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Abstract--- In this paper, we present a new approach to investigate generalized combination synchronization (GCS) 

of three different dimensional fractional chaotic and hyperchaotic systems by using three scaling matrices. By 
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I. Introduction 

In recent periods, fractional equations have emerged, which attract attention in various fields. Indeed, it has been 

found that several theoretical and experimental studies show that certain thermal systems 
1
, physics systems

2 
and 

rheological systems
3 

are governed by differential equations with fractional derivatives. However, its application in 

chaotic and hyperchaotic systems is the most attractive one, such as the fractional version of: Lorenz system
4,
 Lü 

system 
5,
 modified Rossler system

 
and Liu system

7
. 

Synchronization of the fractional systems is an interesting subject in nonlinear science, thanks to its many 

applications, especially in control processing
8
 and secure communication

9
. 

In the majority of published works, several approaches for synchronization have been introduced, such as 

complete synchronization
10, hybrid

 projective synchronization
 
and generalized synchronization

12 and 13
. 

Recently, to achieve combination synchronization between many drive-response systems, Luo et al.
 14 

have 

proposed an active back stepping controller to illustrate its results. In
15,

 function projective combination 

synchronization between three fractional systems are presented. The generalization of combination-combination 

synchronization between many fractional-order systems is studied in
16

. 

However, most of the previous papers have been realized to discuss the combination synchronization between 

same dimensional integer and fractional-order systems. Thus, a big question is asked: does the combination 

synchronization happen between three or more different dimensional fractional systems? 

To answer the above question, in this paper, an active controller technique is adopted to fulfill the GCS of three 

different dimensional fractional chaotic and hyperchaotic systems by using three scaling matrices. In order to prove 

the reliability of the theoretical results obtained, we present two numerical examples. 

II. Preliminaries 

Several approaches and definitions of fractional operators have been employed in the literature. For example, the 

Caputo's fractional operator
17 

is defined as: 

)1(),()( sYIsyd nn    

Where ),1( nn   , 
I  ( 0  ) is the α-order Riemann- Liouville integral operator, which is defined as: 
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 Is the gamma function. 

Theorem 1: Consider the equation: 

)4(),(xfxd 
 

Where 
d is Caputo’s differential operator ( 0 < α ≤1 ), x is the state variable and f is the continuous reel 

function. 

When the constructed Lyapunov function V satisfies: 0)( xV  and 0)( xVd
, Equ. (4) is asymptotically 

stable. 

Lemma 2: Consider a differentiable function   in the sense of Caputo, then we have 

  )5().1,0(,
2

1
   dd TT

 

III. General Schemes of GCS 

In this section, the general schemes of GCS between three fractional chaotic systems are considered by using 

three scaling matrices. For this, we consider the dynamic systems as follows: 

)6(),(xxd    

)7(),(yyd  
 

)8(,)( uzzd 
 

Where 0< α ≤ 1 , 
T

n21 )x,...,x,(x=x ∈ℝⁿ, 
T

n21 )y,...,y,(y=y ∈ℝⁿ are the state variables of two drive 

systems, 
T

m21 )z,...,z,(z=z ∈ ℝm
 (n < m) is the state variable of response system,  , : ℝⁿ→ℝⁿ and  : 

ℝm
→ℝm

 are the continuous reel functions and 
T

m21 )u,...,u,(u=u ∈ ℝm
 is a controller vector which will be 

designed. 

The definition of the proposed GCS is given as follows: 

Definition 3: The drive systems (6)-(7) and the response system (8) are said to achieve GCS in dimension n or in 

m, if there exists three scaling matrices ndQQ  )( , ndRR  )(
 
and mdSS  )( , such that the error system: 

)9(),()()()( tSztRytQxte   

Satisfies: 

)10(.when t0,||Sz(t)-Ry(t)+Qx(t)||   

Remark 4: In the previous definition, we can replace the constant matrices Q, R and S by functional matrices of 

the variables x, y and z. 

Remark 5: If Q=I, R=0 and S≠0 (or Q=0, R=I and S≠0), GCS problem becomes projective synchronization 

problem, where I is n×n identity matrix. 

Remark 6: If the scaling matrix Q=R=0 and S≠0, then GCS problem becomes chaos control problem. 

3.1 Reduced-Order GCS of Chaotic Systems 

Here, we assume that the two drive systems are, respectively, given as follows: 
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)11(),(11 xxPxd    

)12(),(22 yyPyd    

Where nnPP  )( 11 , nnPP  )( 22  and 21,  :ℝⁿ→ℝⁿ are the linear parts and the nonlinear parts of (11) and 

(12), respectively. 

The controlled response system is described as (8). 

Hence: 

 
     

    )13(.)()()(

)(

2121

21221121

zuSyRxQSzPP

yRPPRPxQPPQPePP

zSDyRDxQDed











 

 So, the main result of this section is obtained as follows: 

Theorem 9: If the control active
T)(û,0,...,0=u is chosen as: 

     
 

)14(,
)()(

)(û
2121
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Where 
T

n21 )u,...,u,(u=û ∈ℝⁿ, n
-1S  is the inverse matrix of nnS  )(Sn  and nnC  )(C

 
is a control 

matrix, and if CPP  21 is a negative definite matrix, then the drive systems (11)-(12) achieve the GCS with the 

response systems (8). 

Proof: According to (14), (13) becomes: 

)15(.)( 21 eCPPed 
 

We can choose the function V as: 

  )16(.
2
1 eeeV T  

By using Lemma 2, 

 

)17(.0)(

)
2

1
(

21 





eCPPe

ede

eedeVd

T

T

T





 

According to the fractional Lyapunov Theorem 1, we know that the system (17) asymptotically converges to 

zero, which means that the systems (11), (12) and (8) achieve the GCS. 

3.2 Increased-Order GCS of Chaotic Systems 

Here, the two drive systems are, respectively, given as in (6)-(7), and the controlled response system is described 

as: 

)18(,)( uzHMzzD 
 

Where mmM  )(M and H:ℝm
→ℝm

 are the linear part and the nonlinear part of system (18), respectively. 

Hence: 

      )19().()()( yRxQzHMzuSRyQxSzMMe

zSDyRDxQDeD








 

So, we have: 
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Theorem 11: We assume that u satisfies: 

    )20(,)()()( 1 yRxQRyQxSzMKeSzHMzu   
 

Where 
-1S  is the inverse matrix of  mmSS   and mmK  )(K

 
is the control matrix. 

 We assume also that M-K is a negative definite matrix, then the systems (6), (7) and (18) achieve the GCS. 

Proof. According to control (20), (19) becomes: 

)21(.)( eKMed 
 

Here, we can choose V as: 

  )22(.
2

1
eeeV T  

By using Lemma 2,  

 

)23(.0)(

)(
2

1
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
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eKMe

ede

eedeVd

T

T

T


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According to the fractional Lyapunov Theorem 1, we know that the system (17) asymptotically converges to 

zero, which means that the drive systems (6)-(7) achieve GCS with the response systems (18). 

IV. Numerical Simulations 

In order to prove the reliability of the theoretical results obtained, we present two numerical examples.  

Consider the following Lorenz system
4
 as the first drive system: 

)24(
.
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),(
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211
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xxxxd

xxxxxd

xxxd
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For 98.0 , the system (24), exhibits a chaotic behavior, as shown in Fig.1, when: 

)25(,
3

8
 and28 ,10  

 
And the initial conditions: 

)26(1 and 2 ,1 3
0

2
0

1
0  xxx  

  

Fig. 1: Attractor of the System (25) 
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Consider the following Lü system
5
 as the second drive system:  
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For 98.0 , the system (25) exhibits a chaotic behavior as shown in Fig. 2, when 

)26(,3 and16 ,36    

And the initial conditions 

)27(5.0 and5.0 ,5.0 3
0

2
0

1
0  yyy  

 

Fig. 2: Attractor of the Lü System (26) 

The controlled hyperchaotic Liu system
7
 is derived as: 
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For 98.0 , the system (28) (without the controller u₁, u₂, u₃, u₄), exhibits a hyperchaotic behavior as shown 

in Fig. 3, when: 

)29(,5 and 4.1,35 ,10    

And the initial conditions: 

)30(2.0 and 2.0 ,2.0 ,2.0 4
0

3
0

2
0

1
0  zzzz  

  

Fig. 3: Hyperhaotic Attractor of the System (28) 
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4.1 Reduced-Order GCS between Systems (26)-(27) and (28) 

Here, we take: 
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 According to (14), (15) becomes: 
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We can show that CPP  21 is a negative definite matrix. Then the condition of Theorem 1 is satisfied. 

Hence the reduced-order GCS between systems (26)-(27) and (28) is achieved. Fig. 4 displays the trajectories of the 

synchronization error (31), with .8.96.3,9 3
0

2
0

1
0  eandee  

 

Fig. 4: The Trajectories of the Synchronization Error (31) 

4.2 Increased-Order GCS between Systems (26)-(27) and (28) 
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Therefore: 
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We can show that M-K is a negative definite matrix. Then the condition of Theorem 1 is satisfied. Hence the 

increased-order GCS between systems (26)-(27) and (28) is achieved. Fig. 5 displays the trajectories of the 

synchronization error (31), with  

.1.02.0,4.0,3.0 4
0

3
0

2
0

1
0  eandeee

 

Fig. 5: The Trajectories of the synchronization error (32) 

V. Conclusion 

In this paper work, we have developed a new strategy to study the GCS of three different dimensional fractional 

chaotic systems by exploiting three scaling matrices. With the help of the fractional Lyapunov theorem and technical 

of active control, some sufficient hypothesizes are proposed to achieve the GCS. Two numerical examples were 

provided to validate the desired synchronization method. 
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