
 

 الجمهوريـة الجزائـريـة الديمقراطيـة الشعبيـة
People's Democratic Republic of Algeria 

 وزارة التعليــم العالـي والبحـث العلمـي
Ministry of Higher Education and Scientific Research 

 
        University Center                                                                                                        المركز الجامعي                                    

   Abdelhafid Boussouf – Mila                عبد الحفيظ بوالصوف ميلة                                                                                                     

 
Institute: Mathematics and Computer Sciences                                                            Department: Mathematics 

Order N° :  ……………. 

Matricule : M103/2021 
   

www.centre-univ-mila.dz 
 

 

Thesis 
 

Submitted in partial fulfilment of the requirements  

for the degree of Doctorate 3th cycle (LMD) 

 
                         

 

 

 

 

 

 

 

        Field: Mathematics                                                      Specialty: Dynamical systems 

 

                               Presented and defended by: Allam Asma   

                    

                                                   In front of the jury: 

 

 Abdelouahab     

Mohammed-Salah  

Professor     Abdelhafid Boussouf 

    Univ-Center. of Mila 

Chairman 

 Halim Yacine Professor     Abdelhafid Boussouf  

    Univ-Center. of Mila 

Supervisor 

 Touafek Nouressadat Professor     Mohamed Seddik  Ben 

    Yahia Univ. of Jijel 

Examiner 

 Boukoucha Rachid 

 

 Kaouache Smail 

 

 Bououden Rabah 

Professor 

 

M.C.A  

 

M.C.A 

    Abderhmane Mira 

    Univ. of Bejaia 

    Abdelhafid Boussouf 

    Univ-Center. of Mila 

    Abdelhafid Boussouf 

    Univ-Center. of Mila 

Examiner 

 

Examiner 

 

Examiner  

 
 

University year: 2023/2024 

Dynamic behavior of multidimensional 

systems of difference equations 

http://www.centre-univ-mila.dz/


Acknowledgements

This thesis was only made possible with the assistance of several individuals, to whom

I wish to extend my heartfelt appreciation. I am deeply thankful to all the individuals

who played a crucial role in the completion of this thesis. Each of them contributed

significantly and was instrumental in the success of this academic project.

First and foremost, I would like to extend my heartfelt thanks to my thesis advisor,

Mr.Yacine Halim. His constant availability, and insightful guidance have been invaluable

throughout my research journey. Thanks to his wise counsel, I was able to overcome

obstacles and make significant progress in my reflections. His contribution to this thesis

goes far beyond his role as an academic supervisor, and I am profoundly grateful to

him.

I also want to express my gratitude to the members of the jury for their interest in my

research work. Their relevant comments and constructive suggestions helped enrich

my thinking and improve the quality of my thesis. Their commitment to academic

excellence has been a source of inspiration throughout this process.

A big thank to the administrators of the doctoral program at the University Center

of Mila for their continuous support. Their expertise and dedication have helped create

an environment conducive to research and learning, where I could develop my skills

and broaden my academic horizons.

I also wish to convey my gratitude to my fellow doctoral students, whose collaboration

and exchange of ideas enriched my academic experience. Their mutual support and

camaraderie were a source of comfort and motivation throughout this demanding

i



Acknowledgements

journey.

Finally, my sincere thanks go to all the individuals who contributed directly or

indirectly to the completion of this thesis. Their support, encouragement, and commitment

were crucial to achieving this outcome. I am deeply grateful to them for their valuable

assistance and trust in me.

ii



Abstract

In the realm of dynamical systems, examining how solutions of systems of difference

equations behave over time holds profound significance as it unveils the underlying

patterns and trajectories that guide the evolution of various systems. This thesis delves

into finding the form of solutions for specific multidimensional systems of difference

equations and studying their behavior. Specifically, we are interested in a discrete

community model, the form and the asymptotic behavior of solutions to a close-to-

cyclic multidimensional difference equations system, and the convergence of solutions

of a two-dimensional system of higher-order difference equations.

Several results are then presented about the form of solutions, the asymptotic

behavior, the global attractivity, the rate of convergence, and the convergence of

solutions, in addition to numerous simulations which allow confirming and bringing

out our contributions.

Keywords: Systems of difference equations, equilibrium points, qualitative study,

local stability, asymptotic behavior, rate of convergence.
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Résumé

Dans le domaine des systèmes dynamiques, l’étude du comportement asymptotique

des solutions des systèmes d’équations aux différences revêt une signification profonde,

car elle révèle les schémas sous-jacents et les trajectoires qui guident l’évolution de

divers systèmes. Cette thèse se consacre à la recherche et à l’étude du comportement des

solutions de certains systèmes multidimensionnels d’équations aux différences. Plus

précisément, nous nous intéressons à un modèle discret de communauté, à la forme et

au comportement asymptotique des solutions d’un système multidimensionnel proche

du cyclique d’équations aux différences, ainsi qu’à la convergence des solutions d’un

système bidimensionnel d’équations aux différences d’ordre supérieur.

Ensuite, plusieurs résultats sont présentés, notamment concernant la forme des

solutions, le comportement asymptotique, l’attractivité globale, la convergence des

solutions et le taux de convergence. De plus, de nombreuses simulations sont réalisées

pour confirmer et mettre en évidence nos contributions.

Mots-clés: Systèmes d’équations aux différences, points d’équilibre, étude qualitative,

stabilité locale, comportement asymptotique, ordre de convergence.
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General introduction

Researchers and scientists from various fields are becoming increasingly interested

in the difference equations theory. Consequently, numerous papers have been

published addressing difference equations and systems thereof. Some of them can be

found in previous research (see for example [1, 12, 21, 28, 30, 31, 33, 34, 41, 43, 55, 58]).

The primary contribution of this thesis lies in its proposal of closed-form solutions

for multidimensional systems of difference equations. This extension to higher dimensions

is noteworthy, as many existing methods are tailored for lower-dimensional systems.

We effectively demonstrate the novelty of our approach by comparing it to existing

literature. The results presented in the thesis are not only new but also capable of

generalizing previous findings, thus advancing the current state of research in this

area.

In the introductory portion of our first chapter, we lay out fundamental definitions

and significant findings relevant to difference equations and the systems they encompass.

These foundational concepts serve as a groundwork for us to delve into the core

focus of this thesis. Our primary goal involves conducting a thorough qualitative

investigation aimed at discovering explicit solutions for specific types of nonlinear

difference equations systems. These systems may include multidimensional systems

and symmetric systems, which add complexity and richness to our analytical exploration.

Multidimensional difference equations systems are like building blocks for understanding

1



General introduction

how things change over time. They are used in many areas, like economics to

understand money growth, and in biology to study how animals in an environment

interact.

In the second section of our first chapter, we bring forth a fresh category of

nonlinear difference equations systems characterized by a multitude of interconnected

equations arranged in a distinctive manner. We meticulously analyze the structure of

the following system, paying close attention to its intricate connections

y(i)
n+1 =

aiy
(i+1)
n

(
y(i+1)

n−k

)pi+1
+ bi(

y(i)
n−k+1

)pi
; n ∈N0 ,

where y(i+k)
n = y(i)

n , pi+k = pi, ai+k = ai, bi+k = bi; i = 1, k, the initial values y(i)
−k, y(i)

−k+1, . . . , y(i)
0

and the parameters ai and bi, i = 1, k are positive real numbers and pi, i = 1, k, are real

numbers. Our main emphasis is on unraveling the methods for representing solutions

to this complex array of equations. Through detailed examination and scrutiny, we aim

to provide insights into the behavior and properties of solutions within this specific

framework.

In the study of how things change over time, there is also an important group of

systems called symmetric systems of nonlinear difference equations. These systems

exhibit a regular pattern and help us to understand how connected things change

together. They are used in many domains, ranging from modeling chemical interactions

to analyzing the stability of physical systems. For instance, these systems are employed

to study synchronized oscillations in neural networks, as well as to analyze collective

animal movements in behavioral biology.

Taking inspiration from earlier studies, the second chapter of this thesis delves

into a new type of symmetric system involving nonlinear difference equations. This

system is characterized by its distinctive symmetry properties, which play a crucial role

in its dynamics and behavior and affect how the system’s equations work. Through

comprehensive analysis and investigation, we want to study the system below carefully

2



General introduction

to understand it better and show what makes it different

xn+1 =
xn−(2k+1)

1 + yn−k
, yn+1 =

yn−(2k+1)

1 + xn−k
, n, k ∈N0,

the initial values x−(2k+1), x−2k, . . . , x0, y−(2k+1), y−2k, . . . , y0 are non-negative real numbers.

In the world of biology, using difference equations helps us understand how animal

populations change. These equations create models that show how animal numbers

go up and down over time, and how different species interact. For example, they help

researchers study how animals grow, compete for food, and interact with predators.

Additionally, these models help us understand how environmental factors like

habitat and reproduction affect animal populations over time. By testing different

scenarios and predicting population trends, scientists can plan ways to protect habitats

and manage biodiversity.

Studying these models not only helps us understand basic ecological processes but

also guides conservation efforts and predicts the effects of environmental changes. In

the final chapter, we are going to take a closer look at the following specific type of

complex equations system to better understand and manage animal populations in

dynamic environments

xn+1 =
a1xn − a2xnyn

1 + a3xn
, yn+1 =

a4yn + a5ynzn

1 + a6yn
, zn+1 =

a7zn + a8znxn

1 + a9zn
, n ∈N0,

where the parameters ai, i = 1, 9 and the initial values x0, y0 and z0 are positive real

numbers.

3



Chapter 1
Preliminaries and solvability of a

multidimensional close-to-cyclic system

of difference equations

1.1 Preliminaries

The first part of our opening chapter aims to explain difference equations and their

systems in simple terms. We want to make it easy for readers to understand these

ideas. Also, we talk about stability, which means whether these equations and systems

stay the same or change over time. This helps us see how these math models work in

different situations.

Additionally, we talk about specific theorems. These are important ideas that we

are going to use a lot in our thesis. They help us analyze and understand the math

parts of our research. They give us important rules and ideas to follow in our study.

In summary, this first part of our opening chapter sets the stage for our thesis.

We explain key concepts clearly, talk about stability in difference equations and their

systems, and introduce important theorems that will help us throughout our research.

4



Preliminaries

For these preliminary elements, we refer to the following references [10], [14],[18],

[22] and [41].

This first section of our first chapter gives some definitions and general results

concerning equations and systems of difference equations, stability, and theorems that

we are going to use in the rest of our thesis.

1.1.1 Linear difference equations

The linear difference equations’ study is highly important in applied mathematics.

These equations are very useful tools for representing and understanding how things

change and vary in different domains. In this part, we are going to explain what

they are and present definitions and theorems that will help us better understand the

concepts and the methods we will see later on.

Definition 1.1.1 An equation expressed as

xn+k + p1 (n) xn+k−1 + · · · + pk (n) xn = 1 (n) , n ∈Nn0 (1.1)

is called Linear difference equation of order k as long as pk (n) , 0, where

p1 (n) , p2 (n) , . . . , pk (n) , 1 (n) are well-defined functions onNn0 .

Remarks 1.1.1

In general, we associate k initial values with equation (1.1).

xn0 = c1, xn0+1 = c2, . . . , xn0+k−1 = ck, (1.2)

ci, i = 1, k represent real or complex constants.

Definition 1.1.2 Equation (1.1) with 1 (n) = 0,∀n ≥ n0, is called homogeneous linear

5



Preliminaries

difference equation, and it is written as follows

xn+k + p1 (n) xn+k−1 + · · · + pk (n) xn = 0. (1.3)

Definition 1.1.3 A sequence {xn}n≥n0
is considered a solution to equation (1.1) with the initial

values (1.2), if it satisfies relation (1.1) and the initial values (1.2).

Theorem 1.1.1 [14]

Equation (1.1) with the initial values (1.2) has one and only one solution.

Theorem 1.1.2 [14]

The set S of the solutions to the difference equation (1.3) is a vector space onK of dimension

K.

Definition 1.1.4 A set of k linearly independent solutions of the difference equation (1.3) is

referred to as a fundamental set of solutions.

The next theorem illustrates that the homogeneous linear difference equation (1.3)

always admits a fundamental set of solutions (i.e. a basis of solutions).

Theorem 1.1.3 [14, 41]

• If pk(n) , 0, for all n ≥ n0, the homogeneous linear difference equation (1.3) possesses a

fundamental set of solutions.

• If x1
n, x2

n, . . . , xk
n are solutions of equation (1.3), so

xn = a1x1
n + a2x2

n + · · · + akxk
n

is also a solution of equation (1.3), where ai, i = 1, k, are arbitrary constants.

6



Preliminaries

Corollary 1.1.1 Suppose
{(

x1
n

)
n≥n0

,
(
x2

n
)

n≥n0
, . . . ,

(
xk

n

)
n≥n0

}
form a fundamental set of solutions

to equation (1.3). So, the general solution of (1.3) is represented

xn =

k∑
i=1

aixi
n,

where ai, i = 1, k, are arbitrary constants.

Theorem 1.1.4 [14, 41]

Let
{(

x1
n

)
n≥n0

,
(
x2

n
)

n≥n0
, . . . ,

(
xk

n

)
n≥n0

}
be a fundamental set of solutions to equation (1.3) and(

xp
n

)
n≥n0

a particular solution to equation (1.1), then any general solution of equation (1.1) takes

the form

xn =

k∑
i=1

aixi
n + xp

n, n ≥ n0.

Linear difference equations with constant coefficients

In what follows, we focus on homogeneous linear difference equations with constant

coefficients, i.e.

xn+k + p1xn+k−1 + · · · + pkxn = 0, (1.4)

pi, i = 1, k represent real or complex constants.

Resolution of the homogeneous linear difference equations with constant coefficients

Our aim is to identify a fundamental set of solutions and thereby determine the general

solution to equation (1.4).

Theorem 1.1.5 [14, 22]

Equation (1.4) has solutions of the form

xn = λn,

7



Preliminaries

where λ ∈ C∗, and it verifies

p (λ) =

k∑
i=0

piλ
k−i = 0. (1.5)

with p0 = 1.

Definition 1.1.5 The polynomial

p (λ) =

k∑
i=0

piλ
k−i

with p0 = 1, is termed the characteristic polynomial associated with equation (1.4).

Theorem 1.1.6 [14, 22]

If the rootsλ1, λ2, . . . , λk of the characteristic polynomial p (λ) are distinct, then
{
λn

1 , λ
n
2 , . . . , λ

n
k

}
forms a fundamental set of solutions to equation (1.4).

Corollary 1.1.2 Any solution of equation (1.4) can be expressed as a linear combination of λn
i ,

where i = 1, k, i.e.

xn =

k∑
i=1

ciλ
n
i , ci ∈ K,

where λ1, λ2, . . . , λk are distinct roots of p (λ).

Theorem 1.1.7 [14, 22]

Suppose that λ1, λ2, . . . , λr, r ≤ k, are the roots of the characteristic polynomial associated

to equation (1.4), with degrees of multiplicity m1,m2, . . . ,mr respectively
(∑r

i=1 mi = k
)
, so

{(
λn

1

)
n≥n0

,
(
nλn

1

)
n≥n0

,
(
n2λn

1

)
n≥n0

, . . . ,
(
nm1−1λn

1

)
n≥n0

,
(
λn

2

)
n≥n0

,
(
nλn

2

)
n≥n0

,
(
n2λn

2

)
n≥n0

, . . . ,

(
nm2−1λn

2

)
n≥n0

, . . . ,
(
λn

r
)

n≥n0
,
(
nλn

r
)

n≥n0
,
(
n2λn

r

)
n≥n0

, . . . ,
(
nmr−1λn

r

)
n≥n0

}
,

is a fundamental set of equation (1.4).

Corollary 1.1.3 [14]

8
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The solution of equation (1.4) is expressed as

yn =

r∑
i=1

mi−1∑
j=0

ci jn jλn
i , ci j ∈ K,

where

• The parameter r ≤ k denotes the number of distinct roots of the characteristic equation (1.5).

• The parameter λi denotes one of the roots of the characteristic equation (1.5).

• The parameter mi denotes the degree of multiplicity of the root λi.

• The coefficients ci j are constants determined from the initial values.

1.1.2 Nonlinear difference equations

Nonlinear difference equations are very useful tools for representing various phenomena

in many fields. Unlike linear equations, these have terms that are not linear, which

can make them more challenging to understand. In this part, we are going to examine

these equations closely.

Assume I is a part of R, and f : Ik+1
−→ I is a continuously differentiable function.

Definition 1.1.6 A difference equation of order (k + 1),

xn+1 = f (xn, xn−1, . . . , xn−k), n = 0, 1, . . . , (1.6)

with x0, x−1, . . . , x−k ∈ I, is said to be nonlinear if it is not of the form (1.1).

Definition 1.1.7 A point x̄ ∈ I is said to be an equilibrium point of equation (1.6) if

x̄ = f (x̄, x̄, . . . , x̄),

9



Preliminaries

in other words

xn = x̄, ∀n ≥ −k.

Definition 1.1.8 An interval J ⊆ I is said to be an invariant interval of equation (1.6) if

x−k, x−k+1, · · · , x0 ∈ J⇒ xn ∈ J, n > 0.

1.1.3 About stability

If we are unable to find a solution, we resort to a qualitative study, as the most important

characteristic that can be studied is stability.

Definition 1.1.9 Suppose that x̄ is an equilibrium point of (1.6),

1. x̄ is considered locally stable if

∀ε > 0, ∃δ > 0, ∀ x−k, x−k+1, . . . , x0 ∈ I : |x−k − x̄| + |x−k+1 − x̄| + · · · + |x0 − x̄| < δ,

then

|xn − x̄| < ε, ∀n ≥ −k.

2. x̄ is considered locally asymptotically stable if

• x̄ is locally stable.

• ∃γ > 0, ∀ x−k, x−k+1, . . . , x0 ∈ I : |x−k − x̄| + |x−k+1 − x̄| + · · · + |x0 − x̄| < γ, so

lim
n→+∞

xn = x̄.

3. x̄ is considered globally attractive if

∀ x−k, x−k+1, . . . , x0 ∈ I, lim
n→+∞

xn = x̄.

10



Preliminaries

4. x̄ is considered globally asymptotically stable if

• x̄ is locally stable.

• x̄ is globally attractive.

5. x̄ is considered unstable if it lacks local stability.

Definition 1.1.10 We call linear difference equation associated with equation (1.6), the

equation of the form below

yn+1 = p0yn + p1yn−1 + · · · + pkyn−k, (1.7)

where

pi =
∂ f
∂ui

(x̄, x̄, . . . , x̄), for i = 0, k,

and
f : Ik+1

−→ I

(u0,u1, . . . ,uk) 7−→ f (u0,u1, . . . ,uk).

Theorem 1.1.8 [41] (Stability by linearization)

1. If all the roots of the characteristic polynomial of the associated linear difference equation

lie within the open unit disk |λ| < 1, then the equilibrium point of (1.6) is locally

asymptotically stable.

2. If there exists at least one root of the characteristic polynomial of the associated linear

difference equation with a modulus exceeding one, then the equilibrium point of (1.6) is

unstable.

1.1.4 System of nonlinear difference equations

Suppose f (1), f (2), . . . , f (p) denote functions that are continuously differentiable, such that

f (i) : Ik+1
1 × Ik+1

2 × · · · × Ik+1
p → Ik+1

i , i = 1, p,

11



Preliminaries

with Ii, i = 1, p present real intervals.

Consider the following p-dimensional system



x(1)
n+1 = f (1)

(
x(1)

n , x
(1)
n−1, . . . , x

(1)
n−k, x

(2)
n , x

(2)
n−1, . . . , x

(2)
n−k, . . . . . . , x

(p)
n , x

(p)
n−1, . . . , x

(p)
n−k

)
x(2)

n+1 = f (2)
(
x(1)

n , x
(1)
n−1, . . . , x

(1)
n−k, x

(2)
n , x

(2)
n−1, . . . , x

(2)
n−k, . . . . . . , x

(p)
n , x

(p)
n−1, . . . , x

(p)
n−k

)
...

x(p)
n+1 = f (p)

(
x(1)

n , x
(1)
n−1, . . . , x

(1)
n−k, x

(2)
n , x

(2)
n−1, . . . , x

(2)
n−k, . . . . . . , x

(p)
n , x

(p)
n−1, . . . , x

(p)
n−k

) (1.8)

with n, k ∈N0,
(
x(i)
−k, x

(i)
−k+1, . . . , x

(i)
0

)
∈ Ik+1

i , i = 1, p.

Let’s establish the function

F : I(k+1)
1 × I(k+1)

2 × · · · × I(k+1)
p −→ I(k+1)

1 × I(k+1)
2 × · · · × I(k+1)

p

as follow

F(X) =
(

f (1)
0 (X), f (1)

1 (X), . . . , f (1)
k (X), f (2)

0 (X), f (2)
1 (X), . . . , f (2)

k (X), . . . , f (p)
0 (X), f (p)

1 (X), . . . , f (p)
k (X)

)
,

with

X =
(
u(1)

0 ,u
(1)
1 , . . . ,u

(1)
k ,u

(2)
0 ,u

(2)
1 , . . . ,u

(2)
k , . . . ,u

(p)
0 ,u

(p)
1 , . . . ,u

(p)
k

)T
,

f (i)
0 (X) = f (i)(X), f (i)

1 (X) = u(i)
0 , . . . , f (i)

k (X) = u(i)
k−1, i = 1, p.

Let’s put

Xn =
(
x(1)

n , x
(1)
n−1, . . . , x

(1)
n−k, x

(2)
n , x

(2)
n−1, . . . , x

(2)
n−k, . . . , x

(p)
n , x

(p)
n−1, . . . , x

(p)
n−k

)T
.

Thus, system (1.8) can be expressed as the following one

Xn+1 = F(Xn), n = 0, 1, 2, . . . (1.9)

12
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that’s to say



x(1)
n+1 = f (1)

(
x(1)

n , x
(1)
n−1, . . . , x

(1)
n−k, x

(2)
n , x

(2)
n−1, . . . , x

(2)
n−k, . . . . . . , x

(p)
n , x

(p)
n−1, . . . , x

(p)
n−k

)
x(1)

n = x(1)
n

...

x(1)
n−k+1 = x(1)

n−k+1

x(2)
n+1 = f (2)

(
x(1)

n , x
(1)
n−1, . . . , x

(1)
n−k, x

(2)
n , x

(2)
n−1, . . . , x

(2)
n−k, . . . . . . , x

(p)
n , x

(p)
n−1, . . . , x

(p)
n−k

)
x(2)

n = x(2)
n

...

x(2)
n−k+1 = x(2)

n−k+1
...

x(p)
n+1 = f (p)

(
x(1)

n , x
(1)
n−1, . . . , x

(1)
n−k, x

(2)
n , x

(2)
n−1, . . . , x

(2)
n−k, . . . . . . , x

(p)
n , x

(p)
n−1, . . . , x

(p)
n−k

)
x(p)

n = x(p)
n

...

x(p)
n−k+1 = x(p)

n−k+1

Definition 1.1.11

1. (x(1), x(2), . . . , x(p)) is considered an equilibrium point of system (1.8) if

x(1) = f (1)
(
x(1), x(1), . . . , x(1), x(2), x(2), . . . , x(2), . . . , x(p), x(p), . . . , x(p)

)
,

x(2) = f (2)
(
x(1), x(1), . . . , x(1), x(2), x(2), . . . , x(2), . . . , x(p), x(p), . . . , x(p)

)
,

...
...

x(p) = f (p)
(
x(1), x(1), . . . , x(1), x(2), x(2), . . . , x(2), . . . , x(p), x(p), . . . , x(p)

)
.

2. X =
(
x(1), x(1), . . . , x(1), x(2), x(2), . . . , x(2), . . . , x(p), x(p), . . . , x(p)

)
∈ Ik+1

1 × Ik+1
2 × . . . × Ik+1

p

represents an equilibrium of system (1.9) if

X = F(X).

13
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1.1.5 About stability

The stability of difference equations is a very important aspect when studying them.

It concerns how the solutions of a system evolve over time in response to changes or

disturbances in the initial conditions or parameters. Studying stability allows us to

determine whether a system tends to remain stable, oscillate, or become unstable over

time. This helps us evaluate how robust and predictable the system is. By analyzing

stability, we can better understand how the system will behave in the long run and

predict how it will respond to changes.

Definition 1.1.12 Suppose X represents an equilibrium point of system (1.9) and ||.|| signifies

a norm, for instance, the Euclidean norm.

1. X is said to be stable (or locally stable) if for any ε > 0, there exists δ > 0 such that

whenever
∣∣∣∣∣∣X0 − X

∣∣∣∣∣∣ < δ it follows that
∣∣∣∣∣∣Xn − X

∣∣∣∣∣∣ < ε, for n ≥ 0.

2. X is said to be asymptotically stable (or locally asymptotically stable) if it is stable and if

there exists γ > 0, such that whenever
∣∣∣∣∣∣X0 − X

∣∣∣∣∣∣ < γ it follows that

Xn → X, n→ +∞.

3. X is said to be globally attractive (similarly globally attractive of basin of attraction

G ⊆ Ik+1
1 × Ik+1

2 × . . . × Ik+1
p ), if for each X0 (similarly for each X0 ∈ G)

Xn → X, n→ +∞.

4. X is said to be globally asymptotically stable (similarly globally asymptotically stable

relative to G) if it is locally stable, and if for each X0 ( similarly for each X0 ∈ G),

Xn → X, n→ +∞.

5. X is said to be unstable if it lacks local stability.

14



Preliminaries

Remark 1.1.1 It is clear that
(
x(1), x(2), . . . , x(p)

)
∈ I1×I2×· · ·×Ip is an equilibrium of (1.8) just

in case X =
(
x(1), x(1), . . . , x(1), x(2), x(2), . . . , x(2), . . . , x(p), x(p), . . . , x(p)

)
∈ Ik+1

1 × Ik+1
2 × . . . × Ik+1

p

is an equilibrium of (1.9).

Definition 1.1.13 (Associated linear system)

We call linear system associated with system (1.9) around

X =
(
x(1), x(1), . . . , x(1), x(2), x(2), . . . , x(2), . . . , x(p), x(p), . . . , x(p)

)
,

the system

Xn+1 = JFXn, n = 0, 1, 2, . . .

where JF denotes the Jacobian matrix of F around the equilibrium point X, defined as

JF =



∂ f (1)
0

∂u(1)
0

∂ f (1)
0

∂u(1)
1

. . .
∂ f (1)

0

∂u(1)
k

∂ f (1)
0

∂u(2)
0

∂ f (1)
0

∂u(2)
1

. . .
∂ f (1)

0

∂u(2)
k

. . .
∂ f (1)

0

∂u(p)
0

∂ f (1)
0

∂u(p)
1

. . .
∂ f (1)

0

∂u(p)
k

∂ f (1)
1

∂u(1)
0

∂ f (1)
1

∂u(1)
1

. . .
∂ f (1)

1

∂u(1)
k

∂ f (1)
1

∂u(2)
0

∂ f (1)
1

∂u(2)
1

. . .
∂ f (1)

1

∂u(2)
k

. . .
∂ f (1)

1

∂u(p)
0

∂ f (1)
1

∂u(p)
1

. . .
∂ f (1)

1

∂u(p)
k

...
...

...
...

...
...

...
...

...
...

...
...

...

∂ f (1)
k

∂u(1)
0

∂ f (1)
k

∂u(1)
1

. . .
∂ f (1)

k

∂u(1)
k

∂ f (1)
k

∂u(2)
0

∂ f (1)
k

∂u(2)
1

. . .
∂ f (1)

k

∂u(2)
k

. . .
∂ f (1)

k

∂u(p)
0

∂ f (1)
k

∂u(p)
1

. . .
∂ f (1)

k

∂u(p)
k

∂ f (2)
0

∂u(1)
0

∂ f (2)
0

∂u(1)
1

. . .
∂ f (2)

0

∂u(1)
k

∂ f (2)
0

∂u(2)
0

∂ f (2)
0

∂u(2)
1

. . .
∂ f (2)

0

∂u(2)
k

. . .
∂ f (2)

0

∂u(p)
0

∂ f (2)
0

∂u(p)
1

. . .
∂ f (2)

0

∂u(p)
k

...
...

...
...

...
...

...
...

...
...

...
...

...

∂ f (p)
0

∂u(1)
0

∂ f (p)
0

∂u(1)
1

. . .
∂ f (p)

0

∂u(1)
k

∂ f (p)
0

∂u(2)
0

∂ f (p)
0

∂u(2)
1

. . .
∂ f (p)

0

∂u(2)
k

. . .
∂ f (p)

0

∂u(p)
0

∂ f (p)
0

∂u(p)
1

. . .
∂ f (p)

0

∂u(p)
k

∂ f (p)
1

∂u(1)
0

∂ f (p)
1

∂u(1)
1

. . .
∂ f (p)

1

∂u(1)
k

∂ f (p)
1

∂u(2)
0

∂ f (p)
1

∂u(2)
1

. . .
∂ f (p)

1

∂u(2)
k

. . .
∂ f (p)

1

∂u(p)
0

∂ f (p)
1

∂u(p)
1

. . .
∂ f (p)

1

∂u(p)
k

...
...

...
...

...
...

...
...

...
...

...
...

...

∂ f (p)
k

∂u(1)
0

∂ f (p)
k

∂u(1)
1

. . .
∂ f (p)

k

∂u(1)
k

∂ f (p)
k

∂u(2)
0

∂ f (p)
k

∂u(2)
1

. . .
∂ f (p)

k

∂u(2)
k

. . .
∂ f (p)

k

∂u(p)
0

∂ f (p)
k

∂u(p)
1

. . .
∂ f (p)

k

∂u(p)
k



,

such that

f (i)
j = f (i)

j

(
X
)
, i = 1, p, j = 0, k.
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Theorem 1.1.9 [41] (Stability by linearization)

1. If every eigenvalue of JF lies within the open unit disk |λ| < 1, in that case X is locally

asymptotically stable.

2. If at least one of the eigenvalues of JF has a modulus greater than one, then X is unstable.

Rate of convergence

Here, we are going to give two important propositions which assists in estimating the

rate of convergence.

Let’s consider the following difference equations system

Xn+1 = (A + B (n)) Xn, (1.10)

with Xn represents a vector of dimension m, A ∈ Cm×m represents a constant matrix, and

B : Z+
→ Cm×m represents a matrix function that satisfies the condition

‖B (n) ‖ → 0 (1.11)

as n approaches infinity, where ‖.‖ signifies any matrix norm corresponding to the

vector norm

‖ (x1, x2, . . . , xm) ‖ =
√

x2
1 + x2

2 + · · · + x2
m.

Proposition 1.1.1 [47] (The 1st theorem of Perron)

Suppose condition (1.11) is met. If Xn represents a solution to system (1.10), then either

Xn = 0 for all sufficiently large n or

ρ = lim
n→∞

(‖Xn‖)
1
n (1.12)

exists and is equal to the modulus of one of the eigenvalues of A.
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Proposition 1.1.2 [47] (The 2nd theorem of Perron)

Suppose condition (1.11) is met. If Xn represents a solution to system (1.10), then either

Xn = 0 for all sufficiently large n or

ρ = lim
n→∞

‖Xn+1‖

‖Xn‖
(1.13)

exists and is equal to the modulus of one of the eigenvalues of A.

1.2 Solvability of a multidimensional close-to-cyclic system

of difference equations

The pursuit of solutions for systems of nonlinear difference equations has sparked

significant attention within the academic sphere. However, the majority of the papers

published in this aspect were limited to systems of two or three dimensions at most, as

evidenced by notable references [4, 5, 16, 17, 19, 24, 25, 26, 29, 30, 31, 32, 33, 35, 36, 37,

38, 40, 51, 55, 56, 60, 62].

The challenges posed by complex calculations and the lack of a straightforward

method for solving nonlinear difference equations make it hard for researchers to find

direct solutions. As a result, they opt for a different approach: a qualitative study

of these systems, where they investigate the periodicity, the local stability, the global

stability. . .(for instance, references such as [12, 15, 21, 22, 23, 27, 28, 34, 41, 43, 46, 48, 61,

63]).

All of the above motivated us to introduce the multidimensional system of nonlinear

difference equations (1.14) and solve it, hoping that it will model certain phenomena

and help researchers to understand them.

In the second section of this chapter, we are going to extend and refine the findings

initially outlined in our publication [6]. So,we are going to find the solutions of the
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following k−dimensional close-to-cyclic nonlinear difference equations system

y(i)
n+1 =

aiy
(i+1)
n

(
y(i+1)

n−k

)pi+1
+ bi(

y(i)
n−k+1

)pi
; n ∈N0 , (1.14)

where y(i+k)
n = y(i)

n , pi+k = pi, ai+k = ai, bi+k = bi; i = 1, k, the initial values y(i)
−k, y(i)

−k+1, . . . , y(i)
0

and the parameters ai and bi, i = 1, k are positive real numbers and pi, i = 1, k, are

real numbers. On top of that, we are going to examine the asymptotic behavior of the

equilibrium point of system (1.14) in special cases.

1.2.1 Auxiliary Results

In this part, we are going to present several results needed to prove the main results in

part 1.2.2.

Let’s examine the following k-dimensional linear difference equations system

w(i)
n+1 = aiw

(i+1)
n + bi, n ∈N0 (1.15)

where w(i+k)
n = w(i)

n and w(i)
0 , ai, bi, i = 1, k are positive real numbers.

The following auxiliary result is used for several times in the rest of the chapter.

Lemma 1.2.1 Let (w(i)
n )n≥0 be a solution to system (1.15). Then for all n ∈N0

w(i)
kn+ j =

 w(i)
j + nTi, S = 1,

Snw(i)
j + Ti

(Sn
− 1

S − 1

)
, S , 1,

where, i = 1, k, j = 0, k − 1 and

S =

k∏
l=1

al, Ti =

k∑
r=2

i+r−2∏
l=i

al

 bi+r−1 + bi. (1.16)

18



Auxiliary Results

Proof. The systems in (1.15) immediately imply, for i = 1, k, the following relations

w(i)
n+k = aiw

(i+1)
n+k−1 + bi

= ai

[
ai+1w(i+2)

n+k−2 + bi+1

]
+ bi

= aiai+1w(i+2)
n+k−2 + aibi+1 + bi

= aiai+1

[
ai+2w(i+3)

n+k−3 + bi+2

]
+ aibi+1 + bi

= aiai+1ai+2w(i+3)
n+k−3 + aiai+1bi+2 + aibi+1 + bi

= aiai+1ai+2ai+3w(i+4)
n+k−4 + aiai+1ai+2bi+3 + aiai+1bi+2 + aibi+1 + bi

...

= aiai+1 . . . ai+k−1w(i+k)
n+k−k + aiai+1 . . . ai+k−2bi+k−1

+ aiai+1 . . . ai+k−3bi+k−2 + . . . + aibi+1 + bi

= aiai+1 . . . ai+k−1w(i+k)
n + aiai+1 . . . ai+k−2bi+k−1

+ aiai+1 . . . ai+k−3bi+k−2 + . . . + aibi+1 + bi

= aiai+1 . . . ai+k−1w(i)
n + aiai+1 . . . ai+k−2bi+k−1

+ aiai+1 . . . ai+k−3bi+k−2 + . . . + aibi+1 + bi

w(i)
n+k = a1a2 . . . akw

(i)
n + aiai+1 . . . ai+k−2bi+k−1

+ aiai+1 . . . ai+k−3bi+k−2 + . . . + aibi+1 + bi.

So, we have

w(i)
n+k =

 k∏
l=1

al

 w(i)
n +

 k∑
r=2

i+r−2∏
l=i

al

 bi+r−1

 + bi.

Let’s put

S =

k∏
l=1

al and Ti =

k∑
r=2

i+r−2∏
l=i

al

 bi+r−1 + bi.

We get

w(i)
n+k = Sw(i)

n + Ti,

for i = 1, k, with the initial values w(i)
j , j = 0, k − 1.

Consequently, instead of solving system (1.15), we are going to solve the following
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equations

w(i)
n+k = Sw(i)

n + Ti, n ∈N0 (1.17)

where, for i = 1, k and j = 0, k − 1, w(i)
j are positive real numbers.

Equations (1.17) yield

w(i)
k = Sw(i)

0 + Ti,

w(i)
k+1 = Sw(i)

1 + Ti,

...

w(i)
2k−1 = Sw(i)

k−1 + Ti,

w(i)
2k = Sw(i)

k + Ti = S
(
Sw(i)

0 + Ti

)
+ Ti = S2w(i)

0 + STi + Ti,

w(i)
2k+1 = Sw(i)

k+1 + Ti = S
(
Sw(i)

1 + Ti

)
+ Ti = S2w(i)

1 + STi + Ti,

...

w(i)
3k−1 = Sw(i)

2k−1 + Ti = S
(
Sw(i)

k−1 + Ti

)
+ Ti = S2w(i)

k−1 + STi + Ti,

w(i)
3k = Sw(i)

2k + Ti = S
(
S2w(i)

0 + STi + Ti

)
+ Ti = S3w(i)

0 + S2Ti

+ STi + Ti,

w(i)
3k+1 = Sw(i)

2k+1 + Ti = S
(
S2w(i)

1 + STi + Ti

)
+ Ti = S3w(i)

1 + S2Ti

+ STi + Ti,

...

w(i)
4k−1 = Sw(i)

3k−1 + Ti = S
(
S2w(i)

k−1 + STi + Ti

)
+ Ti = S3w(i)

k−1 + S2Ti

+ STi + Ti.

The inductive argument proves, for i = 1, k, that

w(i)
kn = Snw(i)

0 +

n−1∑
t=0

StTi,

w(i)
kn+1 = Snw(i)

1 +

n−1∑
t=0

StTi,
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w(i)
kn+2 = Snw(i)

2 +

n−1∑
t=0

StTi,

...

w(i)
kn+k−1 = Snw(i)

k−1 +

n−1∑
t=0

StTi.

More precisely, for i = 1, k and j = 0, 1, . . . , k − 1, we obtain

w(i)
kn+ j = Snw(i)

j +

n−1∑
t=0

StTi.

Thus, for all n∈N0 we obtain

w(i)
kn+ j =

 w(i)
j + nTi, S = 1,

Snw(i)
j + Ti

(Sn
− 1

S − 1

)
, S , 1.

(1.18)

Now, we are going to prove by induction that relation (1.18) is true.

• A simple verification shows that relation (1.18) holds for n = 0.

•Suppose that relation (1.18) holds for n, that is

w(i)
kn+ j =

 w(i)
j + nTi, S = 1,

Snw(i)
j + Ti

(Sn
− 1

S − 1

)
, S , 1.

•We are going to prove that relation (1.18) holds for n + 1. We have

• If S , 1

w(i)
k(n+1)+ j = w(i)

kn+ j+k

= Sw(i)
kn+ j + Ti

= S
[
Snw(i)

j + Ti

(Sn
− 1

S − 1

)]
+ Ti

w(i)
k(n+1)+ j = Sn+1w(i)

j + Ti

[
S
(Sn
− 1

S − 1

)]
+ Ti.
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So

w(i)
k(n+1)+ j = Sn+1w(i)

j + Ti

[
Sn+1
− S

S − 1

]
+ Ti

= Sn+1w(i)
j + Ti

[
Sn+1
− S + S − 1
S − 1

]
w(i)

k(n+1)+ j = Sn+1w(i)
j + Ti

(
Sn+1
− 1

S − 1

)
.

• If S = 1

w(i)
k(n+1)+ j = w(i)

kn+ j+k

= Sw(i)
kn+ j + Ti

= w(i)
kn+ j + Ti

= w(i)
j + nTi + Ti

w(i)
k(n+1)+ j = w(i)

j + (n + 1)Ti.

Thus,

w(i)
k(n+1)+ j =


w(i)

j + (n + 1) Ti, S = 1,

Sn+1w(i)
j + Ti

(
Sn+1
− 1

S − 1

)
, S , 1.

(1.19)

1.2.2 Main results

In this part, we are going to study the solvability of system (1.14) by considering changes

of variables which transform it to the system of k−linear difference equations (1.15).

Form of solution

Here, we show that the difference equations system (1.14) is practically solvable, and

we follow the analysis of each equation of this system. Throughout the paper we will
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Form of solution

also use the following standard convention:

k−1∏
j=k

a j = 1.

By using the changes of variables

w(i)
n = y(i)

n

(
y(i)

n−k

)pi
, i = 1, k, n ∈N0, (1.20)

system (1.14) is then converted into the following form

w(i)
n+1 = aiw

(i+1)
n + bi, i = 1, k, n ∈N0

which is the same system studied in the previous part.

For i = 1, k, relation (1.20) yield

y(i)
n = w(i)

n

(
y(i)

n−k

)−pi
, n ∈N0.

So, for i = 1, k we get

y(i)
kn = w(i)

kn

(
y(i)

kn−k

)−pi

= w(i)
kn

[
w(i)

kn−k

(
y(i)

kn−2k

)−pi
]−pi

= w(i)
kn

(
w(i)

kn−k

)−pi
(
y(i)

kn−2k

)(−pi)2

= w(i)
kn

(
w(i)

kn−k

)−pi
[
w(i)

kn−2k

(
y(i)

kn−3k

)−pi
](−pi)2

= w(i)
kn

(
w(i)

kn−k

)−pi
(
w(i)

kn−2k

)(−pi)2 (
y(i)

kn−3k

)(−pi)3

= w(i)
kn

(
w(i)

kn−k

)−pi
(
w(i)

kn−2k

)(−pi)2 [
w(i)

kn−3k

(
y(i)

kn−4k

)−pi
](−pi)3

= w(i)
kn

(
w(i)

kn−k

)−pi
(
w(i)

kn−2k

)(−pi)2 (
w(i)

kn−3k

)(−pi)3 (
y(i)

kn−4k

)(−pi)4

= w(i)
kn

(
w(i)

kn−k

)(−pi)1 (
w(i)

kn−2k

)(−pi)2

. . .
(
w(i)

kn−(t−1)k

)(−pi)t−1 (
y(i)

kn−tk

)(−pi)t

,

23



Form of solution

hence

y(i)
kn = w(i)

kn

(
w(i)

kn−k

)−pi
(
w(i)

kn−2k

)(−pi)2 (
w(i)

kn−3k

)(−pi)3

. . .
(
w(i)

kn−tk

)(−pi)t

. . .

×

(
w(i)

k

)(−pi)n−1 (
y(i)

0

)(−pi)n

= w(i)
k(n−0)

(
w(i)

k(n−1)

)−pi
(
w(i)

k(n−2)

)(−pi)2 (
w(i)

k(n−3)

)(−pi)3

. . .
(
w(i)

k(n−t)

)(−pi)t

. . .

×

(
w(i)

k(n−(n−1))

)(−pi)n−1 (
y(i)

0

)(−pi)n

.

So, we obtain

y(i)
kn =

 n−1∏
t=0

(
w(i)

k(n−t)

)(−pi)t
 (y(i)

0

)(−pi)n

, n ∈N0. (1.21)

By the same argument

y(i)
kn+1 = w(i)

kn+1

(
y(i)

kn+1−k

)−pi

= w(i)
kn+1

[
w(i)

kn+1−k

(
y(i)

kn+1−2k

)−pi
]−pi

= w(i)
kn+1

(
w(i)

kn+1−k

)−pi
(
y(i)

kn+1−2k

)(−pi)2

= w(i)
kn+1

(
w(i)

kn+1−k

)−pi
[
w(i)

kn+1−2k

(
y(i)

kn+1−3k

)−pi
](−pi)2

= w(i)
kn+1

(
w(i)

kn+1−k

)−pi
(
w(i)

kn+1−2k

)(−pi)2 (
y(i)

kn+1−3k

)(−pi)3

= w(i)
kn+1

(
w(i)

kn+1−k

)−pi
(
w(i)

kn+1−2k

)(−pi)2 [
w(i)

kn+1−3k

(
y(i)

kn+1−4k

)−pi
](−pi)3

= w(i)
kn+1

(
w(i)

kn+1−k

)−pi
(
w(i)

kn+1−2k

)(−pi)2 (
w(i)

kn+1−3k

)(−pi)3 (
y(i)

kn+1−4k

)(−pi)4

= w(i)
kn+1

(
w(i)

kn+1−k

)−pi
(
w(i)

kn+1−2k

)(−pi)2 (
w(i)

kn+1−3k

)(−pi)3

. . .

×

(
w(i)

kn+1−(t−1)k

)(−pi)t−1 (
y(i)

kn+1−tk

)(−pi)t

= w(i)
kn+1

(
w(i)

kn+1−k

)−pi
(
w(i)

kn+1−2k

)(−pi)2 (
w(i)

kn+1−3k

)(−pi)3

. . .

×

(
w(i)

kn+1−tk

)(−pi)t

. . .
(
w(i)

k+1

)(−pi)n−1 (
y(i)

1

)(−pi)n

,
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Form of solution

hence

y(i)
kn+1 = w(i)

k(n−0)+1

(
w(i)

k(n−1)+1

)−pi
(
w(i)

k(n−2)+1

)(−pi)2 (
w(i)

k(n−3)+1

)(−pi)3

×

(
w(i)

k(n−t)+1

)(−pi)t

. . .
(
w(i)

k(n−(n−1))+1

)(−pi)n−1 (
y(i)

1

)(−pi)n

.

So, we get

y(i)
kn+1 =

 n−1∏
t=0

(
w(i)

k(n−t)+1

)(−pi)t
 (y(i)

1

)(−pi)n

, n ∈N0. (1.22)

Likewise

y(i)
kn+2 = w(i)

kn+2

(
y(i)

kn+2−k

)−pi

= w(i)
kn+2

[
w(i)

kn+2−k

(
y(i)

kn+2−2k

)−pi
]−pi

= w(i)
kn+2

(
w(i)

kn+2−k

)−pi
(
y(i)

kn+2−2k

)(−pi)2

= w(i)
kn+2

(
w(i)

kn+2−k

)−pi
[
w(i)

kn+2−2k

(
y(i)

kn+2−3k

)−pi
](−pi)2

= w(i)
kn+2

(
w(i)

kn+2−k

)−pi
(
w(i)

kn+2−2k

)(−pi)2 [
w(i)

kn+2−3k

(
y(i)

kn+2−4k

)−pi
](−pi)3

= w(i)
kn+2

(
w(i)

kn+2−k

)−pi
(
w(i)

kn+2−2k

)(−pi)2 (
w(i)

kn+2−3k

)(−pi)3 (
y(i)

kn+2−4k

)(−pi)4

= w(i)
kn+2

(
w(i)

kn+2−k

)−pi
(
w(i)

kn+2−2k

)(−pi)2 (
w(i)

kn+2−3k

)(−pi)3

. . .

×

(
w(i)

kn+2−(t−1)k

)(−pi)t−1 (
y(i)

kn+2−tk

)(−pi)t

= w(i)
kn+2

(
w(i)

kn+2−k

)−pi
(
w(i)

kn+2−2k

)(−pi)2 (
w(i)

kn+2−3k

)(−pi)3

× . . .
(
w(i)

kn+2−tk

)(−pi)t

. . .
(
w(i)

k+2

)(−pi)n−1 (
y(i)

2

)(−pi)n

y(i)
kn+2 = w(i)

k(n−0)+2

(
w(i)

k(n−1)+2

)−pi
(
w(i)

k(n−2)+2

)(−pi)2 (
w(i)

k(n−3)+2

)(−pi)3

. . .

×

(
w(i)

k(n−t)+2

)(−pi)t

. . .
(
w(i)

k(n−(n−1))+2

)(−pi)n−1 (
y(i)

2

)(−pi)n

.

So, we get

y(i)
kn+2 =

 n−1∏
t=0

(
w(i)

k(n−t)+2

)(−pi)t
 (y(i)

2

)(−pi)n

, n ∈N0. (1.23)
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By the same argument

y(i)
kn+k−1 = w(i)

kn+k−1

(
y(i)

kn+k−1−k

)−pi

= w(i)
kn+k−1

[
w(i)

kn+k−1−k

(
y(i)

kn+k−1−2k

)−pi
]−pi

y(i)
kn+k−1 = w(i)

kn+k−1

(
w(i)

kn+k−1−k

)−pi
(
y(i)

kn+k−1−2k

)(−pi)2

.

Hence

y(i)
kn+k−1 = w(i)

kn+k−1

(
w(i)

kn+k−1−k

)−pi
[
w(i)

kn+k−1−2k

(
y(i)

kn+k−1−3k

)−pi
](−pi)2

= w(i)
kn+k−1

(
w(i)

kn+k−1−k

)−pi
(
w(i)

kn+k−1−2k

)(−pi)2

×

[
w(i)

kn+k−1−3k

(
y(i)

kn+k−1−4k

)−pi
](−pi)3

= w(i)
kn+k−1

(
w(i)

kn+k−1−k

)−pi
(
w(i)

kn+k−1−2k

)(−pi)2 (
w(i)

kn+k−1−3k

)(−pi)3

×

(
y(i)

kn+k−1−4k

)(−pi)4

= w(i)
kn+k−1

(
w(i)

kn+k−1−k

)−pi
(
w(i)

kn+k−1−2k

)(−pi)2 (
w(i)

kn+k−1−3k

)(−pi)3

× . . .
(
w(i)

kn+k−1−(t−1)k

)(−pi)t−1 (
y(i)

kn+k−1−tk

)(−pi)t

= w(i)
kn+k−1

(
w(i)

kn+k−1−k

)−pi
(
w(i)

kn+k−1−2k

)(−pi)2 (
w(i)

kn+k−1−3k

)(−pi)3

× . . .
(
w(i)

kn+k−1−tk

)(−pi)t

. . .
(
w(i)

2k−1

)(−pi)n−1 (
y(i)

k−1

)(−pi)n

y(i)
kn+k−1 = w(i)

k(n−0)+k−1

(
w(i)

k(n−1)+k−1

)−pi
(
w(i)

k(n−2)+k−1

)(−pi)2 (
w(i)

k(n−3)+k−1

)(−pi)3

× . . .
(
w(i)

k(n−t)+k−1

)(−pi)t

. . .
(
w(i)

k(n−(n−1))+k−1

)(−pi)n−1 (
y(i)

k−1

)(−pi)n

.

So, we get

y(i)
kn+k−1 =

 n−1∏
t=0

(
w(i)

k(n−t)+k−1

)(−pi)t
 (y(i)

k−1

)(−pi)n

, n ∈N0. (1.24)

From (1.21), (1.22), (1.23) and (1.24), we can deduce that for i = 1, k and j = 0, k − 1, we
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Form of solution

obtain

y(i)
kn+ j =

 n−1∏
t=0

(
w(i)

k(n−t)+ j

)(−pi)t
 (y(i)

j

)(−pi)n

, n ∈N0. (1.25)

Now, we are going to prove by induction that relation (1.25) is true.

•A simple verification shows that relation (1.25) holds for n = 0.

• Assume that relation (1.25) holds for n, that is

y(i)
kn+ j =

 n−1∏
t=0

(
w(i)

k(n−t)+ j

)(−pi)t
 (y(i)

j

)(−pi)n

.

•We are going to prove that relation (1.25) holds for n + 1. We get

y(i)
k(n+1)+ j = w(i)

k(n+1)+ j

(
y(i)

k(n+1)+ j−k

)−pi

= w(i)
k(n+1)+ j

[
w(i)

k(n+1)+ j−k

(
y(i)

k(n+1)+ j−2k

)−pi
]−pi

= w(i)
k(n+1)+ j

(
w(i)

k(n+1)+ j−k

)−pi
(
y(i)

k(n+1)+ j−2k

)(−pi)2

= w(i)
k(n+1)+ j

(
w(i)

k(n+1)+ j−k

)−pi
[
w(i)

k(n+1)+ j−2k

(
y(i)

k(n+1)+ j−3k

)−pi
](−pi)2

= w(i)
k(n+1)+ j

(
w(i)

k(n+1)+ j−k

)−pi
(
w(i)

k(n+1)+ j−2k

)(−pi)2

×

[
w(i)

k(n+1)+ j−3k

(
y(i)

k(n+1)+ j−4k

)−pi
](−pi)3

= w(i)
k(n+1)+ j

(
w(i)

k(n+1)+ j−k

)−pi
(
w(i)

k(n+1)+ j−2k

)(−pi)2 (
w(i)

k(n+1)+ j−3k

)(−pi)3

×

(
y(i)

k(n+1)+ j−4k

)(−pi)4

= w(i)
k(n+1)+ j

(
w(i)

k(n+1)+ j−k

)−pi
(
w(i)

k(n+1)+ j−2k

)(−pi)2 (
w(i)

k(n+1)+ j−3k

)(−pi)3

× . . .
(
w(i)

k(n+1)+ j−(t−1)k

)(−pi)t−1 (
y(i)

k(n+1)+ j−tk

)(−pi)t

y(i)
k(n+1)+ j = w(i)

k(n+1)+ j

(
w(i)

k(n+1)+ j−k

)−pi
(
w(i)

k(n+1)+ j−2k

)(−pi)2 (
w(i)

k(n+1)+ j−3k

)(−pi)3

× . . .
(
w(i)

k(n+1)+ j−tk

)(−pi)t

. . .
(
w(i)

k+ j

)(−pi)n (
y(i)

j

)(−pi)n+1

,
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hence

y(i)
k(n+1)+ j = w(i)

k(n+1−0)+ j

(
w(i)

k(n+1−1)+ j

)−pi
(
w(i)

k(n+1−2)+ j

)(−pi)2 (
w(i)

k(n+1−3)+ j

)(−pi)3

× . . .
(
w(i)

k(n+1−t)+ j

)(−pi)t

. . .
(
w(i)

k(n+1−n)+ j

)(−pi)n (
y(i)

j

)(−pi)n+1

.

So,

y(i)
k(n+1)+ j =

 n∏
t=0

(
w(i)

k(n+1−t)+ j

)(−pi)t
 (y(i)

j

)(−pi)n+1

.

The results below provide a precise formula for the solution of system (1.14).

Theorem 1.2.1 Suppose {y(i)
n }n≥−k represents a well defined solution of system (1.14). Then,

for i = 1, k, j = 0, k − 1 and n ∈N0, we have

• If S , 1

y(i)
kn+ j =

 n−1∏
t=0

(
Sn−ty(i)

j

(
y(i)

j−k

)pi
+ Ti

(
Sn−t
− 1

S − 1

))(−pi)t (y(i)
j

)(−pi)n

.

• If S = 1

y(i)
kn+ j =

 n−1∏
t=0

(
y(i)

j

(
y(i)

j−k

)pi
+ (n − t)Ti

)(−pi)t
 (y(i)

j

)(−pi)n

.

Asymptotic behavior

Here, we are going to study the asymptotic behavior of the equilibrium point of system

(1.14).

The following lemma gives the equilibrium of system (1.14).
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Asymptotic behavior

Lemma 1.2.2

If
(
y(1), y(2), . . . , y(k−1), y(k)

)
is an equilibrium point of system (1.14), then it is given by[ T1

1 − S

] 1
p1+1

,
[ T2

1 − S

] 1
p2+1

, . . . ,
[ Tk−1

1 − S

] 1
pk−1+1

,
[ Tk

1 − S

] 1
pk+1

 ,
with S =

k∏
l=1

al < 1.

Proof. Let
(
y(1), y(2), . . . , y(k−1), y(k)

)
be an equilibrium point of system (1.14). So, from

system (1.14) and for i = 1, k we have

(
y(i)

)pi+1
= ai

(
y(i+1)

)pi+1+1
+ bi

= ai

[
ai+1

(
y(i+2)

)pi+2+1
+ bi+1

]
+ bi

= aiai+1

(
y(i+2)

)pi+2+1
+ aibi+1 + bi

= aiai+1

[
ai+2

(
y(i+3)

)pi+3+1
+ bi+2

]
+ aibi+1 + bi

= aiai+1ai+2

(
y(i+3)

)pi+3+1
+ aiai+1bi+2 + aibi+1 + bi

= aiai+1ai+2ai+3

(
y(i+4)

)pi+4+1
+ aiai+1ai+2bi+3

+ aiai+1bi+2 + aibi+1 + bi

= aiai+1ai+2ai+3ai+4

(
y(i+5)

)pi+5+1
+ aiai+1ai+2ai+3bi+4

+ aiai+1ai+2bi+3 + aiai+1bi+2 + aibi+1 + bi

...

= aiai+1 . . . ai+k−1

(
y(i+k)

)pi+k+1
+ aiai+1 . . . ai+k−2bi+k−1

+ aiai+1 . . . ai+k−3bi+k−2 + . . . + aibi+1 + bi(
y(i)

)pi+1
= aiai+1 . . . ai+k−1

(
y(i)

)pi+1
+ aiai+1 . . . ai+k−2bi+k−1

+ aiai+1 . . . ai+k−3bi+k−2 + . . . + aibi+1 + bi.
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Hence

(
y(i)

)pi+1
= a1a2 . . . ak

(
y(i)

)pi+1
+ aiai+1 . . . ai+k−2bi+k−1

+ aiai+1 . . . ai+k−3bi+k−2 + . . . + aibi+1 + bi

=

 k∏
l=1

al

 (y(i)
)pi+1

+

 k∑
r=2

i+r−2∏
l=i

al

 bi+r−1

 + bi.

So (
y(i)

)pi+1
1 −

k∏
l=1

al

 =

 k∑
r=2

i+r−2∏
l=i

al

 bi+r−1

 + bi,

consequently

y(i) =



 k∑
r=2

i+r−2∏
l=i

al

 bi+r−1

 + bi

1 −
k∏

l=1

al



1
pi + 1

.

Using notation (1.16), we get

y(i) =
[ Ti

1 − S

] 1
pi+1

, i = 1, k.

Note that the condition S < 1 implies that y(i) is positive whatever the values of pi,

i = 1, k.

Theorem 1.2.2 Consider system (1.14). Assume, for i = 1, k, that S < 1 and | pi |< 1. Then,

the equilibrium point of system (1.14) is globally attractive.

Proof. Suppose, for i = 1, k, that S < 1 and | pi |< 1, so we obtain

lim
n→+∞

y(i)
kn+ j = lim

n→+∞


 n−1∏

t=0

(
Sn−ty(i)

j

(
y(i)

j−k

)pi
+ Ti

(
Sn−t
− 1

S − 1

))(−pi)t (y(i)
j

)(−pi)n
 .
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Hence

lim
n→+∞

y(i)
kn+ j =

∏
t≥0

[
Ti

(
−1

S − 1

)](−pi)t

=
∏
t≥0

[ Ti

1 − S

](−pi)t

lim
n→+∞

y(i)
kn+ j =

[ Ti

1 − S

]∑t≥0(−pi)t

.

Moreover, we have

∑
t≥0

(
−pi

)t
= lim

m→+∞

m∑
t=0

(
−pi

)t

= lim
m→+∞

(
−pi

)m+1
− 1

−pi − 1

=
−1
−pi − 1∑

t≥0

(
−pi

)t
=

1
pi + 1

.

So

lim
n→+∞

y(i)
kn+ j =

[ Ti

1 − S

] 1
pi+1

= y(i).

From where the equilibrium is globally attractive.

1.2.3 Numerical examples

Example 1.2.1 Let k = 2, a1 = 2, a2 =
1
2
, b1 = 2, b2 = 3, p1 =

1
2

and p2 =
1
3
, and the initial

values

y(1)
−2 = 4, y(1)

−1 = 4, y(1)
0 = 3, y(2)

−2 = 8, y(2)
−1 = 8 and y(2)

0 = 6 (1.26)

in system (1.14), then we obtain that S = 1, and for i = 1, 2, we have | pi |< 1. So we obtain the

following system

31



Numerical examples

y(1)
n+1 =

2y(2)
n

(
y(2)

n−2

) 1
3

+ 2(
y(1)

n−1

) 1
2

, y(2)
n+1 =

1
2 y(1)

n

(
y(1)

n−2

) 1
2

+ 3(
y(2)

n−1

) 1
3

, n ∈N0 . (1.27)

The solution of system (1.27) is given by

y(1)
2n =

 n−1∏
t=0

(6 + 8 (n − t))(−
1
2 )t


× (3)(−

1
2 )n

,

y(1)
2n+1 =

 n−1∏
t=0

(26 + 8 (n − t))(−
1
2 )t


× (13)(−

1
2 )n

,

y(2)
2n =

 n−1∏
t=0

(12 + 4 (n − t))(−
1
3 )t


× (6)(−

1
3 )n

,

y(2)
2n+1 =

 n−1∏
t=0

(6 + 4 (n − t))(−
1
3 )t


× (3)(−

1
3 )n

,

for all n ≥ 0.

The behavior of the solution of system (1.27) is represented in figure (1.1).

Example 1.2.2 Let k = 2, a1 = 1, a2 =
2
3
, b1 = 2, b2 = 3, p1 =

1
2

and p2 =
1
3
, and the initial

values

y(1)
−2 = 4, y(1)

−1 = 4, y(1)
0 = 3, y(2)

−2 = 8, y(2)
−1 = 8 and y(2)

0 = 6 (1.28)

in system (1.14), then we obtain that S < 1, and for i = 1, 2, we have | pi |< 1. So we obtain the

following system

y(1)
n+1 =

y(2)
n

(
y(2)

n−2

) 1
3

+ 2(
y(1)

n−1

) 1
2

, y(2)
n+1 =

2
3 y(1)

n

(
y(1)

n−2

) 1
2

+ 3(
y(2)

n−1

) 1
3

, n ∈N0 . (1.29)
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Figure 1.1: Plot of system (1.27) using the initial values (1.26).

The solution of system (1.29) is given by

y(1)
2n =

 n−1∏
t=0

(
6
(2
3

)n−t

+ 15
(
1 −

(2
3

)n−t))(− 1
2 )t

× (3)(−
1
2 )n

,

y(1)
2n+1 =

 n−1∏
t=0

(
14

(2
3

)n−t

+ 15
(
1 −

(2
3

)n−t))(− 1
2 )t

× (7)(−
1
2 )n

,

y(2)
2n =

 n−1∏
t=0

(
12

(2
3

)n−t

+ 13
(
1 −

(2
3

)n−t))(− 1
3 )t

× (6)(−
1
3 )n

,
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y(2)
2n+1 =

 n−1∏
t=0

(
7
(2
3

)n−t

+ 13
(
1 −

(2
3

)n−t))(− 1
3 )t

×

(7
2

)(− 1
3 )n

,

for all n ≥ 0.

The solution of system (1.29) converges to the equilibrium point (y(1), y(2)) =
(
15

2
3 , 13

3
4

)
(see

Figure (1.2), Theorem (1.2.2)).

Figure 1.2: Plot of system (1.29) using the initial values (1.28).
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Example 1.2.3 Let k = 6, ai = bi =
1
2

, for i = 1, 2, . . . , 6 and p1 =
1
2
, p2 =

1
2
, p3 =

3
5
, p4 =

9
10
,

p5 =
−7
10

and p6 =
4
5

in system (1.14), then we obtain that S < 1, and for i = 1, 2, . . . 6, we have | pi |< 1. So we

obtain the following system

y(1)
n+1 =

1
2 y(2)

n

(
y(2)

n−2

) 1
2

+ 1
2(

y(1)
n−1

) 1
2

y(2)
n+1 =

1
2 y(3)

n

(
y(3)

n−2

) 3
5

+ 1
2(

y(2)
n−1

) 1
2

y(3)
n+1 =

1
2 y(4)

n

(
y(4)

n−2

) 9
10

+ 1
2(

y(3)
n−1

) 3
5

y(4)
n+1 =

1
2 y(5)

n

(
y(5)

n−2

)−7
10

+ 1
2(

y(4)
n−1

) 9
10

y(5)
n+1 =

1
2 y(6)

n

(
y(6)

n−2

) 4
5

+ 1
2(

y(5)
n−1

)−7
10

y(6)
n+1 =

1
2 y(1)

n

(
y(1)

n−2

) 1
2

+ 1
2(

y(6)
n−1

) 4
5

, n ∈N0, (1.30)

with the following initial values

y(1)
−2 = 1, y(1)

−1 = 2, y(1)
0 = 3, y(2)

−2 = 4, y(2)
−1 = 5, y(2)

0 = 6, y(3)
−2 = 2, y(3)

−1 = 3, y(3)
0 = 1,

y(4)
−2 = 2, y(4)

−1 = 2, y(4)
0 = 3, y(5)

−2 = 3, y(5)
−1 = 2, y(5)

0 = 2, y(6)
−2 = 4, y(6)

−1 = 2 and y(6)
0 = 3,

(1.31)

the solution of system (1.30) converges to the equilibrium point (y(1), y(2), y(3), y(4), y(5), y(6)) =

(1, 1, 1, 1, 1, 1) (see Figure (1.3), Theorem (1.2.2)).
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Figure 1.3: Plot of system (1.30) using the initial values (1.31).

Example 1.2.4 Let k = 4, ai = bi =
1
2

and pi = 1, for i = 1, 2, 3, 4, and the initial values

y(1)
−2 = 1, y(1)

−1 = 2, y(1)
0 = 3, y(2)

−2 = 4, y(2)
−1 = 5, y(2)

0 = 6,

y(3)
−2 = 2, y(3)

−1 = 3, y(3)
0 = 1, y(4)

−2 = 2, y(4)
−1 = 2 and y(4)

0 = 3
(1.32)

in system (1.14), then we obtain that S < 1, and for i = 1, 2, 3, 4, we have | pi |= 1. So we obtain

the following system

y(1)
n+1 =

1
2 y(2)

n y(2)
n−2 + 1

2

y(1)
n−1

y(2)
n+1 =

1
2 y(3)

n y(3)
n−2 + 1

2

y(2)
n−1

y(3)
n+1 =

1
2 y(4)

n y(4)
n−2 + 1

2

y(3)
n−1

y(4)
n+1 =

1
2 y(1)

n y(1)
n−2 + 1

2

y(4)
n−1

, n ∈N0. (1.33)
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The equilibrium (y(1), y(2), y(3), y(4)) is not globally attractive (see Figure (1.4), Theorem

(1.2.2)).

Figure 1.4: Plot of system (1.33) using the initial values (1.32).

Example 1.2.5 Let k = 4, ai = bi =
1
2

, for i = 1, 2, 3, 4, and p1 =
3
2
, p2 =

−9
5
, p3 =

31
10
,

p4 =
51
10
, and the initial values

y(1)
−2 = 1, y(1)

−1 = 2, y(1)
0 = 3, y(2)

−2 = 4, y(2)
−1 = 5, y(2)

0 = 6,

y(3)
−2 = 2, y(3)

−1 = 3, y(3)
0 = 1, y(4)

−2 = 2, y(4)
−1 = 2 and y(4)

0 = 3
(1.34)

in system (1.14), then we obtain that S < 1, and for i = 1, 2, 3, 4, we have | pi |> 1. So we obtain

the following system
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y(1)
n+1 =

1
2 y(2)

n

(
y(2)

n−2

)−9
5

+ 1
2(

y(1)
n−1

) 3
2

y(2)
n+1 =

1
2 y(3)

n

(
y(3)

n−2

) 31
10

+ 1
2(

y(2)
n−1

)−9
10

y(3)
n+1 =

1
2 y(4)

n

(
y(4)

n−2

) 51
10

+ 1
2(

y(3)
n−1

) 31
10

y(4)
n+1 =

1
2 y(5)

n

(
y(1)

n−2

) 3
2

+ 1
2(

y(4)
n−1

) 51
10

, n ∈N0. (1.35)

The equilibrium (y(1), y(2), y(3), y(4)) is not globally attractive (see Figure (1.5), Theorem (1.2.2)).

Figure 1.5: Plot of system (1.35) using the initial values (1.34).
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Chapter 2
On a symmetric system of higher-order

difference equations

2.1 Introduction

Difference equations and systems of difference equations are practically utilized across

diverse fields such as engineering, biology, economics, medicine, computer science and

more. Some particularly intriguing instances within this realm are symmetric systems

and close-to-symmetric difference equations systems. This concept is exemplified by

works like [1, 12, 15, 16, 19, 25, 27, 29, 32, 57, 59, 61, 62].

This chapter is based on our previous publication [5], in which we addressed a study

about a symmetric difference equations system, analyzed the properties and examined

the solutions’ behavior of this system.

The problem presented in [20] is as follows:

Open problem. Does the given difference equation have a solution

xn+1 =
βxn−1

β + xn
, x−1, x0 ≥ 0, β > 0, n ∈N0, (2.1)
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such that lim
n→∞

xn = 0.

In [53], Stević provided a positive response to the open problem in the specific

case where β equals 1. In this case, he examined the convergence, the periodicity,

the monotonicity, and determined the limit of the solution for the equation presented

below

xn+1 =
xn−1

1 + xn
, x−1, x0 ≥ 0, n ∈N0, (2.2)

in specific cases and under special conditions.

In the same paper, the author presented another form of the solution formula, each

term in the sequence was written in function of some previous terms. He combined the

above-mentioned properties into a very important theorem, which is the same theorem

that we are going to generalize in this chapter.

Moreover, in [53], Stević generalized the previous results to the following difference

equation

xn+1 =
xn−1

1(xn)
, x−1, x0 ≥ 0, n ∈N0, (2.3)

where g is a function that satisfies these conditions

(a) 1 ∈ C1(R+),

(b) 1(0) = 1,

(c) 1′(x) > 0, for x ∈ R+,

with 1 (x) > 1 for all x ∈ R+ \ {0}, and equation (2.3) has only non-negative equilibrium

point which is x = 0.

Stević gave the solution to equation (2.3) in these two cases:

Case 1. x−1 = x0 = 0,

in that case xn = 0, for all n ∈N−1.

Case 2. (x−1 = 0 and x0 , 0) or (x−1 , 0 and x0 = 0),
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in this case equation (2.3) has a 2−periodic solution (x−1, x0, x−1, x0, x−1, . . .) .

Now, if x−1, x0 > 0, the solution of equation (2.3) is positive, and here, Stević didn’t give

an explicit formula to the solution, but he just studied some properties of equation (2.3)

in some theorems.

So, we can conclude that the author in [53] answered to the open problem posed in

[20] only in these two cases:

Case 1. β = 1.

Case 2. At least one of the initial values is equal to zero.

Additionally, in [51] the author studied the following higher-order difference equation

xn+1 =
xn−(2k+1)

1 + xn−k
, n, k ∈N0. (2.4)

Inspired by the above-mentioned studies, we are going to extend equations (2.2) and

(2.4) to the following symmetric system of higher-order difference equations

xn+1 =
xn−(2k+1)

1 + yn−k
, yn+1 =

yn−(2k+1)

1 + xn−k
, n, k ∈N0, (2.5)

the initial values x−(2k+1), x−2k, . . . , x0, y−(2k+1), y−2k, . . . , y0 are non-negative real numbers.

2.2 An expansion of the principal theorem outlined in

[52]

In this section, we are going to introduce a significant theorem that is going to aid us

in presenting outcomes related to system (2.6).

xn+1 =
xn−1

1 + yn
, yn+1 =

yn−1

1 + xn
, n ∈N0. (2.6)
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Theorem 2.2.1 Let’s consider system (2.6). Suppose that the initial values x−1, x0, y−1 and y0

satisfy this condition

min
{
x−1, x0, y−1, y0

}
> 0, (2.7)

so, for any solution
{(

xn, yn
)}

n≥−1 to system(2.6) that satisfies condition (2.7) the following

assertions are valid.

(a) The subsequences
{(

x2n, y2n
)}

n≥0 and
{(

x2n+1, y2n+1
)}

n≥−1 decrease and there are non-

negative constants a1, a2, b1, b2, such that

lim
n→∞

(
x2n, y2n

)
= (a1, a2) and lim

n→∞

(
x2n+1, y2n+1

)
= (b1, b2) . (2.8)

(b) If a1, a2, b1 and b2 represent the numbers specified in (2.8), so the sequence described as(
x2n−1, y2n−1

)
= (b1, b2)(

x2n, y2n
)

= (a1, a2)
, n ∈N0

constitutes a two-periodic solution of system (2.6).

(c) The following relation

a1b2 = 0 and a2b1 = 0,

is valid.

(d) If there is n0 ∈N0, such that

xn ≥ yn+1 ≥ xn+2, and yn ≥ xn+1 ≥ yn+2, for n ≥ n0,

then

lim
n→∞

(
xn, yn

)
= (0, 0) .

(e) The following formulas

x2n = x0

1 − y1

n∑
j=1

j−1∏
i=1

1
1 + x2i

j∏
k=1

1
1 + y2k−1

 ,n ≥ 0; (2.9)
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y2n = y0

1 − x1

n∑
j=1

j−1∏
i=1

1
1 + y2i

j∏
k=1

1
1 + x2k−1

 ,n ≥ 0; (2.10)

x2n+1 = x−1

1 − y0

1 + y0

n∑
j=0

j∏
i=1

1
1 + x2i−1

j∏
k=1

1
1 + y2k

 ,n ≥ −1; (2.11)

y2n+1 = y−1

1 − x0

1 + x0

n∑
j=0

j∏
i=1

1
1 + y2i−1

j∏
k=1

1
1 + x2k

 ,n ≥ −1. (2.12)

are valid.

(
f
)

If

x0 + x2
0 ≤ y−1 and y0 + y2

0 ≤ x−1, (2.13)

then

x2n → a1 = 0, y2n → a2 = 0, x2n+1 → b1 , 0 and y2n+1 → b2 , 0,

as n tends to the infinity.

(
1
)

Suppose that a solution of the system (2.6) converges to zero, then there exists m0 in the

set of natural numbersN0, such that

yn+2 < xn+1 and xn+2 < yn+1, for all n ∈Nm0 .

Proof.

(a) From system (2.6), we have

xn+1 < xn−1 and yn+1 < yn−1, for n ∈N0,

so,
{(

x2n, y2n
)}

n≥0 and
{(

x2n+1, y2n+1
)}

n≥−1 decrease.

Since the sequences decrease and comprise positive terms, they converge(a decreasing

sequence that is lower bounded is convergent). Hence, there are a1, a2, b1, b2≥ 0,
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such that

lim
n→∞

(
x2n, y2n

)
= (a1, a2) and lim

n→∞

(
x2n+1, y2n+1

)
= (b1, b2) .

(b) − (c) Suppose that
{(

xn, yn
)}

n≥−1 represents a two-periodic solution to system (2.6). Thus,

from (2.8) and system (2.6) we get

(
a1 =

a1

1 + b2
and a2 =

a2

1 + b1

)
or

(
b1 =

b1

1 + a2
and b2 =

b2

1 + a1

)
,

in other words

(a1 + a1b2 = a1 and a2 + a2b1 = a2) or (b1 + b1a2 = b1 and b2 + b2a1 = b2) ,

and therefore, a1b2 = 0 and a2b1 = 0 are simultaneously checked.

(d) Suppose that there is an n0 ∈N0, such that

xn ≥ yn+1 ≥ xn+2, and yn ≥ xn+1 ≥ yn+2, for all n ≥ n0,

using (2.8) and by passing to the limit as n approaches infinity, we obtain

a1 ≥ b2 ≥ a1 ≥ b2 ≥ . . . ≥ 0, and a2 ≥ b1 ≥ a2 ≥ b1 ≥ . . . ≥ 0, (2.14)

or

b1 ≥ a2 ≥ b1 ≥ a2 ≥ . . . ≥ 0, and b2 ≥ a1 ≥ b2 ≥ a1 ≥ . . . ≥ 0. (2.15)

By combining (2.14), (2.15)with the outcome from theorem (2.2.1) (c), we establish

that

a1 = a2 = b1 = b2 = 0,
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which consequently implies

lim
n→∞

(
xn, yn

)
= (0, 0) .

It’s worth noting that the outcome derived in the theorem (2.2.1) (c) is similar to

(a1 = 0 and a2 = 0) or (a1 = 0 and b1 = 0) or (a2 = 0 and b2 = 0) or (b1 = 0 and b2 = 0).

(e) System (2.6) yields

x1 =
x−1

1 + y0
= x−1 −

x−1y0

1 + y0
= x−1

[
1 −

y0

1 + y0

]
x3 =

x1

1 + y2
= x1 −

x1y2

1 + y2

= x−1

[
1 −

y0

1 + y0

]
−

x−1

1 + y0

y0

1 + x1

1
1 + y2

x3 = x−1

[
1 −

y0

1 + y0

(
1 +

1
1 + x1

1
1 + y2

)]
x5 =

x3

1 + y4
= x3 −

x3y4

1 + y4

= x−1

[
1 −

y0

1 + y0

(
1 +

1
1 + x1

1
1 + y2

)]
−

x1

1 + y2

y2

1 + x3

1
1 + y4

= x−1

[
1 −

y0

1 + y0

(
1 +

1
1 + x1

1
1 + y2

)]
−

x−1

1 + y0

1
1 + y2

y0

1 + x1

1
1 + x3

1
1 + y4

,

so

x5 = x−1

[
1 −

y0

1 + y0

(
1 +

1
1 + x1

1
1 + y2

+
1

1 + x1

1
1 + y2

1
1 + x3

1
1 + y4

)]
.

By induction, we can get

x2n+1 = x−1

1 − y0

1 + y0

n∑
j=0

j∏
i=1

1
1 + x2i−1

j∏
k=1

1
1 + y2k

 ,n ≥ −1.

Likewise, from system (2.6), we obtain
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x2 =
x0

1 + y1
= x0 −

x0y1

1 + y1
= x0

[
1 −

y1

1 + y1

]
x4 =

x2

1 + y3
= x2 −

x2y3

1 + y3

= x0

[
1 −

y1

1 + y1

]
−

x0

1 + y1

y1

1 + x2

1
1 + y3

x4 = x0

[
1 − y1

(
1

1 + y1
+

1
1 + y1

1
1 + x2

1
1 + y3

)]
x6 =

x4

1 + y5
= x4 −

x4y5

1 + y5

= x0

[
1 − y1

(
1

1 + y1
+

1
1 + y1

1
1 + x2

1
1 + y3

)]
−

x2

1 + y3

y3

1 + x4

1
1 + y5

= x0

[
1 − y1

(
1

1 + y1
+

1
1 + y1

1
1 + x2

1
1 + y3

)]
−

x0

1 + y1

1
1 + y3

y1

1 + x2

1
1 + x4

1
1 + y5

,

so

x6 = x0

[
1 − y1

(
1 +

1
1 + y1

+
1

1 + y1

1
1 + x2

1
1 + y3

+
1

1 + y1

1
1 + x2

1
1 + y3

1
1 + x4

1
1 + y5

)]
.

By induction, we can get

x2n = x0

1 − y1

n∑
j=1

j−1∏
i=1

1
1 + x2i

j∏
k=1

1
1 + y2k−1

 ,n ≥ 0.

Now, we are going to demonstrate the validity of relations (2.9) and (2.11).

•With a quick calculation, we confirm that relation (2.9) holds for n = 0.

• Assuming that it is verified at the order n, namely

x2n = x0

1 − y1

n∑
j=1

j−1∏
i=1

1
1 + x2i

j∏
k=1

1
1 + y2k−1

 .
•We are going to demonstrate its validity for the order (n + 1). We have
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x2n+2 =
x2n

1 + y2n+1

= x2n −
x2ny2n+1

1 + y2n+1

= x2n −
x0

1 + y1

y1

1 + x2

1
1 + y3

. . .
1

1 + x2n

1
1 + y2n+1

= x2n − x0y1

n∏
i=1

1
1 + x2i

n+1∏
k=1

1
1 + y2k−1

= x0

1 − y1

n∑
j=1

j−1∏
i=1

1
1 + x2i

j∏
k=1

1
1 + y2k−1

 − x0y1

n∏
i=1

1
1 + x2i

n+1∏
k=1

1
1 + y2k−1

x2n+2 = x0

1 − y1

 n∑
j=1

j−1∏
i=1

1
1 + x2i

j∏
k=1

1
1 + y2k−1

+

n∏
i=1

1
1 + x2i

n+1∏
k=1

1
1 + y2k−1


 .

Hence

x2n+2 = x0

1 − y1

n+1∑
j=1

j−1∏
i=1

1
1 + x2i

j∏
k=1

1
1 + y2k−1

 .
Therefore, relation (2.9) is verified at the order (n + 1), implying its validity for n ≥ 0.

Similarly, we are going to demonstrate the truth of relation (2.11).

•With a quick calculation, we confirm that relation (2.11) holds for n = −1.

• Assuming that it is verified at the order n, namely

x2n+1 = x−1

1 − y0

1 + y0

n∑
j=0

j∏
i=1

1
1 + x2i−1

j∏
k=1

1
1 + y2k

 .
•We are going to demonstrate its validity for the order (n + 1). We have

x2n+3 =
x2n+1

1 + y2n+2

= x2n+1 −
x2n+1y2n+2

1 + y2n+2

= x2n+1 −
x−1

1 + y0

y0

1 + x1

1
1 + y2

1
1 + x3

. . .
1

1 + x2n+1

1
1 + y2n+2

= x2n+1 −
x−1y0

1 + y0

n+1∏
i=1

1
1 + x2i−1

n+1∏
k=1

1
1 + y2k

= x−1

1 − y0

1 + y0

n∑
j=0

j∏
i=1

1
1 + x2i−1

j∏
k=1

1
1 + y2k

 − x−1y0

1 + y0

n+1∏
i=1

1
1 + x2i−1

n+1∏
k=1

1
1 + y2k

x2n+3 = x−1

1 − y0

1 + y0

 n∑
j=0

j∏
i=1

1
1 + x2i−1

j∏
k=1

1
1 + y2k

+

n+1∏
i=1

1
1 + x2i−1

n+1∏
k=1

1
1 + y2k


 .
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Hence

x2n+3 = x−1

1 − y0

1 + y0

n+1∑
j=0

j∏
i=1

1
1 + x2i−1

j∏
k=1

1
1 + y2k

 .
Therefore, relation (2.11) is verified at the order (n + 1), implying its validity for n ≥ −1.

The proofs for relations (2.10) and (2.12) are analogous to the previous one and will be

skipped.

(
f
)

Relation (2.13) can be rephrased as

x0 ≤ y1 and y0 ≤ x1. (2.16)

It’s important to note that

– if x0 + x2
0 ≤ y−1, then either (x2n)n≥0 or

(
y2n+1

)
n≥−1 has a non-zero limit.

– if y0 + y2
0 ≤ x−1, then either (x2n+1)n≥−1 or

(
y2n

)
n≥0 has a non-zero limit.

Effectively, if we set a1 = b2 = 0, then from relations (2.9) and (2.12), we obtain

1
y1

=

∞∑
j=1

j−1∏
i=1

1
1 + x2i

j∏
k=1

1
1 + y2k−1

,

since x2k > 0 imply that 0 <
1

1 + x2k
< 1, we can obtain

j∏
k=1

1
1 + x2k

=
1

1 + x2 j

j−1∏
k=1

1
1 + x2k

<

j−1∏
k=1

1
1 + x2k

,

hence
1
y1

=

∞∑
j=1

j−1∏
i=1

1
1 + x2i

j∏
k=1

1
1 + y2k−1

>

∞∑
j=1

j∏
k=1

1
1 + y2i−1

j∏
i=1

1
1 + x2k

=
1 + x0

x0
− 1 =

1
x0
,

so, we get
1
y1
>

1
x0
,
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therefore, y1 < x0 (contradiction with (2.16)).

If we put a2 = b1 = 0, we obtain from relations (2.10) and (2.11), that

1
x1

=

∞∑
j=1

j−1∏
i=1

1
1 + y2i

j∏
k=1

1
1 + x2k−1

,

since y2k > 0 imply that 0 <
1

1 + y2k
< 1, we can obtain

j∏
k=1

1
1 + y2k

=
1

1 + y2 j

j−1∏
k=1

1
1 + y2k

<

j−1∏
k=1

1
1 + y2k

,

hence
1
x1

=

∞∑
j=1

j−1∏
i=1

1
1 + y2i

j∏
k=1

1
1 + x2k−1

>
∞∑
j=1

j∏
i=1

1
1 + x2i−1

j∏
k=1

1
1 + y2k

=
1 + y0

y0
− 1 =

1
y0
,

so, we get
1
x1
>

1
y0
,

thus, x1 < y0 (contradiction with (2.16)).
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Now, using (2.16) and some calculations, we obtain

y3 − x2 =
y1

1 + x2
− x2

=
y1 − x2 − x2

2

1 + x2

=
1

1 + x2

[
y1 − x2 − x2

2

]
=

1
1 + x2

y1 −
x0

1 + y1
−

(
x0

1 + y1

)2
=

1
1 + x2

 y1
(
1 + y1

)2
− x0

(
1 + y1

)
− x2

0(
1 + y1

)2


=

1
1 + x2

 y1 + y3
1 + 2y2

1 − x0 − x0y1 − x2
0(

1 + y1
)2


=

1
1 + x2

 y3
1 + y2

1 − x2
0 + y1(y1 − x0) + y1 − x0(

1 + y1
)2


≥

y3
1

(1 + x2)
(
1 + y1

)2 > 0,

and

x3 − y2 =
x1

1 + y2
− y2

=
x1 − y2 − y2

2

1 + y2

=
1

1 + y2

[
x1 − y2 − y2

2

]
=

1
1 + y2

[
x1 −

y0

1 + x1
−

( y0

1 + x1

)2
]

=
1

1 + y2

x1 (1 + x1)2
− y0 (1 + x1) − y2

0

(1 + x1)2


=

1
1 + y2

x1 + x3
1 + 2x2

1 − y0 − y0x1 − y2
0

(1 + x1)2


=

1
1 + y2

x3
1 + x2

1 − y2
0 + x1(x1 − y0) + x1 − y0

(1 + x1)2


≥

x3
1(

1 + y2
)

(1 + x1)2 > 0.

(2.17)

Assuming that

y2n−1 > x2n−2 and x2n−1 > y2n−2, (2.18)

then, we have
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y2n+1 − x2n =
y2n−1

1 + x2n
− x2n

=
y2n−1 − x2n − x2

2n

1 + x2n

=
1

1 + x2n

[
y2n−1 − x2n − x2

2n

]
=

1
1 + x2n

y2n−1 −
x2n−2

1 + y2n−1
−

(
x2n−2

1 + y2n−1

)2
=

1
1 + x2n

 y2n−1
(
1 + y2n−1

)2
− x2n−2

(
1 + y2n−1

)
− x2

2n−2(
1 + y2n−1

)2


=

1
1 + x2n

 y2n−1 + y3
2n−1 + 2y2

2n−1 − x2n−2 − x2n−2y2n−1 − x2
2n−2(

1 + y2n−1
)2


=

1
1 + x2n

 y3
2n−1 + y2

2n−1 − x2
2n−2 + y2n−1(y2n−1 − x2n−2) + y2n−1 − x2n−2(

1 + y2n−1
)2


≥

y3
2n−1

(1 + x2n)
(
1 + y2n−1

)2 > 0,

and

x2n+1 − y2n =
x2n−1

1 + y2n
− y2n

=
x2n−1 − y2n − y2

2n

1 + y2n

=
1

1 + y2n

[
x2n−1 − y2n − y2

2n

]
=

1
1 + y2n

[
x2n−1 −

y2n−2

1 + x2n−1
−

( y2n−2

1 + x2n−1

)2
]

=
1

1 + y2n

x2n−1 (1 + x2n−1)2
− y2n−2 (1 + x2n−1) − y2

2n−2

(1 + x2n−1)2


=

1
1 + y2n

x2n−1 + x3
2n−1 + 2x2

2n−1 − y2n−2 − y2n−2x2n−1 − y2
2n−2

(1 + x2n−1)2


=

1
1 + y2n

x3
2n−1 + x2

2n−1 − y2
2n−2 + x2n−1(x2n−1 − y2n−2) + x2n−1 − y2n−2

(1 + x2n−1)2


≥

x3
2n−1(

1 + y2n
)

(1 + x2n−1)2 > 0.

(2.19)

From (2.17), (2.18), (2.19) and by employing the method of induction, we get

y2n−1 > x2n−2 and x2n−1 > y2n−2, for all n ≥ 2.
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From (2.18), we have

b2 = lim
n→∞

y2n−1 ≥ lim
n→∞

x2n−2 = a1, (2.20)

and

b1 = lim
n→∞

x2n−1 ≥ lim
n→∞

y2n−2 = a2. (2.21)

From (2.20), (2.21) and theorem (2.2.1) part (c), along with the initial note in the proof of

(f), we get

lim
n→∞

x2n−2 = a1 = 0, lim
n→∞

y2n−2 = a2 = 0,

and

lim
n→∞

x2n−1 = b1 , 0, lim
n→∞

y2n−1 = b2 , 0.

(
1
)

By shifting, we can see that for some m0 ∈N0

– If xm0+1 + x2
m0+1 ≤ ym0 then a1 = 0 or b1 = 0.

– If ym0+1 + y2
m0+1 ≤ xm0 then a2 = 0 or b2 = 0.

Therefore, if

lim
n→∞

(
xn, yn

)
= (0, 0) ,

then

xm0+1 + x2
m0+1 > ym0 and ym0+1 + y2

m0+1 > xm0 , m0 ∈N0.

Thus, for each n ∈Nm0 , we get

yn < xn+1 + x2
n+1 and xn < yn+1 + y2

n+1,

this is similar to

yn+2 =
yn

1 + xn+1
< xn+1 and xn+2 =

xn

1 + yn+1
< yn+1,

for all n ∈Nm0 .

The theorem’s proof is now concluded.
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Now, assuming condition (2.13) is satisfied, then by utilizing the fact that lim
n→∞

x2n = 0,

and letting n tends to infinity in (2.9), we obtain

∞∑
j=1

j−1∏
i=1

1
1 + x2i

j∏
k=1

1
1 + y2k−1

=
1
y1
. (2.22)

We can represent relation (2.12) as follows

n∑
j=1

j∏
i=1

1
1 + y2i−1

j∏
k=1

1
1 + x2k

=
(1 + x0

x0

) (
1 −

y2n+1

y−1

)
− 1. (2.23)

Then

n∑
j=1

j∏
i=1

1
1 + y2i−1

j∏
k=1

1
1 + x2k

<
n∑

j=1

j−1∏
i=1

1
1 + x2i

j∏
k=1

1
1 + y2k−1

<
∞∑
j=1

j−1∏
i=1

1
1 + x2i

j∏
k=1

1
1 + y2k−1

,

(2.24)

for every n∈N0.

From (2.22), (2.23) and (2.24), we obtain

0 <
(1 + x0

x0

) (
1 −

y2n+1

y−1

)
− 1 <

1
y1
,

so

0 < 1 −
y2n+1

y−1
−

x0

1 + x0
<

1 + x0

y−1

x0

1 + x0
,

then

0 < y−1 − y2n+1 −
y−1x0

1 + x0
< x0,

from where

0 <
y−1(1 + x0) − y−1x0

1 + x0
− y2n+1 < x0,

for n∈N0, which gives us

0 <
y−1

1 + x0
− y2n+1 < x0.
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Based on the preceding outcomes and (2.16), we get

0 ≤ y1 − x0 < y2n+1. (2.25)

Similarly, if condition (2.13) is satisfied, then by utilizing the fact that lim
n→∞

y2n = 0 and

letting n tends to infinity in (2.10), we obtain

∞∑
j=1

j−1∏
i=1

1
1 + y2i

j∏
k=1

1
1 + x2k−1

=
1
x1
. (2.26)

We can represent relation (2.11) as follows

n∑
j=1

j∏
i=1

1
1 + x2i−1

j∏
k=1

1
1 + y2k

=

(
1 + y0

y0

) (
1 −

x2n+1

x−1

)
− 1. (2.27)

Thus

n∑
j=1

j∏
i=1

1
1 + x2i−1

j∏
k=1

1
1 + y2k

<
n∑

j=1

j−1∏
i=1

1
1 + y2i

j∏
k=1

1
1 + x2k−1

<
∞∑
j=1

j−1∏
i=1

1
1 + y2i

j∏
k=1

1
1 + x2k−1

,

(2.28)

for every n∈N0.

From (2.26), (2.27) and (2.28), we obtain

0 <
(

1 + y0

y0

) (
1 −

x2n+1

x−1

)
− 1 <

1
x1
,

so

0 < 1 −
x2n+1

x−1
−

y0

1 + y0
<

1 + y0

x−1

y0

1 + y0
,

then

0 < x−1 − x2n+1 −
x−1y0

1 + y0
< y0,

from where

0 <
x−1(1 + y0) − x−1y0

1 + y0
− x2n+1 < y0,
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for n∈N0, which gives us

0 <
x−1

1 + y0
− x2n+1 < y0.

Building on the earlier findings and (2.16), we get

0 ≤ x1 − y0 < x2n+1. (2.29)

Proposition 2.2.1 Consider
{(

xn, yn
)}

n≥−1 as a solution to system (2.6). Let’s suppose that the

values x0, y0, x1 and y1 satisfy these conditions

x1 − y0 ≥ 0 and y1 − x0 ≥ 0.

Then

lim
n→∞

x2n+1 , x1 − y0 and lim
n→∞

y2n+1 , y1 − x0.

Proof. There are two cases that need to be considered.

Case 1. When the equalities in (2.13) are satisfied, we get

x1 − y0 = 0 and y1 − x0 = 0.

Therefore, by utilizing (2.25), (2.29), along with the result derived in theorem

(2.2.1) part (f), we obtain

lim
n→∞

x2n+1 = b1 > x1 − y0 = 0 and lim
n→∞

y2n+1 = b2 > y1 − x0 = 0. (2.30)

From where, if we assume the equalities in (2.13) are satisfied, then we get

lim
n→∞

x2n+1 = b1 , x1 − y0 = 0 and lim
n→∞

y2n+1 = b2 , y1 − x0 = 0. (2.31)
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Case 2. When the strict inequalities in (2.13) are satisfied, we get

y1 − x0 > 0 and x1 − y0 > 0.

Therefore, by utilizing relations (2.25), (2.29), along with the monotonicity of

{(x2n+1)}n≥−1 and
{(

y2n+1
)}

n≥−1, we obtain

lim
n→∞

x2n+1 = b1 ≥ x1 − y0 > 0 and lim
n→∞

y2n+1 = b2 ≥ y1 − x0 > 0. (2.32)

Now, let’s suppose, for instance, that

x−1 = 6, x0 = 1, y−1 = 4 and y0 = 1, (2.33)

within system (2.6). So we obtain the graph in Fig (2.1)

Figure 2.1: Plot of system (2.6) using the initial values (2.33).

From (2.33) and system (2.6), we can see that

x1 − y0 = 3 − 1 = 2 > 0 and y1 − x0 = 2 − 1 = 1 > 0,

so we are in the second case.
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Now, from the graph in Fig (2.1), it is easy to see that

lim
n→∞

x2n+1 , 2 = x1 − y0 and lim
n→∞

y2n+1 , 1 = y1 − x0. (2.34)

From where, When the strict inequalities in (2.13) are satisfied, we get

lim
n→∞

x2n+1 = b1 , x1 − y0 > 0 and lim
n→∞

y2n+1 = b2 , y1 − x0 > 0. (2.35)

Using (2.31) and (2.35), we obtain

lim
n→∞

x2n+1 , x1 − y0 and lim
n→∞

y2n+1 , y1 − x0,

under the following condition

x1 − y0 ≥ 0 and y1 − x0 ≥ 0.

2.3 Understanding system (2.5)

This section outlines the approach employed to streamline the analysis of the difference

equations system (2.5), that is given by

xn+1 =
xn−(2k+1)

1 + yn−k
, yn+1 =

yn−(2k+1)

1 + xn−k
, n, k ∈N0.

Before we begin, it is important to mention that these difference equations have been

studied in existing literature.

In [49, 50] Şimşek et al. studied the following equations

xn+1 =
xn−3

1 + xn−1
, n ∈N0, (2.36)
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xn+1 =
xn−5

1 + xn−2
, n ∈N0, (2.37)

xn+1 =
xn−7

1 + xn−3
, n ∈N0. (2.38)

Şimşek et al. examined the following generalization of equations (2.36)-(2.38) in [51]

xn+1 =
xn−(2k+1)

1 + xn−k
, n, k ∈N0.

Motivated by the above mentioned works, we are going to introduce system(2.5) and

study it.

From system (2.5), we can observe that xn+1 can be simply represented using xn−(2k+1)

and yn−k,(
similarly: yn+1 is represented using yn−(2k+1) and xn−k

)
.

Another observation is that the relation below holds

n + 1 − (n − k) = n − k − (n − (2k + 1)) = k + 1.

In other words, the difference between the indices of xn+1 and yn−k on one hand,

and the indices of yn−k and xn−(2k+1) on the other one,(
similarly: the difference between the indices of yn+1 and xn−k on one hand,

and the indices of xn−k and yn−(2k+1) on the other one
)

is equal to k + 1.

As a consequence, we can partition the set of indices into k + 1 distinct subsets, each

subset being defined by

S j =
{
n ∈N−(2k+1), n = (k + 1)m + j, m ≥ −2

}
, j = 1, k + 1.

Thus, we can represent system (2.5) as follows

x(k+1)m+ j =
x(k+1)(m−2)+ j

1 + y(k+1)(m−1)+ j
, y(k+1)m+ j =

y(k+1)(m−2)+ j

1 + x(k+1)(m−1)+ j
, m ∈N0, (2.39)
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for all j = 1, k + 1.

Let’s put

u( j)
m = x(k+1)m+ j, v( j)

m = y(k+1)m+ j, m ≥ −2, j = 1, k + 1, (2.40)

so, from system (2.39) and relation (2.40), we obtain

u( j)
m =

u( j)
m−2

1 + v( j)
m−1

, v( j)
m =

v( j)
m−2

1 + u( j)
m−1

, m ≥ 0, j = 1, k + 1,

from where, the sequences
{(

u( j)
m , v( j)

m

)}
m≥−2

, j = 1, k + 1 are k+1 solutions to this system

xm =
xm−2

1 + ym−1
, ym =

ym−2

1 + xm−1
, m ∈N0. (2.41)

Studying system (2.41) is similar to studying the system

xn+1 =
xn−1

1 + yn
, yn+1 =

yn−1

1 + xn
, n ∈N0,

This system is essentially a simplified version of system (2.5) with k = 0.

The method employed demonstrates that the systems derived from system (2.5)

with k = 4, 5, 6, 7, 8, 9, 10, respectively, are classified within the same problem category

xn+1 =
xn−9

1 + yn−4
, yn+1 =

yn−9

1 + xn−4
, n ∈N0, (2.42)

xn+1 =
xn−11

1 + yn−5
, yn+1 =

yn−11

1 + xn−5
, n ∈N0, (2.43)

xn+1 =
xn−13

1 + yn−6
, yn+1 =

yn−13

1 + xn−6
, n ∈N0, (2.44)

xn+1 =
xn−15

1 + yn−7
, yn+1 =

yn−15

1 + xn−7
, n ∈N0, (2.45)

xn+1 =
xn−17

1 + yn−8
, yn+1 =

yn−17

1 + xn−8
, n ∈N0, (2.46)

xn+1 =
xn−19

1 + yn−9
, yn+1 =

yn−19

1 + xn−9
, n ∈N0, (2.47)

59



Numerical examples

xn+1 =
xn−21

1 + yn−10
, yn+1 =

yn−21

1 + xn−10
, n ∈N0. (2.48)

2.4 Numerical examples

Throughout this section, we are going to look at different concrete examples to better

understand our theoretical outcomes. In particular, the examples cover various solutions’

types that can emerge within the general system (2.6), such as periodic patterns and

convergence. MATLAB is used to generate the plots in this section.

Example 2.4.1 Let’s examine system (2.6) with the following initial values

x−1 = 2, x0 = 5, y−1 = 4, y0 = 3. (2.49)

This gives us the graph in Fig (2.2).

Figure 2.2: Plot of system (2.6) using the initial values (2.49).

Example 2.4.2 Let’s examine system (2.6) with the following initial values

x−1 = 15, x0 = 10, y−1 = 50, y0 = 15. (2.50)

This gives us the graphs in Fig (2.3). These plots illustrate the monotonic behavior of{(
x2n, y2n

)}
n≥0 and

{(
x2n+1, y2n+1

)}
n≥−1, as per the findings of Theorem (2.2.1)(b).
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Figure 2.3: Plot of
{(

x2n, y2n
)}

n≥0 and
{(

x2n+1, y2n+1
)}

n≥−1 using the initial values (2.50).

Example 2.4.3 Let’s examine system (2.6) with the following initial values

x(1)
−1 = 2, x(1)

0 = 0, y(1)
−1 = 4, y(1)

0 = 0, (2.51)

x(2)
−1 = 0, x(2)

0 = 0, y(2)
−1 = 5, y(2)

0 = 3, (2.52)

x(3)
−1 = 2, x(3)

0 = 5, y(3)
−1 = 0, y(3)

0 = 0, (2.53)

x(4)
−1 = 0, x(4)

0 = 5, y(4)
−1 = 0 and y(4)

0 = 3. (2.54)

This gives us the graphs in Fig (2.4). These plots illustrate the periodic nature of the solution

for system (2.6) with the initial values (2.51), (2.52), (2.53) and (2.54) respectively, as per the

findings of Theorem (2.2.1)(c).
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Figure 2.4: Plots of system (2.6) using the initial values (2.51), (2.52), (2.53) and (2.54)
respectively.

Example 2.4.4 Let’s examine system (2.6) with the following initial values

x−1 = 7, x0 = 1, y−1 = 3, y0 = 2. (2.55)

This gives us the graphs in Fig (2.5). These plots show the limits of
{(

x2n, y2n
)}

n≥0 and{(
x2n+1, y2n+1

)}
n≥−1 under the condition (2.13), as per the findings of Theorem (1)(f).
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Figure 2.5: Plot of
{(

x2n, y2n
)}

n≥0 and
{(

x2n+1, y2n+1
)}

n≥−1 using the initial values (2.55).
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Chapter 3
Dynamical behavior of a possible

discrete community model

3.1 Introduction

In recent years, numerous biological subjects have been represented through the use

of difference equations. This approach has subsequently facilitated the examination of

population dynamics and the influence of biotic factors on a significant scale.

Biotic factors encompass all the actions that living organisms directly exert on each

other. These interactions are termed coactions and can be categorized into two distinct

types:

• Homotypic (or intraspecific), when they occur between individuals of the same

species.

• Heterotypic (or interspecific), when they occur between individuals of different

species.

Heterotypic coactions type changes according to the scheme (3.1).

The Lotka-Volterra models in discrete-time, formulated by difference equations,
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Figure 3.1: Heterotypic coactions types.

stand as one of the most celebrated models for population dynamics that study

predation, which is one of the heterotypic coactions types (see [3, 8, 9, 13, 42, 44, 54, 63]).

One of the most interesting Lotka-Volterra predator-prey models is presented in

[48] with an important study of the the solution’s qualitative behavior to the following

difference equations system

xn+1 =
αxn−βxnyn

1 + γxn
, yn+1 =

δyn+εxnyn

1 + ηyn
, n ∈N0, (3.1)

the parameters α, β, γ, δ, ε, η and the initial values x0 and y0 are positive real numbers.

We distinguish between negative interactions that are harmful to the growth of

individuals of the first species and positive interactions that promote the growth of

individuals of the second species.

The signs + and − in system (3.1) clarify if the growth is favorable or unfavorable.

In this chapter, we are going to revisit and expand upon our research previously

published in [7], titled ’Dynamical behavior of a possible discrete community model’.
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Justifying the choice of positive initial conditions

So, we are going to generalize system (3.1) to the following community model

xn+1 =
a1xn − a2xnyn

1 + a3xn
, yn+1 =

a4yn + a5ynzn

1 + a6yn
, zn+1 =

a7zn + a8znxn

1 + a9zn
, n ∈N0, (3.2)

the parameters ai, i = 1, 9 and the initial values x0, y0 and z0 are positive real numbers.

System (3.2) presents interactions between individuals of three different species.

Individuals of the second species inhibit the development of individuals of the first

species, this interaction is called amensalism. Individuals of the second species benefit

from individuals of the third species without harming them. Similarly, individuals of

the third species benefit from individuals of the first species without harming them,

this interaction is called commensalism.

Remark 3.1.1 If we put a7 = a4, a8 = a5, a9 = a6 and z0 = y0, system (3.2) reduces to

system (3.1).

3.2 Justifying the choice of positive initial conditions

Consider system (3.2). Suppose that the parameters ai, i = 1, 9 are positive and the

initial values x0, y0 and z0 are non-negative real numbers.

Note that

• If x0 = 0, so xn = 0 for all n ∈N0.

• If y0 = 0, so yn = 0 for all n ∈N0.

• If z0 = 0, so zn = 0 for all n ∈N0.

We distinguish the following cases

1. If x0 = y0 = z0 = 0, so system (3.2) reduces to

xn = yn = zn = 0, for all n ∈N0. (3.3)
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2. If x0 = y0 = 0, z0 ∈ ]0,+∞[, so system (3.2) reduces to

zn+1 =
a7zn

1 + a9zn
, n ∈N0, (3.4)

which is a Riccati equation, its solution and behavior are well-known.

3. If x0 = z0 = 0, y0 ∈ ]0,+∞[, so system (3.2) reduces to

yn+1 =
a4yn

1 + a6yn
, n ∈N0, (3.5)

which is a Riccati equation.

4. If y0 = z0 = 0, x0 ∈ ]0,+∞[, so system (3.2) reduces to

xn+1 =
a1xn

1 + a3xn
, n ∈N0, (3.6)

which is a Riccati equation.

5. If x0 = 0, y0, z0 ∈ ]0,+∞[, so xn = 0 for all n ∈N0 and system (3.2) reduces to

yn+1 =
a4yn + a5ynzn

1 + a6yn
, zn+1 =

a7zn

1 + a9zn
, n ∈N0. (3.7)

As y0, z0 > 0, it follows that yn, zn > 0, for all n ∈N0.

System (3.7) has only one equilibrium point
(
ȳ, z̄

)
in (]0,+∞[)2, such that

ȳ =
a5 (a7 − 1) + a9 (a4 − 1)

a6a9
, a5 (a7 − 1) + a9 (a4 − 1) > 0,

z̄ =
a7 − 1

a9
, a7 > 1.

Consider these two continuously differentiable functions

f1 : ]0,+∞[ × ]0,+∞[→ ]0,+∞[(
y, z

)
7→ f1

(
y, z

)
=

a4y + a5yz
1 + a6y

,

f2 : ]0,+∞[ × ]0,+∞[→ ]0,+∞[(
y, z

)
7→ f2

(
y, z

)
=

a7z
1 + a9z

.
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So, the Jacobian matrix of the linearized system of (3.7) around
(
ȳ, z̄

)
is given by


∂ f1

∂y
(
ȳ, z̄

) ∂ f1

∂z
(
ȳ, z̄

)
∂ f2

∂y
(
ȳ, z̄

) ∂ f2

∂z
(
ȳ, z̄

)


=


a9

a4a9 + a5(a7 − 1)
a5(a9(a4 − 1) + a5(a7 − 1))

a6(a4a9 + a5(a7 − 1))

0
1
a7

 .
Additionally, the eigenvalues of the Jacobian matrix around

(
ȳ, z̄

)
are given by

λ1 =
a9

a4a9 + a5 (a7 − 1)
< 1,

λ2 =
1
a7
< 1,

hence,
(
ȳ, z̄

)
=

(
a5 (a7 − 1) + a9 (a4 − 1)

a6a9
,

a7 − 1
a9

)
is locally asymptotically stable.

6. If y0 = 0, x0, z0 ∈ ]0,+∞[, so yn = 0 for all n ∈N0 and system (3.2) reduces to

xn+1 =
a1xn

1 + a3xn
, zn+1 =

a7zn + a8znxn

1 + a9zn
, n ∈N0. (3.8)

As x0, z0 > 0, it follows that xn, zn > 0, for all n ∈N0.

System (3.8) has only one equilibrium point (x̄, z̄) in (]0,+∞[)2, such that

x̄ =
a1 − 1

a3
, a1 > 1,

z̄ =
a3 (a7 − 1) + a8 (a1 − 1)

a3a9
, a3 (a7 − 1) + a8 (a1 − 1) > 0.

Consider these two continuously differentiable functions

11 : ]0,+∞[ × ]0,+∞[→ ]0,+∞[

(x, z) 7→ 11 (x, z) =
a1x

1 + a3x
,

12 : ]0,+∞[ × ]0,+∞[→ ]0,+∞[

(x, z) 7→ 12 (x, z) =
a7z + a8zx

1 + a9z
.
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So, the Jacobian matrix of the linearized system of (3.8) around (x̄, z̄) is given by


∂11

∂x
(x̄, z̄)

∂11

∂z
(x̄, z̄)

∂12

∂x
(x̄, z̄)

∂12

∂z
(x̄, z̄)



=


1
a1

0

a8(a3(a7 − 1) + a8(a1 − 1))
a9(a3a7 + a8(a1 − 1))

a3

a3a7 + a8(a1 − 1)

 .
Additionally, the eigenvalues of the Jacobian matrix around (x̄, z̄) are given by

λ1 =
1
a1
< 1,

λ2 =
a3

a3a7 + a8 (a1 − 1)
< 1,

hence, (x̄, z̄) =

(
a1 − 1

a3
,

a3 (a7 − 1) + a8 (a1 − 1)
a3a9

)
is locally asymptotically stable.

7. If z0 = 0, x0, y0 ∈ ]0,+∞[, so zn = 0 for all n ∈N0 and system (3.2) reduces to

xn+1 =
a1xn − a2xnyn

1 + a3xn
, yn+1 =

a4yn

1 + a6yn
, n ∈N0, (3.9)

Here, additional conditions must be imposed.

We have

x1 =
(a1 − a2y0)x0

1 + a3x0
,

If a1 − a2y0 = 0, so x1 = 0 which imply xn = 0 for all n ∈ N1, in this case, system

(3.9) reduces to equation (3.5) (case.3).

So, we must impose a condition on y0, which is y0 <
a1

a2
to ensure that x1 > 0.

On the other hand, we have

0 < yn+1 <
a4yn

a6yn
=

a4

a6
, n ∈N0,

that is

y1, y2, . . . <
a4

a6
.
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So, to ensure that a1 − a2yn > 0 and therefore xn > 0,we must also impose
a4

a6
≤

a1

a2
.

We can conclude that (3.9) can be studied under these two conditions

0 < y0 <
a4

a6
,

a4

a6
≤

a1

a2
,

x0 > 0.

Note that in this case

xn+1 =
a1xn − a2xnyn

1 + a3xn
<

a1xn

1 + a3xn
<

a1xn

a3xn
=

a1

a3
, (xn, yn > 0)

that is, for y0 ∈

]
0,

a4

a6

[
,

(a4

a6
≤

a1

a2

)
, and x0 > 0, we have 0 < yn <

a4

a6
, ∀n ∈N0 and

0 < xn <
a1

a3
, ∀n = 1, 2, . . .

and if x0 ∈

]
0,

a1

a3

[
: 0 < xn <

a1

a3
.

System (3.9) has only one equilibrium point
(
x̄, ȳ

)
in

]
0,

a1

a3

[
×

]
0,

a4

a6

[
, such that

x̄ =
a6 (a1 − 1) − a2 (a4 − 1)

a3a6
, a6 (a1 − 1) − a2 (a4 − 1) > 0,

ȳ =
a4 − 1

a6
, a4 > 1.

Consider these two continuously differentiable functions

h1 :
]
0,

a1

a3

[
×

]
0,

a4

a6

[
→

]
0,

a1

a3
[

(
x, y

)
7→ h1

(
x, y

)
=

a1x − a2xy
1 + a3x

,

h2 :
]
0,

a1

a3

[
×

]
0,

a4

a6

[
→ ×

]
0,

a4

a6

[
(
x, y

)
7→ h2

(
x, y

)
=

a4y
1 + a6y

.

So, the Jacobian matrix of the linearized system of (3.9) around
(
x̄, ȳ

)
is given by


∂h1

∂x
(
x̄, ȳ

) ∂h1

∂y
(
x̄, ȳ

)
∂h2

∂x
(
x̄, ȳ

) ∂h2

∂y
(
x̄, ȳ

)

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=


a6

a1a6 − a2(a4 − 1)
−

a2(a6(a1 − 1) − a2(a4 − 1))
a3(a1a6 − a2(a4 − 1))

0
1
a4

 .
Additionally, the eigenvalues of the Jacobian matrix around

(
x̄, ȳ

)
are given by

λ1 =
a6

a1a6 − a2 (a4 − 1)
< 1,

λ2 =
1
a4
< 1,

hence,
(
x̄, ȳ

)
=

(
a6 (a1 − 1) − a2 (a4 − 1)

a3a6
,

a4 − 1
a6

)
is locally asymptotically stable.

Thus, given the previous cases, the choice of conditions x0, y0, z0 > 0 in the study of

system (3.2) is justified.

Throughout the following, we are going to study system (3.2) with x0, y0, z0 ∈

]0,+∞[ .

Note also that additional conditions will be imposed on x0, y0, z0 and the parameters.

3.3 Dynamical behavior of system (3.2)

This section will closely investigate how the solution to system (3.2) changes and

behaves over time.

The following theorem ensures that the solution of system (3.2) is bounded.

Theorem 3.3.1 Suppose that

0 < x0 <
a1

a3
, (3.10)

0 < y0 <
a1

a2
, (3.11)

0 < z0 <
a7

a9
+

a8a1

a9a3
, (3.12)
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and
a4

a6
+

a5a7

a6a9
+

a5a8a1

a6a9a3
<

a1

a2
. (3.13)

Then, for every solution
{(

xn, yn, zn
)}

n≥0 to system (3.2), we get

xn ∈ I =
]
0,

a1

a3

[
,

yn ∈ J =
]
0,

a1

a2

[
,

zn ∈ K =
]
0,

a7

a9
+

a8a1

a9a3

[
,

n ∈N0. (3.14)

i.e: the solution is bounded.

Proof.

• n=1

we have

0 < x1 =
(a1 − a2y0)x0

1 + a3x0
<

(a1 − a2y0)x0

a3x0
=

a1 − a2y0

a3
<

a1

a3
,

so

0 < x1 <
a1

a3
.

Likewise

0 < y1 =
(a4 + a5z0)y0

1 + a6y0
<

(a4 + a5z0)y0

a6y0
=

a4 + a5z0

a6
=

a4

a6
+

a5

a6
z0,

using (3.12), we obtain

y1 <
a4

a6
+

a5

a6

(a7

a9
+

a8a1

a9a3

)
=

a4

a6
+

a5a7

a6a9
+

a5a8a1

a6a9a3
,

using (3.13), we get

y1 <
a1

a2
,

so

0 < y1 <
a1

a2
.
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Likewise

0 < z1 =
(a7 + a8x0)z0

1 + a9z0
<

(a7 + a8x0)z0

a9z0
=

a7 + a8x0

a9
=

a7

a9
+

a8

a9
x0,

using (3.10), we obtain

z1 <
a7

a9
+

a8a1

a9a3
,

so

0 < z1 <
a7

a9
+

a8a1

a9a3
.

So (3.14) is verified for n = 1.

• Suppose that (3.14) is verified at the order n, namely

xn ∈ I =
]
0,

a1

a3

[
,

yn ∈ J =
]
0,

a1

a2

[
,

zn ∈ K =
]
0,

a7

a9
+

a8a1

a9a3

[
.

•We are going to prove its validity at the order n + 1.

we have

0 < xn+1 =
(a1 − a2yn)xn

1 + a3xn
<

(a1 − a2yn)xn

a3xn
=

a1 − a2yn

a3
<

a1

a3
,

so

0 < xn+1 <
a1

a3
.

Likewise

0 < yn+1 =
(a4 + a5zn)yn

1 + a6yn
<

(a4 + a5zn)yn

a6yn
=

a4 + a5zn

a6
=

a4

a6
+

a5

a6
zn,
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using (3.12), we obtain

yn+1 <
a4

a6
+

a5

a6

(a7

a9
+

a8a1

a9a3

)
=

a4

a6
+

a5a7

a6a9
+

a5a8a1

a6a9a3
,

using (3.13), we get

yn+1 <
a1

a2
,

so

0 < yn+1 <
a1

a2
.

Likewise

0 < zn+1 =
(a7 + a8xn)zn

1 + a9zn
<

(a7 + a8xn)zn

a9zn
=

a7 + a8xn

a9
=

a7

a9
+

a8

a9
xn,

using (3.10), we obtain

zn+1 <
a7

a9
+

a8a1

a9a3
,

so

0 < zn+1 <
a7

a9
+

a8a1

a9a3
.

So (3.14) is verified at the order n + 1, which implying its validity for all n ≥ 0.

3.3.1 Local stability

Here, we are going to investigate the local stability of the equilibrium point of system

(3.2).

Consider three functions, f , 1, and h, all of which are continuously differentiable,

such that

f : I × J × K −→ I,

1 : I × J × K −→ J,

h : I × J × K −→ K,
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I =
]
0,

a1

a3

[
, J =

]
0,

a1

a2

[
, and K =

]
0,

a7

a9
+

a8a1

a9a3

[
.

Let’s examine the following difference equations system


xn+1 = f

(
xn, yn, zn

)
,

yn+1 = 1
(
xn, yn, zn

)
,

zn+1 = h
(
xn, yn, zn

)
,

(3.15)

with n ∈N0 and
(
x0, y0, z0

)
∈ I × J × K.

An equilibrium point
(
x̄, ȳ, z̄

)
for system (3.15), is characterized as a solution of the

following system 
x̄ = f

(
x̄, ȳ, z̄

)
,

ȳ = 1
(
x̄, ȳ, z̄

)
,

z̄ = h
(
x̄, ȳ, z̄

)
.

(3.16)

From where, if
(
x̄, ȳ, z̄

)
constitutes an equilibrium point in system (3.2), it satisfies



x̄ =
a1x̄ − a2x̄ȳ

1 + a3x̄
,

ȳ =
a4 ȳ + a5 ȳz̄

1 + a6 ȳ
,

z̄ =
a7z̄ + a8z̄x̄

1 + a9z̄
.

The lemma below outlines the equilibrium point of system (3.2).

Lemma 3.3.1 Let P =
(L
S
,

M
S
,

N
S

)
, such that

L = a6a9 (a1 − 1) − a2 (a9 (a4 − 1) + a5 (a7 − 1)) ,

M = a3a9 (a4 − 1) + a5 (a3 (a7 − 1) + a8 (a1 − 1)) ,

N = a3a6 (a7 − 1) + a8 (a6 (a1 − 1) − a2 (a4 − 1)) ,

and

S = a2a5a8 + a3a6a9.
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If

a6a9 >
a2 (a9 (a4 − 1) + a5 (a7 − 1))

a1 − 1
, a1 > 1, a4 > 1, a7 > 1, a6 >

a2 (a4 − 1)
a1 − 1

, (3.17)

is verified, so, P is the unique equilibrium point of system (3.2).

•Note that condition (3.17) ensures that P =
(L
S
,

M
S
,

N
S

)
∈

]
0,

a1

a3

[
×

]
0,

a1

a2

[
×

]
0,

a7

a9
+

a8a1

a9a3

[
.

The theorem below asserts the local stability of the equilibrium of system (3.2).

Theorem 3.3.2 Suppose that the statement (3.17) is held.

then, P is locally asymptotically stable if

Ψ < (S + a3L)2 (S + a6M)2 (S + a9N)2 . (3.18)

Where

Ψ = S3 (a1S + a2M) (a4S + a5N) (a7S + a8L)

+ S2
[
(a4S + a5N) (a7S + a8L) (S + a3L)2 + (a1S + a2M) (a7S + a8L) (S + a6M)2

+ (a1S + a2M) (a4S + a5N) (S + a9N)2
]

+ S
[
(a1S + a2M) (S + a6M)2 (S + a9N)2

+ (a4S + a5N) (S + a3L)2 (S + a9N)2 + (a7S + a8L) (S + a3L)2 (S + a6M)2
]

+ a2a5a8LMN (S + a3L) (S + a6M) (S + a9N) .

Proof. Assume the statement (3.17) is held.

The characteristic polynomial of the Jacobian matrix around P =
(L
S
,

M
S
,

N
S

)
is given

by

Υ (λ) = −λ3 + λ2 (A1 − A2 + A3 + A4) − λ (A5 − A6 + A7 − A8 + A9) + A10 − A11 − A12,

where

A1 =
a1S2

(S + a3L)2 , A2 =
a2MS

(S + a3L)2 , A3 =
S (a4S + a5N)

(S + a6M)2 , A4 =
S (a7S + a8L)

(S + a9N)2 ,
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A5 =
a1S3 (a4S + a5N)

(S + a3L)2 (S + a6M)2 ,

A6 =
a2MS2 (a4S + a5N)

(S + a3L)2 (S + a6M)2 ,

A7 =
a1S3 (a7S + a8L)

(S + a3L)2 (S + a9N)2 ,

A8 =
a2MS2 (a7S + a8L)

(S + a3L)2 (S + a9N)2 ,

A9 =
S2 (a4S + a5N) (a7S + a8L)

(S + a6M)2 (S + a9N)2 ,

A10 =
a1S4 (a4S + a5N) (a7S + a8L)

(S + a3L)2 (S + a6M)2 (S + a9N)2 ,

A11 =
a2MS3 (a4S + a5N) (a7S + a8L)

(S + a3L)2 (S + a6M)2 (S + a9N)2 ,

and

A12 =
a2a5a8LMN

(S + a3L) (S + a6M) (S + a9N)
.

Let’s put

R (λ) = −λ3,

and

T (λ) = −λ2 (A1 − A2 + A3 + A4) + λ (A5 − A6 + A7 − A8 + A9) − A10 + A11 + A12.

Assume that

Ψ < (S + a3L)2 (S + a6M)2 (S + a9N)2 ,

then, for |λ| = 1, we get

|T (λ) | ≤
12∑
i=1

Ai

=
Ψ

(S + a3L)2 (S + a6M)2 (S + a9N)2

< 1 = |R (λ) |.

Then, according to Rouche’s theorem, R (λ) and R (λ)−T (λ) have the same number

of zeroes within the open unit disk |λ| < 1. Hence, P is locally asymptotically stable.
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3.3.2 Global stability

Here, we are going to examine the global stability of the equilibrium point of system

(3.2).

The following theorem presents the convergence of the positive solution
{(

xn, yn, zn
)}

n≥0

of system (3.2) to the equilibrium point.

Theorem 3.3.3 Assume that (3.17) holds and a3a6a9 − a2a5a8 > 0, then the equilibrium point

P of system (3.2) is a global attractor.

Proof. Consider system (3.2) with the initial values
(
x0, y0, z0

)
∈ I × J × K,

Let’s put

f : I × J × K→ I(
x, y, z

)
7→ f

(
x, y, z

)
=

a1x − a2xy
1 + a3x

,

1 : I × J × K→ J(
x, y, z

)
7→ 1

(
x, y, z

)
=

a4y + a5yz
1 + a6y

,

h : I × J × K→ K(
x, y, z

)
7→ h

(
x, y, z

)
=

a7z + a8zx
1 + a9z

,

where I, J and K are three positive real intervals respectively given by
]
0,

a1

a3

[
,
]
0,

a1

a2

[
,

and
]
0,

a7

a9
+

a8a1

a9a3

[
.

We know that (xn)n≥0,
(
yn

)
n≥0 and (zn)n≥0 are bounded, so there exist m1, M1, m2, M2,

m3 and M3, such that

m1 = lim
n→∞

inf xn, M1 = lim
n→∞

sup xn,

m2 = lim
n→∞

inf yn, M2 = lim
n→∞

sup yn,

m3 = lim
n→∞

inf zn, M3 = lim
n→∞

sup zn.

(3.19)
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Using the definition of lim inf and lim sup, we obtain

∀ε1 ∈ ]0,m1[ ,∃n1 ∈N0,∀n ≥ n1 : m1 − ε1 ≤ xn ≤M1 + ε1,

∀ε2 ∈ ]0,m2[ ,∃n2 ∈N0,∀n ≥ n2 : m2 − ε2 ≤ yn ≤M2 + ε2,

∀ε3 ∈ ]0,m3[ ,∃n3 ∈N0,∀n ≥ n3 : m3 − ε3 ≤ zn ≤M3 + ε3.

(3.20)

Let put ε = min (ε1, ε2, ε3) and n0 = max (n1,n2,n3) .

It is easy to see that f is increasing in x and z and decreasing in y, so

f
(
m1 − ε, yn, zn

)
≤ f

(
xn, yn, zn

)
≤ f

(
M1 + ε, yn, zn

)
,

f (m1 − ε,M2 + ε, zn) ≤ f
(
xn, yn, zn

)
≤ f (M1 + ε,m2 − ε, zn) ,

f (m1 − ε,M2 + ε,m3 − ε) ≤ f
(
xn, yn, zn

)
≤ f (M1 + ε,m2 − ε,M3 + ε) ,

f (m1 − ε,M2 + ε,m3 − ε) ≤ m1 ≤M1 ≤ f (M1 + ε,m2 − ε,M3 + ε) ,

by passing to the limit when ε → 0 (take in consideration that f is continuous), we

obtain

f (m1,M2,m3) ≤ m1 ≤M1 ≤ f (M1,m2,M3) . (3.21)

From (3.21), we get

f (m1,M2,m3) ≤ m1 ⇔ f (m1,M2,m3) −m1 ≤ 0

⇔
a1m1 − a2m1M2

1 + a3m1
−m1 ≤ 0

⇔
a1 − a2M2

1 + a3m1
− 1 ≤ 0

that is to say

a1 − a2M2 ≤ 1 + a3m1. (3.22)

We get also from (3.21)

M1 ≤ f (M1,m2,M3) ⇔M1 − f (M1,m2,M3) ≤ 0

⇔M1 −
a1M1 − a2M1m2

1 + a3M1
≤ 0,

⇔ 1 −
a1 − a2m2

1 + a3M1
≤ 0

that is to say

a2m2 − a1 ≤ −1 − a3M1. (3.23)
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From (3.22) and (3.23), we get

a3 (M1 −m1) ≤ a2 (M2 −m2) . (3.24)

Likewise, using the fact that 1 is increasing in all arguments, we get

1 (m1,m2,m3) ≤ m2 ≤M2 ≤ 1 (M1,M2,M3) . (3.25)

From (3.25), we get

1 (m1,m2,m3) ≤ m2 ⇔ 1 (m1,m2,m3) −m2 ≤ 0

⇔
a4m2 + a5m2m3

1 + a6m2
−m2 ≤ 0

⇔
a4 + a5m3

1 + a6m2
− 1 ≤ 0

that is to say

a4 + a5m3 ≤ 1 + a6m2. (3.26)

We get also from (3.25)

M2 ≤ 1 (M1,M2,M3) ⇔M2 − 1 (M1,M2,M3) ≤ 0

⇔M2 −
a4M2 + a5M2M3

1 + a6M2
≤ 0,

⇔ 1 −
a4 + a5M3

1 + a6M2
≤ 0

that is to say

1 + a6M2 ≤ a4 + a5M3. (3.27)

From (3.26) and (3.27), we get

a6 (M2 −m2) ≤ a5 (M3 −m3) . (3.28)

Now, using the fact that h is increasing in all arguments, we get

h (m1,m2,m3) ≤ m3 ≤M3 ≤ h (M1,M2,M3) . (3.29)
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From (3.29), we get

h (m1,m2,m3) ≤ m3 ⇔ h (m1,m2,m3) −m3 ≤ 0

⇔
a7m3 + a8m3m1

1 + a9m3
−m3 ≤ 0

⇔
a7 + a8m1

1 + a9m3
− 1 ≤ 0

that is to say

a7 + a8m1 ≤ 1 + a9m3. (3.30)

We get also from (3.29)

M3 ≤ h (M1,M2,M3) ⇔M3 ≤
a7M3 + a8M3M1

1 + a9M3

⇔M3 −
a7M3 + a8M3M1

1 + a9M3
≤ 0,

⇔ 1 −
a7 + a8M1

1 + a9M3
≤ 0

that is to say

a7 + a8M1 ≤ 1 + a9M3. (3.31)

From (3.30) and (3.31), we get

a9 (M3 −m3) ≤ a8 (M1 −m1) . (3.32)

Multiplying (3.32) by a3, we get

a3a9 (M3 −m3) ≤ a3a8 (M1 −m1) .

Using (3.24), we obtain

a3a9 (M3 −m3) ≤ a8a2 (M2 −m2) ,

multiplying by a6, we get

a6a3a9 (M3 −m3) ≤ a6a8a2 (M2 −m2) .
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Using (3.28), we obtain

a6a3a9 (M3 −m3) ≤ a2a8a5 (M3 −m3) ,

so

(a6a3a9 − a2a8a5) (M3 −m3) ≤ 0.

Since a3a6a9 − a2a5a8 > 0, so M3 −m3 ≤ 0, from where m3 = M3.

Theorem 3.3.4 Suppose that (3.17) and (3.18) hold. If a3a6a9 − a2a5a8 > 0, Then, P is globally

asymptotically stable.

Proof. The proof is derived from theorem (3.3.2) and theorem (3.3.3).

To validate these theoretical findings, we are going to consider the following

numerical example.

Example 3.3.1 • let a1 = 2, a2 = 2, a3 = 6, a4 = 2, a5 = 3, a6 = 4, a7 = 2, a8 = 1 and

a9 = 6 in system (3.2), so we obtain the following system with the previous parameters

that comply with (3.17) and (3.18), and that verify a3a6a9 − a2a5a8 > 0

xn+1 =
2xn − 2xnyn

1 + 6xn
, yn+1 =

2yn + 3ynzn

1 + 4yn
, zn+1 =

2zn + znxn

1 + 6zn
. (3.33)

Suppose that

x0 =
1
4
, y0 =

1
3

and z0 =
1
3
, (3.34)

so, the equilibrium point P =
( 1
25
,

19
50
,

13
75

)
of system (3.33) is globally asymptotically

stable, and we get the graph in Fig (3.2).

3.3.3 Rate of convergence

In this section, we are going to delve into exploring the rate of convergence of any

solution that converges to the equilibrium point P =
(L
S
,

M
S
,

N
S

)
of system (3.2).
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Figure 3.2: Plot of the solution to system (3.33) with the initial values (3.34).

Consider
{(

xn, yn, zn
)}

n≥0 as a solution of system (3.2), such that

lim
n→∞

xn = x̄, lim
n→∞

yn = ȳ and lim
n→∞

zn = z̄,

where (
x̄, ȳ, z̄

)
= P.

To find the error terms, we get from system (3.2)

xn+1 − x̄ =
a1xn − a2xnyn

1 + a3xn
−

a1x̄ − a2x̄ȳ
1 + a3x̄

=

(
a1 − a2yn

)
(1 + a3xn) (1 + a3x̄)

(xn − x̄) −
a2x̄

1 + a3x̄
(
yn − ȳ

)
,

yn+1 − ȳ =
a4yn + a5ynzn

1 + a6yn
−

a4 ȳ + a5 ȳz̄
1 + a6 ȳ

=
(a4 + a5zn)(

1 + a6yn
) (

1 + a6 ȳ
) (

yn − ȳ
)

+
a5 ȳ

1 + a6 ȳ
(zn − z̄) ,

and

zn+1 − z̄ =
a7zn + a8znxn

1 + a9zn
−

a7z̄ + a8z̄x̄
1 + a9z̄

=
(a7 + a8xn)

(1 + a9zn) (1 + a9z̄)
(zn − z̄) +

a8z̄
1 + a9z̄

(xn − x̄) .
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For n ≥ 0, we put

e1
n = xn − x̄, e2

n = yn − ȳ and e3
n = zn − z̄,

then, the previous equalities can be written as follow

e1
n+1 = ane1

n + bne2
n, e2

n+1 = cne2
n + dne3

n and e3
n+1 = sne3

n + rne1
n,

where

an =

(
a1 − a2yn

)
(1 + a3xn) (1 + a3x̄)

, bn = −
a2x̄

1 + a3x̄
,

cn =
(a4 + a5zn)(

1 + a6yn
) (

1 + a6 ȳ
) , dn =

a5 ȳ
1 + a6 ȳ

,

sn =
(a7 + a8xn)

(1 + a9zn) (1 + a9z̄)
, rn =

a8z̄
1 + a9z̄

.

So, we can write

an = a + αn, bn = b + βn,

cn = c + γn, dn = d + δn,

sn = s + σn, rn = r + ρn,

such that

a =

(
a1 − a2 ȳ

)
(1 + a3x̄)2 , b = −

a2x̄
1 + a3x̄

,

c =
(a4 + a5z̄)(
1 + a6 ȳ

)2 , d =
a5 ȳ

1 + a6 ȳ
,

s =
(a7 + a8x̄)

(1 + a9z̄)2 , r =
a8z̄

1 + a9z̄
,
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and

αn =
−a1a3 (xn − x̄) − a2

(
yn − ȳ

)
+ a2a3

(
xn ȳ − x̄yn

)
(1 + a3xn) (1 + a3x̄)2 , βn = 0,

γn =
−a4a6

(
yn − ȳ

)
+ a5 (zn − z̄) − a5a6

(
ynz̄ − ȳzn

)(
1 + a6yn

) (
1 + a6 ȳ

)2 , δn = 0,

σn =
−a7a9 (zn − z̄) + a8 (xn − x̄) − a8a9 (znx̄ − z̄xn)

(1 + a9zn) (1 + a9z̄)2 , ρn = 0.

Since

lim
n→∞

xn = x̄, lim
n→∞

yn = ȳ and lim
n→∞

zn = z̄,

then

lim
n→∞

αn = lim
n→∞

βn = lim
n→∞

γn = lim
n→∞

δn = lim
n→∞

σn = lim
n→∞

ρn = 0.

The error system is given by


e1

n+1

e2
n+1

e3
n+1

 =




a b 0

0 c d

r 0 s

 +


αn βn 0

0 γn δn

ρn 0 σn





e1
n

e2
n

e3
n

 ,
that is

Xn+1 = (A + Bn) Xn, n ∈N0,

where

Xn =
(
e1

n, e
2
n, e

3
n

)T
,

the constant matrix A is of the form

A =


a b 0

0 c d

r 0 s

 ,
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=



a1 − a2 ȳ

(1 + a3x̄)2 −
a2x̄

1 + a3x̄
0

0
a4 + a5z̄(
1 + a6 ȳ

)2

a5 ȳ
1 + a6 ȳ

a8z̄
1 + a9z̄

0
a7 + a8x̄

(1 + a9z̄)2


,

and

Bn =


αn βn 0

0 γn δn

ρn 0 σn

 ,
with ‖Bn‖ → 0 when n→∞.

Using propositions (1.1.1) and (1.1.2), we obtain the following result.

Theorem 3.3.5 Suppose
{(

xn, yn, zn
)}

n≥0 is a positive solution of system (3.2), that satisfies

lim
n→∞

xn = x̄, lim
n→∞

yn = ȳ and lim
n→∞

zn = z̄,

where (
x̄, ȳ, z̄

)
= P.

So, the error vector en =
(
e1

n, e2
n, e3

n

)T
of every solution of system (3.2) meets both of the asymptotic

relations below

lim
n→∞

(‖en‖)
1
n = |λ1,2,3JF

(
x̄, ȳ, z̄

)
|, lim

n→∞

‖en+1‖

‖en‖
= |λ1,2,3JF

(
x̄, ȳ, z̄

)
|,

with λ1,2,3JF
(
x̄, ȳ, z̄

)
is a characteristic root of the Jacobian matrix JF

(
x̄, ȳ, z̄

)
.
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This thesis is a detailed summary of various research studies that looked at the form

of solutions and how these solutions behave in specific systems of nonlinear difference

equations. By carefully analyzing and investigating these systems, it aims to explain

the complex patterns and changes seen in the solutions, providing valuable information

about their traits and properties.

In the first chapter, we gave the solutions to the following k−dimensional close-to-

cyclic nonlinear difference equations system

y(i)
n+1 =

aiy
(i+1)
n

(
y(i+1)

n−k

)pi+1
+ bi(

y(i)
n−k+1

)pi
; n ∈N0 ,

where y(i+k)
n = y(i)

n , pi+k = pi, ai+k = ai, bi+k = bi, i = 1, k, the initial values y(i)
−k, y(i)

−k+1, . . . , y(i)
0

and the parameters ai and bi, i = 1, k are positive real numbers and pi, i = 1, k, are real

numbers. We also examined the asymptotic behavior of the the equilibrium point in

special cases.

In the second chapter, we studied the following symmetric higher-order difference

equations system

xn+1 =
xn−(2k+1)

1 + yn−k
, yn+1 =

yn−(2k+1)

1 + xn−k
, n, k ∈N0,
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the initial values x−(2k+1), x−2k, . . . , x0, y−(2k+1), y−2k, . . . , y0 are non-negative real numbers.

We also combined its properties into a very important theorem.

In the near future, we will try to generalize the previous system to the following

close-to-symmetric one

xn+1 =
xn−(2k+1)

α + yn−k
, yn+1 =

yn−(2k+1)

β + xn−k
, n, k ∈N0,

the initial values x−(2k+1), x−2k, . . . , x0, y−(2k+1), y−2k, . . . , y0, and the parameters α and β are

positive real numbers.

In the third chapter, we studied this nonlinear difference equations system

xn+1 =
a1xn − a2xnyn

1 + a3xn
, yn+1 =

a4yn + a5ynzn

1 + a6yn
, zn+1 =

a7zn + a8znxn

1 + a9zn
, n ∈N0,

where the parameters ai, i = 1, 9 and the initial values x0, y0 and z0 are positive real

numbers. We also investigated the local stability of its equilibrium point, and studied

the asymptotic behavior of this equilibrium.

In the near future, we will try to generalize the previous system to the following

P−dimensional one

x(i)
n+1 =

aix
(i)
n + bix

(i)
n x(i+1)

n

1 + cix
(i)
n

; n ∈N0 ,

where x(i+P)
n = x(i)

n , ai+P = ai, bi+P = bi and ci+P = ci, i = 1,P, the initial values x(i)
0 and

the parameters ai and ci, i = 1,P present positive real numbers and the parameters bi,

i = 1,P are nonzero real numbers.
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