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ABSTRACT. This paper is devoted to investigate the problem of reduced generalized combination
synchronization (RGCS) between two n−dimensional integer-order hyperchaotic drive systems
and one m−dimensional fractional-order chaotic response system. According to the stability
theorem of fractional-order linear system, an active mode controller is proposed to accomplish
this end. Moreover, the proposed synchronization scheme is applied to synchronize three different
chaotic systems, which are the Danca hyperchaotic system, the modified hyperchaotic Rossler
system, and the fractional-order Rabinovich-Fabrikant chaotic system. Finally, numerical results
are presented to fit our theoretical analysis.
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1. INTRODUCTION

During the last decades, analysis of fractional-order differential equations have attracted
importance attention [1, 2, 3, 4]. In particular, chaos synchronization of fractional-order or
integer-order systems as a very interesting phenomenon has become a hot topic from many
researchers [5, 6]. Many appraoches for chaos synchronization have been developed in the
recent years. For example, complete synchronization have been described in [7]. Inverse
matrix projective synchronization has been designed in [8, 9, 10]. Generalized synchronization
has been presented in [11, 12]. And finally, Q − S generalized synchronization has been
designed in [13]. However, most of researches mentioned above have concentrated on the usual
synchronization which is done between one drive system and one response system.

Recently, Luo et al. [14] have already extended the concept of this synchronization to the
combination synchronization between two drive systems and one response system. Indeed, this
kind of synchronization has stronger anti-attack ability than that of the usual synchronization
in the field of secure communication, because the transmiter message can be separated into
two segments and each segment can be separated into two different drive systems. The study
of adaptive function projective combination synchronization of three fractional-order chaotic
systems, combination synchronization of three different chaotic systems with the help of the
active backstepping, and finally combination synchronization of a novel fractional-order chaotic
system with two stable node-foci, are also receiving growing attention [15, 16, 17].

However, most of the previous manuscripts focused on the combination synchronization of
general fractional-order or integer-order chaotic systems and also with identical dimensions.
Thus, an important question is asked: does combination synchronization happen between two
integer-order hyperchaotic systems and one fractional-order chaotic system with different structure
and non-identical dimensions?. To the best of our knowledge, none of the previous studies
investigate this kind of synchronization.

In this paper, based on the stability results of fractional-order linear system, we study the
problem of reduced generalized combination synchronization between two n−dimensional integer-
order hyperchaotic systems and onem− dimensional fractional-order chaotic system. The main
aim of this work are summarized as follows:

First, based on active mode controller and stability theorem of fractional-order linear system,
a new approach for chaos combination synchronization between two integer-order hyperchaotic
systems and one fractional-order chaotic system is presented.

Second, three chaotic systems are synchronized with different structure and non-identical
dimensions.

Finaly, the theoretical results is verified by simulation example. In particular, this kind of
synchronization scheme is applied to the hyperchaotic Danca system, the modified hyperchaotic
Rossler system, and the fractional-order Rabinovich-Fabrikant chaotic system.

The rest of this manuscript is organized as follows: In Section 2, some basic concepts about
Caputo fractional derivative and stability condition of fractional-order linear system are briefly
given. The general scheme of RGCS is introduced in Section 3. In Section 4, we present an
illustrative example to verify the effectiveness of the analytical results. Conclusions is given in
the last Section.

2. CAPUTO’S FRACTIONAL DERIVATIVE AND STABILITY THEOREM

In this section, we present some basic concepts about Caputo fractional derivative and the
stability condition of linear fractional systems.
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Definition 2.1. The αth-order Riemann–Liouville fractional integration of function y [18] is
given by

(2.1) Iαy(t) =
1

Γ(α)

∫ t

0

(t− ξ)α−1y(ξ)dξ,

where

(2.2) Γ(α) =

∫ +∞

0

xα−1 exp(−x)dx,

is the gamma function.

Definition 2.2. Let n − 1 < α ≤ n, n ∈ N; the Caputo fractional derivative of order α of
function y [19] is defined as

(2.3) Dαy(t) =
1

Γ(n− α)

∫ t

0

(t− ξ)m−α−1y(n)(ξ)dξ

Theorem 2.1. [20]Consider the following fractional-order linear system

(2.4) Dαx = Ax,

where Dα is Caputo differential operator (0 < α ≤ 1), x ∈ Rn and A ∈ Rn×n.
Then the system (2.4) is asymptotically stable if

(2.5) |arg (λi(A))| > απ

2
, i = 1, 2, ..., n,

where arg (λi(A)) represents the argument of the eigenvalue λi of A.

3. GENERAL SCHEME OF RGCS

In this section, the general scheme of RGCS between two n−dimensional integer-order
hyperchaotic drive systems and one m−dimensional fractional-order chaotic response system
are presented. The model can be descriebed as follows:

(3.1) ẋ = f(x),

(3.2) ẏ = g(y),

(3.3) Dαz = h(z) + u,

where Dα is Caputo differential operator (0 < α ≤ 1), x, y ∈ Rn are the state variables of two
drive systems, z ∈ Rm(n > m) is the state variable of response system, f, g : Rn → Rm and
h : Rm → Rm are differentiable functions and u ∈ Rm is a controller vector which will be
designed.

The definition of the proposed RGCS is given as follows:

Definition 3.1. The drive systems (1)-(2) and the response system (3) are said to achieve RGCS,
if there exists three scaling matrices Q = (Q)n×m , R = (R)n×m and S = (S)m×m, such that
the error system:

(3.4) e(t) = Qx(t) +Ry(t)− Sz(t),

satisfies:

(3.5) lim
t→+∞

‖Qx(t) +Ry(t)− Sz(t)‖ = 0,

where ‖.‖ represents the matrix norm.
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Remark 3.1. The scaling matrices Q,R and S can be extended to the functional matrices
Q (.) , R (.) and S (.) of the state variables x, y and z, respectively.

Remark 3.2. If Q = I , R = 0 and S 6= 0 (or Q = 0, R = I and S 6= 0), we get the projective
synchronization problem, where I represents a n× n identity matrix.

Remark 3.3. If the scaling matrix Q = R = 0 and S 6= 0, then RGCS problem will be
simplified to the chaos control problem.

Remark 3.4. From definition 3.1, one can shows that the above RGCS can be extended to
more n−dimensional integer-order hyperchaotic systems and one m−dimensional fractional-
order chaotic systems .

In order to achieve the RGCS between the systems (1), (2) and (3), the controlled response
system (3) is described as:

(3.6) Dαz = Θz +H(z) + u,

where Θ = (Θ)m×m and H : Rm → Rm are the linear part and the nonlinear part of system
(3.6), respectively.
The error dynamics system can be written as:

Dαe = QDαx+RDαy − SDαz

= QI1−αẋ+RI1−αẏ − Sh(z)− Su
= I1−α (Qf(x) +Rg(y))− Sh(z)− Su
= Θe+ I1−α (Qf(x) +Rg(y))− (Θe+ Sh(z))− Su.(3.7)

Assume that S−1 exists, then we have the following result.

Theorem 3.1. The RGCS between systems (1), (2) and (3.6) can be achieved under the suitable
control laws

(3.8) u = S−1
[
I1−α (Qf(x) +Rg(y))− (Θe+ Sh(z)) + Φe

]
,

where S−1 is the inverse matrix of S, and Φ = (Φ)m×m is a feedback gain matrix which satisfy:

(3.9) |arg (λi(Θ− Φ))| > απ

2
, i = 1, 2, ..., n,

where arg (λi(Θ− Φ)) represents the argument of the eigenvalue λi of Θ− Φ.

Proof. According to (3.8), (3.7) becomes

(3.10) Dαe = (Θ− Φ)e.

In view of Theorem (3.1), we need to the following conditions for asymptotic stability of (3.10).

(3.11) |arg (λi(Θ− Φ))| > απ

2
, i = 1, 2, ...,m,

So, as long as selecting the appropriate matrix Φ, the condition of the Theorem 2.1 is satisfied
and the system (3.10) asymptotically converges to zero, which means the drive systems (1) and
(2) achieve the RGCS with the response system (3.6).
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4. NUMERICAL SIMULATIONS

In this section, we consider the hyperchaotic Danca system [21] and the modified hyperchaotic
Rossler system [22] as the drive systems, and the fractional-order chaotic Rabinovich-Fabrikant
system as the response system.
The hyperchaotic Danca system is described as :

(4.1)


ẋ1 = −x1 + x2,
ẋ2 = −x3sgn(x1) + x4,
ẋ3 = |x1| − a1,
ẋ4 = −b1x2.

The system (4.1) exhibits a hyperchaotic behavior as shown in Figure 1, when the parameters
are given by:

(4.2) (a1, b1) = (1, 0.5),

and the initial values are taken as:

(4.3) (x1(0), x2(0), x3(0), x4(0))T = (0.1, 0.1, 0.1, 0.1)T .

The modified hyperchaotic Rossler system is described as:

(4.4)


ẏ1 = −y2 − y3 + y4,
ẏ2 = y1 + a2y2,
ẏ3 = y1y3 − b2y3 + c2,
ẏ4 = d2y1.

The system (4.4) exhibits a hyperchaotic behavior as shown in Figure 2, when the parameters
are given by:

(4.5) (a2, b2, c2, d2) = (0.283, 5, 0.01, 0.1),

and the initial values are taken as:

(4.6) (y1(0), y2(0), y3(0), y4(0))T = (0.2, 0.2, 0.2, 0.2)T .

The controlled Rabinovich-Fabrikant fractional-order chaotic system [23] is derived as:

(4.7)

 Dαz1 = z2(z3 − 1 + z21) + 0.1z1 + u1,
Dαz2 = z1(3z3 + 1− z21) + 0.1z2 + u2,
Dαz3 = −2z3(p+ z1z2) + u3.

When the fractional-order α = 0.98, the bifurcation parameter p = 0.98 and the initial values
are taken as:

(4.8) (z1(0), z2(0), z3(0))T = (0.4, 0.4, 0.4)T ,

the system (4.1) with u1 = u2 = u3 = 0, exhibits a chaotic behavior as shown in Figure 3.
From (4.7), one can get

Θ =

 0.1 −1 0
1 0.1 0
0 0 −2p
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Figure 1: The hyperchaotic attractor of the system (4.1)

Figure 2: The hyperchaotic attractor of the system (4.4)
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Figure 3: The chaotic attractor of the system (4.7)

To verify the effectiveness of the proposed RGCS scheme, we take

Q =

 1 0 0 0.4
0 1 0 2
0 0 1 2

 , R =

 2 0 1 0
0 4 −0.5 0

0.2 0 0.2 0

 ,

S =

 0.2 0 0
0 0.4 0
0 0 0.6

 and Φ =

 0.6 −1 0.5
1 1.1 0
−1 0 −2p+ 1.5
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Figure 4: Time evolution of the RGCS error (4.9).

According to the active control (3.8), the error dynamics system (3.10) becomes

(4.9)

 Dαe1
Dαe2
Dαe3

 = (Θ− Φ)

 e1
e2
e3

 =

 −0.5 0 −0.5
0 −1 0
1 0 −1.5

 e1
e2
e3

 .

We can show that the value of |arg (λi(Θ− Φ))| , i = 1, 2, 3 are

λ1,2 = −1± 0.5i, and λ3 = −1,

which satisfy the condition min {|arg (λi(Θ− Φ))| , i = 1, 2, 3} = 0.852 4π > 0.49π . Then
the conditions of Theorem 3.1 is satisfied. Hence RGCS between systems (4.1), (4.4) and
(4.7) is achieved. Figure 4 displays the time evolution of the RGCS error (4.9) with the initial
conditions (e1(0), e2(0), e3(0))T = (0.3,−1.1,−1.3)T .

5. CONCLUSION

In this paper, we have introduced a new appraoch to invistigate chaos combination synchronization
between two integer-order hyperchaotic systems and one fractional-order chaotic system. With
the help of the stability theorem of fractional-order linear system, a suitable sufficient conditions
are proposed for achieving the RGCS via a suitable active controller. These chaotic systems are
synchronized with different structure, different derivative orders and non-identical dimensions.
Numerical simulations are also given to fit the feasibility of our theoretical analysis. Moreover,
this kind of synchronization should be applied in the fields of secure communications which
will be the subject of our future work.
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