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Abstract 
This thesis presents a Simulated Annealing based algorithm to solve Two stage 

capacitated facility location problem. In this problem, a single type of product must be 

transported from factories to customers, passing through intermediate warehouses. Initially, 

our algorithm was designed to ensures the selection of the most appropriate facilities 

(factories\ warehouses). Then, we shifted our focus towards enhancing client allocations to 

the best-suited facilities (customer→warehouse\warehouse→factory). Experiments show 

that our algorithm obtains promising results comparing to the literature. 

Key words: Location problems, Combinatorial optimization, Meta-heuristics, Simulated 

annealing, Two stage capacitated facility location problem. 

 

 ملخص
 

قع  امواللحل مشكلة تحديد    محاكاة التلدين  تستند على تقنيةخوارزمية  اقترحنا  خلال هذه الأطروحة  

في هذه المشكلة، يجب نقل نوع واحد من المنتجات من    المحدودة والموزعة على طبقتين.السعة  ذات  

المصانع إلى العملاء، مروراً بالمستودعات الوسيطة. في البداية، تم تصميم خوارزميتنا لضمان اختيار  

العملاء على    ت المنشآ توزيعات  تعزيز  ذلك، حولنا تركيزنا نحو  بعد  )المصانع/المستودعات(.  المثلى 

 ت المصنع(. تظهر التجارب أن خوارزميتنا تحصل ←المستودع/المستودع   ←الأنسب )العميل    المنشآت 

 .المقترحة سالفا ت بمختلف الخوارزميا على نتائج واعدة مقارنة

مشكلة    ،التلدينمحاكاة    التقريبية،  ، الطرقالتوافقيالتحسين    المواقع،مشاكل تحديد    الكلمات المفتاحية:

 المحدودة والموزعة على طبقتين.السعة قع ذات اموالتحديد 
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Introduction 
The efficient and strategic placement of facilities plays a crucial role in the success of 

various industries and organizations. The Two-Stage Capacitated Facility Location Problem 

is a well-known optimization challenge and it is an extend to the traditional Facility Location 

Problem through incorporating capacity constraints into the decision-making process which 

allows to a more realistic representation of facility operations.  

In the first stage of TSCFLP, products produced by capacitated factories are transferred 

to capacitated warehouses and in the second stage, the products are delivered to customers. 

The problem to be addressed includes finding an optimal location for facilities to meet the 

customers in order to minimize both the fixed opening cost of the factories and warehouses 

and the transportation costs associated with both stages. 

The objective of this thesis is to deal with TSCFLP where a single type of product must 

be transported from two type of facilities to customers with the aim of proposing an efficient 

algorithm to solve heuristically this problem. To the best of our knowledge and for the first 

time in the literature, we propose to solve this problem using a simulated annealing 

algorithm. 

     The thesis is organized into four chapters as follows:  

In first chapter we present location problems and its application. Whereas in the second 

chapter we will talk about some of the combinatorial optimization methods and algorithms 

widely used to solve optimization problems. Concerning the third chapter, we will highlight 

our proposed algorithm to solve TSCFLP. Then, in the fourth chapter we will present the 

results obtained by our algorithm where testing it on benchmark instances from the literature. 

The obtained results are compared to most of the literature. Finally, we finished with a 

conclusion.     
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I.1  Introduction 

Location problems are well-known optimization problems in the literature of the 

operations research. There are several variants of location problems that have been 

extensively studied, starting from the capacitated and uncapacitated facility location 

problems to the most constrained location problems.  

In this chapter we will present a literature review on the location problems which are 

related to our problem studied in this thesis. [1] [2] [3] 

I.2  Location problems 

In general, in the location problems the goal is to select a sub-set of facilities or locations 

to be installed from a set of candidates and to allocate the other not selected ones to the 

selected locations. In this section, we present the location problems related to our work. The 

following variables are used in the definitions of the location problems: 

I ∶  number of factories . 

J ∶  number of warehouses . 

K ∶  number of customers . 

𝑐𝑘𝑗 ∶ cost of shipping one unit from facility j to customer k . 

𝑧𝑘𝑗 ∶  equals 1 if demand customer k is assigned to facility j. 

𝑓𝑗 ∶  opening cost of facility .  

𝑦𝑗 ∶  1 if node j is chosen as a facility (opened) . 

𝑠𝑗 ∶  the maximum capacity of facility j . 

𝑑𝑘 ∶  demand of customer k . 
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I.2. 1  Uncapacitated, single-stage location problem 

This problem is also known in the literature with the name of Uncapacitated facility 

location problem (UFLP). The UFLP is a basic location problem where the goal is to select 

a sub-set of facilities to be installed from a set of candidates. Since we don’t have any 

capacity constraint, each not selected facility will be allocated to the near selected one. The 

following mathematical model presents the UFLP [1]: 

𝑣( UFLP ) = min  ∑  

𝑘∈𝐾

 ∑  

𝑗∈𝐽

 𝑐𝑘𝑗𝑧𝑘𝑗 + ∑  

𝑗∈𝐽

 𝑓𝑗𝑦𝑗 ,                                                      (1a)

 s.t.  ∑  

𝑗∈𝐽

  𝑧𝑘𝑗 = 1 ∀𝑘 ∈ 𝐾,                                                                 (1b)

𝑧𝑘𝑗 − 𝑦𝑗 ⩽ 0 ∀𝑘 ∈ 𝐾,  𝑗 ∈ 𝐽,                                                     (1c)

0 ⩽ 𝑧𝑘𝑗 ⩽ 1,  0 ⩽ 𝑦𝑗 ⩽ 1 ∀𝑘 ∈ 𝐾, 𝑗 ∈ 𝐽,                               (1d)

𝑦𝑗 ∈ 𝔹 ∀𝑗 ∈ 𝐽,                                                                              (1e)

 

 In this model, (1a) presents the objective function where we sum the setup cost and the 

allocation cost. The constraints (1b) ensure that each not selected facility is allocated to only 

one selected facility. The constraints (1c) ensures that each not selected facility is allocated 

to a selected facility. The constraints (1d and 1e) present the decision variables. 

I.2. 2  Capacitated, single-stage problem 

  This problem is also known as capacitated facility location problem (CFLP). In CFLP, 

we have a set of facilities candidates and a set of customers. Each customer has a demand 

and each facility has a setup cost and a capacity. 

 The goal is to choose a sub-set of facilities from a set of candidates and to allocate each 

customer to a selected facility where the sum of the demands of the customers allocated to a 

selected facility must be less than or equal to the capacity of the facility. Here we present the 

mathematical model which describes the CFLP [1] :  
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𝑣( CFLP ) = 𝑚𝑖𝑛  ∑  

𝑘∈𝐾

 ∑  

𝑗∈𝐽

  𝑐𝑘𝑗𝑧𝑘𝑗 + ∑  

𝑗∈𝐽

 𝑓𝑗𝑦𝑗 ,                                                            

 s.t.  ∑  

𝑗∈𝐽

  𝑧𝑘𝑗 = 1 ∀𝑘 ∈ 𝐾,                                                                       

 ∑  

𝑘∈𝐾

 𝑑𝑘𝑧𝑘𝑗 − 𝑠𝑗𝑦𝑗 ⩽ 0 ∀𝑗 ∈ 𝐽,                                                       

𝑧𝑘𝑗 − 𝑦𝑗 ⩽ 0 ∀𝑘 ∈ 𝐾,  ∀𝑗 ∈ 𝐽,                                                       

 ∑  

𝑗∈𝐽

  𝑠𝑗𝑦𝑗 ⩾ 𝑑(𝐾),                                                                            

 ∑  

𝑗∈𝐽𝑞

  𝑧𝑘𝑗 ⩽ 1 ∀𝑘 ∈ 𝐾,  ∀𝑞 ∈ 𝑄,                                                  

0 ⩽ 𝑧𝑘𝑗 ⩽ 1,  0 ⩽ 𝑦𝑗 ⩽ 1 ∀𝑘 ∈ 𝐾,  ∀𝑗 ∈ 𝐽,                             

𝑦𝑗 ∈ {0,1} ∀𝑗 ∈ 𝐽,                                                                         

 

I.2. 3  Multi-product location problems 

In the literature when we talk about a location problem, we consider that the customers 

demand on only one product (In the above presented location problems we consider that). 

However, we can have some situations where the customers can demand more than one 

product and here, we talk about a class of location problems called multi-product location 

problems. So, each single-product location problem can be transformed to multi-product 

location problem and consequently we can have a multi-product UFLP, a multi-product 

CFLP, a multi-product multi-stage location problem, etc... The mathematical model which 

presents the multi-product MUFLP can be founded in  [1] . 

I.2. 4  Multi-stage location problems 

The Multi-Stage Location problems is a class of location problems describe the situations 

where we have facilities on several hierarchically related levels. These cases can be found 

in distribution/collect systems of companies. In this class of problems, in general the goal is 

to choose a sub-set of facilities to be installed at each stage and then to allocate the selected 

facilities one stage to the selected facilities of the next stage in order to minimize the total 

cost including the setup costs and the allocation cost. Please note that in this class of 

problems, in the first stage customers are allocated to the first stage of facilities and the 

facilities of the last (the higher) stage are not allocated. In the following image we present 

an example of one problem of this class:  
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Figure 1: Muti-Stage Facility Location Problem 

 

I.2. 5  Dynamic location problems 

 In the industry, installation of facilities is considered as strategic decisions which token on 

a long-term basis. On the other hand, the basis used when taking these decisions can be 

changed over time such as: demand of customers etc... The dynamic location problems are 

a class of location problems which can deal with these cases (cases of “change-over-time") 

where the goal is to find high-quality solutions while considering the change-over-time. It is 

worth mentioning that the dynamic location problems are harder and more complex than the 

static location problems. In the literature, several dynamic location problems have been 

studied such as: [4] [5] [6]. 

 

 

 

 

Stage Zero 

Stage One 

Stage Two 

Stage Three 



Chapter 1 

 

12 

I.2. 6  Probabilistic location problems 

Probabilistic location problems are considered as a class of location problems which deal 

with the situations where some variables/data of the problem are subject to uncertainty. In 

general, the data or variables which are subject to uncertainty are modeled as a random 

variable. The probabilistic location problems are harder and more complex than the 

deterministic location problems. In the literature, we can find several studies which dealt 

with probabilistic location problems, such as: [7] [8]. 

I.2. 7  Hub location problems 

Hub location problems is a class of location problems where the goal is to install a set of 

facilities called hubs to meet the transportation demands of the customers. In a hub location 

problem, each customer demand is formulated as a transportation demand from an origin to 

a destination and the quantity demanded by the customer is transported via the selected or 

the installed hubs. As examples of the problems of this class we have: the uncapacitated hub 

location problem, the capacitated hub location problem, etc. [9] [10] [11] [12] 

I.2. 8  Routing location problems 

In all classes of the location problems, we presented above, we considered the direct link 

(route, arc, etc...) between a terminal or a client to a selected facility or depot in the allocation 

part.  For example, if we have 3 clients allocated to a facility, then we consider that the client 

1 is directly linked with facility, the second client is also directly linked to facility and the 

same case for the third client. However, in the location routing problems, all clients allocated 

to a facility are not directly linked to the facility, but they are linked with a route that starts 

from the facility and ends at this facility. So, in a location routing problem we have two sub-

problems: (1) The location of the facilities and the allocation of clients to these facilities and 

(2) create a set of routes to visit the clients allocated to each facility. More details on location-

routing problems and their applications are found in [13] [14] [15] . 
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I.2. 9  Multi-objective location problems 

The multi-objective location problems are a class of location problems where the 

objective is to optimize more than one criterion. In the formulation of these problems, we 

find that the objective function contains more than one criterion such as: the construction 

cost (including installation and affectation cost), the profit (to be maximized), the waiting 

time (as a service quality), etc... In the literature, we can find several multi-objective location 

problems which have been studied [16] [17] [18]. 

I.3  Two-Stage Capacitated Facility Location problems 

The Two-Stage Capacitated Facility Location Problems (TSCFLPs) are considered as 

multi-level location problems where a capacity constraint is imposed. In TSCFLPs, we have 

a set of facilities candidates in level 1 (in general we call them warehouses) and another set 

of facilities candidates in level 2 (in general we call them factories) [19] .The goal is to select 

a sub-set of factories to be installed from the set of candidates, and another sub-set of 

warehouses to be installed from the set of candidates to meet the demands of the clients 

while minimizing the total cost, including the installation cost and the allocation cost. The 

allocation is made as: the clients are allocated to the selected warehouses and the selected 

warehouses are allocated to the selected factories. In addition, the sum of the demands of 

clients treated by a selected warehouse must be inferior or equals to its capacity, and the 

same case for each selected factory, the sum of the demands of the warehouses must be 

inferior or equals to its capacity. In the literature, there are many TSCFLPs that have been 

solved such: single-source TSCFLP [20], multiple-source TSCFLP [21], multi-product 

TSCFLP [22]. etc... It is worth mentioning that in our thesis we deal with the multiple-

source TSCFLP. In the following image we present as example of the TSCFLP: 
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Figure 2 : Two Stage Capacitated Facility Location Problem 

I.4  Applications 

The location problems have a plenty of applications, notably in modelling industrial and 

real-life problems. Here we present examples of these applications [23]  [24] 

Cluster analysis: In general, in the cluster analysis, the goal is to group a set of items (or 

any other entity) into clusters (or groups) where the items belong to one cluster should be 

homogeneous. In fact, we can solve cluster analysis problems as location problems where 

the goal is to find the best items that will be the kernel of each group and by the allocation 

of the rest of the items to these best items, we get a set of groups or clusters. As an example, 

from the literature, in [25] the authors modelled a clustering task as a p-median problem.  

Location of bank accounts: Another important application of the location problems can 

be found in [26]. In this study, the authors assumed that: when a company pays its suppliers, 

we can optimize float when choosing the location of the bank accounts used to pay them. 

This problem has been modelled as an UFLP with some additional constraint(s). Another 

application of the location problems in the financial sector can be found in [27]. 

Warehouses 

Factories 

 

Customers 
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Vendor selection: Selecting the most appropriate vendors is an important task for any 

company. In fact, the selection process takes in consideration several criteria such as: price, 

quality, know-how, product-to-buy etc... In [28], the authors discussed that the vendor 

selection problem can be modeled and solved using location problems such as UFLP and 

CFLP.  

Location and sizing of offshore platforms for oil exploration: In [29] [30] the authors 

modeled and solved a problem in oil exploitation as a location problem.  

Database location in computer networks: In  [31]the authors modeled the problem of 

the installation and the maintenance of databases in a computer network an extended variant 

of UFLP. 

Computer networks and concentrator location: In the literature, location problems 

are used to solve several complex problems in the design of the telecommunication and 

computer networks [32] and [33] In addition, many of these complex problems are related 

to the location of the concentrators [34] and [35] 

Index selection for database design: In [36] the authors dealt with an important problem 

in the physical database design which is the index selection problem. This problem has been 

modeled and solved as an UFLP.    

I.5  Conclusion 

In this chapter, at first, we have presented several location problems related to the Two-

Stage Capacitated Facility Location Problem. Secondly, we have provided a description of 

TSCFLPs. Finally, we have presented the real-life applications of TSCFLP.  
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II.1  Introduction 

In this chapter we will present some methods and algorithms wish are used in 

combinatorial optimization problems solver. The combinatorial optimization methods can 

be divided in two main sub class: exact methods and Approximation methods. 

In general, Exact methods aim to find the globally optimal solution for combinatorial 

optimization problems. On the other hand, the Approximation methods and algorithms aim 

to find near-optimal or optimal solutions within a reasonable amount of time, as finding 

optimal solution for large-scale problems is often computationally infeasible.  

II.2  Combinatorial optimization problem 

Combinatorial optimization covers all methods that allow determine the optimum of a 

function with or without constraints. In theory, a combinatorial optimization problem is 

defined by a set of instances. Each instance of the problem is associated with a discrete set 

of solutions S, a sub-set  𝑋 𝑜𝑓 S representing the feasible solutions and a cost function 𝑓 

which assigns to each solution 𝑠 ∈ 𝑋 a cost 𝑓(𝑠). Solving such a problem consists of finding 

a solution  𝑠𝑏𝑒𝑠𝑡 ∈ 𝑋 optimizing the value of the cost function 𝑓.  𝑠𝑏𝑒𝑠𝑡 is called an optimal 

solution or global optimum [37] . 

II.3  Exact Methods 

Exact methods are methods that search for the optimal solution of a problem by 

exhaustively examine all possible solutions in the search space. However, the major 

drawback of these methods is the execution time, because all possible solutions will be 

examined one by one and the execution time increases exponentially with the size of the 

problem solved. Therefore, these techniques remain inappropriate for large sizes instances 

[37]. As an example of these methods, we can cite: the branch and bound. 

II.3. 1  Branch and bound  

The Branch and bound algorithm (B&B) [38] is appeared for the first time in the 60s and 

used to solve linear economic programming problems. Later, B&B becomes the most widely 

used exact method for solving NP-hard optimization problems [39]. Formally, B&B is a 
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tree-structure based algorithm where its main goal is to examine all possible solutions while 

eliminating unnecessary or not-beneficial branches. Unnecessary or not-beneficial branches 

are branches that contain infeasible solutions or bad quality solutions. The branch and bound 

algorithm consider 𝑥𝑏 as an optimal solution if and only if the value of the objective function 

𝑥𝑏 is less than or equal to the upper bound 𝑣𝑠 and is greater than or equal to lower bound 𝑣𝑖 

, mathematically: 𝑣𝑖 ≤ 𝑓(𝑥𝑏) ≤ 𝑣𝑠. 

As we highlighted above, the B&B explores all possible solutions while eliminating not-

beneficial branches. Therefore, in order to develop a high-quality B&B method you have to 

focus on the following techniques used in B&B: 

• The separation technique: how to divide the search space into subsets of solutions 

awhile ensuring that the union of the created subsets covers all possible solutions 

of the problem.  

• The evaluation technique: used to determine whether there are possible solutions 

of good quality in the tree-branch or not by calculating the lower and upper bounds 

associated to the current branch. 

• The exploration technique: which consists of fixing the strategy of exploration of 

the tree by giving the order of visit to its branches. There are several exploration 

strategies such as: better first, depth first etc. 

  Algorithm  1 : Branch and Bound for minimization  

1: 𝑇𝑟𝑜𝑜𝑡 ←  𝐶𝑟𝑒𝑎𝑡𝑒 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑎𝑟𝑐ℎ 𝑡𝑟𝑒𝑒 𝑎𝑐𝑐𝑜𝑟𝑑𝑖𝑛𝑔 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒  ; 

2: 𝑈𝑏𝑜𝑢𝑛𝑑 ←  +∞; 𝐿 ←  𝑇𝑟𝑜𝑜𝑡 ; 
4: while (L≠∅) 

5:   𝑆𝐶 ←   Explorer(L); 
6:    If (Evaluation (𝑆𝐶)  ≤ 𝑈𝑏𝑜𝑢𝑛𝑑)  

7:    L′ ← All partial solutions S′ that can be obtained from Sc;   

8:    For (each S' in L' do) 

9:      If (S' is a complete solution)  

10:        update  𝑈𝑏𝑜𝑢𝑛𝑑;  update  𝑆𝑏𝑒𝑠𝑡; 
12:      Else 

13:        add S′ to L ; 
14:      End 

15:    End 

16:  Else 

17:    delate 𝑆𝐶  from L ; 

18:  End 

19: End 

20: Return  𝑆𝑏𝑒𝑠𝑡; 
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II.4  Approximation Methods 

Optimization problems in the industrial world have usually large size and many 

constraints, and therefore, exact methods cannot be applied for most of these cases. So, we 

have to look for a good solution in a reasonable time instead of waiting for an optimal 

solution after years of computation [37]. In contrast to the exact algorithms, Approximation 

methods do not guarantee the optimality of the solution, but they allow to find good quality 

solutions in a reduced execution time, it means, they seek a good compromise between the 

quality of the solution and the calculation time. In the literature, many Approximation 

methods have been proposed. In the following we present 3 categories of the approximation 

methods: heuristics, meta-heuristics and hybrid methods.   

II.4. 1  Heuristic 

In the literature, there are several definitions of a heuristic. here we present that of [40]: 

"A heuristic (heuristic rule, heuristic method) is a rule of thumb, strategy, trick, 

simplification, or any other kind of device which drastically limits search for solutions in 

large problem spaces. Heuristics do not guarantee optimal solutions; in fact, they do not 

guarantee any solution at all; all that can be said for a useful heuristic is that it offers 

solutions which are good enough most of the time. "  

Moreover, in the field of combinatorial optimization, we can say that a heuristic is an 

Approximation method developed to solve a particular problem and it requires a deep 

knowledge about the problem being addressed. The goal of a heuristic is to find solutions 

not necessarily optimal for a given problem in a very short execution time [37].  

II.4.1.1  Greedy constructive algorithm 

A Greedy constructive algorithm [41] is an algorithm that progressively build a solution 

from scratch. At each step the locally optimal element according to the evaluation function 

is selected and added to the solution under construction until obtaining a complete feasible 

solution. The evaluation function also known as the greedy criterion or greedy choice rule, 

typically it measures the incremental increase or decrease in the objective function or cost 

function when incorporating a specific element into the partial solution. 
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Algorithm  2 : Greedy algorithm for minimization 

1: S ← ∅; 
2: 𝐶 ← {𝑒1, 𝑒2, . . . . . . . . , 𝑒𝑛 }; 

3: Evaluate the incremental cost c(e) for all e ∈ C; 

4: While (C ≠ ∅) 

5:  𝑒𝑏 ← select  e ∈  C with the smallest incremental cost c(e) ; 
6:  S ←  S ∪  { 𝑒𝑏}; 
7:  C ←  C − { 𝑒𝑏}; 
8:  Reevaluate the incremental cost c(e) for all e ∈  C ; 
9: End 

10: Return S;  

II.4.1.2  Randomization and Greedy Randomized algorithm 

Randomization plays a very important role in algorithm design [41]. It is used to introduce 

randomness and diversity into the search process, allowing the algorithm to explore different 

regions of the solution space and avoid being trapped in local optimal. One particularly 

important use of randomization appears in the context of greedy algorithms. 

A Greedy randomized constructive algorithm [41] uses the same principle of a greedy 

algorithm that we mentioned before but it builds a restricted list of locally optimal element 

and randomly select an element from the predefined list unsated of selecting the locally 

optimal element. In general, the greedy randomized algorithms are used in the construction 

phase of GRASP or to create initial solutions for GA. 

Algorithm  3: Greedy randomized algorithm for minimization 

1: S ← ∅ 

2: 𝐶 ← {𝑒1, 𝑒2, . . . . . . . . , 𝑒𝑛 }; 

3: Evaluate the incremental cost c(e) for all e ∈ C; 

4: While (C ≠ ∅) 

5:  Build a list with the candidate elements having the smallest incremental costs; 
6:  𝑒𝑏 ← Select  random e ∈  the restricted candidate list ; 
7:  S ←  S ∪ { 𝑒𝑏}; 
8:  C ←  C − { 𝑒𝑏}; 
9:  Reevaluate the incremental cost c(e) for all e ∈  C ; 

10: End 

11: Return S; 
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II.4.1.3  Local Search algorithm 

A Local search algorithm (LS) is iteratively improving a solution, it replacing the current 

solution with a better solution in the neighborhood until there is no better solution is founded. 

The neighborhood of a solution consists of the solutions that can be obtained by making 

small modifications or changes to the current solution. The efficiency of LS depends on 

several aspects, such as the initial solution & the neighborhood structure. 

 

Algorithm  4:  Local Search  

1: 𝑆 ← start solution; 
2: While (S is not a local optimal) 

3:   𝑆𝑛  ←  select S ∈  N(S);  
4:  If (f (𝑆𝑛) is better than f (S))  

5:    S ← 𝑆𝑛;  

6:  End  

7: End 

8: Return S; 

II.4. 2  Meta-Heuristic  

In the literature and according to [42] “A metaheuristic is formally defined as an iterative 

generation process which guides a subordinate heuristic by combining intelligently different 

concepts for exploring and exploiting the search space, learning strategies are used to 

structure information in order to find efficiently near-optimal solutions.”. Another definition 

can be found in [43]: 

“A metaheuristic is an iterative master process that guides and modifies the operations 

of subordinate heuristics to efficiently produce high-quality solutions. It may manipulate a 

complete (or incomplete) single solution or a collection of solutions at each iteration. The 

subordinate heuristics may be high (or low) level procedures, or a simple local search, or 

just a constructive method.”  [43] 

In general, a heuristic is an algorithm developed to solve a specific problem. However, a 

metaheuristic is a general strategy that can be applied to solve a large number of optimization 

problems. In the literature, several metaheuristics have been developed which can be 

subdivided into two main families: single-solution based metaheuristics (based on a single 
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solution) and population-based metaheuristics (based on a population of solutions). These 

two families are described below. 

II.4.2.1  Single-solution based metaheuristics 

Single-solution based metaheuristics are single solution algorithms that are generally 

based on the exploration of the neighborhood of the current solution. They start from an 

initial solution, then at each iteration then they try to improve the current solution by 

exploiting its neighborhood. Many single-solution based metaheuristics methods have been 

proposed in the literature, here we cite the most known: simulated annealing, taboo search, 

variable neighborhood search, GRASP, etc. 

II.4.2.1.1  Simulated Annealing 

Simulated Annealing (SA) was first proposed by Kirkpatrick [44] , inspired from the 

physical process of annealing in metallurgy. The annealing process is to modify the 

properties of metal by heat it to a specific temperature and then slowly cool it in a regular 

way to ensure that the atoms reorganize themselves in a regular way. this process helps to 

reduce metal defects when it is transformed from a liquid to a solid state. 

SA algorithm attempts to simulate the annealing process described above to find a good 

quality solution for a given optimization problem. Starting with very high temperature and 

an initial solution. During the annealing process and iteratively, the temperature decreased 

and a close neighbor of the current solution is randomly selected and accepted if it is better 

than the current solution, otherwise It will be accepted with a probability proportional to the 

temperature: the lower the temperature, the lower the probability of the solution being 

accepted. Over time, the algorithm accepts much better solutions and converges to good 

quality solutions. 
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Algorithm  5: Simulated annealing  

1: 𝑆 ← initial solution; 

2: T ← initial temperature; 

3: while (the stop criterion is not met) do 

4:  randomly choose 𝑆𝑛 ∈ N(S) 

5:   r ← a random number between 0 and 1.  

6:  calculate Δ; 

7:  If (𝑆𝑛 is better than S Or 𝑟 < 𝑒−(∆/𝑇)) 

8:    S ←  𝑆𝑛 ; 

9:    if (S is better than  𝑆𝑏) 

10:      𝑆𝑏est ← S; 

11:    End 

12:  End 

13:  update T; 

14: End 

15:  return𝑆𝑏est; 

II.4.2.1.2  Tabu Search  

Tabu search (TS) introduced by Glover in the 1986 [45]. Technically, TS is a form of 

local search with additional rules and a tabu list to keep track of previously visited solutions 

and prevent the algorithm from revisiting them in the near future. The tabu list acts as a 

memory mechanism that helps the algorithm to escape the local optima’s and to explore 

different regions of the search space. There are various types of memory mechanisms 

employed in TS such as: short, medium and long memories. 

Formally, TS algorithm starts with an initial solution S. For each iteration, the 

neighborhood N(s)  of the current solution is generated and the best solution 𝑆𝑛 in it which 

does not appear in the tabu list L is selected. Afterwards, the tabu list is updated by adding 

the selected solution to it and remove the oldest solution in it (FIFO method). After that, the 

selected solution becomes the current solution. The best overall solution 𝑆𝑏 is kept as the 

result and the algorithm ends when the stop criterion is satisfied. 
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Algorithm  6 : Tabu Search 

1: 𝑆 ← initial solution;  
2: while the stop criterion is not met do 

3:  Generate N(s); 
4:  find the best solution 𝑆𝑛 , { 𝑆𝑛  ∈  N(s) and 𝑆𝑛  ∉  L} ; 
5:  Update L; 
6:  𝑆 ← 𝑆𝑛 ;  
7:  If (S is better than 𝑆𝑏) Then 

8:    𝑆𝑏est ←  S;   
9:  End 

10: End 

11: Return 𝑆𝑏est; 

 

II.4.2.1.3  Greedy Randomized Adaptive Search Procedures  

Greedy randomized adaptive search procedure (GRASP) was first introduced in 1989 

[46] as multi-start metaheuristic approach that combines both of greedy randomized 

algorithm and local search algorithm. At each iteration, the greedy randomized algorithm is 

used to construct a solution. Once the solution is obtained, a repair procedure might be called 

to fix the solution if it is not feasible or create a new solution that reach feasibility. After 

that, the local search algorithm is applied on the created feasible solution. The best overall 

solution is kept as the result of the algorithm.  

 

Algorithm  7 :Greedy Randomized Adaptive Search Procedures for Minimization 

1: 𝑓𝑖 ← ∞; 
2: While (the stop criterion is not met) 

3:  𝑆 ← Greedy Randomized Algorithm ( );   
4:  if  (S is not feasible)  
5:    𝑆 ← RepairSolution(S) ; 
6:  End 
7:  𝑆 ← LocalSearch(S) ; 
8:  if ( 𝑓(𝑆) < 𝑓𝑖)  

9:    𝑆𝑏est ←  𝑆 ;  
10:    𝑓𝑖 ← 𝑓(𝑆) ; 
11:  End 

12: End 

13: return 𝑆𝑏est;  
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II.4.2.1.4  Variable Neighborhood Search  

Variable Neighborhood Search (VNS) is a metaheuristic introduced by Mladenović & 

Hansen in1997 [47] .The basic idea of VNS is the systematic change of a neighborhood 

combined with solution perturbation and local search procedures. During algorithm running, 

the neighborhood of a solution is explored using a set of predefined neighborhood structures. 

VNS has undergone various modifications and enhancements. A discussion of the basic 

concepts and successful applications of VNS can be found in survey papers [48]. 

 

Algorithm  8: Variable Neighborhood Search  

1: 𝑆 ← initial solution; 
2: N(L), L = 1.2. . . . . . . . 𝐿𝑚𝑎𝑥  ; 
3: While the stop criterion is not met do 

4:  𝐿 ← 1; 
5:  While (𝐿 < 𝐿𝑚𝑎𝑥) 

6:     𝑆𝑥 ←  Shaking(S, N) ; 
7:    𝑆𝑦 ←  LocalSearch(𝑆𝑥); 

8:    if ( 𝑓(𝑆𝑦) < 𝑓(𝑆𝑏)) 

9:      𝑆 ← 𝑆𝑦 ; 

10:      𝐿 ← 1; 
11:      𝑆𝑏est ←  𝑆 ; 

12:    End 

13:      𝐿 ← 𝐿 + 1; 
14:    End 

15:  End 

16: End 

17: Return 𝑆𝑏est ; 

II.4.2.2  Population-based metaheuristics 

Population-based metaheuristics are methods based on a population of solutions and 

which are in general inspired by nature [49]. These methods use a set of solutions called 

population. They start with an initial population and, at each iteration, they try to build a new 

and better population based on the previous one in order to converge to good solution(s). As 

examples of these methods, we can cite: genetic algorithms, particle swarm optimization, 

ant colony algorithm, etc. 
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II.4.2.2.1  Genetic algorithm 

Genetic algorithm (GA) was introduced in the 1975’s by Holland [50]; it is inspired from 

the biological evolution of living beings based on the principles of natural selection and 

genetics. The basic genetic algorithm generally consists of two processes, the first is the 

selection of the individual to produce the next generation, and the second is the manipulation 

of the selected individual to produce the next generation through the crossing and the 

mutation techniques [51]. 

GA starts with the creation of an initial population of solutions. Then, at each iteration, 

the algorithm creates a set of solutions called parents by making a copy of the selected 

solutions from the population. A solution that belongs to the population can be selected zero, 

one or more than one time. After the selection process, the crossover is applied on the parents 

to generate a new set of solutions called children. Then, the algorithm applies the mutation 

on the children. At the end of the current iteration, the algorithm chooses a set of solutions 

from the population and the children to build the next population of the next iteration.  

Algorithm  9 : Genetic algorithm 

1: P ← Create an initial population (); 
2: While (the stopping criterion is met) 

3:  𝑃𝑛 ← Selection(P); 
4:  E ← Crossover(𝑃𝑛); 
5:  E ← Mutation(E); 
6:  P ← Replacement (E, P);  
7: End 

8: Return the best solution found;  

II.4.2.2.1.1 Selection 

Selection is the operator that allows you to choose good solutions from the population to 

create the set of parents that will produce the children. There are many selection methods in 

the literature, such as: 

➢ Uniform selection method: select randomly one solution and the finesses of the 

solutions are considered. Therefore, all solutions have the same probability of 

being selected.  

➢ Roulette selection method: consists of randomly selecting a solution where the 

probability of choosing a solution is proportional to the fitness of that solution.  

➢ Rank selection method: each solution is chosen randomly where the probability 

of selection a solution is proportional to its rank in the population. Each solution 
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ranked according to his fitness where the worst solution has rank=1 and best 

solution take the highest rank. 

➢ tournament selection method: create a group of solutions from the population 

randomly. Then the best solution of the group is selected. 

II.4.2.2.1.2 Crossover 

The crossover is the operator that allows to build one or two children (new solutions) 

from two parent solutions by recombination the parental genes (genes mean parts of the 

solution). The crossover is applied to each pair of parents selected with a probability that 

usually between 65% and 90%. There are several crossover methods such as: 

➢ Single point crossover method: it is the most popular crossover method where a 

random point is chosen and we cut each parent on two parts. 

One Cut Point             
One Cut Point            

                        

  1 0 0 1 0 1 1       1 0 1 0 1 1 0   

  Parent One       Parent Two   
                                      

                    
                                        

  1 0 0 0 1 1 0    
 1 0 1 1 0 1 1   

  Child One     Child Two   
                                        

Figure 3 : Single point crossover in GA 

➢ Two-point crossover method: This method cuts both parents into three parts by 

two cutting points. The two cutting points are chosen randomly.  

Two Cut Point             Two Cut Point            
                 

 

      

  1 0 0 1 0 1 1       1 0 1 0 1 1 0   

  Parent One       Parent Two   
                                      

                    
                                        

  1 0 0 0 1 1 1    
 1 0 1 1 0 1 1   

  Child One     Child Two   
                                        

Figure 4: Two-point crossover in GA 

➢ uniform crossover method: This method consists of going through both parents’ 

gene by gene and each time one of the two genes is selected. The child solution is 

built by the selected genes. 
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  1 0 0 1 0 1 1       1 0 1 0 1 1 0   

  Parent One       Parent Two   
                                      

                    
                                        

  1 0 0 0 0 1 0    
 1 0 1 1 1 1 1   

  Child One     Child Two   
                                        
                    

Figure 5 : uniform crossover in GA 

II.4.2.2.1.3 Mutation 

After selection and crossover, we get new population of solutions. Some are directly 

copied, and others are produced by crossover. Furthermore, Mutation involves making a 

small random change to the solution. For example, altering one or two genes in the 

solution. The purpose of the mutation is to ensure a good exploration of research space. The 

mutation is applied with a probability between 1% and 5%.  

II.4.2.2.1.4 replacement 

There are several methods that can be used to select the new population of solutions of 

the next generation. In the following present three methods: 

➢ Completely remove the old population and replace it with the children. 

➢ Merge the two sets the old population and the children and use one of the 

selection methods (used in the selection phase) to select the solutions. 

➢ Merge the two sets the old population and the children and choose the best 

solutions (elitist method). 
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II.4.2.2.2  Particle Swarm Optimization  

Particle swarm optimization (PSO) was proposed in 1995 by Kennedy and Eberhart [52]. 

It is inspired from the swarms of birds that move in groups where every bird can profit from 

the experience of all other members.  

In PSO, a group of particles moves through the search space, representing potential 

solutions. Each particle adjusts its position based on its own experience and the experiences 

of neighboring particles. The position and movement of particles are guided by two main 

factors: the personal best (the best solution found by the particle itself) and the global best 

(the best solution found by any particle in the swarm). 

 

Algorithm  10 : Particle Swarm Optimization 
 
1:  randomly initialized position Xi and velocity Vi of particles ; 

2: While (the stopping criterion is met) 

3:   For (each particle) 

4:     evaluate the fitness function;  

5:     update: Vi and Xi  ; 

6:     update: p_best and g_best ; 

7:   End  

8: End 

9: Return the best solution found; 

II.4.2.2.3  Ant Colony Optimization  

Ant Colony Optimization (ACO) was first introduced by Dorigo in the 90s  [53]. It was 

inspired from the behaviors of real ants, which leaving pheromone trails to find their ways 

back to the nest or to find food. The pheromone trails serve as a form of communication 

between the ants, allowing them to indirectly exchange information. 

In general, ACO is based on the indirect communication of a colony of simple agents, 

called artificial ants, mediated by artificial pheromone trails. The pheromone trails in ACO 

serve as a distributed, numerical information which the ants use to probabilistically construct 

solutions to the problem and which the ants adapt during the algorithm’s execution to reflect 

their search experience.  
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Algorithm  11 : Ant Colony Optimization 

1: randomly initialized pheromone values; ; 

2: While (the stopping criterion is met) 

3:  For (each Ant) 

4:    construct a solution;    

5:    update local pheromone values; 

6:  End 

7: End 

8: Return the best solution found so far ; 

II.4. 3  Hybridization 

Hybridization is one of the recent approaches in the field of optimization. In the hope of 

obtaining better results, many independent optimization algorithms have been combined. 

Considering the good results that hybridization has obtained, it has become a widely used 

strategy to solve optimization problems. The huge number of efficient hybrid metaheuristics 

proves that hybrid metaheuristics represent actually the most efficient algorithms for many 

classical and real-life difficult problems [54]. In this section we are going to present some 

hybridization method such as: Coupling metaheuristics with exact methods and Coupling 

metaheuristics with other metaheuristics 

II.4.3.1.1  Coupling metaheuristics with exact methods 

Initially, the primary focus of hybridization was on the collaboration between different 

metaheuristics [55]. This approach was perceived as the most direct and obvious way to 

combine metaheuristic techniques, leading to the neglect of other potential methods for 

hybridization. However, when researchers start to explore alternative hybridization 

approaches, they realized the complementarity between specific exact methods and 

metaheuristics. In fact, exact methods are known for their capability to solve small instances 

of the problems and asses their optimality but they are not used to solve large NP-hard 

problems because they are computationally expensive. 

By coupling metaheuristics with exact methods, researchers aimed to leverage the 

strengths of both approaches. This hybridization allows for the efficient exploration of 

solution spaces using metaheuristics, while exact methods are employed to refine and 

improve the solutions obtained. The exact methods can be used to verify the quality of 
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solutions found by the metaheuristics, potentially reaching optimality for smaller instances 

within a reasonable time frame. 

In [56], the authors presented different state-of-the-art approaches of combining exact 

algorithms and metaheuristics to solve combinatorial optimization problems and they 

classed these hybrids in two main categories: 

- The first category was called 'collaborative combinations', where the algorithms 

exchange information but are not part of each other. This category was divided into two sub-

categories: Sequential Execution, Parallel and Interleaved Execution. 

- The second category was called "Integrative Combinations"; where one technique is an 

integrated component of another technique. It was also subdivided in two subcategories:  

Incorporating exact algorithms in metaheuristics and Incorporating metaheuristics in exact 

algorithms. 

II.4.3.1.2  Coupling metaheuristics with other metaheuristics  

The combination of different metaheuristics is the most common type of hybridization 

found in the literature [55]. Coupling metaheuristics is a technique used to combine multiple 

metaheuristics to improve their overall performance in solving optimization problems. There 

are several ways to couple metaheuristics with other metaheuristics. Here are a few 

commonly used approaches [57] [58] [59]: 

II.4.3.1.2.1 Parallel hybrids 

Parallel hybrids contained multiple metaheuristics that executed simultaneously or in 

parallel. Each metaheuristic operates independently, exploring the search space and 

generating solutions concurrently. The solutions generated by the individual metaheuristics 

are then combined or compared to determine the best solution. parallelization is mainly used 

for the following reasons: speed-up the search, improve the quality of the obtained solutions 

and improve the robustness and to solve large scale problems [57]. 

 According to the authors in [58], the parallelization techniques of a "standard" 

metaheuristic vary depending on whether it is a trajectory-based (single solution) or a 
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population-based metaheuristic. For trajectory-based metaheuristics, three types of 

parallelization are often found in the literature: 

Parallel moves model: A master–slave approach is conducted here. Where, at the 

beginning of each iteration, the master duplicates the current solution between distributed 

nodes. Each solution separately manages their own solution/candidate and the results are 

then returned to the master. This technique of parallelization does not alter the behavior of 

the metaheuristic. A relatively recent example of this hybridization can be found in [59]. 

Parallel multi-start model: This approach of parallelization involves simultaneously 

launching several trajectory-based methods for computing better and robust solutions. They 

may be homogeneous or heterogeneous, cooperative or independent, start from the same or 

different solution(s), and configured with the same or different parameters. An example of 

this category is in [60] 

Move acceleration model: Techniques that fit in this category evaluate the quality of 

each move in a parallel centralized way. This model becomes attractive when the evaluation 

function can be parallelized as its computationally expensive. In that case, the function can 

be regarded as an aggregation of a certain number of partial functions that can be run in 

parallel. The interested readers are referred to the work of [61]. 

II.4.3.1.2.2 Sequential hybrids  

With regards to the hybridization purpose, non-parallel hybrid algorithms can loosely be 

divided into two categories [62] 

 Collaborative Hybrids: Under this category of hybrid algorithms, multiple algorithms 

work together to solve the same problem directly, with each algorithm being utilized in 

different search stages. In the simplest case, the contribution weight of each participating 

algorithm can be considered equal. An example on collaborative Hybrids can be found in 

[63]. 

 Integrative Hybrids: In this type of hybridization, one primary algorithm is utilized to 

solve the problem, while another algorithm is applied to optimize the parameters for the 

primary algorithm. In this aspect, one algorithm is regarded as a subordinate, embedded in a 

master metaheuristic. For this category, the contributing weight of the secondary algorithm 
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is Approximatively 10 to 20% [55]. This involves the incorporation of a manipulating 

operator from a secondary algorithm into a primary algorithm. For example, many 

algorithms utilized the mutation operator from GA into PSO, resulted in so called Genetic 

PSO or Mutated PSO. 

II.5  Conclusion 

In this chapter, we have presented several combinatorial optimization methods and 

algorithms. We began by presenting the exact methods, within this category, we highlighted 

branch and bound. Next, we explored heuristic methods such as Greedy algorithms, Greedy 

Randomized algorithm and Local Search algorithm. Furthermore, we delved into 

metaheuristic methods, which are general-purpose optimization algorithms applicable to a 

wide range of combinatorial problems. As metaheuristics, we presented the most popular 

and the widely used ones in the literature: SA, TS, VNS, GRSP, GA, PSO and ACO. Finally, 

we discussed the concept of hybridization, which consists of combining different 

optimization methods. 

In the following chapter, we will present the proposed algorithm used to solve TSCFLP. 
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III.1  Introduction 

In this chapter we will present an algorithm to solve Two stage capacitated facility 

location problem with single commodity and multi-source. The algorithm that we propose 

is a Simulated Annealing based method which starts from a randomly generated solution and 

tries to improve it in order to get a high-quality solution within a reasonable running time. 

In what follows, in section 2, we present the mathematical definition of the TSCFLP as 

shown in [64]. Then, we give a short review on the most related works which dealt with the 

TSCFLP. After that, we present our proposed algorithm, and we finish with a conclusion.  

III.2  Problem definition 

The set of all customers is represented by 𝐾 , where each customer 𝑘 ∈  𝑲  has  a demand  

𝑞𝑘 to be met. 𝑱 represents the warehouses; for each warehouse 𝑗 ∈  𝑱, we have: a capacity 

𝑝𝑗 , an opening cost 𝑔𝑗  and the shipping product cost 𝑑𝑗𝑘 to all customers 𝑘 ∈ 𝑲. Similarly, 

to the warehouses, 𝑰 represents the factories; each factory   𝑖 ∈  𝑰 has: a capacity 𝑏𝑖 , an 

opening cost 𝑓𝑖  and a shipping product cost 𝑐𝑖𝑗  of to all warehouses 𝑗 ∈  𝑱. 

To meet demands of all customers, TSCFL can be defined as determining a subset of 

open warehouses �̅̅̅� ⊆ 𝑱 and open factories �̅�  ⊆ 𝑰 while the sum of total opening and total 

shipping costs is minimal. 

In order to represent the TSCFL as Mixed Integer Programming (MIP) problem, the 

decisions to be made at each step have to be defined in term of decision variables. Given 

that, we define 𝑧𝑗 . 𝑗 ∈  𝑱  and  𝑦𝑖 . 𝑖 ∈ 𝑰   as decision variables that indicate whether the 

warehouse 𝑗 and factory 𝑖 will be opened or not. In addition, the decision variables 𝑥𝑖𝑗 . 𝑖 ∈

 𝑰, 𝑗 ∈  𝑱 refer to how much flow is being sent from the factory 𝑖 to the warehouse 𝑗 and  

𝑠𝑗𝑘. 𝑗 ∈ 𝐉 , 𝑘 ∈ 𝐊 indicates to how much flow is being sent the warehouse 𝑗 to the customer 

𝑘 . 

The Mixed Integer Programming used for this TSCFL is the same presented in [64] 
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𝑖𝑛 ∑ 𝑓𝑖

𝑖∈𝐼

𝑦𝑖 + ∑ 𝑔𝑗

𝑗∈𝐽

𝑧𝑗 + ∑ ∑ 𝑐𝑖𝑗

𝑗∈𝐽

𝑥𝑖𝑗 + ∑ ∑ 𝑑𝑗𝑘𝑠𝑗𝑘

𝑗∈𝐽𝑘∈𝐾

 

𝑖∈𝐼

                             (𝐀)

𝑠. 𝑡 ∑ 𝑠𝑗𝑘

𝑗∈𝐽

 ≥ 𝑞𝑘   ∀  𝑘 ∈  𝐾                                                                            (𝐁)

 ∑ 𝑥𝑖𝑗

𝑖∈𝐼

≥ ∑ 𝑠𝑗𝑘

𝑘∈𝐾

    ∀ 𝑗 ∈ 𝐽                                                                             (𝐂) 

 ∑ 𝑥𝑖𝑗

𝑗∈𝐽

≤  𝑏𝑖𝑦𝑖    ∀ 𝑖 ∈   𝐼                                                                                 (𝐃)

 ∑ 𝑠𝑗𝑘

𝑘∈𝐾

≤  𝑝𝑗𝑧𝑗     ∀ 𝑗 ∈  𝐽                                                                                 (𝐄)

 𝑥𝑖𝑗 ∈  ℝ+     ∀ 𝑖 ∈  𝐼, 𝑗  ∈ 𝐽                                                                             (𝐅)

 𝑠𝑗𝑘 ∈  ℝ+     ∀𝑗 ∈ 𝐽 , 𝑘 ∈ 𝐾                                                                            (𝐆)

 𝑦𝑖 ∈  {0,1}     ∀  𝑖 ∈ 𝐼                                                                                       (𝐇)

 𝑧𝑗 ∈  {0,1}     ∀  𝑗 ∈ 𝐽                                                                                        (𝐈)

 

The objective function (A) represents the total cost of the shipping system. Constraints 

(B) ensure that each customer is served. Constraints (C) are conservation constraints, i.e. the 

total amount of products shipped from a warehouse must be at most the total shipping to it 

from the factories. Constraints (D) and (E) are capacity constraints assigned to factories and 

warehouses, respectively. Finally, constraints (F) and (G) are assigned to flow variables, and 

constraints (H) and (I) impose binary values for the respective variables. 

III.3  Most related work 

In this section, we present the most related works proposed to solve TSCFLP. In this 

thesis, we consider the TSCFLP with multiple-source and single-commodity and to the best 

of our knowledge there are six papers that have been published and dealt with this variant. 

In the following, we give a short review of some works: 

In 2014 Fernandes [64]  proposed a set of instances with different characteristics and 

presented a simple and effective Genetic Algorithm to solve the TSCFLP. Computational 

results are reported comparing the heuristic results with those obtained by two state-of-the-

art Lagrangian heuristics proposed in the literature for the problem 

 In 2016 Louzada [65] came up with a hybrid method that combined a clustering search 

(CS) method to define the factories and warehouses to be installed with an exact method to 
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define the flow of products between factories, warehouses and customers. This work was 

able to find better solutions compared to the GA of [64]in lower computational times.  

In 2019 González [66] presented hybrid method based on the Greedy Randomized 

Adaptive Search Procedure (GRASP) with a Local Branching procedure. This method was 

able to obtained relevant results.  

Recently in 2021 González [19], the authors developed a hybridization of Clustering 

Search (CS) and Adaptive Large Neighborhood Search (ALNS) metaheuristics with the 

Local Branching (LB) technique for the TSCFLP. This hybridization has found high quality 

solutions in low computational time. 

All the mentioned work above used, in the experiments and in the comparison, the same 

instances proposed in [64] 

III.4  Proposed Algorithm 

In this section, we present our algorithm for solving the TSCFL problem, which attempts 

to find solution of good quality in a reasonable time. The algorithm considers that the two 

levels are independent of each other and at each level there is potential facilities to be opened 

to satisfy the total demand of customers. In addition, the algorithm treats the level 1 and then 

deals with the level 2; where in level 1, the warehouses are considered as the facilities (to be 

opened) and in level 2 the opened warehouses are considered as customers. 

First, the algorithm generates randomly an initial solution 𝑆0 which becomes the current 

solution. Then, at each iteration, the algorithm creates a neighbor solution 𝑆𝑛 of the current 

one 𝑆 ; If  𝑆𝑛 is better than 𝑆  according to the objective function, then the algorithm will 

replace 𝑆 with 𝑆𝑛 and update the best solution 𝑆𝐵 if it is better the than  𝑆𝐵; otherwise, 𝑆𝑛 

will be accepted with a probability equal to 𝑒−(∆/𝑇). At the end of each iteration, the current 

temperature T is updated. The algorithm stops when the stopping-criterion is met. In the 

following sub-sections, we highlight the details of each part of the algorithm: (1) the initial 

solution procedure, (2) the neighborhood creation procedure, (3) the acceptance criterion 

method and we finish with (4) the annealing method. 
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Remark: In the most of parts of our algorithm, we treat the level 1 of the problem exactly 

as the level 2, that means the same techniques and methods used for level 1 are used for level 

2. Therefore, and to avoid repetition, the term clients is used to refer to the customers in the 

level 1 and the opened warehouses in level 2 and we use the term facilities to refer to the 

warehouses in level 1 and the factories in the level 2.  

Algorithm  12 : Simulated Annealing for TSCFLP 

1: 𝑇 ←  initial _Temperature; 

2: 𝑆0 ←  Initial  Solution Procedure (); 

3: while (the stop criterion is not met) do 

4:   𝑆𝑛 ←  neighbor _Solution (𝑆0);  

5:  r ←  a random number between 0 and 1;  

6:   𝛥 ←  𝑓(𝑆𝑛)  −  𝑓(𝑆0);  

7:  If (𝑓(𝑆𝑛) < 𝑓(𝑆0) 𝒐𝒓  r < 𝑒−(∆/𝑇))  

8:    𝑆0 ←  𝑆𝑛; 

9:    If (𝑓(𝑆𝑛) < 𝑓(𝑆𝑏) ) 

10:      𝑆𝑏 ←   𝑆𝑛; 

11:    End if 

12:  End if 

13:  update T; 

14: End 

15:  Return  𝑆𝑏; 

 

III.4. 1  Initial Solution Procedure 

The Initial Solution Procedure generates the initial solution in a random fashion. it 

randomly selects warehouses and factories to be opened until the total capacity of the opened 

warehouses and factories is able to satisfy all demands of customers. 

Once we obtain the lists of warehouses and factories, we apply the allocation procedure 

“Allocation Procedure 1” described below. This procedure is highlighted in Algorithm 13, 

the union  𝑆𝑗0 "Initial Solution of level 1" and 𝑆𝑖0 "Initial Solution of level 2" give us the 

final Initial Solution. 
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Algorithm  13 : Initial Solution Procedure 

1: 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠 ←  {𝑘1, 𝑘2, . . . . . . . , 𝑘|𝐾|}; 

2: 𝑊𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒𝑠 ←  {𝑗1, 𝑗2, … … . , 𝑗|𝐽|} 

3: 𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑒𝑠 ←  {𝑖1, 𝑖2, . . . . . . . , 𝑖|𝐼|}; 

4: 𝑆𝑘0  ← 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑠; 𝑆𝑗0 ← ∅ ;  𝑆𝑖0  ← ∅ ;   

5: while (the stop criterion is not met) do 

6:  𝑗𝑟 ←  select random 𝑗 ∈  W𝑎𝑟𝑒ℎ𝑜𝑢𝑠𝑒𝑠 𝑎𝑛𝑑 𝑗 ∉ 𝑆𝑗0 ; 

7:  𝑆𝑗0 ← 𝑆𝑗0  ∪ {𝑗𝑟} ; 

8: End 

9: while (the stop criterion is not met) do 

10:   𝑖𝑟 ←  select random i ∈  𝐹𝑎𝑐𝑡𝑜𝑟𝑖𝑒𝑠 𝑎𝑛𝑑  𝑖  ∉   𝑆𝑖0 ; 

11:   𝑆𝑖0 ←  𝑆𝑖0  ∪ {𝑖𝑟} ; 

12: End 

13: Allocation Procedure 1(𝑆𝑗0, 𝑆𝑘0); 

14: Allocation Procedure 1(𝑆𝑖0, 𝑆𝑗0); 

15: Return( 𝑆𝑖0 ∪ 𝑆𝑗0); 

III.4. 2  Neighborhood Creation procedure 

The neighborhood generation procedure creates a neighbor solution 𝑆𝑛 of the current 

solution S as follows: 

Mainly, the algorithm creates 𝑆𝑛 based on the swap move. The swap move consists of 

changing an opened facility (a warehouse or a factory) with a closed one.  The facility to be 

closed is selected randomly however, we open a randomly selected facility but from the best 

ones. The facility is selected from the top 6 of closed facilities that have the best ratio: 

capacity/opening-cost. In addition to the swap move, we perform add and drop moves on the 

solution if the move applied improves the solution quality.  

Details of how the 𝑆𝑛 solution is created can be found in Algorithm 14. First the algorithm 

performs the swap move in the first level. In fact, the swap move we propose can create 

infeasible solution, and therefore, we perform the add move if there is any not satisfied client. 

After that, we perform the allocation procedure “Allocation Procedure 1” which allow us 

to compact all demands of clients into the most appropriate facilities (including the new one). 

Consequently, after this procedure, we perform the drop move to remove not used facilities 

(determined by Allocation Procedure 1). After finishing level 1, the algorithm performs the 

same steps on the level 2 (see steps from 7 to 12). Then, and after determining the 
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configuration of the facilities to be opened in the first and the second steps, we delete the old 

allocation made and we re-allocation clients (customers and opened warehouses) to the 

facilities using the second allocation procedure “Allocation Procedure 2”. At the end, we 

construct the final solution 𝑆𝑛  by the elements of the level 1 and level 2. The allocation 

procedure Procedure1 and Procedure2 are presented in detail in the following sub-section. 

 

 

III.4. 3  Allocation procedures 

The allocation is a very important part of the problem. In this work, we propose two 

allocation procedures to allocate clients to the opened facilities. The first procedure 

(Allocation Procedure 1) allocates the client to the best facility to minimize opening costs. 

The second procedure (Allocation Procedure2) allocates the client to the nearest facility to 

minimize shipping costs.  

 

 

 

Algorithm  14 : Neighborhood Creation Procedure ( 𝑆𝑖0, 𝑆𝑗0 , 𝑆𝑘) 

1: 𝑆𝑗𝑛 ← swapFacilty(𝑆𝑗0) ; 

2: If (customers are unsatisfied) do 

3:  addFacility(Sj𝑛) ; 

4: End 

5: Allocation_Procedure_1(𝑆𝑗n, 𝑆𝑘) ; 

6: dropFacility(𝑆𝑗𝑛) ; 

7: 𝑆𝑖𝑛 ← swapFacilty(𝑆𝑖0) ; 

8: If (customers are unsatisfied) do 

9:  addFacilty(𝑆𝑖𝑛) ; 

10: End 

11: Allocation_Procedure_1(𝑆𝑖n, 𝑆𝑗𝑛) ; 

12: dropFacility(𝑆𝑖𝑛) ; 

13: Allocation_Procedure_2(𝑆𝑗n, 𝑆𝑘) ; 

14: Allocation_Procedure_2(𝑆𝑖n, 𝑆𝑗𝑛) ; 

15: Return ( 𝑆𝑖𝑛  ∪ 𝑆𝑗𝑛) ; 
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III.4.3.1  Allocation Procedure 1: allocate the best client to the best facility  

The Allocation Procedure 1 allocates the best client to the best open facility, where the 

best client is determined by its demand, and the best open facility is identified based on the 

highest ratio: capacity /opening-cost. 

At each iteration, the best facility β with available capacity is selected to meet the 

demands of unsatisfied clients. Afterwards, the unsatisfied clients are ranked from the best 

to the worst according to the quantity of demands. Once ranking is made, the facility β begins 

to meet the demands of clients according to their rank, until it is empty. The facility β tries 

to meet the clients demand completely and, if not, partially. If a client is met partially, then 

we update his demand and we consider him as an unsatisfied client otherwise he is 

considered as a satisfied client. The procedure ends when all clients are satisfied or there is 

no available facility.  

 

Algorithm  15 :   Allocation_Procedure_1(𝑆𝑓 , 𝑆𝑐)  

1: 𝑆𝑓′ ← 𝑆𝑓;    𝑆𝑐′ ← 𝑆𝑐; 

2: While (𝑆𝑓′  ≠ ∅ and 𝑆𝑐′  ≠ ∅  )  

3:   𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽 ← select the 𝑏𝑒𝑠𝑡 𝑜𝑝𝑒𝑛 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦 𝑓 ∈  𝑆𝑓′  ; 

4:   𝑟𝑎𝑛𝑘𝑖𝑛𝑔𝐶𝑙𝑖𝑒𝑛𝑡𝑠(𝑆𝑐′); 

5:  While (𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽 . 𝑠𝑡𝑜𝑐𝑘 ≠ 0 ) 

6:     𝑐𝑙𝑖𝑒𝑛𝑡𝑏𝑒𝑠𝑡 ← select 𝑏𝑒𝑠𝑡 𝑐𝑙𝑖𝑒𝑛𝑡 𝑐 ∈  𝑆𝑐′  ; 

8:    If (𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽 . 𝑠𝑡𝑜𝑐𝑘 ≥  𝑐𝑏 . 𝑑𝑒𝑚𝑎𝑛𝑑) 

9:       𝑈𝑝𝑑𝑎𝑡𝑒 𝑆𝑓; 

10:     𝑈𝑝𝑑𝑎𝑡𝑒 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽 . 𝑠𝑡𝑜𝑐𝑘; 

11:       𝑆𝑐′ ← 𝑆𝑐′ − {𝑐𝑙𝑖𝑒𝑛𝑡𝑏𝑒𝑠𝑡}; 

12:    Else 

13:       𝑈𝑝𝑑𝑎𝑡𝑒 𝑆𝑓; 

14:       𝑈𝑝𝑑𝑎𝑡𝑒 𝑐𝑙𝑖𝑒𝑛𝑡𝑏𝑒𝑠𝑡. 𝑑𝑒𝑚𝑎𝑛𝑑; 

15:     𝑆𝑓′ ← 𝑆𝑓′ − {𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽}; 

17:    End 

18:    End 

19: End 
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III.4.3.2  Allocation Procedure 2: allocate client to the nearest facility  

 The main idea of Allocation Procedure 2 is to allocate the client to the nearest open 

facility with available capacity. 

At each iteration, an unsatisfied client α is selected randomly to send a request to the 

nearest open facility β with available capacity. When the facility β receives the request of α 

he add it to the concurrent clients list with the rest of unsatisfied clients who consider β as 

the nearest open facility and arranges the clients in the list from the best to worst where the 

best client is the client with the big quantity of demand. Once the list of concurrent clients 

is obtained, the next step for β is to meet the client's demand based on the priority ranking 

of each client in the list. β will continue meeting the demands of clients in the list completely 

and, if not, partially until either all the clients in the list are satisfied or β becomes empty. 

The client that we meet his demand partially, we update his demand and we consider him as 

an unsatisfied client. The procedure ends when all clients are satisfied. 

 
 

Algorithm  16: Allocation_Procedure_2(𝑆𝑓 , 𝑆𝑐)  

1: 𝑆𝑓′ ← 𝑆𝑓;    𝑆𝑐′ ← 𝑆𝑐; 

2: While ( 𝑆𝑐′  ≠ ∅ and  𝑆𝑓′ ≠ ∅  )  

3:   𝑐𝑙𝑖𝑒𝑛𝑡𝛼 ← select random client 𝑐 ∈  𝑆𝑐′  ; 

4:   𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽 ← nearest open facility(𝑆𝑓′, 𝑐𝑙𝑖𝑒𝑛𝑡𝛼); 

5:   𝐶𝑙𝑖𝑠𝑡 ← concurentClientList( 𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽 , 𝑆𝑐′); 

6:  While (𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽 . 𝑠𝑡𝑜𝑐𝑘 ≠ 0 and  𝐶𝑙𝑖𝑠𝑡  ≠ ∅ ) 

8:     𝑐𝑙𝑖𝑒𝑛𝑡𝑏𝑒𝑠𝑡 ← select the 𝑏𝑒𝑠𝑡 𝑐𝑙𝑖𝑒𝑛𝑡 𝑐 ∈  𝐶𝑙𝑖𝑠𝑡  ; 

9:    If (𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽 . 𝑠𝑡𝑜𝑐𝑘 ≥  𝑐𝑙𝑖𝑒𝑛𝑡𝑏𝑒𝑠𝑡. demand) 

10:       Update (𝑆𝑓); 

11:     Update (𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽); 

12:       𝐶𝑙𝑖𝑠𝑡 ← 𝐶𝑙𝑖𝑠𝑡 − {𝑐𝑏}; 

13:    𝑆𝑐′ ← 𝑆𝑐′ − {𝑐𝑏}; 

14:    Else 

15:       Update 𝑆𝑓; 

17:       Update (𝑐𝑙𝑖𝑒𝑛𝑡𝑏𝑒𝑠𝑡. 𝑑𝑒𝑚𝑎𝑛𝑑); 

18:     𝑆𝑓′ ← 𝑆𝑓′ − {𝑓𝑎𝑐𝑖𝑙𝑖𝑡𝑦𝛽}; 

19:    End 

20:    End 

21: End 
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III.4. 4  Acceptance criterion method 

The acceptance criterion method is the method which determines whether the new 

neighbor solution is either accepted or discarded using the most popular and common 

acceptance criterion 𝑒−(∆/𝑇). At each iteration we compute the fitness variation Δ between 

the current solution S and the neighbor solution Sn where Δ= f(Sn)-f(S) (f is the function 

which calculates the cost of the solution). If Δ < 0, then Sn is accepted directly and becomes 

the current solution (we replace S by Sn); otherwise, the neighbor solution is accepted with 

a probability p = 𝑒−(∆/𝑇) .    where T is the current temperature. 

III.4. 5  annealing method 

The annealing method is the manner of decreasing the temperature progressively and it is 

considered as one of the keys of the success of any simulated annealing-based algorithm. 

First, we start with high-value temperature T0 (T <--- T0) and then we keep decrease the 

current temperature T when the algorithm is progressed. There are several methods for 

decreasing the temperature, in our algorithm we use the continuous decrease method where, 

at each iteration, we decrease the temperature using the formula T=α ×T; and   α = 0.99. 

III.5  Conclusion 

In this chapter we presented our Simulated Annealing based algorithm to solve Two stage 

capacitated facility location problem with single commodity and multi-source. At first, we 

started by the mathematical definition of the problem and the most related work, then we 

presented the algorithm. Moreover, we highlighted all parts of the algorithm by giving details 

of each one including: the initial solution procedure, neighborhood generation procedure, 

the acceptance criterion method and the annealing method. In the next chapter, the proposed 

algorithm will be tested using benchmark data set from the literature and the obtained results 

will be compared with those of the most related works. 
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IV.1  Introduction 

In this chapter, we will present the experiments performed to test the efficiency of our 

algorithm. The chapter begins with a detailed description of the benchmark-instances 

proposed by [64], including the methodology employed for their generation. In addition, an 

illustrative example of one such instance will be provided. Then, we show the obtained 

results when we tested the components of the proposed algorithm. Finally, we compare the 

obtained results with the results which are in the literature. 

 

IV.2  Description of benchmark data set 

The instances used were presented in [64]. The authors have generated 50 instances for 

the TSCFLP using the following parameters: 

• number of factories 𝑰 =  𝟓𝟎 𝒐𝒓 𝟏𝟎𝟎 .  

• set number of warehouses  𝑱 = 𝟐 × 𝑰 . 

• number of customers 𝑲 = 𝟒 × 𝑰 

• 𝐵 =  
∑ 𝑞𝑘𝑘∈𝐾

𝐼
         

• 𝑃 =  
∑ 𝑞𝑘𝑘∈𝐾

𝐽
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Table 1 : parameters used to generate instances 

Finally, it obtained two set of instances. the first set consists of 25 instances divided into five instance classes whit I=50.  In the second set, also 

with 25 instances, divided into five instance classes whit I=100. All instances can be found at https://github.com/pehgonzalez/OCA, along with the 

binary file to reproduce the experiments. 

 

Parameter Class1 Class2 Class3 Class4 Class5 

𝒃𝒊 [2B 5B] [5B 10B] [15B 25B] [5B 10B] [5B 10B] 

𝒇𝒊 [2 × 104  3 × 104] [2 × 104  3 × 104] [2 × 104  3 × 104] [2 × 104  3 × 104] [2 × 104  3 × 104] 

𝒄𝒊𝒋 [35 45] [35 45] [35 45] [50  1 × 102] [35 45] 

𝒑𝒋 [2P 5P] [5P 10P] [15P 25P] [5P10P] [5P 10P] 

𝒈𝒋 [8 × 103  1.2 × 104] [8 × 103  1.2 × 104] [8 × 103  1.2 × 104] [8 × 103  1.2 × 104] [8 × 103  1.2 × 104] 

𝒅𝒋𝒌 [55 65] [55 65] [8 × 102  1 × 103] [50  1 × 102] [8 × 102  1 × 103] 

𝒒𝒌 [10 20] [10 20] [10 20] [10 20] [10 20] 

https://github.com/pehgonzalez/OCA
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IV.2. 1  Capture of instance 

in the next figures we present a capture of one instance (PSC1-C1-50) of 50 factories 100 

warehouses and 200 customers in class 1. 

 

 

 

 

 

 

 

 

 

Figure 8 : example of warehouses 

instance 
Figure 9: example of factories instance 

Figure 7 : example of shipment cost 

from factories to warehouses 

  

Figure 6 : example of customer’s 

instance 

Figure 10 : example of shipment cost 

from warehouses to customers 
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IV.3  Experiments results  

In this sub-section, we will present the obtained results of the proposed algorithm. In fact, 

we will try to highlight the obtained results by each component of the algorithm as following: 

First, we show the obtained results by only the initial solution procedure, then we present 

the obtained results by the SA but only using the “allocation procedure 1” and finally we 

present the obtained results by the complete version of SA that means including the two 

allocation procedures. This will allow us to highlight clearly the contribution of each part of 

the algorithm in the final obtained results.  

IV.3. 1  Parameters and implementation details  

The SA-algorithm was implemented in Java, utilizing the Java SE-17 compiler. All 

experiments were conducted on a PC equipped with an Intel Core i5-4210U processor, 

operating at 1.70 GHz (with a maximum turbo frequency of 2.40 GHz), and 12GB of RAM. 

In our algorithm, we use the following parameters: an initial temperature T=350 000, number 

of iterations i =3 500 and decreasing the temperature at each iteration using the formula         

T=α ×T where α = 0.99. 
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IV.3. 2  Generated solution structure 

The generated solution contains the open facilities ids and the shipments from each open facility to its customers. A single shipment is composed 

of the customer id and the quantity sent. In the next table we present the structure of generated solution. 

le
ve

l tw
o 

Nbr of open factory  1 2 3 4 5 6 
….................. 

 n-1 n 
factory id 1 10 12 20 23 24 45 46  

open factory id 
shipment 1 shipment 2 shipment 3 

….................
. 

shipment n 
warehouse 

id 
quantity 

warehouse 
id 

quantit
y 

warehouse 
id 

quantit
y 

warehouse 
id 

quantit
y 

1 66 88 97 22 86 21 ….................. 69 144 
10 22 118 11 117 / / ….................. 43 45 

…
 

…
 

…
 

…
 

…
 

…
 

…
 ….................. 

…
 

…
 

46 100 119 48 132 53 30 ….................. 42 17 

level o
n

e 

Nbr of open 
warehouse  

1 2 3 4 5 6 
….................. 

 n-1 n 

warehouse id 11 19 22 31 34 38 97 100  

open warehouse id 
shipment 1 shipment 2 shipment 3 

….................
. 

shipment n 

customer id 
Quantit

y 
customer id 

quantit
y 

customer id 
quantit

y 
customer id 

quantit
y 

11 22 16 109 15 123 14 ….................. 81 5 
19 23 20 41 20 113 19 ….................. 45 6 

…
 

…
 

…
 

…
 

…
 

…
 

…
 ….................. 

…
 

…
 

100 78 18 143 11 13 10 ….................. 63 4 

Table 2 : Generated solution structure 

In the next figure, we present a complete solution obtained by the SA algorithm with its corresponding costs and constraints-checking values. 
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IV.3. 3  The obtained results   

In this sub-section, we will present the obtained results for all instances after 10 

executions for each instance where table 3 represent the obtained results for the first set of 

instances and where table 4 represent the obtained results for the second set of instances. 

In table 3 and 4 "Cost" represents the best cost obtained, "Best" is calculated as a ratio 

with the Lower Bound as presented by [67] and measured as following  
 Cost − LowerB 

LowerB
×  100 

, "Time" represents the time taken to obtain the results of best solution in seconds, "AVG" 

refers to the average cost for 10 iterations. 

 

 

 

Figure 11 : example of check by hand of a generated solution 
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Instances 
lower B 

SA Initial solution SA without allocation procedure 2 Complete Proposed SA 
Class ID Cost Best Time AVG Cost Best Time AVG Cost Best Time AVG 

1 

1 721 209,6 919 570 27,50 0,002 952 917,1 746 905 3,56 6,99 747 408,7 723 312 0,29 38,48 724 418,4 
2 730 451,6 951 321 30,24 0,004 966 876,9 757 348 3,68 8,76 759 350,8 733 648 0,44 36,52 734 959,3 
3 731 885,3 926 004 26,52 0,003 972 337,7 755 598 3,24 6,55  758663,6 735 465 0,49 42,09 736 855,9 
4 721 515,0 917 844 27,21 0,003 953 461,7 752 129 4,24 6,29 752 811,7 726 521 0,69 33,78 726 990,1 
5 713 633,8 933 097 30,75 0,004 982 856,9 749 049 4,96 6,23 749 437,1 725 012 1,59 36,53 725 917,6 

2 

1 479 860,2 588 410 22,62 0,002 614 150,7 515 939 7,52 3,73 517 031,5 495 571 3,27 8,51 496 464,0 
2 483 072,2 587 344 21,59 0,002 610 949,8 520 558 7,76 3,60 521 349,2 499 307 3,36 8,37 499 895,2 
3 486 018,5 607 602 25,02 0,002 623 739,1 515 089 5,98 3,90  517312,6 497 139 2,29 10,68 497 782,5 
4 482 374,6 590 025 22,32 0,001 617 208,1 516 286 7,03 3,64 516 438,5 495 135 2,65 9,01 495 976,8 
5 474 803,3 573 902 20,87 0,002 607 540,2 513 206 8,09 3,77 514 442,8 491 684 3,56 10,12 492 372,2 

3 

1 2 608 800,0 2 930 202 12,32 0,001 2 956 962,6 2 733 709 4,79 2,17 2 743 738,7 2 705 893 3,72 5,27 2 707 390,2 
2 2 616 252,0 2 933 507 12,13 0,001 2 956 547,7 2 742 314 4,82 2,19 2 754 347,4 2 717 227 3,86 5,22 2 719 006,0 
3 2 598 277,0 2 917 165 12,27 0,001 2 946 060,8 2 719 196 4,65 2,23 2 731 076,7 2 703 275 4,04 5,23 2 704 079,8 
4 2 612 534,0 2 944 401 12,70 0,001 2 964 200,9 2 734 527 4,67 2,23  2746738,2 2 706 294 3,59 5,19 2 708 217,7 
5 2 568 856,0 2 895 540 12,72 0,001 2 911 730,4 2 687 143 4,60 2,22 2 702 786,9 2 662 582 3,65 5,28 2 663 337,9 

4 

1 525 294,1 737 177 40,34 0,001 767 275,2 626 816 19,33 3,70 637 590,0 551 658 5,02 18,52 552 964,5 
2 526 911,7 736 149 39,71 0,002 765 425,7 629 212 19,42 3,56 639 562,7 549 275 4,24 16,72 549 830,2 
3 532 592,3 742 334 39,38 0,002 775 179,7 631 716 18,61 3,85 635 978,9 552 070 3,66 20,89 553 585,8 
4 529 372,0 749 952 41,67 0,001 768 028,3 631 316 19,26 3,58 635 253,9 549 097 3,73 18,29 550 117,2 
5 521 470,1 726 845 39,38 0,005 763 432,7 629 126 20,64 3,78 635 138,7 541 153 3,77 19,30 543 439,5 

5 

1 2 743 547,0 3 127 904 14,01 0,002 3 151 768,5 2 851 001 3,92 3,63 2 869 755,5 2 786 366 1,56 24,04 2 787 398,2 
2 2 752 021,0 3 113 600 13,14 0,002 3 142 294,4 2 871 450 4,34 3,65 2 886 021,9 2 792 014 1,45 20,40 2 794 163,7 
3 2 737 769,0 3 104 794 13,41 0,001 3 143 276,4 2 871 790 4,90 3,77 2 886 664,6 2 778 149 1,47 24,05 2 780 151,0 
4 2 748 216,0 3 117 863 13,45 0,001 3 143 600,2 2 854 537 3,87 4,00 2 876 998,4 2 785 792 1,37 20,24 2 786 414,7 

5 2 702 350,0 3 036 409 12,36 0,002 3 093 930,2 2 809 580 3,97 4,14 2 839 225,6 2 746 127 1,62 20,58 2 748 213,6 
Average   23,34 0,002     7,91 4,09     2,62 18,53   

Table 3: Obtained results for the first set of instances (50 factories, 100 warehouses and 200 customers) 
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Instances 
lower B 

SA Initial solution SA without allocation procedure 2 Complete Proposed SA 
Class ID Cost Best Time AVG Cost Best Time AVG Cost Best Time AVG 

1 

1 1 475 952,0 1 828 300 23,87 0,019 1904589,5 1 533 052 3,87 41,66 1537779,2 1 480 429 0,30 405,85 1480977,5 
2 1 462 736,0 1 823 845 24,69 0,015 1893230,8 1 528 191 4,47 42,28 1531741,7 1 475 778 0,89 394,56 1476677,2 
3 1 492 163,0 1 875 837 25,71 0,016 1922845,5 1 547 170 3,69 43,11 1555074,6 1 497 995 0,39 456,50 1502311,5 
4 1 459 076,0 1 895 797 29,93 0,010  1918665,5 1 515 897 3,89 41,58 1518511,4 1 465 682 0,45 423,06 1466768,9 
5 1 490 742,0 1 877 397 25,94 0,013 1922156,6 1 545 163 3,65 41,66 1546440,3 1 494 759 0,27 412,23 1495309,8 

2 

1 970 908,5 1 197 620 23,35 0,008 1229016,9 1 018 378 4,89 22,30 1021266,9  976 560 0,58 74,57 977147,2 
2 965 908,5 1 179 390 22,10 0,008 1218840,7 1 015 569 5,14 22,00 1016285,9 972 748 0,71 74,36 973603,3 
3 975 499,7 1 200 219 23,04 0,008  1227977,0 1 024 070 4,98 22,85 1026119,4 979 345 0,39 75,33 979982 
4 973 019,1 1 197 199 23,04  0,006 1224062,5 1 025 588 5,40 14,12  1026777,2 982 423 0,97 76,81 983180,6 
5 941 567,0 1 160 492 23,25 0,008 1188339,7 1 000 789 6,29 16,67 1002318 955 500 1,48 75,82 956156,2 

3 

1 5 213 566,0 5 854 408 12,29 0,004  5895507,2 5 357 476 2,76 7,12 5392222,2 5 321 644 2,07 47,06 5322853,1 
2 5 191 321,0 5 845 047 12,59 0,004 5882381,3 5 350 515 3,07 7,13 5369124,5 5 304 652 2,18 46,61 5305048,9  
3 5 145 991,0 5 777 355 12,27 0,004  5827795,3 5 289 782 2,79 7,48 5329680,2 5 243 340 1,89 46,42 5243909,4 
4 5 225 601,0 5 893 207 12,78 0,004  5927335,1 5 385 645 3,06 7,08 5410191,5 5 337 794 2,15 48,77 5338638,1 
5 5 163 182,0 5 820 673 12,73 0,003  5851301,6 5 318 879 3,02 7,11  5347076,3 5 274 329 2,15 47,10 5275829,7 

4 

1 1 052 172,0 1 460 560 38,81 0,009 1512597,6 1 240 328 17,88 14,34 1260009,9 1 071 651 1,85 202,83 1075428,7 
2 1 043 553,0 1 453 370 39,27 0,009 1514275 1 249 883 19,77 13,99 1259734,9 1 063 134 1,88 190,30 1064129,5 
3 1 050 683,0 1 488 965 41,71 0,008  1529420,7 1 236 387 17,67 14,30 1264481,4 1 078 538 2,65 202,00 1080505 
4 1 044 571,0 1 470 996 40,82 0,009 1510561,3 1 228 296 17,59 14,16 1263466 1 065 739 2,03 204,41  1067538,9 
5 1 053 869,0 1 504 979 42,81 0,008 1528956,3 1 238 348 17,50 14,37 1269588,6 1 074 316 1,94 199,87  1075366,8 

5 

1 5 486 098,0 6 174 225 12,54 0,007 6272719,7 5 653 295 3,05 14,49 5710603,9 5 520 471 0,63 288,03 5523024,6 
2 5 461 680,0 6 203 103 13,57 0,005 6248659,9 5 679 190 3,98 14,17 5697361,3 5 494 412 0,60 287,40  5495848,1 
3 5 425 391,0 6 171 247 13,75 0,007 6203726,7 5 624 333 3,67 14,32 5646171,8 5 469 275 0,81 319,25  5471081,4 
4 5 494 811,0 6 262 371 13,97 0,006 6294609,5 5 677 817 3,33 13,93 5714610,8 5 531 963 0,68 290,16 5533457,5 
5 5 442 621,0 6 204 209 13,99 0,007  6253702,6 5 618 477 3,23 14,17 5657522,4 5 477 523 0,64 459,14  5478812,2 
Average   23,15 0,008     6,75 19,46     1,22 213,94   

Table 4: Obtained results for the second set of instances (100 factories, 200 warehouses and 400 customers) 
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Table 3 and Table 4 present the obtained results for all instance.  Initially, the solutions 

obtained by the initial solution procedure are not of good quality but as we can see the 

procedure is very fast and it has an average running time of 0.002 second for the first set of 

instances and 0.008 second for the second set of instances. By this running time, we assume 

that this procedure can be transformed to a greedy or greedy randomized algorithm and used 

for real-time system (where we need results in very short running time). Then we can see 

from Table 3 & 4, that the SA without “allocation procedure 2” considerably enhances the 

results obtained by the initial solution procedure by an average of 15.43% in the first set of 

instances and 16.40% in the second set of instances while it still has good running times. 

However, the complete SA consumes more running times than SA without “allocation 

procedure 2”, we can see that the complete SA improves the results of SA without 

“allocation procedure 2” by an average of 5.29% for first set of instances and by an average 

of 5.53% for second set of instances. The results of the complete SA highlight clearly the 

contribution of the use of the “allocation procedure 2” in the proposed SA. 

IV.4  Comparison with literature 

In this sub-section, we compare our obtained results of the complete SA with those of the 

literature. In table 5 and table 6 column "BST" represent of the best solution obtained and 

column "AVG" represent the average of best solution obtained in 10 executions where they 

are calculated as a ratio with the Lower Bound as presented by [67] and measured as 

following  
 sol− LowerB 

LowerB
×  100, where sol indicates the BST or AVG from each method. The 

column "Time" is calculated as the average time in seconds for 10 executions.  

Looking at Tables 5 and 6, we can observe that the obtained solutions are very 

competitive comparing to the solutions of the literature. In term of solutions quality, we can 

see that the average ratio of the best solutions obtained for the first set of instances  is 2.62% 

that means we get near to the literature methods by 0.64% to GA, 0.66 to CS+CPLEX, 

0.62% to GRASPH and 0.69% to CS-ALNS-LB and the average ratio of the best solutions 

obtained for the second set of instances  is 1.22% that means we get near to the literature 

methods by 0.26% to GA, 0.56 to CS+CPLEX, 0.47% to GRASPH and 0.58% to                    

CS-ALNS-LB.
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Instances 
lower B 

GA [64] CS+CPLEX [65] GRASPH [66] CS-ALNS-LB [19] SA 
Class ID AVG Time BST AVG Time BST AVG Time BST AVG Time BST AVG Time 

1 

1 721 209,6 0,13 264,78 0,13 0,22 48,90 0,13 0,13 4,50 0,13 0,13 15,41 0,29 0,44 40,64 
2 730 451,6 0,40 257,17 0,23 0,31 76,86 0,24 0,24 21,34 0,23 0,23 21,02 0,44 0,62 36,26 
3 731 885,3 0,24 263,35 0,21 0,29 51,94 0,22 0,22 30,46 0,21 0,21 55,22 0,49 0,68 41,24 
4 721 515,0 0,81 242,93 1,19 1,41 96,62 0,50 0,50 29,08 0,50 0,50 18,98 0,69 0,76 34,05 
5 713 633,8 0,82 251,79 0,81 0,88 56,14 0,81 0,81 160,01 0,81 0,82 64,69 1,59 1,72 36,49 

2 

1 479 860,2 2,69 144,39 2,68 3,27 27,69 2,69 2,69 383,27 2,68 2,68 15,43 3,27 3,46 8,49 

2 483 072,2 2,30 144,16 2,30 2,62 81,36 2,30 2,34 368,58 2,30 2,30 64,89 3,36 3,48 8,37 
3 486 018,5 2,14 150,60 1,86 2,03 30,82 1,88 1,94 590,94 1,86 1,86 48,02 2,29 2,42 10,85 

4 482 374,6 2,04 142,25 2,01 2,01 83,02 2,02 2,02 365,57 2,01 2,02 47,37 2,65 2,82  9,133 
5 474 803,3 3,14 126,08 3,12 3,39 36,98 3,12 3,12 590,87 3,12 3,12 33,33 3,56 3,70 9,62 

3 

1 2 608 800,0 3,07 125,90 3,07 3,07 19,89 3,22 3,30 596,03 3,07 3,10 104,13 3,72 3,77 5,32 
2 2 616 252,0 3,12 130,22 3,10 3,10 73,09 3,37 3,39 594,73 3,13 3,20 94,18 3,86 3,93 5,23 
3 2 598 277,0 3,11 123,56 3,09 3,10 52,98 3,23 3,32 591,33 3,09 3,14 77,21 4,04 4,07  5,237 
4 2 612 534,0 3,07 107,73 3,05 3,05 45,21 3,18 3,29 593,68 3,05 3,10 80,60 3,59 3,66 5,22 
5 2 568 856,0 3,01 110,36 3,01 3,01 47,45 3,14 3,22 593,27 3,01 3,03 76,79 3,65 3,68 5,26 

4 

1 525 294,1 3,14 138,25 3,14 3,60 89,47 3,29 3,29 591,54 3,14 3,14 39,42 5,02 5,27 18,50 

2 526 911,7 2,33 139,83 2,43 2,71 102,38 2,65 2,80 592,19 2,43 2,45 57,23 4,24 4,35 16,82 
3 532 592,3 2,66 144,88 2,41 2,44 118,38 2,45 2,92 591,35 2,30 2,44 67,49 3,66 3,94 21,12 

4 529 372,0 2,53 127,30 2,35 2,66 133,69 2,36 2,50 591,31 2,35 2,36 55,50 3,73 3,92 18,41 
5 521 470,1 3,13 120,27 3,15 3,53 115,67 3,15 3,23 388,72 3,12 3,12 46,46 3,77 4,21 18,99 

5 

1 2 743 547,0 1,20 164,42 1,19 1,19 157,20 1,24 1,31 591,33 1,16 1,18 64,60 1,56 1,60 21,87 
2 2 752 021,0 1,07 156,71 1,08 1,11 89,13 1,15 1,17 591,31 1,07 1,07 68,15 1,45 1,53 20,49 
3 2 737 769,0 1,10 191,60 1,09 1,10 126,33 1,29 1,30 591,78 1,09 1,13 70,37 1,47 1,55 25,37 
4 2 748 216,0 1,07 136,87 1,05 1,12 149,59 1,06 1,07 591,67 1,05 1,07 67,09 1,37 1,39 20,55 
5 2 702 350,0 1,25 145,07 1,24 1,24 54,96 1,29 1,34 592,50 1,23 1,25 67,90 1,62 1,70 21,74 
Average 1,98 162,02 1,96 2,10 78,63 2,00 2,06 449,09 1,93 1,95 56,86 2,62 2,75 18,03 

Table 5: Comparison obtained results for the first set of instances with literature 
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Instances 
lower B 

GA [64] CS+CPLEX [65] GRASPH [66] CS-ALNS-LB [19] SA 
Class ID AVG Time BST AVG Time BST AVG Time BST AVG Time BST AVG Time 

1 

1 1 475 952,0 0,55 1 268,12 0,10 0,30 384,79 0,10 0,10 381,21 0,09 0,11 339,69 0,30 0,34 400,20 
2 1 462 736,0 1,01 1 250,09 0,34 0,70 716,06 0,12 0,12 130,86 0,12 0,20 231,41 0,89 0,95 397,38 
3 1 492 163,0 0,34 1 367,04 0,54 1,00 654,10 0,15 0,15 281,03 0,16 0,20 266,18 0,39 0,68 456,65 
4 1 459 076,0 0,49 1 285,78 0,24 0,49 740,44 0,22 0,28 484,13 0,22 0,24 240,00 0,45 0,53 428,89 
5 1 490 742,0 0,67 1 303,93 0,11 0,33 850,42 0,12 0,12 82,79 0,11 0,12 192,28 0,27 0,31 413,74 

2 

1 970 908,5 0,89 675,48 0,26 0,52 989,39 0,27 0,36 584,20 0,26 0,30 310,07 0,58 0,64 75,51 

2 965 908,5 0,74 662,96 0,28 0,46 668,55 0,28 0,34 559,24 0,28 0,33 257,51 0,71 0,80 75,16 

3 975 499,7 1,42 650,19 0,14 0,25 992,58 0,14 0,14 487,39 0,14 0,17 236,91 0,39 0,46 73,61 

4 973 019,1 0,56 657,63 0,28 0,40 688,28 0,35 0,41 592,81 0,29 0,32 326,07 0,97 1,04 76,90 

5 941 567,0 1,12 646,23 0,60 0,65 858,06 0,86 1,06 592,22 0,60 0,69 283,63 1,48 1,55 76,96 

3 

1 5 213 566,0 1,63 617,24 1,62 1,63 1 113,37 1,79 1,92 598,74 1,62 1,66 600,74 2,07 2,10 47,11 
2 5 191 321,0 1,67 601,51 1,65 1,65 1 312,48 1,84 1,94 596,33 1,67 1,71 503,07 2,18 2,19 46,59 
3 5 145 991,0 1,58 597,43 1,57 1,58 958,88 1,77 1,84 594,41 1,58 1,61 491,88 1,89 1,90 46,37 
4 5 225 601,0 1,74 622,04 1,72 1,73 1 033,46 2,01 2,09 600,38 1,72 1,76 498,75 2,15 2,16 47,17 
5 5 163 182,0 1,72 629,84 1,67 1,69 1 073,08 2,02 2,03 594,38 1,73 1,75 518,88 2,15 2,18 47,45 

4 

1 1 052 172,0 0,82 577,91 0,61 0,87 1 040,75 0,73 0,74 594,13 0,65 0,78 313,52 1,85 2,21 200,26 

2 1 043 553,0 0,93 560,18 0,83 0,88 852,22 0,77 0,85 593,65 0,67 0,71 314,25 1,88 1,97 188,17 

3 1 050 683,0 1,88 584,40 0,62 0,81 677,12 1,20 1,77 592,49 0,78 1,12 299,23 2,65 2,84 195,95 

4 1 044 571,0 0,96 592,63 0,74 0,94 1 099,22 0,98 1,01 594,38 0,80 0,90 303,95 2,03 2,20 205,05 

5 1 053 869,0 0,64 607,94 0,56 0,89 543,26 0,56 0,65 594,12 0,52 0,63 295,09 1,94 2,04 197,22 

5 

1 5 486 098,0 0,48 706,40 0,38 0,40 801,30 0,43 0,54 593,59 0,38 0,40 326,89 0,63 0,67 286,15 

2 5 461 680,0 0,47 683,08 0,39 0,44 849,41 0,40 0,42 593,52 0,38 0,41 285,26 0,60 0,63 286,64 

3 5 425 391,0 0,62 672,63 0,49 0,53 770,91 0,59 0,59 594,61 0,39 0,48 259,29 0,81 0,84 317,31 

4 5 494 811,0 0,52 689,38 0,43 0,47 657,66 0,50 0,51 593,16 0,41 0,43 322,00 0,68 0,70 291,60 

5 5 442 621,0 0,47 670,38 0,39 0,45 1 323,85 0,46 0,48 592,62 0,38 0,40 262,75 0,60 0,63 457,41 

Average 0,96 767,22 0,66 0,80 865,99 0,75 0,82 523,86 0,64 0,70 331,17 1,22 1,30 213,42 

Table 6: Comparison obtained results for the second set of instances with literature 
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 Furthermore, the SA outperforms the GA in the instances PSC4-C1-50, PSC1-C1-100, 

PSC2-C1-100, PSC4-C1-100, PSC5-C1-100, PSC1-C2-100, PSC2-C2-100 PSC3-C2-100. 

Also, it outperforms the CS+CPLEX in the instances PSC4-C1-50 and PSC3-C1-100. 

On the other hand, we can observe that the SA has the best running time over all instances 

with an average of 115.73 seconds comparing to 464.64 seconds of GA, 472.31 seconds of 

CS+CPLEX, 486.48 seconds of GRASPH and 194.02 seconds of CS-ALNS-LB. So, we can 

say that the SA proposed has a very good comprise between solutions quality and running 

times comparing to the literature. In addition, we can assume that the SA can be improved 

by adding other techniques/methods which will improve its solutions quality without losing 

its competitivity in term of running times. 

 

IV.5  Conclusion 

In this chapter we presented detail description of the benchmark-instances from the 

literature. Then, we presented the results obtained by our algorithm where testing it on all 

instances. Finally, we compared the obtained results with the results in the literature.
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Conclusion 
The supply chain is the process of moving goods or services from the point of the origin 

to the point of destination. The supply chain optimization is important for businesses because 

it allows to reduce costs, improve customer satisfaction, minimize times and lead to respond 

effectively to market demand.  

In this thesis, we have proposed and validated a method to solve multi-source, single-

product TSCFLP, where the main objective was to find the best sub-set of facilities that meet 

the demands of all customers with the lowest cost. 

In the first chapter, we presented the most related location problems to our case such as 

Capacitated, single-stage problem, multi-stage location problems. A general and brief 

descriptions of the several variants of location problems (including two-stage capacitated 

facility location problems) have been given with the most popular application in the real life. 

In the second chapter we focused on the optimization methods and algorithms, where 

exact, heuristic, metaheuristic and hybrid methods were presented. We Also provided some 

of the most popular and efficient algorithms used in the field of optimization. 

In the third chapter, we presented the TSCFLP problem where a mathematical model of 

the problem from the literature is given. Then, we presented our proposed simulated 

annealing algorithm to solve the problem that it has two main processes: the first is the 

selection of facilities and the second is the allocation of customers. For allocation we have 

proposed two procedures with the aim of improving the quality of solutions. 

In the fourth chapter, we presented the obtained results and we compared them with the 

most recent results found in the literature. The proposed SA obtained very competitive 

results comparing to the results of the literature and it has the best running time over all. 

Also, it outperforms the GA on 8 instances and the CS+CPLEX on 2 instances. 
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Finally, we are looking forward to: 

  -Improve our algorithm using other facilities selection techniques . 

  - Propose another metaheuristic to solve the TSCFLP. 

  -Propose a hybrid algorithm which combine the proposed SA with another algorithm. 

  -Propose a similar algorithm to solve the Multi Stage Facility Location Problems. 

  

  

 

-  
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