University Center

Institute: Mathematics and Computer Sciences
Order ${ }^{\circ}$:
Matricule : M103/2021
Ministry of Higher Education and Scientific Research

www.centre-univ-mila.dz

Thesis

Submitted in partial fulfilment of the requirements
for the degree of Doctorate $3^{\text {th }}$ cycle (LMD)

Dynamic behavior of multidimensional systems of difference equations

Field: Mathematics
Specialty: Dynamical systems

Presented and defended by: Allam Asma

In front of the jury:

Abdelouahab Mohammed-Salah	Professor	Abdelhafid Boussouf Univ-Center. of Mila	Chairman
Halim Yacine	Professor	Abdelhafid Boussouf Univ-Center. of Mila	Supervisor
Touafek Nouressadat	Professor	Mohamed Seddik Ben Yahia Univ. of Jijel	Examiner
Boukoucha Rachid	Professor	Abderhmane Mira Univ. of Bejaia	Examiner
Kaouache Smail	M.C.A	Abdelhafid Boussouf Univ-Center. of Mila	Examiner
Bououden Rabah	M.C.A	Abdelhafid Boussouf Univ-Center. of Mila	Examiner

University year: 2023/2024

Acknowledgements

This thesis was only made possible with the assistance of several individuals, to whom I wish to extend my heartfelt appreciation. I am deeply thankful to all the individuals who played a crucial role in the completion of this thesis. Each of them contributed significantly and was instrumental in the success of this academic project.

First and foremost, I would like to extend my heartfelt thanks to my thesis advisor, Mr. Yacine Halim. His constant availability, and insightful guidance have been invaluable throughout my research journey. Thanks to his wise counsel, I was able to overcome obstacles and make significant progress in my reflections. His contribution to this thesis goes far beyond his role as an academic supervisor, and I am profoundly grateful to him.

I also want to express my gratitude to the members of the jury for their interest in my research work. Their relevant comments and constructive suggestions helped enrich my thinking and improve the quality of my thesis. Their commitment to academic excellence has been a source of inspiration throughout this process.

A big thank to the administrators of the doctoral program at the University Center of Mila for their continuous support. Their expertise and dedication have helped create an environment conducive to research and learning, where I could develop my skills and broaden my academic horizons.

I also wish to convey my gratitude to my fellow doctoral students, whose collaboration and exchange of ideas enriched my academic experience. Their mutual support and camaraderie were a source of comfort and motivation throughout this demanding

Acknowledgements

journey.
Finally, my sincere thanks go to all the individuals who contributed directly or indirectly to the completion of this thesis. Their support, encouragement, and commitment were crucial to achieving this outcome. I am deeply grateful to them for their valuable assistance and trust in me.

Abstract

In the realm of dynamical systems, examining how solutions of systems of difference equations behave over time holds profound significance as it unveils the underlying patterns and trajectories that guide the evolution of various systems. This thesis delves into finding the form of solutions for specific multidimensional systems of difference equations and studying their behavior. Specifically, we are interested in a discrete community model, the form and the asymptotic behavior of solutions to a close-tocyclic multidimensional difference equations system, and the convergence of solutions of a two-dimensional system of higher-order difference equations.

Several results are then presented about the form of solutions, the asymptotic behavior, the global attractivity, the rate of convergence, and the convergence of solutions, in addition to numerous simulations which allow confirming and bringing out our contributions.

Keywords: Systems of difference equations, equilibrium points, qualitative study, local stability, asymptotic behavior, rate of convergence.

في مجال الأنظمة الديناميكية، تحمل دراسة السلوك المقارب لحلول معادلات الفروق أهمية عميقة لأها تكشف النقاب عن الأنماط والمسـارات الأسـاسية التي توجها تطور الزٔنظمة المختلفة. تعنى هذه الڭطروحة بإيجاد ودراسة سلوك الحلول لبعض الْنظمة متعددة الأبعاد لمعادلات الفروق. على وجه التحديد، نحن مهتمون بنموذج مجتمعي منفصل وبشكل الحلول والسلوك المقارب لنظام متعدد الأبعاد قربب من الدوري لمعادلات الفروق، وتقارب حلول نظام ثنائي الأبعاد من معادلات الفروق ذات الرتب العليا. يتم تقديم العديد من النتائج حول شكل الحلول، السلوك المقارب، الجذب العام، تقارب الحلول، ومعدل التقارب، بالإضافة إلى العديد من عمليات المحاكاة التي تسمح بتأكيد وإبراز مسـاهماتنا.

الكلمـات الكسـاسـية: أنظمة معادلات الفروق، نقاط التوازن، الدراسة النوعية، الاستقرار المحلي، السلوك المقارب، معدل التقارب.

Résumé

Dans le domaine des systèmes dynamiques, l'étude du comportement asymptotique des solutions des systèmes d'équations aux différences revêt une signification profonde, car elle révèle les schémas sous-jacents et les trajectoires qui guident l'évolution de divers systèmes. Cette thèse se consacre à la recherche et à l'étude du comportement des solutions de certains systèmes multidimensionnels d'équations aux différences. Plus précisément, nous nous intéressons à un modèle discret de communauté, à la forme et au comportement asymptotique des solutions d'un système multidimensionnel proche du cyclique d'équations aux différences, ainsi qu'à la convergence des solutions d'un système bidimensionnel d'équations aux différences d'ordre supérieur.

Ensuite, plusieurs résultats sont présentés, notamment concernant la forme des solutions, le comportement asymptotique, l'attractivité globale, la convergence des solutions et le taux de convergence. De plus, de nombreuses simulations sont réalisées pour confirmer et mettre en évidence nos contributions.

Mots-clés: Systèmes d'équations aux différences, points d'équilibre, étude qualitative, stabilité locale, comportement asymptotique, ordre de convergence.

Table of contents

General introduction 1
1 Preliminaries and solvability of a multidimensional close-to-cyclic system of difference equations 4
1.1 Preliminaries 4
1.1.1 Linear difference equations 5
1.1.2 Nonlinear difference equations 9
1.1.3 About stability 10
1.1.4 System of nonlinear difference equations 11
1.1.5 About stability 14
1.2 Solvability of a multidimensional close-to-cyclic system of difference equations 17
1.2.1 Auxiliary Results 18
1.2.2 Main results 22
1.2.3 Numerical examples 31
2 On a symmetric system of higher-order difference equations 39
2.1 Introduction 39
2.2 An expansion of the principal theorem outlined in [52] 41
2.3 Understanding system (2.5) 57
2.4 Numerical examples 60
3 Dynamical behavior of a possible discrete community model 64
3.1 Introduction 64
3.2 Justifying the choice of positive initial conditions 66
3.3 Dynamical behavior of system (3.2) 71
3.3.1 Local stability 74
3.3.2 Global stability 78
3.3.3 Rate of convergence 82
General conclusion and outlook 87
Bibliography 89

General introduction

Researchers and scientists from various fields are becoming increasingly interested in the difference equations theory. Consequently, numerous papers have been published addressing difference equations and systems thereof. Some of them can be found in previous research (see for example [1, 12, 21, 28, 30, 31, 33, 34, 41, 43, 55, 58]).

The primary contribution of this thesis lies in its proposal of closed-form solutions for multidimensional systems of difference equations. This extension to higher dimensions is noteworthy, as many existing methods are tailored for lower-dimensional systems. We effectively demonstrate the novelty of our approach by comparing it to existing literature. The results presented in the thesis are not only new but also capable of generalizing previous findings, thus advancing the current state of research in this area.

In the introductory portion of our first chapter, we lay out fundamental definitions and significant findings relevant to difference equations and the systems they encompass. These foundational concepts serve as a groundwork for us to delve into the core focus of this thesis. Our primary goal involves conducting a thorough qualitative investigation aimed at discovering explicit solutions for specific types of nonlinear difference equations systems. These systems may include multidimensional systems and symmetric systems, which add complexity and richness to our analytical exploration.

Multidimensional difference equations systems are like building blocks for understanding
how things change over time. They are used in many areas, like economics to understand money growth, and in biology to study how animals in an environment interact.

In the second section of our first chapter, we bring forth a fresh category of nonlinear difference equations systems characterized by a multitude of interconnected equations arranged in a distinctive manner. We meticulously analyze the structure of the following system, paying close attention to its intricate connections

$$
y_{n+1}^{(i)}=\frac{a_{i} y_{n}^{(i+1)}\left(y_{n-k}^{(i+1)}\right)^{p_{i+1}}+b_{i}}{\left(y_{n-k+1}^{(i)}\right)^{p_{i}}} ; \quad n \in \mathbb{N}_{0},
$$

where $y_{n}^{(i+k)}=y_{n}^{(i)}, p_{i+k}=p_{i}, a_{i+k}=a_{i}, b_{i+k}=b_{i} ; i=\overline{1, k}$, the initial values $y_{-k^{\prime}}^{(i)} y_{-k+1^{\prime}}^{(i)}, \ldots, y_{0}^{(i)}$ and the parameters a_{i} and $b_{i}, i=\overline{1, k}$ are positive real numbers and $p_{i}, i=\overline{1, k}$, are real numbers. Our main emphasis is on unraveling the methods for representing solutions to this complex array of equations. Through detailed examination and scrutiny, we aim to provide insights into the behavior and properties of solutions within this specific framework.

In the study of how things change over time, there is also an important group of systems called symmetric systems of nonlinear difference equations. These systems exhibit a regular pattern and help us to understand how connected things change together. They are used in many domains, ranging from modeling chemical interactions to analyzing the stability of physical systems. For instance, these systems are employed to study synchronized oscillations in neural networks, as well as to analyze collective animal movements in behavioral biology.

Taking inspiration from earlier studies, the second chapter of this thesis delves into a new type of symmetric system involving nonlinear difference equations. This system is characterized by its distinctive symmetry properties, which play a crucial role in its dynamics and behavior and affect how the system's equations work. Through comprehensive analysis and investigation, we want to study the system below carefully
to understand it better and show what makes it different

$$
x_{n+1}=\frac{x_{n-(2 k+1)}}{1+y_{n-k}}, y_{n+1}=\frac{y_{n-(2 k+1)}}{1+x_{n-k}}, n, k \in \mathbb{N}_{0}
$$

the initial values $x_{-(2 k+1)}, x_{-2 k}, \ldots, x_{0}, y_{-(2 k+1)}, y_{-2 k}, \ldots, y_{0}$ are non-negative real numbers.
In the world of biology, using difference equations helps us understand how animal populations change. These equations create models that show how animal numbers go up and down over time, and how different species interact. For example, they help researchers study how animals grow, compete for food, and interact with predators.

Additionally, these models help us understand how environmental factors like habitat and reproduction affect animal populations over time. By testing different scenarios and predicting population trends, scientists can plan ways to protect habitats and manage biodiversity.

Studying these models not only helps us understand basic ecological processes but also guides conservation efforts and predicts the effects of environmental changes. In the final chapter, we are going to take a closer look at the following specific type of complex equations system to better understand and manage animal populations in dynamic environments

$$
x_{n+1}=\frac{a_{1} x_{n}-a_{2} x_{n} y_{n}}{1+a_{3} x_{n}}, \quad y_{n+1}=\frac{a_{4} y_{n}+a_{5} y_{n} z_{n}}{1+a_{6} y_{n}}, \quad z_{n+1}=\frac{a_{7} z_{n}+a_{8} z_{n} x_{n}}{1+a_{9} z_{n}}, \quad n \in \mathbb{N}_{0}
$$

where the parameters $a_{i}, i=\overline{1,9}$ and the initial values x_{0}, y_{0} and z_{0} are positive real numbers.

Preliminaries and solvability of a multidimensional close-to-cyclic system of difference equations

1.1 Preliminaries

The first part of our opening chapter aims to explain difference equations and their systems in simple terms. We want to make it easy for readers to understand these ideas. Also, we talk about stability, which means whether these equations and systems stay the same or change over time. This helps us see how these math models work in different situations.

Additionally, we talk about specific theorems. These are important ideas that we are going to use a lot in our thesis. They help us analyze and understand the math parts of our research. They give us important rules and ideas to follow in our study.

In summary, this first part of our opening chapter sets the stage for our thesis. We explain key concepts clearly, talk about stability in difference equations and their systems, and introduce important theorems that will help us throughout our research.

For these preliminary elements, we refer to the following references [10], [14],[18], [22] and [41].

This first section of our first chapter gives some definitions and general results concerning equations and systems of difference equations, stability, and theorems that we are going to use in the rest of our thesis.

1.1.1 Linear difference equations

The linear difference equations' study is highly important in applied mathematics. These equations are very useful tools for representing and understanding how things change and vary in different domains. In this part, we are going to explain what they are and present definitions and theorems that will help us better understand the concepts and the methods we will see later on.

Definition 1.1.1 An equation expressed as

$$
\begin{equation*}
x_{n+k}+p_{1}(n) x_{n+k-1}+\cdots+p_{k}(n) x_{n}=g(n), n \in \mathbb{N}_{n_{0}} \tag{1.1}
\end{equation*}
$$

is called Linear difference equation of order k as long as $p_{k}(n) \neq 0$, where

$$
p_{1}(n), p_{2}(n), \ldots, p_{k}(n), g(n) \text { are well-defined functions on } \mathbb{N}_{n_{0}} \text {. }
$$

Remarks 1.1.1

In general, we associate k initial values with equation (1.1).

$$
\begin{equation*}
x_{n_{0}}=c_{1}, x_{n_{0}+1}=c_{2}, \ldots, x_{n_{0}+k-1}=c_{k} \tag{1.2}
\end{equation*}
$$

$c_{i}, i=\overline{1, k}$ represent real or complex constants.

Definition 1.1.2 Equation (1.1) with $g(n)=0, \forall n \geq n_{0}$, is called homogeneous linear
difference equation, and it is written as follows

$$
\begin{equation*}
x_{n+k}+p_{1}(n) x_{n+k-1}+\cdots+p_{k}(n) x_{n}=0 . \tag{1.3}
\end{equation*}
$$

Definition 1.1.3 A sequence $\left\{x_{n}\right\}_{n \geq n_{0}}$ is considered a solution to equation (1.1) with the initial values (1.2), if it satisfies relation (1.1) and the initial values (1.2).

Theorem 1.1.1 [14]

Equation (1.1) with the initial values (1.2) has one and only one solution.

Theorem 1.1.2 [14]

The set S of the solutions to the difference equation (1.3) is a vector space on \mathbb{K} of dimension K.

Definition 1.1.4 A set of k linearly independent solutions of the difference equation (1.3) is referred to as a fundamental set of solutions.

The next theorem illustrates that the homogeneous linear difference equation (1.3) always admits a fundamental set of solutions (i.e. a basis of solutions).

Theorem 1.1.3 [14, 41]

- If $p_{k}(n) \neq 0$, for all $n \geq n_{0}$, the homogeneous linear difference equation (1.3) possesses a fundamental set of solutions.
- If $x_{n}^{1}, x_{n}^{2}, \ldots, x_{n}^{k}$ are solutions of equation (1.3), so

$$
x_{n}=a_{1} x_{n}^{1}+a_{2} x_{n}^{2}+\cdots+a_{k} x_{n}^{k}
$$

is also a solution of equation (1.3), where $a_{i}, i=\overline{1, k}$, are arbitrary constants.

Corollary 1.1.1 Suppose $\left\{\left(x_{n}^{1}\right)_{n \geq n_{0}},\left(x_{n}^{2}\right)_{n \geq n_{0}}, \ldots,\left(x_{n}^{k}\right)_{n \geq n_{0}}\right\}$ form a fundamental set of solutions to equation (1.3). So, the general solution of (1.3) is represented

$$
x_{n}=\sum_{i=1}^{k} a_{i} x_{n}^{i}
$$

where $a_{i}, i=\overline{1, k}$, are arbitrary constants.

Theorem 1.1.4 [14, 41]
Let $\left\{\left(x_{n}^{1}\right)_{n \geq n_{0}},\left(x_{n}^{2}\right)_{n \geq n_{0}}, \ldots,\left(x_{n}^{k}\right)_{n \geq n_{0}}\right\}$ be a fundamental set of solutions to equation (1.3) and $\left(x_{n}^{p}\right)_{n \geq n_{0}}$ a particular solution to equation (1.1), then any general solution of equation (1.1) takes the form

$$
x_{n}=\sum_{i=1}^{k} a_{i} x_{n}^{i}+x_{n}^{p}, \quad n \geq n_{0} .
$$

Linear difference equations with constant coefficients

In what follows, we focus on homogeneous linear difference equations with constant coefficients, i.e.

$$
\begin{equation*}
x_{n+k}+p_{1} x_{n+k-1}+\cdots+p_{k} x_{n}=0 \tag{1.4}
\end{equation*}
$$

$p_{i}, i=\overline{1, k}$ represent real or complex constants.

Resolution of the homogeneous linear difference equations with constant coefficients

Our aim is to identify a fundamental set of solutions and thereby determine the general solution to equation (1.4).

Theorem 1.1.5 [14, 22]
Equation (1.4) has solutions of the form

$$
x_{n}=\lambda^{n},
$$

where $\lambda \in \mathbb{C}^{*}$, and it verifies

$$
\begin{equation*}
p(\lambda)=\sum_{i=0}^{k} p_{i} \lambda^{k-i}=0 \tag{1.5}
\end{equation*}
$$

with $p_{0}=1$.

Definition 1.1.5 The polynomial

$$
p(\lambda)=\sum_{i=0}^{k} p_{i} \lambda^{k-i}
$$

with $p_{0}=1$, is termed the characteristic polynomial associated with equation (1.4).

Theorem 1.1.6 [14, 22]

If the roots $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ of the characteristic polynomial $p(\lambda)$ are distinct, then $\left\{\lambda_{1}^{n}, \lambda_{2}^{n}, \ldots, \lambda_{k}^{n}\right\}$ forms a fundamental set of solutions to equation (1.4).

Corollary 1.1.2 Any solution of equation (1.4) can be expressed as a linear combination of λ_{i}^{n}, where $i=\overline{1, k}$, i.e.

$$
x_{n}=\sum_{i=1}^{k} c_{i} \lambda_{i}^{n}, c_{i} \in \mathbb{K},
$$

where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are distinct roots of $p(\lambda)$.

Theorem 1.1.7 [14, 22]
Suppose that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}, r \leq k$, are the roots of the characteristic polynomial associated to equation (1.4), with degrees of multiplicity $m_{1}, m_{2}, \ldots, m_{r}$ respectively $\left(\sum_{i=1}^{r} m_{i}=k\right)$, so

$$
\begin{gathered}
\left\{\left(\lambda_{1}^{n}\right)_{n \geq n_{0}},\left(n \lambda_{1}^{n}\right)_{n \geq n_{0}},\left(n^{2} \lambda_{1}^{n}\right)_{n \geq n_{0}}, \ldots,\left(n^{m_{1}-1} \lambda_{1}^{n}\right)_{n \geq n_{0}},\left(\lambda_{2}^{n}\right)_{n \geq n_{0}},\left(n \lambda_{2}^{n}\right)_{n \geq n_{0}},\left(n^{2} \lambda_{2}^{n}\right)_{n \geq n_{0}}, \ldots,\right. \\
\left.\left(n^{m_{2}-1} \lambda_{2}^{n}\right)_{n \geq n_{0}}, \ldots,\left(\lambda_{r}^{n}\right)_{n \geq n_{0}},\left(n \lambda_{r}^{n}\right)_{n \geq n_{0}},\left(n^{2} \lambda_{r}^{n}\right)_{n \geq n_{0}}, \ldots,\left(n^{m_{r}-1} \lambda_{r}^{n}\right)_{n \geq n_{0}}\right\},
\end{gathered}
$$

is a fundamental set of equation (1.4).

Corollary 1.1.3 [14]

The solution of equation (1.4) is expressed as

$$
y_{n}=\sum_{i=1}^{r} \sum_{j=0}^{m_{i}-1} c_{i j} n^{j} \lambda_{i}^{n}, \quad c_{i j} \in \mathbb{K},
$$

where

- The parameter $r \leq k$ denotes the number of distinct roots of the characteristic equation (1.5).
- The parameter λ_{i} denotes one of the roots of the characteristic equation (1.5).
- The parameter m_{i} denotes the degree of multiplicity of the root λ_{i}.
- The coefficients $c_{i j}$ are constants determined from the initial values.

1.1.2 Nonlinear difference equations

Nonlinear difference equations are very useful tools for representing various phenomena in many fields. Unlike linear equations, these have terms that are not linear, which can make them more challenging to understand. In this part, we are going to examine these equations closely.

Assume I is a part of \mathbb{R}, and $f: I^{k+1} \longrightarrow I$ is a continuously differentiable function.

Definition 1.1.6 A difference equation of order $(k+1)$,

$$
\begin{equation*}
x_{n+1}=f\left(x_{n}, x_{n-1}, \ldots, x_{n-k}\right), \quad n=0,1, \ldots, \tag{1.6}
\end{equation*}
$$

with $x_{0}, x_{-1}, \ldots, x_{-k} \in I$, is said to be nonlinear if it is not of the form (1.1).

Definition 1.1.7 A point $\bar{x} \in I$ is said to be an equilibrium point of equation (1.6) if

$$
\bar{x}=f(\bar{x}, \bar{x}, \ldots, \bar{x})
$$

Preliminaries

in other words

$$
x_{n}=\bar{x}, \quad \forall n \geq-k .
$$

Definition 1.1.8 An interval $J \subseteq I$ is said to be an invariant interval of equation (1.6) if

$$
x_{-k}, x_{-k+1}, \cdots, x_{0} \in J \Rightarrow x_{n} \in J, \quad n>0 .
$$

1.1.3 About stability

If we are unable to find a solution, we resort to a qualitative study, as the most important characteristic that can be studied is stability.

Definition 1.1.9 Suppose that \bar{x} is an equilibrium point of (1.6),

1. \bar{x} is considered locally stable if

$$
\forall \varepsilon>0, \exists \delta>0, \forall x_{-k}, x_{-k+1}, \ldots, x_{0} \in I:\left|x_{-k}-\bar{x}\right|+\left|x_{-k+1}-\bar{x}\right|+\cdots+\left|x_{0}-\bar{x}\right|<\delta,
$$

then

$$
\left|x_{n}-\bar{x}\right|<\varepsilon, \quad \forall n \geq-k .
$$

2. \bar{x} is considered locally asymptotically stable if

- \bar{x} is locally stable.
- $\exists \gamma>0, \forall x_{-k}, x_{-k+1}, \ldots, x_{0} \in I:\left|x_{-k}-\bar{x}\right|+\left|x_{-k+1}-\bar{x}\right|+\cdots+\left|x_{0}-\bar{x}\right|<\gamma$, so

$$
\lim _{n \rightarrow+\infty} x_{n}=\bar{x} .
$$

3. \bar{x} is considered globally attractive if

$$
\forall x_{-k}, x_{-k+1}, \ldots, x_{0} \in I, \quad \lim _{n \rightarrow+\infty} x_{n}=\bar{x} .
$$

4. \bar{x} is considered globally asymptotically stable if

- \bar{x} is locally stable.
- \bar{x} is globally attractive.

5. \bar{x} is considered unstable if it lacks local stability.

Definition 1.1.10 We call linear difference equation associated with equation (1.6), the equation of the form below

$$
\begin{equation*}
y_{n+1}=p_{0} y_{n}+p_{1} y_{n-1}+\cdots+p_{k} y_{n-k} \tag{1.7}
\end{equation*}
$$

where

$$
p_{i}=\frac{\partial f}{\partial u_{i}}(\bar{x}, \bar{x}, \ldots, \bar{x}), \text { for } i=\overline{0, k}
$$

and

$$
\begin{array}{rcc}
f: & I^{k+1} & \longrightarrow I \\
\left(u_{0}, u_{1}, \ldots, u_{k}\right) & \longmapsto f\left(u_{0}, u_{1}, \ldots, u_{k}\right) .
\end{array}
$$

Theorem 1.1.8 [41] (Stability by linearization)

1. If all the roots of the characteristic polynomial of the associated linear difference equation lie within the open unit disk $|\lambda|<1$, then the equilibrium point of (1.6) is locally asymptotically stable.
2. If there exists at least one root of the characteristic polynomial of the associated linear difference equation with a modulus exceeding one, then the equilibrium point of (1.6) is unstable.

1.1.4 System of nonlinear difference equations

Suppose $f^{(1)}, f^{(2)}, \ldots, f^{(p)}$ denote functions that are continuously differentiable, such that

$$
f^{(i)}: I_{1}^{k+1} \times I_{2}^{k+1} \times \cdots \times I_{p}^{k+1} \rightarrow I_{i}^{k+1}, \quad i=\overline{1, p},
$$

with $I_{i}, i=\overline{1, p}$ present real intervals.
Consider the following p-dimensional system

$$
\left\{\begin{align*}
x_{n+1}^{(1)} & =f^{(1)}\left(x_{n}^{(1)}, x_{n-1^{\prime}}^{(1)} \ldots, x_{n-k^{\prime}}^{(1)} x_{n}^{(2)}, x_{n-1^{(2)}}^{(2)}, \ldots, x_{n-k^{\prime}}^{(2)} \ldots \ldots, x_{n}^{(p)}, x_{\left.n-1^{(p)}, \ldots, x_{n-k}^{(p)}\right)}^{x_{n+1}^{(2)}}=\right. \tag{1.8}\\
& \vdots f^{(2)}\left(x_{n}^{(1)}, x_{n-1}^{(1)}, \ldots, x_{n-k^{\prime}}^{(1)} x_{n}^{(2)}, x_{n-1^{(2)}}, \ldots, x_{n-k^{\prime}}^{(2)} \ldots \ldots, x_{n}^{(p)}, x_{\left.n-1^{(p)}, \ldots, x_{n-k}^{(p)}\right)}\right. \\
x_{n+1}^{(p)} & =f^{(p)}\left(x_{n}^{(1)}, x_{n-1^{1}}^{(1)}, \ldots, x_{n-k^{\prime}}^{(1)} x_{n}^{(2)}, x_{n-1^{2}}^{(2)}, \ldots, x_{n-k^{\prime}}^{(2)}, \ldots, x_{n}^{(p)}, x_{n-1^{(p)}}^{(p)}, \ldots, x_{n-k}^{(p)}\right)
\end{align*}\right.
$$

with $n, k \in \mathbb{N}_{0},\left(x_{-k^{\prime}}^{(i)} x_{-k+1^{(i)}}^{(i)} \ldots, x_{0}^{(i)}\right) \in I_{i}^{k+1}, \quad i=\overline{1, p}$.
Let's establish the function

$$
F: I_{1}^{(k+1)} \times I_{2}^{(k+1)} \times \cdots \times I_{p}^{(k+1)} \longrightarrow I_{1}^{(k+1)} \times I_{2}^{(k+1)} \times \cdots \times I_{p}^{(k+1)}
$$

as follow
$F(X)=\left(f_{0}^{(1)}(X), f_{1}^{(1)}(X), \ldots, f_{k}^{(1)}(X), f_{0}^{(2)}(X), f_{1}^{(2)}(X), \ldots, f_{k}^{(2)}(X), \ldots, f_{0}^{(p)}(X), f_{1}^{(p)}(X), \ldots, f_{k}^{(p)}(X)\right)$,
with

$$
\begin{gathered}
X=\left(u_{0}^{(1)}, u_{1}^{(1)}, \ldots, u_{k}^{(1)}, u_{0}^{(2)}, u_{1}^{(2)}, \ldots, u_{k}^{(2)}, \ldots, u_{0}^{(p)}, u_{1}^{(p)}, \ldots, u_{k}^{(p)}\right)^{T}, \\
f_{0}^{(i)}(X)=f^{(i)}(X), \quad f_{1}^{(i)}(X)=u_{0}^{(i)}, \ldots, f_{k}^{(i)}(X)=u_{k-1}^{(i)}, \quad i=\overline{1, p} .
\end{gathered}
$$

Let's put

$$
X_{n}=\left(x_{n}^{(1)}, x_{n-1}^{(1)}, \ldots, x_{n-k^{\prime}}^{(1)} x_{n}^{(2)}, x_{n-1}^{(2)}, \ldots, x_{n-k^{\prime}}^{(2)}, \ldots, x_{n}^{(p)}, x_{n-1}^{(p)}, \ldots, x_{n-k}^{(p)}\right)^{T} .
$$

Thus, system (1.8) can be expressed as the following one

$$
\begin{equation*}
X_{n+1}=F\left(X_{n}\right), \quad n=0,1,2, \ldots \tag{1.9}
\end{equation*}
$$

that's to say

$$
\left\{\begin{aligned}
x_{n+1}^{(1)} & =f^{(1)}\left(x_{n}^{(1)}, x_{n-1^{(1)}}^{(1)}, \ldots, x_{n-k^{\prime}}^{(1)} x_{n}^{(2)}, x_{n-1^{\prime}}^{(2)}, \ldots, x_{n-k^{\prime}}^{(2)}, \ldots, x_{n}^{(p)}, x_{n-1}^{(p)}, \ldots, x_{n-k}^{(p)}\right) \\
x_{n}^{(1)} & =x_{n}^{(1)} \\
& \vdots \\
x_{n-k+1}^{(1)} & =x_{n-k+1}^{(1)} \\
x_{n+1}^{(2)} & =f^{(2)}\left(x_{n}^{(1)}, x_{n-1^{(1)}, \ldots, x_{n-k^{\prime}}^{(1)}(2)}^{(2)} x_{n-1^{\prime}}^{(2)}, \ldots, x_{n-k^{\prime}}^{(2)}, \ldots, x_{n}^{(p)}, x_{n-1}^{(p)}, \ldots, x_{n-k}^{(p)}\right) \\
x_{n}^{(2)} & =x_{n}^{(2)} \\
& \vdots \\
x_{n-k+1}^{(2)} & =x_{n-k+1}^{(2)} \\
& \vdots \\
x_{n+1}^{(p)} & =f^{(p)}\left(x_{n}^{(1)}, x_{n-1^{(1)}}^{(1)}, \ldots, x_{n-k^{\prime}}^{(1)}, x_{n}^{(2)}, x_{n-1^{\prime}}^{(2)}, \ldots, x_{n-k^{\prime}}^{(2)}, \ldots ., x_{n}^{(p)}, x_{n-1}^{(p)}, \ldots, x_{n-k}^{(p)}\right) \\
x_{n}^{(p)} & =x_{n}^{(p)} \\
& \vdots \\
x_{n-k+1}^{(p)} & =x_{n-k+1}^{(p)}
\end{aligned}\right.
$$

Definition 1.1.11

1. $\left(\overline{x^{(1)}}, \overline{x^{(2)}}, \ldots, \overline{x^{(p)}}\right)$ is considered an equilibrium point of system (1.8) if

$$
\begin{aligned}
\overline{x^{(1)}} & =f^{(1)}\left(\overline{x^{(1)}}, \overline{x^{(1)}}, \ldots, \overline{x^{(1)}}, \overline{x^{(2)}}, \overline{x^{(2)}}, \ldots, \overline{x^{(2)}}, \ldots, \overline{x^{(p)}}, \overline{x^{(p)}}, \ldots, \overline{x^{(p)}}\right), \\
\overline{x^{(2)}} & =f^{(2)}\left(\overline{x^{(1)}}, \overline{x^{(1)}}, \ldots, \overline{x^{(1)}}, \overline{x^{(2)}}, \overline{x^{(2)}}, \ldots, \overline{x^{(2)}}, \ldots, \overline{x^{(p)}}, \overline{x^{(p)}}, \ldots, \overline{x^{(p)}}\right), \\
& \vdots \\
\overline{x^{(p)}}= & f^{(p)}\left(\overline{x^{(1)}}, \overline{x^{(1)}}, \ldots, \overline{x^{(1)}}, \overline{x^{(2)}}, \overline{x^{(2)}}, \ldots, \overline{x^{(2)}}, \ldots, \overline{x^{(p)}}, \overline{x^{(p)}}, \ldots, \overline{x^{(p)}}\right) .
\end{aligned}
$$

2. $\bar{X}=\left(\overline{x^{(1)}}, \overline{x^{(1)}}, \ldots, \overline{x^{(1)}}, \overline{x^{(2)}}, \overline{x^{(2)}}, \ldots, \overline{x^{(2)}}, \ldots, \overline{x^{(p)}}, \overline{x^{(p)}}, \ldots, \overline{x^{(p)}}\right) \in I_{1}^{k+1} \times I_{2}^{k+1} \times \ldots \times I_{p}^{k+1}$ represents an equilibrium of system (1.9) if

$$
\bar{X}=F(\bar{X}) .
$$

1.1.5 About stability

The stability of difference equations is a very important aspect when studying them. It concerns how the solutions of a system evolve over time in response to changes or disturbances in the initial conditions or parameters. Studying stability allows us to determine whether a system tends to remain stable, oscillate, or become unstable over time. This helps us evaluate how robust and predictable the system is. By analyzing stability, we can better understand how the system will behave in the long run and predict how it will respond to changes.

Definition 1.1.12 Suppose \bar{X} represents an equilibrium point of system (1.9) and ||.\| signifies a norm, for instance, the Euclidean norm.

1. \bar{X} is said to be stable (or locally stable) if for any $\varepsilon>0$, there exists $\delta>0$ such that whenever $\left\|X_{0}-\bar{X}\right\|<\delta$ it follows that $\left\|X_{n}-\bar{X}\right\|<\varepsilon$, for $n \geq 0$.
2. \bar{X} is said to be asymptotically stable (or locally asymptotically stable) if it is stable and if there exists $\gamma>0$, such that whenever $\left\|X_{0}-\bar{X}\right\|<\gamma$ it follows that

$$
X_{n} \rightarrow \bar{X}, \quad n \rightarrow+\infty .
$$

3. \bar{X} is said to be globally attractive (similarly globally attractive of basin of attraction $G \subseteq I_{1}^{k+1} \times I_{2}^{k+1} \times \ldots \times I_{p}^{k+1}$), if for each X_{0} (similarly for each $X_{0} \in G$)

$$
X_{n} \rightarrow \bar{X}, \quad n \rightarrow+\infty .
$$

4. \bar{X} is said to be globally asymptotically stable (similarly globally asymptotically stable relative to G) if it is locally stable, and if for each X_{0} (similarly for each $X_{0} \in G$),

$$
X_{n} \rightarrow \bar{X}, \quad n \rightarrow+\infty .
$$

5. \bar{X} is said to be unstable if it lacks local stability.

Remark 1.1.1 It is clear that $\left(\overline{x^{(1)}}, \overline{x^{(2)}}, \ldots, \overline{x^{(p)}}\right) \in I_{1} \times I_{2} \times \cdots \times I_{p}$ is an equilibrium of (1.8) just in case $\bar{X}=\left(\overline{x^{(1)}}, \overline{x^{(1)}}, \ldots, \overline{x^{(1)}}, \overline{x^{(2)}}, \overline{x^{(2)}}, \ldots, \overline{x^{(2)}}, \ldots, \overline{x^{(p)}}, \overline{x^{(p)}}, \ldots, \overline{x^{(p)}}\right) \in I_{1}^{k+1} \times I_{2}^{k+1} \times \ldots \times I_{p}^{k+1}$ is an equilibrium of (1.9).

Definition 1.1.13 (Associated linear system)

We call linear system associated with system (1.9) around

$$
\bar{X}=\left(\overline{x^{(1)}}, \overline{x^{(1)}}, \ldots, \overline{x^{(1)}}, \overline{x^{(2)}}, \overline{x^{(2)}}, \ldots, \overline{x^{(2)}}, \ldots, \overline{x^{(p)}}, \overline{x^{(p)}}, \ldots, \overline{x^{(p)}}\right),
$$

the system

$$
X_{n+1}=J_{F} X_{n}, \quad n=0,1,2, \ldots
$$

where J_{F} denotes the Jacobian matrix of F around the equilibrium point \bar{X}, defined as

$$
\left.\begin{array}{cccccccccccccc}
\frac{\partial f_{0}^{(1)}}{\partial u_{0}^{(1)}} & \frac{\partial f_{0}^{(1)}}{\partial u_{1}^{(1)}} & \cdots & \frac{\partial f_{0}^{(1)}}{\partial u_{k}^{(1)}} & \frac{\partial f_{0}^{(1)}}{\partial u_{0}^{(2)}} & \frac{\partial f_{0}^{(1)}}{\partial u_{1}^{(2)}} & \cdots & \frac{\partial f_{0}^{(1)}}{\partial u_{k}^{(2)}} & \cdots & \frac{\partial f_{0}^{(1)}}{\partial u_{0}^{(p)}} & \frac{\partial f_{0}^{(1)}}{\partial u_{1}^{(p)}} & \cdots & \frac{\partial f_{0}^{(1)}}{\partial u_{k}^{(p)}} \\
\frac{\partial f_{1}^{(1)}}{\partial u_{0}^{(1)}} & \frac{\partial f_{1}^{(1)}}{\partial u_{1}^{(1)}} & \cdots & \frac{\partial f_{1}^{(1)}}{\partial u_{k}^{(1)}} & \frac{\partial f_{1}^{(1)}}{\partial u_{0}^{(2)}} & \frac{\partial f_{1}^{(1)}}{\partial u_{1}^{(2)}} & \cdots & \frac{\partial f_{1}^{(1)}}{\partial u_{k}^{(2)}} & \cdots & \frac{\partial f_{1}^{(1)}}{\partial u_{0}^{(p)}} & \frac{\partial f_{1}^{(1)}}{\partial u_{1}^{(p)}} & \cdots & & \frac{\partial f_{1}^{(1)}}{\partial u_{k}^{(p)}} \\
\vdots & \vdots \\
\frac{\partial f_{k}^{(1)}}{\partial u_{0}^{(1)}} & \frac{\partial f_{k}^{(1)}}{\partial u_{1}^{(1)}} & \cdots & \frac{\partial f_{k}^{(1)}}{\partial u_{k}^{(1)}} & \frac{\partial f_{k}^{(1)}}{\partial u_{0}^{(2)}} & \frac{\partial f_{k}^{(1)}}{\partial u_{1}^{(2)}} & \cdots & \frac{\partial f_{k}^{(1)}}{\partial u_{k}^{(2)}} & \cdots & \frac{\partial f_{k}^{(1)}}{\partial u_{0}^{(p)}} & \frac{\partial f_{k}^{(1)}}{\partial u_{1}^{(p)}} & \cdots & \frac{\partial f_{k}^{(1)}}{\partial u_{k}^{(p)}} \\
\frac{\partial f_{0}^{(2)}}{\partial u_{0}^{(1)}} & \frac{\partial f_{0}^{(2)}}{\partial u_{1}^{(1)}} & \cdots & \frac{\partial f_{0}^{(2)}}{\partial u_{k}^{(1)}} & \frac{\partial f_{0}^{(2)}}{\partial u_{0}^{(2)}} & \frac{\partial f_{0}^{(2)}}{\partial u_{1}^{(2)}} & \cdots & \frac{\partial f_{0}^{(2)}}{\partial u_{k}^{(2)}} & \cdots & \frac{\partial f_{0}^{(2)}}{\partial u_{0}^{(p)}} & \frac{\partial f_{0}^{(2)}}{\partial u_{1}^{(p)}} & \cdots & \frac{\partial f_{0}^{(2)}}{\partial u_{k}^{(p)}} \\
\vdots & \vdots \\
\frac{\partial f_{0}^{(p)}}{\partial u_{0}^{(1)}} & \frac{\partial f_{0}^{(p)}}{\partial u_{1}^{(1)}} & \cdots & \frac{\partial f_{0}^{(p)}}{\partial u_{k}^{(1)}} & \frac{\partial f_{0}^{(p)}}{\partial u_{0}^{(2)}} & \frac{\partial f_{0}^{(p)}}{\partial u_{1}^{(2)}} & \cdots & \frac{\partial f_{0}^{(p)}}{\partial u_{k}^{(2)}} & \cdots & \frac{\partial f_{0}^{(p)}}{\partial u_{0}^{(p)}} & \frac{\partial f_{0}^{(p)}}{\partial u_{1}^{(p)}} & \cdots & \frac{\partial f_{0}^{(p)}}{\partial u_{k}^{(p)}} \\
\frac{\partial f_{1}^{(p)}}{\partial u_{0}^{(1)}} & \frac{\partial f_{1}^{(p)}}{\partial u_{1}^{(1)}} & \cdots & \frac{\partial f_{1}^{(p)}}{\partial u_{k}^{(1)}} & \frac{\partial f_{1}^{(p)}}{\partial u_{0}^{(2)}} & \frac{\partial f_{1}^{(p)}}{\partial u_{1}^{(2)}} & \cdots & \frac{\partial f_{1}^{(p)}}{\partial u_{k}^{(2)}} & \cdots & \frac{\partial f_{1}^{(p)}}{\partial u_{0}^{(p)}} & \frac{\partial f_{1}^{(p)}}{\partial u_{1}^{(p)}} & \cdots & \frac{\partial f_{1}^{(p)}}{\partial u_{k}^{(p)}} \\
\vdots & \vdots \\
\frac{\partial f_{k}^{(p)}}{\partial u_{0}^{(1)}} & \frac{\partial f_{k}^{(p)}}{\partial u_{1}^{(1)}} & \cdots & \frac{\partial f_{k}^{(p)}}{\partial u_{k}^{(1)}} & \frac{\partial f_{k}^{(p)}}{\partial u_{0}^{(2)}} & \frac{\partial f_{k}^{(p)}}{\partial u_{1}^{(2)}} & \cdots & \frac{\partial f_{k}^{(p)}}{\partial u_{k}^{(2)}} & \cdots & \frac{\partial f_{k}^{(p)}}{\partial u_{0}^{(p)}} & \frac{\partial f_{k}^{(p)}}{\partial u_{1}^{(p)}} & \cdots & \frac{\partial f_{k}^{(p)}}{\partial u_{k}^{(p)}}
\end{array}\right),
$$

such that

$$
f_{j}^{(i)}=f_{j}^{(i)}(\bar{X}), \quad i=\overline{1, p}, j=\overline{0, k} .
$$

Theorem 1.1.9 [41] (Stability by linearization)

1. If every eigenvalue of J_{F} lies within the open unit disk $|\lambda|<1$, in that case \bar{X} is locally asymptotically stable.
2. If at least one of the eigenvalues of J_{F} has a modulus greater than one, then \bar{X} is unstable.

Rate of convergence

Here, we are going to give two important propositions which assists in estimating the rate of convergence.

Let's consider the following difference equations system

$$
\begin{equation*}
X_{n+1}=(A+B(n)) X_{n}, \tag{1.10}
\end{equation*}
$$

with X_{n} represents a vector of dimension $m, A \in C^{m \times m}$ represents a constant matrix, and $B: \mathbb{Z}^{+} \rightarrow C^{m \times m}$ represents a matrix function that satisfies the condition

$$
\begin{equation*}
\|B(n)\| \rightarrow 0 \tag{1.11}
\end{equation*}
$$

as n approaches infinity, where $\|$.$\| signifies any matrix norm corresponding to the$ vector norm

$$
\left\|\left(x_{1}, x_{2}, \ldots, x_{m}\right)\right\|=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{m}^{2}}
$$

Proposition 1.1.1 [47] (The $1^{\text {st }}$ theorem of Perron)

Suppose condition (1.11) is met. If X_{n} represents a solution to system (1.10), then either $X_{n}=0$ for all sufficiently large n or

$$
\begin{equation*}
\rho=\lim _{n \rightarrow \infty}\left(\left\|X_{n}\right\|\right)^{\frac{1}{n}} \tag{1.12}
\end{equation*}
$$

exists and is equal to the modulus of one of the eigenvalues of A.

Proposition 1.1.2 [47] (The $2^{\text {nd }}$ theorem of Perron)

Suppose condition (1.11) is met. If X_{n} represents a solution to system (1.10), then either $X_{n}=0$ for all sufficiently large n or

$$
\begin{equation*}
\rho=\lim _{n \rightarrow \infty} \frac{\left\|X_{n+1}\right\|}{\left\|X_{n}\right\|} \tag{1.13}
\end{equation*}
$$

exists and is equal to the modulus of one of the eigenvalues of A.

1.2 Solvability of a multidimensional close-to-cyclic system of difference equations

The pursuit of solutions for systems of nonlinear difference equations has sparked significant attention within the academic sphere. However, the majority of the papers published in this aspect were limited to systems of two or three dimensions at most, as evidenced by notable references $[4,5,16,17,19,24,25,26,29,30,31,32,33,35,36,37$, $38,40,51,55,56,60,62]$.

The challenges posed by complex calculations and the lack of a straightforward method for solving nonlinear difference equations make it hard for researchers to find direct solutions. As a result, they opt for a different approach: a qualitative study of these systems, where they investigate the periodicity, the local stability, the global stability...(for instance, references such as $[12,15,21,22,23,27,28,34,41,43,46,48,61$, 63]).

All of the above motivated us to introduce the multidimensional system of nonlinear difference equations (1.14) and solve it, hoping that it will model certain phenomena and help researchers to understand them.

In the second section of this chapter, we are going to extend and refine the findings initially outlined in our publication [6]. So,we are going to find the solutions of the
following k-dimensional close-to-cyclic nonlinear difference equations system

$$
\begin{equation*}
y_{n+1}^{(i)}=\frac{a_{i} y_{n}^{(i+1)}\left(y_{n-k}^{(i+1)}\right)^{p_{i+1}}+b_{i}}{\left(y_{n-k+1}^{(i)}\right)^{p_{i}}} ; \quad n \in \mathbb{N}_{0} \tag{1.14}
\end{equation*}
$$

where $y_{n}^{(i+k)}=y_{n}^{(i)}, p_{i+k}=p_{i}, a_{i+k}=a_{i}, b_{i+k}=b_{i} ; i=\overline{1, k}$, the initial values $y_{-k^{\prime}}^{(i)} y_{-k+1^{\prime}}^{(i)}, \ldots, y_{0}^{(i)}$ and the parameters a_{i} and $b_{i}, i=\overline{1, k}$ are positive real numbers and $p_{i}, i=\overline{1, k}$, are real numbers. On top of that, we are going to examine the asymptotic behavior of the equilibrium point of system (1.14) in special cases.

1.2.1 Auxiliary Results

In this part, we are going to present several results needed to prove the main results in part 1.2.2.

Let's examine the following k-dimensional linear difference equations system

$$
\begin{equation*}
w_{n+1}^{(i)}=a_{i} w_{n}^{(i+1)}+b_{i}, \quad n \in \mathbb{N}_{0} \tag{1.15}
\end{equation*}
$$

where $w_{n}^{(i+k)}=w_{n}^{(i)}$ and $w_{0}^{(i)}, a_{i}, b_{i}, i=\overline{1, k}$ are positive real numbers.
The following auxiliary result is used for several times in the rest of the chapter.

Lemma 1.2.1 Let $\left(w_{n}^{(i)}\right)_{n \geq 0}$ be a solution to system (1.15). Then for all $n \in \mathbb{N}_{0}$

$$
w_{k n+j}^{(i)}= \begin{cases}w_{j}^{(i)}+n T_{i}, & S=1 \\ S^{n} w_{j}^{(i)}+T_{i}\left(\frac{S^{n}-1}{S-1}\right), & S \neq 1\end{cases}
$$

where, $i=\overline{1, k}, j=\overline{0, k-1}$ and

$$
\begin{equation*}
S=\prod_{l=1}^{k} a_{l}, \quad T_{i}=\sum_{r=2}^{k}\left(\prod_{l=i}^{i+r-2} a_{l}\right) b_{i+r-1}+b_{i} . \tag{1.16}
\end{equation*}
$$

Proof. The systems in (1.15) immediately imply, for $i=\overline{1, k}$, the following relations

$$
\begin{aligned}
w_{n+k}^{(i)} & =a_{i} w_{n+k-1}^{(i+1)}+b_{i} \\
& =a_{i}\left[a_{i+1} w_{n+k-2}^{(i+2)}+b_{i+1}\right]+b_{i} \\
& =a_{i} a_{i+1} w_{n+k-2}^{(i+2)}+a_{i} b_{i+1}+b_{i} \\
& =a_{i} a_{i+1}\left[a_{i+2} w_{n+k-3}^{(i+3)}+b_{i+2}\right]+a_{i} b_{i+1}+b_{i} \\
& =a_{i} a_{i+1} a_{i+2} w_{n+k-3}^{(i+3)}+a_{i} a_{i+1} b_{i+2}+a_{i} b_{i+1}+b_{i} \\
& =a_{i} a_{i+1} a_{i+2} a_{i+3} w_{n+k-4}^{(i+4)}+a_{i} a_{i+1} a_{i+2} b_{i+3}+a_{i} a_{i+1} b_{i+2}+a_{i} b_{i+1}+b_{i} \\
& \vdots \\
& =a_{i} a_{i+1} \ldots a_{i+k-1} w_{n+k-k}^{(i+k)}+a_{i} a_{i+1} \ldots a_{i+k-2} b_{i+k-1} \\
& +a_{i} a_{i+1} \ldots a_{i+k-3} b_{i+k-2}+\ldots+a_{i} b_{i+1}+b_{i} \\
& =a_{i} a_{i+1} \ldots a_{i+k-1} w_{n}^{(i+k)}+a_{i} a_{i+1} \ldots a_{i+k-2} b_{i+k-1} \\
& +a_{i} a_{i+1} \ldots a_{i+k-3} b_{i+k-2}+\ldots+a_{i} b_{i+1}+b_{i} \\
& =a_{i} a_{i+1} \ldots a_{i+k-1} w_{n}^{(i)}+a_{i} a_{i+1} \ldots a_{i+k-2} b_{i+k-1} \\
& +a_{i} a_{i+1} \ldots a_{i+k-3} b_{i+k-2}+\ldots+a_{i} b_{i+1}+b_{i} \\
w_{n+k}^{(i)} & =a_{1} a_{2} \ldots a_{k} w_{n}^{(i)}+a_{i} a_{i+1} \ldots a_{i+k-2} b_{i+k-1} \\
& +a_{i} a_{i+1} \ldots a_{i+k-3} b_{i+k-2}+\ldots+a_{i} b_{i+1}+b_{i} .
\end{aligned}
$$

So, we have

$$
w_{n+k}^{(i)}=\left(\prod_{l=1}^{k} a_{l}\right) w_{n}^{(i)}+\left[\sum_{r=2}^{k}\left(\prod_{l=i}^{i+r-2} a_{l}\right) b_{i+r-1}\right]+b_{i} .
$$

Let's put

$$
S=\prod_{l=1}^{k} a_{l} \text { and } T_{i}=\sum_{r=2}^{k}\left(\prod_{l=i}^{i+r-2} a_{l}\right) b_{i+r-1}+b_{i} .
$$

We get

$$
w_{n+k}^{(i)}=S w_{n}^{(i)}+T_{i},
$$

for $i=\overline{1, k}$, with the initial values $w_{j}^{(i)}, j=\overline{0, k-1}$.
Consequently, instead of solving system (1.15), we are going to solve the following

equations

$$
\begin{equation*}
w_{n+k}^{(i)}=S w_{n}^{(i)}+T_{i}, \quad n \in \mathbb{N}_{0} \tag{1.17}
\end{equation*}
$$

where, for $i=\overline{1, k}$ and $j=\overline{0, k-1}, w_{j}^{(i)}$ are positive real numbers.
Equations (1.17) yield

$$
\begin{aligned}
& w_{k}^{(i)}=S w_{0}^{(i)}+T_{i}, \\
& w_{k+1}^{(i)}=S w_{1}^{(i)}+T_{i}, \\
& \vdots \\
& w_{2 k-1}^{(i)}=S w_{k-1}^{(i)}+T_{i}, \\
& w_{2 k}^{(i)}=S w_{k}^{(i)}+T_{i}=S\left(S w_{0}^{(i)}+T_{i}\right)+T_{i}=S^{2} w_{0}^{(i)}+S T_{i}+T_{i,} \\
& w_{2 k+1}^{(i)}=S w_{k+1}^{(i)}+T_{i}=S\left(S w_{1}^{(i)}+T_{i}\right)+T_{i}=S^{2} w_{1}^{(i)}+S T_{i}+T_{i}, \\
& \vdots \\
& w_{3 k-1}^{(i)}=S w_{2 k-1}^{(i)}+T_{i}=S\left(S w_{k-1}^{(i)}+T_{i}\right)+T_{i}=S^{2} w_{k-1}^{(i)}+S T_{i}+T_{i}, \\
& w_{3 k}^{(i)}=S w_{2 k}^{(i)}+T_{i}=S\left(S^{2} w_{0}^{(i)}+S T_{i}+T_{i}\right)+T_{i}=S^{3} w_{0}^{(i)}+S^{2} T_{i} \\
&+S T_{i}+T_{i}, \\
& w_{3 k+1}^{(i)}=S w_{2 k+1}^{(i)}+T_{i}=S\left(S^{2} w_{1}^{(i)}+S T_{i}+T_{i}\right)+T_{i}=S^{3} w_{1}^{(i)}+S^{2} T_{i} \\
&+S T_{i}+T_{i,} \\
& \vdots \\
& w_{4 k-1}^{(i)}=S w_{3 k-1}^{(i)}+T_{i}=S\left(S^{2} w_{k-1}^{(i)}+S T_{i}+T_{i}\right)+T_{i}=S^{3} w_{k-1}^{(i)}+S^{2} T_{i} \\
&+S T_{i}+T_{i} .
\end{aligned}
$$

The inductive argument proves, for $i=\overline{1, k}$, that

$$
\begin{aligned}
w_{k n}^{(i)} & =S^{n} w_{0}^{(i)}+\sum_{t=0}^{n-1} S^{t} T_{i} \\
w_{k n+1}^{(i)} & =S^{n} w_{1}^{(i)}+\sum_{t=0}^{n-1} S^{t} T_{i}
\end{aligned}
$$

$$
\begin{aligned}
w_{k n+2}^{(i)}= & S^{n} w_{2}^{(i)}+\sum_{t=0}^{n-1} S^{t} T_{i} \\
& \vdots \\
w_{k n+k-1}^{(i)} & =S^{n} w_{k-1}^{(i)}+\sum_{t=0}^{n-1} S^{t} T_{i} .
\end{aligned}
$$

More precisely, for $i=\overline{1, k}$ and $j=0,1, \ldots, k-1$, we obtain

$$
w_{k n+j}^{(i)}=S^{n} w_{j}^{(i)}+\sum_{t=0}^{n-1} S^{t} T_{i} .
$$

Thus, for all $n \in \mathbb{N}_{0}$ we obtain

$$
w_{k n+j}^{(i)}= \begin{cases}w_{j}^{(i)}+n T_{i}, & S=1 \tag{1.18}\\ S^{n} w_{j}^{(i)}+T_{i}\left(\frac{S^{n}-1}{S-1}\right), & S \neq 1\end{cases}
$$

Now, we are going to prove by induction that relation (1.18) is true.

- A simple verification shows that relation (1.18) holds for $n=0$.
-Suppose that relation (1.18) holds for n, that is

$$
w_{k n+j}^{(i)}= \begin{cases}w_{j}^{(i)}+n T_{i}, & S=1 \\ S^{n} w_{j}^{(i)}+T_{i}\left(\frac{S^{n}-1}{S-1}\right), & S \neq 1\end{cases}
$$

- We are going to prove that relation (1.18) holds for $n+1$. We have
- If $S \neq 1$

$$
\begin{aligned}
w_{k(n+1)+j}^{(i)} & =w_{k n+j+k}^{(i)} \\
& =S w_{k n+j}^{(i)}+T_{i} \\
& =S\left[S^{n} w_{j}^{(i)}+T_{i}\left(\frac{S^{n}-1}{S-1}\right)\right]+T_{i} \\
w_{k(n+1)+j}^{(i)} & =S^{n+1} w_{j}^{(i)}+T_{i}\left[S\left(\frac{S^{n}-1}{S-1}\right)\right]+T_{i} .
\end{aligned}
$$

So

$$
\begin{aligned}
w_{k(n+1)+j}^{(i)} & =S^{n+1} w_{j}^{(i)}+T_{i}\left[\frac{S^{n+1}-S}{S-1}\right]+T_{i} \\
& =S^{n+1} w_{j}^{(i)}+T_{i}\left[\frac{S^{n+1}-S+S-1}{S-1}\right] \\
w_{k(n+1)+j}^{(i)} & =S^{n+1} w_{j}^{(i)}+T_{i}\left(\frac{S^{n+1}-1}{S-1}\right) .
\end{aligned}
$$

- If $S=1$

$$
\begin{aligned}
w_{k(n+1)+j}^{(i)} & =w_{k n+j+k}^{(i)} \\
& =S w_{k n+j}^{(i)}+T_{i} \\
& =w_{k n+j}^{(i)}+T_{i} \\
& =w_{j}^{(i)}+n T_{i}+T_{i} \\
w_{k(n+1)+j}^{(i)} & =w_{j}^{(i)}+(n+1) T_{i} .
\end{aligned}
$$

Thus,

$$
w_{k(n+1)+j}^{(i)}= \begin{cases}w_{j}^{(i)}+(n+1) T_{i,}, & S=1 \tag{1.19}\\ S^{n+1} w_{j}^{(i)}+T_{i}\left(\frac{S^{n+1}-1}{S-1}\right), & S \neq 1\end{cases}
$$

1.2.2 Main results

In this part, we are going to study the solvability of system (1.14) by considering changes of variables which transform it to the system of k-linear difference equations (1.15).

Form of solution

Here, we show that the difference equations system (1.14) is practically solvable, and we follow the analysis of each equation of this system. Throughout the paper we will
also use the following standard convention:

$$
\prod_{j=k}^{k-1} a_{j}=1
$$

By using the changes of variables

$$
\begin{equation*}
w_{n}^{(i)}=y_{n}^{(i)}\left(y_{n-k}^{(i)}\right)^{p_{i}}, \quad i=\overline{1, k}, \quad n \in \mathbb{N}_{0} \tag{1.20}
\end{equation*}
$$

system (1.14) is then converted into the following form

$$
w_{n+1}^{(i)}=a_{i} w_{n}^{(i+1)}+b_{i}, \quad i=\overline{1, k}, \quad n \in \mathbb{N}_{0}
$$

which is the same system studied in the previous part.
For $i=\overline{1, k}$, relation (1.20) yield

$$
y_{n}^{(i)}=w_{n}^{(i)}\left(y_{n-k}^{(i)}\right)^{-p_{i}}, \quad n \in \mathbb{N}_{0} .
$$

So, for $i=\overline{1, k}$ we get

$$
\begin{aligned}
y_{k n}^{(i)} & =w_{k n}^{(i)}\left(y_{k n-k}^{(i)}\right)^{-p_{i}} \\
& =w_{k n}^{(i)}\left[w_{k n-k}^{(i)}\left(y_{k n-2 k}^{(i)}\right)^{-p_{i}}\right]^{-p_{i}} \\
& =w_{k n}^{(i)}\left(w_{k n-k}^{(i)}\right)^{-p_{i}}\left(y_{k n-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}} \\
& =w_{k n}^{(i)}\left(w_{k n-k}^{(i)}\right)^{-p_{i}}\left[w_{k n-2 k}^{(i)}\left(y_{k n-3 k}^{(i)}\right)^{-p_{i}}\right]^{\left(-p_{i}\right)^{2}} \\
& =w_{k n}^{(i)}\left(w_{k n-k}^{(i)}\right)^{-p_{i}}\left(w_{k n-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(y_{k n-3 k}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \\
& =w_{k n}^{(i)}\left(w_{k n-k}^{(i)}\right)^{-p_{i}}\left(w_{k n-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left[w_{k n-3 k}^{(i)}\left(y_{k n-4 k}^{(i)}\right)^{-p_{i}}\right]^{\left(-p_{i}\right)^{3}} \\
& =w_{k n}^{(i)}\left(w_{k n-k}^{(i)}\right)^{-p_{i}}\left(w_{k n-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k n-3 k}^{(i)}\right)^{\left(-p_{i}\right)^{3}}\left(y_{k n-4 k}^{(i)}\right)^{\left(-p_{i}\right)^{4}} \\
& =w_{k n}^{(i)}\left(w_{k n-k}^{(i)}\right)^{\left(-p_{i}\right)^{1}}\left(w_{k n-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}} \ldots\left(w_{k n-(t-1) k}^{(i)}\right)^{\left(-p_{i}\right)^{t-1}}\left(y_{k n-t k}^{(i)}\right)^{\left(-p_{i}\right)^{t}},
\end{aligned}
$$

hence

$$
\begin{aligned}
y_{k n}^{(i)} & =w_{k n}^{(i)}\left(w_{k n-k}^{(i)}\right)^{-p_{i}}\left(w_{k n-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k n-3 k}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \ldots\left(w_{k n-t k}^{(i)}\right)^{\left(-p_{i}\right)^{t}} \ldots \\
& \times\left(w_{k}^{(i)}\right)^{\left(-p_{i}\right)^{n-1}}\left(y_{0}^{(i)}\right)^{\left(-p_{i}\right)^{n}} \\
& =w_{k(n-0)}^{(i)}\left(w_{k(n-1)}^{(i)}\right)^{-p_{i}}\left(w_{k(n-2)}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k(n-3)}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \ldots\left(w_{k(n-t)}^{(i)}\right)^{\left(-p_{i}\right)^{t}} \ldots \\
& \times\left(w_{k(n-(n-1)))^{(i)}}^{\left(-p_{i}\right)^{n-1}}\left(y_{0}^{(i)}\right)^{\left(-p_{i}\right)^{n}} .\right.
\end{aligned}
$$

So, we obtain

$$
\begin{equation*}
y_{k n}^{(i)}=\left[\prod_{t=0}^{n-1}\left(w_{k(n-t)}^{(i)}\right)^{\left(-p_{i}\right)^{t}}\right]\left(y_{0}^{(i)}\right)^{\left(-p_{i}\right)^{n}}, n \in \mathbb{N}_{0} . \tag{1.21}
\end{equation*}
$$

By the same argument

$$
\begin{aligned}
y_{k n+1}^{(i)} & =w_{k n+1}^{(i)}\left(y_{k n+1-k}^{(i)}\right)^{-p_{i}} \\
& =w_{k n+1}^{(i)}\left[w_{k n+1-k}^{(i)}\left(y_{k n+1-2 k}^{(i)}\right)^{-p_{i}}\right]^{-p_{i}} \\
& =w_{k n+1}^{(i)}\left(w_{k n+1-k}^{(i)}\right)^{-p_{i}}\left(y_{k n+1-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}} \\
& =w_{k n+1}^{(i)}\left(w_{k n+1-k}^{(i)}\right)^{-p_{i}}\left[w_{k n+1-2 k}^{(i)}\left(y_{k n+1-3 k}^{(i)}\right)^{-p_{i}}\right]^{\left(-p_{i}\right)^{2}} \\
& =w_{k n+1}^{(i)}\left(w_{k n+1-k}^{(i)}\right)^{-p_{i}}\left(w_{k n+1-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(y_{k n+1-3 k}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \\
& =w_{k n+1}^{(i)}\left(w_{k n+1-k}^{(i)}\right)^{-p_{i}}\left(w_{k n+1-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left[w_{k n+1-3 k}^{(i)}\left(y_{k n+1-4 k}^{(i)}\right)^{-p_{i}}\right]^{\left(-p_{i}\right)^{3}} \\
& =w_{k n+1}^{(i)}\left(w_{k n+1-k}^{(i)}\right)^{-p_{i}}\left(w_{k n+1-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k n+1-3 k}^{(i)}\right)^{\left(-p_{i}\right)^{3}}\left(y_{k n+1-4 k}^{(i)}\right)^{\left(-p_{i}\right)^{4}} \\
& =w_{k n+1}^{(i)}\left(w_{k n+1-k}^{(i)}\right)^{-p_{i}}\left(w_{k n+1-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k n+1-3 k}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \ldots \\
& \times\left(w_{k n+1-(t-1) k}^{(i)}\right)^{\left(-p_{i}\right)^{t-1}}\left(y_{k n+1-t k}^{(i)}\right)^{\left(-p_{i}\right)^{t}} \\
& =w_{k n+1}^{(i)}\left(w_{k n+1-k}^{(i)}\right)^{-p_{i}}\left(w_{k n+1-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k n+1-3 k}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \ldots \\
& \times\left(w_{k n+1-t k}^{(i)}\right)^{\left(-p_{i}\right)^{t}} \ldots\left(w_{k+1}^{(i)}\right)^{\left(-p_{i}\right)^{n-1}}\left(y_{1}^{(i)}\right)^{\left(-p_{i}\right)^{n}},
\end{aligned}
$$

hence

$$
\begin{aligned}
y_{k n+1}^{(i)} & =w_{k(n-0)+1}^{(i)}\left(w_{k(n-1)+1}^{(i)}\right)^{-p_{i}}\left(w_{k(n-2)+1}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k(n-3)+1}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \\
& \times\left(w_{k(n-t)+1}^{(i)}\right)^{\left(-p_{i}\right)^{t}} \ldots\left(w_{k(n-(n-1))+1}^{(i)}\right)^{\left(-p_{i}\right)^{n-1}}\left(y_{1}^{(i)}\right)^{\left(-p_{i}\right)^{n}} .
\end{aligned}
$$

So, we get

$$
\begin{equation*}
y_{k n+1}^{(i)}=\left[\prod_{t=0}^{n-1}\left(w_{k(n-t)+1}^{(i)}\right)^{\left(-p_{i}\right)^{t}}\right]\left(y_{1}^{(i)}\right)^{\left(-p_{i}\right)^{n}}, n \in \mathbb{N}_{0} \tag{1.22}
\end{equation*}
$$

Likewise

$$
\begin{aligned}
y_{k n+2}^{(i)} & =w_{k n+2}^{(i)}\left(y_{k n+2-k}^{(i)}\right)^{-p_{i}} \\
& =w_{k n+2}^{(i)}\left[w_{k n+2-k}^{(i)}\left(y_{k n+2-2 k}^{(i)}\right)^{-p_{i}}\right]^{-p_{i}} \\
& =w_{k n+2}^{(i)}\left(w_{k n+2-k}^{(i)}\right)^{-p_{i}}\left(y_{k n+2-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}} \\
& =w_{k n+2}^{(i)}\left(w_{k n+2-k}^{(i)}\right)^{-p_{i}}\left[w_{k n+2-2 k}^{(i)}\left(y_{k n+2-3 k}^{(i)}\right)^{-p_{i}}\right]^{\left(-p_{i}\right)^{2}} \\
& =w_{k n+2}^{(i)}\left(w_{k n+2-k}^{(i)}\right)^{-p_{i}}\left(w_{k n+2-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left[w_{k n+2-3 k}^{(i)}\left(y_{k n+2-4 k}^{(i)}\right)^{-p_{i}}\right]^{\left(-p_{i}\right)^{3}} \\
& =w_{k n+2}^{(i)}\left(w_{k n+2-k}^{(i)}\right)^{-p_{i}}\left(w_{k n+2-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k n+2-3 k}^{(i)}\right)^{\left(-p_{i}\right)^{3}}\left(y_{k n+2-4 k}^{(i)}\right)^{\left(-p_{i}\right)^{4}} \\
& =w_{k n+2}^{(i)}\left(w_{k n+2-k}^{(i)}\right)^{-p_{i}}\left(w_{k n+2-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k n+2-3 k}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \ldots \\
& \times\left(w_{k n+2-(t-1) k}^{(i)}\right)^{\left(-p_{i}\right)^{t-1}}\left(y_{k n+2-t k}^{(i)}\right)^{\left(-p_{i}\right)^{t}} \\
& =w_{k n+2}^{(i)}\left(w_{k n+2-k}^{(i)}\right)^{-p_{i}}\left(w_{k n+2-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k n+2-3 k}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \\
& \times \ldots\left(w_{k n+2-t k}^{(i)}\right)^{\left(-p_{i}\right)^{t}} \ldots\left(w_{k+2}^{(i)}\right)^{\left(-p_{i}\right)^{n-1}}\left(y_{2}^{(i)}\right)^{\left(-p_{i}\right)^{n}} \\
y_{k n+2}^{(i)} & =w_{k(n-0)+2}^{(i)}\left(w_{k(n-1)+2}^{(i)}\right)^{-p_{i}}\left(w_{k(n-2)+2}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k(n-3)+2}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \ldots \\
& \times\left(w_{\left.k(n-t)+2)^{(i)}\right)^{\left(-p_{i}\right)^{t}} \ldots\left(w_{k(n-(n-1))+2}^{(i)}\right)^{\left(-p_{i}\right)^{n-1}}\left(y_{2}^{(i)}\right)^{\left(-p_{i}\right)^{n}}} .\right.
\end{aligned}
$$

So, we get

$$
\begin{equation*}
y_{k n+2}^{(i)}=\left[\prod_{t=0}^{n-1}\left(w_{k(n-t)+2}^{(i)}\right)^{\left(-p_{i}\right)^{t}}\right]\left(y_{2}^{(i)}\right)^{\left(-p_{i}\right)^{n}}, n \in \mathbb{N}_{0} \tag{1.23}
\end{equation*}
$$

By the same argument

$$
\begin{aligned}
y_{k n+k-1}^{(i)} & =w_{k n+k-1}^{(i)}\left(y_{k n+k-1-k}^{(i)}\right)^{-p_{i}} \\
& =w_{k n+k-1}^{(i)}\left[w_{k n+k-1-k}^{(i)}\left(y_{k n+k-1-2 k}^{(i)}\right)^{-p_{i}}\right]^{-p_{i}} \\
y_{k n+k-1}^{(i)} & =w_{k n+k-1}^{(i)}\left(w_{k n+k-1-k}^{(i)}\right)^{-p_{i}}\left(y_{k n+k-1-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
y_{k n+k-1}^{(i)} & =w_{k n+k-1}^{(i)}\left(w_{k n+k-1-k}^{(i)}\right)^{-p_{i}}\left[w_{k n+k-1-2 k}^{(i)}\left(y_{k n+k-1-3 k}^{(i)}\right)^{-p_{i}}\right]^{\left(-p_{i}\right)^{2}} \\
& =w_{k n+k-1}^{(i)}\left(w_{k n+k-1-k}^{(i)}\right)^{-p_{i}}\left(w_{k n+k-1-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}} \\
& \times\left[w_{k n+k-1-3 k}^{(i)}\left(y_{k n+k-1-4 k}^{(i)}\right)^{-p_{i}}\right]^{\left(-p_{i}\right)^{3}} \\
& =w_{k n+k-1}^{(i)}\left(w_{k n+k-1-k}^{(i)}\right)^{-p_{i}}\left(w_{k n+k-1-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k n+k-1-3 k}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \\
& \times\left(y_{k n+k-1-4 k}^{(i)}\right)^{\left(-p_{i}\right)^{4}} \\
& =w_{k n+k-1}^{(i)}\left(w_{k n+k-1-k}^{(i)}\right)^{-p_{i}}\left(w_{k n+k-1-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k n+k-1-3 k}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \\
& \times \ldots\left(w_{k n+k-1-(t-1) k}^{(i)}\right)^{\left(-p_{i}\right)^{t-1}}\left(y_{k n+k-1-t k}^{(i)}\right)^{\left(-p_{i}\right)^{t}} \\
& =w_{k n+k-1}^{(i)}\left(w_{k n+k-1-k}^{(i)}\right)^{-p_{i}}\left(w_{k n+k-1-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k n+k-1-3 k}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \\
& \times \ldots\left(w_{k n+k-1-t k}^{(i)}\right)^{\left(-p_{i}\right)^{t}} \ldots\left(w_{2 k-1}^{(i)}\right)^{\left(-p_{i}\right)^{n-1}}\left(y_{k-1}^{(i)}\right)^{\left(-p_{i}\right)^{n}} \\
y_{k n+k-1}^{(i)} & =w_{k(n-0)+k-1}^{(i)}\left(w_{k(n-1)+k-1}^{(i)}\right)^{-p_{i}}\left(w_{k(n-2)+k-1}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k(n-3)+k-1}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \\
& \times \ldots\left(w_{k(n-t)+k-1}^{(i)}\right)^{\left(-p_{i}\right)^{t}} \ldots\left(w_{k(n-(n-1))+k-1}^{(i)}\right)^{\left(-p_{i}\right)^{n-1}}\left(y_{k-1}^{(i)}\right)^{\left(-p_{i}\right)^{n}} .
\end{aligned}
$$

So, we get

$$
\begin{equation*}
y_{k n+k-1}^{(i)}=\left[\prod_{t=0}^{n-1}\left(w_{k(n-t)+k-1}^{(i)}\right)^{\left(-p_{i}\right)^{t}}\right]\left(y_{k-1}^{(i)}\right)^{\left(-p_{i}\right)^{n}}, n \in \mathbb{N}_{0} . \tag{1.24}
\end{equation*}
$$

From (1.21), (1.22), (1.23) and (1.24), we can deduce that for $i=\overline{1, k}$ and $j=\overline{0, k-1}$, we
obtain

$$
\begin{equation*}
y_{k n+j}^{(i)}=\left[\prod_{t=0}^{n-1}\left(w_{k(n-t)+j}^{(i)}\right)^{\left(-p_{i}\right)^{t}}\right]\left(y_{j}^{(i)}\right)^{\left(-p_{i}\right)^{n}}, \quad n \in \mathbb{N}_{0} \tag{1.25}
\end{equation*}
$$

Now, we are going to prove by induction that relation (1.25) is true.

- A simple verification shows that relation (1.25) holds for $n=0$.
- Assume that relation (1.25) holds for n, that is

$$
y_{k n+j}^{(i)}=\left[\prod_{t=0}^{n-1}\left(w_{k(n-t)+j}^{(i)}\right)^{\left(-p_{i}\right)^{t}}\right]\left(y_{j}^{(i)}\right)^{\left(-p_{i}\right)^{n}}
$$

- We are going to prove that relation (1.25) holds for $n+1$. We get

$$
\begin{aligned}
y_{k(n+1)+j}^{(i)} & =w_{k(n+1)+j}^{(i)}\left(y_{k(n+1)+j-k}^{(i)}\right)^{-p_{i}} \\
& =w_{k(n+1)+j}^{(i)}\left[w_{k(n+1)+j-k}^{(i)}\left(y_{k(n+1)+j-2 k}^{(i)}\right)^{-p_{i}}\right]^{-p_{i}} \\
& =w_{k(n+1)+j}^{(i)}\left(w_{k(n+1)+j-k}^{(i)}\right)^{-p_{i}}\left(y_{k(n+1)+j-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}} \\
& =w_{k(n+1)+j}^{(i)}\left(w_{k(n+1)+j-k}^{(i)}\right)^{-p_{i}}\left[w_{k(n+1)+j-2 k}^{(i)}\left(y_{k(n+1)+j-3 k}^{(i)}\right)^{-p_{i}}\right]^{\left(-p_{i}\right)^{2}} \\
& =w_{k(n+1)+j}^{(i)}\left(w_{k(n+1)+j-k}^{(i)}\right)^{-p_{i}}\left(w_{k(n+1)+j-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}} \\
& \times\left[w_{k(n+1)+j-3 k}^{(i)}\left(y_{k(n+1)+j-4 k}^{(i)}\right)^{-p_{i}}\right]^{\left(-p_{i}\right)^{3}} \\
& =w_{k(n+1)+j}^{(i)}\left(w_{k(n+1)+j-k}^{(i)}\right)^{-p_{i}}\left(w_{k(n+1)+j-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k(n+1)+j-3 k}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \\
& \times\left(y_{k(n+1)+j-4 k}^{(i)}\right)^{\left(-p_{i}\right)^{4}} \\
& =w_{k(n+1)+j}^{(i)}\left(w_{k(n+1)+j-k}^{(i)}\right)^{-p_{i}}\left(w_{k(n+1)+j-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k(n+1)+j-3 k}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \\
& \times \ldots\left(w_{k(n+1)+j-(t-1) k}^{(i)}\right)^{\left(-p_{i}\right)^{t-1}}\left(y_{k(n+1)+j-t k}^{(i)}\right)^{\left(-p_{i}\right)^{t}} \\
y_{k(n+1)+j}^{(i)} & =w_{k(n+1)+j}^{(i)}\left(w_{k(n+1)+j-k}^{(i)}\right)^{-p_{i}}\left(w_{k(n+1)+j-2 k}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k(n+1)+j-3 k}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \\
& \times \ldots\left(w_{k(n+1)+j-t k}^{(i)}\right)^{\left(-p_{i}\right)^{t}} \ldots\left(w_{k+j}^{(i)}\right)^{\left(-p_{i}\right)^{n}}\left(y_{j}^{(i)}\right)^{\left(-p_{i}\right)^{n+1}},
\end{aligned}
$$

hence

$$
\begin{aligned}
y_{k(n+1)+j}^{(i)} & =w_{k(n+1-0)+j}^{(i)}\left(w_{k(n+1-1)+j}^{(i)}\right)^{-p_{i}}\left(w_{k(n+1-2)+j}^{(i)}\right)^{\left(-p_{i}\right)^{2}}\left(w_{k(n+1-3)+j}^{(i)}\right)^{\left(-p_{i}\right)^{3}} \\
& \times \ldots\left(w_{k(n+1-t)+j}^{(i)}\right)^{\left(-p_{i}\right)^{t}} \ldots\left(w_{k(n+1-n)+j}^{(i)}\right)^{\left(-p_{i}\right)^{n}}\left(y_{j}^{(i)}\right)^{\left(-p_{i}\right)^{n+1}} .
\end{aligned}
$$

So,

$$
y_{k(n+1)+j}^{(i)}=\left[\prod_{t=0}^{n}\left(w_{k(n+1-t)+j}^{(i)}\right)^{\left(-p_{i}\right)^{t}}\right]\left(y_{j}^{(i)}\right)^{\left(-p_{i}\right)^{n+1}}
$$

The results below provide a precise formula for the solution of system (1.14).

Theorem 1.2.1 Suppose $\left\{y_{n}^{(i)}\right\}_{n \geq-k}$ represents a well defined solution of system (1.14). Then, for $i=\overline{1, k}, j=\overline{0, k-1}$ and $n \in \mathbb{N}_{0}$, we have

- If $S \neq 1$

$$
y_{k n+j}^{(i)}=\left[\prod_{t=0}^{n-1}\left(S^{n-t} y_{j}^{(i)}\left(y_{j-k}^{(i)}\right)^{p_{i}}+T_{i}\left(\frac{S^{n-t}-1}{S-1}\right)\right)^{\left(-p_{i}\right)^{t}}\right]\left(y_{j}^{(i)}\right)^{\left(-p_{i}\right)^{n}}
$$

- If $S=1$

$$
y_{k n+j}^{(i)}=\left[\prod_{t=0}^{n-1}\left(y_{j}^{(i)}\left(y_{j-k}^{(i)}\right)^{p_{i}}+(n-t) T_{i}\right)^{\left(-p_{i}\right)^{t}}\right]\left(y_{j}^{(i)}\right)^{\left(-p_{i}\right)^{n}} .
$$

Asymptotic behavior

Here, we are going to study the asymptotic behavior of the equilibrium point of system (1.14).

The following lemma gives the equilibrium of system (1.14).

Asymptotic behavior

Lemma 1.2.2

If $\left(\overline{y^{(1)}}, \overline{y^{(2)}}, \ldots, \overline{y^{(k-1)}}, \overline{y^{(k)}}\right)$ is an equilibrium point of system (1.14), then it is given by

$$
\begin{aligned}
& \left(\left[\frac{T_{1}}{1-S}\right]^{\frac{1}{p_{1}+1}},\left[\frac{T_{2}}{1-S}\right]^{\frac{1}{p_{2}+1}}, \ldots,\left[\frac{T_{k-1}}{1-S}\right]^{\frac{1}{k_{k-1}+1}},\left[\frac{T_{k}}{1-S}\right]^{\frac{1}{p_{k}+1}}\right) \\
& \text { with } S=\prod_{l=1}^{k} a_{l}<1
\end{aligned}
$$

Proof. Let $\left(\overline{y^{(1)}}, \overline{y^{(2)}}, \ldots, \overline{y^{(k-1)}}, \overline{y^{(k)}}\right)$ be an equilibrium point of system (1.14). So, from system (1.14) and for $i=\overline{1, k}$ we have

$$
\begin{aligned}
\left(\overline{y^{(i)}}\right)^{p_{i}+1} & =a_{i}\left(\overline{y^{(i+1)}}\right)^{p_{i+1}+1}+b_{i} \\
& =a_{i}\left[a_{i+1}\left(\overline{y^{(i+2)}}\right)^{p_{i+2}+1}+b_{i+1}\right]+b_{i} \\
& =a_{i} a_{i+1}\left(\overline{y^{(i+2)}}\right)^{p_{i+2}+1}+a_{i} b_{i+1}+b_{i} \\
& =a_{i} a_{i+1}\left[a_{i+2}\left(\overline{y^{(i+3)}}\right)^{p_{i+3}+1}+b_{i+2}\right]+a_{i} b_{i+1}+b_{i} \\
& =a_{i} a_{i+1} a_{i+2}\left(\overline{y^{(i+3)}}\right)^{p_{i+3}+1}+a_{i} a_{i+1} b_{i+2}+a_{i} b_{i+1}+b_{i} \\
& =a_{i} a_{i+1} a_{i+2} a_{i+3}\left(\overline{y^{(i+4)}}\right)^{p_{i+4}+1}+a_{i} a_{i+1} a_{i+2} b_{i+3} \\
& +a_{i} a_{i+1} b_{i+2}+a_{i} b_{i+1}+b_{i} \\
& =a_{i} a_{i+1} a_{i+2} a_{i+3} a_{i+4}\left(\overline{y^{(i+5)}}\right)^{p_{i+5}+1}+a_{i} a_{i+1} a_{i+2} a_{i+3} b_{i+4} \\
& +a_{i} a_{i+1} a_{i+2} b_{i+3}+a_{i} a_{i+1} b_{i+2}+a_{i} b_{i+1}+b_{i} \\
& \vdots \\
& =a_{i} a_{i+1} \ldots a_{i+k-1}\left(\overline{y^{(i+k)}}\right)^{p_{i+k}+1}+a_{i} a_{i+1} \ldots a_{i+k-2} b_{i+k-1} \\
& +a_{i} a_{i+1} \ldots a_{i+k-3} b_{i+k-2}+\ldots+a_{i} b_{i+1}+b_{i} \\
& =a_{i} a_{i+1} \ldots a_{i+k-1}\left(\overline{y^{(i)}}\right)^{p_{i+1}}+a_{i} a_{i+1} \ldots a_{i+k-2} b_{i+k-1} \\
& +a_{i} a_{i+1} \ldots a_{i+k-3} b_{i+k-2}+\ldots+a_{i} b_{i+1}+b_{i} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(\overline{y^{(i)}}\right)^{p_{i}+1} & =a_{1} a_{2} \ldots a_{k}\left(\overline{y^{(i)}}\right)^{p_{i}+1}+a_{i} a_{i+1} \ldots a_{i+k-2} b_{i+k-1} \\
& +a_{i} a_{i+1} \ldots a_{i+k-3} b_{i+k-2}+\ldots+a_{i} b_{i+1}+b_{i} \\
& =\left(\prod_{l=1}^{k} a_{l}\right)\left(\overline{y^{(i)}}\right)^{p_{i}+1}+\left[\sum_{r=2}^{k}\left(\prod_{l=i}^{i+r-2} a_{l}\right) b_{i+r-1}\right]+b_{i} .
\end{aligned}
$$

So

$$
\left(\overline{y^{(i)}}\right)^{p_{i}+1}\left(1-\prod_{l=1}^{k} a_{l}\right)=\left[\sum_{r=2}^{k}\left(\prod_{l=i}^{i+r-2} a_{l}\right) b_{i+r-1}\right]+b_{i}
$$

consequently

$$
\overline{y^{(i)}}=\left[\frac{\left[\sum_{r=2}^{k}\left(\prod_{l=i}^{i+r-2} a_{l}\right) b_{i+r-1}\right]+b_{i}}{1-\prod_{l=1}^{k} a_{l}}\right]^{\frac{1}{p_{i}+1}} .
$$

Using notation (1.16), we get

$$
\overline{y^{(i)}}=\left[\frac{T_{i}}{1-S}\right]^{\frac{1}{p_{i}+1}}, \quad i=\overline{1, k}
$$

Note that the condition $S<1$ implies that $\overline{y^{(i)}}$ is positive whatever the values of p_{i}, $i=\overline{1, k}$.

Theorem 1.2.2 Consider system (1.14). Assume, for $i=\overline{1, k}$, that $S<1$ and $\left|p_{i}\right|<1$. Then, the equilibrium point of system (1.14) is globally attractive.

Proof. Suppose, for $i=\overline{1, k}$, that $S<1$ and $\left|p_{i}\right|<1$, so we obtain

$$
\lim _{n \rightarrow+\infty} y_{k n+j}^{(i)}=\lim _{n \rightarrow+\infty}\left[\left(\prod_{t=0}^{n-1}\left(S^{n-t} y_{j}^{(i)}\left(y_{j-k}^{(i)}\right)^{p_{i}}+T_{i}\left(\frac{S^{n-t}-1}{S-1}\right)\right)^{\left(-p_{i}\right)^{t}}\right)\left(y_{j}^{(i)}\right)^{\left(-p_{i}\right)^{n}}\right]
$$

Hence

$$
\begin{aligned}
\lim _{n \rightarrow+\infty} y_{k n+j}^{(i)} & =\prod_{t \geq 0}\left[T_{i}\left(\frac{-1}{S-1}\right)\right]^{\left(-p_{i}\right)^{t}} \\
& =\prod_{t \geq 0}\left[\frac{T_{i}}{1-S}\right]^{\left(-p_{i}\right)^{t}} \\
\lim _{n \rightarrow+\infty} y_{k n+j}^{(i)} & =\left[\frac{T_{i}}{1-S}\right]^{\sum_{t \geq 0}\left(-p_{i}\right)^{t}}
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
\sum_{t \geq 0}\left(-p_{i}\right)^{t} & =\lim _{m \rightarrow+\infty} \sum_{t=0}^{m}\left(-p_{i}\right)^{t} \\
& =\lim _{m \rightarrow+\infty} \frac{\left(-p_{i}\right)^{m+1}-1}{-p_{i}-1} \\
& =\frac{-1}{-p_{i}-1} \\
\sum_{t \geq 0}\left(-p_{i}\right)^{t} & =\frac{1}{p_{i}+1}
\end{aligned}
$$

So

$$
\lim _{n \rightarrow+\infty} y_{k n+j}^{(i)}=\left[\frac{T_{i}}{1-S}\right]^{\frac{1}{p_{i}+1}}=\overline{y^{(i)}}
$$

From where the equilibrium is globally attractive.

1.2.3 Numerical examples

Example 1.2.1 Let $k=2, a_{1}=2, a_{2}=\frac{1}{2}, b_{1}=2, b_{2}=3, p_{1}=\frac{1}{2}$ and $p_{2}=\frac{1}{3}$, and the initial values

$$
\begin{equation*}
y_{-2}^{(1)}=4, y_{-1}^{(1)}=4, y_{0}^{(1)}=3, y_{-2}^{(2)}=8, y_{-1}^{(2)}=8 \text { and } y_{0}^{(2)}=6 \tag{1.26}
\end{equation*}
$$

in system (1.14), then we obtain that $S=1$, and for $i=1,2$, we have $\left|p_{i}\right|<1$. So we obtain the following system

$$
\begin{equation*}
y_{n+1}^{(1)}=\frac{2 y_{n}^{(2)}\left(y_{n-2}^{(2)}\right)^{\frac{1}{3}}+2}{\left(y_{n-1}^{(1)}\right)^{\frac{1}{2}}}, \quad y_{n+1}^{(2)}=\frac{\frac{1}{2} y_{n}^{(1)}\left(y_{n-2}^{(1)}\right)^{\frac{1}{2}}+3}{\left(y_{n-1}^{(2)}\right)^{\frac{1}{3}}}, n \in \mathbb{N}_{0} \text {. } \tag{1.27}
\end{equation*}
$$

The solution of system (1.27) is given by

$$
\begin{aligned}
y_{2 n}^{(1)} & =\left[\prod_{t=0}^{n-1}(6+8(n-t))^{\left(-\frac{1}{2}\right)^{t}}\right] \\
& \times(3)^{\left(-\frac{1}{2}\right)^{n}}, \\
y_{2 n+1}^{(1)} & =\left[\prod_{t=0}^{n-1}(26+8(n-t))^{\left(-\frac{1}{2}\right)^{t}}\right] \\
& \times(13)^{\left(-\frac{1}{2}\right)^{n}}, \\
y_{2 n}^{(2)} & =\left[\prod_{t=0}^{n-1}(12+4(n-t))^{\left(-\frac{1}{3}\right)^{t}}\right] \\
& \times(6)^{\left(-\frac{1}{3}\right)^{n}}, \\
y_{2 n+1}^{(2)} & =\left[\prod_{t=0}^{n-1}(6+4(n-t))^{\left(-\frac{1}{3}\right)^{t}}\right] \\
& \times(3)^{\left(-\frac{1}{3}\right)^{n}},
\end{aligned}
$$

for all $n \geq 0$.
The behavior of the solution of system (1.27) is represented in figure (1.1).

Example 1.2.2 Let $k=2, a_{1}=1, a_{2}=\frac{2}{3}, b_{1}=2, b_{2}=3, p_{1}=\frac{1}{2}$ and $p_{2}=\frac{1}{3}$, and the initial values

$$
\begin{equation*}
y_{-2}^{(1)}=4, y_{-1}^{(1)}=4, y_{0}^{(1)}=3, y_{-2}^{(2)}=8, y_{-1}^{(2)}=8 \text { and } y_{0}^{(2)}=6 \tag{1.28}
\end{equation*}
$$

in system (1.14), then we obtain that $S<1$, and for $i=1,2$, we have $\left|p_{i}\right|<1$. So we obtain the following system

$$
\begin{equation*}
y_{n+1}^{(1)}=\frac{y_{n}^{(2)}\left(y_{n-2}^{(2)}\right)^{\frac{1}{3}}+2}{\left(y_{n-1}^{(1)}\right)^{\frac{1}{2}}}, \quad y_{n+1}^{(2)}=\frac{\frac{2}{3} y_{n}^{(1)}\left(y_{n-2}^{(1)}\right)^{\frac{1}{2}}+3}{\left(y_{n-1}^{(2)}\right)^{\frac{1}{3}}}, \quad n \in \mathbb{N}_{0} . \tag{1.29}
\end{equation*}
$$

Figure 1.1: Plot of system (1.27) using the initial values (1.26).

The solution of system (1.29) is given by

$$
\begin{aligned}
y_{2 n}^{(1)} & =\left[\prod_{t=0}^{n-1}\left(6\left(\frac{2}{3}\right)^{n-t}+15\left(1-\left(\frac{2}{3}\right)^{n-t}\right)\right)^{\left(-\frac{1}{2}\right)^{t}}\right] \\
& \times(3)^{\left(-\frac{1}{2}\right)^{n}}, \\
y_{2 n+1}^{(1)} & =\left[\prod_{t=0}^{n-1}\left(14\left(\frac{2}{3}\right)^{n-t}+15\left(1-\left(\frac{2}{3}\right)^{n-t}\right)\right)^{\left(-\frac{1}{2}\right)^{t}}\right] \\
& \times(7)^{\left(-\frac{1}{2}\right)^{n}}, \\
y_{2 n}^{(2)} & =\left[\prod_{t=0}^{n-1}\left(12\left(\frac{2}{3}\right)^{n-t}+13\left(1-\left(\frac{2}{3}\right)^{n-t}\right)\right)^{\left(-\frac{1}{3}\right)^{t}}\right] \\
& \times(6)^{\left(-\frac{1}{3}\right)^{n}},
\end{aligned}
$$

$$
\begin{aligned}
y_{2 n+1}^{(2)} & =\left[\prod_{t=0}^{n-1}\left(7\left(\frac{2}{3}\right)^{n-t}+13\left(1-\left(\frac{2}{3}\right)^{n-t}\right)\right)^{\left(-\frac{1}{3}\right)^{t}}\right] \\
& \times\left(\frac{7}{2}\right)^{\left(-\frac{1}{3}\right)^{n}}
\end{aligned}
$$

for all $n \geq 0$.
The solution of system (1.29) converges to the equilibrium point $\left(\overline{y^{(1)}}, \overline{y^{(2)}}\right)=\left(15^{\frac{2}{3}}, 13^{\frac{3}{4}}\right)($ see Figure (1.2), Theorem (1.2.2)).

Figure 1.2: Plot of system (1.29) using the initial values (1.28).

Example 1.2.3 Let $k=6, a_{i}=b_{i}=\frac{1}{2}$, for $i=1,2, \ldots, 6$ and $p_{1}=\frac{1}{2}, p_{2}=\frac{1}{2}, p_{3}=\frac{3}{5}, p_{4}=\frac{9}{10}$, $p_{5}=\frac{-7}{10}$ and $p_{6}=\frac{4}{5}$
in system (1.14), then we obtain that $S<1$, and for $i=1,2, \ldots 6$, we have $\left|p_{i}\right|<1$. So we obtain the following system

$$
\begin{aligned}
& y_{n+1}^{(1)}=\frac{\frac{1}{2} y_{n}^{(2)}\left(y_{n-2}^{(2)}\right)^{\frac{1}{2}}+\frac{1}{2}}{\left(y_{n-1}^{(1)}\right)^{\frac{1}{2}}} \\
& y_{n+1}^{(2)}=\frac{\frac{1}{2} y_{n}^{(3)}\left(y_{n-2}^{(3)}\right)^{\frac{3}{5}}+\frac{1}{2}}{\left(y_{n-1}^{(2)}\right)^{\frac{1}{2}}} \\
& y_{n+1}^{(3)}=\frac{\frac{1}{2} y_{n}^{(4)}\left(y_{n-2}^{(4)}\right)^{\frac{9}{10}}+\frac{1}{2}}{\left(y_{n-1}^{(3)}\right)^{\frac{3}{5}}} \\
& y_{n+1}^{(4)}=\frac{\frac{1}{2} y_{n}^{(5)}\left(y_{n-2}^{(5)}\right)^{\frac{-7}{10}}+\frac{1}{2}}{\left(y_{n-1}^{(4)}\right)^{\frac{9}{10}}} \quad, n \in \mathbb{N}_{0} \\
& y_{n+1}^{(5)}=\frac{\frac{1}{2} y_{n}^{(6)}\left(y_{n-2}^{(6)}\right)^{\frac{4}{5}}+\frac{1}{2}}{\left(y_{n-1}^{(5)}\right)^{\frac{-7}{10}}} \\
& y_{n+1}^{(6)}=\frac{\frac{1}{2} y_{n}^{(1)}\left(y_{n-2}^{(1)}\right)^{\frac{1}{2}}+\frac{1}{2}}{\left(y_{n-1}^{(6)}\right)^{\frac{4}{5}}}
\end{aligned}
$$

with the following initial values

$$
\begin{align*}
& y_{-2}^{(1)}=1, y_{-1}^{(1)}=2, y_{0}^{(1)}=3, y_{-2}^{(2)}=4, y_{-1}^{(2)}=5, y_{0}^{(2)}=6, y_{-2}^{(3)}=2, y_{-1}^{(3)}=3, y_{0}^{(3)}=1, \\
& y_{-2}^{(4)}=2, y_{-1}^{(4)}=2, y_{0}^{(4)}=3, y_{-2}^{(5)}=3, y_{-1}^{(5)}=2, y_{0}^{(5)}=2, y_{-2}^{(6)}=4, y_{-1}^{(6)}=2 \text { and } y_{0}^{(6)}=3, \tag{1.31}
\end{align*}
$$

the solution of system (1.30) converges to the equilibrium point $\left(\overline{y^{(1)}}, \overline{y^{(2)}}, \overline{y^{(3)}}, \overline{y^{(4)}}, \overline{y^{(5)}}, \overline{y^{(6)}}\right)=$ (1,1,1,1,1,1) (see Figure (1.3), Theorem (1.2.2)).

Figure 1.3: Plot of system (1.30) using the initial values (1.31).

Example 1.2.4 Let $k=4, a_{i}=b_{i}=\frac{1}{2}$ and $p_{i}=1$, for $i=1,2,3,4$, and the initial values

$$
\begin{align*}
& y_{-2}^{(1)}=1, y_{-1}^{(1)}=2, y_{0}^{(1)}=3, y_{-2}^{(2)}=4, y_{-1}^{(2)}=5, y_{0}^{(2)}=6, \\
& y_{-2}^{(3)}=2, y_{-1}^{(3)}=3, y_{0}^{(3)}=1, y_{-2}^{(4)}=2, y_{-1}^{(4)}=2 \text { and } y_{0}^{(4)}=3 \tag{1.32}
\end{align*}
$$

in system (1.14), then we obtain that $S<1$, and for $i=1,2,3,4$, we have $\left|p_{i}\right|=1$. So we obtain the following system

$$
\begin{align*}
& y_{n+1}^{(1)}=\frac{\frac{1}{2} y_{n}^{(2)} y_{n-2}^{(2)}+\frac{1}{2}}{y_{n-1}^{(1)}} \\
& y_{n+1}^{(2)}=\frac{\frac{1}{2} y_{n}^{(3)} y_{n-2}^{(3)}+\frac{1}{2}}{y_{n-1}^{(2)}} \\
& y_{n+1}^{(3)}=\frac{\frac{1}{2} y_{n}^{(4)} y_{n-2}^{(4)}+\frac{1}{2}}{y_{n-1}^{(3)}}, n \in \mathbb{N}_{0} . \tag{1.33}\\
& y_{n+1}^{(4)}=\frac{\frac{1}{2} y_{n}^{(1)} y_{n-2}^{(1)}+\frac{1}{2}}{y_{n-1}^{(4)}}
\end{align*}
$$

The equilibrium $\left(\overline{y^{(1)}}, \overline{y^{(2)}}, \overline{y^{(3)}}, \overline{y^{(4)}}\right)$ is not globally attractive (see Figure (1.4), Theorem (1.2.2)).

Figure 1.4: Plot of system (1.33) using the initial values (1.32).

Example 1.2.5 Let $k=4, a_{i}=b_{i}=\frac{1}{2}$, for $i=1,2,3,4$, and $p_{1}=\frac{3}{2}, p_{2}=\frac{-9}{5}, p_{3}=\frac{31}{10}$, $p_{4}=\frac{51}{10}$, and the initial values

$$
\begin{align*}
& y_{-2}^{(1)}=1, y_{-1}^{(1)}=2, y_{0}^{(1)}=3, y_{-2}^{(2)}=4, y_{-1}^{(2)}=5, y_{0}^{(2)}=6, \tag{1.34}\\
& y_{-2}^{(3)}=2, y_{-1}^{(3)}=3, y_{0}^{(3)}=1, y_{-2}^{(4)}=2, y_{-1}^{(4)}=2 \text { and } y_{0}^{(4)}=3
\end{align*}
$$

in system (1.14), then we obtain that $S<1$, and for $i=1,2,3,4$, we have $\left|p_{i}\right|>1$. So we obtain the following system

$$
\begin{align*}
& y_{n+1}^{(1)}=\frac{\frac{1}{2} y_{n}^{(2)}\left(y_{n-2}^{(2)}\right)^{\frac{-9}{5}}+\frac{1}{2}}{\left(y_{n-1}^{(1)}\right)^{\frac{3}{2}}} \\
& y_{n+1}^{(2)}=\frac{\frac{1}{2} y_{n}^{(3)}\left(y_{n-2}^{(3)}\right)^{\frac{31}{10}}+\frac{1}{2}}{\left(y_{n-1}^{(2)}\right)^{\frac{-9}{10}}} \\
& y_{n+1}^{(3)}=\frac{\frac{1}{2} y_{n}^{(4)}\left(y_{n-2}^{(4)}\right)^{\frac{51}{10}}+\frac{1}{2}}{\left(y_{n-1}^{(3)}\right) \quad, n \in \mathbb{N}_{0} .} \tag{1.35}\\
& y_{n+1}^{(4)}=\frac{\frac{1}{2} y_{n}^{(5)}\left(y_{n-2}^{(1)}\right)^{\frac{3}{2}}+\frac{1}{2}}{\left(y_{n-1}^{(4)}\right)^{\frac{51}{10}}}
\end{align*}
$$

The equilibrium $\left(\overline{y^{(1)}}, \overline{y^{(2)}}, \overline{y^{(3)}}, \overline{y^{(4)}}\right)$ is not globally attractive (see Figure (1.5), Theorem (1.2.2)).

Figure 1.5: Plot of system (1.35) using the initial values (1.34).

On a symmetric system of higher-order difference equations

2.1 Introduction

Difference equations and systems of difference equations are practically utilized across diverse fields such as engineering, biology, economics, medicine, computer science and more. Some particularly intriguing instances within this realm are symmetric systems and close-to-symmetric difference equations systems. This concept is exemplified by works like $[1,12,15,16,19,25,27,29,32,57,59,61,62]$.

This chapter is based on our previous publication [5], in which we addressed a study about a symmetric difference equations system, analyzed the properties and examined the solutions' behavior of this system.

The problem presented in [20] is as follows:
Open problem. Does the given difference equation have a solution

$$
\begin{equation*}
x_{n+1}=\frac{\beta x_{n-1}}{\beta+x_{n}}, x_{-1}, x_{0} \geq 0, \quad \beta>0, n \in \mathbb{N}_{0}, \tag{2.1}
\end{equation*}
$$

such that $\lim _{n \rightarrow \infty} x_{n}=0$.
In [53], Stević provided a positive response to the open problem in the specific case where β equals 1 . In this case, he examined the convergence, the periodicity, the monotonicity, and determined the limit of the solution for the equation presented below

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-1}}{1+x_{n}}, \quad x_{-1}, x_{0} \geq 0, \quad n \in \mathbb{N}_{0} \tag{2.2}
\end{equation*}
$$

in specific cases and under special conditions.
In the same paper, the author presented another form of the solution formula, each term in the sequence was written in function of some previous terms. He combined the above-mentioned properties into a very important theorem, which is the same theorem that we are going to generalize in this chapter.

Moreover, in [53], Stević generalized the previous results to the following difference equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-1}}{g\left(x_{n}\right)}, \quad x_{-1}, x_{0} \geq 0, \quad n \in \mathbb{N}_{0} \tag{2.3}
\end{equation*}
$$

where g is a function that satisfies these conditions
(a) $g \in C^{1}\left(\mathbb{R}_{+}\right)$,
(b) $g(0)=1$,
(c) $g^{\prime}(x)>0$, for $x \in \mathbb{R}_{+}$,
with $g(x)>1$ for all $x \in \mathbb{R}_{+} \backslash\{0\}$, and equation (2.3) has only non-negative equilibrium point which is $\bar{x}=0$.

Stević gave the solution to equation (2.3) in these two cases:

Case 1. $x_{-1}=x_{0}=0$,
in that case $x_{n}=0$, for all $\mathrm{n} \in \mathbb{N}_{-1}$.
Case 2. $\left(x_{-1}=0\right.$ and $\left.x_{0} \neq 0\right)$ or $\left(x_{-1} \neq 0\right.$ and $\left.x_{0}=0\right)$,
in this case equation (2.3) has a $2-$ periodic solution $\left(x_{-1}, x_{0}, x_{-1}, x_{0}, x_{-1}, \ldots\right)$.

Now, if $x_{-1}, x_{0}>0$, the solution of equation (2.3) is positive, and here, Stević didn't give an explicit formula to the solution, but he just studied some properties of equation (2.3) in some theorems.

So, we can conclude that the author in [53] answered to the open problem posed in [20] only in these two cases:

Case 1. $\beta=1$.

Case 2. At least one of the initial values is equal to zero.

Additionally, in [51] the author studied the following higher-order difference equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-(2 k+1)}}{1+x_{n-k}}, n, k \in \mathbb{N}_{0} . \tag{2.4}
\end{equation*}
$$

Inspired by the above-mentioned studies, we are going to extend equations (2.2) and (2.4) to the following symmetric system of higher-order difference equations

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-(2 k+1)}}{1+y_{n-k}}, y_{n+1}=\frac{y_{n-(2 k+1)}}{1+x_{n-k}}, n, k \in \mathbb{N}_{0} \tag{2.5}
\end{equation*}
$$

the initial values $x_{-(2 k+1)}, x_{-2 k}, \ldots, x_{0}, y_{-(2 k+1)}, y_{-2 k}, \ldots, y_{0}$ are non-negative real numbers.

2.2 An expansion of the principal theorem outlined in [52]

In this section, we are going to introduce a significant theorem that is going to aid us in presenting outcomes related to system (2.6).

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-1}}{1+y_{n}}, \quad y_{n+1}=\frac{y_{n-1}}{1+x_{n}}, \quad n \in \mathbb{N}_{0} . \tag{2.6}
\end{equation*}
$$

Theorem 2.2.1 Let's consider system (2.6). Suppose that the initial values x_{-1}, x_{0}, y_{-1} and y_{0} satisfy this condition

$$
\begin{equation*}
\min \left\{x_{-1}, x_{0}, y_{-1}, y_{0}\right\}>0, \tag{2.7}
\end{equation*}
$$

so, for any solution $\left\{\left(x_{n}, y_{n}\right)\right\}_{n \geq-1}$ to system(2.6) that satisfies condition (2.7) the following assertions are valid.
(a) The subsequences $\left\{\left(x_{2 n}, y_{2 n}\right)\right\}_{n \geq 0}$ and $\left\{\left(x_{2 n+1}, y_{2 n+1}\right)\right\}_{n \geq-1}$ decrease and there are nonnegative constants $a_{1}, a_{2}, b_{1}, b_{2}$, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(x_{2 n}, y_{2 n}\right)=\left(a_{1}, a_{2}\right) \text { and } \lim _{n \rightarrow \infty}\left(x_{2 n+1}, y_{2 n+1}\right)=\left(b_{1}, b_{2}\right) . \tag{2.8}
\end{equation*}
$$

(b) If a_{1}, a_{2}, b_{1} and b_{2} represent the numbers specified in (2.8), so the sequence described as

$$
\begin{aligned}
& \left(x_{2 n-1}, y_{2 n-1}\right)=\left(b_{1}, b_{2}\right) \\
& \left(x_{2 n}, y_{2 n}\right)
\end{aligned}=\left(a_{1}, a_{2}\right), n \in \mathbb{N}_{0}
$$

constitutes a two-periodic solution of system (2.6).
(c) The following relation

$$
a_{1} b_{2}=0 \text { and } a_{2} b_{1}=0,
$$

is valid.
(d) If there is $n_{0} \in \mathbb{N}_{0}$, such that

$$
x_{n} \geq y_{n+1} \geq x_{n+2}, \text { and } y_{n} \geq x_{n+1} \geq y_{n+2}, \text { for } n \geq n_{0}
$$

then

$$
\lim _{n \rightarrow \infty}\left(x_{n}, y_{n}\right)=(0,0) .
$$

(e) The following formulas

$$
\begin{equation*}
x_{2 n}=x_{0}\left[1-y_{1} \sum_{j=1}^{n} \prod_{i=1}^{j-1} \frac{1}{1+x_{2 i}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k-1}}\right], n \geq 0 \tag{2.9}
\end{equation*}
$$

$$
\begin{gather*}
y_{2 n}=y_{0}\left[1-x_{1} \sum_{j=1}^{n} \prod_{i=1}^{j-1} \frac{1}{1+y_{2 i}} \prod_{k=1}^{j} \frac{1}{1+x_{2 k-1}}\right], n \geq 0 ; \tag{2.10}\\
x_{2 n+1}=x_{-1}\left[1-\frac{y_{0}}{1+y_{0}} \sum_{j=0}^{n} \prod_{i=1}^{j} \frac{1}{1+x_{2 i-1}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k}}\right], n \geq-1 ; \tag{2.11}\\
y_{2 n+1}=y_{-1}\left[1-\frac{x_{0}}{1+x_{0}} \sum_{j=0}^{n} \prod_{i=1}^{j} \frac{1}{1+y_{2 i-1}} \prod_{k=1}^{j} \frac{1}{1+x_{2 k}}\right], n \geq-1 . \tag{2.12}
\end{gather*}
$$

are valid.
(f) If

$$
\begin{equation*}
x_{0}+x_{0}^{2} \leq y_{-1} \text { and } y_{0}+y_{0}^{2} \leq x_{-1} \tag{2.13}
\end{equation*}
$$

then
$x_{2 n} \rightarrow a_{1}=0, y_{2 n} \rightarrow a_{2}=0, x_{2 n+1} \rightarrow b_{1} \neq 0$ and $y_{2 n+1} \rightarrow b_{2} \neq 0$,
as n tends to the infinity.
(g) Suppose that a solution of the system (2.6) converges to zero, then there exists m_{0} in the set of natural numbers \mathbb{N}_{0}, such that

$$
y_{n+2}<x_{n+1} \text { and } x_{n+2}<y_{n+1} \text {, for all } n \in \mathbb{N}_{m_{0}} \text {. }
$$

Proof.

(a) From system (2.6), we have

$$
x_{n+1}<x_{n-1} \text { and } y_{n+1}<y_{n-1}, \text { for } n \in \mathbb{N}_{0}
$$

so, $\left\{\left(x_{2 n}, y_{2 n}\right)\right\}_{n \geq 0}$ and $\left\{\left(x_{2 n+1}, y_{2 n+1}\right)\right\}_{n \geq-1}$ decrease.
Since the sequences decrease and comprise positive terms, they converge (a decreasing sequence that is lower bounded is convergent). Hence, there are $a_{1}, a_{2}, b_{1}, b_{2} \geq 0$,
such that

$$
\lim _{n \rightarrow \infty}\left(x_{2 n}, y_{2 n}\right)=\left(a_{1}, a_{2}\right) \text { and } \lim _{n \rightarrow \infty}\left(x_{2 n+1}, y_{2 n+1}\right)=\left(b_{1}, b_{2}\right)
$$

(b) - (c) Suppose that $\left\{\left(x_{n}, y_{n}\right)\right\}_{n \geq-1}$ represents a two-periodic solution to system (2.6). Thus, from (2.8) and system (2.6) we get

$$
\left(a_{1}=\frac{a_{1}}{1+b_{2}} \text { and } a_{2}=\frac{a_{2}}{1+b_{1}}\right) \text { or }\left(b_{1}=\frac{b_{1}}{1+a_{2}} \text { and } b_{2}=\frac{b_{2}}{1+a_{1}}\right)
$$

in other words

$$
\left(a_{1}+a_{1} b_{2}=a_{1} \text { and } a_{2}+a_{2} b_{1}=a_{2}\right) \text { or }\left(b_{1}+b_{1} a_{2}=b_{1} \text { and } b_{2}+b_{2} a_{1}=b_{2}\right),
$$

and therefore, $a_{1} b_{2}=0$ and $a_{2} b_{1}=0$ are simultaneously checked.
(d) Suppose that there is an $n_{0} \in \mathbb{N}_{0}$, such that

$$
x_{n} \geq y_{n+1} \geq x_{n+2}, \text { and } y_{n} \geq x_{n+1} \geq y_{n+2}, \text { for all } n \geq n_{0}
$$

using (2.8) and by passing to the limit as n approaches infinity, we obtain

$$
\begin{equation*}
a_{1} \geq b_{2} \geq a_{1} \geq b_{2} \geq \ldots \geq 0, \text { and } a_{2} \geq b_{1} \geq a_{2} \geq b_{1} \geq \ldots \geq 0 \tag{2.14}
\end{equation*}
$$

or

$$
\begin{equation*}
b_{1} \geq a_{2} \geq b_{1} \geq a_{2} \geq \ldots \geq 0, \text { and } b_{2} \geq a_{1} \geq b_{2} \geq a_{1} \geq \ldots \geq 0 \tag{2.15}
\end{equation*}
$$

By combining (2.14), (2.15)with the outcome from theorem (2.2.1) (c), we establish that

$$
a_{1}=a_{2}=b_{1}=b_{2}=0,
$$

which consequently implies

$$
\lim _{n \rightarrow \infty}\left(x_{n}, y_{n}\right)=(0,0)
$$

It's worth noting that the outcome derived in the theorem (2.2.1) (c) is similar to
$\left(a_{1}=0\right.$ and $\left.a_{2}=0\right)$ or $\left(a_{1}=0\right.$ and $\left.b_{1}=0\right)$ or $\left(a_{2}=0\right.$ and $\left.b_{2}=0\right)$ or $\left(b_{1}=0\right.$ and $\left.b_{2}=0\right)$.
(e) System (2.6) yields

$$
\begin{aligned}
x_{1} & =\frac{x_{-1}}{1+y_{0}}=x_{-1}-\frac{x_{-1} y_{0}}{1+y_{0}}=x_{-1}\left[1-\frac{y_{0}}{1+y_{0}}\right] \\
x_{3} & =\frac{x_{1}}{1+y_{2}}=x_{1}-\frac{x_{1} y_{2}}{1+y_{2}} \\
& =x_{-1}\left[1-\frac{y_{0}}{1+y_{0}}\right]-\frac{x_{-1}}{1+y_{0}} \frac{y_{0}}{1+x_{1}} \frac{1}{1+y_{2}} \\
x_{3} & =x_{-1}\left[1-\frac{y_{0}}{1+y_{0}}\left(1+\frac{1}{1+x_{1}} \frac{1}{1+y_{2}}\right)\right] \\
x_{5} & =\frac{x_{3}}{1+y_{4}}=x_{3}-\frac{x_{3} y_{4}}{1+y_{4}} \\
& =x_{-1}\left[1-\frac{y_{0}}{1+y_{0}}\left(1+\frac{1}{1+x_{1}} \frac{1}{1+y_{2}}\right)\right]-\frac{x_{1}}{1+y_{2}} \frac{y_{2}}{1+x_{3}} \frac{1}{1+y_{4}} \\
& =x_{-1}\left[1-\frac{y_{0}}{1+y_{0}}\left(1+\frac{1}{1+x_{1}} \frac{1}{1+y_{2}}\right)\right]-\frac{x_{-1}}{1+y_{0}} \frac{1}{1+y_{2}} \frac{y_{0}}{1+x_{1}} \frac{1}{1+x_{3}} \frac{1}{1+y_{4}},
\end{aligned}
$$

so

$$
x_{5}=x_{-1}\left[1-\frac{y_{0}}{1+y_{0}}\left(1+\frac{1}{1+x_{1}} \frac{1}{1+y_{2}}+\frac{1}{1+x_{1}} \frac{1}{1+y_{2}} \frac{1}{1+x_{3}} \frac{1}{1+y_{4}}\right)\right] .
$$

By induction, we can get

$$
x_{2 n+1}=x_{-1}\left[1-\frac{y_{0}}{1+y_{0}} \sum_{j=0}^{n} \prod_{i=1}^{j} \frac{1}{1+x_{2 i-1}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k}}\right], n \geq-1 .
$$

Likewise, from system (2.6), we obtain

$$
\begin{aligned}
x_{2} & =\frac{x_{0}}{1+y_{1}}=x_{0}-\frac{x_{0} y_{1}}{1+y_{1}}=x_{0}\left[1-\frac{y_{1}}{1+y_{1}}\right] \\
x_{4} & =\frac{x_{2}}{1+y_{3}}=x_{2}-\frac{x_{2} y_{3}}{1+y_{3}} \\
& =x_{0}\left[1-\frac{y_{1}}{1+y_{1}}\right]-\frac{x_{0}}{1+y_{1}} \frac{y_{1}}{1+x_{2}} \frac{1}{1+y_{3}} \\
x_{4} & =x_{0}\left[1-y_{1}\left(\frac{1}{1+y_{1}}+\frac{1}{1+y_{1}} \frac{1}{1+x_{2}} \frac{1}{1+y_{3}}\right)\right] \\
x_{6} & =\frac{x_{4}}{1+y_{5}}=x_{4}-\frac{x_{4} y_{5}}{1+y_{5}} \\
& =x_{0}\left[1-y_{1}\left(\frac{1}{1+y_{1}}+\frac{1}{1+y_{1}} \frac{1}{1+x_{2}} \frac{1}{1+y_{3}}\right)\right]-\frac{x_{2}}{1+y_{3}} \frac{y_{3}}{1+x_{4}} \frac{1}{1+y_{5}} \\
& =x_{0}\left[1-y_{1}\left(\frac{1}{1+y_{1}}+\frac{1}{1+y_{1}} \frac{1}{1+x_{2}} \frac{1}{1+y_{3}}\right)\right]-\frac{x_{0}}{1+y_{1}} \frac{1}{1+y_{3}} \frac{y_{1}}{1+x_{2}} \frac{1}{1+x_{4}} \frac{1}{1+y_{5}},
\end{aligned}
$$

so

$$
x_{6}=x_{0}\left[1-y_{1}\left(1+\frac{1}{1+y_{1}}+\frac{1}{1+y_{1}} \frac{1}{1+x_{2}} \frac{1}{1+y_{3}}+\frac{1}{1+y_{1}} \frac{1}{1+x_{2}} \frac{1}{1+y_{3}} \frac{1}{1+x_{4}} \frac{1}{1+y_{5}}\right)\right] .
$$

By induction, we can get

$$
x_{2 n}=x_{0}\left[1-y_{1} \sum_{j=1}^{n} \prod_{i=1}^{j-1} \frac{1}{1+x_{2 i}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k-1}}\right], n \geq 0 .
$$

Now, we are going to demonstrate the validity of relations (2.9) and (2.11).

- With a quick calculation, we confirm that relation (2.9) holds for $n=0$.
- Assuming that it is verified at the order n, namely

$$
x_{2 n}=x_{0}\left[1-y_{1} \sum_{j=1}^{n} \prod_{i=1}^{j-1} \frac{1}{1+x_{2 i}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k-1}}\right] .
$$

- We are going to demonstrate its validity for the order $(n+1)$. We have

$$
\begin{aligned}
x_{2 n+2} & =\frac{x_{2 n}}{1+y_{2 n+1}} \\
& =x_{2 n}-\frac{x_{2 n} y_{2 n+1}}{1+y_{2 n+1}} \\
& =x_{2 n}-\frac{x_{0}}{1+y_{1}} \frac{y_{1}}{1+x_{2}} \frac{1}{1+y_{3}} \cdots \frac{1}{1+x_{2 n}} \frac{1}{1+y_{2 n+1}} \\
& =x_{2 n}-x_{0} y_{1} \prod_{i=1}^{n} \frac{1}{1+x_{2 i}} \prod_{k=1}^{n+1} \frac{1}{1+y_{2 k-1}} \\
& =x_{0}\left[1-y_{1} \sum_{j=1}^{n} \prod_{i=1}^{j-1} \frac{1}{1+x_{2 i}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k-1}}\right]-x_{0} y_{1} \prod_{i=1}^{n} \frac{1}{1+x_{2 i}} \prod_{k=1}^{n+1} \frac{1}{1+y_{2 k-1}} \\
x_{2 n+2} & =x_{0}\left[1-y_{1}\left(\sum_{j=1}^{n} \prod_{i=1}^{j-1} \frac{1}{1+x_{2 i}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k-1}}+\prod_{i=1}^{n} \frac{1}{1+x_{2 i}} \prod_{k=1}^{n+1} \frac{1}{1+y_{2 k-1}}\right)\right] .
\end{aligned}
$$

Hence

$$
x_{2 n+2}=x_{0}\left[1-y_{1} \sum_{j=1}^{n+1} \prod_{i=1}^{j-1} \frac{1}{1+x_{2 i}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k-1}}\right] .
$$

Therefore, relation (2.9) is verified at the order $(n+1)$, implying its validity for $n \geq 0$.
Similarly, we are going to demonstrate the truth of relation (2.11).

- With a quick calculation, we confirm that relation (2.11) holds for $n=-1$.
- Assuming that it is verified at the order n, namely

$$
x_{2 n+1}=x_{-1}\left[1-\frac{y_{0}}{1+y_{0}} \sum_{j=0}^{n} \prod_{i=1}^{j} \frac{1}{1+x_{2 i-1}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k}}\right] .
$$

- We are going to demonstrate its validity for the order $(n+1)$. We have

$$
\begin{aligned}
x_{2 n+3} & =\frac{x_{2 n+1}}{1+y_{2 n+2}} \\
& =x_{2 n+1}-\frac{x_{2 n+1} y_{2 n+2}}{1+y_{2 n+2}} \\
& =x_{2 n+1}-\frac{x_{-1}}{1+y_{0}} \frac{y_{0}}{1+x_{1}} \frac{1}{1+y_{2}} \frac{1}{1+x_{3}} \cdots \frac{1}{1+x_{2 n+1}} \frac{1}{1+y_{2 n+2}} \\
& =x_{2 n+1}-\frac{x_{-1} y_{0}}{1+y_{0}} \prod_{i=1}^{n+1} \frac{1}{1+x_{2 i-1}} \prod_{k=1}^{n+1} \frac{1}{1+y_{2 k}} \\
& =x_{-1}\left[1-\frac{y_{0}}{1+y_{0}} \sum_{j=0}^{n} \prod_{i=1}^{j} \frac{1}{1+x_{2 i-1}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k}}\right]-\frac{x_{-1} y_{0}}{1+y_{0}} \prod_{i=1}^{n+1} \frac{1}{1+x_{2 i-1}} \prod_{k=1}^{n+1} \frac{1}{1+y_{2 k}} \\
x_{2 n+3} & =x_{-1}\left[1-\frac{y_{0}}{1+y_{0}}\left(\sum_{j=0}^{n} \prod_{i=1}^{j} \frac{1}{1+x_{2 i-1}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k}}+\prod_{i=1}^{n+1} \frac{1}{1+x_{2 i-1}} \prod_{k=1}^{n+1} \frac{1}{1+y_{2 k}}\right)\right] .
\end{aligned}
$$

Hence

$$
x_{2 n+3}=x_{-1}\left[1-\frac{y_{0}}{1+y_{0}} \sum_{j=0}^{n+1} \prod_{i=1}^{j} \frac{1}{1+x_{2 i-1}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k}}\right] .
$$

Therefore, relation (2.11) is verified at the order $(n+1)$, implying its validity for $n \geq-1$. The proofs for relations (2.10) and (2.12) are analogous to the previous one and will be skipped.
(f) Relation (2.13) can be rephrased as

$$
\begin{equation*}
x_{0} \leq y_{1} \text { and } y_{0} \leq x_{1} . \tag{2.16}
\end{equation*}
$$

It's important to note that

- if $x_{0}+x_{0}^{2} \leq y_{-1}$, then either $\left(x_{2 n}\right)_{n \geq 0}$ or $\left(y_{2 n+1}\right)_{n \geq-1}$ has a non-zero limit.
- if $y_{0}+y_{0}^{2} \leq x_{-1}$, then either $\left(x_{2 n+1}\right)_{n \geq-1}$ or $\left(y_{2 n}\right)_{n \geq 0}$ has a non-zero limit.

Effectively, if we set $a_{1}=b_{2}=0$, then from relations (2.9) and (2.12), we obtain

$$
\frac{1}{y_{1}}=\sum_{j=1}^{\infty} \prod_{i=1}^{j-1} \frac{1}{1+x_{2 i}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k-1}}
$$

since $x_{2 k}>0$ imply that $0<\frac{1}{1+x_{2 k}}<1$, we can obtain

$$
\prod_{k=1}^{j} \frac{1}{1+x_{2 k}}=\frac{1}{1+x_{2 j}} \prod_{k=1}^{j-1} \frac{1}{1+x_{2 k}}<\prod_{k=1}^{j-1} \frac{1}{1+x_{2 k}}
$$

hence

$$
\begin{aligned}
\frac{1}{y_{1}} & =\sum_{j=1}^{\infty} \prod_{i=1}^{j-1} \frac{1}{1+x_{2 i}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k-1}} \\
& >\sum_{j=1}^{\infty} \prod_{k=1}^{j} \frac{1}{1+y_{2 i-1}} \prod_{i=1}^{j} \frac{1}{1+x_{2 k}} \\
& =\frac{1+x_{0}}{x_{0}}-1=\frac{1}{x_{0}},
\end{aligned}
$$

so, we get

$$
\frac{1}{y_{1}}>\frac{1}{x_{0}}
$$

therefore, $y_{1}<x_{0}$ (contradiction with (2.16)).
If we put $a_{2}=b_{1}=0$, we obtain from relations (2.10) and (2.11), that

$$
\frac{1}{x_{1}}=\sum_{j=1}^{\infty} \prod_{i=1}^{j-1} \frac{1}{1+y_{2 i}} \prod_{k=1}^{j} \frac{1}{1+x_{2 k-1}},
$$

since $y_{2 k}>0$ imply that $0<\frac{1}{1+y_{2 k}}<1$, we can obtain

$$
\prod_{k=1}^{j} \frac{1}{1+y_{2 k}}=\frac{1}{1+y_{2 j}} \prod_{k=1}^{j-1} \frac{1}{1+y_{2 k}}<\prod_{k=1}^{j-1} \frac{1}{1+y_{2 k}},
$$

hence

$$
\begin{aligned}
\frac{1}{x_{1}} & =\sum_{j=1}^{\infty} \prod_{i=1}^{j-1} \frac{1}{1+y_{2 i}} \prod_{k=1}^{j} \frac{1}{1+x_{2 k-1}} \\
& >\sum_{j=1}^{\infty} \prod_{i=1}^{j} \frac{1}{1+x_{2 i-1}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k}} \\
& =\frac{1+y_{0}}{y_{0}}-1=\frac{1}{y_{0}},
\end{aligned}
$$

so, we get

$$
\frac{1}{x_{1}}>\frac{1}{y_{0}}
$$

thus, $x_{1}<y_{0}$ (contradiction with (2.16)).

Now, using (2.16) and some calculations, we obtain

$$
\begin{align*}
y_{3}-x_{2} & =\frac{y_{1}}{1+x_{2}}-x_{2} \\
& =\frac{y_{1}-x_{2}-x_{2}^{2}}{1+x_{2}} \\
& =\frac{1}{1+x_{2}}\left[y_{1}-x_{2}-x_{2}^{2}\right] \\
& =\frac{1}{1+x_{2}}\left[y_{1}-\frac{x_{0}}{1+y_{1}}-\left(\frac{x_{0}}{1+y_{1}}\right)^{2}\right] \\
& =\frac{1}{1+x_{2}}\left[\frac{y_{1}\left(1+y_{1}\right)^{2}-x_{0}\left(1+y_{1}\right)-x_{0}^{2}}{\left(1+y_{1}\right)^{2}}\right] \\
& \left.\left.=\frac{1}{1+x_{2}}\right] \frac{y_{1}+y_{1}^{3}+2 y_{1}^{2}-x_{0}-x_{0} y_{1}-x_{0}^{2}}{\left(1+y_{1}\right)^{2}}\right] \\
& =\frac{1}{1+x_{2}}\left[\frac{y_{1}^{3}+y_{1}^{2}-x_{0}^{2}+y_{1}\left(y_{1}-x_{0}\right)+y_{1}-x_{0}}{\left(1+y_{1}\right)^{2}}\right] \\
& \geq \frac{y_{1}^{3}}{\left(1+x_{2}\right)\left(1+y_{1}\right)^{2}}>0, \tag{2.17}
\end{align*}
$$

and

$$
\begin{aligned}
x_{3}-y_{2} & =\frac{x_{1}}{1+y_{2}}-y_{2} \\
& =\frac{x_{1}-y_{2}-y_{2}^{2}}{1+y_{2}} \\
& =\frac{1}{1+y_{2}}\left[x_{1}-y_{2}-y_{2}^{2}\right] \\
& =\frac{1}{1+y_{2}}\left[x_{1}-\frac{y_{0}}{1+x_{1}}-\left(\frac{y_{0}}{1+x_{1}}\right)^{2}\right] \\
& =\frac{1}{1+y_{2}}\left[\frac{x_{1}\left(1+x_{1}\right)^{2}-y_{0}\left(1+x_{1}\right)-y_{0}^{2}}{\left(1+x_{1}\right)^{2}}\right] \\
& =\frac{1}{1+y_{2}}\left[\frac{x_{1}+x_{1}^{3}+2 x_{1}^{2}-y_{0}-y_{0} x_{1}-y_{0}^{2}}{\left(1+x_{1}\right)^{2}}\right] \\
& =\frac{1}{1+y_{2}}\left[\frac{x_{1}^{3}+x_{1}^{2}-y_{0}^{2}+x_{1}\left(x_{1}-y_{0}\right)+x_{1}-y_{0}}{\left(1+x_{1}\right)^{2}}\right] \\
& \geq \frac{x_{1}^{3}}{\left(1+y_{2}\right)\left(1+x_{1}\right)^{2}}>0 .
\end{aligned}
$$

Assuming that

$$
\begin{equation*}
y_{2 n-1}>x_{2 n-2} \text { and } x_{2 n-1}>y_{2 n-2} \tag{2.18}
\end{equation*}
$$

then, we have

$$
\begin{aligned}
y_{2 n+1}-x_{2 n} & =\frac{y_{2 n-1}}{1+x_{2 n}}-x_{2 n} \\
& =\frac{y_{2 n-1}-x_{2 n}-x_{2 n}^{2}}{1+x_{2 n}} \\
& =\frac{1}{1+x_{2 n}}\left[y_{2 n-1}-x_{2 n}-x_{2 n}^{2}\right] \\
& =\frac{1}{1+x_{2 n}}\left[y_{2 n-1}-\frac{x_{2 n-2}}{1+y_{2 n-1}}-\left(\frac{x_{2 n-2}}{1+y_{2 n-1}}\right)^{2}\right] \\
& =\frac{1}{1+x_{2 n}}\left[\frac{y_{2 n-1}\left(1+y_{2 n-1}\right)^{2}-x_{2 n-2}\left(1+y_{2 n-1}\right)-x_{2 n-2}^{2}}{\left(1+y_{2 n-1}\right)^{2}}\right] \\
& =\frac{1}{1+x_{2 n}}\left[\frac{y_{2 n-1}+y_{2 n-1}^{3}+2 y_{2 n-1}^{2}-x_{2 n-2}-x_{2 n-2} y_{2 n-1}-x_{2 n-2}^{2}}{\left(1+y_{2 n-1}\right)^{2}}\right] \\
& =\frac{1}{1+x_{2 n}}\left[\frac{y_{2 n-1}^{3}+y_{2 n-1}^{2}-x_{2 n-2}^{2}+y_{2 n-1}\left(y_{2 n-1}-x_{2 n-2}\right)+y_{2 n-1}-x_{2 n-2}}{\left(1+y_{2 n-1}\right)^{2}}\right] \\
& \geq \frac{y_{2 n-1}^{3}}{\left(1+x_{2 n}\right)\left(1+y_{2 n-1}\right)^{2}}>0,
\end{aligned}
$$

and

$$
\begin{align*}
x_{2 n+1}-y_{2 n} & =\frac{x_{2 n-1}}{1+y_{2 n}}-y_{2 n} \\
& =\frac{x_{2 n-1}-y_{2 n}-y_{2 n}^{2}}{1+y_{2 n}} \\
& =\frac{1}{1+y_{2 n}}\left[x_{2 n-1}-y_{2 n}-y_{2 n}^{2}\right] \\
& =\frac{1}{1+y_{2 n}}\left[x_{2 n-1}-\frac{y_{2 n-2}}{1+x_{2 n-1}}-\left(\frac{y_{2 n-2}}{1+x_{2 n-1}}\right)^{2}\right] \\
& =\frac{1}{1+y_{2 n}}\left[\frac{x_{2 n-1}\left(1+x_{2 n-1}\right)^{2}-y_{2 n-2}\left(1+x_{2 n-1}\right)-y_{2 n-2}^{2}}{\left(1+x_{2 n-1}\right)^{2}}\right] \\
& =\frac{1}{1+y_{2 n}}\left[\frac{x_{2 n-1}+x_{2 n-1}^{3}+2 x_{2 n-1}^{2}-y_{2 n-2}-y_{2 n-2} x_{2 n-1}-y_{2 n-2}^{2}}{\left(1+x_{2 n-1}\right)^{2}}\right] \\
& =\frac{1}{1+y_{2 n}}\left[\frac{x_{2 n-1}^{3}+x_{2 n-1}^{2}-y_{2 n-2}^{2}+x_{2 n-1}\left(x_{2 n-1}-y_{2 n-2}\right)+x_{2 n-1}-y_{2 n-2}}{\left(1+x_{2 n-1}\right)^{2}}\right] \\
& \geq \frac{x_{2 n-1}^{3}}{\left(1+y_{2 n}\right)\left(1+x_{2 n-1}\right)^{2}}>0 . \tag{2.19}
\end{align*}
$$

From (2.17), (2.18), (2.19) and by employing the method of induction, we get

$$
y_{2 n-1}>x_{2 n-2} \text { and } x_{2 n-1}>y_{2 n-2}, \text { for all } n \geq 2
$$

From (2.18), we have

$$
\begin{equation*}
b_{2}=\lim _{n \rightarrow \infty} y_{2 n-1} \geq \lim _{n \rightarrow \infty} x_{2 n-2}=a_{1}, \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{1}=\lim _{n \rightarrow \infty} x_{2 n-1} \geq \lim _{n \rightarrow \infty} y_{2 n-2}=a_{2} . \tag{2.21}
\end{equation*}
$$

From (2.20), (2.21) and theorem (2.2.1) part (c), along with the initial note in the proof of (f), we get

$$
\lim _{n \rightarrow \infty} x_{2 n-2}=a_{1}=0, \quad \lim _{n \rightarrow \infty} y_{2 n-2}=a_{2}=0
$$

and

$$
\lim _{n \rightarrow \infty} x_{2 n-1}=b_{1} \neq 0, \quad \lim _{n \rightarrow \infty} y_{2 n-1}=b_{2} \neq 0
$$

(g) By shifting, we can see that for some $m_{0} \in \mathbb{N}_{0}$

- If $x_{m_{0}+1}+x_{m_{0}+1}^{2} \leq y_{m_{0}}$ then $a_{1}=0$ or $b_{1}=0$.
- If $y_{m_{0}+1}+y_{m_{0}+1}^{2} \leq x_{m_{0}}$ then $a_{2}=0$ or $b_{2}=0$.

Therefore, if

$$
\lim _{n \rightarrow \infty}\left(x_{n}, y_{n}\right)=(0,0),
$$

then

$$
x_{m_{0}+1}+x_{m_{0}+1}^{2}>y_{m_{0}} \text { and } y_{m_{0}+1}+y_{m_{0}+1}^{2}>x_{m_{0}}, \quad m_{0} \in \mathbb{N}_{0} .
$$

Thus, for each $n \in \mathbb{N}_{m_{0}}$, we get

$$
y_{n}<x_{n+1}+x_{n+1}^{2} \text { and } x_{n}<y_{n+1}+y_{n+1}^{2}
$$

this is similar to

$$
y_{n+2}=\frac{y_{n}}{1+x_{n+1}}<x_{n+1} \text { and } x_{n+2}=\frac{x_{n}}{1+y_{n+1}}<y_{n+1},
$$

for all $n \in \mathbb{N}_{m_{0}}$.
The theorem's proof is now concluded.

Now, assuming condition (2.13) is satisfied, then by utilizing the fact that $\lim _{n \rightarrow \infty} x_{2 n}=0$, and letting n tends to infinity in (2.9), we obtain

$$
\begin{equation*}
\sum_{j=1}^{\infty} \prod_{i=1}^{j-1} \frac{1}{1+x_{2 i}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k-1}}=\frac{1}{y_{1}} \tag{2.22}
\end{equation*}
$$

We can represent relation (2.12) as follows

$$
\begin{equation*}
\sum_{j=1}^{n} \prod_{i=1}^{j} \frac{1}{1+y_{2 i-1}} \prod_{k=1}^{j} \frac{1}{1+x_{2 k}}=\left(\frac{1+x_{0}}{x_{0}}\right)\left(1-\frac{y_{2 n+1}}{y_{-1}}\right)-1 \tag{2.23}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{j=1}^{n} \prod_{i=1}^{j} \frac{1}{1+y_{2 i-1}} \prod_{k=1}^{j} \frac{1}{1+x_{2 k}}<\sum_{j=1}^{n} \prod_{i=1}^{j-1} \frac{1}{1+x_{2 i}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k-1}}<\sum_{j=1}^{\infty} \prod_{i=1}^{j-1} \frac{1}{1+x_{2 i}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k-1}} \tag{2.24}
\end{equation*}
$$

for every $\mathrm{n} \in \mathbb{N}_{0}$.
From (2.22), (2.23) and (2.24), we obtain

$$
0<\left(\frac{1+x_{0}}{x_{0}}\right)\left(1-\frac{y_{2 n+1}}{y_{-1}}\right)-1<\frac{1}{y_{1}},
$$

so

$$
0<1-\frac{y_{2 n+1}}{y_{-1}}-\frac{x_{0}}{1+x_{0}}<\frac{1+x_{0}}{y_{-1}} \frac{x_{0}}{1+x_{0}},
$$

then

$$
0<y_{-1}-y_{2 n+1}-\frac{y_{-1} x_{0}}{1+x_{0}}<x_{0}
$$

from where

$$
0<\frac{y_{-1}\left(1+x_{0}\right)-y_{-1} x_{0}}{1+x_{0}}-y_{2 n+1}<x_{0}
$$

for $n \in \mathbb{N}_{0}$, which gives us

$$
0<\frac{y_{-1}}{1+x_{0}}-y_{2 n+1}<x_{0}
$$

Based on the preceding outcomes and (2.16), we get

$$
\begin{equation*}
0 \leq y_{1}-x_{0}<y_{2 n+1} . \tag{2.25}
\end{equation*}
$$

Similarly, if condition (2.13) is satisfied, then by utilizing the fact that $\lim _{n \rightarrow \infty} y_{2 n}=0$ and letting n tends to infinity in (2.10), we obtain

$$
\begin{equation*}
\sum_{j=1}^{\infty} \prod_{i=1}^{j-1} \frac{1}{1+y_{2 i}} \prod_{k=1}^{j} \frac{1}{1+x_{2 k-1}}=\frac{1}{x_{1}} \tag{2.26}
\end{equation*}
$$

We can represent relation (2.11) as follows

$$
\begin{equation*}
\sum_{j=1}^{n} \prod_{i=1}^{j} \frac{1}{1+x_{2 i-1}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k}}=\left(\frac{1+y_{0}}{y_{0}}\right)\left(1-\frac{x_{2 n+1}}{x_{-1}}\right)-1 \tag{2.27}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\sum_{j=1}^{n} \prod_{i=1}^{j} \frac{1}{1+x_{2 i-1}} \prod_{k=1}^{j} \frac{1}{1+y_{2 k}}<\sum_{j=1}^{n} \prod_{i=1}^{j-1} \frac{1}{1+y_{2 i}} \prod_{k=1}^{j} \frac{1}{1+x_{2 k-1}}<\sum_{j=1}^{\infty} \prod_{i=1}^{j-1} \frac{1}{1+y_{2 i}} \prod_{k=1}^{j} \frac{1}{1+x_{2 k-1}} \tag{2.28}
\end{equation*}
$$

for every $\mathrm{n} \in \mathbb{N}_{0}$.
From (2.26), (2.27) and (2.28), we obtain

$$
0<\left(\frac{1+y_{0}}{y_{0}}\right)\left(1-\frac{x_{2 n+1}}{x_{-1}}\right)-1<\frac{1}{x_{1}}
$$

so

$$
0<1-\frac{x_{2 n+1}}{x_{-1}}-\frac{y_{0}}{1+y_{0}}<\frac{1+y_{0}}{x_{-1}} \frac{y_{0}}{1+y_{0}}
$$

then

$$
0<x_{-1}-x_{2 n+1}-\frac{x_{-1} y_{0}}{1+y_{0}}<y_{0}
$$

from where

$$
0<\frac{x_{-1}\left(1+y_{0}\right)-x_{-1} y_{0}}{1+y_{0}}-x_{2 n+1}<y_{0}
$$

for $n \in \mathbb{N}_{0}$, which gives us

$$
0<\frac{x_{-1}}{1+y_{0}}-x_{2 n+1}<y_{0}
$$

Building on the earlier findings and (2.16), we get

$$
\begin{equation*}
0 \leq x_{1}-y_{0}<x_{2 n+1} . \tag{2.29}
\end{equation*}
$$

Proposition 2.2.1 Consider $\left\{\left(x_{n}, y_{n}\right)\right\}_{n \geq-1}$ as a solution to system (2.6). Let's suppose that the values x_{0}, y_{0}, x_{1} and y_{1} satisfy these conditions

$$
x_{1}-y_{0} \geq 0 \text { and } y_{1}-x_{0} \geq 0 .
$$

Then

$$
\lim _{n \rightarrow \infty} x_{2 n+1} \neq x_{1}-y_{0} \text { and } \lim _{n \rightarrow \infty} y_{2 n+1} \neq y_{1}-x_{0}
$$

Proof. There are two cases that need to be considered.

Case 1. When the equalities in (2.13) are satisfied, we get

$$
x_{1}-y_{0}=0 \text { and } y_{1}-x_{0}=0 .
$$

Therefore, by utilizing (2.25), (2.29), along with the result derived in theorem (2.2.1) part (f), we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{2 n+1}=b_{1}>x_{1}-y_{0}=0 \text { and } \lim _{n \rightarrow \infty} y_{2 n+1}=b_{2}>y_{1}-x_{0}=0 \tag{2.30}
\end{equation*}
$$

From where, if we assume the equalities in (2.13) are satisfied, then we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{2 n+1}=b_{1} \neq x_{1}-y_{0}=0 \text { and } \lim _{n \rightarrow \infty} y_{2 n+1}=b_{2} \neq y_{1}-x_{0}=0 . \tag{2.31}
\end{equation*}
$$

Case 2. When the strict inequalities in (2.13) are satisfied, we get

$$
y_{1}-x_{0}>0 \text { and } x_{1}-y_{0}>0 .
$$

Therefore, by utilizing relations (2.25), (2.29), along with the monotonicity of $\left\{\left(x_{2 n+1}\right)\right\}_{n \geq-1}$ and $\left\{\left(y_{2 n+1}\right)\right\}_{n \geq-1}$, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{2 n+1}=b_{1} \geq x_{1}-y_{0}>0 \text { and } \lim _{n \rightarrow \infty} y_{2 n+1}=b_{2} \geq y_{1}-x_{0}>0 \tag{2.32}
\end{equation*}
$$

Now, let's suppose, for instance, that

$$
\begin{equation*}
x_{-1}=6, x_{0}=1, y_{-1}=4 \text { and } y_{0}=1, \tag{2.33}
\end{equation*}
$$

within system (2.6). So we obtain the graph in Fig (2.1)

Figure 2.1: Plot of system (2.6) using the initial values (2.33).

From (2.33) and system (2.6), we can see that

$$
x_{1}-y_{0}=3-1=2>0 \text { and } y_{1}-x_{0}=2-1=1>0,
$$

so we are in the second case.

Now, from the graph in Fig (2.1), it is easy to see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{2 n+1} \neq 2=x_{1}-y_{0} \text { and } \lim _{n \rightarrow \infty} y_{2 n+1} \neq 1=y_{1}-x_{0} . \tag{2.34}
\end{equation*}
$$

From where, When the strict inequalities in (2.13) are satisfied, we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{2 n+1}=b_{1} \neq x_{1}-y_{0}>0 \text { and } \lim _{n \rightarrow \infty} y_{2 n+1}=b_{2} \neq y_{1}-x_{0}>0 . \tag{2.35}
\end{equation*}
$$

Using (2.31) and (2.35), we obtain

$$
\lim _{n \rightarrow \infty} x_{2 n+1} \neq x_{1}-y_{0} \text { and } \lim _{n \rightarrow \infty} y_{2 n+1} \neq y_{1}-x_{0}
$$

under the following condition

$$
x_{1}-y_{0} \geq 0 \text { and } y_{1}-x_{0} \geq 0 .
$$

2.3 Understanding system (2.5)

This section outlines the approach employed to streamline the analysis of the difference equations system (2.5), that is given by

$$
x_{n+1}=\frac{x_{n-(2 k+1)}}{1+y_{n-k}}, y_{n+1}=\frac{y_{n-(2 k+1)}}{1+x_{n-k}}, n, k \in \mathbb{N}_{0}
$$

Before we begin, it is important to mention that these difference equations have been studied in existing literature.

In $[49,50]$ Şimşek et al. studied the following equations

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-3}}{1+x_{n-1}}, n \in \mathbb{N}_{0} \tag{2.36}
\end{equation*}
$$

$$
\begin{array}{ll}
x_{n+1}=\frac{x_{n-5}}{1+x_{n-2}}, & n \in \mathbb{N}_{0} \\
x_{n+1}=\frac{x_{n-7}}{1+x_{n-3}}, & n \in \mathbb{N}_{0} . \tag{2.38}
\end{array}
$$

Şimşek et al. examined the following generalization of equations (2.36)-(2.38) in [51]

$$
x_{n+1}=\frac{x_{n-(2 k+1)}}{1+x_{n-k}}, n, k \in \mathbb{N}_{0} .
$$

Motivated by the above mentioned works, we are going to introduce system(2.5) and study it.

From system (2.5), we can observe that x_{n+1} can be simply represented using $x_{n-(2 k+1)}$ and y_{n-k},
(similarly: y_{n+1} is represented using $y_{n-(2 k+1)}$ and x_{n-k}).
Another observation is that the relation below holds

$$
n+1-(n-k)=n-k-(n-(2 k+1))=k+1
$$

In other words, the difference between the indices of x_{n+1} and y_{n-k} on one hand, and the indices of y_{n-k} and $x_{n-(2 k+1)}$ on the other one, (similarly: the difference between the indices of y_{n+1} and x_{n-k} on one hand, and the indices of x_{n-k} and $y_{n-(2 k+1)}$ on the other one) is equal to $k+1$.
As a consequence, we can partition the set of indices into $k+1$ distinct subsets, each subset being defined by

$$
S_{j}=\left\{n \in \mathbb{N}_{-(2 k+1)}, \quad n=(k+1) m+j, \quad m \geq-2\right\}, \quad j=\overline{1, k+1}
$$

Thus, we can represent system (2.5) as follows

$$
\begin{equation*}
x_{(k+1) m+j}=\frac{x_{(k+1)(m-2)+j}}{1+y_{(k+1)(m-1)+j}}, y_{(k+1) m+j}=\frac{y_{(k+1)(m-2)+j}}{1+x_{(k+1)(m-1)+j}}, m \in \mathbb{N}_{0}, \tag{2.39}
\end{equation*}
$$

for all $j=\overline{1, k+1}$.
Let's put

$$
\begin{equation*}
u_{m}^{(j)}=x_{(k+1) m+j}, v_{m}^{(j)}=y_{(k+1) m+j}, m \geq-2, \quad j=\overline{1, k+1}, \tag{2.40}
\end{equation*}
$$

so, from system (2.39) and relation (2.40), we obtain

$$
u_{m}^{(j)}=\frac{u_{m-2}^{(j)}}{1+v_{m-1}^{(j)}}, v_{m}^{(j)}=\frac{v_{m-2}^{(j)}}{1+u_{m-1}^{(j)}}, m \geq 0, \quad j=\overline{1, k+1}
$$

from where, the sequences $\left\{\left(u_{m}^{(j)}, v_{m}^{(j)}\right)\right\}_{m \geq-2}, j=\overline{1, k+1}$ are $k+1$ solutions to this system

$$
\begin{equation*}
x_{m}=\frac{x_{m-2}}{1+y_{m-1}}, \quad y_{m}=\frac{y_{m-2}}{1+x_{m-1}}, m \in \mathbb{N}_{0} \tag{2.41}
\end{equation*}
$$

Studying system (2.41) is similar to studying the system

$$
x_{n+1}=\frac{x_{n-1}}{1+y_{n}}, \quad y_{n+1}=\frac{y_{n-1}}{1+x_{n}}, n \in \mathbb{N}_{0}
$$

This system is essentially a simplified version of system (2.5) with $k=0$.
The method employed demonstrates that the systems derived from system (2.5) with $k=4,5,6,7,8,9,10$, respectively, are classified within the same problem category

$$
\begin{align*}
& x_{n+1}=\frac{x_{n-9}}{1+y_{n-4}}, y_{n+1}=\frac{y_{n-9}}{1+x_{n-4}}, n \in \mathbb{N}_{0}, \tag{2.42}\\
& x_{n+1}=\frac{x_{n-11}}{1+y_{n-5}}, \quad y_{n+1}=\frac{y_{n-11}}{1+x_{n-5}}, n \in \mathbb{N}_{0}, \tag{2.43}\\
& x_{n+1}=\frac{x_{n-13}}{1+y_{n-6}}, \quad y_{n+1}=\frac{y_{n-13}}{1+x_{n-6}}, n \in \mathbb{N}_{0}, \tag{2.44}\\
& x_{n+1}=\frac{x_{n-15}}{1+y_{n-7}}, \quad y_{n+1}=\frac{y_{n-15}}{1+x_{n-7}}, n \in \mathbb{N}_{0}, \tag{2.45}\\
& x_{n+1}=\frac{x_{n-17}}{1+y_{n-8}}, \quad y_{n+1}=\frac{y_{n-17}}{1+x_{n-8}}, n \in \mathbb{N}_{0}, \tag{2.46}\\
& x_{n+1}=\frac{x_{n-19}}{1+y_{n-9}}, \quad y_{n+1}=\frac{y_{n-19}}{1+x_{n-9}}, n \in \mathbb{N}_{0}, \tag{2.47}
\end{align*}
$$

$$
\begin{equation*}
x_{n+1}=\frac{x_{n-21}}{1+y_{n-10}}, \quad y_{n+1}=\frac{y_{n-21}}{1+x_{n-10}}, n \in \mathbb{N}_{0} . \tag{2.48}
\end{equation*}
$$

2.4 Numerical examples

Throughout this section, we are going to look at different concrete examples to better understand our theoretical outcomes. In particular, the examples cover various solutions' types that can emerge within the general system (2.6), such as periodic patterns and convergence. MATLAB is used to generate the plots in this section.

Example 2.4.1 Let's examine system (2.6) with the following initial values

$$
\begin{equation*}
x_{-1}=2, x_{0}=5, y_{-1}=4, y_{0}=3 \tag{2.49}
\end{equation*}
$$

This gives us the graph in Fig (2.2).

Figure 2.2: Plot of system (2.6) using the initial values (2.49).

Example 2.4.2 Let's examine system (2.6) with the following initial values

$$
\begin{equation*}
x_{-1}=15, x_{0}=10, y_{-1}=50, y_{0}=15 . \tag{2.50}
\end{equation*}
$$

This gives us the graphs in Fig (2.3). These plots illustrate the monotonic behavior of $\left\{\left(x_{2 n}, y_{2 n}\right)\right\}_{n \geq 0}$ and $\left\{\left(x_{2 n+1}, y_{2 n+1}\right)\right\}_{n \geq-1}$, as per the findings of Theorem (2.2.1)(b).

Figure 2.3: Plot of $\left\{\left(x_{2 n}, y_{2 n}\right)\right\}_{n \geq 0}$ and $\left\{\left(x_{2 n+1}, y_{2 n+1}\right)\right\}_{n \geq-1}$ using the initial values (2.50).

Example 2.4.3 Let's examine system (2.6) with the following initial values

$$
\begin{align*}
& x_{-1}^{(1)}=2, x_{0}^{(1)}=0, y_{-1}^{(1)}=4, y_{0}^{(1)}=0, \tag{2.51}\\
& x_{-1}^{(2)}=0, x_{0}^{(2)}=0, y_{-1}^{(2)}=5, y_{0}^{(2)}=3, \tag{2.52}\\
& x_{-1}^{(3)}=2, x_{0}^{(3)}=5, y_{-1}^{(3)}=0, y_{0}^{(3)}=0, \tag{2.53}
\end{align*}
$$

$$
\begin{equation*}
x_{-1}^{(4)}=0, x_{0}^{(4)}=5, y_{-1}^{(4)}=0 \text { and } y_{0}^{(4)}=3 . \tag{2.54}
\end{equation*}
$$

This gives us the graphs in Fig (2.4). These plots illustrate the periodic nature of the solution for system (2.6) with the initial values (2.51), (2.52), (2.53) and (2.54) respectively, as per the findings of Theorem (2.2.1)(c).

Figure 2.4: Plots of system (2.6) using the initial values (2.51), (2.52), (2.53) and (2.54) respectively.

Example 2.4.4 Let's examine system (2.6) with the following initial values

$$
\begin{equation*}
x_{-1}=7, x_{0}=1, y_{-1}=3, y_{0}=2 . \tag{2.55}
\end{equation*}
$$

This gives us the graphs in Fig (2.5). These plots show the limits of $\left\{\left(x_{2 n}, y_{2 n}\right)\right\}_{n \geq 0}$ and $\left\{\left(x_{2 n+1}, y_{2 n+1}\right)\right\}_{n \geq-1}$ under the condition (2.13), as per the findings of Theorem (1) (f).

Figure 2.5: Plot of $\left\{\left(x_{2 n}, y_{2 n}\right)\right\}_{n \geq 0}$ and $\left\{\left(x_{2 n+1}, y_{2 n+1}\right)\right\}_{n \geq-1}$ using the initial values (2.55).

Dynamical behavior of a possible discrete community model

3.1 Introduction

In recent years, numerous biological subjects have been represented through the use of difference equations. This approach has subsequently facilitated the examination of population dynamics and the influence of biotic factors on a significant scale.

Biotic factors encompass all the actions that living organisms directly exert on each other. These interactions are termed coactions and can be categorized into two distinct types:

- Homotypic (or intraspecific), when they occur between individuals of the same species.
- Heterotypic (or interspecific), when they occur between individuals of different species.

Heterotypic coactions type changes according to the scheme (3.1).
The Lotka-Volterra models in discrete-time, formulated by difference equations,

Figure 3.1: Heterotypic coactions types.
stand as one of the most celebrated models for population dynamics that study predation, which is one of the heterotypic coactions types (see [3, 8, 9, 13, 42, 44, 54, 63]).

One of the most interesting Lotka-Volterra predator-prey models is presented in [48] with an important study of the the solution's qualitative behavior to the following difference equations system

$$
\begin{equation*}
x_{n+1}=\frac{\alpha x_{n}-\beta x_{n} y_{n}}{1+\gamma x_{n}}, \quad y_{n+1}=\frac{\delta y_{n}+\epsilon x_{n} y_{n}}{1+\eta y_{n}}, \quad n \in \mathbb{N}_{0} \tag{3.1}
\end{equation*}
$$

the parameters $\alpha, \beta, \gamma, \delta, \epsilon, \eta$ and the initial values x_{0} and y_{0} are positive real numbers.
We distinguish between negative interactions that are harmful to the growth of individuals of the first species and positive interactions that promote the growth of individuals of the second species.

The signs + and - in system (3.1) clarify if the growth is favorable or unfavorable.
In this chapter, we are going to revisit and expand upon our research previously published in [7], titled 'Dynamical behavior of a possible discrete community model'.

So, we are going to generalize system (3.1) to the following community model

$$
\begin{equation*}
x_{n+1}=\frac{a_{1} x_{n}-a_{2} x_{n} y_{n}}{1+a_{3} x_{n}}, \quad y_{n+1}=\frac{a_{4} y_{n}+a_{5} y_{n} z_{n}}{1+a_{6} y_{n}}, \quad z_{n+1}=\frac{a_{7} z_{n}+a_{8} z_{n} x_{n}}{1+a_{9} z_{n}}, \quad n \in \mathbb{N}_{0} \tag{3.2}
\end{equation*}
$$

the parameters $a_{i}, i=\overline{1,9}$ and the initial values x_{0}, y_{0} and z_{0} are positive real numbers.
System (3.2) presents interactions between individuals of three different species. Individuals of the second species inhibit the development of individuals of the first species, this interaction is called amensalism. Individuals of the second species benefit from individuals of the third species without harming them. Similarly, individuals of the third species benefit from individuals of the first species without harming them, this interaction is called commensalism.

Remark 3.1.1 If we put $a_{7}=a_{4}, a_{8}=a_{5}, a_{9}=a_{6}$ and $z_{0}=y_{0}$, system (3.2) reduces to system (3.1).

3.2 Justifying the choice of positive initial conditions

Consider system (3.2). Suppose that the parameters $a_{i}, i=\overline{1,9}$ are positive and the initial values x_{0}, y_{0} and z_{0} are non-negative real numbers.

Note that

- If $x_{0}=0$, so $x_{n}=0$ for all $n \in \mathbb{N}_{0}$.
- If $y_{0}=0$, so $y_{n}=0$ for all $n \in \mathbb{N}_{0}$.
- If $z_{0}=0$, so $z_{n}=0$ for all $n \in \mathbb{N}_{0}$.

We distinguish the following cases

1. If $x_{0}=y_{0}=z_{0}=0$, so system (3.2) reduces to

$$
\begin{equation*}
x_{n}=y_{n}=z_{n}=0, \text { for all } n \in \mathbb{N}_{0} . \tag{3.3}
\end{equation*}
$$

2. If $\left.x_{0}=y_{0}=0, z_{0} \in\right] 0,+\infty[$, so system (3.2) reduces to

$$
\begin{equation*}
z_{n+1}=\frac{a_{7} z_{n}}{1+a_{9} z_{n}}, n \in \mathbb{N}_{0} \tag{3.4}
\end{equation*}
$$

which is a Riccati equation, its solution and behavior are well-known.
3. If $\left.x_{0}=z_{0}=0, y_{0} \in\right] 0,+\infty[$, so system (3.2) reduces to

$$
\begin{equation*}
y_{n+1}=\frac{a_{4} y_{n}}{1+a_{6} y_{n}}, n \in \mathbb{N}_{0} \tag{3.5}
\end{equation*}
$$

which is a Riccati equation.
4. If $\left.y_{0}=z_{0}=0, x_{0} \in\right] 0,+\infty[$, so system (3.2) reduces to

$$
\begin{equation*}
x_{n+1}=\frac{a_{1} x_{n}}{1+a_{3} x_{n}}, n \in \mathbb{N}_{0} \tag{3.6}
\end{equation*}
$$

which is a Riccati equation.
5. If $\left.x_{0}=0, y_{0}, z_{0} \in\right] 0,+\infty\left[\right.$, so $x_{n}=0$ for all $n \in \mathbb{N}_{0}$ and system (3.2) reduces to

$$
\begin{equation*}
y_{n+1}=\frac{a_{4} y_{n}+a_{5} y_{n} z_{n}}{1+a_{6} y_{n}}, \quad z_{n+1}=\frac{a_{7} z_{n}}{1+a_{9} z_{n}}, \quad n \in \mathbb{N}_{0} \tag{3.7}
\end{equation*}
$$

As $y_{0}, z_{0}>0$, it follows that $y_{n}, z_{n}>0$, for all $n \in \mathbb{N}_{0}$.
System (3.7) has only one equilibrium point (\bar{y}, \bar{z}) in (] $0,+\infty[)^{2}$, such that

$$
\begin{aligned}
& \bar{y}=\frac{a_{5}\left(a_{7}-1\right)+a_{9}\left(a_{4}-1\right)}{a_{6} a_{9}}, a_{5}\left(a_{7}-1\right)+a_{9}\left(a_{4}-1\right)>0, \\
& \bar{z}=\frac{a_{7}-1}{a_{9}}, a_{7}>1 .
\end{aligned}
$$

Consider these two continuously differentiable functions

$$
\begin{aligned}
\left.f_{1}:\right] 0,+\infty[\times] 0,+\infty[& \rightarrow] 0,+\infty[\\
(y, z) & \mapsto f_{1}(y, z)=\frac{a_{4} y+a_{5} y z}{1+a_{6} y}
\end{aligned}
$$

$\left.f_{2}:\right] 0,+\infty[\times] 0,+\infty[\rightarrow] 0,+\infty[$

$$
(y, z) \mapsto f_{2}(y, z)=\frac{a_{7} z}{1+a_{9} z}
$$

So, the Jacobian matrix of the linearized system of (3.7) around (\bar{y}, \bar{z}) is given by

$$
\begin{gathered}
\left(\begin{array}{cc}
\frac{\partial f_{1}}{\partial y}(\bar{y}, \bar{z}) & \frac{\partial f_{1}}{\partial z}(\bar{y}, \bar{z}) \\
\frac{\partial f_{2}}{\partial y}(\bar{y}, \bar{z}) & \frac{\partial f_{2}}{\partial z}(\bar{y}, \bar{z})
\end{array}\right) \\
=\left(\begin{array}{cc}
\frac{a_{9}}{a_{4} a_{9}+a_{5}\left(a_{7}-1\right)} & \frac{a_{5}\left(a_{9}\left(a_{4}-1\right)+a_{5}\left(a_{7}-1\right)\right)}{a_{6}\left(a_{4} a_{9}+a_{5}\left(a_{7}-1\right)\right)} \\
0 & \frac{1}{a_{7}}
\end{array}\right)
\end{gathered}
$$

Additionally, the eigenvalues of the Jacobian matrix around (\bar{y}, \bar{z}) are given by $\lambda_{1}=\frac{a_{9}}{a_{4} a_{9}+a_{5}\left(a_{7}-1\right)}<1$,
$\lambda_{2}=\frac{1}{a_{7}}<1$,
hence, $(\bar{y}, \bar{z})=\left(\frac{a_{5}\left(a_{7}-1\right)+a_{9}\left(a_{4}-1\right)}{a_{6} a_{9}}, \frac{a_{7}-1}{a_{9}}\right)$ is locally asymptotically stable.
6. If $\left.y_{0}=0, x_{0}, z_{0} \in\right] 0,+\infty\left[\right.$, so $y_{n}=0$ for all $n \in \mathbb{N}_{0}$ and system (3.2) reduces to

$$
\begin{equation*}
x_{n+1}=\frac{a_{1} x_{n}}{1+a_{3} x_{n}}, \quad z_{n+1}=\frac{a_{7} z_{n}+a_{8} z_{n} x_{n}}{1+a_{9} z n}, \quad n \in \mathbb{N}_{0} . \tag{3.8}
\end{equation*}
$$

As $x_{0}, z_{0}>0$, it follows that $x_{n}, z_{n}>0$, for all $n \in \mathbb{N}_{0}$.
System (3.8) has only one equilibrium point (\bar{x}, \bar{z}) in (] $0,+\infty[)^{2}$, such that

$$
\begin{aligned}
& \bar{x}=\frac{a_{1}-1}{a_{3}}, a_{1}>1, \\
& \bar{z}=\frac{a_{3}\left(a_{7}-1\right)+a_{8}\left(a_{1}-1\right)}{a_{3} a_{9}}, a_{3}\left(a_{7}-1\right)+a_{8}\left(a_{1}-1\right)>0 .
\end{aligned}
$$

Consider these two continuously differentiable functions

$$
\begin{aligned}
\left.g_{1}:\right] 0,+\infty[\times] 0,+\infty[& \rightarrow] 0,+\infty[\\
(x, z) & \mapsto g_{1}(x, z)=\frac{a_{1} x}{1+a_{3} x},
\end{aligned}
$$

$\left.g_{2}:\right] 0,+\infty[\times] 0,+\infty[\rightarrow] 0,+\infty[$

$$
(x, z) \mapsto g_{2}(x, z)=\frac{a_{7} z+a_{8} z x}{1+a_{9} z} .
$$

So, the Jacobian matrix of the linearized system of (3.8) around (\bar{x}, \bar{z}) is given by

$$
\begin{gathered}
\left(\begin{array}{cc}
\frac{\partial g_{1}}{\partial x}(\bar{x}, \bar{z}) & \frac{\partial g_{1}}{\partial z}(\bar{x}, \bar{z}) \\
\frac{\partial g_{2}}{\partial x}(\bar{x}, \bar{z}) & \frac{\partial g_{2}}{\partial z}(\bar{x}, \bar{z})
\end{array}\right) \\
=\left(\begin{array}{cc}
\frac{1}{a_{1}} & 0 \\
\frac{a_{8}\left(a_{3}\left(a_{7}-1\right)+a_{8}\left(a_{1}-1\right)\right)}{a_{9}\left(a_{3} a_{7}+a_{8}\left(a_{1}-1\right)\right)} & \frac{a_{3}}{a_{3} a_{7}+a_{8}\left(a_{1}-1\right)}
\end{array}\right) .
\end{gathered}
$$

Additionally, the eigenvalues of the Jacobian matrix around (\bar{x}, \bar{z}) are given by $\lambda_{1}=\frac{1}{a_{1}}<1$,
$\lambda_{2}=\frac{a_{3}}{a_{3} a_{7}+a_{8}\left(a_{1}-1\right)}<1$,
hence, $(\bar{x}, \bar{z})=\left(\frac{a_{1}-1}{a_{3}}, \frac{a_{3}\left(a_{7}-1\right)+a_{8}\left(a_{1}-1\right)}{a_{3} a_{9}}\right)$ is locally asymptotically stable.
7. If $\left.z_{0}=0, x_{0}, y_{0} \in\right] 0,+\infty\left[\right.$, so $z_{n}=0$ for all $n \in \mathbb{N}_{0}$ and system (3.2) reduces to

$$
\begin{equation*}
x_{n+1}=\frac{a_{1} x_{n}-a_{2} x_{n} y_{n}}{1+a_{3} x_{n}}, \quad y_{n+1}=\frac{a_{4} y_{n}}{1+a_{6} y_{n}}, n \in \mathbb{N}_{0} \tag{3.9}
\end{equation*}
$$

Here, additional conditions must be imposed.
We have

$$
x_{1}=\frac{\left(a_{1}-a_{2} y_{0}\right) x_{0}}{1+a_{3} x_{0}}
$$

If $a_{1}-a_{2} y_{0}=0$, so $x_{1}=0$ which imply $x_{n}=0$ for all $n \in \mathbb{N}_{1}$, in this case, system (3.9) reduces to equation (3.5) (case.3).

So, we must impose a condition on y_{0}, which is $y_{0}<\frac{a_{1}}{a_{2}}$ to ensure that $x_{1}>0$.
On the other hand, we have

$$
0<y_{n+1}<\frac{a_{4} y_{n}}{a_{6} y_{n}}=\frac{a_{4}}{a_{6}}, n \in \mathbb{N}_{0}
$$

that is

$$
y_{1}, y_{2}, \ldots<\frac{a_{4}}{a_{6}}
$$

So, to ensure that $a_{1}-a_{2} y_{n}>0$ and therefore $x_{n}>0$, we must also impose $\frac{a_{4}}{a_{6}} \leq \frac{a_{1}}{a_{2}}$.
We can conclude that (3.9) can be studied under these two conditions

$$
0<y_{0}<\frac{a_{4}}{a_{6}}, \frac{a_{4}}{a_{6}} \leq \frac{a_{1}}{a_{2}},
$$

$$
x_{0}>0
$$

Note that in this case

$$
x_{n+1}=\frac{a_{1} x_{n}-a_{2} x_{n} y_{n}}{1+a_{3} x_{n}}<\frac{a_{1} x_{n}}{1+a_{3} x_{n}}<\frac{a_{1} x_{n}}{a_{3} x_{n}}=\frac{a_{1}}{a_{3}},\left(x_{n}, y_{n}>0\right)
$$

that is, for $\left.y_{0} \in\right] 0, \frac{a_{4}}{a_{6}}\left[,\left(\frac{a_{4}}{a_{6}} \leq \frac{a_{1}}{a_{2}}\right)\right.$, and $x_{0}>0$, we have $0<y_{n}<\frac{a_{4}}{a_{6}}, \forall n \in \mathbb{N}_{0}$ and $0<x_{n}<\frac{a_{1}}{a_{3}}, \forall n=1,2, \ldots$
and if $\left.x_{0} \in\right] 0, \frac{a_{1}}{a_{3}}\left[: 0<x_{n}<\frac{a_{1}}{a_{3}}\right.$.
System (3.9) has only one equilibrium point (\bar{x}, \bar{y}) in $] 0, \frac{a_{1}}{a_{3}}[\times] 0, \frac{a_{4}}{a_{6}}[$, such that

$$
\begin{aligned}
& \bar{x}=\frac{a_{6}\left(a_{1}-1\right)-a_{2}\left(a_{4}-1\right)}{a_{3} a_{6}}, a_{6}\left(a_{1}-1\right)-a_{2}\left(a_{4}-1\right)>0, \\
& \bar{y}=\frac{a_{4}-1}{a_{6}}, a_{4}>1 .
\end{aligned}
$$

Consider these two continuously differentiable functions

$$
\begin{aligned}
\left.h_{1}:\right] 0, \frac{a_{1}}{a_{3}}[\times] 0, \frac{a_{4}}{a_{6}}[& \rightarrow] 0, \frac{a_{1}}{a_{3}}[\\
(x, y) & \mapsto h_{1}(x, y)=\frac{a_{1} x-a_{2} x y}{1+a_{3} x}, \\
\left.h_{2}:\right] 0, \frac{a_{1}}{a_{3}}[\times] 0, \frac{a_{4}}{a_{6}}[& \rightarrow \times] 0, \frac{a_{4}}{a_{6}}[\\
(x, y) & \mapsto h_{2}(x, y)=\frac{a_{4} y}{1+a_{6} y}
\end{aligned}
$$

So, the Jacobian matrix of the linearized system of (3.9) around (\bar{x}, \bar{y}) is given by

$$
\left(\begin{array}{ll}
\frac{\partial h_{1}}{\partial x}(\bar{x}, \bar{y}) & \frac{\partial h_{1}}{\partial y}(\bar{x}, \bar{y}) \\
\frac{\partial h_{2}}{\partial x}(\bar{x}, \bar{y}) & \frac{\partial h_{2}}{\partial y}(\bar{x}, \bar{y})
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
\frac{a_{6}}{a_{1} a_{6}-a_{2}\left(a_{4}-1\right)} & -\frac{a_{2}\left(a_{6}\left(a_{1}-1\right)-a_{2}\left(a_{4}-1\right)\right)}{a_{3}\left(a_{1} a_{6}-a_{2}\left(a_{4}-1\right)\right)} \\
0 & \frac{1}{a_{4}}
\end{array}\right) .
$$

Additionally, the eigenvalues of the Jacobian matrix around (\bar{x}, \bar{y}) are given by

$$
\begin{aligned}
& \lambda_{1}=\frac{a_{6}}{a_{1} a_{6}-a_{2}\left(a_{4}-1\right)}<1, \\
& \lambda_{2}=\frac{1}{a_{4}}<1
\end{aligned}
$$

hence, $(\bar{x}, \bar{y})=\left(\frac{a_{6}\left(a_{1}-1\right)-a_{2}\left(a_{4}-1\right)}{a_{3} a_{6}}, \frac{a_{4}-1}{a_{6}}\right)$ is locally asymptotically stable.

Thus, given the previous cases, the choice of conditions $x_{0}, y_{0}, z_{0}>0$ in the study of system (3.2) is justified.

Throughout the following, we are going to study system (3.2) with $x_{0}, y_{0}, z_{0} \in$ $] 0,+\infty[$.

Note also that additional conditions will be imposed on x_{0}, y_{0}, z_{0} and the parameters.

3.3 Dynamical behavior of system (3.2)

This section will closely investigate how the solution to system (3.2) changes and behaves over time.

The following theorem ensures that the solution of system (3.2) is bounded.

Theorem 3.3.1 Suppose that

$$
\begin{gather*}
0<x_{0}<\frac{a_{1}}{a_{3}}, \tag{3.10}\\
0<y_{0}<\frac{a_{1}}{a_{2}}, \tag{3.11}\\
0<z_{0}<\frac{a_{7}}{a_{9}}+\frac{a_{8} a_{1}}{a_{9} a_{3}}, \tag{3.12}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{a_{4}}{a_{6}}+\frac{a_{5} a_{7}}{a_{6} a_{9}}+\frac{a_{5} a_{8} a_{1}}{a_{6} a_{9} a_{3}}<\frac{a_{1}}{a_{2}} . \tag{3.13}
\end{equation*}
$$

Then, for every solution $\left\{\left(x_{n}, y_{n}, z_{n}\right)\right\}_{n \geq 0}$ to system (3.2), we get

$$
\begin{align*}
& \left.x_{n} \in I=\right] 0, \frac{a_{1}}{a_{3}}[, \\
& \left.y_{n} \in J=\right] 0, \frac{a_{1}}{a_{2}}\left[, \quad n \in \mathbb{N}_{0} .\right. \tag{3.14}\\
& \left.z_{n} \in K=\right] 0, \frac{a_{7}}{a_{9}}+\frac{a_{8} a_{1}}{a_{9} a_{3}}[,
\end{align*}
$$

i.e: the solution is bounded.

Proof.

- $\mathrm{n}=1$

we have

$$
0<x_{1}=\frac{\left(a_{1}-a_{2} y_{0}\right) x_{0}}{1+a_{3} x_{0}}<\frac{\left(a_{1}-a_{2} y_{0}\right) x_{0}}{a_{3} x_{0}}=\frac{a_{1}-a_{2} y_{0}}{a_{3}}<\frac{a_{1}}{a_{3}}
$$

so

$$
0<x_{1}<\frac{a_{1}}{a_{3}}
$$

Likewise

$$
0<y_{1}=\frac{\left(a_{4}+a_{5} z_{0}\right) y_{0}}{1+a_{6} y_{0}}<\frac{\left(a_{4}+a_{5} z_{0}\right) y_{0}}{a_{6} y_{0}}=\frac{a_{4}+a_{5} z_{0}}{a_{6}}=\frac{a_{4}}{a_{6}}+\frac{a_{5}}{a_{6}} z_{0}
$$

using (3.12), we obtain

$$
y_{1}<\frac{a_{4}}{a_{6}}+\frac{a_{5}}{a_{6}}\left(\frac{a_{7}}{a_{9}}+\frac{a_{8} a_{1}}{a_{9} a_{3}}\right)=\frac{a_{4}}{a_{6}}+\frac{a_{5} a_{7}}{a_{6} a_{9}}+\frac{a_{5} a_{8} a_{1}}{a_{6} a_{9} a_{3}},
$$

using (3.13), we get

$$
y_{1}<\frac{a_{1}}{a_{2}},
$$

so

$$
0<y_{1}<\frac{a_{1}}{a_{2}}
$$

Likewise

$$
0<z_{1}=\frac{\left(a_{7}+a_{8} x_{0}\right) z_{0}}{1+a_{9} z_{0}}<\frac{\left(a_{7}+a_{8} x_{0}\right) z_{0}}{a_{9} z_{0}}=\frac{a_{7}+a_{8} x_{0}}{a_{9}}=\frac{a_{7}}{a_{9}}+\frac{a_{8}}{a_{9}} x_{0}
$$

using (3.10), we obtain

$$
z_{1}<\frac{a_{7}}{a_{9}}+\frac{a_{8} a_{1}}{a_{9} a_{3}},
$$

so

$$
0<z_{1}<\frac{a_{7}}{a_{9}}+\frac{a_{8} a_{1}}{a_{9} a_{3}} .
$$

So (3.14) is verified for $n=1$.

- Suppose that (3.14) is verified at the order n, namely

$$
\begin{aligned}
& \left.x_{n} \in I=\right] 0, \frac{a_{1}}{a_{3}}[, \\
& \left.y_{n} \in J=\right] 0, \frac{a_{1}}{a_{2}}[, \\
& \left.z_{n} \in K=\right] 0, \frac{a_{7}}{a_{9}}+\frac{a_{8} a_{1}}{a_{9} a_{3}}[.
\end{aligned}
$$

- We are going to prove its validity at the order $n+1$.
we have

$$
0<x_{n+1}=\frac{\left(a_{1}-a_{2} y_{n}\right) x_{n}}{1+a_{3} x_{n}}<\frac{\left(a_{1}-a_{2} y_{n}\right) x_{n}}{a_{3} x_{n}}=\frac{a_{1}-a_{2} y_{n}}{a_{3}}<\frac{a_{1}}{a_{3}}
$$

so

$$
0<x_{n+1}<\frac{a_{1}}{a_{3}} .
$$

Likewise

$$
0<y_{n+1}=\frac{\left(a_{4}+a_{5} z_{n}\right) y_{n}}{1+a_{6} y_{n}}<\frac{\left(a_{4}+a_{5} z_{n}\right) y_{n}}{a_{6} y_{n}}=\frac{a_{4}+a_{5} z_{n}}{a_{6}}=\frac{a_{4}}{a_{6}}+\frac{a_{5}}{a_{6}} z_{n},
$$

using (3.12), we obtain

$$
y_{n+1}<\frac{a_{4}}{a_{6}}+\frac{a_{5}}{a_{6}}\left(\frac{a_{7}}{a_{9}}+\frac{a_{8} a_{1}}{a_{9} a_{3}}\right)=\frac{a_{4}}{a_{6}}+\frac{a_{5} a_{7}}{a_{6} a_{9}}+\frac{a_{5} a_{8} a_{1}}{a_{6} a_{9} a_{3}},
$$

using (3.13), we get

$$
y_{n+1}<\frac{a_{1}}{a_{2}},
$$

so

$$
0<y_{n+1}<\frac{a_{1}}{a_{2}}
$$

Likewise

$$
0<z_{n+1}=\frac{\left(a_{7}+a_{8} x_{n}\right) z_{n}}{1+a_{9} z_{n}}<\frac{\left(a_{7}+a_{8} x_{n}\right) z_{n}}{a_{9} z_{n}}=\frac{a_{7}+a_{8} x_{n}}{a_{9}}=\frac{a_{7}}{a_{9}}+\frac{a_{8}}{a_{9}} x_{n}
$$

using (3.10), we obtain

$$
z_{n+1}<\frac{a_{7}}{a_{9}}+\frac{a_{8} a_{1}}{a_{9} a_{3}},
$$

so

$$
0<z_{n+1}<\frac{a_{7}}{a_{9}}+\frac{a_{8} a_{1}}{a_{9} a_{3}} .
$$

So (3.14) is verified at the order $n+1$, which implying its validity for all $n \geq 0$.

3.3.1 Local stability

Here, we are going to investigate the local stability of the equilibrium point of system (3.2).

Consider three functions, f, g, and h, all of which are continuously differentiable, such that

$$
\begin{aligned}
& f: I \times J \times K \longrightarrow I \\
& g: I \times J \times K \longrightarrow J \\
& h: I \times J \times K \longrightarrow K
\end{aligned}
$$

$I=] 0, \frac{a_{1}}{a_{3}}[, J=] 0, \frac{a_{1}}{a_{2}}[$, and $K=] 0, \frac{a_{7}}{a_{9}}+\frac{a_{8} a_{1}}{a_{9} a_{3}}[$.
Let's examine the following difference equations system

$$
\left\{\begin{array}{l}
x_{n+1}=f\left(x_{n}, y_{n}, z_{n}\right) \tag{3.15}\\
y_{n+1}=g\left(x_{n}, y_{n}, z_{n}\right) \\
z_{n+1}=h\left(x_{n}, y_{n}, z_{n}\right)
\end{array}\right.
$$

with $n \in \mathbb{N}_{0}$ and $\left(x_{0}, y_{0}, z_{0}\right) \in I \times J \times K$.
An equilibrium point $(\bar{x}, \bar{y}, \bar{z})$ for system (3.15), is characterized as a solution of the following system

$$
\left\{\begin{array}{l}
\bar{x}=f(\bar{x}, \bar{y}, \bar{z}) \tag{3.16}\\
\bar{y}=g(\bar{x}, \bar{y}, \bar{z}) \\
\bar{z}=h(\bar{x}, \bar{y}, \bar{z})
\end{array}\right.
$$

From where, if $(\bar{x}, \bar{y}, \bar{z})$ constitutes an equilibrium point in system (3.2), it satisfies

$$
\left\{\begin{array}{l}
\bar{x}=\frac{a_{1} \bar{x}-a_{2} \bar{x} \bar{y}}{1+a_{3} \bar{x}} \\
\bar{y}=\frac{a_{4} \bar{y}+a_{5} \bar{y} \bar{z}}{1+a_{6} \bar{y}} \\
\bar{z}=\frac{a_{7} \bar{z}+a_{8} \bar{z} \bar{x}}{1+a_{9} \bar{z}}
\end{array}\right.
$$

The lemma below outlines the equilibrium point of system (3.2).

Lemma 3.3.1 Let $P=\left(\frac{L}{S}, \frac{M}{S}, \frac{N}{S}\right)$, such that

$$
\begin{aligned}
L & =a_{6} a_{9}\left(a_{1}-1\right)-a_{2}\left(a_{9}\left(a_{4}-1\right)+a_{5}\left(a_{7}-1\right)\right), \\
M & =a_{3} a_{9}\left(a_{4}-1\right)+a_{5}\left(a_{3}\left(a_{7}-1\right)+a_{8}\left(a_{1}-1\right)\right), \\
N & =a_{3} a_{6}\left(a_{7}-1\right)+a_{8}\left(a_{6}\left(a_{1}-1\right)-a_{2}\left(a_{4}-1\right)\right),
\end{aligned}
$$

and
$S=a_{2} a_{5} a_{8}+a_{3} a_{6} a_{9}$.

If

$$
\begin{equation*}
a_{6} a_{9}>\frac{a_{2}\left(a_{9}\left(a_{4}-1\right)+a_{5}\left(a_{7}-1\right)\right)}{a_{1}-1}, a_{1}>1, a_{4}>1, a_{7}>1, a_{6}>\frac{a_{2}\left(a_{4}-1\right)}{a_{1}-1} \tag{3.17}
\end{equation*}
$$

is verified, so, P is the unique equilibrium point of system (3.2).

- Note that condition (3.17) ensures that $\left.P=\left(\frac{L}{S}, \frac{M}{S}, \frac{N}{S}\right) \in\right] 0, \frac{a_{1}}{a_{3}}[\times] 0, \frac{a_{1}}{a_{2}}[\times] 0, \frac{a_{7}}{a_{9}}+\frac{a_{8} a_{1}}{a_{9} a_{3}}[$. The theorem below asserts the local stability of the equilibrium of system (3.2).

Theorem 3.3.2 Suppose that the statement (3.17) is held.
then, P is locally asymptotically stable if

$$
\begin{equation*}
\Psi<\left(S+a_{3} L\right)^{2}\left(S+a_{6} M\right)^{2}\left(S+a_{9} N\right)^{2} . \tag{3.18}
\end{equation*}
$$

Where

$$
\begin{aligned}
\Psi & =S^{3}\left(a_{1} S+a_{2} M\right)\left(a_{4} S+a_{5} N\right)\left(a_{7} S+a_{8} L\right) \\
& +S^{2}\left[\left(a_{4} S+a_{5} N\right)\left(a_{7} S+a_{8} L\right)\left(S+a_{3} L\right)^{2}+\left(a_{1} S+a_{2} M\right)\left(a_{7} S+a_{8} L\right)\left(S+a_{6} M\right)^{2}\right. \\
& \left.+\left(a_{1} S+a_{2} M\right)\left(a_{4} S+a_{5} N\right)\left(S+a_{9} N\right)^{2}\right]+S\left[\left(a_{1} S+a_{2} M\right)\left(S+a_{6} M\right)^{2}\left(S+a_{9} N\right)^{2}\right. \\
& \left.+\left(a_{4} S+a_{5} N\right)\left(S+a_{3} L\right)^{2}\left(S+a_{9} N\right)^{2}+\left(a_{7} S+a_{8} L\right)\left(S+a_{3} L\right)^{2}\left(S+a_{6} M\right)^{2}\right] \\
& +a_{2} a_{5} a_{8} L M N\left(S+a_{3} L\right)\left(S+a_{6} M\right)\left(S+a_{9} N\right) .
\end{aligned}
$$

Proof. Assume the statement (3.17) is held.
The characteristic polynomial of the Jacobian matrix around $P=\left(\frac{L}{S}, \frac{M}{S}, \frac{N}{S}\right)$ is given by

$$
\Upsilon(\lambda)=-\lambda^{3}+\lambda^{2}\left(A_{1}-A_{2}+A_{3}+A_{4}\right)-\lambda\left(A_{5}-A_{6}+A_{7}-A_{8}+A_{9}\right)+A_{10}-A_{11}-A_{12}
$$

where

$$
A_{1}=\frac{a_{1} S^{2}}{\left(S+a_{3} L\right)^{2}}, \quad A_{2}=\frac{a_{2} M S}{\left(S+a_{3} L\right)^{2}}, \quad A_{3}=\frac{S\left(a_{4} S+a_{5} N\right)}{\left(S+a_{6} M\right)^{2}}, \quad A_{4}=\frac{S\left(a_{7} S+a_{8} L\right)}{\left(S+a_{9} N\right)^{2}}
$$

$$
\begin{aligned}
& A_{5}=\frac{a_{1} S^{3}\left(a_{4} S+a_{5} N\right)}{\left(S+a_{3} L\right)^{2}\left(S+a_{6} M\right)^{2}}, \\
& A_{6}=\frac{a_{2} M S^{2}\left(a_{4} S+a_{5} N\right)}{\left(S+a_{3} L\right)^{2}\left(S+a_{6} M\right)^{2}}, \\
& A_{7}=\frac{a_{1} S^{3}\left(a_{7} S+a_{8} L\right)}{\left(S+a_{3} L\right)^{2}\left(S+a_{9} N\right)^{2}}, \\
& A_{8}=\frac{a_{2} M S^{2}\left(a_{7} S+a_{8} L\right)}{\left(S+a_{3} L\right)^{2}\left(S+a_{9} N\right)^{2}}, \\
& A_{9}=\frac{S^{2}\left(a_{4} S+a_{5} N\right)\left(a_{7} S+a_{8} L\right)}{\left(S+a_{6} M\right)^{2}\left(S+a_{9} N\right)^{2}}, \\
& A_{10}=\frac{a_{1} S^{4}\left(a_{4} S+a_{5} N\right)\left(a_{7} S+a_{8} L\right)}{\left(S+a_{3} L\right)^{2}\left(S+a_{6} M\right)^{2}\left(S+a_{9} N\right)^{2}}, \\
& A_{11}=\frac{a_{2} M S^{3}\left(a_{4} S+a_{5} N\right)\left(a_{7} S+a_{8} L\right)}{\left(S+a_{3} L\right)^{2}\left(S+a_{6} M\right)^{2}\left(S+a_{9} N\right)^{2}},
\end{aligned}
$$

and

$$
A_{12}=\frac{a_{2} a_{5} a_{8} L M N}{\left(S+a_{3} L\right)\left(S+a_{6} M\right)\left(S+a_{9} N\right)}
$$

Let's put
$R(\lambda)=-\lambda^{3}$,
and
$T(\lambda)=-\lambda^{2}\left(A_{1}-A_{2}+A_{3}+A_{4}\right)+\lambda\left(A_{5}-A_{6}+A_{7}-A_{8}+A_{9}\right)-A_{10}+A_{11}+A_{12}$.
Assume that

$$
\Psi<\left(S+a_{3} L\right)^{2}\left(S+a_{6} M\right)^{2}\left(S+a_{9} N\right)^{2}
$$

then, for $|\lambda|=1$, we get

$$
\begin{aligned}
|T(\lambda)| & \leq \sum_{i=1}^{12} A_{i} \\
& =\frac{\Psi}{\left(S+a_{3} L\right)^{2}\left(S+a_{6} M\right)^{2}\left(S+a_{9} N\right)^{2}} \\
& <1=|R(\lambda)| .
\end{aligned}
$$

Then, according to Rouche's theorem, $R(\lambda)$ and $R(\lambda)-T(\lambda)$ have the same number of zeroes within the open unit disk $|\lambda|<1$. Hence, P is locally asymptotically stable.

3.3.2 Global stability

Here, we are going to examine the global stability of the equilibrium point of system (3.2).

The following theorem presents the convergence of the positive solution $\left\{\left(x_{n}, y_{n}, z_{n}\right)\right\}_{n \geq 0}$ of system (3.2) to the equilibrium point.

Theorem 3.3.3 Assume that (3.17) holds and $a_{3} a_{6} a_{9}-a_{2} a_{5} a_{8}>0$, then the equilibrium point P of system (3.2) is a global attractor.

Proof. Consider system (3.2) with the initial values $\left(x_{0}, y_{0}, z_{0}\right) \in I \times J \times K$,
Let's put

$$
\begin{aligned}
f: I \times J \times K & \rightarrow I \\
(x, y, z) & \mapsto f(x, y, z)=\frac{a_{1} x-a_{2} x y}{1+a_{3} x}, \\
g: I \times J \times K & \rightarrow J \\
(x, y, z) & \mapsto g(x, y, z)=\frac{a_{4} y+a_{5} y z}{1+a_{6} y}
\end{aligned}
$$

$h: I \times J \times K \rightarrow K$

$$
(x, y, z) \mapsto h(x, y, z)=\frac{a_{7} z+a_{8} z x}{1+a_{9} z}
$$

where I, J and K are three positive real intervals respectively given by $] 0, \frac{a_{1}}{a_{3}}[] 0,, \frac{a_{1}}{a_{2}}[$, and $] 0, \frac{a_{7}}{a_{9}}+\frac{a_{8} a_{1}}{a_{9} a_{3}}[$.

We know that $\left(x_{n}\right)_{n \geq 0},\left(y_{n}\right)_{n \geq 0}$ and $\left(z_{n}\right)_{n \geq 0}$ are bounded, so there exist $m_{1}, M_{1}, m_{2}, M_{2}$, m_{3} and M_{3}, such that

$$
\begin{array}{ll}
m_{1}=\lim _{n \rightarrow \infty} \inf x_{n}, & M_{1}=\lim _{n \rightarrow \infty} \sup x_{n}, \\
m_{2}=\lim _{n \rightarrow \infty} \inf y_{n}, & M_{2}=\lim _{n \rightarrow \infty} \sup y_{n}, \tag{3.19}\\
m_{3}=\lim _{n \rightarrow \infty} \inf z_{n}, & M_{3}=\lim _{n \rightarrow \infty} \sup z_{n} .
\end{array}
$$

Using the definition of lim inf and lim sup, we obtain

$$
\begin{align*}
& \left.\forall \epsilon_{1} \in\right] 0, m_{1}\left[, \exists n_{1} \in \mathbb{N}_{0}, \forall n \geq n_{1}: m_{1}-\epsilon_{1} \leq x_{n} \leq M_{1}+\epsilon_{1},\right. \\
& \left.\forall \epsilon_{2} \in\right] 0, m_{2}\left[, \exists n_{2} \in \mathbb{N}_{0}, \forall n \geq n_{2}: m_{2}-\epsilon_{2} \leq y_{n} \leq M_{2}+\epsilon_{2},\right. \tag{3.20}\\
& \left.\forall \epsilon_{3} \in\right] 0, m_{3}\left[, \exists n_{3} \in \mathbb{N}_{0}, \forall n \geq n_{3}: m_{3}-\epsilon_{3} \leq z_{n} \leq M_{3}+\epsilon_{3} .\right.
\end{align*}
$$

Let put $\epsilon=\min \left(\epsilon_{1}, \epsilon_{2}, \epsilon_{3}\right)$ and $n_{0}=\max \left(n_{1}, n_{2}, n_{3}\right)$.
It is easy to see that f is increasing in x and z and decreasing in y, so

$$
\begin{aligned}
& f\left(m_{1}-\epsilon, y_{n}, z_{n}\right) \leq f\left(x_{n}, y_{n}, z_{n}\right) \leq f\left(M_{1}+\epsilon, y_{n}, z_{n}\right), \\
& f\left(m_{1}-\epsilon, M_{2}+\epsilon, z_{n}\right) \leq f\left(x_{n}, y_{n}, z_{n}\right) \leq f\left(M_{1}+\epsilon, m_{2}-\epsilon, z_{n}\right), \\
& f\left(m_{1}-\epsilon, M_{2}+\epsilon, m_{3}-\epsilon\right) \leq f\left(x_{n}, y_{n}, z_{n}\right) \leq f\left(M_{1}+\epsilon, m_{2}-\epsilon, M_{3}+\epsilon\right), \\
& f\left(m_{1}-\epsilon, M_{2}+\epsilon, m_{3}-\epsilon\right) \leq m_{1} \leq M_{1} \leq f\left(M_{1}+\epsilon, m_{2}-\epsilon, M_{3}+\epsilon\right),
\end{aligned}
$$

by passing to the limit when $\epsilon \rightarrow 0$ (take in consideration that f is continuous), we obtain

$$
\begin{equation*}
f\left(m_{1}, M_{2}, m_{3}\right) \leq m_{1} \leq M_{1} \leq f\left(M_{1}, m_{2}, M_{3}\right) . \tag{3.21}
\end{equation*}
$$

From (3.21), we get

$$
\begin{aligned}
f\left(m_{1}, M_{2}, m_{3}\right) \leq m_{1} & \Leftrightarrow f\left(m_{1}, M_{2}, m_{3}\right)-m_{1} \leq 0 \\
& \Leftrightarrow \frac{a_{1} m_{1}-a_{2} m_{1} M_{2}}{1+a_{3} m_{1}}-m_{1} \leq 0 \\
& \Leftrightarrow \frac{a_{1}-a_{2} M_{2}}{1+a_{3} m_{1}}-1 \leq 0
\end{aligned}
$$

that is to say

$$
\begin{equation*}
a_{1}-a_{2} M_{2} \leq 1+a_{3} m_{1} \tag{3.22}
\end{equation*}
$$

We get also from (3.21)

$$
\begin{aligned}
M_{1} \leq f\left(M_{1}, m_{2}, M_{3}\right) & \Leftrightarrow M_{1}-f\left(M_{1}, m_{2}, M_{3}\right) \leq 0 \\
& \Leftrightarrow M_{1}-\frac{a_{1} M_{1}-a_{2} M_{1} m_{2}}{1+a_{3} M_{1}} \leq 0, \\
& \Leftrightarrow 1-\frac{a_{1}-a_{2} m_{2}}{1+a_{3} M_{1}} \leq 0
\end{aligned}
$$

that is to say

$$
\begin{equation*}
a_{2} m_{2}-a_{1} \leq-1-a_{3} M_{1} . \tag{3.23}
\end{equation*}
$$

From (3.22) and (3.23), we get

$$
\begin{equation*}
a_{3}\left(M_{1}-m_{1}\right) \leq a_{2}\left(M_{2}-m_{2}\right) \tag{3.24}
\end{equation*}
$$

Likewise, using the fact that g is increasing in all arguments, we get

$$
\begin{equation*}
g\left(m_{1}, m_{2}, m_{3}\right) \leq m_{2} \leq M_{2} \leq g\left(M_{1}, M_{2}, M_{3}\right) . \tag{3.25}
\end{equation*}
$$

From (3.25), we get

$$
\begin{aligned}
g\left(m_{1}, m_{2}, m_{3}\right) \leq m_{2} & \Leftrightarrow g\left(m_{1}, m_{2}, m_{3}\right)-m_{2} \leq 0 \\
& \Leftrightarrow \frac{a_{4} m_{2}+a_{5} m_{2} m_{3}}{1+a_{6} m_{2}}-m_{2} \leq 0 \\
& \Leftrightarrow \frac{a_{4}+a_{5} m_{3}}{1+a_{6} m_{2}}-1 \leq 0
\end{aligned}
$$

that is to say

$$
\begin{equation*}
a_{4}+a_{5} m_{3} \leq 1+a_{6} m_{2} \tag{3.26}
\end{equation*}
$$

We get also from (3.25)

$$
\begin{aligned}
M_{2} \leq g\left(M_{1}, M_{2}, M_{3}\right) & \Leftrightarrow M_{2}-g\left(M_{1}, M_{2}, M_{3}\right) \leq 0 \\
& \Leftrightarrow M_{2}-\frac{a_{4} M_{2}+a_{5} M_{2} M_{3}}{1+a_{6} M_{2}} \leq 0, \\
& \Leftrightarrow 1-\frac{a_{4}+a_{5} M_{3}}{1+a_{6} M_{2}} \leq 0
\end{aligned}
$$

that is to say

$$
\begin{equation*}
1+a_{6} M_{2} \leq a_{4}+a_{5} M_{3} . \tag{3.27}
\end{equation*}
$$

From (3.26) and (3.27), we get

$$
\begin{equation*}
a_{6}\left(M_{2}-m_{2}\right) \leq a_{5}\left(M_{3}-m_{3}\right) . \tag{3.28}
\end{equation*}
$$

Now, using the fact that h is increasing in all arguments, we get

$$
\begin{equation*}
h\left(m_{1}, m_{2}, m_{3}\right) \leq m_{3} \leq M_{3} \leq h\left(M_{1}, M_{2}, M_{3}\right) . \tag{3.29}
\end{equation*}
$$

From (3.29), we get

$$
\begin{aligned}
h\left(m_{1}, m_{2}, m_{3}\right) \leq m_{3} & \Leftrightarrow h\left(m_{1}, m_{2}, m_{3}\right)-m_{3} \leq 0 \\
& \Leftrightarrow \frac{a_{7} m_{3}+a_{8} m_{3} m_{1}}{1+a_{9} m_{3}}-m_{3} \leq 0 \\
& \Leftrightarrow \frac{a_{7}+a_{8} m_{1}}{1+a_{9} m_{3}}-1 \leq 0
\end{aligned}
$$

that is to say

$$
\begin{equation*}
a_{7}+a_{8} m_{1} \leq 1+a_{9} m_{3} . \tag{3.30}
\end{equation*}
$$

We get also from (3.29)

$$
\begin{aligned}
M_{3} \leq h\left(M_{1}, M_{2}, M_{3}\right) & \Leftrightarrow M_{3} \leq \frac{a_{7} M_{3}+a_{8} M_{3} M_{1}}{1+a_{9} M_{3}} \\
& \Leftrightarrow M_{3}-\frac{a_{7} M_{3}+a_{8} M_{3} M_{1}}{1+a_{9} M_{3}} \leq 0 \\
& \Leftrightarrow 1-\frac{a_{7}+a_{8} M_{1}}{1+a_{9} M_{3}} \leq 0
\end{aligned}
$$

that is to say

$$
\begin{equation*}
a_{7}+a_{8} M_{1} \leq 1+a_{9} M_{3} . \tag{3.31}
\end{equation*}
$$

From (3.30) and (3.31), we get

$$
\begin{equation*}
a_{9}\left(M_{3}-m_{3}\right) \leq a_{8}\left(M_{1}-m_{1}\right) . \tag{3.32}
\end{equation*}
$$

Multiplying (3.32) by a_{3}, we get

$$
a_{3} a_{9}\left(M_{3}-m_{3}\right) \leq a_{3} a_{8}\left(M_{1}-m_{1}\right) .
$$

Using (3.24), we obtain

$$
a_{3} a_{9}\left(M_{3}-m_{3}\right) \leq a_{8} a_{2}\left(M_{2}-m_{2}\right),
$$

multiplying by a_{6}, we get

$$
a_{6} a_{3} a_{9}\left(M_{3}-m_{3}\right) \leq a_{6} a_{8} a_{2}\left(M_{2}-m_{2}\right)
$$

Using (3.28), we obtain

$$
a_{6} a_{3} a_{9}\left(M_{3}-m_{3}\right) \leq a_{2} a_{8} a_{5}\left(M_{3}-m_{3}\right)
$$

so

$$
\left(a_{6} a_{3} a_{9}-a_{2} a_{8} a_{5}\right)\left(M_{3}-m_{3}\right) \leq 0
$$

Since $a_{3} a_{6} a_{9}-a_{2} a_{5} a_{8}>0$, so $M_{3}-m_{3} \leq 0$, from where $m_{3}=M_{3}$.

Theorem 3.3.4 Suppose that (3.17) and (3.18) hold. If $a_{3} a_{6} a_{9}-a_{2} a_{5} a_{8}>0$, Then, P is globally asymptotically stable.

Proof. The proof is derived from theorem (3.3.2) and theorem (3.3.3).
To validate these theoretical findings, we are going to consider the following numerical example.

Example 3.3.1 - let $a_{1}=2, a_{2}=2, a_{3}=6, a_{4}=2, a_{5}=3, a_{6}=4, a_{7}=2, a_{8}=1$ and $a_{9}=6$ in system (3.2), so we obtain the following system with the previous parameters that comply with (3.17) and (3.18), and that verify $a_{3} a_{6} a_{9}-a_{2} a_{5} a_{8}>0$

$$
\begin{equation*}
x_{n+1}=\frac{2 x_{n}-2 x_{n} y_{n}}{1+6 x_{n}}, \quad y_{n+1}=\frac{2 y_{n}+3 y_{n} z_{n}}{1+4 y_{n}}, \quad z_{n+1}=\frac{2 z_{n}+z_{n} x_{n}}{1+6 z_{n}} . \tag{3.33}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
x_{0}=\frac{1}{4}, y_{0}=\frac{1}{3} \text { and } z_{0}=\frac{1}{3} \tag{3.34}
\end{equation*}
$$

so, the equilibrium point $P=\left(\frac{1}{25}, \frac{19}{50}, \frac{13}{75}\right)$ of system (3.33) is globally asymptotically stable, and we get the graph in Fig (3.2).

3.3.3 Rate of convergence

In this section, we are going to delve into exploring the rate of convergence of any solution that converges to the equilibrium point $P=\left(\frac{L}{S}, \frac{M}{S}, \frac{N}{S}\right)$ of system (3.2).

Figure 3.2: Plot of the solution to system (3.33) with the initial values (3.34).

Consider $\left\{\left(x_{n}, y_{n}, z_{n}\right)\right\}_{n \geq 0}$ as a solution of system (3.2), such that

$$
\lim _{n \rightarrow \infty} x_{n}=\bar{x}, \lim _{n \rightarrow \infty} y_{n}=\bar{y} \text { and } \lim _{n \rightarrow \infty} z_{n}=\bar{z},
$$

where

$$
(\bar{x}, \bar{y}, \bar{z})=P .
$$

To find the error terms, we get from system (3.2)

$$
\begin{aligned}
x_{n+1}-\bar{x} & =\frac{a_{1} x_{n}-a_{2} x_{n} y_{n}}{1+a_{3} x_{n}}-\frac{a_{1} \bar{x}-a_{2} \bar{x} \bar{y}}{1+a_{3} \bar{x}} \\
& =\frac{\left(a_{1}-a_{2} y_{n}\right)}{\left(1+a_{3} x_{n}\right)\left(1+a_{3} \bar{x}\right)}\left(x_{n}-\bar{x}\right)-\frac{a_{2} \bar{x}}{1+a_{3} \bar{x}}\left(y_{n}-\bar{y}\right), \\
y_{n+1}-\bar{y} & =\frac{a_{4} y_{n}+a_{5} y_{n} z_{n}}{1+a_{6} y_{n}}-\frac{a_{4} \bar{y}+a_{5} \bar{y} \bar{z}}{1+a_{6} \bar{y}} \\
& =\frac{\left(a_{4}+a_{5} z_{n}\right)}{\left(1+a_{6} y_{n}\right)\left(1+a_{6} \bar{y}\right)}\left(y_{n}-\bar{y}\right)+\frac{a_{5} \bar{y}}{1+a_{6} \bar{y}}\left(z_{n}-\bar{z}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
z_{n+1}-\bar{z} & =\frac{a_{7} z_{n}+a_{8} z_{n} x_{n}}{1+a_{9} z_{n}}-\frac{a_{7} \bar{z}+a_{8} \bar{z} \bar{x}}{1+a_{9} \bar{z}} \\
& =\frac{\left(a_{7}+a_{8} x_{n}\right)}{\left(1+a_{9} z_{n}\right)\left(1+a_{9} \bar{z}\right)}\left(z_{n}-\bar{z}\right)+\frac{a_{8} \bar{z}}{1+a_{9} \bar{z}}\left(x_{n}-\bar{x}\right) .
\end{aligned}
$$

For $n \geq 0$, we put

$$
e_{n}^{1}=x_{n}-\bar{x}, \quad e_{n}^{2}=y_{n}-\bar{y} \text { and } e_{n}^{3}=z_{n}-\bar{z},
$$

then, the previous equalities can be written as follow

$$
e_{n+1}^{1}=a_{n} e_{n}^{1}+b_{n} e_{n}^{2}, e_{n+1}^{2}=c_{n} e_{n}^{2}+d_{n} e_{n}^{3} \text { and } e_{n+1}^{3}=s_{n} e_{n}^{3}+r_{n} e_{n}^{1}
$$

where

$$
\begin{gathered}
a_{n}=\frac{\left(a_{1}-a_{2} y_{n}\right)}{\left(1+a_{3} x_{n}\right)\left(1+a_{3} \bar{x}\right)^{2}}, \quad b_{n}=-\frac{a_{2} \bar{x}}{1+a_{3} \bar{x}^{\prime}} \\
c_{n}=\frac{\left(a_{4}+a_{5} z_{n}\right)}{\left(1+a_{6} y_{n}\right)\left(1+a_{6} \bar{y}\right)}, \quad d_{n}=\frac{a_{5} \bar{y}}{1+a_{6} \bar{y}^{\prime}} \\
s_{n}=\frac{\left(a_{7}+a_{8} x_{n}\right)}{\left(1+a_{9} z_{n}\right)\left(1+a_{9} \bar{z}\right)}, \quad r_{n}=\frac{a_{8} \bar{z}}{1+a_{9} \bar{z}} .
\end{gathered}
$$

So, we can write

$$
\begin{array}{ll}
a_{n}=a+\alpha_{n}, & b_{n}=b+\beta_{n}, \\
c_{n}=c+\gamma_{n}, & d_{n}=d+\delta_{n}, \\
s_{n}=s+\sigma_{n}, & r_{n}=r+\rho_{n},
\end{array}
$$

such that

$$
\begin{gathered}
a=\frac{\left(a_{1}-a_{2} \bar{y}\right)}{\left(1+a_{3} \bar{x}\right)^{2}}, \quad b=-\frac{a_{2} \bar{x}}{1+a_{3} \bar{x}^{\prime}}, \\
c=\frac{\left(a_{4}+a_{5} \bar{z}\right)}{\left(1+a_{6} \bar{y}\right)^{2}}, \quad d=\frac{a_{5} \bar{y}}{1+a_{6} \bar{y}^{\prime}}, \\
s=\frac{\left(a_{7}+a_{8} \bar{x}\right)}{\left(1+a_{9} \bar{z}\right)^{2}}, \quad r=\frac{a_{8} \bar{z}}{1+a_{9} \bar{z}^{\prime}}
\end{gathered}
$$

and

$$
\begin{aligned}
& \alpha_{n}=\frac{-a_{1} a_{3}\left(x_{n}-\bar{x}\right)-a_{2}\left(y_{n}-\bar{y}\right)+a_{2} a_{3}\left(x_{n} \bar{y}-\bar{x} y_{n}\right)}{\left(1+a_{3} x_{n}\right)\left(1+a_{3} \bar{x}\right)^{2}}, \beta_{n}=0, \\
& \gamma_{n}=\frac{-a_{4} a_{6}\left(y_{n}-\bar{y}\right)+a_{5}\left(z_{n}-\bar{z}\right)-a_{5} a_{6}\left(y_{n} \bar{z}-\bar{y} z_{n}\right)}{\left(1+a_{6} y_{n}\right)\left(1+a_{6} \bar{y}\right)^{2}}, \quad \delta_{n}=0, \\
& \sigma_{n}=\frac{-a_{7} a_{9}\left(z_{n}-\bar{z}\right)+a_{8}\left(x_{n}-\bar{x}\right)-a_{8} a_{9}\left(z_{n} \bar{x}-\bar{z} x_{n}\right)}{\left(1+a_{9} z_{n}\right)\left(1+a_{9} \bar{z}\right)^{2}}, \quad \rho_{n}=0 .
\end{aligned}
$$

Since

$$
\lim _{n \rightarrow \infty} x_{n}=\bar{x}, \lim _{n \rightarrow \infty} y_{n}=\bar{y} \text { and } \lim _{n \rightarrow \infty} z_{n}=\bar{z},
$$

then

$$
\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \beta_{n}=\lim _{n \rightarrow \infty} \gamma_{n}=\lim _{n \rightarrow \infty} \delta_{n}=\lim _{n \rightarrow \infty} \sigma_{n}=\lim _{n \rightarrow \infty} \rho_{n}=0 .
$$

The error system is given by

$$
\left(\begin{array}{c}
e_{n+1}^{1} \\
e_{n+1}^{2} \\
e_{n+1}^{3}
\end{array}\right)=\left[\left(\begin{array}{ccc}
a & b & 0 \\
0 & c & d \\
r & 0 & s
\end{array}\right)+\left(\begin{array}{ccc}
\alpha_{n} & \beta_{n} & 0 \\
0 & \gamma_{n} & \delta_{n} \\
\rho_{n} & 0 & \sigma_{n}
\end{array}\right)\right]\left(\begin{array}{c}
e_{n}^{1} \\
e_{n}^{2} \\
e_{n}^{3}
\end{array}\right),
$$

that is

$$
X_{n+1}=\left(A+B_{n}\right) X_{n}, \quad n \in \mathbb{N}_{0},
$$

where

$$
X_{n}=\left(e_{n}^{1}, e_{n}^{2}, e_{n}^{3}\right)^{T}
$$

the constant matrix A is of the form

$$
A=\left(\begin{array}{lll}
a & b & 0 \\
0 & c & d \\
r & 0 & s
\end{array}\right)
$$

$$
=\left(\begin{array}{ccc}
\frac{a_{1}-a_{2} \bar{y}}{\left(1+a_{3} \bar{x}\right)^{2}} & -\frac{a_{2} \bar{x}}{1+a_{3} \bar{x}} & 0 \\
0 & \frac{a_{4}+a_{5} \bar{z}}{\left(1+a_{6} \bar{y}\right)^{2}} & \frac{a_{5} \bar{y}}{1+a_{6} \bar{y}} \\
\frac{a_{8} \bar{z}}{1+a_{9} \bar{z}} & 0 & \frac{a_{7}+a_{8} \bar{x}}{\left(1+a_{9} \bar{z}\right)^{2}}
\end{array}\right),
$$

and

$$
B_{n}=\left(\begin{array}{ccc}
\alpha_{n} & \beta_{n} & 0 \\
0 & \gamma_{n} & \delta_{n} \\
\rho_{n} & 0 & \sigma_{n}
\end{array}\right)
$$

with $\left\|B_{n}\right\| \rightarrow 0$ when $n \rightarrow \infty$.
Using propositions (1.1.1) and (1.1.2), we obtain the following result.

Theorem 3.3.5 Suppose $\left\{\left(x_{n}, y_{n}, z_{n}\right)\right\}_{n \geq 0}$ is a positive solution of system (3.2), that satisfies

$$
\lim _{n \rightarrow \infty} x_{n}=\bar{x}, \lim _{n \rightarrow \infty} y_{n}=\bar{y} \text { and } \lim _{n \rightarrow \infty} z_{n}=\bar{z},
$$

where

$$
(\bar{x}, \bar{y}, \bar{z})=P .
$$

So, the error vector $e_{n}=\left(e_{n}^{1}, e_{n}^{2}, e_{n}^{3}\right)^{T}$ of every solution of system (3.2) meets both of the asymptotic relations below

$$
\lim _{n \rightarrow \infty}\left(\left\|e_{n}\right\|\right)^{\frac{1}{n}}=\left|\lambda_{1,2,3} J_{F}(\bar{x}, \bar{y}, \bar{z})\right|, \lim _{n \rightarrow \infty} \frac{\left\|e_{n+1}\right\|}{\left\|e_{n}\right\|}=\left|\lambda_{1,2,3} J_{F}(\bar{x}, \bar{y}, \bar{z})\right|,
$$

with $\lambda_{1,2,3} J_{F}(\bar{x}, \bar{y}, \bar{z})$ is a characteristic root of the Jacobian matrix $J_{F}(\bar{x}, \bar{y}, \bar{z})$.

General conclusion and outlook

This thesis is a detailed summary of various research studies that looked at the form of solutions and how these solutions behave in specific systems of nonlinear difference equations. By carefully analyzing and investigating these systems, it aims to explain the complex patterns and changes seen in the solutions, providing valuable information about their traits and properties.

In the first chapter, we gave the solutions to the following k-dimensional close-tocyclic nonlinear difference equations system

$$
y_{n+1}^{(i)}=\frac{a_{i} y_{n}^{(i+1)}\left(y_{n-k}^{(i+1)}\right)^{p_{i+1}}+b_{i}}{\left(y_{n-k+1}^{(i)}\right)^{p_{i}}} ; \quad n \in \mathbb{N}_{0}
$$

where $y_{n}^{(i+k)}=y_{n}^{(i)}, p_{i+k}=p_{i}, a_{i+k}=a_{i}, b_{i+k}=b_{i}, i=\overline{1, k}$, the initial values $y_{-k^{\prime}}^{(i)} y_{-k+1^{\prime}}^{(i)}, \ldots, y_{0}^{(i)}$ and the parameters a_{i} and $b_{i}, i=\overline{1, k}$ are positive real numbers and $p_{i}, i=\overline{1, k}$, are real numbers. We also examined the asymptotic behavior of the the equilibrium point in special cases.

In the second chapter, we studied the following symmetric higher-order difference equations system

$$
x_{n+1}=\frac{x_{n-(2 k+1)}}{1+y_{n-k}}, y_{n+1}=\frac{y_{n-(2 k+1)}}{1+x_{n-k}}, n, k \in \mathbb{N}_{0},
$$

the initial values $x_{-(2 k+1)}, x_{-2 k}, \ldots, x_{0}, y_{-(2 k+1)}, y_{-2 k}, \ldots, y_{0}$ are non-negative real numbers. We also combined its properties into a very important theorem.

In the near future, we will try to generalize the previous system to the following close-to-symmetric one

$$
x_{n+1}=\frac{x_{n-(2 k+1)}}{\alpha+y_{n-k}}, y_{n+1}=\frac{y_{n-(2 k+1)}}{\beta+x_{n-k}}, n, k \in \mathbb{N}_{0},
$$

the initial values $x_{-(2 k+1)}, x_{-2 k}, \ldots, x_{0}, y_{-(2 k+1)}, y_{-2 k}, \ldots, y_{0}$, and the parameters α and β are positive real numbers.

In the third chapter, we studied this nonlinear difference equations system

$$
x_{n+1}=\frac{a_{1} x_{n}-a_{2} x_{n} y_{n}}{1+a_{3} x_{n}}, \quad y_{n+1}=\frac{a_{4} y_{n}+a_{5} y_{n} z_{n}}{1+a_{6} y_{n}}, \quad z_{n+1}=\frac{a_{7} z_{n}+a_{8} z_{n} x_{n}}{1+a_{9} z_{n}}, \quad n \in \mathbb{N}_{0},
$$

where the parameters $a_{i}, i=\overline{1,9}$ and the initial values x_{0}, y_{0} and z_{0} are positive real numbers. We also investigated the local stability of its equilibrium point, and studied the asymptotic behavior of this equilibrium.

In the near future, we will try to generalize the previous system to the following P-dimensional one

$$
x_{n+1}^{(i)}=\frac{a_{i} x_{n}^{(i)}+b_{i} x_{n}^{(i)} x_{n}^{(i+1)}}{1+c_{i} x_{n}^{(i)}} ; \quad n \in \mathbb{N}_{0}
$$

where $x_{n}^{(i+P)}=x_{n}^{(i)}, a_{i+P}=a_{i}, b_{i+P}=b_{i}$ and $c_{i+P}=c_{i}, i=\overline{1, P}$, the initial values $x_{0}^{(i)}$ and the parameters a_{i} and $c_{i}, i=\overline{1, P}$ present positive real numbers and the parameters b_{i}, $i=\overline{1, P}$ are nonzero real numbers.

Bibliography

[1] Abo-Zeid R. Forbidden sets and stability in some rational difference equations. Journal of Difference Equations and Applications 2018, 14(8): 889-897.
[2] Abo-Zeid R. On a third order difference equation. Acta Universitatis Apulensis 2018, 55(1): 89-103.
[3] Ahmad S. On the Nonautonomous Lotka-Volterra Competition Equation. Proceedings of the American Mathematical Society 1993, 117: 199-204.
[4] Akrour Y, Touafek N and Halim Y. On a System of Difference Equations of Second Order Solved in Closed-Form. Miskolc Mathematical Notes 2019, 20(2): 701-717.
[5] Allam A, Halim Y and khelifa A. Convergence of Solutions of a System of Recurrence Equations. Journal of Applied Mathematics and Computing 2023, 69(2): 1659-1677.
[6] Allam A and Halim Y. Solvability of a Multidimensional Close-to-Cyclic System of Difference Equations.(submitted)
[7] Allam A, Halim Y and Redjam I. Dynamical Behavior of a Possible Discrete Community Model.(submitted)
[8] Allen L. An Introduction to Mathematical Biology. Prentice Hall, New York 2007.
[9] Brauer F and Castillo-Chavez C. Mathematical Models in Population Biology and Epidemiology. Springer, Berlin 2000.
[10] Camouzis E and Ladas G. Dynamics of Third-Order Rational Difference Equations With Open Problems and Conjectures. Advances in Discrete Mathematics and Applications, Chapman and Hall/CRC 2008.
[11] Clark C. W. A Delayed Recruitement of a Population Dynamics with an Application to Baleen Whale Population. Journal of Mathematical Biology 1976, 3: 381-391.
[12] Clark D, Kulenovic M.R.S and Selgrade J.F. Global asymptotic behavior of a twodimensional difference equation modelling competition. Nonlinear Analysis 2003, 52: 1765-1776.
[13] Edelstein-Keshet L. Mathematical Models in Biology. McGraw-Hill, New York 1988.
[14] Elaydi S. An Introduction to Difference Equations. Springer-Verlag, New York 2019.
[15] Elsayed E.M. On a system of two nonlinear difference equations of order two. Proceedings of the Jangjeon Mathematical Society 2015, 18(3): 353-368.
[16] Elsayed E.M and Ibrahim T.F. Periodicity and solutions for some systems of nonlinear rational difference equations. Hacettepe Journal of Mathematics and Statistics 2015, 44(1): 1361-1390.
[17] Elsayed E.M. Solution for systems of difference equations of rational form of order two. Computational and Applied Mathematics 2014.
[18] Finizio N and Ladas G. An Introduction to Differential Equations with Difference Equations, Fourier Series, and Partial Differential Equations. Wadsworth Publishing Company 1982.
[19] Elsayed E.M. Solutions of rational difference systems of order two. Mathematical and Computer Modelling 2012, 55(2): 378-384.
[20] Gibbons CH, Kulenović M.R.S and Ladas G. On the recursive sequence $x_{n+1}=$ $\frac{\alpha+\beta x_{n-1}}{\gamma+x_{n}}$. Mathematical Sciences Research Hotline 2000, 4(2): 1-11.
[21] Grove E.A, Ladas G, Prokup N.R and Levis R. On the global behavior of solutions of a biological model. Communications on Applied Nonlinear Analysis 2000, 7(2): 33-46.
[22] Grove E.A and Ladas G. Periodicities in Nonlinear Difference Equations. Advances in Discrete Mathematics and Applications, Chapman and Hall/CRC Press, Boca Raton, F.L 2004.
[23] Gumus M. Analysis of periodicity for a new class of non-linear difference equations by using a new method. Electronic Journal of Mathematical Analysis and Applications 2020, 8(1): 109-116.
[24] Gumus M and Abo-Zeid R. On the solutions of a $(2 k+2)$ th order difference equation. Dynamics of Continuous, Discrete \& Impulsive Systems. Series B, Applications \& Algorithms 2018, 25(1): 129-143.
[25] Halim Y. A system of difference equations with solutions associated to Fibonacci numbers. International Journal of Difference Equations 2016, 11(1): 65-77.
[26] Halim Y. Form and periodicity of solutions of some systems of higher-order difference equations. Mathematical Sciences Letters 2016, 5(1): 79-84.
[27] Halim Y. Global character of systems of rational difference equations. Electronic Journal of Mathematical Analysis and Applications 2015, 3: 204-214.
[28] Halim Y, Allam A and Bengueraichi Z. Dynamical behavior of a P-dimensional system of nonlinear difference equations. Mathematica Slovaca 2021, 71(4): 903-924.
[29] Halim Y and Bayram M. On the solutions of a higher-order difference equation in terms of generalized Fibonacci sequences. Mathematical Methods in the Applied Sciences 2016, 39(1): 2974-2982.
[30] Halim Y, Berkal M and Khelifa A. On a three-dimensional solvable system of difference equations. Turkish Journal of Mathematics 2020, 44(2): 1263-1288.
[31] Halim Y, Khelifa A, Berkal M and Bouchair A. On a solvable system of p difference equations of higher order. Periodica Mathematica Hungarica 2021, doi.org/10.1007/s10998-021-00421- x .
[32] Halim Y and Rabago J.F.T. On some solvable systems of difference equations with solutions associated to Fibonacci numbers. Electronic Journal of Mathematical Analysis and Applications 2017, 5(1): 166-178.
[33] Halim Y and Rabago J.F.T. On the solutions of a second-order difference equations in terms of generalized Padovan sequences. Mathematica Slovaca 2018, 68(3): 625-638.
[34] Halim Y, Touafek N and Yazlik Y. Dynamic behavior of a second-order nonlinear rational difference equation. Turkish Journal of Mathematics 2015, 39(6): 1004-1018.
[35] Khelifa A and Halim Y. General solutions to systems of difference equations and some of their representations. Journal of Applied Mathematics and Computing 2021, 67: 439-453.
[36] Khelifa A, Halim Y and Berkal M. On the solutions of a system of $(2 p+1)$ difference equations of higher order. Miskolc Mathematical Notes 2021, 22 (2): 331-350.
[37] Khelifa A, Halim Y and Berkal M. Solutions of a system of two higher-order difference equations in terms of Lucas sequence. Universal Journal of Mathematics and Applications 2019, 2(4): 202-211.
[38] Khelifa A, Halim Y, Bouchair A and Berkal M. On a system of three difference equations of higher order solved in terms of Lucas and Fibonacci numbers. Mathematica Slovaca 2021, 70(3): 641-656.
[39] Kara M, Yazlik Y, Touafek N and Akrour Y. On a three-dimensional system of difference equations with variable coefficients. Journal of Applied Mathematics \& Informatics 2021, 39(3-4): 381-403.
[40] Kara M and Yazlik Y. Solvability of a system of nonlinear difference equations of higher order. Turkish Journal of Mathematics 2019, 43(3): 1533-1565.
[41] Kocic V.L and Ladas G. Global Behavior of Nonlinear Difference Equations of Higher Order with Applications. Dordrecht: Kluwer Academic Publishers 1993.
[42] Krebs W. A General Predator-Prey Model. Mathematical and Computer Modelling of Dynamical Systems 2003, 9: 387-401.
[43] Kulenovic M.R.S and Ladas G. Dynamics of Second Order Rational Difference Equations. Boca Raton, Florida: Chapman and hall/CRC 2002.
[44] Liu X. A Note on the Existence of Periodic Solution in Discrete Predator-Prey Models. Applied Mathematical Modelling 2010, 34: 2477-2483.
[45] Mylona C,Papaschinopoulos G and Schinas C.J. Neimark-Sacker flip and transcritical bifurcation in a close-to-symmetric system of difference equations with exponential terms. Mathematical Methods in the Applied Sciences 2021, 44(13): 10210-10224.
[46] Mylona C, Psarros N, Papaschinopoulos G and Schinas C.J. Stability of two 3×3 close-to-cyclic systems of exponential difference equations. Mathematical Methods in the Applied Sciences 2018, 41: 7636-7948.
[47] Pituk M. More on Poincare's and Perron's theorems for difference equations. Journal of Difference Equations and Applications 2002, 8: 201-216.
[48] Qamar Din. Dynamics of a Discrete Lotka-Volterra Model. Advences in Difference Equations 2013, 95(1).
[49] Simsek D, Cinar C and Yalcinkaya I. On the recursive sequence $x_{n+1}=\frac{x_{n-3}}{1+x_{n-1}}$. International Journal of Contemporary Mathematical Sciences 2006, 1(9-12) : 475480.
[50] Simsek D,Kyzy P.E and Kyzy M.I. On the recursive sequence $x_{n+1}=\frac{x_{n-7}}{1+x_{n-3}}$. Filomat 2019, 33(5): 1381-1386.
[51] Simsek D and Ogul B. Solutions of the rational difference equations $x_{n+1}=\frac{x_{n-(2 k+1)}}{1+x_{n-2 k}}$. Manas Journal of Engineering 2017, 5(3): 57-68.
[52] Stević S, El-Sayed Ahmed A, Kosmala W and Šmarda Z. Note on a difference equation and some of its relatives. Mathematical Methods in the Applied Sciences 2021, 44(13): 1-9.
[53] Stević S. On the recursive sequence $\frac{x_{n-1}}{g\left(x_{n}\right)}$. Taiwanese Journal of Mathematics 2002, 6(3): 405-414.
[54] Tang X and Zou X. On Positive Periodic Solutions of Lotka-Volterra Competition Systems with Deviating Arguments. Proceedings of the American Mathematical Society 2006, 134: 2967-2974.
[55] Tollu D.T, Yazlik Y and Taskara Y. On fourteen solvable systems of difference equations. Applied Mathematics and Computation 2014, 233(1): 310-319.
[56] Tollu D.T, Yazlik Y and Taskara Y. On the solutions of two special types of Riccati difference equation via Fibonacci numbers. Advances in Difference Equations 2013, 174: 1-7.
[57] Touafek N. On a general system of difference equations defined by homogeneous functions. Mathematica Slovaca 2021, 71(3): 697-720.
[58] Touafek N. On a second order rational difference equation. Hacettepe Journal of Mathematics and Statistics 2012, 41(6): 867-874.
[59] Touafek N. On some fractional systems of difference equations. Iranian Journal of Mathematical Sciences and Informatics 2014, 9(2): 303-305.
[60] Yazlik Y and Kara, M. On a solvable system of difference equations of higher-order with period two coefficients. Communications Faculty Of Science University of Ankara Series A1, Mathematics and Statistics 2019, 68(2): 1675-1693.
[61] Yazlik Y, Tollu D.T and Taskara N. Behaviour of solutions for a system of two higherorder difference equations. Journal Of Science and Arts 2018, 45(4): 813-826.
[62] Yazlik Y, Tollu D.T and Taskara N. On the solutions of difference equation systems with Padovan numbers. Applied Mathematics 2013, 12(4): 15-20.
[63] Zhou Z and Zou X. Stable Periodic Solutions in a Discrete Periodic Logistic Equation. Applied Mathematics Letters 2003, 16(2): 165-171.

