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Abstract. In this paper, we investigate the inverse matrix projective synchronization

(IMPS) of novel hyperchaotic system with hyperbolic sine function non-linearity. Recall

that the studied system is generated from the modified Lü system. First, hyperchaotic

attractors, symmetry, dissipation, equilibrium points and Lyapunov spectrum are the tools

used to analyse this system. Moreover, this paper presents an active controller to achieve

the IMPS analysis of the system. The main results are established by using Lyapunov

stability theory, and finally numerical example and computer simulations are shown to

illustrate all the main results.
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1 Introduction

Grace to the natural properties of chaotic and hyperchaotic systems, such
as: sensitivities of initial conditions, boundedness and infinite recurrence,
hyperchaotic systems have become good condidat for important applications
in several areas such as: cryptosystems, secure communications, network
signal transmission, electrical circuits and encryption [8, 12, 13, 23, 26], etc.

Chaos synchronization plays an important role in nonlinear science and
must consider several aspects, such as physical systems [11], ecological sys-
tems [3] and biological systems [10], etc. For this, many different methods
have been used to study the synchronization and stability of general uncer-
tain systems, such as impulsive control, adaptive control, Adaptive fuzzy
control, active control, prediction-based feedback control, sliding mode con-
trol [2, 5, 6, 17, 21, 22, 24] and so on. Different types of synchronization
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have been proposed, such as complete synchronization, projective synchro-
nization, co-existence of some chaos synchronization types, generalized syn-
chronization, inverse generalized synchronization and hybrid synchronization
[1, 4, 14, 16, 18, 19, 20].
On the other hand, most of the existing papers discus the synchronization
between two chaotic or hyperchaotic systems with quadratic or cubic non-
linearity. Recently, there has been increasing attention to the synchronization
of hyperchaotic systems which contain a non-linear term in the form of usual
functions with different characteristics and behaviour. For example, in [9]
an anti synchronisation of novel hyperchaotic system with its exponential
non-linearity function has been investigated.
Also, the concepts of hyperbolic functions are analogues of the usual func-
tions. For example, hyperbolic functions occur in the solutions of many linear
differential equations such as the Laplace equations, which have attracted a
great deal of interest in many areas of physics, including fluid dynamics, and
special relativity. Owing to the previous discussion, a novel hyperchaotic sys-
tem with hyperbolic sine function non-linearity generated from the modified
Lü system [7] is investigated. In addition, the IMPS analysis of the system
is achieved using active control method and Lyapunov stability theory.
The remainder of this paper is structured as follows: The next Section states
the novel hyperchaotic system and its dynamic analysis. The Section 3 de-
rives an active controller for IMPS of the identical systems. Finally, the
Section 4 contains the conclusion.

2 A novel hyperchaotic system and its hyper-
chaotic attractors

Our novel hyperchaotic system generated from the modified Lü system [7] is
given as 

ẋ1 = b1(x2 − x1) + x4,
ẋ2 = −x1x3 + b2x2,
ẋ3 = sinh(x1x2)− b3x3,
ẋ4 = b4x1,

(1)

where x1, x2, x3, x4 are the state variables, b1, b2, b3 and b4 are positive
real. In addition, we shall schow that the system (1) is hyperchaotic when
the parameters b1, b2, b3 and b4 take the values

(b1, b2, b3, b4) = (25, 20, 1.5, 7). (2)

We recall that we can also find other values of the previous parameters to
justify the existence of hperchaos in the propsed system by using the bufur-
cation diagram and also by the Wolf algorithm [25].
All numerical simulations are performed by using the fourth order Runge-
Kutta algorithm. For this numerical simulations, we take the initial values
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of the novel hyperchaotic (1) as

x1(0) = −0.0546, x2(0) = −0.0049, x3(0) = 0.0427

and x4(0) = 0.9094. (3)

The attractors of the system (1) are represented in Figure 1.

Figure 1: The attractors of the hyperchaotic system (1).

The proposed system has the following characteristics:

2.1 Symmetry

The system (1) remains invariant under the function:
(x1, x2, x3, x4) → (−x1, − x2, x3, − x4). In addition, this system is
symmetric with respect to the x3 - axis.

2.2 Dissipation

The divergence of the novel 4−D system (1) is

∇f = −b1 + b2 − b3. (4)

By using Liouville’s theorem, we obtain

V (t) = V0 exp((−b1 + b2 − b3)t) (5)

For the system (1) to be dissipative, it is enough that ∇f < 0. in this case,
all the trajectories of the system tend to an attractor when t→ +∞.
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2.3 Equilibrium points and stability

Suppose that the system (1) has P (x1, x2, x3, x4) as an equilibrium point,
thus 

b1(x2 − x1) + x4 = 0,
−x1x3 + b2x2 = 0,
sinh(x1x2)− b3x3 = 0,
b4x1 = 0,

(6)

As a result, the system (1) has only one equilibrium point P (0, 0, 0, 0).
The Jacobian matrix in P is

−b1 b1 0 1
0 b2 0 0
0 0 −b3 0
b4 0 0 0

 , (7)

and its characteristic polynomial is

P (λ) = (λ− b2) (λ+ b3)
(
λ2 + λb1 − b4

)
. (8)

The eigenvalues corresponding to P are

λ1 = −b3, λ2 = −1

2
b1 −

1

2

√
4b4 + b21, λ3 = b2,

and λ4 = −1

2
b1 +

1

2

√
4b4 + b21. (9)

Here, λ1 and λ2 are negative real numbers, λ3 and λ4 are the positive real
numbers. Then the equilibrium P is an unstable saddle point.

2.4 Lyapunov exponents

Here, we assume that the parameters b1, b2, b4 remain fixed and just b3
is varied in [0.5, 1.8]. Using Wolf algorithm [25], the Lyapunov exponents
spectrum of system (1) with b1 = 25, b2 = 20 and b4 = 7 are represented in
Figure 2.

In particular, for the parameter values as in (2), the values of Lyapunov
exponents of non-linear system (1) are given by

L1 = 1.968, L2 = 0.1755, L3 = −0.2914 and L4 = −8.367 (10)

3 IMPS of the identical novel hyperchaotic
systems

The control goal considered in this section is that the two identical hyper-
chaotic systems can be achieved the IMPS. The main IMPS result via active
control method is proved by using Lyapunov stability theory.
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Figure 2: The Lyapunov exponents spectrum of system (1) versus b3.

3.1 Theoretical analysis

Consider a master and a slave hyperchaotic systems, respectively, described
as follows:

Ẋ(t) = f(X(t)), (11)

Ẏ (t) = AY (t) + g(Y (t)) + U, (12)

where X, Y ∈ Rn are state variables of the master system and the slave
system, respectively, A ∈ Rn×n, is the linear part of the systems (12), f, g :
Rn → Rn are non linear functions and U = (u)

1≤i≤n
is a control input vector.

The problem of IMPS [15] for the systems (11) and (12) is to find the
controller U such that the synchronization error,

e(t) = MY (t)−X (t) , (13)

satisfies
lim
t→∞

||e(t)|| = 0, (14)

where M is invertible scaling matrix. Hence, we have the following result.

Theorem 1 The IMPS between the master system (11) and the slave system
(12) can be achieved if the following conditions are satisfied

(a) U = M−1((A−C)e (t)−MAY −Mg(Y (t)) + f(X(t)), where C is a
control matrix.

(b) (A− C)T + (A− C) is a negative definite matrix.

Proof. The error system can be derived as follow

ė(t) = MẎ (t)− Ẋ(t)

= MAY (t) +Mg(Y (t)) +MU − Ẋ(t) (15)
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Substituting (a) into Eq. (15), the error system can be described as

ė(t) = (A− C) e(t). (16)

Consider the quadratic Lyapunov function defined by

V (t) = eT (t)e(t), (17)

which is positive definite on Rn.
Differentiating V along the trajectories of (11) and (12), we get

V̇ (t) = ėT (t)e(t) + eT (t)ė(t)

= eT (t)(A− C)T e(t) + eT (t)(A− C)e(t)

= eT (t)
(
(A− C)T + (A− C)

)
e(t)

< 0.

Thus, we can conclude that all solutions of error system (13) tend towards
zero exponentially as t→∞. Hence, the IMPS between the identical hyper-
chaotic systems (11) and (12) is achieved under the conditions (a) and (b).
This completes the proof.

3.2 Numerical simulation

To verify the effectiveness and the feasibility of the presented synchronization
method, we take the novel hyperchaotic system as a master system and its
controlled system as a slave system. The master system is defined as

ẋ1 = b1(x2 − x1) + x4,
ẋ2 = −x1x2 + b2x2,
ẋ3 = sinh(x1x2)− b3x3,
ẋ4 = b4x1.

(18)

The slave system is described by
ẏ1 = b1(y2 − y1) + y4 + u1,
ẏ2 = −y1y2 + b2y2 + u2,
ẏ3 = sinh(y1y2)− b3y3 + u3,
ẏ4 = b4y1 + u4,

(19)

where u1, u2, u3, u4 are the active control functions. The linear part of the
systems (18) and (19) is given by

A =


−b1 b1 0 1

0 b2 0 0
0 0 −b3 0
b4 0 0 0

 .
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According to IMPS control technique proposed in the previous section, the
matrix M and the gain matrix C are selected as

M =


2 0 0 2
2 2 0 2
−1 −1 −1 0
0 0 −1 −1

 . (20)

C =


0 b1 0 1
0 1 + b2 0 0
0 0 0 0
b4 0 0 3

 . (21)

From the condition (a) of the theorem 3.1 , the vector controller u = (u1, u2, u3, u4)
can be constructed as follows



u1 =
1

4
e2 −

3

2
e4 + x4 − y4 −

1

2
e1b1 +

1

2
e3b3 − b1x1 + b1x2 + b1y1 − b1y2,

u2 = −1

2
e2 +

1

2
e1b1,

u3 =
1

4
e2 +

3

2
e4 +

1

2
e3b3 − b3x3 + b3y3 + sinhx1x2 − sinh y1y2,

u4 = −1

4
e2 +

3

2
e4 −

1

2
e3b3 + b4x1 − b4y1.

(22)
With the choice control (22), the error system becomes

ė1
ė2
ė3
ė4

 =


−b1 0 0 0

0 −1 0 0
0 0 −b3 0
0 0 0 −3




e1
e2
e3
e4

 . (23)

For the numerical simulations, we take:
The parameter values of the master and slave systems as in the case (2).
The initial states of the master system are taken as

x1(0) = 1, x2(0) = 1, x3(0) = 1 and x4(0)) = 1. (24)

The initial states of the slave system are taken as

y1(0) = 0.5, y2(0) = 0.5, y3(0) = 0.5 and y4(0) = 0.5. (25)

.
We recall that the role of choice of the initial conditions is to justify the
existence of hyperchaos and also for the uniqueness of the solutions of the
proposed systems.
With the choice of the previous initial states, the error system has the initial
states

e1(0) = 1, e2(0) = 2.5, e3(0) = −0.5 and e4(0) = −2. (26)



152 S. Kaouache and M-S. Abdelouahab

0 1 2 3 4 5 6 7
-2

-1

0

1

2

3

e
1
, 
 e

2
, 
 e

3
, 
 e

4
 

e
1

e
2

e
3

e
4

Figure 3: Time evolution of the synchronization errors (23).

The curves of synchronization error (23) are shown in Figure 3.
From Figure 3, we show that the evolution of all variables of error dynamic

system (23) quickly tend towards zero as t → ∞, which indicate that the
IMPS between the hyperchaotic systems (18) and (19) is achieved.

4 Conclusion

In this research work, we have studied a novel hyperchaotic system with
hyperbolic sine function non-linearity and their dynamic behaviours. In ad-
dition, an active controller has been proposed to ensure the possibility of
IMPS of this system. Lyapunov’s stability theorem has been used to provide
asymptotic stability as well as convergence of synchronization errors towards
zero. Finally numerical example and computer simulations are shown to
illustrate all the main results of this paper.
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