

 الجمهوريـة الجزائـريـة الديمقراطيـة الشعبيـة

PEOPLE’S DEMOCRATIC REPUBLIC OF ALGERIA

 وزارة التعليــم العالـي والبحـث العلمـي

MINISTRY OF HIGHER EDUCATION AND SCIENTIFIC RESEARCH

No Ref :…………

University Centre Abd-Elhafid Boussouf - Mila

Institute of Mathematics and Computer science Department Computer science

A Dissertation Submitted in Partial Fulfillment for the Requirement

of the Master Degree in computer science

Specialty: Information and Communication Sciences and Technologies (STIC)

 Algorithms for the Two-Stage Capacitated Facility

 Location Problem

Presented by:

Abboud Tariq

Board of Examiners:

Supervisor : Guemri Oualid Grade MCB

Chairman : Lalouci Ali Grade MAA

Examiner : Guettiche Mourad Grade MCB

Academic year : 2022/2023

Acknowledgements

First of all, I endlessly thank Allah for giving me the strength and patience

to fulfill this work.

I would like to express my gratitude and deepest appreciation to my

teacher and supervisor Dr. GUEMRI OUALID for his serious guidance,

constant support, and continuing encouragement all throughout the period of

writing my dissertation. I thank him for his precious advice and valuable

annotations.

Special thanks go to the board of examiners: Mr. LALOUCI ALI and

Dr. GUETTICHE MOURAD for accepting to critically read and sincerely

evaluate our work.

Finally, I extend my unlimited gratitude and enormous thanks to my

wonderful, beloved family who encouraged and supported me to complete this

work.

Table of contents

List of Figures .. I

List of Algorithms .. II

List of Tables .. III

Abbreviations .. IV

Abstract .. V

Introduction ... VI

Chapter I : Location problems: definitions and applications 7

I.1 Introduction ... 8

I.2 Location problems ... 8

I.2. 1 Uncapacitated, single-stage location problem ... 9

I.2. 2 Capacitated, single-stage problem ... 9

I.2. 3 Multi-product location problems ... 10

I.2. 4 Multi-stage location problems ... 10

I.2. 5 Dynamic location problems ... 11

I.2. 6 Probabilistic location problems ... 12

I.2. 7 Hub location problems .. 12

I.2. 8 Routing location problems .. 12

I.2. 9 Multi-objective location problems .. 13

I.3 Two-Stage Capacitated Facility Location problems 13

I.4 Applications ... 14

I.5 Conclusion ... 15

Chapter II : Optimization methods and algorithms ... 16

II.1 Introduction ... 17

II.2 Combinatorial optimization problem... 17

II.3 Exact Methods ... 17

II.3. 1 Branch and bound .. 17

II.4 Approximation Methods .. 19

II.4. 1 Heuristic ... 19

II.4. 2 Meta-Heuristic .. 21

II.4. 3 Hybridization .. 30

II.5 Conclusion ... 33

Chapter III : Simulated annealing for TSCFLP .. 34

III.1 Introduction ... 35

III.2 Problem definition ... 35

III.3 Most related work .. 36

III.4 Proposed Algorithm ... 37

III.4. 1 Initial Solution Procedure ... 38

III.4. 2 Neighborhood Creation procedure .. 39

III.4. 3 Allocation procedures ... 40

III.4. 4 Acceptance criterion method .. 43

III.4. 5 annealing method .. 43

III.5 Conclusion ... 43

Chapter IV : Experiments ... 44

IV.1 Introduction ... 45

IV.2 Description of benchmark data set .. 45

IV.2. 1 Capture of instance ... 47

IV.3 Experiments results ... 48

IV.3. 1 Parameters and implementation details .. 48

IV.3. 2 Generated solution structure ... 49

IV.3. 3 The obtained results .. 50

IV.4 Comparison with literature .. 53

IV.5 Conclusion ... 56

Conclusion .. 57

Bibliography ... 59

I

List of Figures
FIGURE 1: MUTI-STAGE FACILITY LOCATION PROBLEM ... 11

FIGURE 2 : TWO STAGE CAPACITATED FACILITY LOCATION PROBLEM .. 14

FIGURE 3 : SINGLE POINT CROSSOVER IN GA .. 27

FIGURE 4: TWO-POINT CROSSOVER IN GA .. 27

FIGURE 5 : UNIFORM CROSSOVER IN GA ... 28

FIGURE 6 : EXAMPLE OF CUSTOMER’S INSTANCE ... 47

FIGURE 7 : EXAMPLE OF SHIPMENT COST FROM FACTORIES TO WAREHOUSES ... 47

FIGURE 8 : EXAMPLE OF WAREHOUSES INSTANCE ... 47

FIGURE 9: EXAMPLE OF FACTORIES INSTANCE ... 47

FIGURE 10 : EXAMPLE OF SHIPMENT COST FROM WAREHOUSES TO CUSTOMERS .. 47

FIGURE 11 : EXAMPLE OF CHECK BY HAND OF A GENERATED SOLUTION ... 50

file:///C:/Users/data2408/Desktop/الجمهوريـة%20الجزائـريـة%20الديمقراطيـة%20الشعبيـة.docx%23_Toc139097600
file:///C:/Users/data2408/Desktop/الجمهوريـة%20الجزائـريـة%20الديمقراطيـة%20الشعبيـة.docx%23_Toc139097601
file:///C:/Users/data2408/Desktop/الجمهوريـة%20الجزائـريـة%20الديمقراطيـة%20الشعبيـة.docx%23_Toc139097602
file:///C:/Users/data2408/Desktop/الجمهوريـة%20الجزائـريـة%20الديمقراطيـة%20الشعبيـة.docx%23_Toc139097603
file:///C:/Users/data2408/Desktop/الجمهوريـة%20الجزائـريـة%20الديمقراطيـة%20الشعبيـة.docx%23_Toc139097604
file:///C:/Users/data2408/Desktop/الجمهوريـة%20الجزائـريـة%20الديمقراطيـة%20الشعبيـة.docx%23_Toc139097605

II

List of Algorithms
ALGORITHM 1 : BRANCH AND BOUND FOR MINIMIZATION... 18

ALGORITHM 2 : GREEDY ALGORITHM FOR MINIMIZATION ... 20

ALGORITHM 3: GREEDY RANDOMIZED ALGORITHM FOR MINIMIZATION .. 20

ALGORITHM 4: LOCAL SEARCH .. 21

ALGORITHM 5: SIMULATED ANNEALING .. 23

ALGORITHM 6 : TABU SEARCH .. 24

ALGORITHM 7 :GREEDY RANDOMIZED ADAPTIVE SEARCH PROCEDURES FOR MINIMIZATION 24

ALGORITHM 8: VARIABLE NEIGHBORHOOD SEARCH ... 25

ALGORITHM 9 : GENETIC ALGORITHM ... 26

ALGORITHM 10 : PARTICLE SWARM OPTIMIZATION... 29

ALGORITHM 11 : ANT COLONY OPTIMIZATION ... 30

ALGORITHM 12 : SIMULATED ANNEALING FOR TSCFLP... 38

ALGORITHM 13 : INITIAL SOLUTION PROCEDURE .. 39

ALGORITHM 14 : NEIGHBORHOOD CREATION PROCEDURE (𝑆𝑖0, 𝑆𝑗0 , 𝑆𝑘) .. 40

ALGORITHM 15 : ALLOCATION_PROCEDURE_1(𝑆𝑓, 𝑆𝑐) .. 41

ALGORITHM 16: ALLOCATION_PROCEDURE_2(𝑆𝑓, 𝑆𝑐)... 42

III

List of Tables

TABLE 1 : PARAMETERS USED TO GENERATE INSTANCES ... 46

TABLE 2 : GENERATED SOLUTION STRUCTURE .. 49

TABLE 3: OBTAINED RESULTS FOR THE FIRST SET OF INSTANCES (50 FACTORIES, 100 WAREHOUSES AND 200

CUSTOMERS) ... 51

TABLE 4: OBTAINED RESULTS FOR THE SECOND SET OF INSTANCES (100 FACTORIES, 200 WAREHOUSES AND

400 CUSTOMERS) .. 52

TABLE 5: COMPARISON OBTAINED RESULTS FOR THE FIRST SET OF INSTANCES WITH LITERATURE 54

TABLE 6: COMPARISON OBTAINED RESULTS FOR THE SECOND SET OF INSTANCES WITH LITERATURE 55

IV

Abbreviations
UFLP: Uncapacitated Facility Location Problem.

CFLP: Capacitated Facility Location Problem.

MUFLP: Multi-product Uncapacitated Facility Location Problem.

TSCFLP: Two-Stage Capacitated Facility Location Problem.

B&B: Branch and Bound.

GRASP: Greedy Randomized Adaptive Search Procedures.

GA: Genetic Algorithm.

LS: Local Search.

SA: Simulated Annealing.

TS: Tabu Search.

VNS: Variable Neighborhood Search.

PSO: Particle swarm optimization.

ACO: Ant Colony Optimization.

CS: Clustering Search.

ALNS: Adaptive Large Neighborhood Search.

LB: Local Branching.

V

Abstract
This thesis presents a Simulated Annealing based algorithm to solve Two stage

capacitated facility location problem. In this problem, a single type of product must be

transported from factories to customers, passing through intermediate warehouses. Initially,

our algorithm was designed to ensures the selection of the most appropriate facilities

(factories\ warehouses). Then, we shifted our focus towards enhancing client allocations to

the best-suited facilities (customer→warehouse\warehouse→factory). Experiments show

that our algorithm obtains promising results comparing to the literature.

Key words: Location problems, Combinatorial optimization, Meta-heuristics, Simulated

annealing, Two stage capacitated facility location problem.

 ملخص

قع امواللحل مشكلة تحديد محاكاة التلدين تستند على تقنيةخوارزمية اقترحنا خلال هذه الأطروحة

في هذه المشكلة، يجب نقل نوع واحد من المنتجات من المحدودة والموزعة على طبقتين.السعة ذات

المصانع إلى العملاء، مروراً بالمستودعات الوسيطة. في البداية، تم تصميم خوارزميتنا لضمان اختيار

العملاء على ت المنشآ توزيعات تعزيز ذلك، حولنا تركيزنا نحو بعد)المصانع/المستودعات(. المثلى

 ت المصنع(. تظهر التجارب أن خوارزميتنا تحصل ←المستودع/المستودع ←الأنسب)العميل المنشآت

 .المقترحة سالفا ت بمختلف الخوارزميا على نتائج واعدة مقارنة

مشكلة ،التلدينمحاكاة التقريبية، ، الطرقالتوافقيالتحسين المواقع،مشاكل تحديد الكلمات المفتاحية:

 المحدودة والموزعة على طبقتين.السعة قع ذات اموالتحديد

VI

Introduction
The efficient and strategic placement of facilities plays a crucial role in the success of

various industries and organizations. The Two-Stage Capacitated Facility Location Problem

is a well-known optimization challenge and it is an extend to the traditional Facility Location

Problem through incorporating capacity constraints into the decision-making process which

allows to a more realistic representation of facility operations.

In the first stage of TSCFLP, products produced by capacitated factories are transferred

to capacitated warehouses and in the second stage, the products are delivered to customers.

The problem to be addressed includes finding an optimal location for facilities to meet the

customers in order to minimize both the fixed opening cost of the factories and warehouses

and the transportation costs associated with both stages.

The objective of this thesis is to deal with TSCFLP where a single type of product must

be transported from two type of facilities to customers with the aim of proposing an efficient

algorithm to solve heuristically this problem. To the best of our knowledge and for the first

time in the literature, we propose to solve this problem using a simulated annealing

algorithm.

 The thesis is organized into four chapters as follows:

In first chapter we present location problems and its application. Whereas in the second

chapter we will talk about some of the combinatorial optimization methods and algorithms

widely used to solve optimization problems. Concerning the third chapter, we will highlight

our proposed algorithm to solve TSCFLP. Then, in the fourth chapter we will present the

results obtained by our algorithm where testing it on benchmark instances from the literature.

The obtained results are compared to most of the literature. Finally, we finished with a

conclusion.

7

Chapter I : Location problems: definitions

and applications

I.1 Introduction ... 8

I.2 Location problems ... 8

I.2. 1 Uncapacitated, single-stage location problem ... 9

I.2. 2 Capacitated, single-stage problem ... 9

I.2. 3 Multi-product location problems ... 10

I.2. 4 Multi-stage location problems ... 10

I.2. 5 Dynamic location problems ... 11

I.2. 6 Probabilistic location problems ... 12

I.2. 7 Hub location problems .. 12

I.2. 8 Routing location problems .. 12

I.2. 9 Multi-objective location problems .. 13

I.3 Two-Stage Capacitated Facility Location problems 13

I.4 Applications ... 14

I.5 Conclusion ... 15

Chapter 1

8

I.1 Introduction

Location problems are well-known optimization problems in the literature of the

operations research. There are several variants of location problems that have been

extensively studied, starting from the capacitated and uncapacitated facility location

problems to the most constrained location problems.

In this chapter we will present a literature review on the location problems which are

related to our problem studied in this thesis. [1] [2] [3]

I.2 Location problems

In general, in the location problems the goal is to select a sub-set of facilities or locations

to be installed from a set of candidates and to allocate the other not selected ones to the

selected locations. In this section, we present the location problems related to our work. The

following variables are used in the definitions of the location problems:

I ∶ number of factories .

J ∶ number of warehouses .

K ∶ number of customers .

𝑐𝑘𝑗 ∶ cost of shipping one unit from facility j to customer k .

𝑧𝑘𝑗 ∶ equals 1 if demand customer k is assigned to facility j.

𝑓𝑗 ∶ opening cost of facility .

𝑦𝑗 ∶ 1 if node j is chosen as a facility (opened) .

𝑠𝑗 ∶ the maximum capacity of facility j .

𝑑𝑘 ∶ demand of customer k .

Chapter 1

9

I.2. 1 Uncapacitated, single-stage location problem

This problem is also known in the literature with the name of Uncapacitated facility

location problem (UFLP). The UFLP is a basic location problem where the goal is to select

a sub-set of facilities to be installed from a set of candidates. Since we don’t have any

capacity constraint, each not selected facility will be allocated to the near selected one. The

following mathematical model presents the UFLP [1]:

𝑣(UFLP) = min ∑  

𝑘∈𝐾

 ∑  

𝑗∈𝐽

 𝑐𝑘𝑗𝑧𝑘𝑗 + ∑  

𝑗∈𝐽

 𝑓𝑗𝑦𝑗 , (1a)

 s.t. ∑  

𝑗∈𝐽

  𝑧𝑘𝑗 = 1 ∀𝑘 ∈ 𝐾, (1b)

𝑧𝑘𝑗 − 𝑦𝑗 ⩽ 0 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽, (1c)

0 ⩽ 𝑧𝑘𝑗 ⩽ 1, 0 ⩽ 𝑦𝑗 ⩽ 1 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽, (1d)

𝑦𝑗 ∈ 𝔹 ∀𝑗 ∈ 𝐽, (1e)

 In this model, (1a) presents the objective function where we sum the setup cost and the

allocation cost. The constraints (1b) ensure that each not selected facility is allocated to only

one selected facility. The constraints (1c) ensures that each not selected facility is allocated

to a selected facility. The constraints (1d and 1e) present the decision variables.

I.2. 2 Capacitated, single-stage problem

 This problem is also known as capacitated facility location problem (CFLP). In CFLP,

we have a set of facilities candidates and a set of customers. Each customer has a demand

and each facility has a setup cost and a capacity.

 The goal is to choose a sub-set of facilities from a set of candidates and to allocate each

customer to a selected facility where the sum of the demands of the customers allocated to a

selected facility must be less than or equal to the capacity of the facility. Here we present the

mathematical model which describes the CFLP [1] :

Chapter 1

10

𝑣(CFLP) = 𝑚𝑖𝑛 ∑  

𝑘∈𝐾

 ∑  

𝑗∈𝐽

  𝑐𝑘𝑗𝑧𝑘𝑗 + ∑  

𝑗∈𝐽

 𝑓𝑗𝑦𝑗 ,

 s.t. ∑  

𝑗∈𝐽

  𝑧𝑘𝑗 = 1 ∀𝑘 ∈ 𝐾,

 ∑  

𝑘∈𝐾

 𝑑𝑘𝑧𝑘𝑗 − 𝑠𝑗𝑦𝑗 ⩽ 0 ∀𝑗 ∈ 𝐽,

𝑧𝑘𝑗 − 𝑦𝑗 ⩽ 0 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽,

 ∑  

𝑗∈𝐽

  𝑠𝑗𝑦𝑗 ⩾ 𝑑(𝐾),

 ∑  

𝑗∈𝐽𝑞

  𝑧𝑘𝑗 ⩽ 1 ∀𝑘 ∈ 𝐾, ∀𝑞 ∈ 𝑄,

0 ⩽ 𝑧𝑘𝑗 ⩽ 1, 0 ⩽ 𝑦𝑗 ⩽ 1 ∀𝑘 ∈ 𝐾, ∀𝑗 ∈ 𝐽,

𝑦𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽,

I.2. 3 Multi-product location problems

In the literature when we talk about a location problem, we consider that the customers

demand on only one product (In the above presented location problems we consider that).

However, we can have some situations where the customers can demand more than one

product and here, we talk about a class of location problems called multi-product location

problems. So, each single-product location problem can be transformed to multi-product

location problem and consequently we can have a multi-product UFLP, a multi-product

CFLP, a multi-product multi-stage location problem, etc... The mathematical model which

presents the multi-product MUFLP can be founded in [1] .

I.2. 4 Multi-stage location problems

The Multi-Stage Location problems is a class of location problems describe the situations

where we have facilities on several hierarchically related levels. These cases can be found

in distribution/collect systems of companies. In this class of problems, in general the goal is

to choose a sub-set of facilities to be installed at each stage and then to allocate the selected

facilities one stage to the selected facilities of the next stage in order to minimize the total

cost including the setup costs and the allocation cost. Please note that in this class of

problems, in the first stage customers are allocated to the first stage of facilities and the

facilities of the last (the higher) stage are not allocated. In the following image we present

an example of one problem of this class:

Chapter 1

11

Figure 1: Muti-Stage Facility Location Problem

I.2. 5 Dynamic location problems

 In the industry, installation of facilities is considered as strategic decisions which token on

a long-term basis. On the other hand, the basis used when taking these decisions can be

changed over time such as: demand of customers etc... The dynamic location problems are

a class of location problems which can deal with these cases (cases of “change-over-time")

where the goal is to find high-quality solutions while considering the change-over-time. It is

worth mentioning that the dynamic location problems are harder and more complex than the

static location problems. In the literature, several dynamic location problems have been

studied such as: [4] [5] [6].

Stage Zero

Stage One

Stage Two

Stage Three

Chapter 1

12

I.2. 6 Probabilistic location problems

Probabilistic location problems are considered as a class of location problems which deal

with the situations where some variables/data of the problem are subject to uncertainty. In

general, the data or variables which are subject to uncertainty are modeled as a random

variable. The probabilistic location problems are harder and more complex than the

deterministic location problems. In the literature, we can find several studies which dealt

with probabilistic location problems, such as: [7] [8].

I.2. 7 Hub location problems

Hub location problems is a class of location problems where the goal is to install a set of

facilities called hubs to meet the transportation demands of the customers. In a hub location

problem, each customer demand is formulated as a transportation demand from an origin to

a destination and the quantity demanded by the customer is transported via the selected or

the installed hubs. As examples of the problems of this class we have: the uncapacitated hub

location problem, the capacitated hub location problem, etc. [9] [10] [11] [12]

I.2. 8 Routing location problems

In all classes of the location problems, we presented above, we considered the direct link

(route, arc, etc...) between a terminal or a client to a selected facility or depot in the allocation

part. For example, if we have 3 clients allocated to a facility, then we consider that the client

1 is directly linked with facility, the second client is also directly linked to facility and the

same case for the third client. However, in the location routing problems, all clients allocated

to a facility are not directly linked to the facility, but they are linked with a route that starts

from the facility and ends at this facility. So, in a location routing problem we have two sub-

problems: (1) The location of the facilities and the allocation of clients to these facilities and

(2) create a set of routes to visit the clients allocated to each facility. More details on location-

routing problems and their applications are found in [13] [14] [15] .

Chapter 1

13

I.2. 9 Multi-objective location problems

The multi-objective location problems are a class of location problems where the

objective is to optimize more than one criterion. In the formulation of these problems, we

find that the objective function contains more than one criterion such as: the construction

cost (including installation and affectation cost), the profit (to be maximized), the waiting

time (as a service quality), etc... In the literature, we can find several multi-objective location

problems which have been studied [16] [17] [18].

I.3 Two-Stage Capacitated Facility Location problems

The Two-Stage Capacitated Facility Location Problems (TSCFLPs) are considered as

multi-level location problems where a capacity constraint is imposed. In TSCFLPs, we have

a set of facilities candidates in level 1 (in general we call them warehouses) and another set

of facilities candidates in level 2 (in general we call them factories) [19] .The goal is to select

a sub-set of factories to be installed from the set of candidates, and another sub-set of

warehouses to be installed from the set of candidates to meet the demands of the clients

while minimizing the total cost, including the installation cost and the allocation cost. The

allocation is made as: the clients are allocated to the selected warehouses and the selected

warehouses are allocated to the selected factories. In addition, the sum of the demands of

clients treated by a selected warehouse must be inferior or equals to its capacity, and the

same case for each selected factory, the sum of the demands of the warehouses must be

inferior or equals to its capacity. In the literature, there are many TSCFLPs that have been

solved such: single-source TSCFLP [20], multiple-source TSCFLP [21], multi-product

TSCFLP [22]. etc... It is worth mentioning that in our thesis we deal with the multiple-

source TSCFLP. In the following image we present as example of the TSCFLP:

Chapter 1

14

Figure 2 : Two Stage Capacitated Facility Location Problem

I.4 Applications

The location problems have a plenty of applications, notably in modelling industrial and

real-life problems. Here we present examples of these applications [23] [24]

Cluster analysis: In general, in the cluster analysis, the goal is to group a set of items (or

any other entity) into clusters (or groups) where the items belong to one cluster should be

homogeneous. In fact, we can solve cluster analysis problems as location problems where

the goal is to find the best items that will be the kernel of each group and by the allocation

of the rest of the items to these best items, we get a set of groups or clusters. As an example,

from the literature, in [25] the authors modelled a clustering task as a p-median problem.

Location of bank accounts: Another important application of the location problems can

be found in [26]. In this study, the authors assumed that: when a company pays its suppliers,

we can optimize float when choosing the location of the bank accounts used to pay them.

This problem has been modelled as an UFLP with some additional constraint(s). Another

application of the location problems in the financial sector can be found in [27].

Warehouses

Factories

Customers

Chapter 1

15

Vendor selection: Selecting the most appropriate vendors is an important task for any

company. In fact, the selection process takes in consideration several criteria such as: price,

quality, know-how, product-to-buy etc... In [28], the authors discussed that the vendor

selection problem can be modeled and solved using location problems such as UFLP and

CFLP.

Location and sizing of offshore platforms for oil exploration: In [29] [30] the authors

modeled and solved a problem in oil exploitation as a location problem.

Database location in computer networks: In [31]the authors modeled the problem of

the installation and the maintenance of databases in a computer network an extended variant

of UFLP.

Computer networks and concentrator location: In the literature, location problems

are used to solve several complex problems in the design of the telecommunication and

computer networks [32] and [33] In addition, many of these complex problems are related

to the location of the concentrators [34] and [35]

Index selection for database design: In [36] the authors dealt with an important problem

in the physical database design which is the index selection problem. This problem has been

modeled and solved as an UFLP.

I.5 Conclusion

In this chapter, at first, we have presented several location problems related to the Two-

Stage Capacitated Facility Location Problem. Secondly, we have provided a description of

TSCFLPs. Finally, we have presented the real-life applications of TSCFLP.

16

Chapter II : Optimization methods and

algorithms

II.1 Introduction ... 17

II.2 Combinatorial optimization problem... 17

II.3 Exact Methods ... 17

II.3. 1 Branch and bound .. 17

II.4 Approximation Methods .. 19

II.4. 1 Heuristic ... 19

II.4. 2 Meta-Heuristic .. 21

II.4. 3 Hybridization .. 30

II.5 Conclusion ... 33

Chapter 2

17

II.1 Introduction

In this chapter we will present some methods and algorithms wish are used in

combinatorial optimization problems solver. The combinatorial optimization methods can

be divided in two main sub class: exact methods and Approximation methods.

In general, Exact methods aim to find the globally optimal solution for combinatorial

optimization problems. On the other hand, the Approximation methods and algorithms aim

to find near-optimal or optimal solutions within a reasonable amount of time, as finding

optimal solution for large-scale problems is often computationally infeasible.

II.2 Combinatorial optimization problem

Combinatorial optimization covers all methods that allow determine the optimum of a

function with or without constraints. In theory, a combinatorial optimization problem is

defined by a set of instances. Each instance of the problem is associated with a discrete set

of solutions S, a sub-set 𝑋 𝑜𝑓 S representing the feasible solutions and a cost function 𝑓

which assigns to each solution 𝑠 ∈ 𝑋 a cost 𝑓(𝑠). Solving such a problem consists of finding

a solution 𝑠𝑏𝑒𝑠𝑡 ∈ 𝑋 optimizing the value of the cost function 𝑓. 𝑠𝑏𝑒𝑠𝑡 is called an optimal

solution or global optimum [37] .

II.3 Exact Methods

Exact methods are methods that search for the optimal solution of a problem by

exhaustively examine all possible solutions in the search space. However, the major

drawback of these methods is the execution time, because all possible solutions will be

examined one by one and the execution time increases exponentially with the size of the

problem solved. Therefore, these techniques remain inappropriate for large sizes instances

[37]. As an example of these methods, we can cite: the branch and bound.

II.3. 1 Branch and bound

The Branch and bound algorithm (B&B) [38] is appeared for the first time in the 60s and

used to solve linear economic programming problems. Later, B&B becomes the most widely

used exact method for solving NP-hard optimization problems [39]. Formally, B&B is a

Chapter 2

18

tree-structure based algorithm where its main goal is to examine all possible solutions while

eliminating unnecessary or not-beneficial branches. Unnecessary or not-beneficial branches

are branches that contain infeasible solutions or bad quality solutions. The branch and bound

algorithm consider 𝑥𝑏 as an optimal solution if and only if the value of the objective function

𝑥𝑏 is less than or equal to the upper bound 𝑣𝑠 and is greater than or equal to lower bound 𝑣𝑖

, mathematically: 𝑣𝑖 ≤ 𝑓(𝑥𝑏) ≤ 𝑣𝑠.

As we highlighted above, the B&B explores all possible solutions while eliminating not-

beneficial branches. Therefore, in order to develop a high-quality B&B method you have to

focus on the following techniques used in B&B:

• The separation technique: how to divide the search space into subsets of solutions

awhile ensuring that the union of the created subsets covers all possible solutions

of the problem.

• The evaluation technique: used to determine whether there are possible solutions

of good quality in the tree-branch or not by calculating the lower and upper bounds

associated to the current branch.

• The exploration technique: which consists of fixing the strategy of exploration of

the tree by giving the order of visit to its branches. There are several exploration

strategies such as: better first, depth first etc.

 Algorithm 1 : Branch and Bound for minimization

1: 𝑇𝑟𝑜𝑜𝑡 ← 𝐶𝑟𝑒𝑎𝑡𝑒 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑎𝑟𝑐ℎ 𝑡𝑟𝑒𝑒 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒 ;

2: 𝑈𝑏𝑜𝑢𝑛𝑑 ← +∞; 𝐿 ← 𝑇𝑟𝑜𝑜𝑡 ;
4: while (L≠∅)

5: 𝑆𝐶 ← Explorer(L);
6: If (Evaluation (𝑆𝐶) ≤ 𝑈𝑏𝑜𝑢𝑛𝑑)

7: L′ ← All partial solutions S′ that can be obtained from Sc;

8: For (each S' in L' do)

9: If (S' is a complete solution)

10: update 𝑈𝑏𝑜𝑢𝑛𝑑; update 𝑆𝑏𝑒𝑠𝑡;
12: Else

13: add S′ to L ;
14: End

15: End

16: Else

17: delate 𝑆𝐶 from L ;

18: End

19: End

20: Return 𝑆𝑏𝑒𝑠𝑡;

Chapter 2

19

II.4 Approximation Methods

Optimization problems in the industrial world have usually large size and many

constraints, and therefore, exact methods cannot be applied for most of these cases. So, we

have to look for a good solution in a reasonable time instead of waiting for an optimal

solution after years of computation [37]. In contrast to the exact algorithms, Approximation

methods do not guarantee the optimality of the solution, but they allow to find good quality

solutions in a reduced execution time, it means, they seek a good compromise between the

quality of the solution and the calculation time. In the literature, many Approximation

methods have been proposed. In the following we present 3 categories of the approximation

methods: heuristics, meta-heuristics and hybrid methods.

II.4. 1 Heuristic

In the literature, there are several definitions of a heuristic. here we present that of [40]:

"A heuristic (heuristic rule, heuristic method) is a rule of thumb, strategy, trick,

simplification, or any other kind of device which drastically limits search for solutions in

large problem spaces. Heuristics do not guarantee optimal solutions; in fact, they do not

guarantee any solution at all; all that can be said for a useful heuristic is that it offers

solutions which are good enough most of the time. "

Moreover, in the field of combinatorial optimization, we can say that a heuristic is an

Approximation method developed to solve a particular problem and it requires a deep

knowledge about the problem being addressed. The goal of a heuristic is to find solutions

not necessarily optimal for a given problem in a very short execution time [37].

II.4.1.1 Greedy constructive algorithm

A Greedy constructive algorithm [41] is an algorithm that progressively build a solution

from scratch. At each step the locally optimal element according to the evaluation function

is selected and added to the solution under construction until obtaining a complete feasible

solution. The evaluation function also known as the greedy criterion or greedy choice rule,

typically it measures the incremental increase or decrease in the objective function or cost

function when incorporating a specific element into the partial solution.

Chapter 2

20

Algorithm 2 : Greedy algorithm for minimization

1: S ← ∅;
2: 𝐶 ← {𝑒1, 𝑒2, , 𝑒𝑛 };

3: Evaluate the incremental cost c(e) for all e ∈ C;

4: While (C ≠ ∅)

5: 𝑒𝑏 ← select e ∈ C with the smallest incremental cost c(e) ;
6: S ← S ∪ { 𝑒𝑏};
7: C ← C − { 𝑒𝑏};
8: Reevaluate the incremental cost c(e) for all e ∈ C ;
9: End

10: Return S;

II.4.1.2 Randomization and Greedy Randomized algorithm

Randomization plays a very important role in algorithm design [41]. It is used to introduce

randomness and diversity into the search process, allowing the algorithm to explore different

regions of the solution space and avoid being trapped in local optimal. One particularly

important use of randomization appears in the context of greedy algorithms.

A Greedy randomized constructive algorithm [41] uses the same principle of a greedy

algorithm that we mentioned before but it builds a restricted list of locally optimal element

and randomly select an element from the predefined list unsated of selecting the locally

optimal element. In general, the greedy randomized algorithms are used in the construction

phase of GRASP or to create initial solutions for GA.

Algorithm 3: Greedy randomized algorithm for minimization

1: S ← ∅

2: 𝐶 ← {𝑒1, 𝑒2, , 𝑒𝑛 };

3: Evaluate the incremental cost c(e) for all e ∈ C;

4: While (C ≠ ∅)

5: Build a list with the candidate elements having the smallest incremental costs;
6: 𝑒𝑏 ← Select random e ∈ the restricted candidate list ;
7: S ← S ∪ { 𝑒𝑏};
8: C ← C − { 𝑒𝑏};
9: Reevaluate the incremental cost c(e) for all e ∈ C ;

10: End

11: Return S;

Chapter 2

21

II.4.1.3 Local Search algorithm

A Local search algorithm (LS) is iteratively improving a solution, it replacing the current

solution with a better solution in the neighborhood until there is no better solution is founded.

The neighborhood of a solution consists of the solutions that can be obtained by making

small modifications or changes to the current solution. The efficiency of LS depends on

several aspects, such as the initial solution & the neighborhood structure.

Algorithm 4: Local Search

1: 𝑆 ← start solution;
2: While (S is not a local optimal)

3: 𝑆𝑛 ← select S ∈ N(S);
4: If (f (𝑆𝑛) is better than f (S))

5: S ← 𝑆𝑛;

6: End

7: End

8: Return S;

II.4. 2 Meta-Heuristic

In the literature and according to [42] “A metaheuristic is formally defined as an iterative

generation process which guides a subordinate heuristic by combining intelligently different

concepts for exploring and exploiting the search space, learning strategies are used to

structure information in order to find efficiently near-optimal solutions.”. Another definition

can be found in [43]:

“A metaheuristic is an iterative master process that guides and modifies the operations

of subordinate heuristics to efficiently produce high-quality solutions. It may manipulate a

complete (or incomplete) single solution or a collection of solutions at each iteration. The

subordinate heuristics may be high (or low) level procedures, or a simple local search, or

just a constructive method.” [43]

In general, a heuristic is an algorithm developed to solve a specific problem. However, a

metaheuristic is a general strategy that can be applied to solve a large number of optimization

problems. In the literature, several metaheuristics have been developed which can be

subdivided into two main families: single-solution based metaheuristics (based on a single

Chapter 2

22

solution) and population-based metaheuristics (based on a population of solutions). These

two families are described below.

II.4.2.1 Single-solution based metaheuristics

Single-solution based metaheuristics are single solution algorithms that are generally

based on the exploration of the neighborhood of the current solution. They start from an

initial solution, then at each iteration then they try to improve the current solution by

exploiting its neighborhood. Many single-solution based metaheuristics methods have been

proposed in the literature, here we cite the most known: simulated annealing, taboo search,

variable neighborhood search, GRASP, etc.

II.4.2.1.1 Simulated Annealing

Simulated Annealing (SA) was first proposed by Kirkpatrick [44] , inspired from the

physical process of annealing in metallurgy. The annealing process is to modify the

properties of metal by heat it to a specific temperature and then slowly cool it in a regular

way to ensure that the atoms reorganize themselves in a regular way. this process helps to

reduce metal defects when it is transformed from a liquid to a solid state.

SA algorithm attempts to simulate the annealing process described above to find a good

quality solution for a given optimization problem. Starting with very high temperature and

an initial solution. During the annealing process and iteratively, the temperature decreased

and a close neighbor of the current solution is randomly selected and accepted if it is better

than the current solution, otherwise It will be accepted with a probability proportional to the

temperature: the lower the temperature, the lower the probability of the solution being

accepted. Over time, the algorithm accepts much better solutions and converges to good

quality solutions.

Chapter 2

23

Algorithm 5: Simulated annealing

1: 𝑆 ← initial solution;

2: T ← initial temperature;

3: while (the stop criterion is not met) do

4: randomly choose 𝑆𝑛 ∈ N(S)

5: r ← a random number between 0 and 1.

6: calculate Δ;

7: If (𝑆𝑛 is better than S Or 𝑟 < 𝑒−(∆/𝑇))

8: S ← 𝑆𝑛 ;

9: if (S is better than 𝑆𝑏)

10: 𝑆𝑏est ← S;

11: End

12: End

13: update T;

14: End

15: return𝑆𝑏est;

II.4.2.1.2 Tabu Search

Tabu search (TS) introduced by Glover in the 1986 [45]. Technically, TS is a form of

local search with additional rules and a tabu list to keep track of previously visited solutions

and prevent the algorithm from revisiting them in the near future. The tabu list acts as a

memory mechanism that helps the algorithm to escape the local optima’s and to explore

different regions of the search space. There are various types of memory mechanisms

employed in TS such as: short, medium and long memories.

Formally, TS algorithm starts with an initial solution S. For each iteration, the

neighborhood N(s) of the current solution is generated and the best solution 𝑆𝑛 in it which

does not appear in the tabu list L is selected. Afterwards, the tabu list is updated by adding

the selected solution to it and remove the oldest solution in it (FIFO method). After that, the

selected solution becomes the current solution. The best overall solution 𝑆𝑏 is kept as the

result and the algorithm ends when the stop criterion is satisfied.

Chapter 2

24

Algorithm 6 : Tabu Search

1: 𝑆 ← initial solution;
2: while the stop criterion is not met do

3: Generate N(s);
4: find the best solution 𝑆𝑛 , { 𝑆𝑛 ∈ N(s) and 𝑆𝑛 ∉ L} ;
5: Update L;
6: 𝑆 ← 𝑆𝑛 ;
7: If (S is better than 𝑆𝑏) Then

8: 𝑆𝑏est ← S;
9: End

10: End

11: Return 𝑆𝑏est;

II.4.2.1.3 Greedy Randomized Adaptive Search Procedures

Greedy randomized adaptive search procedure (GRASP) was first introduced in 1989

[46] as multi-start metaheuristic approach that combines both of greedy randomized

algorithm and local search algorithm. At each iteration, the greedy randomized algorithm is

used to construct a solution. Once the solution is obtained, a repair procedure might be called

to fix the solution if it is not feasible or create a new solution that reach feasibility. After

that, the local search algorithm is applied on the created feasible solution. The best overall

solution is kept as the result of the algorithm.

Algorithm 7 :Greedy Randomized Adaptive Search Procedures for Minimization

1: 𝑓𝑖 ← ∞;
2: While (the stop criterion is not met)

3: 𝑆 ← Greedy Randomized Algorithm ();
4: if (S is not feasible)
5: 𝑆 ← RepairSolution(S) ;
6: End
7: 𝑆 ← LocalSearch(S) ;
8: if (𝑓(𝑆) < 𝑓𝑖)

9: 𝑆𝑏est ← 𝑆 ;
10: 𝑓𝑖 ← 𝑓(𝑆) ;
11: End

12: End

13: return 𝑆𝑏est;

Chapter 2

25

II.4.2.1.4 Variable Neighborhood Search

Variable Neighborhood Search (VNS) is a metaheuristic introduced by Mladenović &

Hansen in1997 [47] .The basic idea of VNS is the systematic change of a neighborhood

combined with solution perturbation and local search procedures. During algorithm running,

the neighborhood of a solution is explored using a set of predefined neighborhood structures.

VNS has undergone various modifications and enhancements. A discussion of the basic

concepts and successful applications of VNS can be found in survey papers [48].

Algorithm 8: Variable Neighborhood Search

1: 𝑆 ← initial solution;
2: N(L), L = 1.2. 𝐿𝑚𝑎𝑥 ;
3: While the stop criterion is not met do

4: 𝐿 ← 1;
5: While (𝐿 < 𝐿𝑚𝑎𝑥)

6: 𝑆𝑥 ← Shaking(S, N) ;
7: 𝑆𝑦 ← LocalSearch(𝑆𝑥);

8: if (𝑓(𝑆𝑦) < 𝑓(𝑆𝑏))

9: 𝑆 ← 𝑆𝑦 ;

10: 𝐿 ← 1;
11: 𝑆𝑏est ← 𝑆 ;

12: End

13: 𝐿 ← 𝐿 + 1;
14: End

15: End

16: End

17: Return 𝑆𝑏est ;

II.4.2.2 Population-based metaheuristics

Population-based metaheuristics are methods based on a population of solutions and

which are in general inspired by nature [49]. These methods use a set of solutions called

population. They start with an initial population and, at each iteration, they try to build a new

and better population based on the previous one in order to converge to good solution(s). As

examples of these methods, we can cite: genetic algorithms, particle swarm optimization,

ant colony algorithm, etc.

Chapter 2

26

II.4.2.2.1 Genetic algorithm

Genetic algorithm (GA) was introduced in the 1975’s by Holland [50]; it is inspired from

the biological evolution of living beings based on the principles of natural selection and

genetics. The basic genetic algorithm generally consists of two processes, the first is the

selection of the individual to produce the next generation, and the second is the manipulation

of the selected individual to produce the next generation through the crossing and the

mutation techniques [51].

GA starts with the creation of an initial population of solutions. Then, at each iteration,

the algorithm creates a set of solutions called parents by making a copy of the selected

solutions from the population. A solution that belongs to the population can be selected zero,

one or more than one time. After the selection process, the crossover is applied on the parents

to generate a new set of solutions called children. Then, the algorithm applies the mutation

on the children. At the end of the current iteration, the algorithm chooses a set of solutions

from the population and the children to build the next population of the next iteration.

Algorithm 9 : Genetic algorithm

1: P ← Create an initial population ();
2: While (the stopping criterion is met)

3: 𝑃𝑛 ← Selection(P);
4: E ← Crossover(𝑃𝑛);
5: E ← Mutation(E);
6: P ← Replacement (E, P);
7: End

8: Return the best solution found;

II.4.2.2.1.1 Selection

Selection is the operator that allows you to choose good solutions from the population to

create the set of parents that will produce the children. There are many selection methods in

the literature, such as:

➢ Uniform selection method: select randomly one solution and the finesses of the

solutions are considered. Therefore, all solutions have the same probability of

being selected.

➢ Roulette selection method: consists of randomly selecting a solution where the

probability of choosing a solution is proportional to the fitness of that solution.

➢ Rank selection method: each solution is chosen randomly where the probability

of selection a solution is proportional to its rank in the population. Each solution

Chapter 2

27

ranked according to his fitness where the worst solution has rank=1 and best

solution take the highest rank.

➢ tournament selection method: create a group of solutions from the population

randomly. Then the best solution of the group is selected.

II.4.2.2.1.2 Crossover

The crossover is the operator that allows to build one or two children (new solutions)

from two parent solutions by recombination the parental genes (genes mean parts of the

solution). The crossover is applied to each pair of parents selected with a probability that

usually between 65% and 90%. There are several crossover methods such as:

➢ Single point crossover method: it is the most popular crossover method where a

random point is chosen and we cut each parent on two parts.

One Cut Point
One Cut Point

 1 0 0 1 0 1 1 1 0 1 0 1 1 0

 Parent One Parent Two

 1 0 0 0 1 1 0
 1 0 1 1 0 1 1

 Child One Child Two

Figure 3 : Single point crossover in GA

➢ Two-point crossover method: This method cuts both parents into three parts by

two cutting points. The two cutting points are chosen randomly.

Two Cut Point Two Cut Point

 1 0 0 1 0 1 1 1 0 1 0 1 1 0

 Parent One Parent Two

 1 0 0 0 1 1 1
 1 0 1 1 0 1 1

 Child One Child Two

Figure 4: Two-point crossover in GA

➢ uniform crossover method: This method consists of going through both parents’

gene by gene and each time one of the two genes is selected. The child solution is

built by the selected genes.

Chapter 2

28

 1 0 0 1 0 1 1 1 0 1 0 1 1 0

 Parent One Parent Two

 1 0 0 0 0 1 0
 1 0 1 1 1 1 1

 Child One Child Two

Figure 5 : uniform crossover in GA

II.4.2.2.1.3 Mutation

After selection and crossover, we get new population of solutions. Some are directly

copied, and others are produced by crossover. Furthermore, Mutation involves making a

small random change to the solution. For example, altering one or two genes in the

solution. The purpose of the mutation is to ensure a good exploration of research space. The

mutation is applied with a probability between 1% and 5%.

II.4.2.2.1.4 replacement

There are several methods that can be used to select the new population of solutions of

the next generation. In the following present three methods:

➢ Completely remove the old population and replace it with the children.

➢ Merge the two sets the old population and the children and use one of the

selection methods (used in the selection phase) to select the solutions.

➢ Merge the two sets the old population and the children and choose the best

solutions (elitist method).

Chapter 2

29

II.4.2.2.2 Particle Swarm Optimization

Particle swarm optimization (PSO) was proposed in 1995 by Kennedy and Eberhart [52].

It is inspired from the swarms of birds that move in groups where every bird can profit from

the experience of all other members.

In PSO, a group of particles moves through the search space, representing potential

solutions. Each particle adjusts its position based on its own experience and the experiences

of neighboring particles. The position and movement of particles are guided by two main

factors: the personal best (the best solution found by the particle itself) and the global best

(the best solution found by any particle in the swarm).

Algorithm 10 : Particle Swarm Optimization

1: randomly initialized position Xi and velocity Vi of particles ;

2: While (the stopping criterion is met)

3: For (each particle)

4: evaluate the fitness function;

5: update: Vi and Xi ;

6: update: p_best and g_best ;

7: End

8: End

9: Return the best solution found;

II.4.2.2.3 Ant Colony Optimization

Ant Colony Optimization (ACO) was first introduced by Dorigo in the 90s [53]. It was

inspired from the behaviors of real ants, which leaving pheromone trails to find their ways

back to the nest or to find food. The pheromone trails serve as a form of communication

between the ants, allowing them to indirectly exchange information.

In general, ACO is based on the indirect communication of a colony of simple agents,

called artificial ants, mediated by artificial pheromone trails. The pheromone trails in ACO

serve as a distributed, numerical information which the ants use to probabilistically construct

solutions to the problem and which the ants adapt during the algorithm’s execution to reflect

their search experience.

Chapter 2

30

Algorithm 11 : Ant Colony Optimization

1: randomly initialized pheromone values; ;

2: While (the stopping criterion is met)

3: For (each Ant)

4: construct a solution;

5: update local pheromone values;

6: End

7: End

8: Return the best solution found so far ;

II.4. 3 Hybridization

Hybridization is one of the recent approaches in the field of optimization. In the hope of

obtaining better results, many independent optimization algorithms have been combined.

Considering the good results that hybridization has obtained, it has become a widely used

strategy to solve optimization problems. The huge number of efficient hybrid metaheuristics

proves that hybrid metaheuristics represent actually the most efficient algorithms for many

classical and real-life difficult problems [54]. In this section we are going to present some

hybridization method such as: Coupling metaheuristics with exact methods and Coupling

metaheuristics with other metaheuristics

II.4.3.1.1 Coupling metaheuristics with exact methods

Initially, the primary focus of hybridization was on the collaboration between different

metaheuristics [55]. This approach was perceived as the most direct and obvious way to

combine metaheuristic techniques, leading to the neglect of other potential methods for

hybridization. However, when researchers start to explore alternative hybridization

approaches, they realized the complementarity between specific exact methods and

metaheuristics. In fact, exact methods are known for their capability to solve small instances

of the problems and asses their optimality but they are not used to solve large NP-hard

problems because they are computationally expensive.

By coupling metaheuristics with exact methods, researchers aimed to leverage the

strengths of both approaches. This hybridization allows for the efficient exploration of

solution spaces using metaheuristics, while exact methods are employed to refine and

improve the solutions obtained. The exact methods can be used to verify the quality of

Chapter 2

31

solutions found by the metaheuristics, potentially reaching optimality for smaller instances

within a reasonable time frame.

In [56], the authors presented different state-of-the-art approaches of combining exact

algorithms and metaheuristics to solve combinatorial optimization problems and they

classed these hybrids in two main categories:

- The first category was called 'collaborative combinations', where the algorithms

exchange information but are not part of each other. This category was divided into two sub-

categories: Sequential Execution, Parallel and Interleaved Execution.

- The second category was called "Integrative Combinations"; where one technique is an

integrated component of another technique. It was also subdivided in two subcategories:

Incorporating exact algorithms in metaheuristics and Incorporating metaheuristics in exact

algorithms.

II.4.3.1.2 Coupling metaheuristics with other metaheuristics

The combination of different metaheuristics is the most common type of hybridization

found in the literature [55]. Coupling metaheuristics is a technique used to combine multiple

metaheuristics to improve their overall performance in solving optimization problems. There

are several ways to couple metaheuristics with other metaheuristics. Here are a few

commonly used approaches [57] [58] [59]:

II.4.3.1.2.1 Parallel hybrids

Parallel hybrids contained multiple metaheuristics that executed simultaneously or in

parallel. Each metaheuristic operates independently, exploring the search space and

generating solutions concurrently. The solutions generated by the individual metaheuristics

are then combined or compared to determine the best solution. parallelization is mainly used

for the following reasons: speed-up the search, improve the quality of the obtained solutions

and improve the robustness and to solve large scale problems [57].

 According to the authors in [58], the parallelization techniques of a "standard"

metaheuristic vary depending on whether it is a trajectory-based (single solution) or a

Chapter 2

32

population-based metaheuristic. For trajectory-based metaheuristics, three types of

parallelization are often found in the literature:

Parallel moves model: A master–slave approach is conducted here. Where, at the

beginning of each iteration, the master duplicates the current solution between distributed

nodes. Each solution separately manages their own solution/candidate and the results are

then returned to the master. This technique of parallelization does not alter the behavior of

the metaheuristic. A relatively recent example of this hybridization can be found in [59].

Parallel multi-start model: This approach of parallelization involves simultaneously

launching several trajectory-based methods for computing better and robust solutions. They

may be homogeneous or heterogeneous, cooperative or independent, start from the same or

different solution(s), and configured with the same or different parameters. An example of

this category is in [60]

Move acceleration model: Techniques that fit in this category evaluate the quality of

each move in a parallel centralized way. This model becomes attractive when the evaluation

function can be parallelized as its computationally expensive. In that case, the function can

be regarded as an aggregation of a certain number of partial functions that can be run in

parallel. The interested readers are referred to the work of [61].

II.4.3.1.2.2 Sequential hybrids

With regards to the hybridization purpose, non-parallel hybrid algorithms can loosely be

divided into two categories [62]

 Collaborative Hybrids: Under this category of hybrid algorithms, multiple algorithms

work together to solve the same problem directly, with each algorithm being utilized in

different search stages. In the simplest case, the contribution weight of each participating

algorithm can be considered equal. An example on collaborative Hybrids can be found in

[63].

 Integrative Hybrids: In this type of hybridization, one primary algorithm is utilized to

solve the problem, while another algorithm is applied to optimize the parameters for the

primary algorithm. In this aspect, one algorithm is regarded as a subordinate, embedded in a

master metaheuristic. For this category, the contributing weight of the secondary algorithm

Chapter 2

33

is Approximatively 10 to 20% [55]. This involves the incorporation of a manipulating

operator from a secondary algorithm into a primary algorithm. For example, many

algorithms utilized the mutation operator from GA into PSO, resulted in so called Genetic

PSO or Mutated PSO.

II.5 Conclusion

In this chapter, we have presented several combinatorial optimization methods and

algorithms. We began by presenting the exact methods, within this category, we highlighted

branch and bound. Next, we explored heuristic methods such as Greedy algorithms, Greedy

Randomized algorithm and Local Search algorithm. Furthermore, we delved into

metaheuristic methods, which are general-purpose optimization algorithms applicable to a

wide range of combinatorial problems. As metaheuristics, we presented the most popular

and the widely used ones in the literature: SA, TS, VNS, GRSP, GA, PSO and ACO. Finally,

we discussed the concept of hybridization, which consists of combining different

optimization methods.

In the following chapter, we will present the proposed algorithm used to solve TSCFLP.

34

Chapter III : Simulated annealing for
TSCFLP

III.1 Introduction ... 35

III.2 Problem definition ... 35

III.3 Most related work .. 36

III.4 Proposed Algorithm ... 37

III.4. 1 Initial Solution Procedure ... 38

III.4. 2 Neighborhood Creation procedure .. 39

III.4. 3 Allocation procedures ... 40

III.4. 4 Acceptance criterion method .. 43

III.4. 5 annealing method .. 43

III.5 Conclusion ... 43

Chapter 3

35

III.1 Introduction

In this chapter we will present an algorithm to solve Two stage capacitated facility

location problem with single commodity and multi-source. The algorithm that we propose

is a Simulated Annealing based method which starts from a randomly generated solution and

tries to improve it in order to get a high-quality solution within a reasonable running time.

In what follows, in section 2, we present the mathematical definition of the TSCFLP as

shown in [64]. Then, we give a short review on the most related works which dealt with the

TSCFLP. After that, we present our proposed algorithm, and we finish with a conclusion.

III.2 Problem definition

The set of all customers is represented by 𝐾 , where each customer 𝑘 ∈ 𝑲 has a demand

𝑞𝑘 to be met. 𝑱 represents the warehouses; for each warehouse 𝑗 ∈ 𝑱, we have: a capacity

𝑝𝑗 , an opening cost 𝑔𝑗 and the shipping product cost 𝑑𝑗𝑘 to all customers 𝑘 ∈ 𝑲. Similarly,

to the warehouses, 𝑰 represents the factories; each factory 𝑖 ∈ 𝑰 has: a capacity 𝑏𝑖 , an

opening cost 𝑓𝑖 and a shipping product cost 𝑐𝑖𝑗 of to all warehouses 𝑗 ∈ 𝑱.

To meet demands of all customers, TSCFL can be defined as determining a subset of

open warehouses �̅̅̅� ⊆ 𝑱 and open factories �̅� ⊆ 𝑰 while the sum of total opening and total

shipping costs is minimal.

In order to represent the TSCFL as Mixed Integer Programming (MIP) problem, the

decisions to be made at each step have to be defined in term of decision variables. Given

that, we define 𝑧𝑗 . 𝑗 ∈ 𝑱 and 𝑦𝑖 . 𝑖 ∈ 𝑰 as decision variables that indicate whether the

warehouse 𝑗 and factory 𝑖 will be opened or not. In addition, the decision variables 𝑥𝑖𝑗 . 𝑖 ∈

 𝑰, 𝑗 ∈ 𝑱 refer to how much flow is being sent from the factory 𝑖 to the warehouse 𝑗 and

𝑠𝑗𝑘. 𝑗 ∈ 𝐉 , 𝑘 ∈ 𝐊 indicates to how much flow is being sent the warehouse 𝑗 to the customer

𝑘 .

The Mixed Integer Programming used for this TSCFL is the same presented in [64]

Chapter 3

36

𝑖𝑛 ∑ 𝑓𝑖

𝑖∈𝐼

𝑦𝑖 + ∑ 𝑔𝑗

𝑗∈𝐽

𝑧𝑗 + ∑ ∑ 𝑐𝑖𝑗

𝑗∈𝐽

𝑥𝑖𝑗 + ∑ ∑ 𝑑𝑗𝑘𝑠𝑗𝑘

𝑗∈𝐽𝑘∈𝐾

𝑖∈𝐼

 (𝐀)

𝑠. 𝑡 ∑ 𝑠𝑗𝑘

𝑗∈𝐽

 ≥ 𝑞𝑘 ∀ 𝑘 ∈ 𝐾 (𝐁)

 ∑ 𝑥𝑖𝑗

𝑖∈𝐼

≥ ∑ 𝑠𝑗𝑘

𝑘∈𝐾

 ∀ 𝑗 ∈ 𝐽 (𝐂)

 ∑ 𝑥𝑖𝑗

𝑗∈𝐽

≤ 𝑏𝑖𝑦𝑖 ∀ 𝑖 ∈ 𝐼 (𝐃)

 ∑ 𝑠𝑗𝑘

𝑘∈𝐾

≤ 𝑝𝑗𝑧𝑗 ∀ 𝑗 ∈ 𝐽 (𝐄)

 𝑥𝑖𝑗 ∈ ℝ+ ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (𝐅)

 𝑠𝑗𝑘 ∈ ℝ+ ∀𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾 (𝐆)

 𝑦𝑖 ∈ {0,1} ∀ 𝑖 ∈ 𝐼 (𝐇)

 𝑧𝑗 ∈ {0,1} ∀ 𝑗 ∈ 𝐽 (𝐈)

The objective function (A) represents the total cost of the shipping system. Constraints

(B) ensure that each customer is served. Constraints (C) are conservation constraints, i.e. the

total amount of products shipped from a warehouse must be at most the total shipping to it

from the factories. Constraints (D) and (E) are capacity constraints assigned to factories and

warehouses, respectively. Finally, constraints (F) and (G) are assigned to flow variables, and

constraints (H) and (I) impose binary values for the respective variables.

III.3 Most related work

In this section, we present the most related works proposed to solve TSCFLP. In this

thesis, we consider the TSCFLP with multiple-source and single-commodity and to the best

of our knowledge there are six papers that have been published and dealt with this variant.

In the following, we give a short review of some works:

In 2014 Fernandes [64] proposed a set of instances with different characteristics and

presented a simple and effective Genetic Algorithm to solve the TSCFLP. Computational

results are reported comparing the heuristic results with those obtained by two state-of-the-

art Lagrangian heuristics proposed in the literature for the problem

 In 2016 Louzada [65] came up with a hybrid method that combined a clustering search

(CS) method to define the factories and warehouses to be installed with an exact method to

Chapter 3

37

define the flow of products between factories, warehouses and customers. This work was

able to find better solutions compared to the GA of [64]in lower computational times.

In 2019 González [66] presented hybrid method based on the Greedy Randomized

Adaptive Search Procedure (GRASP) with a Local Branching procedure. This method was

able to obtained relevant results.

Recently in 2021 González [19], the authors developed a hybridization of Clustering

Search (CS) and Adaptive Large Neighborhood Search (ALNS) metaheuristics with the

Local Branching (LB) technique for the TSCFLP. This hybridization has found high quality

solutions in low computational time.

All the mentioned work above used, in the experiments and in the comparison, the same

instances proposed in [64]

III.4 Proposed Algorithm

In this section, we present our algorithm for solving the TSCFL problem, which attempts

to find solution of good quality in a reasonable time. The algorithm considers that the two

levels are independent of each other and at each level there is potential facilities to be opened

to satisfy the total demand of customers. In addition, the algorithm treats the level 1 and then

deals with the level 2; where in level 1, the warehouses are considered as the facilities (to be

opened) and in level 2 the opened warehouses are considered as customers.

First, the algorithm generates randomly an initial solution 𝑆0 which becomes the current

solution. Then, at each iteration, the algorithm creates a neighbor solution 𝑆𝑛 of the current

one 𝑆 ; If 𝑆𝑛 is better than 𝑆 according to the objective function, then the algorithm will

replace 𝑆 with 𝑆𝑛 and update the best solution 𝑆𝐵 if it is better the than 𝑆𝐵; otherwise, 𝑆𝑛

will be accepted with a probability equal to 𝑒−(∆/𝑇). At the end of each iteration, the current

temperature T is updated. The algorithm stops when the stopping-criterion is met. In the

following sub-sections, we highlight the details of each part of the algorithm: (1) the initial

solution procedure, (2) the neighborhood creation procedure, (3) the acceptance criterion

method and we finish with (4) the annealing method.

Chapter 3

38

Remark: In the most of parts of our algorithm, we treat the level 1 of the problem exactly

as the level 2, that means the same techniques and methods used for level 1 are used for level

2. Therefore, and to avoid repetition, the term clients is used to refer to the customers in the

level 1 and the opened warehouses in level 2 and we use the term facilities to refer to the

warehouses in level 1 and the factories in the level 2.

Algorithm 12 : Simulated Annealing for TSCFLP

1: 𝑇 ← initial _Temperature;

2: 𝑆0 ← Initial Solution Procedure ();

3: while (the stop criterion is not met) do

4: 𝑆𝑛 ← neighbor _Solution (𝑆0);

5: r ← a random number between 0 and 1;

6: 𝛥 ← 𝑓(𝑆𝑛) − 𝑓(𝑆0);

7: If (𝑓(𝑆𝑛) < 𝑓(𝑆0) 𝒐𝒓 r < 𝑒−(∆/𝑇))

8: 𝑆0 ← 𝑆𝑛;

9: If (𝑓(𝑆𝑛) < 𝑓(𝑆𝑏))

10: 𝑆𝑏 ← 𝑆𝑛;

11: End if

12: End if

13: update T;

14: End

15: Return 𝑆𝑏;

III.4. 1 Initial Solution Procedure

The Initial Solution Procedure generates the initial solution in a random fashion. it

randomly selects warehouses and factories to be opened until the total capacity of the opened

warehouses and factories is able to satisfy all demands of customers.

Once we obtain the lists of warehouses and factories, we apply the allocation procedure

“Allocation Procedure 1” described below. This procedure is highlighted in Algorithm 13,

the union 𝑆𝑗0 "Initial Solution of level 1" and 𝑆𝑖0 "Initial Solution of level 2" give us the

final Initial Solution.

Chapter 3

39

Algorithm 13 : Initial Solution Procedure

1: 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 ← {𝑘1, 𝑘2, , 𝑘|𝐾|};

2: 𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒𝑠 ← {𝑗1, 𝑗2, … … . , 𝑗|𝐽|}

3: 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑒𝑠 ← {𝑖1, 𝑖2, , 𝑖|𝐼|};

4: 𝑆𝑘0 ← 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠; 𝑆𝑗0 ← ∅ ; 𝑆𝑖0 ← ∅ ;

5: while (the stop criterion is not met) do

6: 𝑗𝑟 ← select random 𝑗 ∈ W𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒𝑠 𝑎𝑛𝑑 𝑗 ∉ 𝑆𝑗0 ;

7: 𝑆𝑗0 ← 𝑆𝑗0 ∪ {𝑗𝑟} ;

8: End

9: while (the stop criterion is not met) do

10: 𝑖𝑟 ← select random i ∈ 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑒𝑠 𝑎𝑛𝑑 𝑖 ∉ 𝑆𝑖0 ;

11: 𝑆𝑖0 ← 𝑆𝑖0 ∪ {𝑖𝑟} ;

12: End

13: Allocation Procedure 1(𝑆𝑗0, 𝑆𝑘0);

14: Allocation Procedure 1(𝑆𝑖0, 𝑆𝑗0);

15: Return(𝑆𝑖0 ∪ 𝑆𝑗0);

III.4. 2 Neighborhood Creation procedure

The neighborhood generation procedure creates a neighbor solution 𝑆𝑛 of the current

solution S as follows:

Mainly, the algorithm creates 𝑆𝑛 based on the swap move. The swap move consists of

changing an opened facility (a warehouse or a factory) with a closed one. The facility to be

closed is selected randomly however, we open a randomly selected facility but from the best

ones. The facility is selected from the top 6 of closed facilities that have the best ratio:

capacity/opening-cost. In addition to the swap move, we perform add and drop moves on the

solution if the move applied improves the solution quality.

Details of how the 𝑆𝑛 solution is created can be found in Algorithm 14. First the algorithm

performs the swap move in the first level. In fact, the swap move we propose can create

infeasible solution, and therefore, we perform the add move if there is any not satisfied client.

After that, we perform the allocation procedure “Allocation Procedure 1” which allow us

to compact all demands of clients into the most appropriate facilities (including the new one).

Consequently, after this procedure, we perform the drop move to remove not used facilities

(determined by Allocation Procedure 1). After finishing level 1, the algorithm performs the

same steps on the level 2 (see steps from 7 to 12). Then, and after determining the

Chapter 3

40

configuration of the facilities to be opened in the first and the second steps, we delete the old

allocation made and we re-allocation clients (customers and opened warehouses) to the

facilities using the second allocation procedure “Allocation Procedure 2”. At the end, we

construct the final solution 𝑆𝑛 by the elements of the level 1 and level 2. The allocation

procedure Procedure1 and Procedure2 are presented in detail in the following sub-section.

III.4. 3 Allocation procedures

The allocation is a very important part of the problem. In this work, we propose two

allocation procedures to allocate clients to the opened facilities. The first procedure

(Allocation Procedure 1) allocates the client to the best facility to minimize opening costs.

The second procedure (Allocation Procedure2) allocates the client to the nearest facility to

minimize shipping costs.

Algorithm 14 : Neighborhood Creation Procedure (𝑆𝑖0, 𝑆𝑗0 , 𝑆𝑘)

1: 𝑆𝑗𝑛 ← swapFacilty(𝑆𝑗0) ;

2: If (customers are unsatisfied) do

3: addFacility(Sj𝑛) ;

4: End

5: Allocation_Procedure_1(𝑆𝑗n, 𝑆𝑘) ;

6: dropFacility(𝑆𝑗𝑛) ;

7: 𝑆𝑖𝑛 ← swapFacilty(𝑆𝑖0) ;

8: If (customers are unsatisfied) do

9: addFacilty(𝑆𝑖𝑛) ;

10: End

11: Allocation_Procedure_1(𝑆𝑖n, 𝑆𝑗𝑛) ;

12: dropFacility(𝑆𝑖𝑛) ;

13: Allocation_Procedure_2(𝑆𝑗n, 𝑆𝑘) ;

14: Allocation_Procedure_2(𝑆𝑖n, 𝑆𝑗𝑛) ;

15: Return (𝑆𝑖𝑛 ∪ 𝑆𝑗𝑛) ;

Chapter 3

41

III.4.3.1 Allocation Procedure 1: allocate the best client to the best facility

The Allocation Procedure 1 allocates the best client to the best open facility, where the

best client is determined by its demand, and the best open facility is identified based on the

highest ratio: capacity /opening-cost.

At each iteration, the best facility β with available capacity is selected to meet the

demands of unsatisfied clients. Afterwards, the unsatisfied clients are ranked from the best

to the worst according to the quantity of demands. Once ranking is made, the facility β begins

to meet the demands of clients according to their rank, until it is empty. The facility β tries

to meet the clients demand completely and, if not, partially. If a client is met partially, then

we update his demand and we consider him as an unsatisfied client otherwise he is

considered as a satisfied client. The procedure ends when all clients are satisfied or there is

no available facility.

Algorithm 15 : Allocation_Procedure_1(𝑆𝑓 , 𝑆𝑐)

1: 𝑆𝑓′ ← 𝑆𝑓; 𝑆𝑐′ ← 𝑆𝑐;

2: While (𝑆𝑓′ ≠ ∅ and 𝑆𝑐′ ≠ ∅)

3: 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽 ← select the 𝑏𝑒𝑠𝑡 𝑜𝑝𝑒𝑛 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑓 ∈ 𝑆𝑓′ ;

4: 𝑟𝑎𝑛𝑘𝑖𝑛𝑔𝐶𝑙𝑖𝑒𝑛𝑡𝑠(𝑆𝑐′);

5: While (𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽 . 𝑠𝑡𝑜𝑐𝑘 ≠ 0)

6: 𝑐𝑙𝑖𝑒𝑛𝑡𝑏𝑒𝑠𝑡 ← select 𝑏𝑒𝑠𝑡 𝑐𝑙𝑖𝑒𝑛𝑡 𝑐 ∈ 𝑆𝑐′ ;

8: If (𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽 . 𝑠𝑡𝑜𝑐𝑘 ≥ 𝑐𝑏 . 𝑑𝑒𝑚𝑎𝑛𝑑)

9: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑆𝑓;

10: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽 . 𝑠𝑡𝑜𝑐𝑘;

11: 𝑆𝑐′ ← 𝑆𝑐′ − {𝑐𝑙𝑖𝑒𝑛𝑡𝑏𝑒𝑠𝑡};

12: Else

13: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑆𝑓;

14: 𝑈𝑝𝑑𝑎𝑡𝑒 𝑐𝑙𝑖𝑒𝑛𝑡𝑏𝑒𝑠𝑡. 𝑑𝑒𝑚𝑎𝑛𝑑;

15: 𝑆𝑓′ ← 𝑆𝑓′ − {𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽};

17: End

18: End

19: End

Chapter 3

42

III.4.3.2 Allocation Procedure 2: allocate client to the nearest facility

 The main idea of Allocation Procedure 2 is to allocate the client to the nearest open

facility with available capacity.

At each iteration, an unsatisfied client α is selected randomly to send a request to the

nearest open facility β with available capacity. When the facility β receives the request of α

he add it to the concurrent clients list with the rest of unsatisfied clients who consider β as

the nearest open facility and arranges the clients in the list from the best to worst where the

best client is the client with the big quantity of demand. Once the list of concurrent clients

is obtained, the next step for β is to meet the client's demand based on the priority ranking

of each client in the list. β will continue meeting the demands of clients in the list completely

and, if not, partially until either all the clients in the list are satisfied or β becomes empty.

The client that we meet his demand partially, we update his demand and we consider him as

an unsatisfied client. The procedure ends when all clients are satisfied.

Algorithm 16: Allocation_Procedure_2(𝑆𝑓 , 𝑆𝑐)

1: 𝑆𝑓′ ← 𝑆𝑓; 𝑆𝑐′ ← 𝑆𝑐;

2: While (𝑆𝑐′ ≠ ∅ and 𝑆𝑓′ ≠ ∅)

3: 𝑐𝑙𝑖𝑒𝑛𝑡𝛼 ← select random client 𝑐 ∈ 𝑆𝑐′ ;

4: 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽 ← nearest open facility(𝑆𝑓′, 𝑐𝑙𝑖𝑒𝑛𝑡𝛼);

5: 𝐶𝑙𝑖𝑠𝑡 ← concurentClientList(𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽 , 𝑆𝑐′);

6: While (𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽 . 𝑠𝑡𝑜𝑐𝑘 ≠ 0 and 𝐶𝑙𝑖𝑠𝑡 ≠ ∅)

8: 𝑐𝑙𝑖𝑒𝑛𝑡𝑏𝑒𝑠𝑡 ← select the 𝑏𝑒𝑠𝑡 𝑐𝑙𝑖𝑒𝑛𝑡 𝑐 ∈ 𝐶𝑙𝑖𝑠𝑡 ;

9: If (𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽 . 𝑠𝑡𝑜𝑐𝑘 ≥ 𝑐𝑙𝑖𝑒𝑛𝑡𝑏𝑒𝑠𝑡. demand)

10: Update (𝑆𝑓);

11: Update (𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽);

12: 𝐶𝑙𝑖𝑠𝑡 ← 𝐶𝑙𝑖𝑠𝑡 − {𝑐𝑏};

13: 𝑆𝑐′ ← 𝑆𝑐′ − {𝑐𝑏};

14: Else

15: Update 𝑆𝑓;

17: Update (𝑐𝑙𝑖𝑒𝑛𝑡𝑏𝑒𝑠𝑡. 𝑑𝑒𝑚𝑎𝑛𝑑);

18: 𝑆𝑓′ ← 𝑆𝑓′ − {𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽};

19: End

20: End

21: End

Chapter 3

43

III.4. 4 Acceptance criterion method

The acceptance criterion method is the method which determines whether the new

neighbor solution is either accepted or discarded using the most popular and common

acceptance criterion 𝑒−(∆/𝑇). At each iteration we compute the fitness variation Δ between

the current solution S and the neighbor solution Sn where Δ= f(Sn)-f(S) (f is the function

which calculates the cost of the solution). If Δ < 0, then Sn is accepted directly and becomes

the current solution (we replace S by Sn); otherwise, the neighbor solution is accepted with

a probability p = 𝑒−(∆/𝑇) . where T is the current temperature.

III.4. 5 annealing method

The annealing method is the manner of decreasing the temperature progressively and it is

considered as one of the keys of the success of any simulated annealing-based algorithm.

First, we start with high-value temperature T0 (T <--- T0) and then we keep decrease the

current temperature T when the algorithm is progressed. There are several methods for

decreasing the temperature, in our algorithm we use the continuous decrease method where,

at each iteration, we decrease the temperature using the formula T=α ×T; and α = 0.99.

III.5 Conclusion

In this chapter we presented our Simulated Annealing based algorithm to solve Two stage

capacitated facility location problem with single commodity and multi-source. At first, we

started by the mathematical definition of the problem and the most related work, then we

presented the algorithm. Moreover, we highlighted all parts of the algorithm by giving details

of each one including: the initial solution procedure, neighborhood generation procedure,

the acceptance criterion method and the annealing method. In the next chapter, the proposed

algorithm will be tested using benchmark data set from the literature and the obtained results

will be compared with those of the most related works.

44

Chapter IV : Experiments

IV.1 Introduction ... 45

IV.2 Description of benchmark data set .. 45

IV.2. 1 Capture of instance ... 47

IV.3 Experiments results ... 48

IV.3. 1 Parameters and implementation details .. 48

IV.3. 2 Generated solution structure ... 49

IV.3. 3 The obtained results .. 50

IV.4 Comparison with literature .. 53

IV.5 Conclusion ... 56

Chapter 4

45

IV.1 Introduction

In this chapter, we will present the experiments performed to test the efficiency of our

algorithm. The chapter begins with a detailed description of the benchmark-instances

proposed by [64], including the methodology employed for their generation. In addition, an

illustrative example of one such instance will be provided. Then, we show the obtained

results when we tested the components of the proposed algorithm. Finally, we compare the

obtained results with the results which are in the literature.

IV.2 Description of benchmark data set

The instances used were presented in [64]. The authors have generated 50 instances for

the TSCFLP using the following parameters:

• number of factories 𝑰 = 𝟓𝟎 𝒐𝒓 𝟏𝟎𝟎 .

• set number of warehouses 𝑱 = 𝟐 × 𝑰 .

• number of customers 𝑲 = 𝟒 × 𝑰

• 𝐵 =
∑ 𝑞𝑘𝑘∈𝐾

𝐼

• 𝑃 =
∑ 𝑞𝑘𝑘∈𝐾

𝐽

Chapter 4

46

Table 1 : parameters used to generate instances

Finally, it obtained two set of instances. the first set consists of 25 instances divided into five instance classes whit I=50. In the second set, also

with 25 instances, divided into five instance classes whit I=100. All instances can be found at https://github.com/pehgonzalez/OCA, along with the

binary file to reproduce the experiments.

Parameter Class1 Class2 Class3 Class4 Class5

𝒃𝒊 [2B 5B] [5B 10B] [15B 25B] [5B 10B] [5B 10B]

𝒇𝒊 [2 × 104 3 × 104] [2 × 104 3 × 104] [2 × 104 3 × 104] [2 × 104 3 × 104] [2 × 104 3 × 104]

𝒄𝒊𝒋 [35 45] [35 45] [35 45] [50 1 × 102] [35 45]

𝒑𝒋 [2P 5P] [5P 10P] [15P 25P] [5P10P] [5P 10P]

𝒈𝒋 [8 × 103 1.2 × 104] [8 × 103 1.2 × 104] [8 × 103 1.2 × 104] [8 × 103 1.2 × 104] [8 × 103 1.2 × 104]

𝒅𝒋𝒌 [55 65] [55 65] [8 × 102 1 × 103] [50 1 × 102] [8 × 102 1 × 103]

𝒒𝒌 [10 20] [10 20] [10 20] [10 20] [10 20]

https://github.com/pehgonzalez/OCA

Chapter 4

47

IV.2. 1 Capture of instance

in the next figures we present a capture of one instance (PSC1-C1-50) of 50 factories 100

warehouses and 200 customers in class 1.

Figure 8 : example of warehouses

instance
Figure 9: example of factories instance

Figure 7 : example of shipment cost

from factories to warehouses

Figure 6 : example of customer’s

instance

Figure 10 : example of shipment cost

from warehouses to customers

Chapter 4

48

IV.3 Experiments results

In this sub-section, we will present the obtained results of the proposed algorithm. In fact,

we will try to highlight the obtained results by each component of the algorithm as following:

First, we show the obtained results by only the initial solution procedure, then we present

the obtained results by the SA but only using the “allocation procedure 1” and finally we

present the obtained results by the complete version of SA that means including the two

allocation procedures. This will allow us to highlight clearly the contribution of each part of

the algorithm in the final obtained results.

IV.3. 1 Parameters and implementation details

The SA-algorithm was implemented in Java, utilizing the Java SE-17 compiler. All

experiments were conducted on a PC equipped with an Intel Core i5-4210U processor,

operating at 1.70 GHz (with a maximum turbo frequency of 2.40 GHz), and 12GB of RAM.

In our algorithm, we use the following parameters: an initial temperature T=350 000, number

of iterations i =3 500 and decreasing the temperature at each iteration using the formula

T=α ×T where α = 0.99.

Chapter 4

49

IV.3. 2 Generated solution structure

The generated solution contains the open facilities ids and the shipments from each open facility to its customers. A single shipment is composed

of the customer id and the quantity sent. In the next table we present the structure of generated solution.

le
ve

l tw
o

Nbr of open factory 1 2 3 4 5 6
…..................

 n-1 n
factory id 1 10 12 20 23 24 45 46

open factory id
shipment 1 shipment 2 shipment 3

….................
.

shipment n
warehouse

id
quantity

warehouse
id

quantit
y

warehouse
id

quantit
y

warehouse
id

quantit
y

1 66 88 97 22 86 21 ….................. 69 144
10 22 118 11 117 / / ….................. 43 45

…

…

…

…

…

…

…
 …..................

…

…

46 100 119 48 132 53 30 ….................. 42 17

level o
n

e

Nbr of open
warehouse

1 2 3 4 5 6
…..................

 n-1 n

warehouse id 11 19 22 31 34 38 97 100

open warehouse id
shipment 1 shipment 2 shipment 3

….................
.

shipment n

customer id
Quantit

y
customer id

quantit
y

customer id
quantit

y
customer id

quantit
y

11 22 16 109 15 123 14 ….................. 81 5
19 23 20 41 20 113 19 ….................. 45 6

…

…

…

…

…

…

…
 …..................

…

…

100 78 18 143 11 13 10 ….................. 63 4

Table 2 : Generated solution structure

In the next figure, we present a complete solution obtained by the SA algorithm with its corresponding costs and constraints-checking values.

Chapter 4

50

IV.3. 3 The obtained results

In this sub-section, we will present the obtained results for all instances after 10

executions for each instance where table 3 represent the obtained results for the first set of

instances and where table 4 represent the obtained results for the second set of instances.

In table 3 and 4 "Cost" represents the best cost obtained, "Best" is calculated as a ratio

with the Lower Bound as presented by [67] and measured as following
 Cost − LowerB

LowerB
× 100

, "Time" represents the time taken to obtain the results of best solution in seconds, "AVG"

refers to the average cost for 10 iterations.

Figure 11 : example of check by hand of a generated solution

Chapter 4

51

Instances
lower B

SA Initial solution SA without allocation procedure 2 Complete Proposed SA
Class ID Cost Best Time AVG Cost Best Time AVG Cost Best Time AVG

1

1 721 209,6 919 570 27,50 0,002 952 917,1 746 905 3,56 6,99 747 408,7 723 312 0,29 38,48 724 418,4
2 730 451,6 951 321 30,24 0,004 966 876,9 757 348 3,68 8,76 759 350,8 733 648 0,44 36,52 734 959,3
3 731 885,3 926 004 26,52 0,003 972 337,7 755 598 3,24 6,55 758663,6 735 465 0,49 42,09 736 855,9
4 721 515,0 917 844 27,21 0,003 953 461,7 752 129 4,24 6,29 752 811,7 726 521 0,69 33,78 726 990,1
5 713 633,8 933 097 30,75 0,004 982 856,9 749 049 4,96 6,23 749 437,1 725 012 1,59 36,53 725 917,6

2

1 479 860,2 588 410 22,62 0,002 614 150,7 515 939 7,52 3,73 517 031,5 495 571 3,27 8,51 496 464,0
2 483 072,2 587 344 21,59 0,002 610 949,8 520 558 7,76 3,60 521 349,2 499 307 3,36 8,37 499 895,2
3 486 018,5 607 602 25,02 0,002 623 739,1 515 089 5,98 3,90 517312,6 497 139 2,29 10,68 497 782,5
4 482 374,6 590 025 22,32 0,001 617 208,1 516 286 7,03 3,64 516 438,5 495 135 2,65 9,01 495 976,8
5 474 803,3 573 902 20,87 0,002 607 540,2 513 206 8,09 3,77 514 442,8 491 684 3,56 10,12 492 372,2

3

1 2 608 800,0 2 930 202 12,32 0,001 2 956 962,6 2 733 709 4,79 2,17 2 743 738,7 2 705 893 3,72 5,27 2 707 390,2
2 2 616 252,0 2 933 507 12,13 0,001 2 956 547,7 2 742 314 4,82 2,19 2 754 347,4 2 717 227 3,86 5,22 2 719 006,0
3 2 598 277,0 2 917 165 12,27 0,001 2 946 060,8 2 719 196 4,65 2,23 2 731 076,7 2 703 275 4,04 5,23 2 704 079,8
4 2 612 534,0 2 944 401 12,70 0,001 2 964 200,9 2 734 527 4,67 2,23 2746738,2 2 706 294 3,59 5,19 2 708 217,7
5 2 568 856,0 2 895 540 12,72 0,001 2 911 730,4 2 687 143 4,60 2,22 2 702 786,9 2 662 582 3,65 5,28 2 663 337,9

4

1 525 294,1 737 177 40,34 0,001 767 275,2 626 816 19,33 3,70 637 590,0 551 658 5,02 18,52 552 964,5
2 526 911,7 736 149 39,71 0,002 765 425,7 629 212 19,42 3,56 639 562,7 549 275 4,24 16,72 549 830,2
3 532 592,3 742 334 39,38 0,002 775 179,7 631 716 18,61 3,85 635 978,9 552 070 3,66 20,89 553 585,8
4 529 372,0 749 952 41,67 0,001 768 028,3 631 316 19,26 3,58 635 253,9 549 097 3,73 18,29 550 117,2
5 521 470,1 726 845 39,38 0,005 763 432,7 629 126 20,64 3,78 635 138,7 541 153 3,77 19,30 543 439,5

5

1 2 743 547,0 3 127 904 14,01 0,002 3 151 768,5 2 851 001 3,92 3,63 2 869 755,5 2 786 366 1,56 24,04 2 787 398,2
2 2 752 021,0 3 113 600 13,14 0,002 3 142 294,4 2 871 450 4,34 3,65 2 886 021,9 2 792 014 1,45 20,40 2 794 163,7
3 2 737 769,0 3 104 794 13,41 0,001 3 143 276,4 2 871 790 4,90 3,77 2 886 664,6 2 778 149 1,47 24,05 2 780 151,0
4 2 748 216,0 3 117 863 13,45 0,001 3 143 600,2 2 854 537 3,87 4,00 2 876 998,4 2 785 792 1,37 20,24 2 786 414,7

5 2 702 350,0 3 036 409 12,36 0,002 3 093 930,2 2 809 580 3,97 4,14 2 839 225,6 2 746 127 1,62 20,58 2 748 213,6
Average 23,34 0,002 7,91 4,09 2,62 18,53

Table 3: Obtained results for the first set of instances (50 factories, 100 warehouses and 200 customers)

Chapter 4

52

Instances
lower B

SA Initial solution SA without allocation procedure 2 Complete Proposed SA
Class ID Cost Best Time AVG Cost Best Time AVG Cost Best Time AVG

1

1 1 475 952,0 1 828 300 23,87 0,019 1904589,5 1 533 052 3,87 41,66 1537779,2 1 480 429 0,30 405,85 1480977,5
2 1 462 736,0 1 823 845 24,69 0,015 1893230,8 1 528 191 4,47 42,28 1531741,7 1 475 778 0,89 394,56 1476677,2
3 1 492 163,0 1 875 837 25,71 0,016 1922845,5 1 547 170 3,69 43,11 1555074,6 1 497 995 0,39 456,50 1502311,5
4 1 459 076,0 1 895 797 29,93 0,010 1918665,5 1 515 897 3,89 41,58 1518511,4 1 465 682 0,45 423,06 1466768,9
5 1 490 742,0 1 877 397 25,94 0,013 1922156,6 1 545 163 3,65 41,66 1546440,3 1 494 759 0,27 412,23 1495309,8

2

1 970 908,5 1 197 620 23,35 0,008 1229016,9 1 018 378 4,89 22,30 1021266,9 976 560 0,58 74,57 977147,2
2 965 908,5 1 179 390 22,10 0,008 1218840,7 1 015 569 5,14 22,00 1016285,9 972 748 0,71 74,36 973603,3
3 975 499,7 1 200 219 23,04 0,008 1227977,0 1 024 070 4,98 22,85 1026119,4 979 345 0,39 75,33 979982
4 973 019,1 1 197 199 23,04 0,006 1224062,5 1 025 588 5,40 14,12 1026777,2 982 423 0,97 76,81 983180,6
5 941 567,0 1 160 492 23,25 0,008 1188339,7 1 000 789 6,29 16,67 1002318 955 500 1,48 75,82 956156,2

3

1 5 213 566,0 5 854 408 12,29 0,004 5895507,2 5 357 476 2,76 7,12 5392222,2 5 321 644 2,07 47,06 5322853,1
2 5 191 321,0 5 845 047 12,59 0,004 5882381,3 5 350 515 3,07 7,13 5369124,5 5 304 652 2,18 46,61 5305048,9
3 5 145 991,0 5 777 355 12,27 0,004 5827795,3 5 289 782 2,79 7,48 5329680,2 5 243 340 1,89 46,42 5243909,4
4 5 225 601,0 5 893 207 12,78 0,004 5927335,1 5 385 645 3,06 7,08 5410191,5 5 337 794 2,15 48,77 5338638,1
5 5 163 182,0 5 820 673 12,73 0,003 5851301,6 5 318 879 3,02 7,11 5347076,3 5 274 329 2,15 47,10 5275829,7

4

1 1 052 172,0 1 460 560 38,81 0,009 1512597,6 1 240 328 17,88 14,34 1260009,9 1 071 651 1,85 202,83 1075428,7
2 1 043 553,0 1 453 370 39,27 0,009 1514275 1 249 883 19,77 13,99 1259734,9 1 063 134 1,88 190,30 1064129,5
3 1 050 683,0 1 488 965 41,71 0,008 1529420,7 1 236 387 17,67 14,30 1264481,4 1 078 538 2,65 202,00 1080505
4 1 044 571,0 1 470 996 40,82 0,009 1510561,3 1 228 296 17,59 14,16 1263466 1 065 739 2,03 204,41 1067538,9
5 1 053 869,0 1 504 979 42,81 0,008 1528956,3 1 238 348 17,50 14,37 1269588,6 1 074 316 1,94 199,87 1075366,8

5

1 5 486 098,0 6 174 225 12,54 0,007 6272719,7 5 653 295 3,05 14,49 5710603,9 5 520 471 0,63 288,03 5523024,6
2 5 461 680,0 6 203 103 13,57 0,005 6248659,9 5 679 190 3,98 14,17 5697361,3 5 494 412 0,60 287,40 5495848,1
3 5 425 391,0 6 171 247 13,75 0,007 6203726,7 5 624 333 3,67 14,32 5646171,8 5 469 275 0,81 319,25 5471081,4
4 5 494 811,0 6 262 371 13,97 0,006 6294609,5 5 677 817 3,33 13,93 5714610,8 5 531 963 0,68 290,16 5533457,5
5 5 442 621,0 6 204 209 13,99 0,007 6253702,6 5 618 477 3,23 14,17 5657522,4 5 477 523 0,64 459,14 5478812,2
Average 23,15 0,008 6,75 19,46 1,22 213,94

Table 4: Obtained results for the second set of instances (100 factories, 200 warehouses and 400 customers)

Chapter 4

53

Table 3 and Table 4 present the obtained results for all instance. Initially, the solutions

obtained by the initial solution procedure are not of good quality but as we can see the

procedure is very fast and it has an average running time of 0.002 second for the first set of

instances and 0.008 second for the second set of instances. By this running time, we assume

that this procedure can be transformed to a greedy or greedy randomized algorithm and used

for real-time system (where we need results in very short running time). Then we can see

from Table 3 & 4, that the SA without “allocation procedure 2” considerably enhances the

results obtained by the initial solution procedure by an average of 15.43% in the first set of

instances and 16.40% in the second set of instances while it still has good running times.

However, the complete SA consumes more running times than SA without “allocation

procedure 2”, we can see that the complete SA improves the results of SA without

“allocation procedure 2” by an average of 5.29% for first set of instances and by an average

of 5.53% for second set of instances. The results of the complete SA highlight clearly the

contribution of the use of the “allocation procedure 2” in the proposed SA.

IV.4 Comparison with literature

In this sub-section, we compare our obtained results of the complete SA with those of the

literature. In table 5 and table 6 column "BST" represent of the best solution obtained and

column "AVG" represent the average of best solution obtained in 10 executions where they

are calculated as a ratio with the Lower Bound as presented by [67] and measured as

following
 sol− LowerB

LowerB
× 100, where sol indicates the BST or AVG from each method. The

column "Time" is calculated as the average time in seconds for 10 executions.

Looking at Tables 5 and 6, we can observe that the obtained solutions are very

competitive comparing to the solutions of the literature. In term of solutions quality, we can

see that the average ratio of the best solutions obtained for the first set of instances is 2.62%

that means we get near to the literature methods by 0.64% to GA, 0.66 to CS+CPLEX,

0.62% to GRASPH and 0.69% to CS-ALNS-LB and the average ratio of the best solutions

obtained for the second set of instances is 1.22% that means we get near to the literature

methods by 0.26% to GA, 0.56 to CS+CPLEX, 0.47% to GRASPH and 0.58% to

CS-ALNS-LB.

Chapter 4

54

Instances
lower B

GA [64] CS+CPLEX [65] GRASPH [66] CS-ALNS-LB [19] SA
Class ID AVG Time BST AVG Time BST AVG Time BST AVG Time BST AVG Time

1

1 721 209,6 0,13 264,78 0,13 0,22 48,90 0,13 0,13 4,50 0,13 0,13 15,41 0,29 0,44 40,64
2 730 451,6 0,40 257,17 0,23 0,31 76,86 0,24 0,24 21,34 0,23 0,23 21,02 0,44 0,62 36,26
3 731 885,3 0,24 263,35 0,21 0,29 51,94 0,22 0,22 30,46 0,21 0,21 55,22 0,49 0,68 41,24
4 721 515,0 0,81 242,93 1,19 1,41 96,62 0,50 0,50 29,08 0,50 0,50 18,98 0,69 0,76 34,05
5 713 633,8 0,82 251,79 0,81 0,88 56,14 0,81 0,81 160,01 0,81 0,82 64,69 1,59 1,72 36,49

2

1 479 860,2 2,69 144,39 2,68 3,27 27,69 2,69 2,69 383,27 2,68 2,68 15,43 3,27 3,46 8,49

2 483 072,2 2,30 144,16 2,30 2,62 81,36 2,30 2,34 368,58 2,30 2,30 64,89 3,36 3,48 8,37
3 486 018,5 2,14 150,60 1,86 2,03 30,82 1,88 1,94 590,94 1,86 1,86 48,02 2,29 2,42 10,85

4 482 374,6 2,04 142,25 2,01 2,01 83,02 2,02 2,02 365,57 2,01 2,02 47,37 2,65 2,82 9,133
5 474 803,3 3,14 126,08 3,12 3,39 36,98 3,12 3,12 590,87 3,12 3,12 33,33 3,56 3,70 9,62

3

1 2 608 800,0 3,07 125,90 3,07 3,07 19,89 3,22 3,30 596,03 3,07 3,10 104,13 3,72 3,77 5,32
2 2 616 252,0 3,12 130,22 3,10 3,10 73,09 3,37 3,39 594,73 3,13 3,20 94,18 3,86 3,93 5,23
3 2 598 277,0 3,11 123,56 3,09 3,10 52,98 3,23 3,32 591,33 3,09 3,14 77,21 4,04 4,07 5,237
4 2 612 534,0 3,07 107,73 3,05 3,05 45,21 3,18 3,29 593,68 3,05 3,10 80,60 3,59 3,66 5,22
5 2 568 856,0 3,01 110,36 3,01 3,01 47,45 3,14 3,22 593,27 3,01 3,03 76,79 3,65 3,68 5,26

4

1 525 294,1 3,14 138,25 3,14 3,60 89,47 3,29 3,29 591,54 3,14 3,14 39,42 5,02 5,27 18,50

2 526 911,7 2,33 139,83 2,43 2,71 102,38 2,65 2,80 592,19 2,43 2,45 57,23 4,24 4,35 16,82
3 532 592,3 2,66 144,88 2,41 2,44 118,38 2,45 2,92 591,35 2,30 2,44 67,49 3,66 3,94 21,12

4 529 372,0 2,53 127,30 2,35 2,66 133,69 2,36 2,50 591,31 2,35 2,36 55,50 3,73 3,92 18,41
5 521 470,1 3,13 120,27 3,15 3,53 115,67 3,15 3,23 388,72 3,12 3,12 46,46 3,77 4,21 18,99

5

1 2 743 547,0 1,20 164,42 1,19 1,19 157,20 1,24 1,31 591,33 1,16 1,18 64,60 1,56 1,60 21,87
2 2 752 021,0 1,07 156,71 1,08 1,11 89,13 1,15 1,17 591,31 1,07 1,07 68,15 1,45 1,53 20,49
3 2 737 769,0 1,10 191,60 1,09 1,10 126,33 1,29 1,30 591,78 1,09 1,13 70,37 1,47 1,55 25,37
4 2 748 216,0 1,07 136,87 1,05 1,12 149,59 1,06 1,07 591,67 1,05 1,07 67,09 1,37 1,39 20,55
5 2 702 350,0 1,25 145,07 1,24 1,24 54,96 1,29 1,34 592,50 1,23 1,25 67,90 1,62 1,70 21,74
Average 1,98 162,02 1,96 2,10 78,63 2,00 2,06 449,09 1,93 1,95 56,86 2,62 2,75 18,03

Table 5: Comparison obtained results for the first set of instances with literature

Chapter 4

55

Instances
lower B

GA [64] CS+CPLEX [65] GRASPH [66] CS-ALNS-LB [19] SA
Class ID AVG Time BST AVG Time BST AVG Time BST AVG Time BST AVG Time

1

1 1 475 952,0 0,55 1 268,12 0,10 0,30 384,79 0,10 0,10 381,21 0,09 0,11 339,69 0,30 0,34 400,20
2 1 462 736,0 1,01 1 250,09 0,34 0,70 716,06 0,12 0,12 130,86 0,12 0,20 231,41 0,89 0,95 397,38
3 1 492 163,0 0,34 1 367,04 0,54 1,00 654,10 0,15 0,15 281,03 0,16 0,20 266,18 0,39 0,68 456,65
4 1 459 076,0 0,49 1 285,78 0,24 0,49 740,44 0,22 0,28 484,13 0,22 0,24 240,00 0,45 0,53 428,89
5 1 490 742,0 0,67 1 303,93 0,11 0,33 850,42 0,12 0,12 82,79 0,11 0,12 192,28 0,27 0,31 413,74

2

1 970 908,5 0,89 675,48 0,26 0,52 989,39 0,27 0,36 584,20 0,26 0,30 310,07 0,58 0,64 75,51

2 965 908,5 0,74 662,96 0,28 0,46 668,55 0,28 0,34 559,24 0,28 0,33 257,51 0,71 0,80 75,16

3 975 499,7 1,42 650,19 0,14 0,25 992,58 0,14 0,14 487,39 0,14 0,17 236,91 0,39 0,46 73,61

4 973 019,1 0,56 657,63 0,28 0,40 688,28 0,35 0,41 592,81 0,29 0,32 326,07 0,97 1,04 76,90

5 941 567,0 1,12 646,23 0,60 0,65 858,06 0,86 1,06 592,22 0,60 0,69 283,63 1,48 1,55 76,96

3

1 5 213 566,0 1,63 617,24 1,62 1,63 1 113,37 1,79 1,92 598,74 1,62 1,66 600,74 2,07 2,10 47,11
2 5 191 321,0 1,67 601,51 1,65 1,65 1 312,48 1,84 1,94 596,33 1,67 1,71 503,07 2,18 2,19 46,59
3 5 145 991,0 1,58 597,43 1,57 1,58 958,88 1,77 1,84 594,41 1,58 1,61 491,88 1,89 1,90 46,37
4 5 225 601,0 1,74 622,04 1,72 1,73 1 033,46 2,01 2,09 600,38 1,72 1,76 498,75 2,15 2,16 47,17
5 5 163 182,0 1,72 629,84 1,67 1,69 1 073,08 2,02 2,03 594,38 1,73 1,75 518,88 2,15 2,18 47,45

4

1 1 052 172,0 0,82 577,91 0,61 0,87 1 040,75 0,73 0,74 594,13 0,65 0,78 313,52 1,85 2,21 200,26

2 1 043 553,0 0,93 560,18 0,83 0,88 852,22 0,77 0,85 593,65 0,67 0,71 314,25 1,88 1,97 188,17

3 1 050 683,0 1,88 584,40 0,62 0,81 677,12 1,20 1,77 592,49 0,78 1,12 299,23 2,65 2,84 195,95

4 1 044 571,0 0,96 592,63 0,74 0,94 1 099,22 0,98 1,01 594,38 0,80 0,90 303,95 2,03 2,20 205,05

5 1 053 869,0 0,64 607,94 0,56 0,89 543,26 0,56 0,65 594,12 0,52 0,63 295,09 1,94 2,04 197,22

5

1 5 486 098,0 0,48 706,40 0,38 0,40 801,30 0,43 0,54 593,59 0,38 0,40 326,89 0,63 0,67 286,15

2 5 461 680,0 0,47 683,08 0,39 0,44 849,41 0,40 0,42 593,52 0,38 0,41 285,26 0,60 0,63 286,64

3 5 425 391,0 0,62 672,63 0,49 0,53 770,91 0,59 0,59 594,61 0,39 0,48 259,29 0,81 0,84 317,31

4 5 494 811,0 0,52 689,38 0,43 0,47 657,66 0,50 0,51 593,16 0,41 0,43 322,00 0,68 0,70 291,60

5 5 442 621,0 0,47 670,38 0,39 0,45 1 323,85 0,46 0,48 592,62 0,38 0,40 262,75 0,60 0,63 457,41

Average 0,96 767,22 0,66 0,80 865,99 0,75 0,82 523,86 0,64 0,70 331,17 1,22 1,30 213,42

Table 6: Comparison obtained results for the second set of instances with literature

Chapter 4

56

 Furthermore, the SA outperforms the GA in the instances PSC4-C1-50, PSC1-C1-100,

PSC2-C1-100, PSC4-C1-100, PSC5-C1-100, PSC1-C2-100, PSC2-C2-100 PSC3-C2-100.

Also, it outperforms the CS+CPLEX in the instances PSC4-C1-50 and PSC3-C1-100.

On the other hand, we can observe that the SA has the best running time over all instances

with an average of 115.73 seconds comparing to 464.64 seconds of GA, 472.31 seconds of

CS+CPLEX, 486.48 seconds of GRASPH and 194.02 seconds of CS-ALNS-LB. So, we can

say that the SA proposed has a very good comprise between solutions quality and running

times comparing to the literature. In addition, we can assume that the SA can be improved

by adding other techniques/methods which will improve its solutions quality without losing

its competitivity in term of running times.

IV.5 Conclusion

In this chapter we presented detail description of the benchmark-instances from the

literature. Then, we presented the results obtained by our algorithm where testing it on all

instances. Finally, we compared the obtained results with the results in the literature.

57

Conclusion
The supply chain is the process of moving goods or services from the point of the origin

to the point of destination. The supply chain optimization is important for businesses because

it allows to reduce costs, improve customer satisfaction, minimize times and lead to respond

effectively to market demand.

In this thesis, we have proposed and validated a method to solve multi-source, single-

product TSCFLP, where the main objective was to find the best sub-set of facilities that meet

the demands of all customers with the lowest cost.

In the first chapter, we presented the most related location problems to our case such as

Capacitated, single-stage problem, multi-stage location problems. A general and brief

descriptions of the several variants of location problems (including two-stage capacitated

facility location problems) have been given with the most popular application in the real life.

In the second chapter we focused on the optimization methods and algorithms, where

exact, heuristic, metaheuristic and hybrid methods were presented. We Also provided some

of the most popular and efficient algorithms used in the field of optimization.

In the third chapter, we presented the TSCFLP problem where a mathematical model of

the problem from the literature is given. Then, we presented our proposed simulated

annealing algorithm to solve the problem that it has two main processes: the first is the

selection of facilities and the second is the allocation of customers. For allocation we have

proposed two procedures with the aim of improving the quality of solutions.

In the fourth chapter, we presented the obtained results and we compared them with the

most recent results found in the literature. The proposed SA obtained very competitive

results comparing to the results of the literature and it has the best running time over all.

Also, it outperforms the GA on 8 instances and the CS+CPLEX on 2 instances.

58

Finally, we are looking forward to:

 -Improve our algorithm using other facilities selection techniques .

 - Propose another metaheuristic to solve the TSCFLP.

 -Propose a hybrid algorithm which combine the proposed SA with another algorithm.

 -Propose a similar algorithm to solve the Multi Stage Facility Location Problems.

-

59

Bibliography

[1] A. Klose et A. Drexl, «Facility location models for distribution system design,»

European Journal of Operational Research , vol. 162, p. 4–29, 2005.

[2] C. Ortiz-Astorquiza, I. Contrerasn et G. Laporte, «Multi-level Facility Location

Problems Volume,» European Journal of Operational Research, vol. 267, n° %13,

pp. 791-805, 16 June 2018.

[3] S. Basu, M. Sharma et G. P. Sarathi, «, Metaheuristic applications on discrete

facility location problems: a survey,» Operational Research Society of India, 2014.

[4] D. A. Schilling, «Dynamic location modeling for public-sector facilities: A

multicriteria approach,» Decision Sciences, vol. 11, p. 714–724, 1980.

[5] D. Erlenkotter, «A comparative study of approaches to dynamic facility location

problems,» European Journal of Operational Research, vol. 6, p. 133–143, 1981.

[6] A. Shulman, «An algorithm for solving dynamic capacitated plant location

problems with discrete expansion sizes,» Operations Research, vol. 39, n° %13, p.

423–436, 1991.

[7] G. LAPORTE, F. V. LOUVEAUX et L. V. HAMME, «Exact solution to a

location problem with stochastic demands,» Transportation Science , vol. 28, p.

95–103, 1994.

[8] O. Listes et R. Dekker, Stochastic approaches for product recovery network

design: A case study, Econometric Institute Report EI : Erasmus University

Rotterdam, 2001.

[9] J. G. Klincewicz, «A dual algorithm for the uncapacitated hub location

problem,» Location Science, vol. 4, p. 173–184, 1996.

[10] H. W. Hamache, M. Labbé, S. Nickel et T. Sonneborn, Polyhedral properties of

the uncapacitated multiple allocation hub location problem., Kaiserslautern:

Fraunhofer Institut für Techno- und Wirtschaftsmathematik, 2000.

60

[11] T. Aykin, «Lagrangian relaxation based approaches to capacitated hub-and-

spoke network design problem,» European Journal of Operational Research, vol.

79, p. 501–523, 1994.

[12] J. Ebery, M. Krishnamoorthy, A. Ernst and N. Boland, "The capacitated

multiple allocation hub location problem: Formulations and algorithms,"

European Journal of Operational Research, vol. 120, p. 614–631, 2000.

[13] C. Prodhon et C. Prins, «A survey of recent research on location-routing

problems,» European Journal of Operational Research, vol. 238, pp. 1-17, 2014.

[14] A. Klose, Standortplanung in distributiven Systemen. Physica, Heidelberg.],

Physica-Verlag Heidelberg, 2001.

[15] T. Aykin, «The hub location and routing problem,» European Journal of

Operational Research, vol. 83, p. 200–219, 1995.

[16] J. Current, H. Min and D. Schilling, "Multiobjective analysis of facility location

decisions," European Journal of Operational Research, vol. 49, p. 295–307, 1990.

[17] C. S. Revelle et G. Laporte, «The plant location problem: New models and

research prospects,» Operations Research, vol. 44 , n° %16, p. 864–874, 1996.

[18] E. Fernández et J. Puerto, «Multiobjective solution of the uncapacitated plant

location problem,» European Journal of Operational Research, vol. 145, p. 509–

529, 2003.

[19] P. H. González, I. M. Gabriel Souto, G. R. Mauri and G. M. Ribeiro, "A hybrid

matheuristic for the Two-Stage Capacitated Facility Location problem," Expert

Systems With Applications, vol. 185, 2021.

[20] S. Tragantalerngsak, M. Rönnqvist and J. Holt, "Exact method for the two-

echelon, single-source, capacitated facility location problem," European Journal

of Operational Research, vol. 123, no. 3, pp. 473-489, 2000.

61

[21] H. Pirkul et V. Jayaraman, «A Multi-Commodity, Multi-Plant, Capacitated

Facility Location Problem: Formulation and Efficient Heuristic Solution,»

Computers & Operations Research, vol. 25, pp. 869-878, 1998.

[22] H. PIRKUL and V. JAYARAMAN, "Production, Transportation, and

Distribution Planning in a Multi-Commodity Tri-Echelon System," Focused Issue

on the Transportation/Manufacturing Interface , vol. 30, no. 4, pp. 291-302, 1996.

[23] F. Vasko, D. Newhart, K. Stott and F. Wolf, "A large-scale application of the

partial coverage uncapacitated facility," Journal of the Operational Research

Society, vol. 54, p. 11–20, 2003.

[24] B. Boffey, D. Yates et R. D. Galvão, « An algorithm to locate perinatal facilities

in the municipality of Rio de Janeiro. Journal of,» Journal of the Operational

Research Society , vol. 54, pp. 21-31, 2003.

[25] J. M. Mulvey et H. P. Crowder, «Cluster analysis: An application of Lagrangean

relaxation. Management Science,» vol. 25, n° %14, p. 329–340, 1979.

[26] G. Cornuejols, M. L. Fisher and G. L. Nemhauser, "Location of bank accounts

to optimize float: An analytic study of exact and approximate algorithms,"

Management Science, vol. 23, p. 789–810, 1977.

[27] R. M. Nauss et R. E. Markland, «Theory and application of an optimizing

procedure for lock box location analysis,» Management Science, vol. 27, p. 855–

865, 1981.

[28] J. Current et C. Weber, «Application of facility location modeling constructs to

vendor selection problems,» European Journal of Operational Research, vol. 76,

n° %13, p. 387–392, 1994.

[29] P. Hansen, E. d. L. P. Filho et C. C. Ribeiro, «Location and sizing of offshore

platforms for oil exploration.,» European Journal of Operational Research, vol.

58, p. 202–214, 1992.

62

[30] P. Hansen, E. d. L. P. Filho et C. C. Ribeiro, «Modelling location and sizing of

offshore platforms,» European Journal of Operational Research, vol. 72, p. 602–

606, 1994.

[31] M. L. FISHER et D. S. HOCHBAUM, «Database location in computer

networks,» Journal of the ACM , vol. 7, p. 718–735, 1980.

[32] T. Boffey, «Location problems arising in computer networks.,» The Journal of

the Operational Research Society, vol. 40 , n° %14, p. 347–354, 1989.

[33] B. Gavish, «Topological design of telecommunication networks––local access

design methods,» Annals of Operations Research, vol. 33, p. 17–71, 1991.

[34] A. Mirzaian, «Lagrangian relaxation for the star-star concentrator location

problem: Approximation algorithm and bounds,» Networks , vol. 15, p. 1–20,

1985.

[35] H. Pirkul, «Efficient algorithms for the capacitated concentrator location

problem,» Computers & Operations Research, vol. 14, p. 197– 208, 1987.

[36] A. Caprara, M. Fischetti et D. Maio, «Exact and approximate algorithms for the

index selection problem in physical database design,» IEEE Transactions on

Knowledge and Data Engineering, vol. 7, n° %16, p. 955–967, 1995.

[37] T. Stéphane, «Data mining et statistique décisionnelle : l’intelligence,» Editions

Technip, 2012.

[38] O. GUEMRI, Proposition de solutions pour l'optimisation, Département

d’Informatique Laboratoire d’Informatique d’Oran (LIO) éd., Thèse du Doctorat

en LMD , 2017.

[39] A. H. Land et A. G. Doig, «An automatic method of solving discrete

programming problems,» In: Econometrica: Journal of the Econometric Society ,

p. 497– 520, 1960.

63

[40] J. Clausen, Branch and Bound Algorithms-Principles and Examples,

Copenhagen, Denmark: Department of Computer Science, University of

Copenhagen, 1999, p. 1–30.

[41] E. A. Feigenbaum et J. Feldman, Computers and thought, New York,NY, USA:

McGraw-Hill, 1963.

[42] M. G. C. RESENDE et C. C. RIBEIRO, «Greedy Randomized Adaptive Search

Procedures: Advances, Hybridizations, and Applications,» chez Handbook of

Metaheuristics, 2010, pp. 283-319.

[43] H. Osman et G. Laporte, « Metaheuristics: a bibliography,» Annals of

Operations Research, vol. 63, pp. 513-623, 1996.

[44] S. Voß, S. Martello, I. Osman et C. Roucairol, Meta-Heuristics - Advances and

Trends in Local Search Paradigms for Optimization, Kluwer Academic

Publishers, Dordrecht, The Netherlands, 1999.

[45] S. Kirkpatrick, C. Gelatt et M. Vecchi, «Optimization by Simulated

Annealing,» Science, new series, p. 671 – 680 , 1983.

[46] F. Glover, «Future paths for integer programming and links to artificial

intelligence,» Computers and Operations Research,, vol. 13, pp. 533-549, 1986.

[47] T. Feo et M. Resende, «A probabilistic heuristic for a computationally difficult

set covering problem,» Operations Research Letters, vol. 8, p. 67–71, 1989.

[48] N Mladenovi´c et P. Hansen, «Variable neighborhood search,» Computers &

Operations Research, vol. 24, p. 1097–1100, 1997.

[49] N. Mladenovi´c, P. Hansen et J. M. Pérez, « Variable neighbourhood search:

Methods and applications,» Annals of Operations Research, vol. 175, p. 367–407,

2010.

[50] R. Kammarti, Evolutionary approaches for the resolution of static 1-PDPTW

and dynamic, Doctoral thesis, Ecole Centrale de Lille, France, 2006.

64

[51] Holland, Adaptation in Natural and Artificial Systems, University of Michigan

Press: Ann Arbor, 1975.

[52] N. M. Razali et J. Geraghty, A genetic algorithm performance with different

selection strategies, 2 éd., vol. 2, Proceedings of the World Congress on

Engineering , 2011.

[53] J. Kennedy et R. Eberhart, «Particle swarm optimization,» IEEE International

Conference on Neural Network, p. 1942–1948, 1995.

[54] M. Dorigo, G. D. Caro et L. Gambardella, «Ant algorithms for discrete

optimization,» Artificial Life, vol. 5, n° %12, p. 137–172, 1999.

[55] G. Talbi, «Combining metaheuristics with mathematical programming,

constraint programming and machine learning,» Annals of Operations Research,

vol. 240, n° %11, p. 171–215, 2016.

[56] A. E. SAMROUT, Hybridization of Multicriteria Metaheuristic Optimization

Methods, UNIVERSITE DE TECHNOLOGIE DE TROYES, 2018.

[57] J. Puchinger et G. R. Raidl, «Combining metaheuristics and exact algorithms in

combinatorial optimization: A survey and classification,» Springer, p. 41, 2005.

[58] E.-G. Talbi, «Metaheuristics: from design to implementation,» John Wiley &

Sons, vol. 74, 2009.

[59] E. Alba, G. Luque et S. Nesmachnow, «Parallel metaheuristics: recent advances

and new trends,» International Transactions in Operational Research, vol. 20,

n° %11, p. 1–48, 2013.

[60] W. Bożejko, J. Pempera et C. Smutnicki, «Parallel tabu search algorithm for the

hybrid flow shop problem,» Computers & Industrial Engineering , vol. 65, n° %13

, p. 466–474, 2013.

[61] M. Hijaze et D. Corne, «An investigation of topologies and migration schemes

for asynchronous distributed evolutionary algorithms,» Nature & Biologically

65

Inspired Computing, 2009. NaBIC 2009. World Congress on. IEEE. , p. 636– 641,

2009.

[62] Y.-L. Chang, K.-S. Chen, B. Huang et W.-Y. Chang, «A parallel simulated

annealing approach to band selection for high-dimensional remote sensing

images,» IEEE Journal of Selected Topics in Applied Earth Observations and

Remote Sensing, vol. 4, n° %13, p. 579–590, 2011.

[63] T. O. Ting, X.-S. Yang, S. Cheng et K. Huang, «Hybrid metaheuristic

algorithms: past, present, and future”,» Recent Advances in Swarm Intelligence

and Evolutionary Computation. Springer, p. 71–83, 2015.

[64] P. Shelokar, P. Siarry, V. Jayaraman et B. Kulkarni, «Particle swarm and ant

colony algorithms hybridized for improved continuous optimization,» Applied

mathematics and computation, vol. 188, n° %11 , p. 129–142, 2007.

[65] D. R. Fernandes, C. Rocha, D. Aloise, G. M. Ribeiro, E. M. Santos et A. Silva,

«A simple and effective genetic algorithm for the two-stage capacitated facility

location problem,» Computers & Industrial Engineering, vol. 75, p. 200–208,

2014.

[66] R. R. Louzada, G. R. Mauri et G. M. Ribeiro, «M´etodo heurístico híbrido para

resoluç˜ao do problema de localizaçao ̃ de facilidades capacitadas em dois níveis,»

Simposio ´ Brasileiro de Pesquisa Operacional - SBPO, p. 2460–2471, 2016.

[67] P. H. González, G. S. d. J. Augusto, G. R. Mauri, G. Ribeiro et L. G. Simonetti,

«Grasp híbrido para resoluçao ˜ do problema de localizaç˜ ao de facilidades

capacitadas em dois níveis.,» Simposio ´ Brasileiro de Pesquisa Operacional -

SBPO, p. 1–11, 2019.

[68] P. Guo, W. Cheng et Y. Wang, «Hybrid evolutionary algorithm with extreme

machine learning fitness function evaluation for two-stage capacitated facility

location problems,» Expert Systems with Applications, vol. 71, pp. 57-68, 2017.

[69] I. Dumitrescu et T. Stützle, «Combinations of local search and exact

algorithms,» Springer, p. 211–223, 2003.

66

[70] E.-G. Talbi, «Metaheuristics: from design to implementation,» John Wiley &

Sons, vol. 74, 2009.

[71] I. Litvinchev et L. Ozuna, «Lagrangian Bounds and a Heuristic for the Two-

Stage Capacitated Facility Location Problem,» International Journal of Energy

Optimization and Engineering, vol. 1, pp. 59-71, 2012.

