
 

 الجمهوريـة الجزائـريـة الديمقراطيـة الشعبيـة
République Algérienne Démocratique et Populaire 

 وزارة التعليــم العالـي والبحـث العلمـي
Ministère de l’Enseignement Supérieur et de la Recherche Scientifique 

 

 

 

 

 

 

No Réf :…………… 

   

 
Centre Universitaire 

 Abd elhafid Boussouf  Mila 

 

Institut des Mathématiques et Informatique                   Département  de Mathématiques 

 

 

Mémoire préparé  En vue de l’obtention du diplôme de Master 
 

   En: Mathématiques  

 
Spécialité: Mathématiques Fondamentale 

                         
 

 

 

 

 

 

 

 

 

Préparé par : Chaima Ouaret                                 

                              Zakiya Malendas 
                             

          Soutenue devant le jury   

 

 Hafida Laib MCA C. U. Abdelhafid Boussouf,  Mila Président 

 Khaoula Rouibah MCB C. U. Abdelhafid Boussouf,  Mila Rapporteur 

 Yassamine Challouf MCB C. U. Abdelhafid Boussouf,  Mila Examinateur 

 
 

 

                       

 

Année universitaire :2022/2023 
 

Numerical solution of some Volterra 

nonlinear integral equations by using 

spline iterative Collocation method  



CONTENTS

Introduction 1

1 Preliminary and auxiliary results 5

1.1 Classifications of integral and integro differential equations . . . . . . . 7

1.1.1 Fredholm integral and integro differential equations . . . . . . . . 7

1.1.2 Volterra integral and integro-differential equations . . . . . . . . 9

1.1.3 Volterra-Fredholm integral and integro-differential equations . . 12

1.1.4 Singular integral equations . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Systems integral and integro-differential equations . . . . . . . . . . . . 15

1.2.1 Systems of Fredholm integral and integro-differential Equations . 15

1.2.2 Systems of Volterra integral and integro-differential equations . . 16

1.2.3 Systems of singular integral equations . . . . . . . . . . . . . . . . 19

1.3 Conversion of differential equations to integral equations . . . . . . . . . 19

1.3.1 IVP to Volterra integral equations: . . . . . . . . . . . . . . . . . . 20

1.3.2 BVP to Fredholm integral equations: . . . . . . . . . . . . . . . . . 23

1.4 Conversion of Volterra integro-differential equations to Volterra integral

equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5 Existence and uniqueness of the solution . . . . . . . . . . . . . . . . . . 31

1.6 Piecewise polynomial spaces . . . . . . . . . . . . . . . . . . . . . . . . . 35

i



1.7 Review of basic discrete Gronwall-type inequalities . . . . . . . . . . . . 35

2 Collocation Iterative Method for Solving Nonlinear Delay Volterra Integral

Equation 37

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Description of the collocation method . . . . . . . . . . . . . . . . . . . . 39

2.3 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.4 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Conclusion and perspective 49



ACKNOWLEDGMENTS

First of all,I thank my God for all the blessing he bestowed on me and continues

to bestow on me .

We would like to thank our Dr.Rouibah Khoula,for her patience and above all for her

trust,comments,advices and kindnesses.

We express our deep gratitude to Dr .Laib Hafida ,for agreeing to chair the dissertation

jury and for her valuable assistance.

We also extend our sincere thanks to Dr .Challouf Yassamine ,the assistant profes-

sor,who kindly assumed the responsibility of evaluating this work.

Finally, We would like to thank everyone who contributed directly or indirectly to the

completion this work.



DEDICATION

To my parents

” they are the other soul that inhabit my soul, and my shadow that prevents

me from falling ”. FATIHA, TAHAR.

To my brothers and sisters

” they are the wall on which I like to lean my heart ”. NOURA, NABIL,

HOURIA, SOURIA, MOUFIDA, HALIMA, FARES.

To my best friend

CHOUROUK.

To my colleague who shared this work with me

ZAKIYA.

To my supervisor:

Dr.Rouibah Khoula.

To my companions with whom I shared the bittersweet and sweet life for five years.

To everyone who encouraged me.

CHAIMA



DEDICATION

First of all,I would like to thank the dearest person in my heart,my beloved mother,whom

i relied on throughout my scool years,until today i reached the most important part of

my life ,I dedicate all my words of grantitude and love to you .

To my dear father who sacrificed himself to see me one day successful,my words can

not describe you.

To my brothers:

Morad,Naim,Farouk.

To my sisters:

Nadia,Nawal,Siham,Nadjah,Rachida.

To soul mates:

Amel,Hadjer.

To my friends:

First of all,I would like to thank my colleague Chaima ,with whom i shared

this work ...Sirin,Lolo,Mariana,Noor....and all the shcool friends.

To my supervisor:

Dr.Rouibah Khoula.

To everyone who encouraged me.

ZAKIYA



        

 ملخص

 

خطية مع الغير لحل معادلات فولتيرا التكاملية قدمنا في هذه المذكرة طريقة مقترحة مع خوارزمية جديدة 

 على,بالاعتماد  الحل التقريبي لهذه المعدلات باستخدام طريقة التجميع التكرارية إيجادتاخير زمني حيث يتم 

 كثيرات حدود لاغرانج .

التوضيحية لحل  الأمثلةمن خلال بعض  كفاءة الطريقة و سهولة الحسابات فيهاكما من الممكن ملاحظة 

وقد تم الحصول على نتائج جيدة .  زمني تأخيرمعادلات فولتيرا التكاملية الغير خطية مع   

 

 الكلمات المفتاحية

طريقلة التجميع التكراري ,كثيرات حدود لاغرانج., زمني ثابت تأخيرمع  خطيةالغير ت فولتيرا التكاملية معادلا  

 



RÉSUMÉ

L’objectif essentiel de ce travail consiste à résoudre numériquement des équations

intégrales de Volterra non linéaires avec retard par la méthode de " collocation itérative"

en utilisant les polynômes de Lagrange. Des exemples numériques sont présentés pour

confirmer les estimations théoriques et illustrer la convergence de la méthode.

Mots-clés : Équations intégrales de volterra non linéaires avec retard, Méthode de

collocation, Polynômes de Lagrange.



ABSTRACT

The main purpose of this thesis is to provide a direct, convergent and easy to implement

numerical method to obtain the approximate solution for nonlinear delay Volterra

integral equations. Algorithms based on iterative collocation method is developed for

the numerical solution of these kinds of equations. We also provide a rigorous error

analysis. A theoretical proof is given and we present some numerical results which

illustrate the performance of the methods.

Key Words: Nonlinear delay Volterra integral equations, Collocation method, Iterative

Method, Lagrange polynomials, Convergence analysis,Error estimation.



INTRODUCTION

The mathematical modeling of the phenomena from the population dynamics

gives models that are discrete or continuous. The discrete models are represented by

matrix equations or difference equations. The continuous models are represented, in

general, by differential equations, partial differential equations, integral equations or

intego-differential equations with delay arguments.

The first integral equation mentioned in the mathematical literature is due to Abel and

can be found in almost any book on this subject (see, for instance, [9]). Abel found

this equation in 1812, starting from a problem in mechanics. He gave a very elegant

solution that was published in 1826.

Starting in 1896, Vito Volterra built up a theory of integral equations, viewing their so-

lutions as a problem of finding the inverses of certain integral operators. In 1900, Ivar

Fredholm made his famous contribution that led to a fascinating period in the develop-

ment of mathematical analysis. Poincaré, Fréchet, Hilbert, Schmidt, Hardy and Riesz

were involved in this new area of research. The impact of Fred- holm s theory on the

foundation and development of functional analysis has also been outstanding. These

facts could explain why Volterra s equations, whose role in the investigation of some

dynamical processes (mainly in biology) had been em- phasized by Volterra himself,

took a place of secondary importance. Actually, the integral equations of Volterra type
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Introduction

are present any time we deal with a differential equation. According to J. Dieudonné,"

... differential equations constitute a swin- dling. In fact, there exist no differential

equations. The only interesting equations are the integral ones"(Nico, 1969).

Volterra integral equations arise in a wide variety of mathematical, scientific, and engi-

neering problems. One such problem is the solution of parabolic differential equations

with initial boundary conditions [[31] , p.68]. Another application deals with the tem-

perature in nuclear reactors [[31] ,Chap.IV, Sect.8] where the delayed neutron is ignored.

For more physical applications of Volterra integral equations see the references in [33].

Many physical problems are better represented by a delay Volterra integral equation

rather than a Volterra integral equation; that is, the prob- lem has a delay in which

cannot be ignored [18, 27, 30]. Delay integral equation is a model for the spread of

some infectious disease (cf.[34, 36]) and arise in the pop- ulation dynamics with a finite

life span (see [17, 23, 22, 36, 40]). Moreover, integral equations with constant delays

are frequently encountered in physical and biological modeling processes (e.g. [7, 23]).

On the other hand, the delay integro-differential equations have become important in

the mathematical modeling of biological and physical phenomena (see, for example,

[8, 26, 29]).

The monograph [14] presents a historical survey of mathematical models in biology,

which can be described by Volterra integral and integro-differential equations with

constant delays.

In the following examples we will briefly describe three such classes of delay Volterra

integral and integro-differential equations.

Example 0.1. We present in the following, the first model gotten by Cooke and Ka-

plan [21]. In the goal to express the spasmodic character of the apparitions of some

epidemics in the big concentrations of populations. Cooke and Kaplan presented the

following model: We suppose here that the total population is constant, equal to N. The

evolution of the proportions of this population, I(t) + S(t) = α(α is a positive constant),

such that I(t) is the proportion of sick at the time t, S(t) is the proportion of people

susceptible to become sick at the time t.

The proposed hypotheses are: there is not any natural immunity or acquired. The
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Introduction

illness takes a determined time τ , the same for every individual. All sick is infectious

during the time of its illness. We suppose that there is no period of incubation. Fi-

nally, the population is enough important and homogeneous to consider I and S as

continuous functions. we modeling by a function a(t) the rate of meeting between the

susceptible and infected populations at the instant t by unit of time of a sick with other

peoples in these conditions:

• a(t)S(t) is the proportion of the susceptible having a contact by sick and by unit

of time.

• I(t)Na(t)NS(t)dt represents the fraction of an individual reached by the ill- ness

in the interval of time [t, t + dt]: NI(t)a(t)S(t)dt is the corresponding proportion (by

report to the total population).

• NI(t − τ)a(t − τ)S(t − τ)dt represents the proportion that returns in the com-

partment of the susceptible individuals between the times t and t + dt.

Therefore, the variation of the rate of the individuals infected between t and t + dt is

given by the following relation:

dI(t)
dt

= a(t)I(t)(1 − I(t)) − a(t − τ)I(t − τ)(1 − I(t − τ))

which could be integrated as follows:

I(t) =

t∫
t−τ

a(s)I(s)(1 − I(s))ds + c (∗).

Since the infection has a duration less than τ , the proportion of infected individuals at

the instant t is given exactly by the integral term (∗). Therefore c = 0.

Example 0.2. Many basic mathematical models in epidemiology and population

growth (see, e.g. [23, 22, 36, 40]) are described by nonlinear Volterra integral equa-
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Introduction

tions of the second kind with (constant) delay τ > 0, namely,

x(t) = 1(t) +

t∫
t−τ

P(t − s)G(s, x(s))ds, t ≥ t0.

The function g is usually assumed to be such that lim
t→+∞
1(t) = 1(+∞) exists. These delay

integral equations model the deterministic growth of a population y (e.g. of animals,

or cells) or the spread of an epidemic with immigration into the population; it also has

applications in economics.

This work is organized as follows:

In the first chapter, we provide some notations, definitions and auxiliary facts which

will be needed for stating our results, such as the existence and the uniqueness of the

smooth solution for the second kind Volterra integral and integro-differential equations

and basic Discrete Gronwall-type inequalities.

As for the second chapter, we discussed the iterative collocation method to solve the

nonlinear Delay Volterra integral equation.
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CHAPTER 1

PRELIMINARY AND AUXILIARY

RESULTS

5



Generals and fundamentals notions

Integral Equation

An integral equation is defined as an equation in which the unknown function u(t) to

be determined appear under the integral sign. The subject of integral equations is one

of the most useful mathematical tools in both pure and applied mathematics. It has

enormous applications in many physical problems. Many initial and boundary value

problems associated with ordinary differential equation (ODE) and partial differential

equation (PDE) can be transformed into problems of solving some approximate integral

equations. The development of science has led to the formation of many physical laws,

which, when restated in mathematical form, often appear as differential equations [41].

An integral equation is an equation in which the unknown function u(t) appears under

an integral sign. A standard integral equation in u(t) is of the form:

u(t) = f (t) + λ

h(t)∫
1(t)

K(t, s)u(s)ds,

where 1(t) and h(t) are the limits of integration, λ is a constant parameter, and k(t, s)

is a function of two variables t and s called the kernel of the integral equation. The

function u(t) that will be determined appears under the integral sign, and it appears

inside the integral sign and outside the integral sign as well. The functions f (t) and

k(t, s) are given in advance. It is to be noted that the limits of integration 1(t) and h(t)

may be both variables, constants, or mixed.

An integro-differential equation is an equation in which the unknown function u(t)

appears under an integral sign and contains an ordinary derivative u(n)(t) as well. A

standard integro-differential equation is of the form:

u(n)(t) = f (t) + λ

h(t)∫
1(t)

K(t, s)u(s)ds,

where 1(t), h(t), f (t), λ and the kernel k(t, s) are as prescribed before. Integral equa-

tions and integro-differential equations will be classified into distinct types according

to the limits of integration and the kernel k(t, s). [41].
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Generals and fundamentals notions

1.1 Classifications of integral and integro differential equa-

tions

The most integral and integro-differential equations fall under two main classes namely

Fredholm and Volterra integral and integro differential equations.

1.1.1 Fredholm integral and integro differential equations

Fredholm integral equations: Fredholm integral equations arise in many scientific

applications. It was also shown that, this equation can be derived from boundary

value problems. Erik Ivar Fredholm (1866-1927) is best remembered for his work on

integral equations and spectral theory. Fredholm was a Swedish mathematician who

established the theory of integral equations and his 1903 paper in Acta Mathematica

played a major role in the establishment of operator theory (Wazwaz (2011)). The most

standard form of Fredholm linear integral equations is given by the following form

v(t)u(t) = f (t) + λ

b∫
a

K(t, s)u(s)ds, a ≤ t, s ≤ b, (1.1)

where the limit of integration a and b are constants and the unknown function u(t)

appears under the integral sign. Where k(t, s) is the kernel of the integral equation and

λ is a parameter. The Eq. (1.1) is called linear because the unknown function u(t) under

the integral sign occurs linearly, i.e. the power of u(t) is one.

The value of v(t) will give the following kinds of Fredholm integral equations:

If v(t) = 0, then Eq. (1.1) yields

f (t) = λ

b∫
a

K(t, s)y(s)ds, a ≤ t, s ≤ b,

7



Generals and fundamentals notions

which is called Fredholm integral equation of the first kind.

If the function v(t) = 1, then Eq. (1.1) becomes simply

u(t) = f (t) + λ

b∫
a

K(t, s)u(s)ds, a ≤ t, s ≤ b,

and this equation is called Fredholm integral equation of second kind.

If v(t) , 0, then Eq.(1.1) becomes Fredholm integral equations of third kind. Fredholm

integral equation is of the first kind if the unknown function u(t) appears only under

the integral sign.

Nonlinear Fredholm integral equations:

The nonlinear Fredholm integral equations of the second kind is given by the following

form

u(t) = f (t) + λ

b∫
a

K(t, s,u(s))ds, a ≤ t, s ≤ b.

Where the unknown function u(t) occurs inside and outside the integral sign, λ is a

parameter, and a and b are constants. For this type of equations, the kernel k and the

function f (t) are given real-valued functions.

Nonlinear Fredholm-Hammerstein integral equations:

Nonlinear Fredholm-Hammerstein integral equations is given by the form,

u(t) = f (t) + λ

b∫
a

K(t, s)F(s,u(s))ds, a ≤ t, s ≤ b,

Nonlinear Fredholm integro-differential equations:

The nonlinear Fredholm integro-differential equations is given by the following form,

u(n)(t) = f (t) +

b∫
a

K(t, s,u(s),u′(s), . . . ,u(n−1)(s))ds, u(k)(a) = bk, 0 ≤ k ≤ n − 1, (1.2)

8



Generals and fundamentals notions

where un(t) = dnu
dtn Because the resulted equation in (1.2) combines the differential

operator and the integral operator, then it is necessary to define initial conditions

u(0), u′(0), ...,un−1(0) for the determination of the particular solution u(t) of the equa-

tion (1.2). Any Fredholm integro-differential equation is characterized by the existence

of one or more of the derivatives u′(t), u′′(t), ... outside the integral sign. The Fredholm

integro-differential equations of the second kind appear in a variety of scientific appli-

cations such as the theory of signal processing and neural networks.

Nonlinear Fredholm-Hammerstein integro-differential equations:

The nonlinear Fredholm-Hammerstein integro-differential equations of the second kind

is of the form,

u(n)(t) = f (t) +

b∫
a

K(t, s)F(s,u(s),u′(s), . . . ,u(n−1)(s))ds,

1.1.2 Volterra integral and integro-differential equations

It is well known that linear and nonlinear Volterra integral equations arise in many sci-

entific fields such as the population dynamics, spread of epidemics, and semi-conductor

devices. Volterra started working on integral equations in 1884, but his serious study

began in 1896. The name integral equation was given by du Bois-Reymond in 1888.

However, the name Volterra integral equation was first coined by Lalesco in 1908 [41].

Volterra integral equations:

The standard form of linear Volterra integral equations, where the limits of integration

are functions of t rather than constants, are of the form,

v(t)u(t) = f (t) + λ

t∫
a

K(t, s)u(s)ds, a ≤ t, s ≤ b, (1.3)

where the unknown function u(t) under the integral sign occurs linearly as stated

before. It is worth noting that (1.3) can be viewed as a special case of Fredholm integral

9



Generals and fundamentals notions

equation when the kernel k(t, s) vanishes for s > t, t is in the range of integration [a, b].

As in Fredholm equations, Volterra integral equations fall under the following kinds,

depending on the value of v(t), namely:

First, when v(t) = 0, Eq. (1.3) becomes,

0 = f (t) + λ

t∫
a

K(t, s)u(s)ds, a ≤ t, s ≤ b,

and in this case the integral equation is called Volterra integral equation of the first

kind.

Secondly, when v(t) = 1, Eq. (1.3) becomes,

u(t) = f (t) + λ

t∫
a

K(t, s)u(s)ds, a ≤ t, s ≤ b,

and in this case the integral equation is called Volterra integral equation of the second

kind.

Thirdly, when v(t) , 0, Eq. (1.3) becomes Volterra integral equations of third kind.

Nonlinear Volterra integral equations:

The nonlinear Volterra integral equation of the second kind is represented by the form,

u(t) = f (t) + λ

t∫
a

K(t, s,u(s))ds

The nonlinear Volterra integral equation of the first kind is expressed in the form,

f (t) = λ

t∫
a

K(t, s,u(s))ds

Nonlinear Volterra-Hammerstein integral equations:

The nonlinear Volterra-Hammerstein integral equation of the second kind is repre-

10
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sented by the form,

u(t) = f (t) + λ

t∫
a

K(t, s)F(s,u(s))ds,

Volterra Integro-differential equations:

Volterra, in the early 1900, studied the population growth, where new type of equations

have been developed and was termed as integro-differential equations. In this type of

equations, the unknown function u(t) occurs in one side as an ordinary derivative, and

appears on the other side under the integral sign. Several phenomena in physics and

biology give rise to this type of integro-differential equations. Further, we point out

that an integro-differential equation can be easily observed as an intermediate stage

when we convert a differential equation to an integral equation in next section.

The Volterra integro-differential equation appeared after its establishment by Volterra.

It then appeared in many physical applications such as glass forming process, nanohy-

drodynamics, heat transfer, diffusion process in general, neutron diffusion and biolog-

ical species coexisting together with increasing and decreasing rates of generating, and

wind ripple in the desert. More details about the sources where these equations arise

can be found in physics, biology and engineering applications books (see, for example

Brunner [14], Volterra [39]. To determine the exact solution for the integro-differential

equation, the initial conditions should be given. The Volterra integro-differential equa-

tions can be converted to an integral equation by using Leibnitz rule .

Nonlinear Volterra integro-differential equations:

The nonlinear Volterra integro-differential equation of the second kind is in the form,

u(n)(t) = f (t) +

t∫
a

K(t, s,u(s),u′(s), . . . ,u(n−1)(s))ds, u(k)(a) = bk, 0 ≤ k ≤ n − 1

and the standard form of the nonlinear Volterra integro-differential equation of the first

kind is given by,
t∫

a

K(t, s,u(s),u′(s), . . . ,u(n−1)(s))ds = f (t),

11
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Nonlinear Volterra-Hammerstein integro-differential equations:

The nonlinear Volterra-Hammerstein integro-differential equation of the second kind

is in the form,

u(n)(t) = f (t) +

t∫
a

K(t, s)F(s,u(s),u′(s), . . . ,u(n−1)(s))ds, u(k)(a) = bk, 0 ≤ k ≤ n − 1

1.1.3 Volterra-Fredholm integral and integro-differential equations

Volterra-Fredholm integral equations: The Volterra-Fredholm integral equation, which

is a combination of disjoint Volterra and Fredholm integrals, appears in one integral

equation. The Volterra-Fredholm integral equations arise from the modelling of the

spatiotemporal development of an epidemic, from boundary value problems and from

many physical and chemical applications [41]. The standard form of the linear Volterra-

Fredholm integral equation is in the form,

u(t) = f (t) +

t∫
a

K1(t, s)u(s)ds +

b∫
a

K2(t, s)u(s)ds

where k1(t, s) and k2(t, s) are the kernels of the equation.

Nonlinear Volterra-Fredholm integral equations:

The standard form of the Nonlinear Volterra-Fredholm integral equation is in the form,

u(t) = f (t) +

t∫
a

K1(t, s,u(s))ds +

b∫
a

K2(t, s,u(s))ds

Nonlinear Volterra-Fredholm-Hammerstein integral equations:

The standard form of the Nonlinear Volterra-Fredholm-Hammerstein integral equation

12
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is in the form,

u(t) = f (t) +

t∫
a

K1(t, s)F(s,u(s))ds +

b∫
a

K2(t, s)G(s,u(s))ds

where k1(t, s) and k2(t, s) are the kernels of the equation.

Volterra-Fredholm integro-differential equations:

The Volterra-Fredholm integro-differential equation, which is a combination of disjoint

Volterra and Fredholm integrals and differential operator, may appear in one inte-

gral equation. The Volterra-Fredholm integro-differential equations arise from many

physical and chemical applications similar to the Volterra-Fredholm integral equations

[4, 5, 37, 38]. The standard form of the Volterra-Fredholm integro-differential equation

is in the form,

u(n)(t) = f (t) +

t∫
a

K1(t, s,u(s),u′(s), . . . ,u(n−1)(s))ds +

b∫
a

K2(t, s,u(s),u′(s), . . . ,u(n−1)(s))ds

Nonlinear Volterra-Fredholm-Hammerstein integro-differential equations:

u(n)(t) = f (t)+

t∫
a

K1(t, s)F(t, s,u(s),u′(s), . . . ,u(n−1)(s))ds+

b∫
a

K2(t, s,u(s),u′(s), . . . ,u(n−1)(s))ds

1.1.4 Singular integral equations

Volterra integral equations of the first kind,

f (t) = λ

h(t)∫
1(t)

K(t, s)u(s)ds

13
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or of the second kind

u(t) = f (t) + λ

h(t)∫
1(t)

K(t, s)u(s)ds

are called singular if one of the limit of integration 1(t), h(t) is infinite or the kernel k(t, s)

becomes unbounded at one or more points in the interval of integration. We focus on

concern on equation of the form:

u(t) = f (t) + λ

t∫
0

1
(t − s)α

u(s)ds, 0 ≤ α ≤ 1 (1.4)

or of the second kind

f (t) = λ

t∫
0

1
(t − s)α

u(s)ds, 0 ≤ α ≤ 1 (1.5)

The Eq. (1.4) and Eq.(1.5) are called generalized Abel’s integral equation and weakly

singular integral equations respectively.

On the other hand, the well known weakly singular Fredholm integral equations of the

form,

u(t) = f (t) +

1∫
0

k(t, s)u(s)ds, 0 ≤ α ≤ 1

where the singularity of kernel may be stated in the forms k(t, s) =
1

(t − s)α
or k(t, s) =

1
(1 − t)α

.

Definition 1.1.1 (The homogeneity property)

We set f (t) = 0 in Fredholm or Volterra integral and integro-differential equations as given in

the above, the resulting equations is called a homogeneous integral and integro-differential

equations, otherwise it is called nonhomogeneous or inhomogeneous integral and integro-

differential equations.
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Theorem 1.1.1 (Leibnits) Let f (x) be continuous [a, b],so:

∀x ∈ [a, b],

x∫
0

x1∫
0

...

xn−1∫
0

f (xn)dxn...dx1 =
1

(n − 1)!

x∫
a

(x − t)n−1 f (t)dt.

1.2 Systems integral and integro-differential equations

The most systems integral and integro-differential equations fall under two main classes

namely Fredholm and Volterra systems integral and integro-differential equations.

1.2.1 Systems of Fredholm integral and integro-differential Equa-

tions

Systems of Fredholm integral equations:

The systems of Fredholm integral equations appear in two kinds. The system of

Fredholm integral equations of the first kind reads


f1(x) =

b∫
a

(K1(x, t)u(t) + k1(x, t)v(t)) dt

f2(x) =
b∫

a
(K2(x, t)u(t) + k2(x, t)v(t)) dt

(1.6)

Where the unknown functions u(x) and v(x) appear only ender the integral sign, and a

and b are constants. However,for systems of Fredholm integral equations of the second

kind,the unknown functions u(x) and v(x) appear inside and outside the integral sign.

The second kind represented by the form:


u(x) = f1(x) +

b∫
a

(K1(x, t)u(t) + k1(x, t)v(t)) dt

v(x) = f2(x) +
b∫

a
(K2(x, t)u(t) + k2(x, t)v(t)) dt

(1.7)
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Systems of nonlinear Fredholm integral equations:

Systems of nonlinear Fredholm integral equations of the second kind is given by the

following form:


u(x) = f1(x) +

b∫
a

(K1(x, t)F1(u(t)) + k1(x, t)(F1(v(t))))dt

v(x) = f2(x) +
b∫

a
(K2(x, t)F2(u(t)) + k2(x, t)v(t))(F2(v(t)))dt

(1.8)

Systems of Fredholm integro-differential equations:

Systems of Fredholm integro-differential equations of the second kind given by


u(i)(x) = f1(x) +

b∫
a

(K1(x, t)(u(x)) + k1(x, t)(v(x))) dt

v(i)(x) = f2(x) +
b∫

a
(K2(x, t)(u(x)) + k2(x, t)v(x)) dt

(1.9)

The unknown functions u(x),v(x),....,that will be determined,occur inside the inte-

gral sign whereases the derivatives of u(x),v(x),....appear mostly outside the integral

sign.The kernels ki(x, t) and ki(x, t) ,and the function fi(x) are given real-valued functions.

Systems of nonlinear Fredholm integro-differential equations:

Systems of Nonlinear Fredholm integro-differential equations of the second kind given

by


u(i)(x) = f1(x) +

b∫
a

(K1(x, t)F1(u(x)) + k1(x, t)(F1(v(x))))dt

v(i)(x) = f2(x) +
b∫

a
(K2(x, t)F2(u(x)) + k2(x, t)v(t))(F2(v(x)))dt

(1.10)

1.2.2 Systems of Volterra integral and integro-differential equations

Systems of Volterra integral equations:

The systems of Volterra integral equations appear in two kinds. For systems of Volterra

integral equations of the first kind, the unknown functions appear only under the
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integral sign in the form:
f1(x) =

x∫
0

(
K1(x, t)u(t) + K̃1(x, t)v(t)

)
dt

f2(x) =
x∫

0

(
K2(x, t)u(t) + K̃2(x, t)v(t)

)
dt

(1.11)

However,systems of Volterra integral equations of the second kind, the unknown

functions appear inside and outside the integral sign in the form:
u(x) = f1(x) +

x∫
0

(
K1(x, t)u(t) + K̃1(x, t)v(t)

)
dt

v(x) = f2(x) +
x∫

0

(
K2(x, t)u(t) + K̃2(x, t)v(t)

)
dt

(1.12)

The kernels Ki(x, t) and ki(x, t),and the functions fi(x),i = 1, 2, . . . ,n are given real-

valued functions.

Systems of nonlinear Volterra integral equations:

Systems of nonlinear Volterra integral equations of the second kind are given by
u(x) = f1(x) +

x∫
0

(
K1(x, t)F1(u(t)) + K1(x, t)11(v(t))

)
dt

v(x) = f2(x) +
x∫

0

(
K2(x, t)F2(u(t)) + K2(x, t)12(v(t))

)
dt

(1.13)

The unknown functions u(x) and v(x), that will be determined, occur inside and outside

the integral sign. The kernels Ki(x, t) and Ki(x, t), and the functions fi(x) are given real-

valued functions, for i = 1, 2. The functions Fi and 1i, for i = 1, 2 are nonlinear functions

of u(x) and v(x).

And of the first kind are given by
f1(x) =

x∫
0

(K1(x, t)F1(u(t)) + K1(x, t)(F1(v(t))))dt

f2(x) =
x∫

0

(K2(x, t)F2(u(t)) + K2(x, t)F2(v(t))) dt
(1.14)
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Systems of Volterra integro-differential equations:

The systems of Volterra integro-differential equations the second kind by
u(i)(x) = f1(x) +

x∫
0

(K1(x, t)u(t) + k1(x, t)v(t)) dt

v(i)(x) = f2(x) +
x∫

0

(K2(x, t)u(t) + K2(x, t)v(t)) dt
(1.15)

The unknown functions u(x) and v(x),. . . , that will be determined, occur inside the

integral sign whereas derivatives of u(x) and v(x),. . . appear mostly outside the integral

sign. The kernels Ki(x, t) and Ki(x, t), and the functions fi(x) are given real-valued

functions.

And the standard form of the nonlinear Volterra integro-differential equations of the

first inside given by 
f1(x) =

x∫
0

(K1(x, t)u(t) + K1(x, t)v(t)) dt

f2(x) =
x∫

0

(K2(x, t)u(t) + K2(x, t)v(t)) dt
(1.16)

Systems of nonlinear Volterra integro-differential equations:

Systems of nonlinear Volterra integro-differential equations of the second kind are given

by 
u(i)(x) = f1(x) +

x∫
0

(K1(x, t)F1(u(t)) + K1(x, t)F1(v(t))) dt,

v(i)(x) = f2(x) +
x∫

0

(K2(x, t)F2(u(t)) + K2(x, t)F2(v(t))) dt,
(1.17)

And of the first kind are given by
f1(x) =

x∫
0

(K1(x, t)F1(u(t)) + K1(x, t)F1(v(t))) dt,

f2(x) =
x∫

0

(K2(x, t)F2(u(t)) + K2(x, t)F2(v(t))) dt,
(1.18)
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1.2.3 Systems of singular integral equations

Systems of singular integral equations of the first kind,
f1(x) =

x∫
0

(K11(x, t)u(t) + K12(x, t)v(t)) dt,

f2(x) =
x∫

0

(K21(x, t)u(t) + K22(x, t)v(t)) dt,
(1.19)

or of the second kind
u(x) = f1(x) +

x∫
0

(K11(x, t)u(t) + K12(x, t)v(t)) dt,

v(x) = f2(x) +
x∫

0

(K21(x, t)u(t) + K22(x, t)v(t)) dt,
(1.20)

Were the kernels Ki j are singular kernrls given by

Ki j =
1

(x − t)αi j , 1 ≤ i, j ≤ 2.

The system (1.19) and the system (1.20) are called the system of the generalized Abel

singular integral equations and the system of the weakly generalized singular integral

equations respectively. For αi j = 1
2 , the system (1.19) is called the system of the Abel

singular integral equations.

1.3 Conversion of differential equations to integral equa-

tions

In general, the initial values problems (IVP) can be transformed to Volterra integral

equations, and the boundary values problems (BVP) can be transformed to Fredholm

integral equations and virse versa
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1.3.1 IVP to Volterra integral equations:

In this section, we will study the technique that will convert an initial value problem

(IVP) to an equivalent Volterra integral equation and Volterra integro-differential equa-

tion as well [41]. For simplicity reasons, we will apply this process to a second order

initial value problem given by

u′′(t) + p(t)u′(t) + q(t)u(t) = 1(t) (1.21)

u(0) = α,u′(0) = β

where α and β are constants. The functions p(t) and q(t) are analytic functions, and 1(t)

is continuous through the interval of discussion. To achieve our goal we first set

u′′(t) = v(t), (1.22)

where v(t) is a continuous function. Integrating both sides of (1.22) from 0 to t yields

u′(t) − u′(0) =

t∫
0

v(s)ds

or equivalently

u′(t) = β +

t∫
0

v(s)ds (1.23)

Integrating both sides of (1.23) from 0 to t yields

u(t) − u(0) = βt +

t∫
0

s∫
0

v(r)drds

or equivalently

u(t) = α + βt +

t∫
0

(t − s)v(s)ds (1.24)
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obtained upon using the formula that reduce double integral to a single integral that

was discussed in the next section. Substituting (1.22), (1.23), and (1.24) into the initial

value problem (1.21) yields the Volterra integral equation:

v′′(t) + p(t)

β +

t∫
0

v(s)ds

 + q(t)

α + βt +

t∫
0

(t − s)v(t)dt

 = 1(t).

The last equation can be written in the standard Volterra integral equation form:

v(t) = f (t) +

t∫
0

k(t, s)v(s)ds, (1.25)

where

k(t, s) = p(t) + q(t)(t − s),

and

f (t) = 1(t) −
[
βp(t) + αq(t) + βtq(t)

]
.

It is interesting to point out that by differentiating Volterra equation (1.25) with respect

to t, using Leibnitz rule, we obtain an equivalent Volterra integro-differential equation

in the form:

u′(t) + k(t, t) = f ′(t) −

t∫
0

∂k(t, s)
∂t

u(s)ds, u(0) = f (0)

The technique presented above to convert initial value problems to equivalent Volterra

integral equations can be generalized by considering the general initial value problem:

u(n)(t) + a1un−1 + ... + an−1u
′

+ anu = 1(t) (1.26)

subject to the initial conditions

u(0) = c0,u′(0) = c1,u′′(0) = c2, ...,un−1 = cn−1.
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Let v(t) be a continuous function on the interval of discussion, and we consider the

transformation:

u(n)(t) = v(t). (1.27)

Integrating both sides with respect to t gives

u(n−1)(t) = cn−1 +

t∫
0

v(t)dt.

Integrating again both sides with respect to t yields

u(n−2)(t) = cn−2 + cn−1t +

t∫
0

t∫
0

u(s)dsds

= cn−2 + cn−1t +

t∫
0

(t − s)u(s)ds,

obtained by reducing the double integral to a single integral. Proceeding as before we

find

u(n−3)(t) = cn−3 + cn−2t +
1
2

cn−1t2 +

t∫
0

t∫
0

t∫
0

v(s)dsdsds

= cn−3 + cn−2t +
1
2

cn−1t2 +
1
2

t∫
0

(t − s)2v(s)ds.

Continuing the integration process leads to

u(t) =

n−1∑
k=0

ck

k!
tk +

1
(n − 1)!

t∫
0

(t − s)n−1v(s)ds. (1.28)

Substituting (1.27) (1.28) into (1.26) gives

u(t) = f (t) +

t∫
0

k(t, s)v(s)ds, (1.29)

22



Generals and fundamentals notions

where

k(t, s) =

n∑
k=1

an

k − 1!
(t − s)k

− 1,

and

f (t) = 1(t) −
n∑

j=1

a j

 j∑
k=1

cn − k
( j − k)!

t j

 .
Notice that the Volterra integro-differential equation can be obtained by differentiating

(1.29).

The following examples will highlight the process to convert initial value problem to

an equivalent Volterra integral equation.

1.3.2 BVP to Fredholm integral equations:

In this section, we will convert a boundary value problem to an equivalent Fredholm

integral equation. The method is similar to the method that was presented in the above

section for converting Volterra equation to IVP, with the exception that boundary con-

ditions will be used instead of initial values. In this case we will determine another

initial condition that is not given in the problem. The technique requires more work

if compared with the initial value problems when converted to Volterra integral equa-

tions. Without loss of generality, we will present two specific distinct boundary value

problems (BVPs) to derive two distinct formulas that can be used for converting BVP

to an equivalent Fredholm integral equation [41].

Type I: We first consider the following boundary value problem:

u′′(t) + 1(t)u(t) = h(t), 0 ≤ t ≤ 1, (1.30)

with the boundary conditions:

u(0) = α, u(1) = β.
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We start as in the previous section and set

u′′(t) = v(t). (1.31)

Integrating both sides of (1.31) from 0 to t we obtain

t∫
0

u′′(s)ds =

t∫
0

v(s)ds,

that gives

u′(t) = u′(0) +

t∫
0

v(s)ds, (1.32)

where the initial condition u′(0) is not given in a boundary value problem. The condition

u′(0) will be determined later by using the boundary condition at t = 1. Integrating

both sides of (1.32) from 0 to t gives

u(t) = u(0) + tu′(0) +

t∫
0

t∫
0

v(s)dsds,

or equivalently

u(t) = α + tu′(0) +

t∫
0

(t − s)v(s)ds, (1.33)

obtained upon using the condition u(0) = α and by reducing double integral to a single

integral. To determine u′(0), we substitute t = 1 into both sides of (1.30) and using the

boundary condition at u(1) = β we find

u(1) = α + u′(0) +

1∫
0

(1 − s)v(s)ds,

that gives

β = α + u′(0) +

1∫
0

(1 − s)v(s)ds.
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This in turn gives

u′(0) = β − α −

1∫
0

(1 − s)v(s)ds. (1.34)

Substituting (1.34) into (1.33) gives

u(t) = α + (β − α)t −

1∫
0

t(1 − s)v(s)ds +

t∫
0

(t − s)v(s)ds. (1.35)

Substituting (1.31) and (1.35) into (1.30) yields

u(t) + α1(t) + (β − α)t1(t) −

1∫
0

t1(t)(1 − s)v(s)ds +

t∫
0

1(t)(t − s)v(s)ds = h(t).

Hence, by using Chasles formula, we obtain

v(t) = h(t)−α1(t)−(β−α)t1(t)−

t∫
0

1(t)(t−s)v(s)ds−t1(t)


t∫

0

(1 − s)v(s)ds +

1∫
t

(1 − s)v(s)ds

 ,
that gives

v(t) = f (t) +

t∫
0

s(1 − t)v(s)ds +

1∫
t

t(1 − s)1(t)v(s)ds, (1.36)

that leads to the Fredholm integral equation:

v(t) = f (t) +

1∫
0

k(t, s)v(s)ds, (1.37)

where

f (t) = h(t) − α1(t) − (β − α)t1(t),
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and the kernel k(t, s) is given by

k(t, s) =


s(1 − t)1(t), f or 0 ≤ s ≤ t,

s(1 − s)1(t), f or t ≤ s ≤ 1.

An important conclusion can be made here. For the specific case where u(0) = u(1) = 0

which means that α = β = 0, it is clear that f (t) = h(t) in this case. This means

that the resulting Fredholm equation in (1.37) is homogeneous or inhomogeneous if

the boundary value problem in (1.30) is homogeneous or inhomogeneous respectively

when α = β = 0.

Type II: We next consider the following boundary value problem:

problem:

u′′(t) + 1(t)u(t) = h(t), 0 ≤ t ≤ 1 (1.38)

with the boundary conditions:

u(0) = α1, u′(1) = β1.

we again set

u′′(t) = v(t) (1.39)

Integrating both sides of (1.36) from 0 to t we obtain

t∫
0

u′′(s)ds =

t∫
0

v(s)ds,

that gives

u′(t) = u′(0) +

t∫
0

v(s)ds (1.40)
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where the initial condition u′(0) is not given in a boundary value problem. The condition

u′(0) will be derived later by u′(1) = β1 . Integrating both sides of (1.40) from 0 to t gives

u(t) = u(0) + tu′(0) +

t∫
0

t∫
0

v(s)dsds,

or equivalently

u(t) = α1 + tu′(0) +

t∫
0

(t − s)v(s)ds, (1.41)

obtained upon using the condition u(0) = α1 and by reducing double integral to a single

integral. To determine u′(0), we first differentiate (1.41) with respect to t to get

u′(t) = u′(0) +

t∫
0

v(s)ds, (1.42)

where by substituting t = 1 into both sides of (1.42) and using the boundary condition

at u′(1) = β1 we find

u′(t) = β1 +

t∫
0

v(s)ds,

This in turn gives

u′(1) = u′(0) +

1∫
0

v(s)ds. (1.43)

Using (1.43) into (1.41) gives

u′(0) = β1 −

1∫
0

v(s)ds, (1.44)
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Substituting (1.39) and (1.44) into (1.38) yields

v(t) + α11(t) + β1t1(t) −

1∫
0

t1(s)v(s)ds +

t∫
0

1(t)(t − s)v(s)ds = h(t)

Hence, by using Chasles formula, we obtain

v(t) = h(t) − (α1 + β1t)1(t) + t1(t)


t∫

0

v(s)ds +

1∫
t

v(s)ds

 − 1(t)
t∫

0

(t − s)v(s)ds.

The last equation can be written as

v(t) = f (t) +

t∫
0

s1(t))v(s)ds +

1∫
t

t1(t)v(s)ds,

that leads to the Fredholm integral equation:

u(t) = f (t) +

1∫
0

k(t, s)u(s)ds, (1.45)

where

f (t) = h(t) − (α1 + β1t)1(t),

and the kernel k(t, s) is given by

k(t, s) =


s1(t), f or 0 ≤ s ≤ t,

t1(t), f or t ≤ s ≤ 1.

An important conclusion can be made here. For the specific case where u(0) = u′(1) = 0

which means that α1 = β1 = 0, it is clear that f (t) = h(t) in this case. This means that

the resulting Fredholm equation in (1.45) is homogeneous or inhomogeneous if the

boundary value problem in (1.38) is homogeneous or inhomogeneous respectively.
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1.4 Conversion of Volterra integro-differential equations

to Volterra integral equation

The following Volterra integro-differential equation

u(n)(t) = f (t) + λ

t∫
0

K(t, s)u(s)ds, u(k)(0) = bk, 0 ≤ k ≤ n − 1, (1.46)

can also be solved by converting it to an equivalent Volterra integral equation. It is

obvious that the Volterra integro-differential equation (1.46) involves derivatives at the

left side, and integral at the right side. To perform the conversion process, we need

to integrate both sides n times to convert it to a standard Volterra integral equation.

Firstly, Integration of derivatives: from calculus we observe the following:

t∫
0

u′(s)ds = u(t) − u(0),

t∫
0

t1∫
0

u′′(s)dsdt1 = u(t) − tu′(0) − u(0),

t∫
0

t1∫
0

t2∫
0

u′′′(s)dsdt1dt2 = u(t) −
1
2

t2u′′(0) − tu′(0) − u(0),
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and so on for other derivatives.

Secondly, Reducing multiple integrals to a single integral as follows,

x∫
0

x1∫
0

u(t)dtdx1 =

x∫
0

(x − t)u(t)dt,

x∫
0

x1∫
0

(x − t)u(t)dtdx1 =
1
2

x∫
0

(x − t)2u(t)dt,

x∫
0

x1∫
0

(x − t)2u(t)dtdx1 =
1
3

x∫
0

(x − t)3u(t)dt

x∫
0

x1∫
0

(x − t)3u(t)dtdx1 ==
1
4

x∫
0

(x − t)4u(t)dt

and so on. This can be generalized in the form

x∫
0

x1∫
0

...

xn−1∫
0

(x − t)u(t)dtdxn−1...dx1 =
1

(n)!

t∫
0

(t − s)nu(t)dt,

The conversion to an equivalent Volterra integral equation will be illustrated by study-

ing the following examples.

Example 1.4.1 Convert the following Volterra integro-differential equation to an Volterra

integral equation:

u′(x) = 1 +

x∫
0

u(t)dt, u(0) = 0

Integrating both sides from 0 to x, and using the aforementioned formulas we find

u(x) − u(0) = x +

x∫
0

x1∫
0

u(t)dtdx1
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Using the initial condition gives the Volterra integral equation

u(x) = x +

x∫
0

(x − t)u(t)dt

1.5 Existence and uniqueness of the solution

Consider the nonlinear Volterra integro-differential equation (NVIDE)

y(n)(x) = f (x) +

x∫
0

K(x, t, y(t))ds, x ∈ [0, b] (1.47)

with n initial conditions

u(k)(0) = αk, 0 ≤ k ≤ n − 1,

f and K are given smooth functions.

In this section, the existence and uniqueness of the solution for Eq. (1.47) are presented.

First we give the following theorem from [?].

Theorem 1.5.1 Consider the following nonlinear Volterra integral equations

y(x) = f (x) +

t∫
0

k(x, t, y(t))dt, (1.48)

Assume that

(i) f (x) is continuous ,

(ii) k(x, t, y(t)) is a continuous function for 0 ≤ t ≤ s ≤ b and −∞ ≤ | y| ≤ ∞,

(iii) the kernel satisfies the Lipschitz condition

|k(x, t, y1) − k(x, t, y2)| ≤ L|y1 − y2|. (1.49)
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wherer L is independent of t, t, y1 and y2. Then the Eq. (1.47) has a unique continuous

solution in 0 ≤ t ≤ b.

Now we consider some cases of the integro-differential equations and investigate exis-

tence and uniqueness of the solutions of them.

Corollary 1.5.1

y′(x) = f (x) +

x∫
0

K(x, t, y(t))dt, (1.50)

with initial condition y(0) = α where f and K are continuous functions and K satisfies the

Lipschitz condition

| K(x, t, y1) − K(x, t, y2)| ≤ L| y1 − y2| . (1.51)

Then this problem has a unique continuous solution.

Proof. Equation (1.50) transformed to the following Volterra integral equation

y(s) = α +

x∫
0

H(s, y(s))ds, (1.52)

where H(s, y(s)) = f (s) +
s∫

0
K(s, t, y(t))dt,

which is in the form of Eq.(1.48), where obviously α and H(s, y(s)) are continuous.

Therefore, for the existence and uniqueness of a continuous solution of the Eq.(1.50)

it is sufficient to show that Eq. (1.52) satisfies the Lipschitz condition. To this end, we
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have

‖H(s, y1(s)) −H(s, y2(s))‖ = ‖

s∫
0

(K(s, t, y1(t)) − K(s, t, y2(t)))dt‖

≤ L1‖y1 − y2‖

s∫
0

dt

≤ L1b‖y1 − y2‖.

So by Theorem (1.5.1), the Eq. (1.50) has a unique continuous solution.

Corollary 1.5.2

y′(x) + cy(x) = f (x) +

x∫
0

K(x, t, y(t))dt, (1.53)

with initial condition y(0) = α ,the f and K are continuous (1.51) then the equation (1.53) with

given condition has a unique continuous solution.

Proof. Equation (1.53) transformed to the following Volterra integral equation

y(s) = α +

x∫
0

H(s, y(s)), (1.54)

where H(s, y(s)) = f (s) + −cy(s) +
s∫

0
K(s, t, y(t))dt, similar to the previous corollary we

only investigate the Lipschitz condition. To this end, we have

‖H(s, y1(s)) −H(s, y2(s))‖ = ‖c[y1(s) − y2(s)] +

s∫
0

(K(s, t, y1(t)) − K(s, t, y2(t)))dt‖

≤ |c|‖y1 − y2‖ + L1‖y1 − y2‖

s∫
0

dt

≤ (c + bL1)‖y1 − y2‖.

Again, by Theorem (1.5.1), the Eq. (1.53) has a unique continuous solution.
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Corollary 1.5.3

y′′(x) + c1y(x) + c2y(x) = f (x) +

x∫
0

K(x, t, y(t))dt, (1.55)

with initial condition y(0) = α, y′(0) = β ,the f and K are continuous (1.51) Then the mentioned

problem has a unique continuous solution.

Proof. With the same manner, Volterra integro-differential equation(1.55) by converting

it to the following Volterra integral equation

y(s) = α + (β − c1α)z +

x∫
0

H(s, y(s))dx.

where H(s, y(s)) = −cy(s) +
x∫

0

(
f (s) − c2y(s) +

s∫
0

K(s, t, y(t))dt
)

ds, then we obtain

‖H(s, y1(s)) −H(s, y2(s))‖

= ‖c1[y2(s) − y1(s)] +

x∫
0

c2(y2(s) − y1(s)) +

s∫
0

(K(s, t, y1(t)) − K(s, t, y2(t))dt)

 ds‖

≤ |c1|‖y1 − y2‖ + b|c2|‖y1 − y2‖ + L1‖y1 − y2‖

x∫
0

s∫
0

dtds

≤ (|c1| + b|c2| + b2L1)‖y1 − y2‖.

Similar to previous cases, by Theorem (1.5.1), the Eq. (1.55) has a unique continuous

solution.

The same conclusion can be drawn for the following Volterra integro-differential equa-

tion of order n

yn(x) +

x∫
0

K(x, t, y(t))ds = f (x), x ∈ [0, b]
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with conditions yi(0) = αi, i = 0, 1, ...,n − 1, and similar to the previous corollaries we

can convert this problem to an equation of the form (1.47).

1.6 Piecewise polynomial spaces

Let:

Ih = {tn = t(N)
n : 0 = t(N)

0 < t(N)
1 < ... < t(N)

N = T}

denote a mesh (or: grid) on the given interval I = [0,T]. Define the subintervals

δ(N)
n =

[
t(N)
n , t(N)

n+1

]
Definition 1.6.1 For a given mesh Ih the piecewise polynomial space S(d)

µ (Ih) with

µ ≥ 0,−1 ≤ d ≤ µ , is given by

S(d)
µ (Ih) = {υ ∈ Cd(I) : υ|σn ∈ πµ(0 ≤ n ≤ N − 1)}

Here , πµ denotes the space of (real) polynomials of degree not exceeding µ .

It is readily verified that S(d)
µ (Ih) is a (real) linear vector space whose dimension is given by

dim S(d)
µ (Ih) = N(µ − d) + d + 1

1.7 Review of basic discrete Gronwall-type inequalities

We give general results of discrete Gronwall-type inequalities. We will need the fol-

lowing discrete Gronwall-type inequalities.

Lemma 1.7.1 [14] Let {k j}
n
j=0 be a given non-negative sequence and the sequence {εn} satisfies

ε0 ≤ p0 and

εn ≤ p0 +

n−1∑
i=0

kiεi, n ≥ 1,
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with p0 ≥ 0. Then εn can be bounded by

εn ≤ p0 exp

 n−1∑
j=0

k j

 , n ≥ 1.

Lemma 1.7.2 [1] If { fn}n≥0, {1n}n≥0 and {εn}n≥0 are nonnegative sequences and

εn ≤ fn +

n−1∑
i=0

1iεi, n ≥ 0.

Then,

εn ≤ fn +

n−1∑
i=0

fi1i exp

 n−1∑
k=0

1k

 , n ≥ 0.
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2.1 Introduction

In this chapter, we study a numerical method for the solution of Volterra integral

nonlinear equations with (constant)delay τ > 0,

x(t) = f (t) +

∫ t

0
k1(t, s, x(s))ds +

∫ t−τ

0
k2(t, s, x(s))ds, t ∈ I = [0,T], (2.1)

with x(t) = Φ(t), t ∈ [−τ, 0]. where the functions f , k1, k2 and Φ are sufficiently smooth.

Equation (2.1) is frequently encountered in physical and biological modeling processes

(e.g. [7, 23]). The monograph [13] presents a historical survey of mathematical models

in biology, which can be described by Volterra integral equations with constant delays.

The numerical solutions of Volterra integral equations have been investigated by many

authors (see, for example, [3, 16, 15, 13, 12, 11, 19, 20, 25, 32]). Ali et al. [3] proposed a

spectral method for pantograph-type delay integral equations by using Legendre collo-

cation method. Brunner [13] applied the polynomial collocation method to approximate

the solution of (2.1). Caliò et al. [19, 20] proposed a deficient spline collocation method

and Horvat [25] used the spline collocation method to find a numerical solution of (2.1)

in the spline space S(d)
m+d(ΠN).

The Taylor polynomial method for approximating the solution of integral equations

has been proposed. Bellour and Rawashdeh [6] used Taylor method to find an ap-

proximate solution for first kind integral equations. Darania and Ivaz [24], Maleknejad

and Mahmoudi [28], Sezer and Gülsu [35] applied Taylor method to certain linear and

nonlinear Volterra integral equations.

This chapter is concerned with piecewise polynomial collocation method based on the

use of Lagrange polynomials. Our goal is to develop an iterative explicit solution to

approximate the solution of Volterra integral equation with a constant delay (2.1).

The main advantages of the current collocation method are:

1) A more direct and convergent algorithm is introduced to compute the approximation

solution and this provides an explicit numerical solution of the equation (2.1) which is

a basic motivation for using an iterative collocation method.
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2) In the current method, there is no algebraic system needed to be solved, which makes

the proposed algorithm very effective, easy to implement and the calculation cost low.

The chapter is organized as follows. In section 2, we divide the interval [0,T] into subin-

tervals, and we approximate the solution of (2.1) in each interval by using Lagrange

polynomials. Global convergence is established in section 3, and three numerical ex-

amples are provided in section 4. In the last section, we give a conclusion.

2.2 Description of the collocation method

Let ΠN be a uniform partition of the interval I = [0,T] defined by ti
n = iτ + nh, i =

0, ..., r − 1, n = 0, ...,N − 1, where the stepsize is given by
τ
N

= h and
T
r

= τ. Let

the collocation parameters be 0 ≤ c1 < ...... < cm ≤ 1 and the collocation points be

ti
n, j = ti

n + c jh, j = 1, ...,m, i = 0, ..., r − 1,n = 0, ...,N − 1. Define the subintervals

σi
n = [ti

n, ti
n+1], and σi

N−1 = [ti
N−1, t

i
N].

Moreover, denote by πm the set of all real polynomials of degree not exceeding m.

We define the real polynomial spline space of degree m as follows:

S(−1)
m−1(I,ΠN) = {u : un = u|σi

n
∈ πm−1,n = 0, ..,N − 1, i = 0, ..., r − 1}.

This is the space of piecewise polynomials of degree at most m. Its dimension is rNm.

It holds for any y ∈ Cm([0,T]) that

y(ti
n + sh) =

m∑
j=1

L j(s)y(ti
n, j) + εn(s), εn(s) = hm ym(ζn)(s)

m!

m∏
j=1

(s − c j), (2.2)

where s ∈ [0, 1] and L j(v) =
m∏

l, j

v − cl

c j − cl
are the Lagrange polynomials associate with the

parameters c j, j = 1, ...,m.
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Inserting (2.2) into (2.1), we obtain for each j = 1, ...,m, i = 0, ..., r − 1,n = 0, ...,N − 1

x(ti
n, j) = f (ti

n, j) + h
i−1∑
l=0

N−1∑
p=0

m∑
v=1

bvk1(ti
n, j, t

l
pv, x(tl

p,v)) + h
n−1∑
p=0

m∑
v=1

bvk1(ti
n, j, t

i
pv, x(ti

pv))

+ h
m∑

v=1

a j,vk1(ti
n, j, t

i
n,v, x(ti

n,v)) + h
i−2∑
l=0

N−1∑
p=0

m∑
v=1

bvk2(ti
n, j, t

l
p,v, x(tl

p,v))

+ h
n−1∑
p=0

m∑
v=1

bvk2(ti
n, j, t

i−1
p,v , x(ti−1

p,v )) + h
m∑

v=1

a j,vk2(ti
n, j, t

i−1
n,v , x(ti−1

n,v ))

+ o(hm),

(2.3)

such that a j,v =
∫ c j

0
Lv(η)dη and bv =

∫ 1

0
Lv(η)dη.

It holds for any u ∈ S−1
m−1(I,ΠN) that

u(ti
n + sh) =

m∑
j=1

L j(s)u(ti
n, j), s ∈ [0, 1]. (2.4)

Now, we approximate the exact solution x by u ∈ S−1
m−1(I,ΠN) such that u(ti

n, j) satisfy the

following nonlinear system,

u(ti
n, j) = f (ti

n, j) + h
i−1∑
l=0

N−1∑
p=0

m∑
v=1

bvk1(ti
n, j, t

l
pv,u(tl

p,v)) + h
n−1∑
p=0

m∑
v=1

bvk1(ti
n, j, t

i
pv,u(ti

pv))

+ h
m∑

v=1

a j,vk1(ti
n, j, t

i
n,v,u(ti

n,v)) + h
i−2∑
l=0

N−1∑
p=0

m∑
v=1

bvk2(ti
n, j, t

l
p,v,u(tl

p,v))

+ h
n−1∑
p=0

m∑
v=1

bvk2(ti
n, j, t

i−1
p,v ,u(ti−1

p,v )) + h
m∑

v=1

a j,vk2(ti
n, j, t

i−1
n,v ,u(ti−1

n,v )),

(2.5)

for v = 1, ...,m, n = 0, ...,N − 1, i = 0, ..., r − 1, with u(t) = φ(t) on [−τ, 0].

Since the above system is nonlinear, we will use an iterative collocation solution uq
∈

S−1
m−1(I,ΠN), q ∈N, to approximate the exact solution of (2.1) such that

uq(ti
n + sh) =

m∑
j=1

L j(s)uq(ti
n, j), s ∈ [0, 1]. (2.6)
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where the coefficients uq(ti
n, j) are given by the following formula:

uq(ti
n, j) = f (ti

n, j) + h
i−1∑
l=0

N−1∑
p=0

m∑
v=1

bvk1(ti
n, j, t

l
pv,u

q(tl
p,v))

+ h
n−1∑
p=0

m∑
v=1

bvk1(ti
n, j, t

i
pv,u

q(ti
pv)) + h

m∑
v=1

a j,vk1(ti
n, j, t

i
n,v,u

q−1(ti
n,v))

+ h
i−2∑
l=0

N−1∑
p=0

m∑
v=1

bvk2(ti
n, j, t

l
p,v,u

q(tl
p,v)) + h

n−1∑
p=0

m∑
v=1

bvk2(ti
n, j, t

i−1
p,v ,u

q(ti−1
p,v ))

+ h
m∑

v=1

a j,vk2(ti
n, j, t

i−1
n,v ,u

q(ti−1
n,v ))

(2.7)

such that the initial values u0(ti
n, j) ∈ J (J is a bounded interval).

The above formula is explicit and the approximate solution uq is given without needed

to solve any algebraic system.

In the next section, we will prove the convergence of the approximate solution uq to the

exact solution x of (2.1), moreover, the order of convergence is m for all q ≥ m.

2.3 Convergence analysis

In this section, we assume that the functions k1 and k2 satisfy the Lipschitz condition

with respect to the third variable: there exist Li ≥ 0 (i = 1, 2) such that

|ki(t, s, y1) − ki(t, s, y2)| ≤ Li|y1 − y2|.

The following result gives the existence and the uniqueness of a solution for the

nonlinear system (2.5), moreover this solution is bounded.

Lemma 2.3.1 For sufficiently small h, the nonlinear system (2.5) has a unique solution u ∈

S−1
m−1. Moreover, the function u is bounded.

Proof. Claim 1. The nonlinear system (2.5) has a unique solution in ∈ S−1
m−1.
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We will use the induction combined with the Banach fixed point theorem.

(i) On the interval σ0
0 = [t0

0, t
0
1],

for j = 1...m,where x(t) = Φ(t) for t ∈ [−τ, 0],.

u(t0
0, j) = f (t0

0, j) + h
m∑

v=1

a j,vk1(t0
0, j, t

0
0,v,u(t0

0,v)) + h
m∑

v=1

a j,vk2(t0
0, j, t

0
0,v − τ, φ(t0

0,v))

We put :F0
0 : Rm

→ Rm f or j = 1...m so

F0
0, j(x) = f (t0

0, j) + h
m∑

v=1

a j,vk1(t0
0, j, t

0
0,v, xv) + h

m∑
v=1

a j,vk2(t0
0, j, t

0
0,v − τ, φ(t0

0,v)),

from Banach fixed point theorem, we have

‖F0
0(x)−F0

0(y)‖≤ hL1‖x− y‖ so u is exists and unique on σ0
0 for h is sufficiently small

(ii) Suppose that u exists and unique on each interval σl
k, l = 0, ...., i− 1, k = 0, ...,N − 1

and we show that u exists and unique on σi
n = [ti

n, ti
n+1], j = 1, ...,m, due to (2, 5).

Hence,

Fi
n, j(x) = f (ti

n, j)+h
i−1∑
l=0

N−1∑
p=0

m∑
v=1

bvk1(ti
n, j, t

l
pv,u(tl

p,v)) + h
n−1∑
p=0

m∑
v=1

bvk1(ti
n, j, t

i
pv,u(ti

pv))

+ h
m∑

v=1

a j,vk1(ti
n, j, t

i
n,v, xv) + h

i−2∑
l=0

N−1∑
p=0

m∑
v=1

bvk2(ti
n, j, t

l
p,v,u(tl

p,v))

+ h
n−1∑
p=0

m∑
v=1

bvk2(ti
n, j, t

i−1
p,v ,u(ti−1

p,v )) + h
m∑

v=1

a j,vk2(ti
n, j, t

i−1
n,v ,u(ti−1

n,v ))

whenever, i = 0....r − 1,n = 0...N − 1, j = 1...m, we have

‖Fi
n, j(x) − Fi

n, j(y)‖≤ hL1‖x − y‖

so u exists and unique for all σi
n and h is sufficiently small.
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Claim 2. The solution u is bounded.

by using (2.5), with the functions k1, k2 satisfies the Lipschitz condition with respect to

the third variable, we obtain

∣∣∣∣u(ti
n, j)

∣∣∣∣ ≤ α + hL1

i−1∑
l=0

N−1∑
p=0

m∑
v=1

bv

∣∣∣u(tl
p,v)

∣∣∣ + hL2

i−2∑
l=0

N−1∑
p=0

m∑
v=1

bv

∣∣∣u(tl
p,v)

∣∣∣
+ hL1

n−1∑
p=0

m∑
v=1

bv

∣∣∣u(ti
pv)

∣∣∣ + hL2

n−1∑
p=0

m∑
v=1

bv

∣∣∣u(ti−1
p,v ))

∣∣∣
+ hL1

m∑
v=1

a j,v

∣∣∣u(ti
n,v)

∣∣∣ + hL2

m∑
v=1

a j,v

∣∣∣u(ti−1
n,v ))

∣∣∣ ,
we put α =

∣∣∣∣∣∣ f ∣∣∣∣∣∣ + (τ + T + h)(||k1|| + ||k2||) let yi
n = max{u(ti

n,P), p = 1....m}, we have

yi
n − hL1yi

n ≤ α + hL1

i−1∑
l=0

N−1∑
p=0

yl
p + hL2

i−2∑
l=0

N−1∑
p=0

yl
p

+ hL2

n−1∑
p=0

yi−1
p + hL2yi−1

n + hL1

n−1∑
p=0

yi
p

≤ α + h(L1 + 3L2)
i−1∑
l=0

N−1∑
p=0

yl
p + hL1

n−1∑
p=0

yi
p

Hence, for all h ∈ (0,
1

2L1
], we have

yi
n ≤ 2α + hL3

i−1∑
l=0

N−1∑
p=0

yl
p + hL4

n−1∑
p=0

yi
p,

where L3 = 6L2 + 2L1 and L4 = 2L1 Then, by Lemma 1.7.1, we obtain

yi
n ≤ (2α + hL3

i−1∑
l=0

N−1∑
p=0

yl
p) exp(τL4)

≤ α2 + hL5

i−1∑
l=0

N−1∑
p=0

yl
p

We put zi
n = max{yi

n,n = 0....N − 1},we have
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zi
≤ α2 + hL5

i−1∑
l=0

Nzl

Therefore, by Lemma (1.7.1), we obtain

zi
≤ α2 exp(TL5)

So (u(ti
n, j)) is bounded The following result gives the convergence of the approximate

solution u to the exact solution x.

Theorem 2.3.1 Let f , k1, k2 and Φ be m times continuously differentiable on their respective

domains. Then for sufficiently small h, the collocation solution u converge to the exact solution

x, and the resulting error function e := x − u satisfies:

‖e‖L∞(I) ≤ Chm,

where C is a finite constant independent of h.

Proof. we calculate the error between x and the approximate solution u for v = 1.2...m

, n = 0.1.2......N − 1 , i = 0...r − 1

Using the expression ((2, 3)) and ((2, 5)), and setting e := x − u is the collocation error

then

|e(ti
n, j)| ≤ hL1

i−1∑
l=0

N−1∑
p=0

m∑
v=1

bv

∣∣∣e(tl
p,v)

∣∣∣ + hL2

i−2∑
l=0

N−1∑
p=0

m∑
v=1

bv

∣∣∣e(tl
p,v)

∣∣∣
+ hL1

n−1∑
p=0

m∑
v=1

bv

∣∣∣e(ti
pv)

∣∣∣ + hL2

n−1∑
p=0

m∑
v=1

bv

∣∣∣e(ti−1
p,v ))

∣∣∣
+ hL1

m∑
v=1

a j,v

∣∣∣e(ti
n,v)

∣∣∣ + hL2

m∑
v=1

a j,v

∣∣∣e(ti−1
n,v ))

∣∣∣ ,
44



Collocation Iterative Method for Solving Nonlinear Delay Volterra Integral Equation

let ei
n = max{e(ti

n,v), v = 1...m},we have

ei
n ≤ hL3

i−1∑
l=0

N−1∑
p=0

el
p + hL1

n−1∑
p=0

ei
p + o(hm),L3 = 3L2 + L1

Hence, for all h ∈ (0,
1

2L1
], we have

ei
n ≤ 2hL3

i−1∑
l=0

N−1∑
p=0

el
p + 2hL1

n−1∑
p=0

ei
p + 2o(hm)

Then, by Lemma 1.7.1, we obtain

ei
n ≤ (2hL3

i−1∑
l=0

N−1∑
p=0

el
p + 2o(hm)) exp(2hL1N)

≤ hα
i−1∑
l=0

N−1∑
p=0

el
p + chm, α = 2hL3 exp(2hL1N)

let ei = max{ei
n,n = 0...N − 1},

ei
≤ τα

i−1∑
l=0

el
p + chm

≤ chm exp(Tα)

≤ Chm.

Thus, the proof is completed by taking C = c exp(Tα) The following result gives the

convergence of the iterative solution uq to the exact solution x.

Theorem 2.3.2 Consider the iterative collocation solution uq(ti
n, j) defined by (2,6), then for any

initial condition u0(ti
n, j) ∈ J, the sequence uq(ti

n, j) converges to the exact solution x. Moreover,

the following error estimates hold

∣∣∣∣uq(ti
n, j) − x

∣∣∣∣ ≤ (hd)q
∣∣∣(u)0

− x
∣∣∣ + Cdqhm+q + Chm
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where d = L1 exp(τL1) + rL1 exp(τL1)τ(L1 + 2L2) exp(τL1) exp(rτ(L1 + 2L2) exp(τL1)),

Proof. Let (ei
n)q = max

∣∣∣uq+1(tl
p,v) − u(tl

p,v)
∣∣∣ v = 1....m

(ei
n)q+1

≤ hL1

i−1∑
l=0

N−1∑
p=0

(el
p)q+1 + hL1

n−1∑
p=0

(ei
p)q+1 + hL1(ei

n)q

+ hL2

i−2∑
l=0

N−1∑
p=0

(el
p)q+1 + hL2

n−1∑
p=0

(ei−1
p )q+1 + hL2(ei−1

n )q+1

≤ hL3

i−1∑
l=0

N−1∑
p=0

(el
p)q+1 + hL1(ei

n)q + hL1

n−1∑
p=0

(ei
p)q+1,L3 = L1 + 3L2

We put ei = max{ei
n,n = 0....N − 1}, This implies,

(ei
n)q+1

≤ hL1(ei)q + τL3

i−1∑
l=0

(el)q+1 + hL1

n−1∑
p=0

(ei
p)q+1

a well-known result on discrete Gronwall inequalities (see, e.g, Lemma (1.7.1)) leads to

(ei
n)q+1

≤ (hL1(ei)q + τL3

i−1∑
l=0

(el)q+1) exp(τL1)

≤ hL4(ei)q + L5

i−1∑
l=0

(el)q+1,L4 = L1 exp(τL1),L5 = τL3 exp(τL1),

Then, by Lemma (1.7.2), we obtain

(ei)q+1
≤ hL4(ei)q +

i−1∑
l=0

hL4(ei)qL5 exp(rL5),

let (e)q = max{(ei)q, i = 0....r − 1}, we have

(e)q+1
≤ hL4(e)q + hrL4(e)qL5 exp(rL5),

≤ hd(e)q d = L4 + rL4L5 exp(rL5),

≤ (hd)q
∣∣∣(u)0

− x
∣∣∣ + Cdqhm+q
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for all j = 1...m, i = 0, ...r − 1,n = 0, ...N − 1, q ∈ N∗ This implies,

∣∣∣∣uq(ti
n, j) − x(ti

n, j)
∣∣∣∣ ≤ ∣∣∣∣uq(ti

n, j) − u(ti
n, j)

∣∣∣∣ +
∣∣∣∣u(ti

n, j) − x(ti
n, j)

∣∣∣∣
≤ (hd)q

∣∣∣(u)0
− x

∣∣∣ + Cdqhm+q + Chm

2.4 Numerical examples

To illustrate the theoretical results, we present the following three examples with τ = 0.5

and T = 1. All the exact solutions x are already known. In each example, we calculate

the error between x and the iterative collocation solution um.

The results in these examples confirm the theoretical results; moreover, the absolute

error decreases as N or m increases.

Example 2.4.1 Here, the functions characterizing equation (2.1) are given by

k1(t, s, z) = sin(t − s) cos(2z − s) + 3, k2(t, s, z) = tcos(s−z)
1+st , and f is chosen so that the exact

solution is x(t) = t + 1

The absolute errors for (m,N) = {(3, 5), (4, 5), (4, 10), (5, 10)} at t = 0, 0.2, ..., 1 are presented in

Table 2.1.

Table 2.1: Absolute errors of Example 4.1

t m = 3,N = 5 m = 4,N = 5 m = 4,N = 10 m = 5,N = 10
0.0 0.267 × 10−5 0.136 × 10−6 0.6 × 10−8 0.12 × 10−7

0.2 0.684 × 10−5 0.109 × 10−5 0.56 × 10−7 0.2 × 10−7

0.4 0.159 × 10−4 0.198 × 10−5 0.122 × 10−6 0.7 × 10−8

0.6 0.239 × 10−4 0.269 × 10−5 0.177 × 10−6 0.9 × 10−8

0.8 0.304 × 10−4 0.324 × 10−5 0.193 × 10−6 0.35 × 10−7

1.0 0.109 × 10−4 0.316 × 10−5 0.22 × 10−6 0.4 × 10−7
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Example 2.4.2 Consider the nonlinear Volterra delay integral equations

x(t) = f (t) +

∫ t

0
k1(t, s, x(s))ds +

∫ t−τ

0
k2(t, s, x(s))ds, t ∈ [0, 1],

with k1(t, s, z) = s sin(t + 2z − s), k2(t, s, z) = set−z

1+t and f is chosen so that the exact solution is

x(t) = 2t + 1.

The absolute errors for (m,N) = {(4, 4), (5, 5), (6, 6), (8, 8)} at t = 0, 0.2, ..., 1 are presented in

Table 2.2.

Table 2.2: Absolute errors of Example 4.2

t m = 4,N = 5 m = 5,N = 5 m = 7,N = 5 m = 7,N = 10
0.0 0.146 × 10−5 0.69 × 10−7 0.25 × 10−7 0.33 × 10−7

0.2 0.145 × 10−4 0.342 × 10−6 0.68 × 10−7 0.6 × 10−8

0.4 0.272 × 10−4 0.75 × 10−7 0.34 × 10−7 0.6 × 10−8

0.6 0.256 × 10−4 0.82 × 10−6 0.27 × 10−7 0.4 × 10−8

0.8 0.193 × 10−4 0.20 × 10−5 0.59 × 10−7 0.56 × 10−7

1.0 0.147 × 10−3 0.13 × 10−4 0.39 × 10−6 0.7 × 10−7

Example 2.4.3 The given functions in equation (2.1) are

k1(t, s, z) = 2 cos(t + z − s)s2, k2(t, s, z) = stz

1+t2 and f is such that equation (2.1) possesses the

solution x(t) = sin(t) + 1.

The absolute errors for (m,N) = {(2, 5), (4, 5), (5, 5), (6, 10)} at t = 0, 0.2, ..., 1 are presented in

Table 2.3.

Table 2.3: Absolute errors of Example 4.3

t m = 2,N = 5 m = 4,N = 5 m = 5,N = 5 m = 6,N = 10
0.2 0.123 × 10−3 0.81 × 10−7 0.14 × 10−7 0.1 × 10−8

0.2 0.472 × 10−3 0.16 × 10−6 0.17 × 10−7 0.2 × 10−8

0.4 0.794 × 10−3 0.34 × 10−6 0.4 × 10−8 0.41 × 10−7

0.6 0.232 × 10−2 0.58 × 10−5 0.19 × 10−7 0.12 × 10−7

0.8 0.813 × 10−2 0.83 × 10−4 0.312 × 10−6 0.52 × 10−7

1 0.599 × 10−2 0.22 × 10−4 0.245 × 10−6 0.1 × 10−7
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CONCLUSION AND PERSPECTIVE

In this dissertation, we have used a an iterative collocation method based on the use

Lagrange polynomials for the numerical solution of nonlinear Volterra delay integral

equations (2.1) in the spline space S(−1)
m−1(ΠN). The main advantages of this method is

the study of the convergence, this method is easy to implement and the coefficients

of the approximation solution are determined by using iterative formulas without the

need to solve any system of algebraic equations. Numerical examples showing that the

method is convergent with a good accuracy and the numerical results confirmed the

theoretical estimates.

Further researches will be conducted by generalizing this method to approximate

Nonlinear Delay Volterra integro-differential equations :

x′(t) = f (t) +

∫ t

0
k1(t, s, x(s))ds +

∫ t−τ

0
k2(t, s, x(s))ds, t ∈ I = [0,T],

with x′(0) = x0 x(t) = Φ(t), t ∈ [−τ, 0].
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