv2

+

m−1∑
ρ=0

∫ y1

y1,n

∫ y2,ρ+1

y2,ρ

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1, v2)µn,ρ(v1, v2)dv2dv1

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η
1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

])×

∂l+ηµ̂n,m(y1, y2)

∂yη1∂y
l
2

dv2

+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∂i

∂yi1

(
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

]) ∂lµ̂n,m(v1, y2)

∂yl2
dv1

+

i−1∑
q=0

q∑
η=0

(
q

η

)∫ y2

y2,m

∂q−η

∂yq−η
1

(
∂
(i−1−q)
1 ∂

(j)
2 H(y1, y2, y1, v2)

) ∂ηµ̂n,m(y1, v2)

∂yη1
dv2

+

∫ y1

y1,n

∫ y2

y2,m

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1, v2)µ̂n,m(v1, v2)dv2dv1. (2.17)

Hence

∂i+j+1µ̂n,m(y1,n, y2,m)

∂yi+1
1 ∂yj2

= ∂
(i+1)
1 ∂

(j)
2 Φ(y1,n, y2,m)

+

n−1∑
σ=0

m−1∑
ρ=0

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

∂
(i)
1 ∂

(j)
2 H(y1,n, y2,m, v1, v2)µσ,ρ(v1, v2)dv2dv1

+

n−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,σ+1

y1,σ

∂i

∂yi1

[
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

]]
y1=y1,n,y2=y2,m

∂lµσ,m(v1, y2,m)

∂yl2
dv1

+

m−1∑
ρ=0

i−1∑
q=0

q∑
η=0

(
q

η

)∫ y2,ρ+1

y2,ρ

∂q−η

∂yq−η
1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂
(j)
2 H(y1, y2, y1, v2)

)
y1=y1,n,y2=y2,m

×

∂ηµn,ρ(y1,n, v2)

∂yη1
dv2
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+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η
1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

])
y1=y1,n,y2=y2,m

×

∂l+ηµ̂n,m(y1,n, y2,m)

∂yη1∂y
l
2

dv2.

Moreover, from Eq. (2.15), we deduce that

∂j µ̂n,m(y1,n, y2,m)

∂yj2
= ∂

(j)
2 Φ(y1,n, y2,m)

+

n−1∑
ξ=0

ξ−1∑
σ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

[
∂
(j)
2 H(z, y2, v1, v2)

]
y1=y1,n,y2=y2,m

µσ,ρ(v1, v2)dv2dv1dz

+

n−1∑
ξ=0

ξ−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(z, y2, v1, y2)

]
y1=y1,n,y2=y2,m

×

∂lµσ,m(v1, y2,m)

∂yl2
dv1dz,

and from Eq. (2.16), we get

∂j+1µ̂n,m(y1,n, y2,m)

∂y1∂y
j
2

= ∂
(1)
1 ∂

(j)
2 Φ(y1,n, y2,m)

+

n−1∑
σ=0

m−1∑
ρ=0

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

[
∂
(j)
2 H(y1, y2, v1, v2)

]
y1=y1,n,y2=y2,m

µσ,ρ(v1, v2)dv2dv1

+

n−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,σ+1

y1,σ

∂r−l

∂yr−l
2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

]
y1=y1,n,y2=y2,m

∂lµσ,m(v1, y2,m)

∂yl2
dv1.

2.2 Convergence analysis

We consider the space L∞(Λ) with the norm

∥µ∥L∞(Λ) = inf {C ∈ R : |µ(y1, y2)| ≤ C ∀(y1, y2) ∈ Λ} <∞.

The subsequent lemma is essential for demonstrating the convergence of the proposed method.

Lemma 2.8. Suppose ℏ and H are functions that are continuously differentiable p times within their
domains. Therefore, a positive constant ζ(p) exists such that the following inequality holds:∥∥∥∥∥∂i+j µ̂n,m

∂yi1∂y
j
2

∥∥∥∥∥
L∞(Λn,m)

≤ ζ(p),

for all n = 0, . . . , N − 1, m = 0, . . . ,M − 1, and i + j = 0, 1, ..., p, where µ̂0,0(y1, y2) = µ(y1, y2) for
(y1, y2) ∈ Λ0,0.

Proof. Let oi,jn,m = ∥∂i+j µ̂n,m

∂yi
1∂y

j
2

∥L∞(Λn,m), we have for all i+ j = 0, 1, ..., p,

oi,j0,0 ≤ max


∥∥∥∥∥ ∂i+jµ

∂yi1∂y
j
2

∥∥∥∥∥
L∞(Λ0,0)

, i+ j = 0, 1, ..., p

 = ζ1(p). (2.18)
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Now, considering Eq. (2.12), it follows for all n = 1, . . . , N − 1 and i+ j = 0, 1, ..., p:

oi+1,j
n,0 ≤ γ1 + γ1h

n−1∑
ξ=0

p−1∑
q+l=0

oq,lξ,0 + γ1hk

n−1∑
ξ=0

p−1∑
q+l=0

oq,lξ,0 + γ1

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

oη,ln,0

+ γ1h

j−1∑
r=0

r∑
l=0

o0,ln,0 + γ1k

i−1∑
q=0

q∑
η=0

oη,0n,0 + γ1hko
0,0
n,0,

where γ1 is a positive constant unrelated to h and k. This give us

oi+1,j
n,0 ≤ γ1 + γ2h

n−1∑
ξ=0

p−1∑
q+l=0

oq,lξ,0 + γ2

j−1∑
l=0

i−1∑
η=0

oη,ln,0 + γ2h

j−1∑
l=0

o0,ln,0

+ γ2k

i−1∑
η=0

oη,0n,0 + γ1hko
0,0
n,0. (2.19)

Setting the sequence Γn = max{oi,jn,0, i + j = 0, . . . , p} for all n = 0, 1, ..., N − 1. Therefore, according to
Eq. (2.19), it satisfies

oi+1,j
n,0 ≤ γ1 + γ2h

n−1∑
ξ=0

Γξ + γ2

j−1∑
l=0

i−1∑
η=0

oη,ln,0 + γ2h

j−1∑
l=0

o0,ln,0 + γ2k

i−1∑
η=0

oη,0n,0 + γ1hko
0,0
n,0

≤ γ1 + γ2h

n−1∑
ξ=0

Γξ + γ2

j−1∑
l=0

i∑
η=0

oη,ln,0 + γ2h

j−1∑
l=0

o0,ln,0 + γ2k

i−1∑
η=0

oη,0n,0 + γ1hko
0,0
n,0,

for all i = 1, ..., p and j = 0, ..., p, this results

oi,jn,0 ≤ γ1 + γ2h

n−1∑
ξ=0

Γξ + γ2

j−1∑
l=0

i−1∑
η=0

oη,ln,0 + γ2h

j−1∑
l=0

o0,ln,0 + γ2k

i−1∑
η=0

oη,0n,0 + γ1hko
0,0
n,0. (2.20)

Furthermore, derived from Eq. (2.10), the following holds for all j = 0, ..., p and n = 0, ..., N − 1,

o0,jn,0 ≤ γ1 + γ3h

n−1∑
ξ=0

Γξ + γ3

j−1∑
l=0

o0,ln,0 + γ3hko
0,0
n,0. (2.21)

Next, utilizing Eq. (2.9), we derive the following for all n = 0, ..., N − 1,

|µ̂n,0(y1, y2)| ≤ γ1 + γ4h

n−1∑
ξ=0

Γξ + γ4

∫ y1

y1,n

∫ y2

0

|µ̂n,0(v1, v2)|dv2dv1.

Therefore, according to Lemma 1.6, we deduce for all n = 0, ..., N − 1 that

o0,0n,0 ≤

γ1 + γ4h

n−1∑
ξ=0

Γξ

 eγ4(A1+A2)

≤ γ1e
γ5(A1+A2) + γ4h

n−1∑
ξ=0

Γξe
γ4(A1+A2)

≤ γ5 + γ5h

n−1∑
ξ=0

Γξ.

(2.22)
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From Eqs. (2.20), (2.21) and (2.22), we infer that for all i, j = 0, ..., p and n = 0, ..., N − 1,

oi,jn,0 ≤ γ6 + γ6h

n−1∑
ξ=0

Γξ + γ6

j−1∑
l=0

i−1∑
η=0

oη,ln,0 + γ6

j−1∑
l=0

o0,ln,0 + γ6

i−1∑
η=0

oη,0n,0, (2.23)

with γ6 is positive and unrelated to N and M .
Utilizing the notations introduced in Lemma 1.4, we define

Ψij = oi,jn,0, α = γ6 + γ6h

n−1∑
ξ=0

Γξ, β1 = β2 = pγ6, β3 = p2γ6, T = S = 1.

Then, applying Lemma 1.4, we derive from Eq. (2.23)

oi,jn,0 ≤

γ6 + γ6h

n−1∑
ξ=0

Γξ

 e2p(γ6+
√

γ6+γ2
6). (2.24)

Thus,

Γn ≤ γ7 + γ7h

n−1∑
ξ=0

Γξ. (2.25)

It follows, by Lemma 1.3, for all n = 0, 1, ..., N − 1

Γn ≤ γ7e
A1γ7 . (2.26)

On the other hand, we deduce from Eq. (2.17), valid for all n = 0, ..., N − 1, m = 1, ..., N − 1 and
i+ j = 0, ..., p, that

oi+1,j
n,m ≤ γ

′

1 + γ
′

1hk

n−1∑
ξ=0

m−1∑
ρ=0

p−1∑
s+t=0

os,tξ,ρ + γ
′

1h

n−1∑
ξ=0

j−1∑
r=0

r∑
l=0

p−1∑
s+t=0

os,tξ,m

+ γ
′

1hk

n−1∑
ξ=0

p−1∑
s+t=0

os,tξ,m + γ
′

1k

m−1∑
ρ=0

i−1∑
q=0

q∑
η=0

p−1∑
s+t=0

os,tn,ρ

+ kγ
′

1h

m−1∑
ρ=0

p−1∑
s+t=0

os,tn,ρ + γ
′

1

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

oη,ln,m

+ γ
′

1h

j−1∑
r=0

r∑
l=0

o0,ln,m + γ
′

1k

i−1∑
q=0

q∑
η=0

oη,0n,m + kγ
′

1ho
0,0
n,m.

(2.27)

Consider Γn,m = max{oi,jn,m, i+ j = 0, . . . , p} for all n = 0, 1, ..., N − 1 and m = 0, ...,M − 1, then by Eq.
(2.27), the sequence satisfies

oi+1,j
n,m ≤ γ

′

1 + γ
′

1p
2hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′

1p
4h

n−1∑
ξ=0

Γξ,m + γ
′

1p
2hk

n−1∑
ξ=0

Γξ,m

+ γ
′

1p
4k

m−1∑
ρ=0

Γn,ρ + hkγ
′

1p
2
m−1∑
ρ=0

Γn,ρ + γ
′

1p
2

j−1∑
l=0

i−1∑
η=0

oη,ln,m

+ γ
′

1ph

j−1∑
l=0

o0,ln,m + γ
′

1pk

i−1∑
η=0

oη,0n,m + hkγ
′

1o
0,0
n,m.
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We get

oi+1,j
n,m ≤γ

′

1 + γ
′

2hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′

2h

n−1∑
ξ=0

Γξ,m + γ
′

2k

m−1∑
ρ=0

Γn,ρ + γ
′

2

j−1∑
l=0

i−1∑
η=0

oη,ln,m

+ γ
′

2h

j−1∑
l=0

o0,ln,m + γ
′

2k

i−1∑
η=0

oη,0n,m + hkγ
′

2o
0,0
n,m,

(2.28)

which implies for all i = 1, . . . , p and j = 0, . . . , p,

oi,jn,m ≤γ
′

1 + γ
′

2hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′

2h

n−1∑
ξ=0

Γξ,m + γ
′

2k

m−1∑
ρ=0

Γn,ρ + γ
′

2

j−1∑
l=0

i−1∑
η=0

oη,ln,m

+ γ
′

2h

j−1∑
l=0

o0,ln,m + γ
′

2k

i−1∑
η=0

oη,0n,m + hkγ
′

2o
0,0
n,m.

(2.29)

Furthermore, we have for all j = 0, . . . , p and n = 0, . . . , N − 1 and m = 0, . . . ,M − 1,

o0,jn,m ≤ γ
′

3 + γ
′

3hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′

3h

n−1∑
ξ=0

Γξ,m + γ
′

3k

m−1∑
ρ=0

Γn,ρ + γ
′

3

j−1∑
l=0

o0,ln,m + γ
′

3o
0,0
n,m. (2.30)

Also, from Eq. (2.14), we get for all n = 0, . . . , N − 1 and m = 0, . . . ,M − 1,

|µ̂n,m(y1, y2)| ≤ γ
′

4 + γ
′

4hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′

4h

n−1∑
ξ=0

Γξ,m + γ
′

4k

m−1∑
ρ=0

Γn,ρ + γ
′

4

∫ y1

y1,n

∫ y2

y2,m

|µ̂n,m(v1, v2)|dv2dv1.

Hence, according to Lemma 1.6, we have for all n = 0, ..., N − 1 and m = 0, ...,M − 1,

o0,0n,m ≤

γ′

4 + γ
′

4hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′

4h

n−1∑
ξ=0

Γξ,m + γ
′

4k

m−1∑
ρ=0

Γn,ρ

 e(A1+A2)γ
′
4

≤ γ
′

5 + γ
′

5hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′

5h

n−1∑
ξ=0

Γξ,m + γ
′

5k

m−1∑
ρ=0

Γn,ρ,

(2.31)

then, according to Eqs. (2.29),(2.30) and (2.31) that, for all i = 0, ..., p and j = 0, ..., p,

oi,jn,m ≤γ
′

6 + γ
′

6hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′

6h

n−1∑
ξ=0

Γξ,m + γ
′

6k

m−1∑
ρ=0

Γn,ρ

+ γ
′

7

j−1∑
l=0

i−1∑
η=0

oη,ln,m + γ
′

7

j−1∑
l=0

o0,ln,m + γ
′

7

i−1∑
η=0

oη,0n,m.

(2.32)

Using Lemma 1.4, we set

Ψij = oi,jn,m, α = γ
′

6 + γ
′

6hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′

6h

n−1∑
ξ=0

Γξ,m + γ
′

6k

m−1∑
ρ=0

Γn,ρ,

β1 = β2 = pγ
′

7, β3 = p2γ
′

7, T = S = 1.
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Therefore, by applying Lemma 1.4 to Eq. (2.32), we get

oi,jn,m ≤

γ′

6 + γ
′

6hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′

6h

n−1∑
ξ=0

Γξ,m + γ
′

6k

m−1∑
ρ=0

Γn,ρ

 e2p(γ
′
7+

√
γ
′
7+γ2′

7 ).

It follows that for all n = 0, 1, ..., N − 1;m = 0, ...,M − 1,

Γn,m ≤γ
′

8 + hkγ
′

8

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + hγ
′

8

n−1∑
ξ=0

Γξ,m + kγ
′

8

m−1∑
ρ=0

Γn,ρ, (2.33)

by using Lemma (1.4), we obtain

Γn,m ≤ γ
′

8e
(A1+A2)p(γ

′
8+

√
γ
′
8+γ

′2
8 ). (2.34)

Thus from Eqs. (2.18), (2.26) and (2.34) the proof of Lemma 2.8 is completed by setting

ζ(p) = max{ζ1(p), γ7eA1γ7 , γ
′

8e
(A1+A2)p(γ

′
8+

√
γ
′
8+γ

′2
8 )}.

The following theorem establishes the convergence of the presented approach.

Theorem 2.2. Suppose ℏ and H two functions that are continuously differentiable p times within their do-
mains. Therefore, equations (2.5), (2.8), and (2.13) establish a distinct approximation µN,M ∈ S

(−1)
p−1,p−1(ΠN,M ).

Additionally, there exists a finite constant C independent of h and k such that the resulting error function
e(y1, y2) = µ(y1, y2)− µN,M (y1, y2) meets the condition:

∥e∥L∞(Λ) ≤ C(h+ k)p,

Proof. For all n ∈ {0, . . . , N} and m ∈ {0, . . . ,M}, we state the error as en,m(y1, y2) = µ(y1, y2) −
µn,m(y1, y2) on each rectangle Λn,m.

First, for (y1, y2) ∈ Λ0,0, applying Lemma 1.7 to Eq. (2.5) derives the following from

|e0,0(y1, y2)| ≤
∑

i+j=p

1

i!j!

∥∥∥∥∥ ∂i+jµ

∂yi1∂y
j
2

∥∥∥∥∥hikj .
Hence by Lemma 2.8, we have

|e0,0(y1, y2)| ≤ ζ(p)
∑

i+j=p

1

i!j!
hikj =

ζ(p)

p!
(h+ k)p. (2.35)

Thus, we put C1 = ζ(p)
p! .
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Next, for (y1, y2) ∈ Λn,0, where n = 1, . . . , N − 1, we derive from Eq. (2.9)

µ(y1, y2)− µ̂n,0(y1, y2) =

n−1∑
ξ=0

ξ−1∑
σ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2

0

H(z, y2, v1, v2)eσ,0(v1, v2)dv2dv1dz

+

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ z

y1,ξ

∫ y2

0

H(z, y2, v1, v2)eξ,0(v1, v2)dv2dv1dz

+

n−1∑
σ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2

0

H(z, y2, v1, v2)eσ,0(v1, v2)dv2dv1dz

+

∫ y1

y1,n

∫ z

y1,n

∫ y2

0

H(z, y2, v1, v2) (µ(v1, v2)− µ̂n,0(v1, v2)) dv2dv1dz.

Thus,

|µ(y1, y2)− µ̂n,0(y1, y2)| ≤
n−1∑
ξ=0

3A1hkH∥eξ,0∥L∞(Λξ,0) +HA1

∫ y1

y1,n

∫ y2

0

|µ(v1, v2)− µ̂n,0(v1, v2)|dv2dv1.

Therefore by Lemma 1.6, we get

|µ(y1, y2)− µ̂n,0(y1, y2)| ≤
n−1∑
ξ=0

hk3A1H∥eξ,0∥L∞(Λξ,0) exp
(
HA1(A1 +A2)

)
≤

n−1∑
ξ=0

3hA1A2H exp
(
HA1(A1 +A2)

)
∥eξ,0∥L∞(Λξ,0)

≤
n−1∑
ξ=0

hλ1∥eξ,0∥L∞(Λξ,0),

using Lemma 1.7 results to

∥en,0∥L∞(Λn,0) ≤ ∥µ− µ̂n,0∥+ ∥µ̂n,0 − µn,0∥

≤
n−1∑
ξ=0

hλ1∥eξ,0∥L∞(Λξ,0) +
∑

i+j=p

1

i!j!

∥∥∥∥∥∂i+j µ̂n,0

∂yi1∂y
j
2

∥∥∥∥∥hikj .
Hence by Lemma 2.8, we obtain

∥en,0∥L∞(Λn,0) ≤
n−1∑
ξ=0

hλ1∥eξ,0∥L∞(Λξ,0) +
ζ(p)

p!
(h+ k)p,

then, by Lemma 1.3, we have

∥en,0∥L∞(Λn,0) ≤
ζ(p)

p!
(h+ k)p exp(A1λ1).

Thus, we take C2 = ζ(p)
p! exp(A1λ1).

Finally, for (y1, y2) ∈ Λn,m, where n = 0, . . . , N − 1 and m = 1, . . . ,M − 1, we derive from Eq. (2.14)

|µ(y1, y2)− µ̂n,m(y1, y2)| ≤
n−1∑
ξ=0

m−1∑
ρ=0

hkA1H∥eξ,ρ∥+
n−1∑
ξ=0

hkA1H∥eξ,m∥+
m−1∑
ρ=0

hkA1H∥en,ρ∥

+HA1

∫ y1

y1,n

∫ y2

y2,m

|µ(v1, v2)− µ̂n,m(v1, v2)|dv2dv1.
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Thus, by Lemma 1.6,

|µ(y1, y2)− µ̂n,m(y1, y2)| ≤

n−1∑
ξ=0

m−1∑
ρ=0

hkA1H∥eξ,ρ∥+
n−1∑
ξ=0

hkA1H∥eξ,m∥+
m−1∑
ρ=0

hkA1H∥en,ρ∥

 exp(A1H(A1 +A2))

≤
n−1∑
ξ=0

m−1∑
ρ=0

λ2hk∥eξ,ρ∥+
n−1∑
ξ=0

hkλ2∥eξ,m∥+
m−1∑
ρ=0

hkλ2∥en,ρ∥,

therefore, using Lemma 1.7 results to

∥en,m∥L∞(Λn,0) ≤∥µ− µ̂n,m∥+ ∥µ̂n,m − µn,m∥

≤
n−1∑
ξ=0

m−1∑
ρ=0

hkλ2∥eξ,ρ∥+
n−1∑
ξ=0

hkλ2∥eξ,m∥+
m−1∑
ρ=0

hkλ2∥en,ρ∥

+
∑

i+j=p

1

i!j!

∥∥∥∥∥∂i+j µ̂n,m

∂yi1∂y
j
2

∥∥∥∥∥hikj .
Hence, by Lemma 2.8, we obtain

∥en,m∥ ≤
n−1∑
ξ=0

m−1∑
ρ=0

hkλ2∥eξ,ρ∥+
n−1∑
ξ=0

hkλ2∥eξ,m∥+
m−1∑
ρ=0

hkλ2∥en,ρ∥+
ζ(p)

p!
(h+ k)p. (2.36)

Therefore, according to Lemma 1.4, we derive from Eq. (2.36)

∥en,m∥ ≤
(
ζ(p)

p!
(h+ k)p

)
exp(λ3(Nh+Mk))

≤ ζ(p)

p!
exp(λ3(A1 +A2))(h+ k)p.

(2.37)

Thus, we take C3 = ζ(p)
p! exp(λ3(A1 +A2)).

Hence, the proof concludes by selecting C = max{C1, C2, C3}.

2.3 Numerical results

To evaluate the effectiveness of the proposed Taylor collocation method in solving first-order linear
2D-PVIDEs, we present five numerical examples featuring linear PVIDEs with known exact solutions. In
these examples, we fix p = 3 and consider three distinct sets of values for N and M . The error estimation
is provided to demonstrate the accuracy of the approximation.

Example 2.5. Let us dedicate the first example to the case that the desired equation is of form

∂µ(y1, y2)

∂y1
= ℏ(y1, y2) +

∫ y1

0

∫ y2

0

(v1 + v22)µ(v1, v2)dv2dv1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

with the initial condition
µ0(y2) = sin(y2), 0 ≤ y2 ≤ 1.

The exact solution of this problem is given by µ(y1, y2) = (1 − y21)sin(y2). Then, the function ℏ(y1, y2) is
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calculated using the exact solution as follows:

ℏ(y1, y2) =
1

4
y41(1− cos(y2)) +

2

3
y31(cos(y2)−

1

2
y22cos(y2) + y2sin(y2)− 1)

+
1

2
y21(cos(y2)− 1) + 2y1

(
1

2
y22cos(y2)− y2sin(y2) + sin(y2)− cos(y2) + 1

)
.

The study employed the proposed Taylor collocation method to compute numerical results across various
collocation points. Table 2.1 displays the absolute errors |µ(y1, y2) − µN,M (y1, y2)| revealing a consistent
decrease with an increasing number of collocation points. To provide a visual representation of the ap-
proximate solution’s behavior, the absolute error function was graphed in Figure 2.1 in three dimensions
for 0 ≤ y1 ≤ 1 and 0 ≤ y2 ≤ 1 using different values of N and M—specifically, (N,M) = (10, 10) and
(N,M) = (20, 20)—for comparative analysis. Additionally, Figure 2.2 illustrates both the exact and ap-
proximate functions in a 3D plot for N = M = 20. For a more detailed insight, Figure 2.3 showcases a
visual presentation of the contrast between the precise and estimated solutions at y1 = 1. Furthermore,
the graphical depiction of the absolute error function at y1 = 1 for (N,M) = (20, 20) is presented in Fig-
ure 2.4. These visualizations serve to enhance the understanding of the proposed method’s accuracy and
effectiveness.

Table 2.1: Absolute errors |µ(y1, y2)− µN,N (y1, y2)| Example 2.5

(y1, y2) N = 10 N = 20 N = 30

(0.0, 0.0) 0 0 0
(0.1, 0.1) 9.5482e− 07 5.8051e− 07 4.0984e− 07
(0.2, 0.2) 2.0284e− 05 1.0937e− 05 7.4685e− 06
(0.3, 0.3) 1.1512e− 04 6.0072e− 05 4.0605e− 05
(0.4, 0.4) 3.8832e− 04 1.9952e− 04 1.3420e− 04
(0.5, 0.5) 9.8326e− 04 5.0065e− 04 3.3578e− 04
(0.6, 0.6) 2.0681e− 03 1.0467e− 03 7.0068e− 04
(0.7, 0.7) 3.8101e− 03 1.9201e− 03 1.2835e− 03
(0.8, 0.8) 6.3403e− 03 3.1852e− 03 2.1270e− 03
(0.9, 0.9) 9.7160e− 03 4.8698e− 03 3.6839e− 03

Figure 2.1: (a) Absolute error function |µ(y1, y2) − µ10,10(y1, y2)|, (b) Absolute error function
|µ(y1, y2)− µ20,20(y1, y2)| with p = 3 for Example 2.5

(a) (b)
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Figure 2.2: (a) The exact solution µ(y1, y2), (b) The approximate solution µ20,20(y1, y2) with p = 3
for Example 2.5

(a) (b)

Figure 2.3: Comparison of the exact and approximate solutions with N = M = 20 at y1 = 1 for
Example 2.5
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Figure 2.4: Absolute error function for N =M = 20 at y1 = 1 for Example 2.5

Example 2.6. Consider the following linear two-dimensional PVIDE

∂µ(y1, y2)

∂y1
= ℏ(y1, y2) +

∫ y1

0

∫ y2

0

(v1cos(v2))µ(v1, v2)dv2dv1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

with the initial condition
µ0(y2) = y2, 0 ≤ y2 ≤ 1,

where the analytic solution is given by µ(y1, y2) = y2e
−y1 , and

ℏ(y1, y2) = e−y1(y1y2sin(y2) + y1cos(y2) + y2sin(y2) + cos(y2)− y2 − y1 − 1)− y2sin(y2)− cos(y2) + 1.

Table 2.2 presents the absolute error values, while Figure 2.5-(a) illustrates the behaviors of the exact so-
lution, and 2.5-(b) depicts the approximate solution of Example 2.6. The approximate solution graph is
generated using (N,M) = (20, 20) collocation points, matching the graph of the exact solution. Further-
more, Figure 2.6 compares the exact and approximate solutions at y1 = 0.1. Also, Figure 2.7 outlines the
absolute errors functions |µ(y1, y2)− µ20,20(y1, y2)| at y1 = 1 with p = 3.

Table 2.2: Absolute errors |µ(y1, y2)− µN,N (y1, y2)| for Example 2.6

(y1, y2) N = 10 N = 20 N = 30

(0.0, 0.0) 0 0 0
(0.1, 0.1) 7.8981e− 07 4.8780e− 07 3.4580e− 07
(0.2, 0.2) 1.4646e− 05 7.9986e− 06 5.4816e− 06
(0.3, 0.3) 7.3101e− 05 3.8588e− 05 2.6178e− 05
(0.4, 0.4) 2.1930e− 04 1.1396e− 04 7.6933e− 05
(0.5, 0.5) 4.9957e− 04 2.5728e− 04 1.7318e− 04
(0.6, 0.6) 9.5623e− 04 4.8967e− 04 3.2902e− 04
(0.7, 0.7) 1.6220e− 03 8.2745e− 04 5.5531e− 04
(0.8, 0.8) 2.5158e− 03 1.2801e− 03 9.0808e− 04
(0.9, 0.9) 3.6403e− 03 1.8490e− 03 1.0290e− 03
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Figure 2.5: (a) The exact solution µ(y1, y2), (b) the approximate solution µ20,20(y1, y2) with p = 3
for Example 2.6

(a) (b)

Figure 2.6: Comparison of the exact and approximate solutions with N =M = 20 at y1 = 0.1 for
Example 2.6
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Figure 2.7: Absolute error function for N =M = 20 at y1 = 1 for Example 2.6

Example 2.7. Consider the following 2D-PVIDE

∂µ(y1, y2)

∂y1
= ℏ(y1, y2) +

∫ y1

0

∫ y2

0

(y1v1 + cos(v2))µ(v1, v2)dv2dv1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

subject to initial condition
µ0(y2) = 0, 0 ≤ y2 ≤ 1,

along with µ(y1, y2) = y1 sin(y2). Then, ℏ(y1, y2) is given by

ℏ(y1, y2) = sin(y2) +
y41
3
(cos(y2)− 1) +

y21
4
sin2(y2).

Table 2.3 displays numerical results in terms of absolute errors. The proposed method exhibits excel-
lent performance, as evident from the table. Additionally, the absolute error function is illustrated in
three-dimensional space, as depicted in Figure 2.8 employing distinct combinations of N and M values,
specifically (N,M) = {(15, 15), (20, 20)}, allowing for comprehensive comparative analysis. Furthermore,
Figure 2.9 contrasts the exact and approximate solutions at y1 = 0.1, providing a detailed snapshot of their
behavior. While Figure 2.10 presents a visualization of the absolute error function µ15,15(y1, y2) at y1 = 1.

Table 2.3: Absolute errors |µ(y1, y2)− µN,N (y1, y2)| for Example 2.7

(y1, y2) N = 10 N = 20 N = 30

(0.0, 0.0) 0 0 0
(0.1, 0.1) 8.3076e− 07 5.2136e− 07 3.7061e− 07
(0.2, 0.2) 1.6484e− 05 9.1714e− 06 6.2693e− 06
(0.3, 0.3) 8.8108e− 05 4.7363e− 05 3.1640e− 05
(0.4, 0.4) 2.8382e− 04 1.4779e− 04 9.5703e− 05
(0.5, 0.5) 6.9663e− 04 3.4482e− 04 1.6742e− 04
(0.6, 0.6) 1.4415e− 03 6.5519e− 04 2.3514e− 04
(0.7, 0.7) 2.6493e− 03 1.0463e− 03 8.1499e− 04
(0.8, 0.8) 4.4561e− 03 1.3901e− 03 1.2109e− 03
(0.9, 0.9) 6.9807e− 03 1.4011e− 03 1.3022e− 03
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Figure 2.8: (a) Absolute error function |µ(y1, y2) − µ15,15(y1, y2)|, (b) Absolute error function
|µ(y1, y2)− µ20,20(y1, y2)| with p = 3 for Example 2.7

(a) (b)

Figure 2.9: Comparison of the exact and approximate solutions with N =M = 15 at y1 = 0.1 for
Example 2.7
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Figure 2.10: Absolute error function for N =M = 15 at y1 = 1 for Example 2.7

Example 2.8. In this example, consider the two-dimensional partial Volterra integro-differential equation
discussed in [69]

∂µ(y1, y2)

∂y1
= ℏ(y1, y2) +

∫ y1

0

∫ y2

0

y21µ(v1, v2)dv2dv1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

subject to initial condition
µ0(y2) = 0, 0 ≤ y2 ≤ 1.

Where µ(y1, y2) = y2sin(y1) as the analytic solution, and ℏ(y1, y2) is calculated using the exact solution
and obtained similarly as [69]

ℏ(y1, y2) = y2cos(y1)− y21y
2
2sin

2
(y1
2

)
.

The numerical results obtained in this example for N = M = 10 are compared in Table 2.4 with the
numerical results obtained by using the methods in [69] for different collocation points in terms of absolute
error values, while Figure 2.11 illustrates the behaviors of the absolue error |µ(y1, y2) − µ10,10(y1, y2)| at
y1 = 1 and p = 3 for Example 2.8.

Table 2.4: Absolute errors |µ(y1, y2)− µN,N (y1, y2)| for Example 2.8

(y1, y2) Method in [69] Our Method
(0.0, 0.0) 0 0
(0.1, 0.1) 4.99e− 09 4.99e− 09
(0.2, 0.2) 6.38e− 07 2.39e− 07
(0.4, 0.4) 8.11e− 05 7.94e− 06
(0.6, 0.6) 1.36e− 03 3.86e− 04
(0.8, 0.8) 1.00e− 02 3.85e− 03
(0.9, 0.9) 2.27e− 02 9.51e− 03
(1.0, 1.0) 4.70e− 02 8.82e− 03

The comparison presented in Table 2.4 indicates that the outcomes achieved through the current method
exhibit significantly higher accuracy compared to those reported in [69]. The computation time for these
outcomes amounted to 47.07s on a personal computer running Maple version 18.

49



Chapter 2. Numerical solution of first order two-dimensional partial Volterra
integro-differential equations

Figure 2.11: Absolute error function for N =M = 10 at y1 = 1 for Example 2.8

Example 2.9. The final example pertains to a scenario where the provided equation assumes the following
structure:

∂µ(y1, y2)

∂y1
= 2y1y

2
2 −

1

12
y42y

4
1 +

∫ y1

0

∫ y2

0

y2v1µ(v1, v2)dv2dv1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

with the initial condition
µ(0, y2) = 0.

The exact solution of this problem is given by µ(y1, y2) = y21y
2
2.

Table 2.5 illustrates a consistent decrease in absolute errors as the number of collocation points increases
for p = 3. In Figure 2.12, three-dimensional plots of both the exact function µ(y1, y2) and the approximate
function µ20,20(y1, y2) are depicted over the domain 0 ≤ y1 ≤ 1 and 0 ≤ y2 ≤ 1. Additionally, Figure 2.13
offers a comparative visualization of the exact and approximate solutions at y1 = 0.1, providing valuable
insights into their behavior. Furthermore, Figure 2.14 presents a detailed 2D representation of the absolute
error function e20,20(y1, y2) at y1 = 1.

Table 2.5: Absolute errors |µ(y1, y2)− µN,N (y1, y2)| for Example 2.9

(y1, y2) N = 10 N = 20 N = 30

(0.0, 0.0) 0 0 0
(0.1, 0.1) 1.67× 10−11 1.47× 10−11 1.11× 10−11

(0.2, 0.2) 7.53× 10−9 4.47× 10−9 3.16× 10−9

(0.3, 0.3) 2.16× 10−7 1.21× 10−7 8.44× 10−8

(0.4, 0.4) 2.29× 10−6 1.25× 10−6 8.59× 10−7

(0.5, 0.5) 1.42× 10−5 7.59× 10−6 5.18× 10−6

(0.6, 0.6) 6.24× 10−5 3.30× 10−5 2.24× 10−5

(0.7, 0.7) 2.17× 10−4 1.14× 10−4 7.75× 10−5

(0.8, 0.8) 6.42× 10−4 3.35× 10−4 2.26× 10−4

(0.9, 0.9) 1.66× 10−3 8.65× 10−4 5.84× 10−4
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Figure 2.12: (a) The exact solution µ(y1, y2), (b) the approximate solution µ20,20(y1, y2) with p = 3
for Example 2.9

(a) (b)

Figure 2.13: Comparison of the exact and approximate solutions with N = M = 20 at y1 = 0.1
for Example 2.9
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Figure 2.14: Absolute error function for N =M = 20 at y1 = 1 for Example 2.9

Based on the numerical experiments, it is evident that the Taylor collocation method serves as an
effective tool for approximating solutions to linear PVIDEs, aligning with our convergence analysis in
Section 2.2. Furthermore, we observe that the error diminishes and tends toward zero as M and N

increase.

2.4 Concluding remarks

In this chapter, we introduce a novel numerical algorithm for solving linear 2D-PVIDEs represented by
form (2.1). The method utilizes a Collocation approach grounded on Taylor polynomials in two dimensions.
The iterative formulas directly yield the approximate solutions, eliminating the need to solve algebraic
systems. In Section 2.2, we perform convergence and error analysis, shedding light on our theoretical
findings, while Section 2.3 showcases several test examples aimed at evaluating the method’s efficiency and
confirming the theoretical estimates.
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Chapter 3

Numerical solution of second order two-dimensional par-

tial Volterra integro-differential equations

The purpose of this chapter is to provide a numerical solution to the following hyperbolic
2D-PVIDE:

∂2µ(y1, y2)

∂y1∂y2
= α1

∂µ(y1, y2)

∂y1
+ α2

∂µ(y1, y2)

∂y2
+ α3µ(y1, y2) + ℏ(y1, y2) +

∫ y1

0
H(y1, y2, v1)µ(v1, y2)dv1,

(3.1)

along with the appropriate associated initial value conditions. (y1, y2) ∈ Λ = [0, A1]×[0, A2] ⊂ R2,
and ℏ and H are sufficiently smooth functions to ensure the existence and uniqueness of the
solution on Λ and the region S := {(y1, y2, v1) : 0 ≤ v1 ≤ y1 ≤ A1, 0 ≤ y2 ≤ A2} accordingly.

An initial investigation into second-order 2D-PVIDEs in a similar form to Eq. (3.1) has
been pursued by several researchers. For instance, Rivaz et al. [74] undertook a study where
they transformed the linear 2D-PVIDE into a system of linear algebraic equations through the
application of two-dimensional Chebyshev polynomials and their operational matrix of integration.
Similarly, Rostami and Maleknejad [75] explored the solution to a related but mixed 2D-PVFIDEs
using two-dimensional hybrid Taylor polynomials and Block-Pulse functions. The analysis of the
singular case of the 2D-PVIDEs in (3.1) has been explored in prior works such as [76–78]. These
studies employed two-dimensional orthonormal Bernstein polynomials, two-dimensional wavelets
approximations and their operational matrices of integration, as well as two-dimensional Bernoulli
wavelets along with their corresponding operational matrices, respectively. Additionally, Mirazee
et al. [79] employed Bernstein polynomials to solve the fractional order case.

To the best of our knowledge, no prior endeavors have been undertaken to solve the second-
order 2D-PVIDE (3.1) using the Taylor collocation method, and therefore applying it to address
these significant problems stands as a major challenge. Our main objective here is to extend and
generalize the numerical method introduced in Chapter 2 of our thesis to effectively solve the
second-order 2D-PVIDE (3.1). In this regard, we reformulate the 2D-PVIDE (3.1) into another
problem involving the solution of a two-dimensional Volterra integral equation. Using the two-
dimensional Taylor polynomials as the basis function of the piecewise collocation approach, we
get an explicit form of the approximate solution to the main problem.

The rest of this work is as follows: Section 3.1 obtains the neccessary background and notations
and constructs the Taylor collocation approach to solve the second-order 2D-PVIDE (3.1), while
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Section 3.2 presents details of the error estimates and convergence analysis of the proposed method.
Section 3.3 introduces several numerical examples and illustrations to test the applicability of
the suggested method and the theoretical results. Finally, the last section gives the concluding
remarks.

3.1 Description of the method

This section is devoted to constructing the Taylor collocation approach to solve the second-
order 2D-PVIDE (3.1). For simplicity and without loss of generality, we assume that A1 = A2 = 1.

If we define a new function ω(y1, y2), such that ω(y1, y2) =
∂2µ(y1,y2)
∂y1∂y2

, then

µ(y1, y2) =

∫ y1

0

∫ y2

0
ω(v1, v2)dv2dv1 − µ(0, 0) + µ(0, y2) + µ(y1, 0), (3.2)

and the second-order 2D-PVIDE (3.1) may be transformed to the two-dimensional VIE

ω(y1, y2) =Φ(y1, y2) + α1

∫ y2

0
ω(y1, v2)dv2 + α2

∫ y1

0
ω(v1, y2)dv1 + α3

∫ y1

0

∫ y2

0
ω(v1, v2)dv2dv1

+

∫ y1

0

∫ v1

0

∫ y2

0
H(y1, y2, v1)ω(z, v2)dv2dzdv1, (y1, y2) ∈ [0, 1]× [0, 1].

(3.3)

It follows from the classical theory of Volterra that (3.3) possesses a unique solution ω ∈ C(Λ),
with Φ is a term obtained by using the initial values conditions as follows:

Φ(y1, y2) = ℏ(y1, y2) + α1

(
∂µ(y1, y2)

∂y2

)
y2=0

+ α2

(
∂µ(y1, y2)

∂y1

)
y1=0

+ α3µ(0, y2)

+ α3µ(y1, 0)− α3µ(0, 0) +

∫ y1

0
H(y1, y2, v1)µ(v1, 0)dv1

+

∫ y1

0
H(y1, y2, v1)µ(0, y2)dv1 −

∫ y1

0
H(y1, y2, v1)µ(0, 0)dt.

We examine the numerical solutions within the real polynomial spline space S(−1)
p−1,p−1(ΠN,M )

of degree p− 1 in both y1 and y2, as defined by (2.4)

S
(−1)
p−1,p−1(ΠN,M ) = {ω : ωn,m = ω|Λn,m ∈ πp−1,p−1, n = 0, · · · , N − 1, m = 0, · · · ,M − 1},

where we approximate the unknown function ω(y1, y2) within the rectangle Λn,m, n = 0, 1, 2, . . . , N−
1, m = 0, 1, 2, . . . ,M − 1, as

ωn,m(y1, y2) =

p−1∑
i+j=0

1

i!j!

∂i+jω̂n,m(y1,n, y2,m)

∂yi1∂y
j
2

(y1 − y1,n)
i(y2 − y2,m)

j , (3.4)

where
∂i+jω̂n,m(y1,n, y2,m)

∂yi1∂y
j
2

are unknown coefficients to be determined in the sequel.
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1st step: For n = m = 0, we approximate the function ω(y1, y2) within the rectangle Λ0,0 as

ω0,0(y1, y2) =

p−1∑
i+j=0

1

i!j!

(
∂i+jω(y1, y2)

∂yi1∂y
j
2

)
y1=0,y2=0

yi1y
j
2, (y1, y2) ∈ Λ0,0. (3.5)

We differentiate Eq. (3.3) j-times in terms of y2,

∂jω(y1, y2)

∂yj2
= ∂

(j)
2 Φ(y1, y2) + α1∂

(j−1)
2 ω(y1, y2) + α2

∫ y1

0
∂
(j)
2 ω(v1, y2)dv1

+ α3

∫ y1

0
∂
(j−1)
2 ω(v1, y2)dv1

+

∫ y1

0

∫ v1

0

j−1∑
r=0

∂r

∂yr2

[
∂
(j−1−r)
2 H(y1, y2, v1)ω(z, y2)

]
dzdv1

+

∫ y1

0

∫ v1

0

∫ y2

0
∂
(j)
2 H(y1, y2, v1)ω(z, v2)dv2dzdv1

= ∂
(j)
2 Φ(y1, y2) + α1∂

(j−1)
2 ω(y1, y2) + α2

∫ y1

0
∂
(j)
2 ω(v1, y2)dv1

+ α3

∫ y1

0
∂
(j−1)
2 ω(v1, y2)dv1

+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

0

∫ v1

0

∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

] ∂lω(z, y2)
∂yl2

dzdv1

+

∫ y1

0

∫ v1

0

∫ y2

0
∂
(j)
2 H(y1, y2, v1)ω(z, v2)dv2dzdv1.

Thus, differentiating Eq. (3.3) i− and j−times in terms of y1 and y2, respectively, we get

∂i+jω(y1, y2)

∂yi1∂y
j
2

= ∂
(i)
1 ∂

(j)
2 Φ(y1, y2)

+ α1∂
(i)
1 ∂

(j−1)
2 ω(y1, y2) + α2∂

(i−1)
1 ∂

(j)
2 ω(y1, y2) + α3∂

(i−1)
1 ∂

(j−1)
2 ω(y1, y2)

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

])×

∂l+η

∂yη1∂y
l
2

(∫ y1

0
ω(z, y2)dz

)

+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

0

∫ v1

0

∂i

∂yi1

[
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

]] ∂lω(z, y2)
∂yl2

dzdv1

+
i−1∑
q=0

q∑
η=0

(
q

η

)∫ y2

0

∂q−η

∂yq−η1

[
∂
(i−1−q)
1 ∂

(j)
2 H(y2, y1, y2)

] ∂η

∂yη1

(∫ y1

0
ω(z, v2)dz

)
dv2

+

∫ y1

0

∫ v1

0

∫ y2

0
∂
(i)
1 ∂

(j)
2 H(y1, y2, v1)ω(z, v2)dv2dzdv1,

where

∂η

∂yη1

(∫ y1

0
ω(z, v2)dz

)
=

∫ y1

0
ω(z, v2)dz, if η = 0.
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Hence,

∂i+jω(0, 0)

∂yi1∂y
j
2

= ∂
(i)
1 ∂

(j)
2 Φ(0, 0)

+ α1∂
(i)
1 ∂

(j−1)
2 ω(0, 0) + α2∂

(i−1)
1 ∂

(j)
2 ω(0, 0) + α3∂

(i−1)
1 ∂

(j−1)
2 ω(0, 0)

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
ν=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

])
y1=0,y2=0

× ∂l+η−1ω(0, 0)

∂yη−1
1 ∂yl2

.

(3.6)

2nd step: For n = 1, 2, . . . , N − 1 and m = 0, we approximate the function ω(y1, y2) within the
rectangles Λn,0, n = 0, 1, 2, . . . , N − 1, as

ωn,0(y1, y2) =

p−1∑
i+j=0

1

i!j!

∂i+jω̂n,0(y1,n, 0)

∂yi1∂y
j
2

(y1 − y1,n)
iyj2, (y1, y2) ∈ Λn,0, (3.7)

where ω̂n,0(y1, y2) is the precise solution to the VIE

ω̂n,0(y1, y2) = Φ(y1, y2) + α1

∫ y2

0
ω̂n,0(y1, v2)dv2 + α2

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

ωξ,0(v1, y2)dv1 + α2

∫ y1

y1,n

ω̂n,0(v1, y2)dv1

+ α3

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ y2

0
ωξ,0(v1, v2)dv2dv1 + α3

∫ y1

y1,n

∫ y2

0
ω̂n,0(v1, v2)dv2dv1

+

n−1∑
ξ=0

ξ−1∑
σ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2

0
H(y1, y2, v1)ωσ,0(z, v2)dv2dzdv1

+
n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ v1

y1,ξ

∫ y2

0
H(y1, y2, v1)ωξ,0(z, v2)dv2dzdv1

+
n−1∑
σ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2

0
H(y1, y2, v1)ωσ,0(z, v2)dv2dzdv1

+

∫ y1

y1,n

∫ v1

y1,n

∫ y2

0
H(y1, y2, v1)ω̂n,0(z, v2)dv2dzdv1.

(3.8)

Similarly, we differentiate Eq. (3.8) j-times in terms of y2, we obtain

∂jω̂n,0(y1, y2)

∂yj2
= ∂

(j)
2 Φ(y1, y2) + α1∂

(j−1)
2 ω̂n,0(y1, y2)

+ α2

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∂
(j)
2 ωξ,0(v1, y2)dv1 + α2

∫ y1

y1,n

∂
(j)
2 ω̂n,0(v1, y2)dv1
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+ α3

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∂
(j−1)
2 ωξ,0(v1, y2)dv1 + α3

∫ y1

y1,n

∂
(j−1)
2 ω̂n,0(v1, y2)dv1

+

n−1∑
ξ=0

ξ−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

] ∂lωσ,0
∂yl2

(z, y2)dzdv1

+
n−1∑
ξ=0

ξ−1∑
σ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2

0
∂
(j)
2 H(y1, y2, v1)ωσ,0(z, v2)dv2dzdv1

+

n−1∑
ξ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∫ v1

y1,ξ

∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

] ∂lωξ,0
∂yl2

(z, y2)dzdv1

+

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ v1

y1,ξ

∫ y2

0
∂
(j)
2 H(y1, y2, v1)ωξ,0(z, v2)dv2dzdv1

+
n−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∫ y1,σ+1

y1,σ

∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

] ∂lωσ,0
∂yl2

(z, y2)dzdv1

+

n−1∑
σ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2

0
∂
(j)
2 H(y1, y2, v1)ωσ,0(z, v2)dv2dzdv1

+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∫ v1

y1,n

∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

] ∂lω̂n,0
∂yl2

(z, y2)dzdv1

+

∫ y1

y1,n

∫ v1

y1,n

∫ y2

0
∂
(j)
2 H(y1, y2, v1)ω̂n,0(z, v2)dv2dzdv1.

Thus, the differentiation of Eq. (3.8) i− and j−times in terms of y1 and y2, respectively, gives

∂i+jω̂n,0(y1, y2)

∂yi1∂y
j
2

= ∂
(i)
1 ∂

(j)
2 Φ(y1, y2)

+ α1∂
(i)
1 ∂

(j−1)
2 ω̂n,0(y1, y2) + α2∂

(i−1)
1 ∂

(j)
2 ω̂n,0(y1, y2) + α3∂

(i−1)
1 ∂

(j−1)
2 ω̂n,0(y1, y2)

+
n−1∑
ξ=0

ξ−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∂i

∂yi1

[
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

]] ∂lωσ,0
∂yl2

(z, y2)dzdv1

+
n−1∑
ξ=0

ξ−1∑
σ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2

0
∂
(i)
1 ∂

(j)
2 H(y1, y2, v1)ωσ,0(z, v2)dv2dzdv1

+
n−1∑
ξ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∫ v1

y1,ξ

∂i

∂yi1

[
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

]] ∂lωξ,0
∂yl2

(z, y2)dzdv1

+
n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ v1

y1,ξ

∫ y2

0
∂
(i)
1 ∂

(j)
2 H(y1, y2, v1)ωξ,0(z, v2)dv2dzdv1

+

n−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∫ y1,σ+1

y1,σ

∂i

∂yi1

[
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

]] ∂lωσ,0(z, y2)
∂yl2

dzdv1

+

n−1∑
σ=0

j−1∑
r=0

r∑
l=0

i−1∑
q=0

(
r

l

)∫ y1,σ+1

y1,σ

∂q

∂yq1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

]) ∂lωσ,0(z, y2)
∂yl2

dz
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+
n−1∑
σ=0

i−1∑
q=0

∫ y1,σ+1

y1,σ

∫ y2

0

∂q

∂yq1

[
∂
(i−1−q)
1 ∂

(j)
2 H(y2, y1, y2)

]
ωσ,0(z, v2)dv2dz

+

n−1∑
σ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2

0
∂
(i)
1 ∂

(j)
2 H(y1, y2, v1)ωσ,0(z, v2)dv2dzdv1

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

])×

∂η+l

∂yη1∂y
l
2

(∫ y1

y1,n

ω̂n,0(z, y2))dz

)

+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∫ v1

y1,n

∂i

∂yi1

[
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

]] ∂lω̂n,0(z, y2)
∂yl2

dzdv1

+
i−1∑
q=0

q∑
η=0

(
q

η

)∫ y2

0

∂q−η

∂yq−η1

[
∂
(i−1−q)
1 ∂

(j)
2 H(y2, y1, y2)

] ∂η

∂yη1

(∫ y1

y1,n

ω̂n,0(z, v2)dz

)
dv2

+

∫ y1

y1,n

∫ v1

y1,n

∫ y2

0
∂
(i)
1 ∂

(j)
2 H(y1, y2, v1)ω̂n,0(z, v2)dv2dzdv1. (3.9)

Hence, for n = 0, 1, 2, . . . , N − 1,

∂i+jω̂n,0(y1,n, 0)

∂yi1∂y
j
2

= ∂
(i)
1 ∂

(j)
2 Φ(y1,n, 0)

+ α1∂
(i)
1 ∂

(j−1)
2 ω̂n,0(y1,n, 0) + α2∂

(i−1)
1 ∂

(j)
2 ω̂n,0(y1,n, 0) + α3∂

(i−1)
1 ∂

(j−1)
2 ω̂n,0(y1,n, 0)

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

])
y1=y1,n,y2=0

×

∂η+l−1ω̂n,0(y1,n, 0)

∂yη−1
1 ∂yl2

+
n−1∑
ξ=0

ξ−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∂i

∂yi1

[
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

]]
y1=y1,n,y2=0

×

∂lωσ,0(z, 0)

∂yl2
dzdv1

+
n−1∑
ξ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∫ v1

y1,ξ

∂i

∂yi1

[
∂r−l

∂yr−l2

[∂
(j−1−r)
2 H(y1, y2, v1)]

]
y1=y1,n,y2=0

∂lωξ,0(z, 0)

∂yl2
dzdv1

+

n−1∑
σ=0

j−1∑
r=0

r∑
l=0

i−1∑
q=0

(
r

l

)∫ y1,σ+1

y1,σ

∂q

∂yq1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

])
y1=y1,n,y2=0

×

∂lωσ,0(z, 0)

∂yl2
dz.

(3.10)

3rd step: For n = 0, 1, 2, . . . , N − 1, m = 1, 2, . . . ,M − 1, the function ω(y1, y2) is approximated
in the rectangles Λn,m as
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ωn,m(y1, y2) =

p−1∑
i+j=0

1

i!j!

∂i+jω̂n,m(y1,n, y2,m)

∂yi1∂y
j
2

(y1 − y1,n)
i(y2 − y2,m)

j , (3.11)

where ω̂n,m(y1, y2) refers to the precise solution to the VIE

ω̂n,m(y1, y2) = Φ(y1, y2) + α1

m−1∑
ρ=0

∫ y2,ρ+1

y2,ρ

ωn,ρ(y1, v2)dv2 + α1

∫ y2

y2,m

ω̂n,m(y1, v2)dv2

+ α2

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

ωξ,m(v1, y2)dv1 + α2

∫ y1

y1,n

ω̂n,m(v1, y2)dv1

+ α3

n−1∑
ξ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ y2,ρ+1

y2,ρ

ωξ,ρ(v1, v2)dv2dv1 + α3

∫ y1

y1,n

∫ y2

y2,m

ω̂n,m(v1, v2)dv2dv1

+ α3

m−1∑
ρ=0

∫ y1

y1,n

∫ y2,ρ+1

y2,ρ

ωn,ρ(v1, v2)dv2dv1 + α3

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ y2

y2,m

ωξ,m(v1, v2)dv2dv1

+

n−1∑
ξ=0

ξ−1∑
σ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

H(y1, y2, v1)ωσ,ρ(z, v2)dv2dzdv1

+

n−1∑
ξ=0

ξ−1∑
σ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2

y2,m

H(y1, y2, v1)ωσ,m(z, v2)dv2dzdv1

+
n−1∑
ξ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ v1

y1,ξ

∫ y2,ρ+1

y2,ρ

H(y1, y2, v1)ωξ,ρ(z, v2)dv2dzdv1

+
n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ v1

y1,ξ

∫ y2

y2,m

H(y1, y2, v1)ωξ,m(z, v2)dv2dzdv1

+

n−1∑
σ=0

m−1∑
ρ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

H(y1, y2, v1)ωσ,ρ(z, v2)dv2dzdv1

+

n−1∑
σ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2

y2,m

H(y1, y2, v1)ωσ,m(z, v2)dv2dzdv1

+

m−1∑
ρ=0

∫ y1

y1,n

∫ v1

y1,n

∫ y2,ρ+1

y2,ρ

H(y1, y2, v1)ωn,ρ(z, v2)dv2dzdv1

+

∫ y1

y1,n

∫ v1

y1,n

∫ y2

y2,m

H(y1, y2, v1)ω̂n,m(z, v2)dv2dzdv1,

(3.12)

Thus, the differentiation of Eq. (3.12) i− and j−times in terms of y1 and y2, respectively, gives

∂i+jω̂n,m(y1, y2)

∂yi1∂y
j
2

= ∂
(i)
1 ∂

(j)
2 Φ(y1, y2)

+ α2∂
(i)
1 ∂

(j−1)
2 ω̂n,m(y1, y2) + α3∂

(i−1)
1 ∂

(j)
2 ω̂n,m(y1, y2) + α4∂

(i−1)
1 ∂

(j−1)
2 ω̂n,m(y1, y2)

+
n−1∑
ξ=0

ξ−1∑
σ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1)ωσ,ρ(z, v2)dv2dzdv1
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+
n−1∑
ξ=0

ξ−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∂i

∂yi1

[
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

]] ∂lωσ,m(z, y2)
∂yl2

dzdv1

+
n−1∑
ξ=0

ξ−1∑
σ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2

y2,m

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1)ωσ,m(z, v2)dv2dzdv1

+
n−1∑
ξ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ v1

y1,ξ

∫ y2,ρ+1

y2,ρ

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1)ωξ,ρ(z, v2)dv2dzdv1

+
n−1∑
ξ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∫ v1

y1,ξ

∂i

∂yi1

[
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

]] ∂lωξ,m(z, y2)
∂yl2

dzdv1

+

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ v1

y1,ξ

∫ y2

y2,m

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1)ωξ,m(z, v2)dv2dzdv1

+

n−1∑
σ=0

m−1∑
ρ=0

i−1∑
q=0

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

∂q

∂yq1

[
∂
(i−1−q)
1 ∂

(j)
2 H(y2, y1, y2)ωσ,ρ(z, v2)

]
dv2dz

+

n−1∑
σ=0

m−1∑
ρ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1)ωσ,ρ(z, v2)dv2dzdv1

+
n−1∑
σ=0

j−1∑
r=0

r∑
l=0

i−1∑
q=0

(
r

l

)∫ y1,σ+1

y1,σ

∂q

∂yq1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

])×

∂lωσ,m(z, y2)

∂yl2
dzdv1

+
n−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∫ y1,σ+1

y1,σ

∂i

∂yi1

[
∂r−l

∂yr−l2

[∂
(j−1−r)
2 H(y1, y2, v1)

]
∂lωσ,m(z, y2)

∂yl2
dzdv1

+
n−1∑
σ=0

i−1∑
q=0

∫ y1,σ+1

y1,σ

∫ y2

y2,m

∂q

∂yq1

[
∂
(i−1−q)
1 ∂

(j)
2 H(y2, y1, y2)

]
ωσ,m(z, v2)dv2dz

+
n−1∑
σ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2

y2,m

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1)ωσ,m(z, v2)dv2dzdv1

+
m−1∑
ρ=0

i−1∑
q=0

q∑
η=0

(
q

η

)∫ y2,ρ+1

y2,ρ

∂q−η

∂yq−η1

[
∂
(i−1−q)
1 ∂

(j)
2 H(y2, y1, y2)

] ∂η

∂yη1

(∫ y1

y1,n

ωn,ρ(z, v2)dz

)
dv2

+

m−1∑
ρ=0

∫ y1

y1,n

∫ v1

y1,n

∫ y2,ρ+1

y2,ρ

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1)ωn,ρ(z, v2)dv2dzdv1

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

])×

∂η+l

∂yη1∂y
l
2

(∫ y1

y1,n

ω̂n,m(z, y2)dz

)

+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∫ v1

y1,n

∂i

∂yi1

[
∂r−l

∂yr−l2

[∂
(j−1−r)
2 H(y1, y2, v1)

]
∂lω̂n,m(z, y2)

∂yl2
dzdv1
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+
i−1∑
q=0

q∑
η=0

(
q

η

)∫ y2

y2,m

∂q−η

∂yq−η1

[(
∂
(i−1−q)
1 ∂

(j)
2 H(y2, y1, y2)

)] ∂η

∂yη1

(∫ y1

y1,n

ω̂n,m(z, v2)dz

)
dv2

+

∫ y1

y1,n

∫ v1

y1,n

∫ y2

y2,m

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1)ω̂n,m(z, v2)dv2dzdv1. (3.13)

which leads to, for n = 0, 1, 2, . . . , N − 1 and m = 1, 2, . . . ,M − 1,

∂i+jω̂n,m(y1,n, y2,m)

∂yi1∂y
j
2

= ∂
(i)
1 ∂

(j)
2 Φ(y1,n, y2,m)

+α1∂
(i)
1 ∂

(j−1)
2 ω̂n,m(y1,n, y2,m) + α2∂

(i−1)
1 ∂

(j)
2 ω̂n,m(y1,n, y2,m) + α3∂

(i−1)
1 ∂

(j−1)
2 ω̂n,m(y1,n, y2,m)

+
n−1∑
ξ=0

ξ−1∑
σ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1)ωσ,ρ(z, v2)dv2dzdv1

+

n−1∑
ξ=0

ξ−1∑
σ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∂i

∂yi1

[
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

]]
y1=y1,n,y2=y2,m

×

∂lωσ,m(z, y2,m)

∂yl2
dzdv1

+
n−1∑
ξ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ v1

y1,ξ

∫ y2,ρ+1

y2,ρ

∂
(i)
1 ∂

(j)
2 H(y1, y2, v1)ωξ,ρ(z, v2)dv2dzdv1

+
n−1∑
ξ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∫ v1

y1,ξ

∂i

∂yi1

[
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1)

]]
y1=y1,n,y2=y2,m

×

∂lωξ,m(z, y2,m)

∂yl2
dzdv1

+
n−1∑
σ=0

m−1∑
ρ=0

i−1∑
q=0

∫ y1,σ+1

y1,σ

∫ y2,ρ+1

y2,ρ

∂q

∂yq1

[
∂
(i−1−q)
1 ∂

(j)
2 H(y2, y1, y2)

]
ωσ,ρ(z, v2)dv2dz

+
n−1∑
σ=0

j−1∑
r=0

r∑
l=0

i−1∑
q=0

(
r

l

)∫ y1,σ+1

y1,σ

∂q

∂yq1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l2

[∂
(j−1−r)
2 H(y1, y2, v1)]

)
y1=y1,n,y2=y2,m

× ∂lωσ,m(z, y2,m)

∂yl2
dz

+
m−1∑
ρ=0

i−1∑
q=0

q∑
η=0

(
q

η

)∫ y2,ρ+1

y2,ρ

∂q−η

∂yq−η1

[
∂
(i−1−q)
1 ∂

(j)
2 H(y2, y1, y2)

] ∂η−1ωn,ρ(y1,n, v2)

∂yη−1
1

dv2

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l2

[∂
(j−1−r)
2 H(y1, y2, v1)]

)
y1=y1,n,y2=y2,m

× ∂η+l−1ω̂n,m(y1,n, y2,m)

∂yη−1
1 ∂yl2

,

(3.14)

Finally, in virtue of Eqs. (3.6), (3.10) and (3.14), the approximate solution ωN,M (y1, y2) of
the 2D-VIE (3.3) can be determined, and therefore the approximate solution µN,M (y1, y2) of the
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2D-PVIDE (3.1) may be given by

µN,M (y1, y2) =

∫ y1

0

∫ y2

0
ωN,M (v1, v2)dv2dv1 − µ(0, 0) + µ(0, y2) + µ(y1, 0). (3.15)

3.2 Convergence analysis

The current section deals with the convergence analysis of the numerical approach described
above. In this regard, two main results are stated and proven to obtain the error bounds of
the approximate solution (3.15) computed using the Taylor collocation method applied to the
2D-PVIDE (3.1). In the sequel, the following lemma is needed.

Lemma 3.9. Suppose ℏ and H are two p−times continuously differentiable functions defined on
their respective domains. Then there exists a positive number ζ(p), such that∥∥∥∥∥∂i+jω̂n,m∂yi1∂y

j
2

∥∥∥∥∥
L∞(Λn,m)

≤ ζ(p),

for n = 0, 1, . . . , N − 1, m = 0, 1, . . . ,M − 1, i+ j = 0, 1, . . . , p, with ω̂0,0(y1, y2) = ω(y1, y2) and
(y1, y2) ∈ Λ0,0.

Proof. Let oi,jn,m = ∥∂
i+j ω̂n,m

∂yi1∂y
j
2

∥L∞(Λn,m), we have for all i+ j = 0, 1, ..., p,

oi,j0,0 ≤ max


∥∥∥∥∥ ∂i+jω∂yi1∂y

j
2

∥∥∥∥∥
L∞(Λ0,0)

, i+ j = 0, 1, ..., p

 = ζ1(p). (3.16)

Now, from Eq. (3.9), we have for all n = 1, . . . , N − 1 and i+ j = 0, 1, ..., p

oi,jn,0 ≤ γ1 + α1o
i,j−1
n,0 + α2o

i−1,j
n,0 + α3o

i−1,j−1
n,0 + γ1h

n−1∑
ξ=0

p−1∑
q+l=0

oq,lξ,0 + γ1hk
n−1∑
ξ=0

p−1∑
q+l=0

oq,lξ,0

+ γ1

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

oη,ln,0 + γ1

j−1∑
r=0

r∑
l=0

o0,ln,0 + γ1

i−1∑
q=0

q∑
η=0

oη,0n,0 + γ1hko
0,0
n,0,

with γ1 is positive and unrelated to N and M . Hence

oi,jn,0 ≤ γ1 + α1o
i,j−1
n,0 + α2o

i−1,j
n,0 + α3o

i−1,j−1
n,0 + γ2h

n−1∑
ξ=0

p−1∑
q+l=0

oq,lξ,0 + γ2

j−1∑
l=0

i−1∑
η=0

oη,ln,0

+ γ2

j−1∑
r=0

o0,rn,0 + γ2

i−1∑
q=0

oq,0n,0 + γ1hko
0,0
n,0.

(3.17)

Taking into consideration the sequence Γn = max{oi,jn,0, i+ j = 0, . . . , p} for all n = 0, 1, ..., N − 1,

then by Eq. (3.17), the sequence Γn fulfills
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oi,jn,0 ≤ γ1 + α1o
i,j−1
n,0 + α2o

i−1,j
n,0 + α3o

i−1,j−1
n,0 + γ2(p)

2h
n−1∑
ξ=0

Γξ + γ2

j−1∑
l=0

i−1∑
η=0

oη,ln,0

+ γ2

j−1∑
r=0

o0,rn,0 + γ2

i−1∑
q=0

oq,0n,0 + γ1hko
0,0
n,0,

which implies for all i = 1, ..., p and j = 0, ..., p,

oi,jn,0 ≤ γ1 + α1o
i,j−1
n,0 + α2o

i−1,j
n,0 + γ3h

n−1∑
ξ=0

Γξ + γ3

j−1∑
l=0

i−1∑
η=0

oη,ln,0 + γ2

j−1∑
r=0

o0,rn,0

+ γ2

i−1∑
q=0

oq,0n,0 + γ1hko
0,0
n,0. (3.18)

On the other hand, from Eq. (3.8), we obtain for all n = 0, ..., N − 1,

|ω̂n,0(y1, y2)| ≤ γ1 + γ4h
n−1∑
ξ=0

Γξ + α1

∫ y2

0
|ω̂n,0(y1, v2)|dv2 + α2

∫ y1

y1,n

|ω̂n,0(v1, y2)|dv1

+ γ4

∫ y1

y1,n

∫ y2

0
|ω̂n,0(v1, v2)|dv2dv1.

Hence, by using Lemma 1.6, we are able to derive for all n = 0, ..., N − 1 that

o0,0n,0 ≤

γ1 + γ4h

n−1∑
ξ=0

Γξ

 eλ1(A1+A2)

≤ γ1e
λ1(A1+A2) + γ4h

n−1∑
ξ=0

Γξe
λ1(A1+A2)

≤ γ5 + γ5h
n−1∑
ξ=0

Γξ,

(3.19)

with
λ1 =

1

2

(
α1 + α2 +

√
(α1 + α2)2 + 4γ4

)
.

From Eqs. (3.18) and (3.19), we deduce that for all i, j = 0, ..., p and n = 0, ..., N − 1,

oi,jn,0 ≤ γ6 + α1o
i,j−1
n,0 + α2o

i−1,j
n,0 + γ6h

n−1∑
ξ=0

Γξ + γ6

j−1∑
l=0

i−1∑
η=0

oη,ln,0

+ γ6

j−1∑
r=0

o0,rn,0 + γ6

i−1∑
q=0

oq,0n,0,

(3.20)
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with γ6 is positive and unrelated to N and M . It follows from Eq. (3.20), that

oi,jn,0 ≤ γ6 + α1

j−1∑
r=0

oi,rn,0 + α2o
i−1,j
n,0 + γ6h

n−1∑
ξ=0

Γξ + γ6

j−1∑
l=0

i−1∑
η=0

oη,ln,0

+ γ6

j−1∑
r=0

o0,rn,0 + γ6

i−1∑
q=0

oq,0n,0,

(3.21)

using the notations of Lemma 1.2, we put Ψj = oi,jn,0, βj = α1 and

α
′
j = γ6 + α2o

i−1,j
n,0 + γ6h

n−1∑
ξ=0

Γξ + γ6

j−1∑
l=0

i−1∑
η=0

oη,ln,0 + γ6

j−1∑
r=0

o0,rn,0 + γ6

i−1∑
q=0

oq,0n,0,

therefore, by Lemma 1.2, we get from Eq. (3.21)

oi,jn,0 ≤ α
′
jα1

j−1∑
s=0

α
′
s

j−1∏
σ=s+1

(1 + α1)

≤ α
′
j + α1(1 + α1)

p
j−1∑
s=0

α
′
s

≤ γ7 + α2o
i−1,j
n,0 + γ7h

n−1∑
ξ=0

Γξ + γ7

j−1∑
l=0

i−1∑
η=0

oη,ln,0 + γ7

j−1∑
r=0

o0,rn,0 + γ7

i−1∑
q=0

oq,0n,0

≤ γ7 + α2

i−1∑
q=0

oq,jn,0 + γ7h
n−1∑
ξ=0

Γξ + γ7

j−1∑
l=0

i−1∑
η=0

oη,ln,0 + γ7

j−1∑
r=0

o0,rn,0 + γ7

i−1∑
q=0

oq,0n,0,

(3.22)

with γ7 is positive and unrelated to N and M.
Once more, by application of Lemma 1.2, we put Ψi = oi,jn,0, βi = α2 and

α
′′
i = γ7 + γ7h

n−1∑
ξ=0

Γξ + γ7

j−1∑
l=0

i−1∑
η=0

oη,ln,0 + γ7

j−1∑
r=0

o0,rn,0 + γ7

i−1∑
q=0

oq,0n,0,

and as a result, we obtain from Eq. (3.22)

oi,jn,0 ≤ α
′′
i α2

i−1∑
s=0

α
′′
s

j−1∏
σ=s+1

(1 + α2)

≤ α
′′
i + α2(1 + α2)

p
j−1∑
s=0

α
′′
s

≤ γ8 + γ8h

n−1∑
ξ=0

Γξ + γ8

j−1∑
l=0

i−1∑
η=0

oη,ln,0 + γ8

j−1∑
r=0

o0,rn,0 + γ8

i−1∑
q=0

oq,0n,0.

(3.23)
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Now, for i = 0 in Eq. (3.23), we get

o0,jn,0 ≤ γ8 + γ8h

n−1∑
ξ=0

Γξ + γ8

j−1∑
r=0

o0,rn,0,

Lemma 1.3 implies that

o0,jn,0 ≤

γ8 + γ8h
n−1∑
ξ=0

Γξ

 exp

(
j−1∑
s=0

γ8

)

≤ γ8exp(pγ8) + γ8exp(pγ8)h
n−1∑
ξ=0

Γξ

≤ γ9 + γ9h
n−1∑
ξ=0

Γξ,

(3.24)

with γ9 is positive and unrelated to N and M.
Moreover, for j = 0 in Eq. (3.23), we obtain

oi,0n,0 ≤ γ8 + γ8h
n−1∑
ξ=0

Γξ + γ8

i−1∑
q=0

oq,0n,0,

according to Lemma 1.3, it results

oi,0n,0 ≤

γ8 + γ8h
n−1∑
ξ=0

Γξ

 exp

(
i−1∑
s=0

γ8

)

≤ γ9 + γ9h
n−1∑
ξ=0

Γξ.

(3.25)

Hence, from Eqs. (3.23), (3.24) and (3.25), we derive that

oi,jn,0 ≤ γ10 + γ10h

n−1∑
ξ=0

Γξ + γ10

j−1∑
l=0

i−1∑
η=0

oη,ln,0. (3.26)

Using the notations of Lemma 1.4, we put

Ψij = oi,jn,0, α = γ10 + γ10h

n−1∑
ξ=0

Γξ, β1 = β2 = 0, β3 = p2γ10, T = S = 1, N =M = p,

then, by Lemma 1.4, we obtain from Eq. (3.26)

oi,jn,0 ≤

γ10 + γ10h

n−1∑
ξ=0

Γξ

 e2p
√
γ10 ,
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which implies that,

Γn ≤ γ11 + γ11h
n−1∑
ξ=0

Γξ,

with γ11 is positive and unrelated to N and M.
It follows, by Lemma 1.3, for all n = 0, 1, ..., N − 1

Γn ≤ γ11e
aγ11 . (3.27)

Next, we have from Eq. (3.13), for all n = 0, ..., N − 1, m = 1, ...,M − 1 and i+ j = 0, ..., p

oi,jn,m ≤ γ
′
1 + α1o

i,j−1
n,m + α2o

i−1,j
n,m + α3o

i−1,j−1
n,m

+ γ
′
1hk

n−1∑
ξ=0

m−1∑
ρ=0

p−1∑
s+t=0

os,tξ,ρ + γ
′
1h

n−1∑
ξ=0

j−1∑
r=0

r∑
l=0

p−1∑
s+t=0

os,tξ,m

+ γ
′
1hk

n−1∑
ξ=0

p−1∑
s+t=0

os,tξ,m + γ
′
1k

m−1∑
ρ=0

i−1∑
q=0

q∑
η=0

p−1∑
s+t=0

os,tn,ρ

+ kγ
′
1h

m−1∑
ρ=0

p−1∑
s+t=0

os,tn,ρ + γ
′
1

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

oη,ln,m

+ γ
′
1

j−1∑
r=0

r∑
l=0

o0,ln,m + γ
′
1

i−1∑
q=0

q∑
η=0

oη,0n,m + γ
′
1hko

0,0
n,m.

(3.28)

Defining the sequence Γn,m = max{oi,jn,m, i + j = 0, . . . , p} for all n = 0, 1, ..., N − 1 and m =

0, ...,M − 1, then by Eq. (3.28), we have

oi,jn,m ≤ γ
′
1 + α1o

i,j−1
n,m + α2o

i−1,j
n,m + α3o

i−1,j−1
n,m

+ γ
′
1p

2hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
1p

4h

n−1∑
ξ=0

Γξ,m

+ γ
′
1p

2hk
n−1∑
ξ=0

Γξ,m + γ
′
1p

4k
m−1∑
ρ=0

Γn,ρ

+ hkγ
′
1p

2
m−1∑
ρ=0

Γn,ρ + γ
′
1p

2
j−1∑
l=0

i−1∑
η=0

oη,ln,m

+ γ
′
1p

j−1∑
l=0

o0,ln,m + γ
′
1p

i−1∑
η=0

oη,0n,m + hkγ
′
1o

0,0
n,m,
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we obtain

oi,jn,m ≤γ′
1 + α1o

i,j−1
n,m + α2o

i−1,j
n,m + γ

′
2hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
2h

n−1∑
ξ=0

Γξ,m

+ γ
′
2k

m−1∑
ρ=0

Γn,ρ + γ
′
2

j−1∑
l=0

i−1∑
η=0

oη,ln,m + γ
′
2

j−1∑
l=0

o0,ln,m + γ
′
2

i−1∑
η=0

oη,0n,m + hkγ
′
2o

0,0
n,m.

(3.29)

Also, from Eq. (3.12), we obtain for all n = 0, . . . , N − 1 and m = 0, . . . ,M − 1,

|ω̂n,m(y1, y2)| ≤ γ
′
3 + γ

′
3hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
3h

n−1∑
ξ=0

Γξ,m + γ
′
3k

m−1∑
ρ=0

Γn,ρ + α1

∫ y2

y2,m

|ω̂n,m(y1, v2)|dv2

+ α2

∫ y1

y1,n

|ω̂n,m(v1, y2)|dv1 + γ
′
3

∫ y1

y1,n

∫ y2

y2,m

|ω̂n,m(v1, v2)|dv2dv1.

Therefore, according to Lemma 1.6, we get for all n = 0, ..., N − 1 and m = 0, ...,M − 1,

o0,0n,m ≤

γ′
3 + γ

′
3hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
3h

n−1∑
ξ=0

Γξ,m + γ
′
3k

m−1∑
ρ=0

Γn,ρ

 eλ2(A1+A2)

≤ γ
′
4 + γ

′
4hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
4h

n−1∑
ξ=0

Γξ,m + γ
′
4k

m−1∑
ρ=0

Γn,ρ,

(3.30)

with
λ2 =

1

2

(
α1 + α2 +

√
(α1 + α2)2 + 4γ

′
3

)
,

which gives from Eqs. (3.29), and (3.30) that, for all i = 0, ..., p and j = 0, ..., p,

oi,jn,m ≤γ′
5 + α1o

i,j−1
n,m + α2o

i−1,j
n,m + γ

′
5hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
5h

n−1∑
ξ=0

Γξ,m

+ γ
′
5k

m−1∑
ρ=0

Γn,ρ + γ
′
5

j−1∑
l=0

i−1∑
η=0

oη,ln,m + γ
′
5

j−1∑
l=0

o0,ln,m + γ
′
5

i−1∑
η=0

oη,0n,m.

(3.31)

with γ′
5 is positive and unrelated to N and M . Eq. (3.31) shows that

oi,jn,m ≤γ′
5 + α1

j−1∑
r=0

oi,rn,m + α2o
i−1,j
n,m + γ

′
5hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
5h

n−1∑
ξ=0

Γξ,m

+ γ
′
5k

m−1∑
ρ=0

Γn,ρ + γ
′
5

j−1∑
l=0

i−1∑
η=0

oη,ln,m + γ
′
5

j−1∑
l=0

o0,ln,m + γ
′
5

i−1∑
η=0

oη,0n,m.

(3.32)
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Using the notations of Lemma 1.2, we put Ψj = oi,jn,m, βj = α1 and

α
′
j = γ

′
5+α2o

i−1,j
n,m + γ

′
5hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
5h

n−1∑
ξ=0

Γξ,m + γ
′
5k

m−1∑
ρ=0

Γn,ρ

+ γ
′
5

j−1∑
l=0

i−1∑
η=0

oη,ln,m + γ
′
5

j−1∑
l=0

o0,ln,m + γ
′
5

i−1∑
η=0

oη,0n,m,

thus, we obtain from Eq. (3.32)

oi,jn,m ≤ α
′
jα1

j−1∑
s=0

α
′
s

j−1∏
σ=s+1

(1 + α1)

≤ α
′
j + α1(1 + α1)

p
j−1∑
s=0

α
′
s

≤ γ
′
6 + α2o

i−1,j
n,m + γ

′
6hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
6h

n−1∑
ξ=0

Γξ,m + γ
′
6k

m−1∑
ρ=0

Γn,ρ

+ γ
′
6

j−1∑
l=0

i−1∑
η=0

oη,ln,m + γ
′
6

j−1∑
l=0

o0,ln,m + γ
′
6

i−1∑
η=0

oη,0n,m

≤ γ
′
6 + α2

i−1∑
q=0

oq,jn,m + γ
′
6hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
6h

n−1∑
ξ=0

Γξ,m + γ
′
6k

m−1∑
ρ=0

Γn,ρ

+ γ
′
6

j−1∑
l=0

i−1∑
η=0

oη,ln,m + γ
′
6

j−1∑
l=0

o0,ln,m + γ
′
6

i−1∑
η=0

oη,0n,m

(3.33)

with γ′
6 is positive and unrelated to N and M.

Again, by using the notations of Lemma 1.2, we put Ψi = oi,jn,m, βi = α2 and

α
′′
i = γ

′
6 + γ

′
6hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
6h

n−1∑
ξ=0

Γξ,m + γ
′
6k

m−1∑
ρ=0

Γn,ρ + γ
′
6

j−1∑
l=0

i−1∑
η=0

oη,ln,m

+ γ
′
6

j−1∑
l=0

o0,ln,m + γ
′
6

i−1∑
η=0

oη,0n,m.

Thus, we obtain from Eq. (3.33)

oi,jn,m ≤ α
′′
i α2

i−1∑
s=0

α
′′
s

j−1∏
σ=s+1

(1 + α2)

≤ α
′′
i + α2(1 + α2)

p
j−1∑
s=0

α
′′
s

≤ γ
′
7 + γ

′
7hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
7h

n−1∑
ξ=0

Γξ,m + γ
′
7k

m−1∑
ρ=0

Γn,ρ + γ
′
7

j−1∑
l=0

i−1∑
η=0

oη,ln,m + γ
′
7

j−1∑
l=0

o0,ln,m + γ
′
7

i−1∑
η=0

oη,0n,m

(3.34)
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For i = 0 in Eq. (3.34), we obtain

o0,jn,m ≤ γ
′
7 + γ

′
7hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
7h

n−1∑
ξ=0

Γξ,m + γ
′
7k

m−1∑
ρ=0

Γn,ρ + γ
′
7

j−1∑
l=0

o0,ln,m,

which implies by using lemma 1.3, that

o0,jn,m ≤

γ′
7 + γ

′
7hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
7h

n−1∑
ξ=0

Γξ,m + γ
′
7k

m−1∑
ρ=0

Γn,ρ

 exp

(
j−1∑
s=0

γ
′
7

)

≤ γ
′
7exp(pγ

′
7) + γ

′
7exp(pγ

′
7)hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
7exp(pγ

′
7)h

n−1∑
ξ=0

Γξ,m + γ
′
7exp(pγ

′
7)k

m−1∑
ρ=0

Γn,ρ

≤ γ
′
8 + γ

′
8hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
8h

n−1∑
ξ=0

Γξ,m + γ
′
8k

m−1∑
ρ=0

Γn,ρ,

(3.35)

with γ′
8 is positive and unrelated to N and M. On the other hand, for j = 0 in Eq. (3.34), we get

oi,0n,m ≤ γ
′
7 + γ

′
7hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
7h

n−1∑
ξ=0

Γξ,m + γ
′
7k

m−1∑
ρ=0

Γn,ρ + γ
′
7

i−1∑
η=0

oη,0n,m,

which implies, by using Lemma 1.3, that

oi,0n,m ≤ γ
′
8 + γ

′
8hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
8h

n−1∑
ξ=0

Γξ,m + γ
′
8k

m−1∑
ρ=0

Γn,ρ. (3.36)

As a result, from Eqs. (3.34), (3.35) and (3.36), we deduce that

oi,jn,m ≤ γ
′
8 + γ

′
8hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
8h

n−1∑
ξ=0

Γξ,m + γ
′
8k

m−1∑
ρ=0

Γn,ρ + γ
′
8

j−1∑
l=0

i−1∑
η=0

oη,ln,m. (3.37)

Using the notations of Lemma 1.4, we put

Ψij = oi,jn,m, α = γ
′
8 + γ

′
8hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
8h

n−1∑
ξ=0

Γξ,m + γ
′
8k

m−1∑
ρ=0

Γn,ρ,

β1 = β2 = 0, β3 = p2γ
′
8, T = S = 1.

Then, by Lemma 1.4, we obtain

oi,jn,m ≤

γ′
8 + γ

′
8hk

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + γ
′
8h

n−1∑
ξ=0

Γξ,m + γ
′
8k

m−1∑
ρ=0

Γn,ρ

 e2p
√
γ
′
8 .
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Consequently, for all n = 0, 1, ..., N − 1;m = 0, ...,M − 1,

Γn,m ≤γ′
9 + hkγ

′
9

n−1∑
ξ=0

m−1∑
ρ=0

Γξ,ρ + hγ
′
9

n−1∑
ξ=0

Γξ,m + kγ
′
9

m−1∑
ρ=0

Γn,ρ, (3.38)

Lemma (1.4) gives

Γn,m ≤ γ
′
9e

(A1+A2)p(γ
′
9+

√
γ
′
9+γ

′2
10). (3.39)

Therefore from Eqs. (3.16), (3.27) and (3.39) the proof of Lemma 3.9 is completed by setting

ζ(p) = max{ζ1(p), γ10eaγ10 , γ
′
9e

(A1+A2)p(γ
′
9+

√
γ
′
9+γ

′2
10)}.

Theorem 3.3. Assume that ω(y1, y2) is the exact solution of the two-dimensional Volterra integral
equation (3.3) and ωN,M (y1, y2) is the approximate solution of the same problem computed using
the Taylor collocation method. Then, there is a finite constant C independent of h and k, such
that

∥ω − ωN,M∥L∞(Λ) ≤ C(h+ k)p,

where ℏ and H are two p−times continuously differentiable on their respective domains.

Proof. For (y1, y2) ∈ Λ0,0, making use of Lemma 1.7 and Eq. (3.5), we have

|ω(y1, y2)− ω0,0(y1, y2)| ≤
∑
i+j=p

1

i!j!

∥∥∥∥∥ ∂i+jω∂yi1∂y
j
2

∥∥∥∥∥hikj .
Therefore, according to Lemma 3.9, we obtain

∥ω − ω0,0∥L∞(Λ0,0) ≤ ζ(p)
∑
i+j=p

1

i!j!
hikj =

ζ(p)

p!
(h+ k)p. (3.40)

Also, for (y1, y2) ∈ Λn,0, n = 1, 2, . . . , N − 1, it follows from Eqs. (3.3) and (3.8), that

ω(y1, y2)− ω̂n,0(y1, y2) = α1

∫ y2

0
(ω − ω̂n,0)(y1, v2)dv2 + α2

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

(ω(v1, y2)− ωξ,0(v1, y2))dv1

+ α2

∫ y1

y1,n

(ω − ω̂n,0)(v1, y2)dv1 + α3

∫ y1

y1,n

∫ y2

0
(ω − ω̂n,0)(v1, y2)dv1

+ α3

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ y2

0
(ω(v1, v2)− ωξ,0(v1, v2))dv2dv1

+
n−1∑
ξ=0

ξ−1∑
σ=0

∫ y1,ξ+1

y1,ξ

∫ y1,σ+1

y1,σ

∫ y2

0
H(y1, y2, v1, v2)(ω(z, v2)− ωσ,0(z, v2))dv2dzdv1
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+
n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ v1

y1,ξ

∫ y2

0
H(y1, y2, v1, v2)(ω(z, v2)− ωξ,0(z, v2))dv2dzdv1

+
n−1∑
σ=0

∫ y1

y1,n

∫ y1,σ+1

y1,σ

∫ y2

0
H(y1, y2, v1, v2)(ω(z, v2)− ωσ,0(z, v2))dv2dzdv1

+

∫ y1

y1,n

∫ v1

y1,n

∫ y2

0
H(y1, y2, v1, v2) (ω(z, v2)− ω̂n,0(z, v2)) dv2dzdv1.

which leads to

|ω(y1, y2)− ω̂n,0(y1, y2)| ≤ β1hH
n−1∑
ξ=0

∥ω − ωξ,0∥+ α1

∫ y2

0
|ω(y1, v2)− ω̂n,0(y1, v2)|dv2

+ α2

∫ y1

y1,n

|ω(v1, y2)− ω̂n,0(v1, y2)|dv1 + β1H

∫ y1

y1,n

∫ y2

0
|ω(v1, v2)− ω̂n,0(v1, v2)|dv2dv1,

where H = max{∥H∥L∞(Λ)}, and β1 is a positive constant independent of h and k.
Using Lemma 1.6, we get that there exists a positive constant β2 independent of h and k, such
that

∥ω − ω̂n,0∥ ≤ β2hH
n−1∑
ξ=0

∥ω − ωξ,0∥.

Now, we use Lemmas 1.7 and 3.9 to deduce that

∥ω − ωn,0∥L∞(Λn,0) ≤ ∥ω − ω̂n,0∥L∞(Λn,0) + ∥ω̂n,0 − ωn,0∥L∞(Λn,0)

≤ β2h
n−1∑
ξ=0

∥ω − ωξ,0∥L∞(Λn,0) +
∑
i+j=p

1

i!j!

∥∥∥∥∥∂i+jω̂n,0∂yi1∂y
j
2

∥∥∥∥∥hikj
≤ β2h

n−1∑
ξ=0

∥ω − ωξ,0∥L∞(Λn,0) +
ζ(p)

p!
(h+ k)p.

Thus, based on Lemma 1.3, one can conclude that

∥ω − ωn,0∥L∞(Λn,0) ≤
ζ(p)

p!
(h+ k)p exp(A1β2). (3.41)

For (y1, y2) ∈ Λn,m, n = 0, 1, . . . , N − 1, m = 1, 2, . . . ,M − 1, one can use Eqs. (3.3) and (3.12)
to get

|ω(y1, y2)−ω̂n,m(y1, y2)| ≤ β1k

m−1∑
ρ=0

∥ω − ωn,ρ∥L∞(Λn,ρ) + β1h

n−1∑
ξ=0

∥ω − ωξ,m∥L∞(Λξ,m)

+ β1hk
n−1∑
ξ=0

m−1∑
ρ=0

∥ω − ωξ,ρ∥L∞(Λξ,ρ) + α1

∫ y2

y2,m

|ω(y1, v2)− ω̂n,m(y1, v2)|dv2

+ α2

∫ y1

y1,n

|ω(v1, y2)− ω̂n,m(v1, y2)|dv1 + β1

∫ y1

y1,n

∫ y2

y2,m

|ω(v1, v2)− ω̂n,m(v1, v2)|dv2dv1,
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such that β1 is independent of h and k. Which in turn, with the help of Lemma 1.5, leads to

|ω(y1, y2)− ω̂n,m(y1, y2)| ≤β2k
m−1∑
ρ=0

∥ω − ωn,ρ∥L∞(Λn,ρ) + β2h

n−1∑
ξ=0

∥ω − ωξ,m∥L∞(Λξ,m)

+ β2hk

n−1∑
ξ=0

m−1∑
ρ=0

∥ω − ωξ,ρ∥L∞(Λξ,ρ).

Also, using Lemmas 1.7 and 3.9, we get

∥ω − ωn,m∥L∞(Λn,m) ≤ ∥ω − ω̂n,m∥L∞(Λn,m) + ∥ω̂n,m − ωn,m∥L∞(Λn,m)

≤ β2k
m−1∑
ρ=0

∥ω − ωn,ρ∥L∞(Λn,ρ) + β2h
n−1∑
ξ=0

∥ω − ωξ,m∥L∞(Λξ,m)

+ β2hk
n−1∑
ξ=0

m−1∑
ρ=0

∥ω − ωξ,ρ∥L∞(Λξ,ρ) +
∑
i+j=p

1

i!j!

∥∥∥∥∥∂i+j v̂n,m∂yi1∂y
j
2

∥∥∥∥∥hikj
≤ β2k

m−1∑
ρ=0

∥ω − ωn,ρ∥L∞(Λn,ρ) + β2h

n−1∑
ξ=0

∥ω − ωξ,m∥L∞(Λξ,m)

+ β2hk
n−1∑
ξ=0

m−1∑
ρ=0

∥ω − ωξ,ρ∥L∞(Λξ,ρ) +
ζ(p)

p!
(h+ k)p,

Now, we utilize Lemma 1.4 to get

∥ω − ωn,m∥L∞(Λn,m) ≤ β3
ζ(p)

p!
(h+ k)p. (3.42)

Finally, with the aid of Eqs. (3.40), (3.41) and (3.42), we have

∥ω − ωN,M∥L∞(Λ) ≤ C(h+ k)p,

We now study the main theorem of convergence analysis of the suggested numerical method.

Theorem 3.4. Assume that µ(y1, y2) is the exact solution of the 2D-PVIDE (3.1) and µN,M (y1, y2), n =

0, 1, . . . , N − 1, m = 0, 1, . . . ,M − 1, is the approximate solution of the same problem computed
using the Taylor collocation method (3.15). Then, there is a finite constant L independent of h
and k, such that

∥µ− µN,M∥L∞(Λ) ≤ L(h+ k)p,

where ℏ and H are two p−times continuously differentiable on their respective domains.

Proof. Referring to Eqs. (3.2) and (3.15), one can deduce that for n = 0, 1, . . . , N − 1, m =

0, 1, . . . ,M − 1,

µ(y1, y2)− µN,M (y1, y2) =

∫ y1

0

∫ y2

0
(ω(v1, v2)− ωN,M (v1, v2)) dv2dv1.
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Therefore, we obtain

|µ(y1, y2)− µN,M (y1, y2)| ≤
∫ y1

0

∫ y2

0
|ω(v1, v2)− ωN,M (v1, v2)| dv2dv1.

Theorem 3.3 implies that

∥µ− µN,M∥L∞(Λ) ≤ L(h+ k)p.

3.3 Numerical results

In the current section, we provide some numerical examples to test the accuracy of the proposed
numerical method and validate the convergence analysis demonstrated in the previous section. We
define the absolute error, the maximum absolute error and the convergence rates for temporal and
spatial sizes, respectively, by

eN,M (y1, y2) = |µ(y1, y2)− µN,M (y1, y2)|,

E(N,M) = ∥µ− µN,M∥∞,

and
Rate = log2

(
E(N/2,M/2)

E(N,M)

)
.

Example 3.10. Taking into consideration the following second-order 2D-PVIDE as a starting
example

∂2µ(y1, y2)

∂y1∂y2
=
∂µ(y1, y2)

∂y1
+
∂µ(y1, y2)

∂y2
+µ(y1, y2)+ℏ(y1, y2)+

∫ y1

0
y2y

2
1µ(v1, y2)dv1, 0 ≤ y1, y2 ≤ 1,

with the initial conditions
µ(y1, 0) =

∂µ(y1, 0)

∂y1
= µ(0, y2) = 0,

where ℏ(y1, y2) = −(1 + y1)(cos y2 + sin y2)− 1
4y2sin(y2)y

4
1, and the exact solution is µ(y1, y2) =

y1 sin y2.

In Table 3.1, we display the absolute errors eN,M (y1, y2) at p = 3 with N =M = {4, 8, 16, 32},
while Table 3.2 presents the maximum absolute errors E(N,N) with p = 3 at different choices
of N and obtains the convergence order of the solution. These tables collectively demonstrate the
reliability of our results across various nodes.
Furthermore, Figure 3.1 showcases the absolute error functions |µ(y1, y2) − µN,M (y1, y2)| plotted
in three dimensions using (N,M) = {(4, 4), (16, 16)} and p = 3 as parameters. Figures 3.2 and
3.3 provides a visual presentations of the contrast between the precise and estimated solutions
at y1 = 0.1, and a graphical depiction of the absolute error function at y1 = 1, respectfully for
(N,M) = (16, 16). Finally, Figure 3.4 exhibits the logarithmic graph of log10(L∞ − errors) with
N = 5 for diverse values of M .
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Table 3.1: Absolute errors |µ(y1, y2)− µN,N (y1, y2)| for Example 3.10

(y1, y2) N = 4 N = 8 N = 16 N = 32

(0.000, 0.000) 0 0 0 0
(0.125, 0.125) 1.17× 10−6 3.18× 10−8 7.03× 10−9 1.07× 10−9

(0.250, 0.250) 2.03× 10−6 4.55× 10−7 7.17× 10−8 9.93× 10−9

(0.500, 0.500) 3.02× 10−5 5.02× 10−6 7.22× 10−7 4.65× 10−8

(0.750, 0.750) 1.37× 10−4 2.21× 10−5 3.13× 10−6 4.13× 10−7

(1.000, 1.000) 4.57× 10−4 7.41× 10−5 1.05× 10−5 1.38× 10−6

Table 3.2: Maximum absolute error E(N,M) with N =M and p = 3 for Example 3.10

N E(N,N) Rate
2 0.0021974180
4 0.0004570776 2.2653
8 0.0000741240 2.6244
16 0.0000105107 2.8181
32 0.0000013867 2.9220

Figure 3.1: (a) Absolute error function |µ(y1, y2) − µ4,4(y1, y2)|, (b) Absolute error function
|µ(y1, y2)− µ16,16(y1, y2)| for p = 3 for Example 3.10

(a) (b)

74



Chapter 3. Numerical solution of second order two-dimensional partial Volterra
integro-differential equations

Figure 3.2: Comparison of the exact and approximate solutions with N =M = 16 at y1 = 0.1 for
Example 3.10

Figure 3.3: Absolute error function for N =M = 16 at y1 = 1 for Example 3.10

Figure 3.4: Log10(L∞ − errors) of µN,M (y1, y2) for N = 5 versus M for Example 3.10
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Example 3.11. We examine the linear second-order 2D-PVIDE:

∂2µ(y1, y2)

∂y1∂y2
= 2

∂µ(y1, y2)

∂y2
+ ℏ(y1, y2) +

∫ y1

0
y1 cos(y1 + y2)µ(v1, y2)dv1, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

with the initial conditions
µ(y1, 0) = y21,

∂µ(0, y2)

∂y2
= 0,

where ℏ(y1, y2) = 2y1e
y2 −2y21e

y2 − 1
4e
y2y41 cos(y1+y2), and the exact solution is µ(y1, y2) = y21e

y2 .

Table 3.3 provides a detailed account of the absolute errors eN,M (y1, y2) at p = 3 with (N,M) =

{(4, 4), (8, 8), (16, 16), (32, 32)}, while Table 3.4 offers insights into the maximum absolute errors
E(N,N) observed for p = 3 at different choices of N along with the convergence order of the
solution.

To further elucidate the efficacy of our technique, we present corresponding graphical repre-
sentations. Figures 3.5 and 3.6 display three-dimensional plots of the absolute error functions
|µ(y1, y2)−µN,M (y1, y2)| and a comparison between exact and approximate solutions, respectively,
using (N,M) = {(4, 4), (16, 16)} and p = 3 as parameters. Figure 3.7 provides a detailed compar-
ison between the exact and approximate solutions at y1 = 0.1, while Figure 3.8 plots the absolute
errors at y1 = 1, respectively for (N,M) = (16, 16) affirming the precision of our method even
at specific points. Lastly, Figure 3.9 offers a logarithmic representation log10(L

∞ − errors) for
varying values of M , while maintaining N = 5.

Table 3.3: Absolute errors |µ(y1, y2)− µN,N (y1, y2)| for Example 3.11

(y1, y2) N = 4 N = 8 N = 16 N = 32

(0.000, 0.000) 0 0 0 0
(0.125, 0.125) 5.611× 10−5 5.249× 10−6 7.180× 10−7 1.022× 10−7

(0.250, 0.250) 1.735× 10−4 2.580× 10−5 3.547× 10−6 5.049× 10−7

(0.500, 0.500) 1.027× 10−3 1.556× 10−4 2.165× 10−5 3.081× 10−6

(0.750, 0.750) 3.424× 10−3 5.307× 10−4 7.494× 10−5 1.066× 10−5

(1.000, 1.000) 9.121× 10−3 1.454× 10−3 2.089× 10−4 2.974× 10−5

Table 3.4: Maximum absolute error E(N,M) with N =M and p = 3 for Example 3.11

N E(N,N) Rate

2 0.049213546
4 0.009121234 2.4317
8 0.001454353 2.6488
16 0.000208986 2.7985
32 0.000029749 2.8124
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Figure 3.5: (a) Absolute error function |µ(y1, y2) − µ4,4(y1, y2)|, (b) Absolute error function
|µ(y1, y2)− µ16,16(y1, y2)| for p = 3 for Example 3.11

(a) (b)

Figure 3.6: (a) the exact solution µ(y1, y2), (b) the approximate solution µ16,16 with p = 3 for
Example 3.11

(a) (b)
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Figure 3.7: Comparison of the exact and approximate solutions with N =M = 16 at y1 = 0.1 for
Example 3.11

Figure 3.8: Absolute error function for N =M = 16 at y1 = 1 for Example 3.11

Figure 3.9: Log10(L∞ − errors) of µN,M (y1, y2) for N = 5 versus M for Example 3.11
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Example 3.12. Consider the 2D-PVIDE

∂2µ(y1, y2)

∂y1∂y2
=
∂µ(y1, y2)

∂y1
−3µ(y1, y2)+ℏ(y1, y2)+

∫ y1

0
ey2(1−v1)y2v21µ(v1, y2)dv1, 0 ≤ y1, y2 ≤ 1,

with the initial conditions
µ(0, y2) =

∂µ(y1, 0)

∂y1
= 0,

where ℏ(y1, y2) = 4y1y2+2y2+5y1y
2
2−y22−3y21y

2
2−y32ey2

[
1
4y

4
1 − 2

5y
5
1 +

1
6y

6
1

]
, and the exact solution

is µ(y1, y2) = y22(1− y1)y1.

Table 3.5 outlines the absolute errors eN,M (y1, y2) obtained using our proposed method in solv-
ing Example 3.12 with p = 3 and (N,M) = {(8, 8), (16, 16), (32, 32)}. Complementing this, Figure
3.10 compares the exact and approximate solutions at y1 = 0.1, providing a targeted examination
of our method’s precision at specific points within the domain. Additionally, Figure 3.11 presents
the function log10(L

∞-errors) of µN,M (y1, y2) with N = 5 versus M .

Table 3.5: Absolute errors |µ(y1, y2)− µN,N (y1, y2)| for Example 3.12

(y1, y2) N = 8 N = 16 N = 32

(0.000, 0.000) 0 0 0
(0.125, 0.125) 4.884× 10−14 1.058× 10−13 1.799× 10−14

(0.250, 0.250) 2.073× 10−12 6.850× 10−13 1.165× 10−13

(0.500, 0.500) 2.251× 10−14 1.002× 10−12 1.704× 10−13

(0.750, 0.750) 1.928× 10−10 1.136× 10−11 1.932× 10−12

(1.000, 1.000) 6.962× 10−10 1.189× 10−10 2.022× 10−11

Figure 3.10: Comparison of the exact and approximate solutions with N = M = 16 at y1 = 0.1
for Example 3.12
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Figure 3.11: Log10(L∞ − errors) of µN,M (y1, y2) for N = 5 versus M for Example 3.12

Example 3.13. As a concluding example, our attention is directed towards the following 2D-
PVIDE:

∂2µ(y1, y2)

∂y1∂y2
=
∂µ(y1, y2)

∂y2
+
∂µ(y1, y2)

∂y1
+ µ(y1, y2) + ℏ(y1, y2) +

∫ y1

0
µ(v1, y2)dv1, 0 ≤ y1, y2 ≤ 1,

with the initial conditions
µ(y1, 0) = µ(0, y2) =

∂µ(0, y2)

∂y2
= 0,

where ℏ(y1, y2) =
(
2y2 + y22 − 2y2y1 − y22y1 − 1

2y
2
2y

2
1

)
ln(y1+2)+ 2y2y1

y1+2−2y22ln(2)−
y22y1
y1+2+

1
4y

2
2−y1y22,

and the exact solution is µ(y1, y2) = y22y1 ln(y1 + 2).

Table 3.6 compiles the absolute errors eN,M (y1, y2) = |µ(y1, y2) − µN,M (y1, y2)| calculated
for (N,M) = {(4, 4), (8, 8), (16, 16), (32, 32)} and p = 3. Concurrently, Table 3.13 provides an
overview of the maximum errors E(N,N) observed for various values of N , along with the com-
putational order of convergence.

On a different note, Figure 3.12 presents three-dimensional plots of the absolute error functions
eN,M (y1, y2) with (N,M) = {(4, 4), (16, 16)} and p = 3. Figure 3.13 conducts a detailed compar-
ison between the exact and approximate solutions at y1 = 0.1, while Figure 3.14 outlines the
absolute errors e16,16(y1, y2) at y1 = 1. Lastly, Figure 3.15 provides a logarithmic representation
of µN,M (y1, y2) for varying values of M with a constant N = 5.

Table 3.6: Absolute errors |µ(y1, y2)− µN,M (y1, y2)| for Example 3.13

(y1, y2) N = 4 N = 8 N = 16 N = 32

(0.000, 0.000) 0 0 0 0
(0.125, 0.125) 3.662× 10−6 3.662× 10−6 4.709× 10−7 5.974× 10−8

(0.250, 0.250) 1.127× 10−4 1.514× 10−5 1.968× 10−6 2.511× 10−7

(0.500, 0.500) 5.160× 10−4 7.300× 10−5 9.719× 10−6 1.253× 10−6

(0.750, 0.750) 1.582× 10−3 2.361× 10−4 3.213× 10−5 4.185× 10−6

(1.000, 1.000) 4.577× 10−3 7.160× 10−4 9.920× 10−5 1.307× 10−5
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Table 3.7: Maximum absolute error E(N,M) with N =M and p = 3 for Example 3.13

N E(N,N) Rate

2 0.023113101
4 0.004577720 2.33600
8 0.000716013 2.67657
16 0.000099202 2.85154
32 0.000013073 2.92368

Figure 3.12: (a) Absolute error function |µ(y1, y2) − µ4,4(y1, y2)|, (b) Absolute error function
|µ(y1, y2)− µ16,16(y1, y2)| for p = 3 for Example 3.13

(a) (a)

Figure 3.13: Comparison of the exact and approximate solutions with N = M = 16 at y1 = 0.1
for Example 3.13
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Figure 3.14: Absolute error function for N =M = 16 at y1 = 1 for Example 3.13

Figure 3.15: Log10(L∞ − errors) of µN,M (y1, y2) for N = 5 versus M for Example 3.13

3.4 Concluding remarks

This chapter introduces a novel approach for handling two-dimensional second-order PVIDEs
by employing a piecewise collocation approach based on two-dimensional Taylor polynomials.
To the best of our knowledge, this marks the inaugural effort in utilizing two-dimensional Tay-
lor polynomials to address two-dimensional second-order PVIDEs. Furthermore, we derive a new
theorem that guarantees the convergence of the proposed approach. The effectiveness of the devel-
oped method is underscored through the presentation of numerical results from various examples,
validating the theoretical findings.
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Chapter 4

Numerical solution of two-dimensional partial Volterra

integro-differential equations of high-order

In the present chapter, we are interested in solving the high-order linear and nonlinear 2D-
PVIDEs:

∂r1+r2µ(y1, y2)

∂yr11 ∂y
r2
2

= ℏ(y1, y2) +
∫ y1

0

∫ y2

0
H (y1, y2, v1, v2)

∂r1+r2µ(v1, v2)

∂yr11 ∂y
r2
2

dv2dv1, (4.1)

and

∂r1+r2µ(y1, y2)

∂yr11 ∂y
r2
2

= ℏ(y1, y2) +
∫ y1

0

∫ y2

0
H

(
y1, y2, v1, v2,

∂r1+r2µ(v1, v2)

∂yr11 ∂y
r2
2

)
dv2dv1, (4.2)

respectively, with r1 + r2 appropriate initial conditions where (y1, y2) ∈ Λ = [0, A1]× [0, A2] and
ℏ and H are sufficiently smooth functions.

An initial exploration of these equations was conducted by Babaaghaie and Maleknejad in [80]
where they estimated the kernel of the original equation through the application of Haar wavelets,
consequently formulating a nonlinear system awaiting resolution. Subsequently, Wang et al. [81]
utilized a combination of shifted Jacobi polynomials and a collocation method to convert the
2D-PVIDE (4.2) into a set of algebraic equations.

To our knowledge, no attempts have been made to solve the high-order 2D-PVIDE (4.1)
nor the 2D-NPVIDE (4.2) using the Taylor collocation method, and therefore applying the Taylor
collocation method to these important problems represents a major challenge. Our main objective
here is to generalize the numerical methods introduced in the previous chapters to solve the high-
order 2D-PVIDE (4.1) and 2D-NPVIDE (4.2), respectively. In this regard, we transform the 2D-
PVIDE (4.1) and the 2D-NPVIDE (4.2) to another problems of solving two-dimensional Volterra
integral equations. Using the two-dimensional Taylor polynomials as the basis functions of the
piecewise collocation approach, we get an explicit form of the approximate solution to the main
problem.

The rest of this work is as follows: Section 4.1 constructs the Taylor collocation approach to
solve the 2D-PVIDE (4.1) and the 2D-NPVIDE (4.2), while Section 4.2 presents details of the
error estimates and convergence analysis of the proposed method. Section 4.3 introduces several
numerical examples and illustrations to test the applicability of the suggested method and the
theoretical results. Finally, the last section describes the concluding remarks.
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4.1 Description of the method

4.1.1 Two-dimensional linear partial Volterra integro-differential equations

This part is devoted to discussing the Taylor collocation approach to solve the high-order
2D-PVIDE (4.1). For simplicity, we use the notation∫ y1,q

0
· · ·

∫ y1,2

0

∫ y1

0
ω(y1)dy1dy1,2 · · · dy1,q = Iqy1ω(y1),

and without loss of generality, we assume that A1 = A2 = 1.

If we define a new function ω(y1, y2), such that ω(y1, y2) =
∂r1+r2µ(y1,y2)

∂y
r1
1 ∂y

r2
2

, then [81]

µ(y1, y2) = I(r1)
y1 I(r2)

y2 ω(y1, y2)−
r1−1∑
i=0

r2−1∑
j=0

yi1y
j
2

i!j!

(
∂i+jµ(y1, y2)

∂yi1∂y
j
2

)
y1=0,y2=0

+

r1−1∑
i=0

yi1
i!

(
∂iµ(y1, y2)

∂yi1

)
y1=0

+

r2−1∑
j=0

yj2
j!

(
∂jµ(y1, y2)

∂yj2

)
y2=0

,

(4.3)

and the high-order 2D-PVIDE (4.1) may be transformed to the two-dimensional VIE

ω(y1, y2) = ℏ(y1, y2) +
∫ y1

0

∫ y2

0
H(y1, y2, v1, v2)ω(v1, v2)dv2dv1, (y1, y2) ∈ [0, 1]× [0, 1]. (4.4)

We examine the numerical solutions within the previously defined real polynomial spline space
S
(−1)
p−1,p−1(ΠN,M ) of degree p− 1 in both y1 and y2, where we approximate the unknown function
ω(y1, y2) within each rectangle Λn,m, n = 0, 1, 2, . . . , N − 1, m = 0, 1, 2, . . . ,M − 1, by the Taylor
polynomials (3.4)

ωn,m(y1, y2) =

p−1∑
i+j=0

1

i!j!

∂i+jω̂n,m(y1,n, y2,m)

∂yi1∂y
j
2

(y1 − y1,n)
i(y2 − y2,m)

j ,

where
∂i+jω̂n,m(y1,n, y2,m)

∂yi1∂y
j
2

are unknown coefficients to be determined in the sequel.

Step 1: For n = m = 0, we approximate the function ω(y1, y2) within the rectangle Λ0,0 by
the polynomials (3.5):

ω0,0(y1, y2) =

p−1∑
i+j=0

1

i!j!

(
∂i+jω(y1, y2)

∂yi1∂y
j
2

)
y1=0,y2=0

yi1y
j
2, (y1, y2) ∈ Λ0,0.
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Differentiating Eq. (4.4) i− and j−times in terms of y1 and y2, respectively, we get

∂i+jω(y1, y2)

∂yi1∂y
j
2

= ∂(i)y1 ∂
(j)
y2 ℏ(y1, y2) +

∫ y1

0

∫ y2

0
∂(i)y1 ∂

(j)
y2 H(y1, y2, v1, v2)ω(v1, v2)dv2dv1

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l2

[
∂(j−1−r)
y2 H(y1, y2, v1, y2)

]) ∂l+ηω(y1, y2)
∂yη1∂y

l
2

+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

0

∂i

∂yi1

[
∂r−l

∂yr−l2

[
∂(j−1−r)
y2 H(y1, y2, v1, y2)

]] ∂lω(v1, y2)
∂yl2

dv1

+

∫ y2

0

i−1∑
q=0

q∑
η=0

(
q

η

)
∂q−η

∂yq−η1

[
∂(i−1−q)
y1 ∂(j)y2 H(y1, y2, y1, v2)

] ∂ηω(y1, v2)
∂yη1

dv2.

Hence,

∂i+jω(0, 0)

∂yi1∂y
j
2

= ∂(i)y1 ∂
(j)
y2 ℏ(0, 0)

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

])
y1=y2=0

×

∂l+ηω(0, 0)

∂yη1∂y
l
2

.

(4.5)

Step 2: For n = 1, 2, . . . , N − 1 and m = 0, we approximate the function ω(y1, y2) within the
rectangles Λn,0, n = 0, 1, 2, . . . , N − 1, by the polynomials (3.7)

ωn,0(y1, y2) =

p−1∑
i+j=0

1

i!j!

∂i+jω̂n,0(y1,n, 0)

∂yi1∂y
j
2

(y1 − y1,n)
iyj2, (y1, y2) ∈ Λn,0,

where ω̂n,0(y1, y2) is the precise solution to the VIE

ω̂n,0(y1, y2) = ℏ(y1, y2) +
n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ y2

0
H(y1, y2, v1, v2)ωξ,0(v1, v2)dv2dv1

+

∫ y1

y1,n

∫ y2

0
H(y1, y2, v1, v2)ω̂n,0(v1, v2)dv2dv1.

(4.6)

Similarly, we differentiate Eq. (4.6) i− and j−times in terms of y1 and y2, respectively, to get

∂i+jω̂n,0(y1, y2)

∂yi1∂y
j
2

= ∂(i)y1 ∂
(j)
y2 ℏ(y1, y2) +

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ y2

0
∂(i)y1 ∂

(j)
y2 H(y1, y2, v1, v2)ωξ,0(v1, v2)dv2dv1

+

n−1∑
ξ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∂i

∂yi1

[
∂r−l

∂yr−l2

[
∂(j−1−r)
y2 H(y1, y2, v1, y2)

]] ∂lωξ,0(v1, y2)
∂yl2

dv1
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+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l2

[
∂(j−1−r)
y2 H(y1, y2, v1, y2)

])×

∂l+ηω̂n,0(y1, y2)

∂yη1∂y
l
2

+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∂i

∂yi1

[
∂r−l

∂yr−l2

[
∂(j−1−r)
y2 H(y1, y2, v1, y2)

]] ∂lω̂n,0(v1, y2)
∂yl2

dv1

+

∫ y2

0

i−1∑
q=0

q∑
η=0

(
q

η

)
∂q−η

∂yq−η1

[
∂(i−1−q)
y1 ∂(j)y2 H(y1, y2, y1, v2)

] ∂ηω̂n,0(y1, v2)
∂yη1

dv2

+

∫ y1

y1,n

∫ y2

0
∂(i)y1 ∂

(j)
y2 H(y1, y2, v1, v2)ω̂n,0(v1, v2)dv2dv1. (4.7)

Hence, for n = 0, 1, 2, . . . , N − 1,

∂i+jω̂n,0(y1,n, 0)

∂yi1∂y
j
2

= ∂(i)y1 ∂
(j)
y2 ℏ(y1,n, 0)

+

n−1∑
ξ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∂i

∂yi1

[
∂r−l

∂yr−l2

[
∂(j−1−r)
y2 H(y1, y2, v1, y2)

]]
y1=y1,n,y2=0

∂lωξ,0(v1, 0)

∂yl2
dv1

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l2

[
∂
(j−1−r)
2 H(y1, y2, v1, y2)

])
y1=y1,n,y2=0

×

∂l+ηω̂n,0(y1,n, 0)

∂yη1∂y
l
2

.

(4.8)

Step 3: For n = 0, 1, 2, . . . , N−1, m = 1, 2, . . . ,M−1, the function ω(y1, y2) is approximated
in the rectangles Λn,m by the polynomials (3.11)

ωn,m(y1, y2) =

p−1∑
i+j=0

1

i!j!

∂i+jω̂n,m(y1,n, y2,m)

∂yi1∂y
j
2

(y1 − y1,n)
i(y2 − y2,m)

j ,

where ω̂n,m(y1, y2) refers to the precise solution of the VIE

ω̂n,m(y1, y2) = ℏ(y1, y2) +
n−1∑
ξ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ y2,ρ+1

y2,ρ

H(y1, y2, v1, v2)ωξ,ρ(v1, v2)dv2dv1

+
n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ y2

y2,m

H(y1, y2, v1, v2)ωξ,m(v1, v2)dv2dv1

+
m−1∑
ρ=0

∫ y1

y1,n

∫ y2,ρ+1

y2,ρ

H(y1, y2, v1, v2)ωn,ρ(v1, v2)dv2dv1

+

∫ y1

y1,n

∫ y2

y2,m

H(y1, y2, v1, v2)ω̂n,m(v1, v2)dv2dv1,

(4.9)
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and by differentiating i−times with respect to y1 and j−times with respect to y2, we obtain

∂i+jω̂n,m(y1, y2)

∂yi1∂y
j
2

= ∂(i)y1 ∂
(j)
y2 ℏ(y1, y2)

+
n−1∑
ξ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ y2,ρ+1

y2,ρ

∂(i)y1 ∂
(j)
y2 H(y1, y2, v1, v2)ωξ,ρ(v1, v2)dv2dv1

+
n−1∑
ξ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∂i

∂yi1

[
∂r−l

∂yr−l2

[
∂(j−1−r)
y2 H(y1, y2, v1, y2)

]] ∂lωξ,m(v1, y2)
∂yl2

dv1

+

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ y2

y2,m

∂(i)y1 ∂
(j)
y2 H(y1, y2, v1, v2)ωξ,m(v1, v2)dv2dv1

+

m−1∑
ρ=0

i−1∑
q=0

q∑
η=0

(
q

η

)∫ y2,ρ+1

y2,ρ

∂q−η

∂yq−η1

[
∂(i−1−q)
y1 ∂(j)y2 H(y1, y2, y1, v2)

] ∂ηωn,ρ(y1, v2)
∂yη1

dv2

+

m−1∑
ρ=0

∫ y1

y1,n

∫ y2,ρ+1

y2,ρ

∂(i)y1 ∂
(j)
y2 H(y1, y2, v1, v2)ωn,ρ(v1, v2)dv2dv1

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l2

[
∂(j−1−r)
y2 H(y1, y2, v1, y2)

]) ∂l+ηω̂n,m(y1, y2)
∂yη1∂y

l
2

+

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1

y1,n

∂i

∂yi1

[
∂r−l

∂yr−l2

[
∂(j−1−r)
y2 H(y1, y2, v1, y2)

]] ∂lω̂n,m(v1, y2)
∂yl2

dv1

+

i−1∑
q=0

q∑
η=0

(
q

η

)∫ y2

y2,m

∂q−η

∂yq−η1

[
∂(i−1−q)
y1 ∂(j)y2 H(y1, y2, y1, v2)

] ∂ηω̂n,m(y1, v2)
∂yη1

dv2

+

∫ y1

y1,n

∫ y2

y2,m

∂(i)y1 ∂
(j)
y2 H(y1, y2, v1, v2)ω̂n,m(v1, v2)dv2dv1, (4.10)

which leads to

∂i+jω̂n,m(y1,n, y2,m)

∂yi1∂y
j
2

= ∂(i)y1 ∂
(j)
y2 ℏ(y1,n, y2,m)

+
n−1∑
ξ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ y2,ρ+1

y2,ρ

∂(i)y1 ∂
(j)
y2 H(y1,n, y2,m, v1, v2)ωξ,ρ(v1, v2)dv2dv1

+
n−1∑
ξ=0

j−1∑
r=0

r∑
l=0

(
r

l

)∫ y1,ξ+1

y1,ξ

∂i

∂yi1

[
∂r−l

∂yr−l2

[
∂(j−1−r)
y2 H(y1, y2, v1, y2)

]]
y1=y1,n,y2=y2,m

∂lωξ,m(v1, y2,m)

∂yl2
dv1

+

m−1∑
ρ=0

i−1∑
q=0

q∑
η=0

(
q

η

)∫ y2,ρ+1

y2,ρ

∂q−η

∂yq−η1

[
∂(i−1−q)
y1 ∂(j)y2 H(y1, y2, y1, v2)

]
y1=y1,n,y2=y2,m

∂ηωn,ρ(y1,n, v2)

∂yη1
dv2

+

j−1∑
r=0

r∑
l=0

i−1∑
q=0

q∑
η=0

(
r

l

)(
q

η

)
∂q−η

∂yq−η1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r−l

∂yr−l2

[
∂(j−1−r)
y2 H(y1, y2, v1, y2)

])
y1=y1,n,y2=y2,m

×

∂l+ηω̂n,m(y1,n, y2,m)

∂yη1∂y
l
2

,

(4.11)
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for n = 0, 1, 2, . . . , N − 1 and m = 1, 2, . . . ,M − 1.
Finally, in virtue of Eqs. (4.5), (4.8) and (4.11), the approximate solution ωN,M (y1, y2) of the

two-dimensional Volterra integral equation (4.4) can be determined, and therefore the approximate
solution µN,M (y1, y2) of the 2D-PVIDE (4.1) may be given by

µN,M (y1, y2) = I(r1)
y1 I(r2)

y2 ωN,M (y1, y2)−
r1−1∑
i=0

r2−1∑
j=0

yi1y
j
2

i!j!

(
∂i+jµ(y1, y2)

∂yi1∂y
j
2

)
y1=0,y2=0

+

r1−1∑
i=0

yi1
i!

(
∂iµ(y1, y2)

∂yi1

)
y1=0

+

r2−1∑
j=0

yj2
j!

(
∂jµ(y1, y2)

∂yj2

)
y2=0

.

(4.12)

4.1.2 Two-dimensional nonlinear partial Volterra integro-differential equations

In the current section, we present a numerical approach to solve the high-order 2D-NPVIDE
(4.2). First, we define the function ω(y1, y2) =

∂r1+r2µ(y1,y2)

∂y
r1
1 ∂y

r2
2

to transform the 2D-NPVIDE (4.2)
to the 2D-NVIE:

ω(y1, y2) = ℏ(y1, y2) +
∫ y1

0

∫ y2

0
H (y1, y2, v1, v2, ω(v1, v2)) dv2dv1, (y1, y2) ∈ [0, 1]× [0, 1]. (4.13)

Similarly, as in the previous section, we search for the numerical solution in the space S(−1)
p−1,p−1(ΠN,M ),

then we may approximate the solution of the two-dimensional nonlinear Volterra integral equa-
tion(4.13).

Step 1: We approximate the function ω(y1, y2) within the rectangle Λ0,0 as in polynomials
(3.5), we have

∂i+jω(0, 0)

∂yi1∂y
j
2

= ∂(i)y1 ∂
(j)
y2 ℏ(0, 0)

+

j−1∑
r=0

i−1∑
q=0

∂q

∂yq1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r

∂yr2

[
∂(j−1−r)
y2 H(y1, y2, v1, y2, ω(y1, y2))

])
y1=y2=0

.

(4.14)

Step 2: We approximate ω(y1, y2) within the rectangles Λn,0, n = 0, 1, 2, . . . , N − 1, as in
polynomials (3.7), where ω̂n,0(y1, y2) is the precise solution to the VIE

ω̂n,0(y1, y2) = ℏ(y1, y2) +
n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ y2

0
H(y1, y2, v1, v2, ωξ,0(v1, v2))dv2dv1

+

∫ y1

y1,n

∫ y2

0
H(y1, y2, v1, v2, ωn,0(v1, v2))dv2dv1,
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then, we get

∂i+jω̂n,0(y1,n, 0)

∂yi1∂y
j
2

= ∂(i)y1 ∂
(j)
y2 ℏ(y1,n, 0)

+
n−1∑
ξ=0

j−1∑
r=0

∫ y1,ξ+1

y1,ξ

∂i

∂yi1

[
∂r

∂yr2
[∂(j−1−r)
y2 H(y1, y2, v1, y2, ωξ,0(v1, 0))]

]
y1=y1,n,y2=0

dv1

+

j−1∑
r=0

i−1∑
q=0

∂q

∂yq1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r

∂yr2

[
∂(j−1−r)
y2 H(y1, y2, v1, y2, ωn,0(y1,n, 0))

])
y1=y1,n,y2=0

.

(4.15)

Step 3: We approximate ω(y1, y2) within the rectangles Λn,m for n = 0, 1, 2, . . . , N −1, m =

1, 2, . . . ,M − 1, as in polynomials (3.11), where ω̂n,m(y1, y2) is the precise solution to the VIE

ω̂n,m(y1, y2) = ℏ(y1, y2) +
n−1∑
ξ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ y2,ρ+1

y2,ρ

H(y1, y2, v1, v2, ωξ,ρ(v1, v2))dv2dv1

+

n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ y2

y2,m

H(y1, y2, v1, v2, ωξ,m(v1, v2))dv2dv1

+
m−1∑
ρ=0

∫ y1

y1,n

∫ y2,ρ+1

y2,ρ

H(y1, y2, v1, v2, ωn,ρ(v1, v2))dv2dv1

+

∫ y1

y1,n

∫ y2

yn

H(y1, y2, v1, v2, ω̂n,m(v1, v2))dv2dv1.

Hence, for n = 0, 1, 2, . . . , N − 1 and m = 1, 2, . . . ,M − 1,

∂i+jω̂n,m(y1,n, y2,m)

∂yi+1
1 ∂yj2

= ∂(i)y1 ∂
(j)
y2 ℏ(y1,n, y2,m)

+

n−1∑
ξ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ y2,ρ+1

y2,ρ

∂(i)y1 ∂
(j)
y2 H (y1,n, y2,m, v1, v2, ωξ,ρ(v1, v2)) dv2dv1

+
n−1∑
ξ=0

j−1∑
r=0

∫ y1,ξ+1

y1,ξ

∂i

∂yi1

[
∂r

∂yr2

[
∂(j−1−r)
y2 H (y1, y2, v1, y2, ωξ,m(v1, y2,m))

]]
y1=y1,n,y2=y2,m

dv1

+
m−1∑
ρ=0

i−1∑
q=0

∫ y2,ρ+1

y2,ρ

∂q

∂yq1

[
∂(i−1−q)
y1 ∂(j)y2 H (y1, y2, y1, v2, ωn,ρ(y1,n, v2))

]
y1=y1,n,y2=y2,m

dv2

+

j−1∑
r=0

i−1∑
q=0

∂q

∂yq1

 ∂i−1−q

∂yi−1−q
1

∣∣∣∣∣
v1=y1

(
∂r

∂yr2

[
∂(j−1−r)
y2 H (y1, y2, v1, y2, ω̂n,m(y1,n, y2,m))

])
y1=y1,n,y2=y2,m

.

(4.16)

The approximate solution ωN,M (y1, y2) can be determined using Eqs. (4.14), (4.15) and (4.16),
which in turn leads to the approximate solution µN,M (y1, y2) of the 2D-NPVIDE (4.2).
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4.2 Convergence analysis

The current section deals with the convergence analysis of the numerical approach described
above. In this regard, two new theorems are stated and proven to obtain the error bounds of the
approximate solution µN,M (4.12) computed using the Taylor collocation method applied to the
2D-PVIDE (4.1). In the sequel, the following lemma is needed.

Lemma 4.10. [46] Suppose ℏ and H are two p−times continuously differentiable functions defined
on their respective domains. Then there exists a positive number α(p), such that∥∥∥∥∥∂i+jω̂n,m∂yi1∂y

j
2

∥∥∥∥∥
L∞(Λn,m)

≤ α(p),

for n = 0, 1, . . . , N − 1, m = 0, 1, . . . ,M − 1, i+ j = 0, 1, . . . , p, with ω̂0,0(y1, y2) = ω(y1, y2) and
(y1, y2) ∈ Λ0,0.

Theorem 4.5. Assume that ω(y1, y2) is the exact solution of the two-dimensional Volterra integral
equation (4.4) and ωN,M (y1, y2) is the approximate solution of the same problem computed using
the Taylor collocation method. Then, there is a finite constant C independent of h and k, such
that

∥ω − ωN,M∥L∞(Λ) ≤ C(h+ k)p,

where ℏ and H are two p−times continuously differentiable functions on their respective domains.

Proof. For (y1, y2) ∈ Λ0,0, making use of Lemma 1.7 and Eq. (3.5), we have

|ω(y1, y2)− ω0,0(y1, y2)| ≤
∑
i+j=p

1

i!j!

∥∥∥∥∥ ∂i+jω∂yi1∂y
j
2

∥∥∥∥∥hikj .
Therefore, according to Lemma 4.10, we obtain

∥ω − ω0,0∥L∞(Λ0,0) ≤ α(p)
∑
i+j=p

1

i!j!
hikj =

α(p)

p!
(h+ k)p = C1(h+ k)p. (4.17)

Also, for (y1, y2) ∈ Λn,0, n = 1, 2, . . . , N − 1, it follows from Eqs. (4.4) and (4.6), that

ω(y1, y2)− ω̂n,0(y1, y2) =
n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ y2

0
H(y1, y2, v1, v2) (ω(v1, v2)− ωξ,0(v1, v2)) dv2dv1

+

∫ y1

y1,n

∫ y2

0
H(y1, y2, v1, v2) (ω(v1, v2)− ω̂n,0(v1, v2)) dv2dv1,

which leads to

|ω(y1, y2)− ω̂n,0(y1, y2)| =
n−1∑
ξ=0

Hhk∥ω − ωξ,0∥L∞(Λξ,0) +

∫ y1

y1,n

∫ y2

0
H|ω(v1, v2)− ω̂n,0(v1, v2)|dv2dv1,

where H = max{∥H∥L∞(Λ)}
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Using Lemma 1.6, we get

|ω(y1, y2)− ω̂n,0(y1, y2)| ≤
n−1∑
ξ=0

Hhk∥ω − ωξ,0∥L∞(Λξ,0) exp
(
2
√
H
)

≤
n−1∑
ξ=0

H exp
(
2
√
H
)
∥ω − ωξ,0∥L∞(Λξ,0).

Now, we use Lemmas 1.7 and 4.10 to deduce that

∥ω − ωn,0∥L∞(Λn,0) ≤ ∥ω − ω̂n,0∥L∞(Λn,0) + ∥ω̂n,0 − ωn,0∥L∞(Λn,0)

≤
n−1∑
ξ=0

H∥ω − ωξ,0∥L∞(Λξ,0) exp
(
2
√
H
)
+
∑
i+j=p

1

i!j!

∥∥∥∥∥∂i+jω̂n,0∂yi1∂y
j
2

∥∥∥∥∥hikj
≤

n−1∑
ξ=0

H∥ω − ωξ,0∥L∞(Λξ,0) exp
(
2
√
H
)
+
α(p)

p!
(h+ k)p.

Thus, based on Lemma 1.3, one can conclude that

∥ω − ωn,0∥L∞(Λn,0) ≤
α(p)

p!
exp

(
H exp

(
2
√
H
))

(h+ k)p = C2(h+ k)p. (4.18)

For (y1, y2) ∈ Λn,m, n = 0, 1, . . . , N −1, m = 1, 2, . . . ,M −1, one can use Eqs. (4.4) and (4.9)
to get

ω(y1, y2)− ω̂n,m(y1, y2) =

n−1∑
ξ=0

m−1∑
ρ=0

∫ y1,ξ+1

y1,ξ

∫ y2,ρ+1

y2,ρ

H(y1, y2, v1, v2) (ω(v1, v2)− ωξ,ρ(v1, v2)) dv2dv1

+
n−1∑
ξ=0

∫ y1,ξ+1

y1,ξ

∫ y2

y2,m

H(y1, y2, v1, v2) (ω(v1, v2)− ωξ,m(v1, v2)) dv2dv1

+
m−1∑
ρ=0

∫ y1

y1,n

∫ y2,ρ+1

y2,ρ

H(y1, y2, v1, v2) (ω(v1, v2)− ωn,ρ(v1, v2)) dv2dv1

+

∫ y1

y1,n

∫ y2

y2,m

H(y1, y2, v1, v2) (ω(v1, v2)− ω̂n,m(v1, v2)) dv2dv1.

Hence,

|ω(y1, y2)−ω̂n,m(y1, y2)| ≤
n−1∑
ξ=0

m−1∑
ρ=0

hkH∥ω − ωξ,ρ∥L∞(Λξ,ρ) +

n−1∑
ξ=0

hkH∥ω − ωξ,m∥L∞(Λξ,m)

+

m−1∑
ρ=0

hkH∥ω − ωn,ρ∥L∞(Λn,ρ) +

∫ y1

y1,n

∫ y2

y2,m

H |ω(v1, v2)− ω̂n,m(v1, v2)| dv2dv1

≤
n−1∑
ξ=0

m−1∑
ρ=0

hkH∥ω − ωξ,ρ∥L∞(Λξ,ρ) +

n−1∑
ξ=0

hH∥ω − ωξ,m∥L∞(Λξ,m)

+

m−1∑
ρ=0

kH∥ω − ωn,ρ∥L∞(Λn,ρ) +

∫ y1

y1,n

∫ y2

y2,m

H |ω(v1, v2)− ω̂n,m(v1, v2)| dv2dv1,
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which in turn, with the help of Lemma 1.6, leads to

|ω(y1, y2)− ω̂n,m(y1, y2)| ≤
n−1∑
ξ=0

m−1∑
ρ=0

hkH exp
(
2
√
H
)
∥ω − ωξ,ρ∥L∞(Λξ,ρ)

+
n−1∑
ξ=0

hH exp
(
2
√
H
)
∥ω − ωξ,m∥L∞(Λξ,m) +

m−1∑
ρ=0

kH exp
(
2
√
H
)
∥ω − ωn,ρ∥L∞(Λn,ρ).

Also, using Lemmas 1.7 and 4.10, we get

∥ω − ωn,m∥L∞(Λn,m) ≤ ∥ω − ω̂n,m∥L∞(Λn,m) + ∥ω̂n,m − ωn,m∥L∞(Λn,m)

≤
n−1∑
ξ=0

m−1∑
ρ=0

hkH exp
(
2
√
H
)
∥ω − ωξ,ρ∥L∞(Λξ,ρ) +

n−1∑
ξ=0

hH exp
(
2
√
H
)
∥ω − ωξ,m∥L∞(Λξ,m)

+
m−1∑
ρ=0

kH exp
(
2
√
H
)
∥ω − ωn,ρ∥L∞(Λn,ρ) +

∑
i+j=p

1

i!j!

∥∥∥∥∥∂i+jω̂n,m∂yi1∂y
j
2

∥∥∥∥∥hikj
≤

n−1∑
ξ=0

m−1∑
ρ=0

hkH exp
(
2
√
H
)
∥ω − ωξ,ρ∥L∞(Λξ,ρ) +

n−1∑
ξ=0

hH exp
(
2
√
H
)
∥ω − ωξ,m∥L∞(Λξ,m)

+

m−1∑
ρ=0

kH exp
(
2
√
H
)
∥ω − ωn,ρ∥L∞(Λn,ρ) +

α(p)

p!
(h+ k)p.

Now, we utilize Lemma 1.4 to get

∥ω − ωn,m∥L∞(Λn,m) ≤
(
α(p)

p!
(h+ k)p

)
exp(2λ)

= C3(h+ k)p,

(4.19)

where

λ = H exp
(
2
√
H
)
+

√
H

2
exp

(
4
√
H
)
+H exp

(
2
√
H
)
.

Finally, with the aid of (4.17), (4.18) and (4.19), we have

∥ω − ωN,M∥L∞(Λ) ≤ C(h+ k)p,

where C = max{C1, C2, C3}

We now study the main theorem of convergence analysis of the suggested numerical method.

Theorem 4.6. Assume that µ(y1, y2) is the exact solution of the 2D-VIDE (4.1) and µN,M (y1, y2), n =

0, 1, . . . , N − 1, m = 0, 1, . . . ,M − 1, is the approximate solution of the same problem computed
using the Taylor collocation method (4.12). Then, there is a finite constant L independent of h
and k, such that

∥µ− µN,M∥L∞(Λ) ≤ L(h+ k)p,

where ℏ and H are two p−times continuously differentiable on their respective domains.
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Proof. Referring to Eqs. (4.3) and (4.12), one can deduce that for n = 0, 1, . . . , N − 1, m =

0, 1, . . . ,M − 1,

µ(y1, y2)− µN,M (y1, y2) = I(r1)
y1 I(r2)

y2 (ω(y1, y2)− ωN,M (y1, y2)) .

Therefore, we obtain

|µ(y1, y2)− µN,M (y1, y2)| ≤ I(r1)
y1 I(r2)

y2 |ω(y1, y2)− ωN,M (y1, y2)|

≤ I(r1)
y1 I(r2)

y2 ∥ω − ωN,M∥L∞(Λ) .

Theorem 4.5 implies that

∥µ− µN,M∥L∞(Λ) ≤ L(h+ k)p.

Remark 5. We can estimate the error of all derivatives ∂k1+k2µ(y1,y2)

∂y
k1
1 ∂y

k2
2

, 0 ≤ k1 < r1, 0 ≤ k2 < r2,

by applying technique similar to that applied in Theorem 4.6 with the help of [81]

∂k1+k2µ(y1, y2)

∂yk11 ∂y
k2
2

= I(r1−k1)
y1 I(r2−k2)

y2 ω(y1, y2)−
r1−1∑
i=k1

r2−1∑
j=k2

yi−k11 yj−k22

(i− k1)!(j − k2)!

(
∂i+jµ(y1, y2)

∂yi1∂y
j
2

)
y1=0,y2=0

+

r1−1∑
i=k1

yi−k11

(i− k1)!

(
∂i+k2µ(y1, y2)

∂yi1∂y
k2
2

)
y1=0

+

r2−1∑
j=k2

yj−k22

(j − k2)!

(
∂j+k1µ(y1, y2)

∂yk11 y
j
2

)
y2=0

.

4.3 Numerical results

In the current section, we provide some numerical examples to test the accuracy of the proposed
numerical method and validate the convergence analysis demonstrated in the previous section.
We define the maximum absolute error and the convergence rates for temporal and spatial sizes,
respectively, by

E(N,M) = ∥µ− µN,M∥∞,

and
Rate = log2

(
E(N/2,M/2)

E(N,M)

)
.

Example 4.14. Consider the 2D-PVIDE [82–84]

µ(y1, y2) = ℏ(y1, y2) +
∫ y2

0

∫ y1

0
µ2(v1, v2)dv1dv2, 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1,

where ℏ(y1, y2) = y21 + y22 − 1
5y1y

5
2 − 2

9y
3
1y

3
2 − 1

5y
5
1y2, and the exact solution is µ(y1, y2) = y21 + y22.

For the solution of this problem, Fazli et al. [82] applied the reproducing kernel function method
(RKFM), Nemati et al. [83] introduced an operational approach based on shifted Legendre function
with the collocation method (SLFCM), while Ray and Behera [84] applied the Gegenbauer wavelet
method (GWM).

93



Chapter 4. Numerical solution of two-dimensional partial Volterra integro-differential
equations of high-order

In Table 4.1, we display the absolute errors of µN,M (y1, y2) at p = 4 with N =M = {4, 8, 16}
and we compare the new results versus those given using the RKFM [82] and SLFCM [83], while in
Table 4.2, we compare our results with (N,M) = (10, 10) versus those given using the GWM [84].
Furthermore, Figure 4.1 obtains the function log10(L

∞−errors) of µN,M (y1, y2) with N = 5 versus
M . Figure 4.2 visually contrasts the precise and estimated solutions at y1 = 0.2. Subsequently,
Figure 4.3 provides a graphical representation of the absolute error function for N =M = 16 with
p = 4 at y1 = 0.2.

Table 4.1: Comparing the absolute error of µN,M (y1, y2) against the RKFM [82] and SLFCM [83]
for Example 4.14

(y1, y2)
RKFM [82] SLFCM [83] Our method (p = 4)
N =M = 30 N =M = 3 N =M = 4 N =M = 8 N =M = 16

(12 ,
1
2) 2.64e− 03 2.80e− 06 2.85e− 05 1.48e− 05 1.04e− 05

(14 ,
1
4) 2.4e− 04 1.70e− 04 1.29e− 06 1.28e− 06 1.29e− 06

(18 ,
1
8) 1.50e− 04 1.30e− 05 6.69e− 07 7.66e− 09 7.65e− 09

( 1
16 ,

1
16) 9.45e− 05 3.50e− 05 2.87e− 07 2.62e− 09 3.55e− 11

Table 4.2: Comparing the absolute error of µN,M (y1, y2) against the GWM [84] for Example 4.14

(y1, y2)
GWM (N =M = 8) [84] Our method
λ = 0.75 λ = 1.75 N =M = 10

(0.2, 0.2) 1.06e− 02 4.39e− 02 2.61e− 07
(0.2, 0.4) 1.84e− 03 1.01e− 02 2.74e− 05
(0.4, 0.4) 7.49e− 03 3.96e− 02 2.09e− 05
(0.4, 0.2) 1.84e− 02 1.01e− 02 1.93e− 05
(0.6, 0.2) 1.00e− 02 4.81e− 02 5.10e− 04
(0.6, 0.6) 6.23e− 03 1.32e− 02 6.56e− 04

Figure 4.1: log10(L
∞ − errors) of µN,M (y1, y2) for N = 5 versus M for Example 4.14
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Figure 4.2: Comparison of the exact and approximate solutions for N = M = 16 at y1 = 0.2 for
Example 4.14

Figure 4.3: Absolute error function for N =M = 16 at y1 = 0.2 for Example 4.14
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Example 4.15. Consider the 2D-NPVIDE [80] by

∂3µ(y1, y2)

∂y1∂y22
= ℏ(y1, y2) +

∫ y2

0

∫ y1

0
y1
∂3µ(v1, v2)

∂y1∂2y2
+ y32

(
∂3µ(v1, v2)

∂y1∂2y2

)5

dv2dv1, 0 ≤ y1, y2 ≤ 1,

with the initial conditions

µ(y1, 0) =
∂µ(y1, 0)

∂y1
=
∂2µ(y1, y2)

∂y1∂y2

∣∣∣∣
y2=0

= 0,

where ℏ(y1, y2) = y21y
2
2 −

y41y
3
2

9 − y111 y142
121 , and the exact solution is µ(y1, y2) = 1

36y
3
1y

4
2.

Babaaghaie and Maleknejad [80] considered the current problem and used the Haar wavelets

method (HWM) with the mesh nodes y1,N =
N − 0.5

2N
,N = 1, 2, . . . , 2N, y2,M =

M − 0.5

2M
,M =

1, 2, . . . , 2M, to get its numerical solution.
Table 4.3 compares the maximum absolute errors E(N,M) with p = 4 against these results

introduced using the HWM [80]. Figure 4.4 obtains the exact solution µ(y1, y2), approximate
solution µN,M (y1, y2) and the absolute error function |µ(y1, y2) − µN,M (y1, y2)| with (N,M) =

(16, 16) and p = 4.

Table 4.3: Comparing the E(N,M) versus the HWM [80] of Example 4.15

HWM [80] Our method
2N E(2N, 2N) N E(N,N)

2 7.1e− 03 1 1.5e− 03
4 2.9e− 03 2 6.2e− 04
8 9.8e− 04 4 7.1e− 04

Figure 4.4: (a) Exact solution µ(y1, y2), (b) Approximate solution µ16,16(y1, y2), (c) Absolute error
function |µ(y1, y2)− µ16,16(y1, y2)| with p = 4 for Example 4.15

(a) (b) (c)
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Figure 4.5: Comparison of the exact and approximate solutions for N = M = 16 at y1 = 1 for
Example 4.15

Figure 4.6: Absolute error function for N =M = 16 at y1 = 1 for Example 4.15
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Example 4.16. Consider the 2D-PVIDE

∂2µ(y1, y2)

∂y1∂y2
= cos(y2)−

1

2
(y1 + cos(y2)) y1 sin(y2)−

y1y2
2

+

∫ y1

0

∫ y2

0
(v1+cos(v2)

∂2µ(v1, v2)

∂y1∂y2
dv2dv1,

with the initial conditions
µ(0, y2) =

∂µ(y1, 0)

∂y1
= 0,

where 0 ≤ y1 ≤ 1, 0 ≤ y2 ≤ 1, and the exact solution is µ(y1, y2) = y1 sin(y2).

Table 4.4 provides a detailed account of the absolute errors |µ(y1, y2)− µN,N (y1, y2)| at p = 3

with (N,M) = {(4, 4), (8, 8), (16, 16), (32, 32)}, while Table 4.5 presents the maximum absolute
errors E(N,M) with p = 3 and different choices of N and M, and obtains the convergence order
of the solution. On the other hand, Figure 4.7 provides a visual representation of the contrast
between the precise and estimated solutions at y1 = 0.2. Figure 4.8 offers a graphical depiction
of the absolute error function for N = M = 16 with p = 3 at y1 = 1 for Example 4.16. Finally,
Figure 4.9 exhibits the logarithmic graph of log10(L∞ − errors) with N = 5 for diverse values of
M .

Table 4.4: Absolute errors |µ(y1, y2)− µN,N (y1, y2)| for Example 4.16

(y1, y2) N = 4 N = 8 N = 16 N = 32

(0.00, 0.00) 0 0 0 0
(0.25, 0.25) 2.24e− 06 5.59e− 06 1.06e− 06 1.56e− 07
(0.50, 0.50) 1.86e− 04 3.69e− 05 5.48e− 06 7.41e− 07
(0.75, 0.75) 6.03e− 04 1.01e− 04 1.44e− 05 1.91e− 06
(1.00, 1.00) 9.71e− 04 1.55e− 04 2.16e− 05 2.82e− 06

Table 4.5: Maximum absolute error E(N,M) with N =M and p = 3 for Example 4.16

N E(N,M) Rate
2 0.0042218339
4 0.0009709566 2.1204
8 0.0001547186 2.6497
16 0.0000216087 2.8399
32 0.0000028152 2.9403
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Figure 4.7: Comparison of the exact and approximate solutions with N = M = 16 at y1 = 1 for
Example 4.16

Figure 4.8: Absolute error function for N =M = 16 at y1 = 1 for Example 4.16
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Figure 4.9: log10(L
∞ − errors) of µN,M (y1, y2) for N = 5 versus M for Example 4.16

Example 4.17. As the final example, we consider the following 2D-NPVIDE

∂2µ(y1, y2)

∂y1∂y2
= ℏ(y1, y2) +

∫ y1

0

∫ y2

0
(y1v

2
1 + cos(v2))

(
∂2µ(v1, v2)

∂y1∂y2

)2

dv2dv1, 0 ≤ y1, y2 ≤ 1,

subjected to the initial conditions

µ(0, y2) =
∂µ(y1, 0)

∂y1
= 0,

with ℏ(y1, y2) = y1 sin(y2) +
1
10y

6
1 cos(y2) sin(y2)− 1

10y
6
1y2 − 1

9 sin
3(y2)y

3
1, and the exact solution is

µ(y1, y2) =
−y21
2 (cos(y2)− 1) .

Numerical results in terms of absolute errors are reported in Table 4.6. Table 4.7 displays the
maximum absolute errors E(N,M) at p = 3 with various choices of N and M, and obtains
the convergence order of the solution. Also, the absolute error function is depicted in three-
dimensional space as shown in Figure 4.10 employing (N,M) = {(4, 4), (16, 16)}. Figure 4.17
plots the Log10(L∞ − errors) of µN,M (y1, y2) for different values of M while maintaining N = 5.

Table 4.6: Absolute errors |µ(y1, y2)− µN,N (y1, y2)| for Example 4.17

(y1, y2) N = 4 N = 8 N = 16

(0.00, 0.00) 0 0 0
(0.25, 0.25) 3.327e− 07 1.637e− 08 2.309e− 09
(0.50, 0.50) 5.312e− 06 6.591e− 07 9.297e− 08
(0.75, 0.75) 7.059e− 05 1.128e− 05 1.591e− 06
(1.00, 1.00) 4.649e− 04 7.571e− 05 1.068e− 05
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Table 4.7: Maximum absolute error E(N,M) with N =M and p = 3 for Example 4.17

N E(N,M) Rate
2 0.0023618004
4 0.0004648727 2.3449
8 0.0000757084 2.6183
16 0.0000106795 2.8256

Figure 4.10: (a) Absolute error function |µ(y1, y2) − µ4,4(y1, y2)|, (b) Absolute error function
|µ(y1, y2)− µ16,16(y1, y2)| with p = 3 for Example 4.17

(a) (b)

Figure 4.11: log10(L
∞ − errors) of µN,M (y1, y2) for N = 5 versus M for Example 4.17
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4.4 Concluding remarks

This chapter outlined a novel approach for approximating the solution of the two-dimensional
high-order PVIDEs through the application of piecewise collocation approach based on the two-
dimensional Taylor polynomials. The proposed method offered the advantage of obtaining ap-
proximate solutions directly through iterative formulas, eliminating the requirement of solving
any algebraic system. As far as we know, it is the first attempt to solve two-dimensional high-
order PVIDEs using two-dimensional Taylor polynomials. In addition, a new theorem was derived
that ensures the convergence of the presented approach. The efficacy of the developed approach
stands out as demonstrated through a comparative analysis of numerical results across various
examples in existing literature.
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Conclusion and perspectives

In this thesis, a new numerical approach utilizing two-dimensional Taylor polynomials to ap-
proximate solutions for linear and certain nonlinear Volterra 2D-PIDEs was developed. These
equations encompass first, second, and arbitrary orders, each with its set of initial conditions
within the real polynomial spline space S(−1)

p−1,p−1. The employed Taylor collocation method ex-
hibits high accuracy and convergence rates. Its primary advantage lies in providing approximate
solutions directly through iterative formulas, eliminating the need to solve algebraic systems. This
feature renders the numerical solution process for such problems straightforward and computa-
tionally efficient.

In each of the three studies, the derived approaches have been subjected to theoretical valida-
tion. The error analysis has confirmed their convergence to order p, where p−1 denotes the degree
of the Taylor polynomials used in both directions. Moreover, the incorporation of various numer-
ical examples serves to illustrate the method’s convergence and validate the theoretical estimates.
These numerical results were presented through different tables and figures, each highlighting that
even with a small number of parameters, high accuracy is achievable. The computational effort
required was minimal and executed on a personal computer. The obtained results attest to the
practical reliability, speed, and ease of implementation of the proposed method.

Finally, further investigations into such problems will involve expanding the current numerical
method utilized to approximate the second-order 2D-PVIDE of the form (3.1) to approximate
solutions for similar and more specific equations. For example:

• Development of a novel approach to solve the general second-order linear 2D-PVIDE under
appropriate initial conditions.

• Development of an innovative approach to solve the linear fractional 2D-PVIDE under ap-
propriate initial conditions.

• Development of a pioneering approach to solve the linear weakly singular 2D-PVIDEs under
appropriate initial conditions.

• Development of an innovative approach to solve the linear two-dimensional mixed Volterra-
Fredholm PIDEs under appropriate initial conditions.

Some of these equations are currently under study, with further considerations for generalizing
the use of this method.
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