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Abstract

The aim of this work is to study various problems of mathematical equations
using spectral methods. It develops four numerical techniques suitable for every
studied problem and shows efficiency throughout different numerical illustrations.
This study proposes a Legendre Galerkin method coupled with finite differences
technique for the advection-diffusion equation with perturbed Robin boundary
conditions. The obtained results provide two ways to confirm the efficiency: firstly,
by calculating the error of approximation, and simultaneously by comparing the
obtained approximate solution to the exact solution of the problem with Dirichlet
boundary conditions. For the same equation, a second scheme is proposed using
the spectral Galerkin method for both temporal and spatial discretizations. On
the same axis, a transition to integral/integro-differential equations is introduced.
A novel way of writing the basis functions as compact combinations of orthog-
onal polynomials using the set of initial conditions is elaborated in a Galerkin
method for the integral and integro-differential equations, depending on the or-
der of derivation. Additionally, some numerical techniques, such as using Gauss
types quadrature, are also investigated for more accuracy. The last set of results
pertains to the study of integro-differential equations of fractional order. Some in-
teresting estimations are formulated to approximate the solution using orthogonal
polynomials in a collocation method. All the presented techniques are supported
by numerical examples that cover a vast range of cases, to demonstrate the effi-
ciency of the proposed algorithms.

Key words/phrases: Partial differential equations, spectral approximation,
Galerkin method/Collocation method, finite differences scheme, Integral /integro-
differential equations, Fractional equations, Legendre/Chebyshev polynomials,

Gauss types quadrature.



Résumé

Le but de ce travail est d’étudier quelques problemes d’équations mathémati-
ques a ’aide des méthodes spectrales. On développe quatre techniques numéri-
ques adaptées aux équations étudiées et on démontre leur efficacité. On propose
une méthode de Galerkin Legendre pour I’équation d’advection-diffusion, avec des
conditions aux limites perturbées de type Robin. Les résultats obtenus offrent
deux facons de confirmer l'efficacité de la méthode: d’abord, en calculant I’erreur
d’approximation, puis en comparant la solution approximative obtenue a la so-
lution exacte du probleme avec des conditions aux limites de Dirichlet. Pour
la méme équation, un second schéma est proposé en utilisant une méthode de
Galerkin pour les discrétisations temporelles et spatiales. Sur le méme axe, une
transition vers les équations intégrales/intégro-différentielles est introduite. Une
nouvelle méthode d’écrire les fonctions de base, sous forme de combinaisons com-
pactes de polynomes orthogonaux utilisant I’ensemble des conditions initiales est
élaborée dans une méthode de Galerkin, en fonction de 'ordre de dérivation. Cer-
taines techniques numériques telles que l'utilisation de la quadrature de Gauss
sont également explorées pour plus de précision. Les derniers résultats sont liés a
I’étude des équations intégro-différentielles d’ordre fractionnaire. Des estimations
intéressantes sont formulées pour approximer la solution de tels problemes en util-
isant des polynomes orthogonaux dans une méthode de collocation. Toutes les
techniques présentées sont étayées par des exemples numériques traitant le maxi-
mum de cas possibles afin de démontrer 'efficacité des algorithmes proposés.
Mots Clés: Equations différentielles partielles, Approximation spectrale, Méthode
de Galerkin/collocation, Schéma de différences finies, Equations intégrales/integro-
différentielles, Equations fractionnaires, Polynémes de Legendre/Chebyshev,

Quadrature de Gauss.
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Notations

L?*(I) : the space of measurable functions on I with [jul|r2y < co.

H™(I) : the Sobolev space which is the vector space where a function v with

its distributional derivatives of order up to m belong to L*([).

€™(I,R) : the vector space where for each function v : I — R, D% exists

and is continuous for 0 < |a| < m.

€>(I) : the space of the infinitely differentiable functions on 1.
Py the space of polynomials of degree less than or equal to N.
Pk(a’ﬁ ) (x) : Jacobi polynomials.

Zk(x) : Legendre polynomials.

V() : Chebyshev polynomials of the third kind.
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General introduction

The main issue when studying differential equations is that the majority lack
explicit analytical solutions. As a result, many researchers turn to numerical
methods to obtain approximate solutions effectively. Currently, the challenge for
mathematicians is to develop suitable and accurate algorithms to obtain the re-
quired solutions.

The presented thesis aims to introduce some numerical approaches applicable to
different types of differential equations, mainly focusing on partial differential equa-
tions. It develops different algorithms that encompass a wide range of equations
and propose numerous schemes effectively used to approximate the solution.

Numerical analysis plays a crucial role in the development of calculation codes as
well as solving simulation problems or conducting mathematical experiments. It
has close links with information technology (IT). While the theoretical part is more
mathematical, its practical application generally involves implementing algorithms
on a computer. Its methods are based both on the search for exact solutions, as
in the case of matrix analysis or symbolic calculus, and on approximate solutions,
often stemming from discretization processes, as in the treatment of differential

equations.

Throughout history, to solve differential equations, finite differences methods
were the standard and most widely used numerical methods. These methods in-
volve approximating the values of the unknown function at a set of discrete points,
usually equally spaced within the interval of the study, using an appropriate step
size. This approach is called "local” because the approximate solution in known

only at a finite number of points.



Recently, another type of numerical methods has emerged and can be more
effective in some situations. These methods are based on the finite expansion of a
function using orthogonal polynomials, known as ”spectral methods” which have
gained significant interest in solving several types of equations. In spectral meth-
ods, the function u(z) is represented as an infinite expansion u(x) = S5 by ()
where {¢x(z)} is a sequence of basis functions (generally orthogonal polynomials
or a combination of orthogonal polynomials[29, [16]). The idea is to express the
solution as a finite sum of these special basis functions and compute as many
coefficients as possible {4} to obtain the simplest system, where the solution is

constructed from the coefficients of the approximation in the chosen basis [73]

u(z) ~uy(z) = Zﬁk@(x)

The main advantage of these methods is that once the spectral coefficients are
determined, the approximate solution can be directly evaluated at any point within
the study interval. This characteristic gives these methods a global approximation
nature. Due to their straightforward application, spectral methods provide inter-

esting results compared to other methods.

Thanks to the favourable properties of orthogonal polynomials (Legendre, Cheby-
shev, ...), spectral methods exhibit speed convergence. This implies that even with
limited data, these methods achieve a hight rate of convergence and spectral ac-
curacy [82]. The selection of appropriate basis functions plays a crucial role in
the implementation of spectral methods [80]. By choosing the suitable basis [81],
the resulting systems become simpler, with a special structure of matrices easy to
invert. This reduction in complexity reduces the cost of the method, enhancing

its efficiency and accuracy.

Spectral methods encompass different categories including Galerkin, colloca-
tion and tau methods. Galerkin and Tau methods are applied directly in terms
of the expansion coefficients. In Galerkin method, the test functions are identical
to the basis functions. An essential characteristic is that the basis functions are

constrained to satisfy the boundary conditions of the problem. In contrast, for the



Tau method, basis functions do not satisfy the boundary conditions. As a result,
other equations must be added to ensure that the global expansion does satisfy

the boundary conditions.

On the other hand, collocation method utilizes also the finite expansion, similar
to Galerkin and Tau methods, but it evaluates the solution at a specific number
of discrete points uy(x;). These points can be either equally spaced or not. The
optima choices for these points include nodes corresponding to highest precision
quadrature formulas or the zeros of orthogonal polynomials used as basis functions.
The collocation method is becoming increasingly popular for solving a wide variety
of differential equations. Notably, spectral collocation methods have been success-
fully applied to integral and integro-differential equations [49], for multi-order frac-
tional differential equations [31], for multi-order fractional equations with multiple
delays [22], two-dimensional fractional integro-differential equations with weakly

singular kernels [9] and systems of fractional differential equations [4, 50, [51].

Another type of spectral methods that also employs discrete values of the
unknown function and is regarded as a variation of the Galerkin method is the
Galerkin method with numerical integration. The objective of this latter is to pre-
serve the advantages of both the Galerkin and collocation methods. The integrals
that arise in the weak formulation are approximated using a precise quadrature

formula. For instance, we use in this thesis a Gauss-Lobatto integration formula.

As basis functions, spectral methods primarily utilize orthogonal polynomials
(such as Legendre, Chebyshev, etc.) to represent the numerical solution through
a finite expansion [32], 17]. Orthogonal polynomials, also known as eigenfunctions
of the Sturm-Liouville problem, have a wide range of properties. The significance
of Sturm-Liouville problems for spectral methods lies in the fact that the spec-
tral approximation of the solution of a differential equation is usually regarded as
a finite expansion of eigenfunctions of a suitable Sturm Liouville problem across
the entire domain. We opt for orthogonal polynomials for their several properties
depending on the interval of study, as they are the most common eigenfunctions

[43, [73], [T, [79, 10}, R3], [84]. Another option of basis functions is to create linear com-



binations of the orthogonal polynomials as a technical procedure. This involves
the use of more properties of these orthogonal polynomials, allowing us to derive
more benefits from them and potentially reduce the cost of the numerical method.
Due to the special properties of the chosen basis functions, spectral methods
achieve a rapid convergence rate and hight accuracy, ensuring spectral accuracy
when compared to other numerical methods like finite differences and finite ele-
ments methods [53] [14] [82].

In this context, we chose two kinds of orthogonal polynomials as fundamental
mathematical tools to elaborate the spectral schemes: Legendre and Chebyshev
polynomials. This choice was deliberate, as among the numerous properties that
characterise the orthogonal polynomials, these two kinds hold special importance.
Indeed, Legendre polynomials are orthogonal with a unit weight function which
makes easy their implementation. On the other hand, Chebyshev polynomials are
famous for their direct association with the trigonometric functions ”cosine” and
"sine”. However, unlike Legendre polynomials, the locations of their zeros are
known analytically. Furthermore, the Chebyshev polynomials, like the Legendre
polynomials, belong to a specific category of orthogonal polynomials known as Ja-
cobi polynomials. These polynomials correspond to weight functions of the form

(1 — 2)%(1 + x)” and serve as solutions of Sturm-Liouville equations.

Given the fact that mathematics provide essential tools to explain various phe-
nomena in the universe, differential equations were developed to establish connec-
tions between various influencing factors. The presented thesis aims to explore
various types of differential equations using different numerical approaches within
the same family of numerical methods, namely spectral methods. The leading
families of equations which consist the subject of this thesis are the family of
partial differential equations and the family of integral /integro-differential equa-
tions. These equations hold significant importance in modelling various real-world
phenomena. We note here that there is a direct link between the two families
of equations; every partial differential equation can be transformed to an integral
equation by just integrating it with respect to one of its variables. This proce-

dure aims to reduce the number of boundary conditions. Generally for evolution



equations, an integration for the temporal variable by making use of the initial

condition is a commonly employed practice.

The first equation is a partial differential equation known as the Advection-
diffusion equation. It is an evolution equation that is viewed as a prototype of

parabolic equations.

The second type of equations is the family of integral and integro-differential
equations. These equations involve an unknown function within the sign of the
integration (including the two categories of equations based on the boundaries
of integration) additionally, they also may contain the derivative of the unknown
function (integro-differential equation) with the same order as the order of deriva-
tion appearing in the equation. These types of equations which are generally
difficult to solve directly using classical methods and have been the main subject
of numerous numerical methods that aim to approximate the solution through re-
liable algorithms [53].

The third type of equations is the family of fractional equations, more precisely
integro-differential equations of fractional order. The concept of fractional calculus
has attracted interest of mathematicians and physicists due to its effectiveness
in describing various phenomena in biology [44] 55, 46], medicine [33] [74] 85
30], physics [38, [37], finance [75]. A significant number of real world problems
can be represented by differential equations involving fractional derivative. This
notion of fractional derivation generalises the classical derivative of integer order
to a derivation of a non-integer order. The two most commonly used definitions
of fractional integration and derivation are the Riemann Liouville sense and the
Caputo sense. These definitions are particularly valuable for their high explanatory
power in capturing memory effects which is needed in different real-world problems,

especially for medicine, physics, and finance.

Advection-diffusion equation

The advection and diffusion are two processes of significant importance in

real world applications. They describe physical phenomena involving the trans-



port of particles such as mass, energy, heat, humidity, pollutant and more. The
Advection-Diffusion equation has several engineering applications, including heat
transfer, water transfer in soils, chemical engineering, biosciences, as well as the
study of velocity, vorticity, and dispersion of tracers in porous media [41], [72, 20].
This equation is used to describe the transport of air and groundwater pollutants,
capturing the behaviour of contaminant or pollutant concentration distribution

through air, rivers, lakes and porous medium like aquifer.

This equation has been solved using many numerical methods, especially when the
boundary conditions are from Dirichlet or Neumann types. Boundary conditions
of Robin type, which consider a linear combination between the function and its
derivative, are used to model important and vital problems of chemical engineer-
ing and heat transfer. Mojtabi and Deville [66] considered the time dependent
one-dimensional linear advection-diffusion equation with Dirichlet homogeneous
boundary conditions. They observed that when the advection becomes dominant,

the analytical solution becomes ill-behaved and harder to evaluate.

The numerical simulation became very useful, easier, and more efficient in time,
particularly for time-dependent problems. Hutomo et al. [39] studied the numer-
ical solution of the advection-diffusion equation with variable coefficients. The
results obtained from the Du-Fort Frankel method for the 2-D advection-diffusion

equation align with those of the analytical solution.

Integral and integro-differential equations

In recent years, integral equations and integro-differential equations received
significant interest from researchers in various scientific fields. Mathematicians
and physicists have recognized the importance of this kind of equations, which are
employed in fundamental problems in biology, medicine [77], chemistry, electro-
statics, fluid dynamics, physics [86], economics [34], engineering [78], mechanics

[6], potential theory [8], problems of gravitation [21] and more.

When discussing numerical methods for integral and integro-differential equations,

many studies have shown interest in this area. Doha et al. [25] used shifted Ja-
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cobi polynomials in spectral collocation method to solve integro-differential equa-
tions and systems of integro-differential equations. In [26], the authors developped
a collocation procedure using cubic B-splines for linear and nonlinear Fredholm
and Volterra integral equations. Fathy et al. [28] presented a Legendre-Galerkin
method for the linear Fredholm integro-differential equations, while Nemati in [71]
used the shifted Legendre polynomials to approximate the solution of Volterra-
Fredholm integral equations. Other researchers, such as Cernd et al. [18], Moghad-
dam et al. [62], [63] used B-spline wavelets; Maleknejad et al. [58] Haar wavelets
and Lakestani et al. [48] utilized multi-wavelets to solve numerically integral and
integro-differential equations. Moghaddam et al. in [64] developped fractional fi-
nite differences method, Biger et al. [I1] investigated Bernoulli polynomials, Doha
et al. [23] used ultraspherical polynomials, Jalilian et al. [42] used the exponential
spline method, Meng et al. [6I] and El-Sayed et al. [27] employed alternative
(shifted) Legendre polynomials, Mandal et al. [59] used the Bernstein polynomi-
als, Machado et al. [56] employed the reduced differential transform, Loh et al.
[52] used Laplace transform and resolvent kernel method, and Mokhtary et al. [67]

used the spectral methods to solve numerically integro-differential equations.

Fractional integro-differential equations

In order to expand the field of study of fractional equations, numerous nu-
merical methods were developed to encompass various types of these equations.
For this, there has been significant interest in solving fractional integro-differential
equations using many numerical methods [36, 57, 13| [5], with specific emphasis
on collocation methods. In [12], the authors used a wavelet collocation method to
solve Fredholm Fractional integro-differential equations. Doha et al. in [25] used
a Shifted Jacobi polynomials to establish a Gauss collocation method for frac-
tional integro-differential equations, encompassing linear and nonlinear Volterra,
Fredholm, mixed Volterra-Fredholm, and system of Volterra equations. In [2],
the authors investigated the first kind of Bessel polynomials in a collocation tech-
nique to approximate the solution of a linear Fredholm-Volterra fractional integro-
differential equations of multi-hight order. Additionally, in [87], an implemen-
tation of a collocation method using shifted Legendre polynomials coupled with

Gauss-Legendre quadrature is presented. Rahimkhani et al. [76] used alternative

7



Legendre functions for nonlinear fractional integro-differential equations. Other
works, such as [89, 54, 88] also contribute to the exploration of numerical methods

for solving fractional integro-differential equations.

Our motivation for the presented thesis is to elaborate a suitable numerical
method based on spectral methods to approximate the solution of each proposed

equation. The thesis is divided into four chapters.

e In chapter 1, we present some essential preliminaries of orthogonal polyno-
mials and Gauss type quadratures and, illustrating their direct link with the
numerical approximation through various numerical applications. The chap-
ter emphasises basic properties crucial for the development of the numerical

approach of each equation.

e In chapter 2, two spectral techniques are presented to study the advection-
diffusion equation. In the first one, we propose a spectral method to approx-
imate the solution of the advection-diffusion equation with Robin boundary
conditions. The approximation relies on a special basis, involving a specific
linear combination of Legendre polynomials that satisfy boundary condi-
tions [43] 14, 82]. Analytical results in the form of stability and convergence
theorems are also derived in this study to investigate and reinforce spec-
tral accuracy [7, [19]. Moreover, the temporal solution is established using
a Crank-Nicolson scheme with an appropriate temporal step [3]. In this
study, we seek for taking the advantage of Legendre polynomials and Gauss
types quadrature to apply Galerkin and Crank-Nicolson methods, in order
to obtain the best approximate solution. To get the best results from spec-
tral method, especially when calculating integrals, we introduce a Gauss
type quadrature using Legendre-Gauss-Lobatto nodes and their correspond-
ing weights. Due to their high accuracy, Gauss formulas play fundamental
role in the theoretical analysis of spectral methods. The possibility of inte-
grating polynomials just by knowing their values at M points will be widely
used; in addition, the fact that the points x = —1 and x = 1 are included in
the nodes is very important for imposed boundary conditions [29, [73].

The second technique uses the spectral expansion for both spatial and tem-



poral discretizations. First, the problem is reduced to its integral form by
taking into account the initial condition. Then, the same linear combination
of Legendre polynomials that satisfy boundary conditions, as for the first
approach, is used to approximate the solution. This technique calls upon
using the Kronecker product to write the matrix form of the system, which
will be next solved by a Gauss elimination method. The proposed scheme

show applicability for integral equations as for partial differential equations.

In chapter 3, we elaborate a spectral approximation governing both integral
and integro-differential equations of linear and nonlinear forms. We apply
the shifted-Legendre-Gauss collocation method with a specific combination
of shifted-Legendre polynomials as basis functions and the nodes of shifted-
Legendre-Gauss interpolation as collocation points. The form of the basis
functions is determined according to the order of the equation. The initial
condition of the problem influences the choice of the basis functions, leading
to simple systems solvable in both linear and nonlinear cases. For linear
systems, we solve directly by Gauss elimination method, and for nonlinear
systems we use a Newton algorithm by calculating the Jacobian matrix. The
proposed scheme holds significant practical value since it uses a distinctive
set of basis functions, presented as a linear combination adapted to the order
of the integro-differential equation. Moreover, the case of integral equations

may be directly derived as a special case of the proposed study.

In chapter 4, we propose an efficient spectral method: the shifted Chebyshev-
Gauss collocation method, based on the zeros of Chebyshev polynomials of
the third kind to approximate the solution of a mixed Volterra-Fredholm
integro-differential equation of fractional order. We express the solution as
a finite expansion of shifted Chbyshev polynomials of the third kind, after
substituting the approximation in the studied problem and considering the
collocation, and we evaluate integrals using Chebyshev-Gauss quadrature.
Depending on the linearity of the term that contains the unknown function
under the integration we study two cases. In the linear case, we obtain a
simple algebraic system that we solve by a Gauss elimination algorithm. For

the second case, we consider a power-type nonlinearity of the unknown func-



tion, and we obtain a nonlinear system for which we calculate the jacobian
matrix and solve it using a Newton algorithm. This scheme is considered
as a suitable method because of its simplicity and accurate results obtained
for different examples. One of its advantages that it treats different types of
integro-differential equation: Volterra, Fredholm, mixed Volterra-Fredholm
in both linear and nonlinear cases. Moreover, the use of Chebyshev polyno-
mials of the third kind is highly significant; due to their numerous properties.
These polynomials simplify the calculations, serving as an orthogonal basis
that can be written as a compact combination of Chebyshev polynomials
of the second kind. This characteristic facilitates the development of an
accurate algorithm of approximation to gain the spectral accuracy: the well-
known advantage of spectral methods. Furthermore, an error analysis is
conducted and numerical results are exposed to validate the effectiveness of

the proposed method.

The tools used to produce this thesis are as follows:

References: all books and papers used in the elaboration of this study are cited
at the end of this thesis in the reference section.

ETEX: for the production of this thesis.

MATLARB: for all algorithms used in the numerical approximation and the pro-
duction of all figures and results of tables. All the computations were carried out
in double precision using Matlab 9.8.0 (R2020a), and executions were done on
AMD Ryzen 5 5600X 6-Core, 3.70Ghz Desktop.
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Chapter 1

Preliminaries

In spectral methods, the approximation of solutions is related to the use of orthog-
onal polynomials or their combinations as basis functions. Orthogonal polynomials
gain their importance from the well-known Sturm Liouville problem. It is crucial
to note that the Sturm Liouville problem manifests as an eigenvalue problem of

the form

— (pu') 4+ qu = wu in[ (1.1)

with suitable boundary conditions for u

where I is an open interval in R, the continuous functions p: I - R, ¢ : I — R,
w : I — R satisfying p > 0 in I and the weight function w is continuous, nonneg-
ative and integrable over [.

When p vanishes for at least one point on the boundary, the problem is
considered singular. Particular importance is attributed to this kind of problems,
where the eigenfunctions are algebraic polynomials, owing to the efficiency they
provide in numerical evaluation. The exclusive set of polynomials eigenfunctions of
a singular Sturm-Liouville problem comprises precisely the family of Jacobi poly-

nomials.

This chapter addresses the fundamental aspects of orthogonal polynomials. First,
our focus lies in the family of Jacobi polynomials. Then we introduce the basic

properties of Legendre polynomials and Chebyshev polynomials, specifically the
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1.1 Jacobi polynomials

Chebyshev polynomials of the third kind. It is noteworthy that we provide proofs
for the most important properties used in the subsequent chapters.

We denote by Py the space of polynomials of degree less than or equal to N and
I=]-1,1].

1.1 Jacobi polynomials

The family of Jacobi polynomials encompasses all polynomials solutions of the
singular Sturm-Liouville problem with p(z) = (1 — 2)*(1 + 2)'#, ¢(z) = 0, the
weight function w®# (z) = (1 + 2)*(1 — x)#, and the corresponding eigenvalues
M. = k(k+a+ 5+ 1), where a and (8 are two indices characterizing the Jacobi
polynomials Pk(a’ﬁ ) (x) of degree k.

These polynomials depend on the parameters o, € R with o, > —1. An
appropriate selection of these parameters leads to define some well-known families
of orthogonal polynomials. Specifically, for a« = [, we retrieve ultraspherical
polynomials (symmetric Jacobi polynomials). For the special cases « = 8 = 0
and o = f = F1/2, we obtain standard Legendre polynomials and the Chebyshev
polynomials of the first and the second kinds, respectively. The third and the
fourth kinds of Chebyshev polynomials represent two significant special cases of
nonsymmetric Jacobi polynomials with o = —f = £1/2.

Hereafter, we present some useful formulas and properties.

e Jacobi polynomials are the unique polynomial solutions of (I.1}) with the

P (1) = (k . O‘) (1.2)

normalization condition

and they can be expressed using the formula

P () = 2172 (k Jlr a) <th) (2 =1D'(z+D" (L3)

e Another representation is provided by the Rodriguez formula

(=" —a g df otk +k
k| (1-2)"*(1+x) 5@((1_-@ (14—1’)’3 ). (1.4)

P(a) =
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1.1 Jacobi polynomials

e Jacobi polynomials satisfy two recurrence formulas:

P 2) =1, P*(2) = % ((a—B) + (a+B+2)z),

a, a2k «, a3,k «,
PO (@) = 2P (@) — 2E P (1), (1.5)
ay Qa1

where

arg=2k+1)(k+a+B8+1)2k+a+p),

B B 2D(2k + a + B +3)
G = 2k +a+ 1)’ -5+ Tk+a+p)

asy =2(k+ a)(k+ B)2k + a+ 5+ 2);

and
d a8 ba k(%) p(e) bk() p(asp)
C pled) gy = 24T plag) g D3k placs) ) 1.6
dx k ( ) b17k<x> k ( ) bl,k(x) k—1 ( ) ( )

where

bii(z) = 2k + o+ B)(1 — 2?),
bor(x) = k(o — 5 — (2k + a + fB)x),
bsk(z) =2(k + ) (k + B).
e Jacobi polynomials satisfy the following relations:

PP (—z) = (~1)FBP (@),
(=D (k+ B+ 1)

(a.8) _
o 'k 1
P,E ”8)(1) B /i!F—(i_aa—ile))'

e Additionally, the formula of their derivatives is given by:

d™ a.8) Lk tm+a+B8+1) (armpsrm)
Pl =2 pletm
dzm” k () Fk+a+p+1) ~Fm

The special case for the first derivative is expressed as:

(z); (1.8)

d 1 o
ap,g A (z) = gk +1+a+t BYPLTLA (4, (1.9)

e With the weight function w(®?(z) = (1 4+ 2)*(1 — z)?, we can define the

weighted space L2 , 5 (I) with the following inner product and norm:

(1,0 o) — / u(@)o(2)w @ (z)dz,

1
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1.2 Legendre polynomials

1/2
[ull oy = (u,u) 2 (1.10)

The set of Jacobi polynomials forms a complete Lfv(aﬁ) orthogonal system.

This is why these polynomials play a key role in spectral methods.

e Any function wu(z) which is square integrable can be expressed using the

Jacobi series as: .
=3P (1.11)
k=0

where

o _2%ktatftl  KO(ktatf+l)
P 2am 1 T(kta+ DD(k+B+1)

X / 1 w(z) PP (2)(1 — 2)*(1 + z)°dx.

1

1.2 Legendre polynomials

Legendre polynomials are the eigenfunctions of the singular Sturm-Liouville prob-
lem ([1.1]) with p(z) =1 — 22, ¢(z) = 0 and w(z) = 1.

Let % (z),z € I denotes the standard Legendre polynomial of degree k which is
even when k is even and odd if k is odd.

Here is a collection of the essential properties for Legendre polynomials:

e The family of Legendre polynomials {Z}(z)}ren constitutes a Hilbert basis
of L*(I).

They are solutions of the following differential Legendre equation [29, [16]

(1-2%) .2 (z) — 225, (x) + k(k+ 1) L(z) =0, k>0. (1.12)

They satisfy the recurrence relations:

(1 — 2L (2) = —ka L (2) + kLo (2), (1.13)
L () = (k+1)Z(2) + 2.2 (), (1.14)

They can be expressed in the Rodrigues formula:

(—1)F d* .
il aer L)
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1.2 Legendre polynomials

e The polynomial .Z;(x) is of degree k for all k € N, and the coefficient of its
(2k)!
2k (k)2

highest degree term is

The principle property of Legendre polynomials is the orthogonality property.
They satisfy the orthogonality relation with respect to the weight w(z) = 1 in
[_17 1]

1 1
2
Vk #j €N, / Zip(2)Zj(x)de =0 and LE(r)dr = . (1.15)
1 1 2k +1
The first Legendre polynomials are given by:
D%(l’) = ]-7 jl(x) =7, XQ(I) = (31’2 - 1)/27
L(x) = (ba® — 32)/2, ZLi(x) = (352" — 302* + 3)/8.
In particular cases, we have:
[
Z(1) =1, Z(-2)=(-D" L), Z(-1) = (-1 (1.16)
* k(k+ 1) k(k+ 1)
/ + / +
2 =" gy = g )
We give also some other properties of Legendre polynomials:
® Vi € [7 ‘gk(x)’ < 1
o Vrel, |ZL(x)<HEL
[ ]
(k+1) Li(z) = 2k + D ZLi(z) —n Loa(x). (1.18)
[ ]
N-2 1
Li(x) = (k+ 5) (N(N+1) = k(k+1)) Z(x). (1.19)
k=0
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1.2 Legendre polynomials

e A function u which is square integrable can be expressed in terms of the

Legendre polynomials as:
ule) = 3 i), (1.20)

where

05

=
<>
6,\
s*

‘ —k=0 — k=1 —k=2 —k=3 — k=4 k=5 = k=6 —k=7 —k=8 k=9 — k=10 ‘
4 T T T T T T T
-1 0.8 -0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1

X

Figure 1.1: The first Legendre polynomials for k£ = 0,.. ., 10.

1.2.1 Shifted Legendre polynomials

In order to generalize the use of these polynomials in any interval of the form [0, /]
and for the elaboration of numerical methods, the shifted Legendre polynomials
are introduced by implementing the change of variable ¢t = =£ — 1, with the spe(na,l
case t = 2z —1 for [0, 1]. The polynomial obtained, denoted as .,%(23: 1) by fk( ).
Using basic properties of Legendre polynomials, the shifted Legendre polynomials

are derived using the following recurrence formula:

(2 + 1)(2t — 1) ~ N
Grn 20 gy

9271@+1(t) =
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1.8 Chebyshev polynomials

and the first ones are
L) =1, LAt)=2—1, L(t)=06t>—6t+1.
It is noteworthy to mention the special cases
Z0) = (-1, Z(1) =

These polynomials satisfy also the orthogonality condition with respect to the

weight function w(t) =1 on [0, 1] with the inner product:

1
(.Zk / ,Zk %—H(Skj, (1.21)

where d; is the well-known Kronecker delta function.

1.3 Chebyshev polynomials

What gives the various polynomials their power and relevance is their close rela-
tionship with the trigonometric functions ”cosine” and ”sine”. We are all aware of
the power of these functions and their appearance in the description of all kinds
of natural phenomena, and this is undoubtedly the key to the versatility of the
Chebyshev polynomials.

This property is the origin of their widespread popularity in numerical approxima-
tion. The transformation x = cosf enables many mathematical relations, as well
as theoretical results, to be readily adapted to the Chebyshev system.

As mentioned before, there are four kinds of Chebyshev polynomials:

Chebyshev polynomials of the first kind
Ti(x) = cos kO, with x = cos. (1.22)
Chebyshev polynomials of the second kind
Uk(x) = sin(k 4+ 1)8/sin 0, with z = cos . (1.23)
Chebyshev polynomials of the third kind

Yi(x) = cos(k + )«9/ cos — 9 with x = cos 6. (1.24)
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1.8 Chebyshev polynomials

Chebyshev polynomials of the fourth kind
) 1 1 )
Wi(z) = sin(k + 5)9/ sin 59, with = cos 6. (1.25)

These polynomials have connections among each other, and we can mention some

interesting formulas:

i) = 5 (4(e) + Wilo)); (1.26)
V() + Vi1 (x) = Wi(z) — Wi_1(x) = 2Tk (2); (1.27)
Vie(x) = 8 "1 (s), Wi(z) = Usp(s); (1.28)

where s = (3(1 + 2))"/2 = cos 16.

It is worth mentioning that a new family of symmetric orthogonal polynomials
was recently developed using a certain generalized Sturm-Liouville problem. This
family includes some well-known classes of orthogonal polynomials like the four
kinds of Chebyshev polynomials and generates new ones. Special mention is given
to two new classes of orthogonal polynomials, which have some links with the first
and second kinds of Chebyshev polynomials and are called Chebyshev polynomials
of fifth and sixth kinds.

Hereafter, we choose to discuss Chebyshev polynomials of the third kind since they

will be used next in this thesis.

1.3.1 Chebyshev polynomials of the third kind

We denote by #;(z) the Chebyshev polynomials of the third kind of degree k, the
polynomials defined for x € [—1, 1]
cos (k + %) 0

Ti(@) = COS (10) 7

where z = cosf and 6 € [0, 7].

Here are some principle properties of these polynomials:

e 7i(z) are orthogonal polynomials on [—1, 1] with respect to the weight func-
1 1

tion w(x) = (1+2)2(1 —x)"2

/1%(x)”//j(m)(1—|—x)§(1 —x)_%dx = 0y, (1.29)
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1.3

Chebyshev polynomials

V() satisfies the recurrence relations:
V() =221 (x) — Veo(x), forall k>2
with %p(z) =1, and 7%(x) =2z — 1.
V() are solutions of the differential equation:
(1 —22) y"(z) + (1 —22) o/ (2) + k(k + 1) y(x) = 0.
The zeros of the polynomial #;(z) are of the form:

L
avzycl-:cosM 1=1,2,... k.

N =1, %(=1) = (=1)2k +1).

The analytical form of the Chebyshev polynomials of the third kind ¥ (x)
of degree k is
S (2% + DI )
- vk 2+ DIk —i+1 .
Y (1) = —1)i(2)k 1)kt zZ*. (1.
He)= 2 (') TGt Or@h—aigy et keZr. (130)

1=0

A connection between the different kinds of Chebyshev polynomials can be
derived. Chebyshev polynomials of the third kind can be obtained from the
Chebyshev polynomials of the second kind by the relation:

V(x) = Up(x) — Up—1(),

where Uy (z) refers to the Chebyshev polynomial of the second kind of degree
k.
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1.8 Chebyshev polynomials

Figure 1.2: The first Chebyshev polynomials of the third kind for £ =0, ..., 10.

1.3.2 Shifted Chebyshev polynomials of the third kind

We define the shifted Chebyshev polynomials of the third kind using the change
of variable s = 2z — 1 by #(x) = %(2z — 1).

o 7 (x) are orthogonal polynomials on [0, 1]

/o1 V() Vj(2)22 (1 — 2)"2de = - 0. (1.31)

° VNk (x) may be produced by employing recurrence relations:

~

Vi(x) = 2(22 — 1)”/7,;_1(55) - ”/7;;_2(55), for all k> 2,
%(:p) =1, and ”/Z(x) =4x — 3,
7:(0) = (=1)*(2k + 1), and (1) =1, forall k> 0.

e The analytical form of shifted Chebyshev polynomials of the third kind of

degree k in x is:

k .
Til) = 3 (~1)i(2)® F(?fjll)?&k__;ﬁ% A kezt.  (1.32)

1=0
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1.4 Gauss type quadratures

e The zeros of the polynomial ”//k(x are of the form:

)
L( (i-3)7 -
$i:§ <co k’—i—2% + >, 1=1,2,...,k. (1.33)

e A function u(z), which is square integrable in [0, 1], can be expressed in

terms of shifted Chebyshev polynomials of the third kind as:
+00 e
r) =Y i Yi(x), (1.34)
k=0

where for £k =0,1,2,...
2 [t ~
G = 2 / w(@)Fi()e
0

™

l\)\b—l

(1—z) 2da. (1.35)
For x € [—1, 1] the coefficients 4y are given by:

ﬁk:l/lu<x_2'—1>”//k(x)(1 21— ) Hda. (1.36)

1.4 Gauss type quadratures

To gain more efficiency in calculating integrals when applying numerical methods,
different types of numerical quadratures where developed. In this section, we
discuss Gauss type quadratures, which are the most popular and precise since
they have close links with orthogonal polynomials, and their exactitude is with
the highest degree, which is less or equal to 2N + 1.

First, we introduce the Gauss integration formula and for a more general approach,
we also introduce the Gauss-Lobatto integration formula, which will be used in the
subsequent part of this thesis. The cases of Legendre polynomials and Chebyshev

polynomials are also discussed.

1.4.1 Gauss integration

Theorem 1.1 Let’s xg < x1 < --- < xn be the roots of the (N + 1)-th orthogonal

polynomial fyi1 and let wy, ..., wy be the solution of
N 1
Z(:Uj)kwj = / *w(z)dx, 0 <k < N.
j=0 -1
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1.4 Gauss type quadratures

Then w;j >0 for j =0,...,N and

N 1

> fahus = [ fau(opde, VF € Pavan, (1.37)
=0 -1

where w; are called weights.

It should be noted that it is impossible to find x;,w; for j =0,..., N such that the

last formula is exact for all polynomials f € Poyyo.

When using this type of quadrature, especially in collocation methods for differ-
ential equations, one needs to take into account the boundary conditions that are
generally imposed at one or both end points. For this reason, the Gauss integration
formula is generalised to include these points. We discuss here the Gauss-Radau
formula which includes one hand side of the interval, and the Gauss-Lobatto for-
mula, which takes both left and right hand sides of the interval. We choose here

to focus on the latter since it will be used in the following chapters.

1.4.2 (Gauss-Lobatto integration

Theorem 1.2 Consider the following polynomial:

9(x) = fna(@) + afn () + bfn-a(2), (1.38)

where a and b are chosen so that g(—1) = g(1) = 0. Let —1 = zp < 21 < -++ <
xy =1 be the N + 1 roots of the (1.38]), and let wy, ..., wy be defined in Theorem
1.1l Then,

Zf@j)wj - /1 fl@)w(z)dz, Vf € Poy_1. (1.39)

To be precise, the corresponding nodes and weights of quadrature for Legendre and
Chebyshev polynomials are cited hereafter. For Legendre polynomials, explicit for-
mulas of the nodes are not known, necessitating numerical computation. However,
explicit formulas for both the nodes and weights of Chebyshev polynomials are

available.
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1.5 Numerical application of orthogonal polynomials

Gauss-Legendre quadrature

x; are zeros of Lyi1(z),

2 . (1.40)
w,; = 7 ,7=0,...,N.
T (1= a) [ L ()]

Legendre Gauss-Lobatto quadrature

ro = —1, xy = 1, x; are zeros of Ly (),
, (1.41)
w, = ; — 0, . e 7N.
TN D )P
e Chebyshev Gauss quadrature
x; = Ccos (2) + D
T 2N+2 (1.42)
= 1 =0,...,N.
7 N—|— 17 J ) )
e Chebyshev Gauss-Lobatto quadrature
mJ
Tj = Cos —
J - N’
A TN
N, J=1,..., — 1.

1.5 Numerical application of orthogonal polyno-

mials

Orthogonal polynomials find numerous applications, with the numerical applica-
tions being the most commonly used in mathematics, science and engineering.
One significant application is in approximating functions, where a given function
can be written as a linear combination of orthogonal polynomials. Additionally in
numerical integration, especially in the Gaussian quadrature, nodes and weights
derived from orthogonal polynomials are well-known for the high accuracy in ap-
proximating integrals. Another application consists in curve fitting and regression

analysis where orthogonal polynomials are used to find the best polynomial that
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1.5 Numerical application of orthogonal polynomials

models a set of points. Furthermore, these polynomials play a crucial role in solv-
ing differential equations, eigenvalues problems, and setting error analysis are also
widely used.

To demonstrate the broad application of orthogonal polynomials, some numerical

investigations are presented in this section.

Example 1.1 Approximation of functions and derivatives
To demonstrate the efficiency of orthogonal polynomials and their roots in approxi-

in[—1,1].
1+ 22
Starting by expressing the Chebyshev expansion serie of u(x) using the Chebyshev

mating functions, we consider the example of the function u(x) =

polynomials of the first kind,
u(z) =Y i Ti(), (1.44)
k=0

A Natural approximation of u(x) can be obtained using the first N + 1 terms of

this sum:
N
k=0

To determine the expansion coefficients {uy}, we utilize the Chebyshev Gauss

points defined in (1.42)):

N
uy(z;) =Y Ti(x;), j=0,...,N. (1.45)
k=0

To highlight the significance of using such points, Table provides the results
of the mazximum absolute error &,,q.. obtained with different values of N in two

distinct cases:

e Case 1: When using the Chebyshev points as a subdivision of [—1,1] in
(1.45)).

e Case 2: When using equidistant subdivision (homogeneous discretization) of
the interval [—1, 1].
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1.5 Numerical application of orthogonal polynomials

Where

@@maa: = max ’uN(xj> - U(I]N

0<j<N

Table 1.1: Maximum absolute er-

Emaz (case 1)

Emaz (case 2)

ror values &, when approxi- 4 1.1102e — 16 0

mating u(z) = 5 using 8 1.1102¢ —16  5.5511le — 16
16 2.2204e — 16 2.0539% — 14
32  5.5511le — 16 8.6435e — 10
64 7.7715e — 16 1.2766e + 01
128 4.4408e — 16 3.0765e + 00
256  6.6613e — 16 2.4847e + 01
512 2.1094e — 15 8.1179e + 01

The advantage of using the Chebyshev points instead of equidistant subdivision lies
in achieving stability. The values of &p,qr are of the same order regardless of the
value of N, reflecting stability.

This behaviour is also observed when approzimating the function u(x) = sin(x) in
[—1, 1] using the Chebyshev expansion series. The error remains at the same order
of 1071 for all the values of N when the Chebyshev points are used. In contrast, for

N = 64, the approximate solution diverges when using an equidistant subdivision.

Table 1.2: Maximum absolute N & (case 1) Ean (case 2)
error values &,,,, when approx- 4 1.1102e — 16 3.3306e — 16
imating u(x) = sin(z) using 8  2.2204e — 16 8.8817e — 16
(11.45)) 16 4.4408e — 16 1.5343e — 13
32 3.3306e — 16 1.6117e — 09
64  3.3306e — 16 2.0333e + 01
128 7.7715e — 16 5.8426e + 00
256  1.2212e — 15 6.0390e + 01
512 1.9984e — 15 2.4772e + 02

Now, in order to approxzimate the derivative of u(x) = sin(x) in [—1,1], starting
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1.5 Numerical application of orthogonal polynomials

from the Chebyshev expansion serie of u(x) given in (1.45)), we can express it as:

N
w(T5) :E Tk,x]
k=0

This formula can be simplified to the following matrix expression:
v = pWy, (1.46)

where UMW = [y (xo), ..., un(xn)]T, U = [un(xo), ..., un(zy)]T, and DY is an
(N + 1) x (N + 1) matriz known as the differentiation matriz, with its elements
given by:

DY) = Ty(z;), 0 < j.k <N,

or in an explicit formula as:

o 2N?2+1 1 2N? +1
D((),g = 6 7 D](V,)N = - 6 9
—2(1% i =k #ON
1 J
DY) = 6o (1.47)
=L % k.
vty =z 7

The same formula as (1.46) can be generalised for a derivative of order p where
the matriz D) is formulated as D® = (D(l))p. For the special case of the second

deriwative, the approrimation can be obtained using the matriz formula:
U? = DAy, (1.48)

The results of approximating the first and second derivatives of u(z) = sin(x) are
collected in Table . The maximum absolute error &, 1S calculated for both the
first and second derivatives using (1.46|) and (1.48]) respectively.
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1.5 Numerical application of orthogonal polynomials

Table 1.3: Maximum absolute error values when approximating the derivatives of
u(zr) = sin(x). &l for the first derivative using (1.46) and &2, for the second
derivative using (T.48) where D = (D)2

N &L, E

4 7.8488¢—03  8.558le — 02
8  3.3365¢ — 07  1.4335¢ — 05
16 8.7485c — 14 9.7534c — 12
32 49152 — 12 2.0815¢ — 09
64 1.9982 — 11  4.2776e — 08
128 5.4066c — 10  3.9686¢ — 06
256 1.1682c — 08  3.4141e — 04
512 1.5016e — 07 1.5013¢ — 02

It’s worth mentioning that when using a numerical method, the implementation
of a mathematical formula in a programming language is of great importance. An
accumulation of the error calculated for a given method can be observed to increase.
One can justify this phenomenon by the considering roundoff errors, as the preci-
sion on our computers is limited. Therefore, the growth of error values becomes
noticeable. To reduce the error accumulation, different techniques concerning the
way of writing mathematical formulas are developed. This is especially crucial for

the matriz calculations, as they are prone to significant errors.

Example 1.2 Approximation of integrals

As mentioned earlier, orthogonal polynomials play a crucial role role in calculating
integrals numerically. The Gaussian type quadrature relies basically on the values
of the function to be integrated at the zeros of orthogonal polynomials to provide an
estimation of the integral. Another technique that also utilizes orthogonal polyno-
mials is known as the Clenshaw-Curtis type. The fundamental idea is to consider
the interpolating polynomial of degree N of the function and then integrate it, with
the help of some important properties of orthogonal polynomials.

In the following, we provide a brief description of the technique using the Cheby-
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1.5 Numerical application of orthogonal polynomials

shev polynomaials of the first kind as an illustrative example.

The goal is to determine an approximate value of the integral:

I= /_1 w(x)f(x) da.

1
Using the interpolating polynomial of degree N, denoted as Py f, which interpolates
the function f at the zeros of Tny1(x) instead of f in the formula of the integral

provides a natural approximation of the integral:
1
I~Ty= / w(z) Sy f(x) de
-1

where the interpolating polynomial of f using the Chebyshev polynomials of the
first kind is given by:

Inf(x Zuj
Then

Iy = Z,uj/ w( ) do = Z,u]pj, (1.49)

where p; = fjl w(x)T;(x) dz. Now, in order to find an explicit formula to evaluate
the value of Iy, we investigate the properties of Chebyshev polynomials. Using
the discrete orthogonality formula of Chebyshev polynomials, which is a natural
extension of the continuous orthogonality relationship, we replace the integral with

the summation in the Chebyshev points as follows:

N+1

ZTxk (zx) =0, 9 # 7, 1,7 < N.

(N+1), i=0, (1.50)
Q5 = 1
5(]\7 +1), i #0.
leads to
N+1 N+1
> fa)Ti(an) N f () Ti(r)
k=1 k=1
N N+1
- Z Z = WO,
j=0 k=1



1.5 Numerical application of orthogonal polynomials

Then,
N+1

pi= 3 F) T,
" k=1

By replacing the last formula in (|1.49)), we obtain

N+1
Iy =Y wif(an) (1.51)
k=1
where
N o N 2,
Wy = T () = LT ().
k jzoajj ]( k) jZON+1 J( k)

Then, Ly is determined by calculating the integrals in the formula of p;.
For the specific choice of the weight function corresponding to the Chebyshev poly-

nomials of the first kind w(z) = (1 — 2%)~Y2, we obtain

1 ™ m, =0,
p; = / (1 — 2 V2Ty(x) da = / cos(j0) df = .

-1 0 07 J > 07

so that
T
w =
TN+

Hence,

N+1

/_ (1-— 1‘2)*1/2]‘(1') der ~ Iy = NL—H ; f(zr),

1

which corresponds exactly to the Gauss-Chebyshev quadrature formula mentioned

above.
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Chapter 2

Advection-diffusion equation

In this chapter, we study the advection-diffusion equation in two different ap-
proaches. The first one aims to develop a numerical approximation for the solution
of the advection-diffusion equation with constant and variable coefficients. We pro-
pose a numerical solution for the equation associated with Robin’s mixed boundary
conditions perturbed with a small parameter €. The approximation is based on a
couple of methods: A spectral method of Galerkin type with a basis composed of
Legendre-polynomials and a Gauss quadrature of type Gauss-Lobatto applied for
integral calculations with stability and convergence analysis. In addition, a Crank-
Nicolson scheme is used for the temporal solution as a finite difference method.
Several numerical examples are discussed to show the efficiency of the proposed
numerical method, especially when ¢ tends to zero, so that we obtain the exact
solution of the classic problem with homogeneous Dirichlet boundary conditions.
The numerical convergence is well presented in different examples. Therefore, we
build an efficient numerical method for different types of partial differential equa-
tions with different boundary conditions.

The second approach is based on using a spectral technique for both temporal and
spatial variables. We propose first to write the integral equation corresponding to
the advection-diffusion equation using the initial condition of the problem. Then,
a suitable combination of orthogonal polynomials is selected to verify the bound-
ary conditions and apply the Galerkin method. This procedure leads to write

the expansion coefficients of the approximate solution in a matrix form and then
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2.1 First approach

compressing it into a one-dimensional vector. The obtained system is re-adapted
using the Kronecker product and solved using a Gauss elimination method. The
numerical examples proposed at the end of the section, show the efficiency and
high applicability of the suggested technique.
This chapter is divided into two main sections as follows:

In the first part, we start by delineating the problem under study and providing
some preliminaries in Section [2.1.1] Subsequently, in Section we proceed
for the weak formulation of the problem and outline the proposed method by
detailing the primary steps of spatial and temporal descritization in Section [2.1.3].
Following that, in Section stability and convergence results are established.
In Section [2.1.5] several numerical examples are presented and discussed to affirm
the reliability of the described method.

In the second part, we start by introducing the studied problem in Section [2.2.1]
The details of proposed technique are described in Section [2.2.2] and finally the

numerical simulation is provided via different examples in Section [2.2.3

2.1 First approach

The obtained results are the subject of an article entitled ”Efficient Spectral Leg-
endre Galerkin Approach for the Advection Diffusion Equation with Constant and
Variable Coefficients under Mixed Robin Boundary Conditions” published in Ad-
vances in the Theory of Nonlinear Analysis and its Application, 7, 133-147, 2023.

2.1.1 Description of the problem and preliminaries

In this part, we examine a model of advection-diffusion equation represented as

ou ou 0%u

E(t,x) + a(m)%(t, T)— b(x)@(t,x) = f(t,z), (2.1)

This model is coupled with initial and the boundary conditions of Robin type,
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2.1 First approach

perturbed with a small parameter € > 0, given by

u(0,z) = g(x),
u(t,—1) — 5%(1&, —1) =0, (2.2)
u(t, 1) + 8%(75, 1) = 0;

where
e u(t,z) is the unknown function,
e z €[—1,1], t > 0 are the proposed variables,

e The coefficients of advection and diffusion are a(x) > 0 and b(x) > 0, re-

spectively, defined in ¢'([—1, 1]), taking the polynomial form.
o f€%([0,1],]—1,1]) and g € €(|—1, 1]) are given functions.

We define L?(I) as the space of measurable function v on I such that ||v|| < +o0.

The scalar product and the L? norm are respectively defined by

(1) = (00)sz = [ul@o(@)dos (ol = @0)2n

1

For every positive m, the Sobolev space is defined as:
m 2 d*v 2
H"(I)=qve Ll (I): 0<k<m, WEL (I)¢,
x

where the standard semi-norm and norm are given respectively by:

2 1/2
LQ(I)) ‘

m

s ollamay = (Z
12(1)

k=0

a
dak

d™v
dxm

ol = \

2.1.2 Weak formulation of the problem
We consider the problem —.

Starting by multiplying the equation (2.1)) by a function v that depends only on

x, and integrating by parts, we obtain
L ou ! ou ! ou

715(15,1‘)’0(1‘) d:p+/1b(m)£(t,x)v’(m)dx+/l(a(x)+b'(m)) %(t,x)v(x) dx
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2.1 First approach

1 1
:/ f(t, z)v(z)dz + {b(m)@(x)v(x)] : (2.3)
4 or 1
The boundary conditions give
ou _u(t, 1) ou ~u(t,1)
81,({;7_1) - c ’ (9.1'({;7 1) - c :

Hence the weak formulation of the problem (2.1))—([2.2) is

Find u(t) € H'(I) such that
d

3w, v) + E(ult), v) = (f(t), ) (2.4)
with an initial condition u(0, z) = g(x), where
E(u(t),v) :/_lb(m)%(t,x)v'(a:) dz + /_l(a(x) + b'(:v))%(t,x)v(x) dx
+ ! (b(L)u(t, 1)v(1) + b(—1)u(t, —1)v(—1)). (2.5)

3

Theorem 2.1 Let T > 0 be a final time and let g € L*(I) be the initial data. The
following problem, with the bilinear form &(u(t),v) defined in (2.5

%(u(t),w + E(u(t),v) = (f(t),v), Yve H(I), 0<t<T,
u(t =0) = g(),

has a unique solution u € L*(J0, T[; H*(I)) N € ([0, T); L*(I)).

(2.6)

Proof 2.1  The idea of this proof is in [3].

It is clear that £(-,-) is a symmetric bilinear form. To ensure the existence and
the uniqueness of the solution, we need to prove continuity and coercivity.

To establish continuity, we employ the Cauchy-Schwartz inequality and the fact
that

u(1) | < sup | u(@) | = [Jullieq, Vo€l

By denoting
e A, =maxa(z) >0,
e B, =maxb(z) >0, B, = max|V/(z)|.
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2.1 First approach

One can write
1

E(u(t),v)] < / B, Ou

%(t, x)v'(x) dz

do [ (a4 B[Skl

Jrb(l) +b(—1)
€

[u(@)llo 1V]lc-

Which leads to

ou ou
& (u(t), v)] < ‘ - (1) 10"l 2y + (A + BY) || 5= () [vll 2
or 20 L2(1) + + or 2 L2(1)
2B
+—8+ ()l [[V]]oo-

So, we obtain
36>0, Vu(t)ve H(I), [&ut),v) <6 llu®)llme [0l
such that 6 = (1 + g)BJr + A, + B'.. Hence, the continuity of £(,-).
For the weak coercivity, by denoting
e A =mina(z) >0,
e B_=minb(z) >0, B. = min|V/(x)|

We have
£(ult)u(0) + -l > B + 2 u() — ().

ou

ox

L2(I)
A_+ B"

5 + 1), where

So, we obtain the existence of M = min(B_,1) andn = (
for all x € I we have

& (u(t),u(t)) +n lul®)lzaqy = M Ju@®)lf ),  Vult) € H'(I).
Hence, the existence and the uniqueness of the solution of the problem (2.6)) are

proved.

2.1.3 Construction of numerical approximation

The construction of the numerical approach is based on coupling two different
methods. We begin with a spectral approximation using a Galerkin method for
the spatial variable z, based on a special basis functions formed with Legendre
polynomials. This helps us to form a simple algebraic system depending only on

the temporal variable t, which we solve using a Crank-Nicolson scheme.
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2.1 First approach

Spatial discretization

We define Viy € H(I) as
Vy = {v € Py such that v(—1)—ev'(=1)=0 and v(1)+ev'(1) =0}.
The Legendre Galerkin scheme for ([2.6)) is

Find uy(t) € Viy, such that
d
a(lb]v(t), UN> + /S(UN(t), UN) = <f(t), UN>, Y oy € V. (27)
Where uy(t, x) denotes the approximate solution defined as

N

k=0

where wuy(t) denotes the unknown coefficients, and ¢y (z) denotes the chosen spec-
tral basis.
We choose as a basis of V,, a family of polynomials constructed from orthogonal

Legendre polynomials defined by (see [80, 1)

ok(z) = Y (L(2) + ap L1 (x) + B Liga(x)), k=0,...,.N—2  (2.9)
where a4, B and vy are coefficients determined such that

o {¢r(2)}y verify the boundary conditions of the problem (2.2),

o [[gn(2)] = 1.

By a simple calculation and using the properties of Legendre polynomials, we
obtain fore >0 and k =0,...,N —2

1+ ek(k+1)/2 ( 2 , 2 >-1/2
= 0 == — =
=0 b=tz Gt T
(2.10)
Then the approximate solution can be written using (2.9)) in the form

N—2

un(t,x) = > x(t) ox(x). (2.11)
k=0



2.1 First approach

By substituting (2.11)) in (2.7) and taking the test functions as the same basis

functions, we obtain the following scheme for all 7 =0,..., N — 2

Uk (t) (Dr(x), ¢5(x)) + D an(t) E(w(x), ¢5(x)) = (f(t,2), ¢5(x)), (2.12)

2
N}

MZ

45
dt

i

0

il
[e=)

such that

(Pn(x / or(z) dj(x (2.13)

1

E(bul), dy(x)) = / ) dh(a) ¢ (o) d + / (a(z) + V(2)) d(x) ¢;(x) da

1

F200) () )+ B a1 g5(-1),  (214)
(f(t 7). by / £(t.7) bz (2.15)

To achieve optimal results from spectral method and ensure spectral accuracy,
especially when calculating integrals, we employ a Gauss-Quadrature method us-
ing Legendre-Gauss-Lobatto nodes (LGL nodes) and their corresponding weights.
Due to their high accuracy, Gauss formulas play a fundamental role in the theo-
retical analysis of spectral methods. The capability of integrating polynomials by
solely knowing their values at M points is of significant importance and will be
extensively utilized. In addition, the inclusion of points x = —1 and x = 1 in the
nodes proves crucial for enforcing boundary conditions [29, [73] 16]. This method
is characterized by the following formula for p polynomial of N degree, where n;

represents the LGL nodes and w; represents the corresponding weights

1 N
[ pwde =3l
-1 i=0

Let us denote A and B as (N —1) x (N —1) matrices formulated using (2.13))—(2.14))

Ay = [(Dn, ¢j>]0§ k,j <N—2> By = [£(¢, ¢j)]o§ k,j<N—2>

and using (2.15)), we define C as a (n — 1) vector such that
C(t) = (Co(t),...,Cna(t))t where C;(t) = (f(t,2), ¢;) forj=0,...,N —2.
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2.1 First approach

By denoting the vector of the unknown coefficients
Ut) = (to(t), ty(t), ..., ay_o(t)"

we can write (2.12)) in a matrix form (2.16))

S AU(1) +BU() = C(1) (216)

Joined with the initial condition from (2.2)), we obtain a differential system that can
be solved using different methods like finite differences methods, implicit/explicit

Euler and Runge Kutta methods.

Time discretization

Now, to solve the differential system ([2.16[), we employ a finite differences method,
specifically using a Crank-Nicolson scheme.

To implement this, we begin by subdividing the time interval [0, 7] into ¢ subin-
tervals I; = [t;,, tim11] of the same length At =t,,.1 —t,, form=0,...,¢—1 and
to = 0.

A discretization of spatial domain is also required. We use the LGL nodes in
[—1, 1] denoted by ;.

Let U™ = U(ty, ;) represent the solution of (2.16). Using the Crank-Nicolson
scheme, we obtain

Uy = g(ns), (2.17)

where g(n;) is the value of g(z) at each node n; of the discretization of [—1, 1].

2.1.4 Stability and convergence analysis

In this section, we establish the stability and convergence results for the Legendre-
Galerkin spectral method in order to achieve spectral accuracy. The theorems
presented here are derived following the same approach as in chapter 6 from [I5].
Throughout this discussion, we use C to represent a generic positive constant

independent of N.
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2.1 First approach

Theorem 2.2 There exists a positive constant C, independent of N, such that the
solution uy of (2.7) satisfies the following estimate

t t
HuN(t)H%m)JrK/O lun ()l 72y ds < ||UN(0)Hi2(1)+C/O 1£ ()l Z2(r) ds. (2.18)

Proof 2.2 By setting vy = uy in (2.7)), we obtain

1d

§E|IUN(t)|I%2(1) + & (un(t), un () = (f(t), un(t)). (2.19)

Since £(.,.) is only weakly coercive then there exists K > 0 such that
K‘“ﬁ{l(]) < &(u,u), Yu € H'(I) (2.20)

where |u| gy is the semi norm on H'(I).
Using (2.20)) in (2.19) we obtain

1d

S llun Oy + Kllux N7y < 1 Ollzzen lun () z20)- (2.21)
2dt
Now, employing the Young inequality, we derive
d 2 2 1 2
N N L2(I) N LQ(]) > LQ(I)' .
a0y + Klhun () gy < 10 (222

Integrating the last estimate for t > 0, we obtain the desired estimate (2.18]) which

ensures the stability since = is independent of N with uy(0) = g(z).

Moving to the convergence analysis, we first establish some definitions.
Let’s define the error function between the solution uy(t) of the scheme (12.7) and
the exact solution of (2.6)) as

E(t) = Ryu(t) — un(t)

where Ry is the projection defined from H'(I) — Vy such that when N — oo,
we have
lu— Ryullgiy =0 forall we H'(I). (2.23)

Let u € L*(I), and we define the norm of u in the dual space of H'(I) denoted
(H'(I))" by

U,V

HuH(Hl(I))*: sup < >
veH(I) o]
v#£0
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2.1 First approach

Additionally, we have
lull ey < Cllullrzay

Theorem 2.3 Let u(t) be the exact solution of (2.6) and uy(t) the solution of
(2.7). The following estimate holds

t
IE@I® + K / B($)p ds <

ou ou

HE(O)H2+C( 5 - B

ds + Uu — RNU HY(I
s [l B o)
(2.24)

where C is a constant independent of N.

Proof 2.3 E(t) satisfies the following estimate using the weak corecivity of (., .)

1d
2dt

ou ou

B+ K [EOF < |G ~ vy,

JE()) + £(u — Ry, E(t))' (2.25)

Using the above definitions and the continuity of the form £(.,.), we obtain the

existence of a constant C independent of N, such that

ou ou

(G = R BO) + €l — Ry E(0)
< (2.26)
ou u

CIEO (‘

- —R + ||U—RNU||H1(I)>

By replacing this result in (2.25)), an error bound is estimated through integration
for allt > 0. We conclude the convergence of the approzimate solution uy(t,x) to

the exact solution u(t,z).

2.1.5 Numerical results

To assess the performance of the described spectral method, we present the follow-
ing examples, involving the numerical solution of the problem (2.1)—(2.2). The

numerical results confirm the efficiency of the method through the calculation of
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various error norms. Another approach to validate the reliability of the method is
to compare the obtained results of the approximate solution with the the analyti-
cal solution of the problem, considering boundary conditions of the Dirichlet type.
To demonstrate the efficiency of the proposed method, we examine hereafter two

methods of presenting the numerical results

e Since the problem (2.1 is formulated with Robin boundary conditions ([2.2))
perturbed with a parameter €, the exact solution in this case is unknown.
We calculate the approximate error for a fixed value of € (¢ # 0) using the

formula

ERROR = |juy — unqollc N =2,4,6,... (2.27)

e Another way to affirm the reliability of the method is by comparing the ob-
tained results of the approximate solution as € tends to 0 with the analytical
solution of the problem under Dirichlet boundary conditions. In this context,
different error values are calculated.

We define the absolute error by

g(t7 l’) :| uea}act(ty :L') - UN(ta ZL‘) |7 (228)
The maximum absolute error by
gma:r == Huexact_uNHoo = mlax‘(uexact)i_(uN)i’a 1= 1727"'7N367 (229)

The square error norm by
N, 1/2
g? - Huexact - uNH2 = sz ‘(uezact)i - (UN)i‘2 (230)
i=1
where IV, is the number of interval subdivisions, and Az is the appropriate
step,

and the relative error is given by

(g@re _ ”uexact - uN”2. (231)
||uewact||2
The figures are obtained for N, = 20 subdivisions using the Legendre-Gauss-

Lobatto nodes in the domain [—1, 1], and 100 subdivision of the temporal domain.
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Example 2.1 We consider the equation (2.1)) with constant coefficients a(x) =
0.01, b(x) =1, and a final time T = 1. The initial condition is given by

u(0,2) = cos(5),

and the term f(t,z) is calculated so that the exact solution under homogeneous

Dirichlet boundary conditions, is
T
u(t, ) = exp(—t) cos(ga:).

Discussion: Figure 2.1 and Figure illustrate the convergence of the approx-
imate solution to the exact solution at different values of e, specifically ¢ =
0.2, 0.1, 0.02, 0.01, 0.001. When ¢ tends to zero, the approximate solution
approaches the exact one from Dirichlet boundary conditions.

The variations of the error of the approximate solution (ERROR) are depicted in
Figure It is observed that the error of the approximate solution decreases as
N increases.

In Figure 2.4, we compare the exact solution of the problem with homogeneous
Dirichlet boundary conditions to the approximative solution obtained using the

approximative method when ¢ = 10~ and N = 10.

‘—Exact. Sol ==Approx. €=0.2 ==Approx. e=0.1 ==Approx. ¢=0.02 == Approx. ¢=0.01 ==Approx. ¢=0.001 ‘

0.5 |
0.4 i
0.3 |
0.2 N
--------- A J

~

0.1 : N
~

0 | | 1‘1350 01 -0.008 0 l0.005 001 | | | |

-1 -0.8 -0.6 -0.4 0.2 0 0.2 0.4 0.6 0.8 1

X

Figure 2.1: The behavior of the approximate solution when ¢ tends to 0 at N = 10
for fixed t = 1 for Example
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‘—Exact. Sol. ==Approx. ¢=0.2 ==Approx. ¢=0.1==Approx. ¢=0.02 ==Approx. ¢=0.01 ==Approx. ¢=0.001

0.3

0.25

0.2

0.15

0.1

0.05! \ \ \ \ \ \ \ \ \
0

Figure 2.2: The behavior of the approximate solution when ¢ tends to 0 at N = 10
for fixed x = —0.874 for Example

102

ERROR
=
\
!

10.10 | | | | |
5 10 15 20 25 30

N

Figure 2.3: Logarithmic approximation error as a function of N at ¢ = 1078 for

Example
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Exact Solution Approximative Solution

4
y

%///
.
4

//{/,// i IW%W%////////////// |

Figure 2.4: Representation of the exact solution for the problem with Dirichlet
boundary conditions and the approximate solution at N = 8 and ¢ = 10~% for

Example [2.1

Example 2.2 We assume that in (2.1) a(z) = 0, b(x) = 1, T = 1. The initial
condition is given by

u(0,x) = cos(gx),

and the term f(t,z) is set to be 0. In this case, the exact solution under homoge-
neous Dirichlet boundary conditions is given by

u(t, z) = cos (gx> exp (—b(xfﬁt) :

Discussion: Figure displays the exact and the obtained approximate solutions
for various values of N. The plot illustrates the convergence of the approximation
for different N, where N = 6,8,10 and ¢ = 1072,1073,10™* at z = 0.227 and
t = 1. In each case, an error value is provided, calculated using the appropriate
¢ and N. The obtained results demonstrate the convergence of the approximate
solution when ¢ tends to 0, aligning with the exact solution under Dirichlet bound-
ary conditions.

Table provides the square error norm &; calculated for different values of V.
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Table 2.1: Error values as a function of
N for e = 1078 for Example

Error = 3.83951 E-02

4 = Approximative solution

RPN
7 S

7/ AN
7 \
Y \

=== Exact solution

\

05 0 05
X

Exact & approx. solution for N = 6, € =0.01

1

= Exact solution
== Approximative solution

Bl

N &

4 6.46185¢ — 05
8 8.93058e — 06
12 8.93059¢ — 06
16 8.92040e — 06
20 8.86360e — 06

Error = 3.75209 E-03

Error = 3.64228 E-04

X3

2z 3

== Exact solution
== Approximative solution

= Exact solution
=8 Approximative solution

05 0 05
X

Exact & approx. solution for N = 8, € =0.001

Bl

05 0 05
X

Exact & approx. solution for N = 10, ¢ =0.0001

1

== Exact solution
== Approximative solution

=== Exact solution
== Approximative solution

01 02 03 04 05 06 07 08 09 1
t

Figure 2.5: The behavior of exact and approximate solution for different N and

e with the appropriate & for fixed T = 1 (up) and fixed = 0.227 (down) for

Example

Example 2.3 Let’s consider the problem with a(x) = 0.09, b(z) = 2,and the final

time T'= 1. The initial condition is u(0,x) = 0 and the term f(t,x) is calculated

so that the exact solution, under homogeneous Dirichlet boundary conditions, is

given by

Discussion: Figure depicts the convergence of the approximate solution with
decreasing € down to € = 0.001. When ¢ takes the values 0.08, 0.05, 0.025, 0.001,

u(t, ) = t* cos(:cg).
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the curve of the approximation for a fixed = or a fixed ¢ approaches the curve
of the exact solution under the Dirichlet boundary conditions. This convergence
trend is reflected in Table where the error is calculated for different values
of N. Notably, for ¢ = 107®, the numerical solution closely aligns with the exact
solution. Table introduces the &,. at N = 4, 8 , and 10 with different LGL

nodes in [—1, 1].

Table 2.2: Error values as a function of N for ¢ = 108 for Example [2.3]

N & N &

4 9.22208e — 04 14 8.74526e — 06
6 1.36494e — 04 16 6.03520e — 06
8 5.11646e — 05 20 2.77529¢ — 06
10 2.46797e — 05 24 1.68477e — 06
12 1.39021e — 05 30 8.29894e — 07

Table 2.3: Relative error &,. for different N when € = 10~® for Example ﬁ

x N =4 N =38 N =10
—0.944 7.51812e — 03  6.43507e — 04 3.26354e — 04
—0.755 1.14864e — 03 2.38689e — 05 4.65406e — 05
—0.458 2.60600e — 04  3.26515e — 06 3.28677e — 05
—0.095 9.29549e — 04  3.15130e — 05 1.86307e — 05

0.281 4.41661e — 04  5.66697¢ — 05 1.39810e — 05
0.617 2.32730e — 03 6.63974e — 05 2.60646e — 05
0.865 8.60915e — 04  2.34344e — 04 4.61786e — 06
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0.5

0.4

0.3

0.2

0.1

Figure 2.6: The exact solution compared to the approximate solution for different
e with N = 10, for fixed x = —0.281 for Example [2.3

1.2

0.8

0.6

0.4

0.2

Figure 2.7: The exact solution compared to the approximate solution for different

Exact. Sol

Approx. with ¢=0.08
Approx. with ¢=0.05
Approx. with ¢=0.025

Approx. with €=0.001

0.2 0.3

Exact. Sol.
Approx. with
Approx. with
Approx. with
Approx. with

€=0.05
€=0.025
¢=0.001

0.2

X

0.2

e with N = 10, for fixed T = 1 for Example

Example 2.4 Let’s consider the equation (2.1) with variable coefficients a(x) = 0

and b(z) =1 — 2%, a final time T = 1, and the initial condition given by

u(0,x) = x cos(x =)
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2.1 First approach

The term f(t,x) is calculated so that the exact solution under homogeneous Dirich-

let boundary conditions is given by

u(t, z) = xexp(t) cos(xg).

Discussion: Table [2.4| presents the &,,,, and & for decreasing ¢ from 107! to
107!% when N = 10. Table exposes the relative error calculated at different
nodes when N =4, 8 and 12, the results, obtained when € = 10~%, demonstrates
the convergence of the approximation to the exact solution of the problem with

Dirichlet boundary conditions as € approaches 0.

Table 2.4: Error values € &y Emaz

for different ¢ at N = 10 1071 9.05505e — 01  1.03184e + 00

for Example . 1072 2.91516e — 01  3.25393e — 01
1073 3.62864e — 02 4.05446e — 02
10~ 3.73871e — 03 4.17051e — 03
107° 3.75677e — 04 4.18251e — 04
106 3.81611e — 05 4.18316e — 05
107 4.45936e — 06 4.17778e — 06
108 1.28603e — 06  1.28416e — 06
1010 1.02004e — 06  1.11888e — 06

Table 2.5: Relative error values &,. for different N when ¢ = 10~® for Example

@.
x N=14 N =8 N =12
—0.912 1.46648e — 01 4.52127e — 05 2.29492e — 06
—0.510 1.51450e — 03 1.44248e — 05 1.33381e — 06
0.076 5.97860e — 02 2.44510e — 05 1.22646e — 06
0.227 4.95987e — 02 9.91097e — 06 1.24621e — 06
0.746 7.19953e — 02 2.44251e — 06 1.55148e — 06
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Example 2.5 Let’s consider the equation with a(x) =1 — 22, b(z) =2, T = 1.
The initial condition is given by

u(0,7) = (1 — 2%) sin <xg) :

The term f(t,x) is obtained so that the exact solution for the problem with Dirichlet

boundary conditions is given by

2

u(t,z) = exp (%t) (1 — 2?)sin (az%) :

Discussion: Figure [2.8 is generated using various decreasing values of . It is
evident that as € tends to 0, the obtained approximation is closely aligns with the
exact solution for the problem with Dirichlet boundary conditions.

Table displays the error calculated at different values of €. It is observed that
with increasing N, the approximate solution becomes more accurate when com-
pared to the exact one. This approach investigates the numerical convergence of
the obtained approximate solution at the Dirichlet boundary conditions when &
tends to 0.

Figure illustrates the exact solution of the Dirichlet boundary conditions prob-
lem alongside the approximate solution obtained using the proposed numerical
method. Additionally, the absolute error is depicted. Even with a new step of dis-
cretization for the temporal domain At = 0.001, the results of convergence remain

consistent.

Table 2.6: Error values for differ- N &y Emaz

ent values of N when € = 1078. 4 3.86296e — 03 4.19989% — 03
6 3.98687¢ — 04 4.56514e — 04
8 1.26445e — 04 1.50269e — 04
10 6.06861e — 05 7.60106e — 05
12 3.39352e — 05 3.93346e — 05
14 2.12362e — 05 2.51413e — 05
16 1.45927e¢ — 05 1.74079¢ — 05
20 6.52682e — 06 7.32607e — 06
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Figure 2.8: Exact and approximate solutions for different € at N = 10 and t = 1

for Example

Exact Solution Approximative Solution |[Exact Sol. - Approx. Sol.|

x10°
1 2

1.5

1

0.5

Figure 2.9: Representation of the exact solution of Dirichlet boundary conditions
problem, the approximate solution obtained using the described method and the
absolute error for N = 16, € = 1078 and At = 0.001 for Example

2.1.6 Concluding remarks

In this study, the advantages of Legendre polynomials, along with their impor-

tant properties and Gauss quadratures, are utilized to construct an approximation
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of the advection-diffusion solution. The proposed numerical approach is outlined
in two steps: initially, the basis used in Galerkin approximation is defined, and
the type of Gauss quadrature employed for precise integral calculations is speci-
fied. Subsequently, a Crank-Nicolson scheme is developed to solve the resulting
system based on the time variable. The stability and the convergence analysis
of the method are rigorously analyzed, providing estimates based on initial val-
ues for stability and an error bound that characterizes the convergence. Several
examples covering different cases are presented with various types of results to
demonstrate the numerical convergence of the approximate solution to the ex-
act one under Dirichlet boundary conditions as ¢ tends to zero. The obtained
results are introduced and interpreted in different error types (the &., & and
&maz)- The findings suggest that the introduced method is efficient and applicable
to solving many time-dependent problems involving different partial differential
equations with different types of boundary conditions. The proposed approach
exhibits spectral accuracy, enabling high precision in the approximation which has

been illustrated by several numerical examples.

2.2 Second approach

A part of the obtained results was the subject of an international communica-
tion entitled ” A Highly Accurate Numerical Method Using Compact Combination
Basis and Kronecker Product to Solve Partial Differential Equations” in the Inter-
national Conference on Contemporary Mathematics and its Applications (ICCMA
2023) 26-27 November 2023, Mila- Algeria.

2.2.1 Description of the problem

We consider the following one-dimensional advection-diffusion equation

0 0? 0
S (La) = az (@) + B (t,2) + f(t,2); (2.32)

coupled with the following boundary conditions of Dirichlet type and the initial

condition

u(t,0) = ho(t), u(t,1) = hi(t), u(0,z) = g(z). (2.33)
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2.2 Second approach

where
u(t, z) is the unknown function,
e ¢,z € [0, 1] are the proposed variables,
e The coefficients of advection and diffusion are @ > 0 and 3 > 0, respectively.

e f€%([0,1],]0,1]), ho,h1 € €([0,1]), and g € €([0, 1]) are given functions.

2.2.2 Shifted Legendre Galerkin method

Starting by writting the corresponding integral equation to the advection-diffusion
equation by integrating (2.32)) with respect to the temporal variable ¢ and taking
into consideration the initial condition in (2.33). The studied problem becomes

/82233 dz—ﬁ/a 2,x dz—/fzxdz—i-g()
u(t,0) = ho(t), u(t,1) = hy(t), t > 0. (2.34)

For the case of non-homogeneous boundary conditions, where ho(t), hy(t) # 0, we
introduce the following transformation which consists on transforming the non-

homogeneous boundary conditions into homogeneous ones
v(t,x) = u(t,z) — (1 — x) ho(t) — z hq(t).
The problem becomes
tm—a/aQ,za: dz—B/ ) dz = fi(t, z),
v(t,0) =0, v(t,1) =0, t > 0. (2.35)
where
1(t, x) /fzx dz + g(x —i—ﬁ/ (hi1(z 0(2))dz — (1 — 2)ho(t) — xhy(t).

Hereafter, we consider the case of homogeneous boundary conditions in ([2.34).

We choose at this stage to use a spectral approach for both spatial and temporal
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2.2 Second approach

discretizations.
We define
SN—span{f( )Zi(t), 4,5 =0,1,...,N}

where ;’2; (z) denotes the shifted Legendre polynomial of degree i on .
And
Py ={z¢e€Sy: 2(0,t)=2(1,t) =0,0 <t < 1}

The spectral scheme is to find un(t,z) € Py such that Vo(t,z) € Py

(uy(t, ) — « i E)Suév dz—ﬁ/ 8UN ) dz, v(t,z))

= </0 f(z,z)dz + g(x),v(t, z)), (2.36)

where (u,v) designed the scalar product in L?((0,1) x (0, 1]).
To apply The spectral Galerkin method, we need to select suitable basis func-
tions: a compact combination of different degrees of Legendre polynomials is ap-

plied for the spatial resolution. We consider the following type of basis functions

¢i(r) = Zi(r) — ZLia(x),
¥;(t) = Z5(1), (2.37)

One can define the space Py = span{¢;(z)y;(t),i,7 = 0,..., N} in which the

approximate solution is given by

=7y bl 1), (2.38)

By choosing the test functions as ¢, (x)¥,,(t), for 0 < n,m < N, the spectral

scheme can be written as

82UN

(ux(t, ). ()0 = al [ G (o), )i
=50 G e onle (0

oy / F(zr)dz + g(2), dulalim(®).  (2:39)
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2.2 Second approach

Then, each item in the left hand side of (2.39)) can be simplified and expressed in

a matrix form

(un(t, ), Gn(2)m( <Z

=0 j

N

i ;i ()1 (L), on(x )wm(t)>

=ZZ@ ($i(2), Du(@)) (15(£), Yom (1)),
:AUBT. (2.40)

where U is the matrix of the unknown spectral expansion coefficients of the un-

solved quantity (¢, z) under the proposed numerical technique, given by

IALO,O fb()’l e ﬂO,N
U= Lo TR (2.41)
’LALN70 lALNJ IALNJV
and
= [<¢i(x)>¢n<x)>]0§i,n§N’ B = [Wj(t)»wm(t))]osj,mgzv'
Similarly,

([ 28 e )z, (a0

0

= 2> iy 0l nle)) { [ 31 dzm(e)).
= A,,UB,, (2.42)

where

A = [610) Wz Bi= ([ 052z (0)]

0<jm<N

Also,

3uN

<0 ax

——(2,2)dz, ¢n(2) (1))
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2.2 Second approach

where
A, = [{¢i(v), ¢n(x)>]ogi,n§N'
For the right-hand side of (2.39)), one can calculate it directly using

( / F(z2) dz + 9(), du(@)dm(8)) = F, (2.44)

where
r=, / F(2,2) dz + g(w), u(2)tm (1))

Collecting the precedent formulas, the obtained system can be written in the ma-

0<n,m<N

trix form

AUB' - a A, UB/ - 3A,UB} = F. (2.45)

The system ([2.45)) can be reformulated using the Kronecker product as follows
B®A—-aB;,®A, - B, ®A,)U=F, (2.46)

where U and F are compressed into the one-dimentional vectors by columns U

and F in the following form

N N N N N T
U = [UO,O,UI,Ou cee s UNOy e s UQ N - - 7UN,N] .

I e e

I i g R

(1,1,1B CLLQB e (leB

a/27lB CL272B A a27mB
A®B= . : :

CLn’lB G,n,QB ce ammB
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2.2 Second approach

The final system is a linear system of equations for U that can be solved using
a Gauss elimination method to obtain the expansion coefficients U of wuy(t, ).
Then, by making use of (2.38]), we can obtain the desired approximation.

2.2.3 Numerical results

To demonstrate the efficiency of the proposed method, we present here some nu-

merical examples and discuss the obtained results. Different types of error norms

are calculated using the formulas (2.28)—([2.31]).

Example 2.6 Let’s consider the heat equation (the case of (2.32) with 5 = 0),

with the following initial condition
u(0,z) = sin(nmx).
The exact solution for the problem is given by
u(t, ) = exp(—t) sin(mx),
and the boundary conditions can be obtained from the exact solution.

Discussion: Table presents the values of &, calculated in different moments
from [0, 1] for different values of N. Figure depicts the global behaviour of the
exact solution, the approximate solution and the respective absolute error when
N = 16. The obtained results mark the great order in error values achieving 10716,

confirming the high accuracy of the proposed technique.

Table 2.7: &4, values for different N calculated for different times for Example

2.6

t N =38 N =12 N =16
0.1 3.0206e — 10 2.8865¢ — 15 1.2212e — 15
0.3 2.4035e — 10 2.3314e — 15 9.8532¢ — 15
0.5 1.9377e — 10 1.9984e — 15 8.1878e — 16
0.7 1.6966e — 10 1.6653e — 15 6.6613e — 16
0.9 1.3603e — 10 1.1657e — 15 5.4123e — 16
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Exact solution

Approximate solution Absolute error

\\ ‘u

e:“ul”r
fl Ml

Ju(t%)-u ()]

Figure 2.10: Exact and approximate solutions with the respective absolute error
obtained for N = 16 for Example .

Example 2.7 Another heat equation is considered with the following initial con-

dition u(0,z) = 0. The ezxact solution for the problem is given by

u(t, ) = t*sin(x),
and the boundary conditions can be obtained from the exact solution.
Discussion: Table displays the values of &,,, calculated for increasing values
of N in different instants. Figure [2.11] shows the 3D plot of the exact solution,
the approximate solution and the respective absolute error when N = 16. The

results confirm the high accuracy achieved while approximating the exact solution

by using small values of N.

Table 2.8: &4z N t=0.2 t=20.5 t=1

values for differ- 2 8.0295e — 07 5.2133e — 06 2.1135e — 05
ent N calculated 4 1.2252e — 09 7.7715e — 09 3.1247e¢ — 08
for t = 0.2, t = 6 1.0653e — 12 6.7109e — 12 2.6915e — 11
0.5and t =1 for 8 6.0715¢ — 16 3.7886e — 15 1.5154e — 14
Example 10 1.3877e — 17 2.7755e — 17 1.1102e — 16
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Exact solution Approximate solution Absolute error

// | ~

uN(t,x)
Ju(t:x)-u, (£.x)]

Figure 2.11: Exact and approximate solutions with the respective absolute error
obtained for N = 14 for Example .

Example 2.8 We consider the advection-diffusion equation (2.32) with o = 0.1
and 8 =1, and the following initial condition

u(0,z) = exp(hx) [Cos(gx) + isin(gx)} :

The exact solution for the problem is given by

u(t, x) = exp(5(z — £/2)) exp (—Z—;t) [cos(gaﬁ) + 411 sin(gx)} |

The boundary conditions can be obtained directly from the exact solution.

Discussion: Table displays the values of the maximum absolute error &,
calculated in different times from [0, 1] using increasing values of N. The table
shows clearly the decreasing values of the error in an homogeneous way every where
in [0,1]. This behaviour is also expressed in Figure where the plots of the
approximate solution and the exact solution are identical. Finally, in Figure [2.13
the physical behaviour of the exact solution, approximate solution and the absolute
error is presented in 3D. The results show great accuracy while approximating the

exact solution using the proposed technique with an order of the absolute error
reaching 1071,
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2.2 Second approach

Table 2.9: &,.. values for different N calculated for different times for Example

@.
t N =4 N =8 N =12
0.1 4.3255e — 02 1.1060e — 05 5.8879¢ — 10
0.2 3.6044e — 02 8.1656e — 06 4.5787e — 10
0.3 3.3736e — 02 6.4417e — 06 3.4294e — 10
0.4 2.5662e — 02 5.0082e — 06 2.6536e — 10
0.5 1.5332e — 02 3.5614e — 06 1.9536e — 10
0.6 1.3094e — 02 2.9694e — 06 1.5447¢ — 10
0.7 9.7458e — 02 2.3741e — 06 1.1458e — 10
0.8 1.3021e — 02 1.4681e — 06 9.1814e — 11
0.9 1.1064e — 02 1.4537e — 06 6.0396e — 11
1 1.1548e — 02 3.5496e — 06 2.0562e — 10
% T T
" e LT
15 — Exact sol. t=1 e .

Figure 2.12: Exact and approximate solutions with the respective absolute error
obtained for N = 10 for Example W
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Exact solution Approximate solution Absolute error

Ut x)-u  (t.)]

Figure 2.13: Exact and approximate solutions with the respective absolute error
obtained for N = 12 for Example .

2.2.4 Concluding remarks

In this second approach, the advection diffusion equation is treated in a different
way using the same idea of the first approach. It highlights, first, the transition
between the partial differential equations and the integral equations. Then, by
taking into account the boundary conditions, the compact combinations of or-
thogonal polynomials are investigated to approximate the exact solution using a
Galerkin method. The obtained results show the efficiency and applicability of the

proposed technique and the high accuracy it offers.
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Chapter 3

Integral and integro-differential

equations

The presented results are the subject of an article entitled ”Spectral Collocation
Method for Handling Integral and Integrodifferential Equations of n-th Order via
Certain Combinations of Shifted Legendre Polynomials” published in Mathemati-
cal Problems in Engineering, 2022, 2022.

Hereafter, an accurate and efficient numerical method based on spectral collo-
cation is presented to solve integral equations and integro-differential equations of
n-th order. The method is developed using compact combinations of shifted Leg-
endre polynomials as a spectral basis and shifted Legendre Gauss Lobatto nodes
as collocation points to construct the appropriate algorithm that leads to simple
systems easy to solve. The technique treats both types of equations: linear and
nonlinear equations. The study aims to provide the relevant spectral basis by the
use of compact combinations, allowing us to take advantage of shifted Legendre
polynomials and to reduce the dimension of the space of approximation. The reli-
ability of the proposed algorithms is proven via different examples of several cases,

and the results are discussed to confirm the effectiveness of the spectral approach.

This chapter is structured as follows: we begin by describing the studied prob-

lem in Section [3.1] Making use of some formulas presented in the preliminaries
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3.1 Description of the problem

chapter, we describe the proposed method by characterizing the main steps of the
method in Section [3.2] Next, we study separately the linear and the nonlinear
cases and we apply the Gauss quadrature in each case. In Section [3.3] several
numerical examples are presented and discussed to confirm the reliability of the
described method.

3.1 Description of the problem

We are interested in using a shifted-Legendre collocation method to solve the
integro-differential equation of n-th order (3.1))

ao(z)u(r) + Zai(m)u(i)(x) = f(x) + )\/0 H(x, 1).F (t,u(t)) dt, (3.1)

joined to the initial conditions (3.2))
u?0)=0, j=0,...,n—1, (3.2)
where

e u(x) is the unknown function,

. d
o u(z) = (1;(:0) denotes the i-th derivative of u(x),
x’L
e {a;(z), 1=0,...,n} are given functions in € ([0, 1]),

e 7 (x,t) is the known kernel, which is a continuous and square integrable

function,

e 7 is a given function of w(t), which can be linear (% (t,u(t)) = u(t)) or
nonlinear (the case of .Z (t,u(t)) = (u(t))®, s # {0,1}),

e ) is a given constant, and f € L*([0,1]) a known function.

The order of derivation n denotes the order of the integro-differential equation
(3.1); when a;(z) = 0, (Vx € [0,1], Vi = 1,...,n), we derive the case of integral

equations.
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3.2 Shifted Legendre Galerkin method

3.2 Shifted Legendre Galerkin method

We define Sy as
Sy = Span{XO(x%gl(x)a s 7$N(x)}

where {g;:(x), k = 0,...,N} are the shifted Legendre polynomials defined on
[0,1].
We set Viy C Sy, the subspace where the initial conditions (3.2)) are verified

Vv = {v € Sy such that v (0) =0 forj =0,...,n — 1}

The spectral scheme to solve (3.1)) is to find uy € Vy such that for all v € Vi

(ao(w)u(@), o(@) + 3 a2y (x), v(w))
= (3.3)

(f(2).v +A/%ww<mM»ﬁmw

where ( fo ) do denotes the inner product in the space L?(0,1).

When applylng a spectral method, one considers the choice of an appropriate ba-
sis to ensure that the obtained system is as simple as possible. Therefore, we
aim to use compact combinations of orthogonal polynomials as basis functions
to enhance efficiency. Numerous studies have developed various combinations for
different equations [24, [69, 0T, R2] [14]. The selection of orthogonal polynomials
as basis functions allows us to leverage their advantages, particularly as a Hilbert
basis for L*(I). Moreover, opting for compact combinations of orthogonal poly-
nomials, not only allows us to benefit from these orthogonal polynomials but also

reduces the dimension of the space of approximation from (N +1) to (N —n+1).

3.2.1 The choice of basis functions

In this study, we opt for a spectral basis composed of shifted Legendre polynomials

of the form

qb ( ) Zk —i—Zazkéka( ) kzO,...,N—n. (34)

=1
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3.2 Shifted Legendre Galerkin method

The coefficients {c;;} are calculated in such a way that ¢y (x) satisfies the initial
conditions (3.2), indicating that

gbl((:‘])(o):()j j:07“'7n_]" kj:o”‘.’N_n
Therefore

L)+ an L) =0, j=0,...,n=1, k=0, ,N-n (35
=1

Considering the significant properties of shifted Legendre polynomials, derived
from those of Legendre polynomials (1.12))— ((1.19)), the basis coefficients are de-

termined by the following system

( n

d (~Dag=-1, j=0

Z%’k ((—1)i1:[(k+i—m)(k+i+m+1)> = — l:l(k:—m)(k+m+1),

j=1...,n—1.
(3.6)

Remark 3.1 If u)(0) = ¢;, ¢; # 0 for a certain j € {0,...,n — 1}, we move to

homogeneous initial conditions through a suitable change of variables.

The determinant of system (3.6)) being different from zero leads to the derivation

of specific cases

e When n =1, we have aq, = 1.

e When n = 2, the system (3.5 takes the form
Z(0) + 1 4 Zies1 (0) + 024 Zi12(0) = 0,

L0+ a2 0) + a2 Z5(0) = 0 7
which can be simplified using Legendre polynomials properties to
[ (—)F + ar (=) + a1 =0,
k(k;— 1)(_1),€Jrl +Oé1,k(k+ 1)2(/€+2)<_1)k+2 (3.
\ +&27k(k+2)2(k+3)(_1>,€+3 0
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3.2 Shifted Legendre Galerkin method

So, we obtain
2k +3 k+1

kr2 Ty
e When n = 3, the system (3.5 takes the form

a1 =

-:?21;(0) + Oé1k-§;+1(0) + Oézkzw(o) + Oésk»é’z;w(o) =0,
Z0) + a1 L5 (0) + a0 (0) + agpZiys(0) = 0, (3.9)
ZE(0) + an B2 (0) + 0o L5 (0) + s Zi15(0) = 0.

Using ((1.19)), we obtain

3(2k + 3) 3(k+1) (k+1)(2k + 3)
a7 0 Qo =, Q3= .
2k +5 7 k+3 (k + 3)(2k + 5)

a1 =

It is obvious that the set {¢x(z)} is linearly independent, and dim(Vy) = N —
n+ 1. Therefore, we have Vy = span{¢y(x),k =0,..., N —n}. Consequently, our

approximation can be expressed in the following form

3.2.2 Resolution of the system

The spectral scheme (3.3 becomes for j =0,...,N —n

k=0 i=1 k=0
_ (3.10)
N—n
(f(2), ¢; +>\/ %/wtf<t,zﬁk¢()> dt, ¢;(x))
k=0
With some simplifications (3.10]) can be written in a final form as
N—-n
> g {ag(x)dr(z +Zukz a;(z ¢j(x))
k=0 i=
_ (3.11)

(F(), 5 +A/%:ct (Z )dmy()y

k
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3.2 Shifted Legendre Galerkin method

At this stage, we consider the two cases depending on the linearity /nonlinearity
of Z(t,u(t)).

e Linear case:
We assume that Z(t,u(t)) = wu(t). Then, (3.11) becomes for all j =
0,....,N—n

] @k<a0(x)¢k($)=¢j($)>+za > (as(@)éf’ (@), 6,()

k=0
(3.12)

e Z ([ (@ tjon(0) dt.o5(0).

By setting the following notations

f= (fo,f1, .. -,fN—n)Ta fj = <f(x>7¢J($)>7

N—-n
U= (alaﬁ%"wﬂN—n)T’ uN(:L‘) = ak¢k($)7
k=0
Ay = (agk)ogj,kgjv—m a?k = (ao(2)r(z), i (2));
Ain = (@ oginen—n @i = (ai(@)oy (2), ¢(2));

M = (myocipen—n, Mgk = | / A () bu(t) d, by (),

the spectral scheme (3.12) is equivalent to the following linear system of

matrix form

(Aog+ Y A, —AM)U=H. (3.13)

e Nonlinear case:
By taking .# (t,u(t)) of a nonlinear form as .Z(t,u(t)) = (u(t))®, s # {0, 1},

then (3.11]) becomes
N-—



3.2 Shifted Legendre Galerkin method

We define ¢ as a vectorial function by

G = (Gylito, -, in-n)s G (0o, o Ay Gl )"

where
Gy(itos. - i) = 3 e <<a0<x>¢k<x>,¢j<x>>+Z<az<x> ,i“<x>,<z>j<:c>>)
— (f(2), ¢(x)) — M %(sc,w( . am(ﬂ) dt, ¢;(x)).
0 k=0

The Jacobian matrix of ¢ is given by

Jg(ﬁ‘()w";ﬁ’]\/fn):(ij)? 0§j7k§N_n

_ (i, i)

Oty ’

Jjk

where

n

Tie = {ao(@)gn(@), ¢5(2)) + D {ai(2)o) (@), ¢;(x))

i=1

Y / A (w,8)564(0) (iam(t)) dt,¢;(x)).  (3.16)

3.2.3 Gauss-Lobatto quadrature

The coupling of the Galerkin method with numerical integration methods aims
to preserve the advantages of both methods. Integrals appearing in the weak
formulation of the problem are efficiently approximated by a quadrature formula.
Hereafter, we denote the Legendre-Gauss-Lobatto nodes of [—1, 1] by x,, with their
respective weights w, as defined in . When moving to [0, 1] we can define the
shifted Legendre-Gauss-Lobatto nodes (SLGL) with their respective weights as

1 1
T, = E(a:p +1), Wp = 5 Wp. (3.17)
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3.2 Shifted Legendre Galerkin method

e Linear case:
By utilizing Gauss-Lobatto integration (1.39)) to evaluate the integrals ap-
pearing the formula (3.12)) in the shifted Legendre-Gauss-Lobatto nodes

(3.17), (3.12)) becomes for all j =0,..., N —

N—n n Ny
Zme%m%@@p+ZmZZMmM@M%m
k=0 i=1 p=0

Zf (@) 0 (@)W, + )‘ ukiZ% (Tp, Tq) 9k(Tq) 5 (Tp)Wq W,

k=0 p=0 ¢q=0

(3.18)
which leads to matrix system ({3.13]), with

=S f @) Ty

p=0

Nz
afy, = Z ao(Tp) 01 (Tp) 5 (Tp) Wy
p=0

N, ‘
i =3 ai(@) oL () 65(T,)wy;
p=0

N, Nz
mi = Y (T, Ty) pn(Tg) 6 (T3) Wy .

p=0 ¢=0
To solve ([3.13)) in both cases, we proceed with the Gauss elimination method.

e Nonlinear case:
The formula (3.15) becomes for all 7 =0,...,N —n

N—-n Ny
Gi(do, .- ln—n) = Y Y ao(T) 0k (Ty) 65 (T,
— =0
N—-n ' : Ng N
+ Z Uy, Z a;(Tp) 9y (Tp) 95 (Tp) W0y Z [(Zp)0;(Tp)w,
k= i=1 p=0 p=0
Ny Na:o N—n s
- )‘Z H (T, Tq) ( ﬂk@c(%)) ;(Tp)Wq Wy, (3.19)
p=0 ¢=0 k=0
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and the Jacobian matrix of ¢

J‘f(a077aN—n):(ij)7 OSJ,kSN—n

0, (iig, .. . i)

Jir =
" iy ’
where
Ny n Ny .
T = ao(@p)on(T)05 (@)W, + ) D ai(@)0) (T,)6,(T,)w,
=0 i=1 p=0
N. Na N s—1
XS rmmam (Lunm)  omm
p=0 ¢=0 k=
(3.20)
Now, to solve (3.15)-(3.16) and (3.19)-(3.20) we use the following Newton
algorithm:
— Initialisation: Let be € > 0, an initial vector
U" = (g, ..., iy_,)
and
T
G0 = (Go(, - ). a0 U)o Gy ()

— ITteration: Solve
Jg(Uerl U™ =-9m.

— Stop: If [[U™ — U™|| < ¢, stop the iteration.

3.3 Numerical results

In this section, various examples are presented for discussion to illustrate the
effectiveness of the described method. To compare the exact solution w(z) with
the approximate solution uy(x), we calculate the absolute error & , the
maximum error norm &, ([2.29), the square error norm & (2.30), and the relative

68



3.8 Numerical results

error norm &, (2.31). To demonstrate the exponential convergence of the method,
the numerical rate of convergence (the Log slope coefficient according to relative

error), N X% is calculated using the following formula

log(gre(Nl)) B log((gdre(]\&))

N RKEEC = ;
log(N1) — log(N2)

(3.21)

where &,..(N7) (resp. &,.(IN2)) denotes the relative error calculated for N = N,
(resp. N = Ny), and Ny = Ny + 2, N; > 2.

By applying the described method in this paper, we obtain systems of linear and
nonlinear equations that can be solved directly by Gauss elimination or by New-
ton’s algorithm, respectively. Several results are presented in tables and figures
below to confirm the accuracy of our method.

All results are obtained for N, = 50, and CPU-time is given in seconds. For New-

ton’s method, € is taken 1071°, and the maximum number of iterations is set to be
5.

Example 3.1 Consider the following nonlinear integral equation

u(z) = —2* — —(2\/5— 1)+2 +/ xty/u(t)dt. (3.22)

The ezact solution is u(z) = 2 — x°.
Error values were calculated for different N > 2, and we obtain &(x) = 0, for all
x in [0,1].

Example 3.2 Consider the following nonlinear integral equation
1
w(z) = Va T 1 (e—1)sinh(€r — 1)+ / sinh(x — 1) cosh(t — 1)u2(t) dt, (3.23)
0
where € = /2. The exact solution is u(z) = vVar+1.

Discussion: Table displays various types of approximation errors (&4, &9
and &,.) calculated for increasing values of N, reaching the order of 107¢ for
N = 18. Figure illustrates the behaviour of the absolute error for N = 18.
The obtained results in Table and Figure are consistent with the values of

the numerical rate of convergence A #% , reflecting the exponential convergence.
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Table 3.1: &naz, &a, &re and N RE for different N and respective CPU-time for Ex-

ample
N & oz & Ee N RBE CPU-time
2 1.30657e — 02 5.52993e — 03 4.46979 — 03 / 10.042
4 1.69372e — 04  5.43398¢ — 05  4.39223e — 05 —6.6691 24.346
6 3.20565e — 06  8.93187e — 07  7.21954e — 07 —10.132 49.403
8 6.95769¢ — 08 1.79229e — 08  1.44869e — 08 —13.586 116.59
10 1.62236e — 09  3.99763e — 10  3.23124e — 10 —17.042 210.63
12 3.95414e — 11  9.46293e — 12 7.64880e — 12 —20.532 356.24
14 9.93205e — 13 2.30971e — 13 1.86691e — 13 —24.085 570.10
16 2.55351e — 14 5.71509e — 15  4.61945e — 15 —27.702 885.40
18 8.88178¢ — 16  2.00619e — 16  1.62158e — 16 —28.437 1329.3

Example 3.3 Let’s consider the following linear first-order Fredholm integro-differential

E(x)

'S

w
"

Figure 3.1: Absolute error curve for N = 18 for Example

equation

with the initial condition u(0) = 0. The exact solution is u(x) = xe®.

u'(q:):e’”—:c+:ce‘”+/

1

0
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Discussion: Table presents some values of the exact solution and the approxi-
mate solution calculated in different nodes on [0, 1]. The technique is applied using
N = 7. The absolute error is also calculated for each node and has an order of

approximately 1078 all over [0, 1], confirming the global character of the method.

Table 3.2: Exact and approximate solution values in different nodes on [0,1] when
N =7 for Example

X Exact solution Approximate solution

()

0.2 2.442805e — 01 2.442806e — 01 7.099942¢ — 07
0.4 5.697298e — 01 5.697299¢ — 01 8.840336e — 08
0.6 1.093271e + 00 1.093271e + 00 8.013137e — 08
0.8  1.780432¢ + 00 1.780432e + 00 1.056572e — 07

1 2.718281e 4 00 2.718281e 4 00 1.260678e — 07

Example 3.4 We consider the following nonlinear first-order Fredholm integro-

differential equation of the form

zu'(x) —u(x) = 1 + éazz + /0 (2% 4 t)u?(t) dt,

=t (3.25)

with the initial condition uw(0) = 0. The exact solution is u(x) = x*.

Discussion: Table|3.3|outlines two types of approximation error &5 and &, calcu-
lated for different values of N from 2 to 8. The values of error are highly accurate,
reaching 10717, These results are of great effectiveness since we obtain this level

of accuracy in just under 30 seconds.

Table 3.3: & and &, for different N and CPU-time for Example

N & Ere CPU-time
2 6.86325e — 14 1.49646e — 13 4.2502
4 9.58120e — 15 2.08908e — 14 9.9383
6 4.43580e — 17 9.67181e — 17 18.025
8 5.50628e — 17 1.20059e — 16 29.195
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Example 3.5 We consider the following nonlinear first-order Fredholm integro-

differential equation of the form

u'(:v)+u(x):%(ez—1)+ /0 W2(1) dt, (3.26)

with the initial condition u(0) = 1. The exact solution is u(z) = e~ *.
Discussion: Table [3.4] provides the values of the exact solution and the approx-
imate solution calculated for different values of x over the interval [0,1]. The
corresponding values of the absolute error show a type of homogeneity everywhere
in [0,1]. This confirms that the used technique approximates the solution in the
same way throughout the interval, illustrating the global character of spectral
methods.

Figure depicts the behaviour of the logarithmic maximum absolute error ac-
cording to different increasing values of N. We observe that the different values
of the approximation error drop from 1072 to 107!? between N = 2 and N = 10,

reflecting the exponential convergence of the method.

Table 3.4: Exact and approximate solution values in different nodes on [0, 1] when
N =10 for Example

x  Exact solution  Approximate solution & (x)
0.1 —9.51625e — 02 —9.51625e — 02 6.39766e — 15
0.2 —1.81269e — 01 —1.81269¢ — 01 7.66053e — 15
0.4 —3.29679¢ — 01 —3.29679¢ — 01 3.79141e — 14
0.5 —3.93469¢ — 01 —3.93469¢ — 01 5.01265e — 14
0.7  —5.03414e — 01 —5.03414e — 01 7.89368e — 14
0.8 —5.50671e — 01 —5.50671e — 01 9.38138e — 14
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E ‘e,
E v,

af
0T ..,

.
.,
o,
*,

Figure 3.2: Logarithmic maximum absolute error curve for different values of N for

Example

Example 3.6 We consider the following nonlinear second order Fredholm integro-

differential equation of the form

u" () + zu'(x) — zu(z) = e® — sin(z) +/O sin(z)e”*u?(t) dt, (3.27)

with the initial condition u(0) = u'(0) = 1. The exact solution is u(z) = e”.
Discussion: Table [3.5] covers all the diverse types of errors values calculated
using N = 2 to N = 14. The results show great efficiency while approximating by
using small values of N. The numerical rate of convergence A %% confirms the
exponential convergence of the method.

Figure3.3| compares different values of absolute error calculated for different nodes
on [0,1] when N = 4,8,16. The error is of 1071¢ order for N = 16. The results
confirm the accuracy of the method, especially when just taking small values of
N.
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Table 3.5: &pnaz, & and & and A ZE for different N and respective CPU-time for

Example
N Emax & Ere NKHC CPU-time
2 3.36141e — 01 1.73884e — 01 5.59325e — 01 / 3.3138
4 4.66519 — 03 2.66201e — 03 8.56278e — 03 —6.029 9.0975
6  1.72096e — 05 9.92601e — 06 3.19284e — 05 —13.790 22.375
8  2.86663e¢ — 08 1.65973e — 08 5.33876e — 08 —22.222 67.270
10 2.72220e — 11 1.57900e — 10 5.07908e — 10 —20.861 172.55
12 1.66533e — 14  9.68711le — 15 3.11600e — 14 —53.196 338.74
14  6.66133e — 16  2.59410e — 16 8.34430e — 16 —23.484 581.84
\ \ \ ‘
104/’ — N4
— N8
10° e — N=16 E

S
&
T

log (E(x))

1072

10-14%

106t

- ;/’,

Figure 3.3: Logaritmic absolute error curve for different values of N for Example ﬁ

3.4 Concluding remarks

To summarize, the shifted Legendre spectral method is employed to find approx-
imate solutions for both linear and nonlinear integral equations as well as for

Fredholm integro-differential equations of n-th order with the initial condition.
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Leveraging important properties of shifted Legendre polynomials, a new algorithm
is developed, characterised by simplicity and effectiveness in achieving accurate re-
sults. The reliability of the method is demonstrated through several examples, with
error calculations (including absolute error, maximum absolute error, square error
norm and relative error) confirming the accuracy and exponential convergence in

terms of relative error for each case.
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Chapter 4

Fractional integro-differential

equations

The obtained results in this chapter are the subject of an article entitled ” Theo-
retical and Numerical Study for Volterra-Fredholm Fractional Integro-Differential
Equations Based on Chebyshev Polynomials of the Third Kind” published in Com-
plexity, 2023, 2023.

We develop an present numerical method for approximating the solutions of
fractional integro-differential equations of mixed Volterra-Fredholm type. This
method utilizes spectral collocation approach with shifted Chebyshev polynomials
of the third kind. The fractional derivative is defined in the Caputo sense, and
Chebyshev-Gauss quadrature is employed to improve the accuracy of integrals.
Two categories of equations are examined, leading to algebraic systems solvable
using the Gauss elimination method for linear equations, and the Newton algo-
rithm for nonlinear ones. Additionally, we conduct an error analysis, evaluating
six numerical examples with different error metrics (maximum absolute error, root
mean square error and relative error) to compare the approximate with the exact
ones. The experimental rate of convergence is also calculated as well. The results
affirm the efficiency, applicability, and performance of the proposed numerical ap-

proach.
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4.1 Description of the problem and preliminaries

The chapter is organized as follows. In Section [4.1, we introduce the studied
problem and some important mathematical concepts essential for the elaboration
of the method. Section is devoted to developing the numerical method, with
the linear and nonlinear cases explored separately in Section and Section
4.2.2] respectively. Section presents error analysis based on certain definitions
and useful lemmas. In Section 4.4 we examine numerical examples presenting and
discussing the results in a clear manner. Finally, we summarize all details in the

conclusion.

4.1 Description of the problem and preliminaries

In this chapter, our focus lies in the numerical study of fractional integro-differential

equations of Volterra-Fredholm type

€ @ou(z) = glz)ula)+f(z)+ /0 (1) Tt u(t)) di+ /0 How,t) Folt, ult)) dt,
(4.1)

for 0 < 2 <1 joined to non-local boundary condition
au(0) + bu(l) =0; a,beR, anda+b#0, (4.2)
where
e u(x) is the unknown function,
e 7 and ¢ are in [0, 1],
e ©9* denotes the a-th Caputo fractional derivative of u(z) with 0 < o < 1,

e g, f €€([0,1],R), 1, % € €([0,1)*R) and F#, % € €([0,1] x R,R) are

given functions.

The existence and uniqueness of the solution of equations of this kind has been
widely investigated in numerous studies. The approach involves transforming the
problem — into a fractional integral equation and then applying Banach
fixed point theorem and Krasnoselskii fixed point theorem. For a more in-depth

understanding, interested readers are encouraged to refer to [35] Q0] 47, 68, [40].
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Now, in order to elaborate a suitable numerical method for this type of equations,
we first need to present the necessary definitions and the mathematical tools related
to fractional calculus.

Let be a > 0 and I'(a) be the gamma Euler function.
Definition 4.1 [44] The Riemann Liouville fractional integration of order o of a

function g € Lla,b] is

Jog(z) = T(a) /m(m —t)* tg(t)dt, = > a.

Definition 4.2 [44] The Riemann Liouville fractional derivative of order o of a

function g is

P29(x) = ! d / (x —t)" " g(t)dt, z > a.

I(n—a)dz” J,
where n = [o] + 1, [a] denotes the integer part of a.

Definition 4.3 [44] The Caputo fractional derivative of g(x) of order « is

n—1

€ ge(x) =75 (g(m) - 9 (- a)

Il
=)

1

1 x n—a=g
:—F(n_a)/a(x t) t)dt,

wheren —1 <a<n, neN.

Some of the basic properties are given by

1. JoJv = Jotv,

2. JoJv = JvJe,

3. Jaxl/ — F(l + V) xl/—l—a’
F(l+v+a)

4. 2Ng(z) +6f(x)) = X-“2°%(2) +§-C 2*f(x), where A and § are constants.
5. 2% =0, (cisa constant);

0, for v € Ny and v < [a],
‘O =1 T+

mx”’a, forveNgand v > [a] or v ¢ N, v > |af,

(4.3)
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where the integers [a], |« satisfy a < [a] and || < a. AlsoN={1,2,...} and
N ={0,1,2,...}.

For convenience, we define a first approximation of u(z) by considering the first
(N + 1) terms of shifted Chebyshev polynomials of the third kind

N
)= i), (1.4)
k=0
For the elaboration of the numerical method, some useful theorems are stated

below.

Theorem 4.1 [60] The error of approximation using the first N + 1 terms of
Chebyshev polynomials of the third kind verifies, for x € [—1,1]

Ry = |u(z) — uy(z)| < Z iz (4.5)

k=N+1
Theorem 4.2 [60] Let u € L?[0,1] be a twice-differentiable function such that

M >0; Vzel0,1], [¢(z) < M.
Then uy(x) defined by (4.4) converges uniformly to u(x) defined by (|1.34)).
Proof 4.1 Using 2x — 1 = cosf, the relation (1.36]) becomes

ﬂk:g/ u(cos2g>cos(k‘+ )Hcosede
T Jo 2

and after two integrations by parts, we get

Uy, = L 7ru” (COS2 Q) sin gy, (6)d0,
8T 2
where
sin k6 sin(k + 2)0 sin(k —1)0  sin(k+ 1)0
9 (0) = FE+D) e D(k+2)  RE=1) @ EktD)
Then,

M 4k* + 4k — 2
8 (k—1Dk(k+1)(k+2)

[y <

From Theorem

“+00 N “+00
M 4k? + 4k — 2
Z“m Z k%;l§(k—1)k(k+1)(k+2)

Hence the uniform convergence.
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Theorem 4.3 [83] Let u(x) be approximated by (4.4)), then

“Dun(@) = D D b (4.6)

where

E+1DIQ2k -0+ 1)I(k—L0+1)
Fl+1I2k—204+2)T(k—(+1—a)

%f?) — (_1)@22](3—2[ (47)

Proof 4.2 Making use of the definition of the approximate function uy(x) de-

fined in (4.4) and taking into account the properties of the fractional derivation in

Caputo sense cited before, we can write
N
“P(un(x) =Y w2 (Vi(x)). (4.8)

Making use of the linearity of the Caputo derivative and (4.3)) allows us to obtain

CP°(H(z)) =0, k=0,1,...,[a] =1, & > 0. (4.9)
Also,
k
~ 22202k + )I(2k — £ + 1)
C oo _ 1\ Copo k—4
7° (@) = Zg VTororar—2ry 2% (4.10)

Using again the properties of the Caputo deriwvative (4.3)), (4.10) can be rewritten

as

k—fal 2k—2¢
~ 2202k + Ik =4+ 1)k —£0+1)
C o _ 1\ h=t-a (411
7% (Ni(z) ;( T T @h— 20+ T =1 1=a)" (4.11)
Now, by combining (4.8)), (4.9) and (4.11), we obtain
N k—[a] 2k—2¢ _ —
Coun(@) = 33 i ¢ 272k + DRk — 0+ DIk — £+ 1)xk—€—a,
Rl T({+ )2k —20+2)T(k—(+1—a)
(4.12)

which can be simplified to obtain the form (4.6]) with ( -
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4.2 Shifted Chebyshev-Gauss collocation method

In this section, we apply Gauss-collocation method using shifted Chebyshev poly-
nomials of the third kind to solve the problem (4.1)—(4.2)) numerically.

4.2.1 Linear case

We assume that 71 (t,u(t)) = Fo(t,u(t)) = u(t). By substituting the relation
(4.4) into the equation (4.1)) and using Theorem [4.3] we obtain

N k—[a] N —
33 kP o) ) + 0
k=[a] (=0 k=0

N T N N 1 .
e [ A de S [ AT
k=0 0 k=0 0
(4.13)
By replacing in (4.13)) the variable x by m roots x, defined by (1.33]), we obtain

N k—[«]

SN Pk = g(ay)

k=[a] ¢=0

G () + flzp)

WE

=
Il

0

+Zw«/ (@ () dt+zuk/%xm £) Fi(t) dt

(4.14)

Using the change of variable 7 = %t — 1 (resp. 7 =2t — 1) to move from [0, z,] to
[—1,1] (resp. from [0,1] to [—1,1]) gives

N  k—[a] N
35 S a0 = ) 3T + 1
k=[a] (=0 k=0

W / (g, 2+ )27+ 1) dr

k=0

453 i [ Halow ylr+ DI+ 1) dr (4.15)

k=0 1
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Using the Gauss-Chebyshev integration formula, we obtain

N N
oy Mt Z i V(wp) + f ()

k=[a] =0 —

N N
T Ny p ~ 1, T
T3 ;quz;wq%(xpa 5 (T + D)V (1 + 1)) -
1L & ] —
2 L — g
ISP )75 + 1) (1)

Here, 75, wq correspond to the N 4 1 zeros of ¥ and their respective weights

such that (

Tq = COS and wg =

%)g (14 7).

+ ™
N + N+3
From boundary condition and approximation (4.4]), we have
N

0y @ e(0)+ 6w (1) =Y ((—1)F(2k + D)a + b)iy = 0. (4.17)

k=0

Now, for numerical resolution, we use a Gauss elimination method to solve (4.16]) —
(14.17)).

4.2.2 Nonlinear case

We assume in this case Z(t,u(t)) = (u(t))®, Fo(t,u(t)) = (u(t))” where r,s # 1.
By substituting the relation (4.4) into the equation ([4.1)) and using Theorem [4.3]

we obtain

N k—[a] Nooo
Z Z ak%(o‘) k—t-a :g(x)zﬁk%c(x) + f(z)
k=[a] (=0 h=0
+/O Hy(w,t) (Zﬁk"f/k(t)) dt
+ / 1%(1«,@ (Zm%(t)) dt.  (4.18)



4.2 Shifted Chebyshev-Gauss collocation method

Following the same steps described in the linear case, we obtain the scheme

k—[a] N N
Z Uy, Z f/V = g(zy) Zﬁk%c(37p) + f(p)
k=[a] (=0 k=0
N il ~ ) 11—
+ ?p ;wq%(xm (14 +1)) (; U Vi (— (g + 1))) T 7_:

joined to the initial equation (4.17)).
Now, in order to solve (4.19)—(4.17]), we use a Newton method. For this, we define

@ as a vectorial function
g - (%(ﬁo, ‘e ,ﬁN),gg(ﬁo, ‘e ,’[LN), oo ,gN_i_l('LALD, ‘e ,ﬁ,N))T (420)

such that for all j =1,..., N

N N
Gi(tg, ..., uy) = Z Uy, Z 5/12(?% - g(xy Z A () — f(zp)
k=0

k=[a]  £=0

’ 1—r
qujifl :vp, Tq+1 (Zuﬂ/k Tq+1))> 1—1—7':

- = qu% mp, (1 +1)) (Z uﬂ/k Tq + 1))) - Ta. (4.21)

and from boundary condition for j = N 4+ 1

N

Gy (i, ... iy) = Y _((—=1)*(2k + 1)a + b)iy. (4.22)

k=0

The Jacobian matrix of ¢ is

Joy (g, ..., uy) = (agp(uo,...,u]v)> |
pk

Oy,

where
0%, (o, ..., un) k_z[a] (@) ph—t—a () Vi ()
iy £ ke Tp p) PE(Tp



4.3 Error analysis

N N s—1
T T ~ o~ 1-—r
— 23w iy, 21+ 1) s Vi Py + 1) ( QT2 7 + 1>>> !
q=0 i

_ %onwq%m,%(rq F1) A5+ 1) (Z@f’zém ’ ”)) =

pa 1+
(4.23)
forp=1,...,N.
8gN+1(gOA7-"7uN) _ (_1)k(2k+1)u+b (424)
Uk

To solve this system of equations, we use a Newton algorithm defined by
e Initialisation: Let be ¢ > 0, Z° = (4,49, ...,4%), and
T
90 = (%(ﬁga s 7a?\f)ag1(ﬁ87 s 7a?\f)7 ce ’gN+1(f&8’ T 712(])\[)) .

e [teration: Solve

Jg( U™ — U™) = g™,

o Stop: If |Z™ — %™|| < e, stop the iteration.

4.3 Error analysis

In this section, we formulate an error analysis for the proposed method. To begin,
we introduce some fundamental definitions and lemmas that will be useful in the
following (for more details see [82]). Here, we use C to denote a generic positive

constant independent of V.

4.3.1 Definitions and lemmas

Definition 4.4 Let L?(I) = {u,u mesurable and ||u|l, < oo}, where I = [0,1] is
the weighted space with

<u,9>w—/0 u(@)f(z)w(@) dz,  ullw = (u,u)?.

We define Iy : L2 (1) — Py as the orthogonal projection operator such that
(u—Tyu,¢) =0, Yue L:(I), ¢ € Py.
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Definition 4.5 We define
Hy (1) = {u, 0yu € Li,(I), 0 <0 < s}

with

s 1/2
[l 0 = (Z II%UIIfy) ;o Julsw = [107ullw,
1=0

where s is a non-negative integer.

Lemma 4.1 Assume that u € H*(I), and we denote the interpolation of u at the
Chebyshev Gauss points by Syu, which satisfies

Hu — jNUHLi(I) <CN* |U|H;,N(I) (4.25)

I_s
||U—jNU||LOO([) SC]\[§ |U

Lemma 4.2 Assume that u € H(I), and Syu denotes the interpolation of u at
(N + 1) Chebyshev Gauss points corresponding to the weight function w(x), then

1€ 2% — N Dul| 3,y < CN* |9 D] o - (4.27)

4.3.2 Error analysis

Here, we present an error analysis of the method described in by using pre-

vious definitions, lemmas and Sobolev inequality.

Theorem 4.4 Let u(x) be the exact solution of (4.1), which is assumed to be
sufficiently smooth, and Iyu(x) the approximation defined by (4.4) obtained using

the scheme (4.16)—(4.17)), then

le@) ez ay < CN~*(1°9%

e + N2 O D+ da) [

HZN (D)

(9@ g gy + 1, ) gy + 186 D g ) Nl )
(4.28)
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Proof 4.3 From (4.1)), we have

CPoulz) - gle)ulz) — f(z) /0 (e, Hult)dt — /0 o u(t)dt 0. (4.29)
Using Fwu(z), we obain
INCDu(x) — Ing(e) Inulz) — f(x) — /0 A, ) Iyult) dt
_ /O o) Iu() A= 0. (4.30)

By subtracting from (4.30), we obtain
e(x) = (N 2%(r) — “ P%u(x)) + g(x)u(r) — Ing(x) Inu(z)
/xfl (2. ) dt—/ I (. ) Iu(t) dt
0

—l—/ Ho(x, t)u(t) dt — /1JN%(x,t)fNu(t) dt. (4.31)

e(w) = (SN 2u(x) = “Pu(x))
+g()(u(z) — Ivu(x)) + (9(x) — Ing()) Fmu(z)
/ 0 (z,1)( — Iyu(t)) dt + /m(%(x,t) — InHi(x,t)) I yu(t) di

/ Ayl 1) (u(t) — Swu(t)) dt + / (ol t) — In Aol ) Iwult) db. (4.32)

0

Then we write
e(x) =Y R, (4.33)

where

= INCDu(x) — © D°u(x),
Rzzg( )( () = Iyu(z)),
Ry = — Ing(x))Inu(z),

Ry = /Ji/xt — Fyu(t))dt
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4.3 Error analysis

Rs = / (Kl t) — I (2,0)) Iwu(t) dE

0

Ry = lji/g(ac, 1) (u(t) — Inult)) dt,

Ry = / (A (2, 1) — InHo(w, 1)) Inult) dt

Hence, we get

z)zm < Z [Rill 22, 1) (4.34)
From Lemma[{.7

1Rl 22,1y = |28 2%u(x) — © Pou()|
<CN“* |92

o - (4.35)
In addition, from Lemmal[4.]]

1Ra |22,y = [l9(2) (u(z) — Snu(@))|
< MCNz ™5 |u

. (4.36)
where A\; = max |g(x)|, = € 1. Also

R3[|z, 1) = (9(2) — Fng(x))Inu(z)]|
< CN7g(@)| gsv 1y Cllwllzz )
< CN~*g(x)

H,SU’N(I)“UHLE,(I)- (4.37)

Moreover

IRalizn = | / A, D) (ut) — Ivult)) dtll s

< H/ (1) (u(t) — Ivu(t) il
< /\QCN2 s |U

H;’N(I) (438)

where Ay = max |#](z,t)|, x € I. Furthermore

1521y = II/ (A (x,t) — Iyt (x, 1) Fyu(t) dE|
0
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< CN”°| A (z,t) ayN (1) Cllullzz 1)
< CN |44, v Nl - (4.39)

Also, Rg and Ry can be treated the same way, so we obtain

| Rell 2z (1) < A\sCN2~ [ g (4.40)
where A3 = max | (x,t)|, x € I,
HR7||L%,(I) < CN_S|J£/2(x7t)|H5;N(1)Hu L2,(1)- (4.41)

Combining (4.35)—(4.41), we derive the desired estimate.

4.4 Numerical results

This section presents various examples to illustrate the effectiveness of the de-
scribed method. Different cases are addressed. To analyse the obtained results,
different error values are calculated (& (2.27), &nax (2:29), & (2.30) and & (2.31))).
To assess the numerical convergence of the method, the numerical rate of conver-
gence N X€ according to the relative error is also computed .

Example 4.1 We consider a linear Volterra equation

CP\V3u(x) = f(x) +/ (zt + 2°t%) u(t) dt, (4.42)
0
with the condition

au(0) + bu(1) =0, a=1,b=0, (4.43)

where 3\/_ 5
— @ 7/6 = 9/2 2 4 44
f(z) —4F(13/6)$ 631: (9 + 7z7), (4.44)

3/2.

knowing that the exact solution is u(z) = x

Discussion: Table provides the values of &, and &,. for various values of
N ranging from 2 to 22. It also includes the corresponding numerical rate of
convergence, which stabilizes around the average value avg(AN Z€) = —1,6695.
The significance of this value is demonstrated differently in Figure [.1], depicting
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4.4 Numerical results

the behaviour of the relative error values &,. with relation to N is illustrated in
comparison with the values of N¥#%. Both curves exhibits a similar decreasing
trend, confirming the linear convergence of the approximate solution to the exact

solution.

Table 4.1: &, & and N XZE for different N for Example

N &y Ere N KEC
2 1.0030e — 02 4.2721e — 03 /

6 1.5195e — 03 6.4721e — 04 —1.7177
10 6.2736e — 04 2.6720e — 04 —1.7318
14 3.4228¢ — 04 1.4578e — 04 —1.8006
18 2.1545e — 04 9.1765¢ — 05 —1.8419
22 1.6746e — 04 7.1325e — 05 —1.2557

=« Relative error

o NNRC

4 6 8 10 12 14 16 18 20 22

Figure 4.1: Relative error and N**#% (in log scale) for different N for Example

Example 4.2 [5] In this example, a linear Volterra Fredholm equation is studied

2. 2.25 T 1
%u(m):&v——l— / tu(t) dt + / (4 — t3Yu(t) dt, (4.45)
0 0

C »0.75
77 ulw) + T'(3.25)

with u(0) = 0. The exact solution is u(x) = 3.
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Discussion: Table provides values for &3, &,., and A Z%€ for different N.
Comparing with the results obtained in [5], our results show more efficiency when
N increases. Figure illustrates the behaviour of the exact solution and the
approximate solution over the domain [0,1] using N = 6. A clear illustration
shows that the two curves exhibit identical behaviour. In Figure [£.3] the curve of
the logarithmic absolute error for N = 18 is displayed, and the results are in good
coherence with those in Table [4.2

Table 4.2: &, & and N XZE for different N for Example

N & & N RE & in [5]

2 2.3335¢ — 01 1.2689¢ — 01 / -

4 2.2151e — 03 1.2045¢ — 03 —6.7189 4.1433¢ — 03
6 8.5077e — 04 4.6750e — 04 —2.3341 -

8 4.9534e — 04 2.6934e — 04 —1.9167 3.9790e — 03
10 3.2587e — 04 1.7719¢ — 04 —1.8765 -

12 2.3175¢ — 04 1.2601e — 04 —1.8693 -

14 1.7369¢ — 04 0.4445¢ — 05 —1.8709 -

16 1.3520e — 04 7.3517¢ — 05 —1.8760 2.2890¢ — 03
18 1.0831e — 04 5.8898¢ — 05 —1.8822 -

20 8.8772¢ — 05 4.8270e — 05 —1.8887 -

1.2 T T
=4 Exact solution

1L =>  Approximate solution g

0.8

0.6

04

0.2

Figure 4.2: Exact and approximate solution for N = 6 for Example
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105+ *

L =8~ Absolute error

10-10 [ |

log(.)

105 4

! ! ! ! ! ! ! ! !

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Figure 4.3: Absolute error values for N = 18 for Example

Example 4.3 [36] We consider another linear Volterra-Fredholm equation with

u(z) = x being the exact solution

ZL’O'S IE2 :L.Qe;t

CP"u(z) = Tl 2 3 u(z) + /Ow etu(t)dt —|—/0 2*u(t)dt,  (4.46)

with the condition u(0) = 0.

Discussion: In Table [4.3] the values of & and &,. are calculated for different N.
Also, the corresponding A %% is computed, taking uniform values throughout
the table with an average value avg( AN #Z€) = —1,7688. Figure confirms the
obtained results by depicting the curves of &, and &,,,, with different N, showing

the decreasing behaviour of error values when N increases.

Table 4.3: &, N & Ere NRHE

&re and N AC 2 1.5353e — 02 5.7319¢ — 03 /

for different N for 6 2.8405¢ — 03 1.0604e — 03 —1.5349

Example 10 1.1896¢ — 03 4.4414e — 04 —1.7037
14 6.5157e — 04 2.4325¢ — 04 —1.7893
18 4.1074e — 04 1.5334e — 04 —1.8360
22 2.8247¢ — 04 1.0545e — 04 —1.8656
26 2.0620e — 04 7.6982¢ — 05 —1.8838
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107¢ 1

Figure 4.4: & and &),,4; (in log scale) for different N for Example

Example 4.4 Here we discuss the nonlinear Volterra equation

CP3u(x) — / wt(u(t))*dt = ! (%x‘r’/‘l — 4x1/4>
0

['(1/4)
ot 40 4x9 428 2T
-t — 4 — + — 4.47
+ 10 + 9 3 * 7 + 6’ ( )

with the condition u(0) + u(1) = 0, where the exact solution is u(z) = x? — x.

Discussion: Table[d.4] provides the values of & and &, with respect to N. Noting
that the results correspond to the example for a nonlinear case so, the parameters
used in the Newton’s algorithm to solve the nonlinear systems is ¢ = 10710 with
a maximum of 5 iterations. It is observed that the error values decrease as N
increases. The average value of A Z€ for Example 4.4]is avg(N %€ ) = —1,9912
with 3 iterations for Newton’s algorithm. In Figure [4.5] the behaviour of the rel-
ative error &, and N-¥#% is illustrated, indicating that the error values decrease

similarly to N-¥#¢ .
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Table 4.4: &, N & Ere NKHC

Ere and N HC 2 1.3473e — 05 1.6501e — 05 /

for different IV for 6 6.8129¢ — 07 8.3441e — 07 —2.7165

Example [1.4] 10 2.9199¢ — 07 3.5761e — 07 —1.6586
14 6.5157¢ — 07 1.9733e — 07 —1.7670
18 1.0190e — 07 1.2481e — 07 —1.8227

o\\
1072 3 o 5 i
8
=0ty E
L -+~ Relative error
: -~ \NRC
wET—— N
1078 \ ! ! ! ! !
4 6 8 10 N 12 14 16 18

Figure 4.5: Relative error and N*"#% (in log scale) for different N for Example

Example 4.5 Here, we study the nonlinear Fredholm equation for different values

of a

€ go(z) — /0 t(u(t)dr =17 (4.48)

with the condition u(0) = 0, noting that for a = 1 the exact solution is known

u(z) = x.

Discussion: For Example [4.5[ Table presents the values of the approximate
solution for different values of a (o = 0.75, 0.9, and 1) in comparison with the
exact solution calculated for different = (z = 0.25, 0.5 and 0.75) and different N
(N = 2, and 8). For comparison reasons, one can observe the two last columns

representing the approximate solution with e = 1 and the exact solution, noticing
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4.4 Numerical results

that they get closer as N = 8. Another way to observe this behaviour is shown in

Figure which depicts the curves of the approximate solution for various values
of a (0.5, 0.75, 0.9, 1) when N = 6, compared to the exact solution when o = 1.
The observed behaviour affirms the stability of the solution using the described

method.

Table 4.5: Approximate solution values on different = for different o comparing to the
exact solution when o = 1 for N = 2 and 8 for Example

N x a=0.75 a=20.9 a=1 Exact sol.
2 0.25 3.2486¢e — 01 2.7603e — 01 2.5078e — 01 2.5000e — 01
0.5 6.2166e — 01 5.4360e — 01 5.0312e — 01 5.0000e — 01
0.75 8.9042¢ — 01 8.0270e — 01 7.5703e — 01 7.5000e — 01
8 0.25 3.8712e — 01 2.9867e¢ — 01 2.5009e — 01 2.5000e — 01
0.5 6.6748e — 01 5.6259% — 01 5.0036e — 01 5.0000e — 01
0.75 9.2228e — 01 8.1607e — 01 7.5081e — 01 7.5000e — 01

—©-Approximate solution a =0.5
—*—Approximate solution o =0.75
—%— Approximate solution a = 0.9 M
—&— Approximate solution for a =1

—8—Exact solution

T
0.6 0.7

T
0.8

T
0.9 1

Figure 4.6: Exact and approximate solutions for different o obtained for N = 6 for

Example

Example 4.6 Here, a mixed Volterra-Fredholm equation is discussed

CPV2u(x) = flz) + 1 /;(3 + 2% — *)u(t)

10

94

1
dt + —

1

24 J,

(54 ot) (u(t))*dt, (4.49)



4.4 Numerical results

with the condition u(0) = 0, where

33:) 215  19x 2?2 ) 5
—Vr(1+2) - 630 + 1892 + 1202> + 28
f@) ﬁ( T (288+180+1575( S0 12007 2807 )

the exact solution is u(x) = \/r(2 + x).

Discussion: Table depicts &5 and &, with respect to N obtained for the same
parameters of Newton’s algorithm. Also, the values of A Z% with avg(N ZE) =
—1.8907. Figure [4.7]illustrates the convergence of the approximate solution to the
exact solution when N takes the values 2,6, 12. The results achieved confirm the

effectiveness of the described method for both linear and nonlinear cases.

Table 4.6: &, & and N XZE for different N for Example

N & Ere NHE
2 2.5722e — 01 2.9464e — 02 /
6 3.6918e — 02 4.2289e — 03 —1.7670
10 1.2054e — 02 1.3807e — 03 —2.1912
14 6.2091e — 03 7.1124e — 04 —1.9716
18 4.1190e — 03 4.7182e¢ — 04 —1.6330
3 I I \ R

11
15+ 034 035 036 037 038 039 04

—©-Approximate solution N=2

—<—Approximate solution N=6

——Approximate solution N=12 -

—P-Exact solution

| | | |
0.6 0.7 0.8 0.9 1

Figure 4.7: Exact and approximate solutions for different N for Example
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4.5 Concluding remarks

The described method demonstrates great efficiency in approximating the solution
of the fractional integro-differential equations of different types. Our approach re-
lies on using the shifted Chebyshev polynomials of the third kind as spectral basis
with the zeros of Chebyshev polynomials of the third kind as collocation points.
This enables us to construct an accurate algorithm applicable to both linear and
nonlinear equations.

The obtained results cover a range of integro-differential equation type with frac-
tional order, including linear Volterra equations, linear Volterra-Fredholm equa-
tions, nonlinear Volterra equations, nonlinear Fredholm equations, and nonlinear
mixed Volterra-Fredholm equations. In all cases, the convergence of the approxi-
mate solution to the exact solution is guaranteed, and the method yields significant
accuracy compared to other approaches. Furthermore, the experimental rate of
convergence calculated for various examples exhibits a consistent behaviour in the
relative error obtained for different values of NV, thereby validating the convergence

results.
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Conclusion

The work presented in this thesis focused on the numerical investigation of some
mathematical problems using spectral methods. The objective is to demonstrate
the significant impact of global approximation when employing the different tech-
niques of spectral methods.

The study primarily addresses partial differential equations and integral equations

of integer and fractional order.

In the first part, we examine the advection-diffusion equation as a prototype of
parabolic equations. As a first approach, we employ a combination of the Galerkin
method with numerical integration and a Crank-Nicolson scheme. This technique
combines the advantages of both methods. For the Galerkin method, the pre-
sented algorithm utilizes compact combinations of Legendre polynomials as basis
functions, satisfying the boundary conditions of the problem and reducing the di-
mension of the space of approximation to N — 1 instead of N + 1. At the same
time, the integrals appearing in the weak formulation are evaluated using an in-
tegration formula of Gauss-Lobatto type with the Legendre-Gauss-Lobatto points
since we prefer to consider both extremities of the interval [—1,1]. This latter en-
sures the highest degree of precision for this type of integration, so we gain more
accuracy while calculating the matrices elements that compose the final system to
solve. At this stage, a Crank-Nicolson scheme is applied to the resulting system
of equations with an appropriate time step, yielding highly efficient and reliable
numerical results. In the second approach, we go through the integral form of
the advection-diffusion equation and solve it using a Galerkin method based on
compact combinations of Legendre polynomials. The technique aims to use the

same approach for both spatial and temporal discretizations. The obtained results
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show great efficiency and high accuracy.

In the second part, we delve into integral and integro-differential equations us-
ing a spectral method based on Legendre polynomials. The proposed technique
introduced a novel way of considering the basis functions by incorporating the
order of derivation n present in the equation. The basis functions consist of a
compact combination of Legendre polynomials that satisfies conditions, reducing
the dimension of the space of approximation to N —n -+ 1 instead of N + 1. Linear
and nonlinear schemes are proposed using the Gauss-Lobatto quadrature for inte-
gral evaluation in the spectral schemes. Numerical results, demonstrated through
various examples, showcase exponential convergence with calculated rates of con-

vergernce.

In the last part, we explore techniques employed in the previous equations
to study an integro-differential equation with a derivation of fractional order in
the Caputo sense. Chebyshev polynomials of the third kind are used to approx-
imate the fractional derivative, forming a collocation method using the roots of
these polynomials. The technique is developed for the linear and the nonlinear
equations, and the numerical examples align with theoretical findings in the error

analysis section, confirming the high accuracy of the method.

The results of this modest study underscore the efficiency of spectral methods in
solving partial differential equations and extending to other equation types. Future
prospects include enhancing matrix calculations for the described techniques in
numerical analysis, to address potential error accumulation when using different

programming languages.
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