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Abstract. In this research work, we introduce a new approach for hybrid synchroniza-

tion called modified hybrid synchronization (MHS). Specifically, we focus on the MHS of

identical fractional hyperchaotic systems with incommensurate order, which is a mixture

between complete synchronization, anti-synchronization, projective synchronization and

modified projective synchronization. To start, we propose a novel hyperchaotic system

and also we analyse some its dynamic behaviors. In addition, we prove the MHS approach

for identical fractional-order hyperchaotic systems by using a suitable nonlinear controller

and stability theory of fractional-order systems. Finally, we take our fractional system as

an example to confirm the effectiveness of the analytical results.
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1 Introduction

Dynamics of fractional-order nonlinear systems have become the focus in sci-
entific research. They are more suited and better approach than the usual
dynamics of integer-order systems for the description of nonlinear phenom-
ena’s memory in many fields of science and technology, such as diffusion
modeling [1], viscoelasticity [2], control processing [3], signal transmission [4]
and so forth.

Chaos synchronization of fractional-order chaotic systems is a fundamen-
tal concept of dynamical system and has applications in several fields of
science, such as secure communication [5]. Different synchronization types
have been proposed for chaotic systems, such as complete synchronization [6],



26 S. Kaouache and T. Bouden

anti-synchronization [7], generalized synchronization [8], Q− S synchroniza-
tion [9], projective synchronization [10, 11], generalized projective synchro-
nization [12], modified projective synchronization [13] and hybrid projective
synchronization [14].

The phenomenon of hybrid synchronization is one of the most noticeable.
In practical application, the property of hybrid synchronization is generated
from the co-existence of complete synchronization and anti-synchronization.

Recently, Ouannas [15] consider a new approach of hybrid synchronization
between hyperchaotic maps which a coexistance between projective synchro-
nization, full state hybrid projective synchronization and generalized syn-
chronization. Hence, realization of MHS for fractional-order hyperchaotic
systems is an challenging work and lead to a dynamics richer than hybrid
synchronization. However, this kind of synchronization have not been ex-
plored.

Motivated by the above reasons, in this work, we investigate the MHS for
fractional-order hyperchaotic systems in continuous-time which is a mixture
between complete synchronization, anti-synchronization, projective synchro-
nization and modified projective synchronization. First, we construct a novel
hyperchaotic system and we analyse its dynamic properties. Then, we prove
the generalized MHS approach for identical fractional-order hyperchaotic sys-
tems by using an active control technique and stability theory of fractional-
order systems. Finally, we use our novel fractional-order hyperchaotic system
as an example to confirm the effectiveness of the analytical results.

This paper is structured as follows: In Sect. 2, some properties of frac-
tional derivatives are introduced. A novel hyperchaotic system and its dy-
namic properties are studied in Sect. 3. According to the stability criterion
of fractional-order linear system, an active control [16] is proposed in Sect.
4 to realize the MHS of identical fractional-order hyprchaotic systems. This
synchronization scheme is applied on the fractional version of our novel hy-
perchaotic system. Finally, conclusions is given in Sect. 5.

2 Basic concepts of fractional derivatives

The fractional derivatives are a class of differential systems with non integer-
order of derivatives in many different sense as Riemann-Liouville, Caputo,
Grunwald-Letnikov [17] and so on. The Caputo fractional derivative is the
smooth fractional derivative, it is defined as follows:

Dαf(t) = Jm−αfm(t), (1)

where α ∈ (0,m), m is the first integer which is not less than α, Jβ (β > 0)
is the β-order Riemann– Liouville fractional derivative, with expression:

Jβζ(t) =
1

Γ(β)

t∫
0

(t− s)β−1ζ(s)ds, (2)
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and Γ is the gamma function defined by:

Γ(y) =

+∞∫
0

ty−1 exp(−t)dt. (3)

The following stability results play an important role in studying the exis-
tence of chaotic attractors and the synchronization of fractional order sys-
tems.

Theorem 1 [18]For the linear incommensurate fractional-order system:

Dαx = Ax, x(0) = x0, (4)

where x = (x1, x2, ..., xn) ∈ Rn is the state vector, α = (α1, α2, ..., αn)T is

the fractional orders, with 0 < αi ≤ 2, i = 1, 2, ..., n . Assume that αi =
vi
ui

with (vi, ui) = 1, vi, ui ∈ Z∗+, for i = 1, 2, ..., n and let s be the least common
multiple of the denominators ui’s of αi’s.
Define the following characteristic equation:

det [diag(λsα1 , λsα2 , ..., λsαn)−A)] = 0, (5)

then, the zero solution to the system (4) is globally asymptotically stable if
all roots λi of the characteristic equation (5) satisfy :

| arg(λi)| >
π

2s
, i = 1, 2, 3, ..., n. (6)

3 Novel hyperchaotic system

In this section, a novel hyperchaotic system with only one equilibrium point
generated from a Chen system [19] is proposed. The dynamic equation of
the system is as follow:

.
x1 = a(x2 − x1),
.
x2 = bx1 − x1x3 + cx2 − x4,
.
x3 = x1x2 − dx3,
.
x4 = hx2,

(7)

where xi, i = 1, 2, 3, 4 are state variables, a, b, c, d and h are positive
real parameters. In this paper, we shall show that the system (7) exhibits
hyperchaos, when the parameters a, b, c, d and h take the values:

(a, b, c, d, h) = (30, 10, 10, 3.8, 10). (8)

Now, the novel hyperchaotic system (7) has the following properties:
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3.1 Dissipativity

The divergence of the vector field V is:

∇V = −a+ c− d.

When −a+ c− d < 0, the system (7) is dissipative and it meets:

V (t) = V0 exp(−(a− c+ d)t). (9)

This means the hyperchaotic system in Eq. (7) is able to model a physical
system.

3.2 Equilibrium points and stability

Suppose that the system (7) having equilibrium points, then:

a(x2 − x1) + x4 = bx1 − x1x3 + cx2 − x4 = x1x2 − dx3 = hx2 = 0. (10)

Hence, the system has only one equilibrium point O(0, 0, 0, 0).
When the parameters sytem are taken as in the hyperchaotic case (8), the
eigenvalues of equilibrium point O are:

15. 90, 0.51, − 3. 8 and − 36. 42. (11)

Thus O is an unstable saddle point.

3.3 Hyperchaotic attractors

In the numerical simulations, the fourth-order Runge–Kutta method is used
to solve the systems with time step size 0.002. For this numerical simulation,
the initial condition are taken as:

x1(0) = 2, x2(0) = 0.2, x3(0) = 0.5 and x4(0) = 0.1. (12)

The phase portraits of the system (7) in different 4−D projection planes for
the parameter values given in (8) is illustrated in Figure 1.

3.4 Lyapunov exponents spectrum

Here, by using the Wolf algorithm method [20], with time step size 0.002, the
variation of two largest Lyapunov exponents spectrum for the initial condition
are taken as in (12), the parameters value (a, b, c, h) = (30, 10, 10, 10) and
d ∈ [0, 4.5] is given in Figure 2. Particularly, when the parameters sytem
are taken as in (8), our novel system exhibits hyperchaos with Lyapunov
exponents:

L1 = 0.54, L2 = 0.24, L3 = 0.00, L4 = −24.58, (13)

and the Kaplan-Yorke dimension [21] is obtained as:

D = 3 +
L1 + L2 + L3

|L4|
= 3.03. (14)
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Figure 1: The phase portraits of the system (7) in different 4−D projection
planes
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Figure 2: The variation of two largest Lyapunov exponents of the system (7).
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4 MHS of incommensurate fractional-order hypr-
chaotic systems

In this section, we construct an active control technique for the MHS of
incommensurate fractional-order hyprchaotic systems. This technique is car-
ried out using stability theorems of fractional-order linear system.

4.1 Theoretical analysis

Consider the two identical fractional hyperchaotic systems described by:

Dαx = f(x), (15)

Dαy = g(y) + U, (16)

where α is rational numbers between 0 and 2, x, y ∈ R4 are the states
vector of the drive system (15) and the response system (16), respectively,
f , g : R4 →∈ R4 are the continuous vectors function and U ∈ R4 is control
input vector to be designed later. The error state vector is defined as

e(t) = By(t)− Cx(t), (17)

where e(t) ∈ R4, B = diag(1, 1, 1, σ) and C = diag(1, −1, β, 1) denote
diagonal matrices.

Definition 2 The drive system (15) and the response system (16) are defined
to be MHS if there are two constant matrices B = diag(1, 1, 1, σ) and
C = diag(1, −1, β, 1) such that

lim
t→∞

||By(t)− Cx(t)|| = 0, (18)

where ||.|| stands for the matrix norm.

Remark 3 If we consider B = C = I, where I is an 4× 4 identity matrix,
then the MHS problem will be simplified to the complette synchronization.

Remark 4 If we consider B = I and C = −I , where I is an 4× 4 identity
matrix, then the MHS problem will be simplified to the anti-synchronization.

Remark 5 If we consider B = I and C = diag(β, β, β, β), then the MHS
problem will be reduced to the projective synchronization.

Remark 6 If we consider B = diag(σ1, σ2, σ3, σ4) and C = I, then the MHS
problem will be reduced to the modified projective synchronization.
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Now, from equations (15), (16) and (17) , we can get the following error
system:

Dαe = BDα
t y − CDα

t x

= Ae+ (BA−AB)y − (CA−AC)x+

+ BG(y)− CF (x) +BU, (19)

where A ∈ R4×4, is the linear part of the system, F and G : R4 →∈ R4 are
the nonlinear parts.
To achieve the desired MHS between the above systems, the nonlinear active
controller U = (u1, u2, u3, u4)T is constructed as:

U = B−1((CA−AC)x−BA−AB)y + CF (x)−BG(y) +Me, (20)

where M ∈ R4×4 is a feedback gain matrix to be determined.
So, when we use the controller (20) to control the fractional-order response
system (16), the HMS problem of the fractional-order drive system (15)
and fractional-order response system (16) is changed into the analysis of
the asymptotical stability of the following system:

Dαe = (A+M)e. (21)

Then, we have the following result.

Theorem 7 If the matrix M is selected such that all roots λi of the char-
acteristic equation:

det(diag(λsα1 , λsα2 , λsα3 , λsα4)− (A+M)) = 0, (22)

satisfy | arg(λi)| >
π

2s
, i = 1, 2, 3, 4, where s is the least common multiple of

the denominators of λi, then the drive system (15) and response system (16)
can be synchronized in the sens of HMS under the controller (20).

Proof. Immediately, by using theorem (1).

4.2 Numerical example and simulation results

In order to confirm the feasibility of the theoretical analysis presented in
above section, we consider the novel fractional-order hyprchaotic system
(NFOHS) as the drive system and the the controlled NFOHS as the response
system. They are described as follows:
The NFOHS is given by:

Dα1x1 = a(x2 − x1),
Dα2x2 = bx1 − x1x3 + cx2 − x4,
Dα3x3 = x1x2 − dx3,
Dα4x4 = hx2,

(23)



32 S. Kaouache and T. Bouden

and the controlled NFOHS is given by:
Dα1y1 = a(y2 − y1) + u1,
Dα2y2 = by1 − y1y3 + cy2 − y4 + u2,
Dα3y3 = y1y2 − dy3 + u3,
Dα4y4 = hy2 + u4,

, (24)

where 0 < α1, α2, α3, α4 ≤ 2 and U = (u1, u2, u3, u4) ∈ R4 is the active
control function to be determined later. The linear part A of system is given
by:

A =


−a a 0 0
b c 0 −1
0 0 −d 0
0 h 0 0

 . (25)

The suitable gain matrix M is selected as:

M =


−1 + a −a 0 0
−b −2− c 0 −1
0 0 −3 + d 1
−2 −h 0 −4

 . (26)

Using the method presented in above section, the error system can be rewrit-
ten as: 

Dα1e1
Dα2e2
Dα3e3
Dα4e4

 = (A+M)


e1
e2
e3
e4



=


−1 0 0 0
0 −2 0 −2
0 0 −3 1
−2 0 0 −4




e1
e2
e3
e4

 , (27)

and so, the characteristic equation:

det(diag(λsα1 , λsα2 , λsα3 , λsα4)− (B +M)) = 0, (28)

can be rewritten as:

(λsα1 + 1) (λsα2 + 2) (λsα3 + 3) (λsα4 + 4) = 0, (29)

where s is the least common multiple of the denominators of αi, for i = 1, 2, 3
and 4.
According to the stability results, the drive system (23) and the response

system (24) are synchronized if all roots λ of (29) satisfy |arg(λ)| > π

2s
. Let

us take:
(a, b, c, d, h ) = (30, 10, 10, 3, 10), (30)
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Figure 3: The hyperchaotic attractors of the NFOHS (23).
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Figure 4: The variation of the Lyapunov exponents of the NFOHS system
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Figure 5: Time evolution of MHS errors between systems (23) and (24).

and

(α1, α2, α3, α4) = (0.9, 1, 0.9, 0.8), (31)

then the Equ. (29) becomes:(
λ9 + 1

) (
λ10 + 2

) (
λ9 + 3

) (
λ8 + 4

)
= 0. (32)

It is easy to see that all the roots λ of (32) satisfy the condition |arg(λ)| > π

20
.

Therefore, under the controller:

U = B−1((CA−AC)x− (BA−AB)y + CF (x)−BG(y) +Me), (33)

i.e., 
u1 = −e1 + a(x2 − x1 + y1 − y2),
u2 = −e1 + a(x2 − x1 + y1 − y2),
u3 = e4 − 3e3 − β(dx3 − x1x2) + dy3 − y1y2,
u4 = −1

δ
(2e1 + 4e4 − h(x2 − δy2)),

(34)

the drive system (23) and the response system (24) are synchronized.
In the numerical simulations, the Adams method [22] is used to solve the
systems with time step size 0.004. For this numerical simulation, the ini-
tial conditions of the drive system (23) and the response system (24) are
respectively taken as:

x1(0) = 0.2, x2(0) = 0.2, x3(0) = 0.2 and x4(0) = 0.2, (35)

y1(0) = 0.3, y2(0) = 0.1, y3(0) = 0.3 and y4(0) = −1. (36)
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So, when the gain parameters β and σ are taken as β = 2 and σ =
1

5
, the

error system has the initial values:

e1(0) = 0.1, e2(0) = 0.3, e3(0) = −0.1 and e4(0) = −0.4. (37)

In order to justify that (23) is hyperchaotic system, its parameter values are
taken as in (30) and the different fractional-order derivatives are taken as in
(31).
Figure 3 describes the hyperchaotic attractors of the NFOHS (23).
By using Matlab code for Lyapunov exponents of fractional-order systems
[23], the variation of the Lyapunov exponents spectrum of the NFOHS (23)
is given in Figure 4.
Particularly, when the parameters sytem are taken as in (30), the NFOHS
exhibits hyperchaos with Lyapunov exponents:

L1 = 0.178, L2 = 0.10, L3 = 0.00, and L4 = −1.50. (38)

In the other hand, Figure 5 describes the time evolution of MHS errors be-
tween systems (23) and (24). From this figure, for the given parameters,
we can numerically see that the errors converge to zero, and so the desired
synchronization of the systems (23) and (24) is sufficiently achieved under
the controller (34).

5 Conclusion

In this paper, we have investigated the MHS between two identical fractional-
order hyperchaotic systems. A novel hyperchaotic system is also proposed
and its dynamics has been analysed. With the stability criterion of lin-
ear fractional-order systems, analysis of MHS is performed for the proposed
method by using a suitable nonlinear controller. Numerical example and sim-
ulations results have been given to confirm the effectiveness of the results.
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