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Abstract 

 

We often hear the old adage "a picture is worth a thousand 

words", where if you want to convey complex semantic 

information you can use just an image and it will fulfill the 

purpose, let alone for the video that contains more meaningful 

information than its predecessor. 

where the interest of this work focuses on video segmentation 

and all about it which is a low-level computer vision problem 

that can be the primary step of a wide range of higher-level 

tasks such as object tracking, activity recognition...etc. where 

the main goal of video segmentation is separate moving object 

from the background with an acceptable and meaningful way 

depending on several methods and features. 

This dissertation contains three chapters, the first chapter are 

purely theoretical, including a presentation of video 

Segmentation With its characteristics, the second chapter 

introduces an improvement of a recent segmentation approach 

that uses the concept of objects proposals, the final chapter 
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includes an evaluation of our proposed method compared to 

other methods that used in video segmentation to prove its 

effectiveness. 

key words: superpixels, optical flow, proposals, gradient...etc. 
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Résumé 

 

Nous entendons souvent le vieil adage "une image vaut mille 

mots", ou si vous voulez transmettre une information sémantique 

complexe, vous pouvez utiliser juste une image et elle remplira le 

but, sans parler de la vidéo qui contient des informations plus 

significatives que son prédécesseur. 

Où l'intérêt de ce travail se concentre sur la segmentation vidéo et 

tout ce qui est un problème de vision informatique de bas niveau 

qui peut être l'étape primaire d'un large éventail de tâches de 

niveau supérieur telles que le suivi des objets, la reconnaissance 

des activités.  

L’objectif principal de la segmentation vidéo est de séparer les 

objets en mouvement de l'arrière-plan d'une manière acceptable et 

significative en fonction de plusieurs méthodes et fonctionnalités. 

Cette thèse contient trois chapitres, le premier chapitre est 

purement théorique, y compris une présentation de la vidéo 

Segmentation Avec ses caractéristiques, le deuxième chapitre 

introduit une amélioration d'une approche de segmentation 
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récente qui utilise le concept de propositions d'objets, le dernier 

chapitre fournit une comparaison entre un ensemble de méthodes 

utilisées dans la segmentation vidéo et notre méthode afin de 

prouver leur efficacité. 

Mots-clés : superpixels, flux optique, proposals, gradient ... etc. 
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 ملخص

ذا حيث إ "الصورة تساوي ألف كلمةان  " ما نسمع القول المأثور: غالبا

 حققكنت تريد نقل معلومات دلالية معقدة يمكنك استخدام مجرد صورة وست

 تها.ابقالهدف ناهيك عن الفيديو الذي يحتوي على معلومات أكثر فائدة من س

هو فحيث يتركز اهتمام هذا العمل على تجزئة الفيديو وكل ما يتعلق به 

ن اكن في مجال الرؤية بالكمبيوتر والتي يم يعتبر مشكلة منخفضة المستوي

لى تكون الخطوة الأساسية لمجموعة كبيرة من المهام ذات المستوى الأع

 مثل تتبع الكائنات التعرف على النشاط ... الخ.

ية الهدف الرئيسي من تقسيم الفيديو هو فصل الكائن المتحرك عن الخلف

 من الطرق والميزات. بطريقة مقبولة وذات مغزى اعتمادا على العديد

 حيث  بحت نظري الأول الفصل فصول، ثلاثة على الأطروحة هذه تحتوي

 يقةطر في تحسيناًيقدم  الثاني الفصل ، خصائصه و الفيديو تقسيمب يعرف

عرض في الأخير الفصل اما  ، الكائنات مقترح مفهوم تستخدم حديثة تجزئة

 من وطريقتنا الفيديو تجزئة في المستخدمة الطرق من مجموعة بين مقارنة

 .فعاليتها إثبات أجل
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1
Introduction

The human brain can achieve the remarkable feat of processing an image seen for

just 13 milliseconds where a simple person can simply and successfully identified

things in the environment around it in an interesting time. In addition to its

simplicity, the human vision system is a complex yet powerful process and requires

finite elements and organization. Besides, any imbalance in only one element will

affect the whole visual system.

Among the researchers who highlighted the computer vision field, there are

computer scientists, where they tried to embody this finite precision system and

make the machine simulate the human being.

1
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Nowadays, there is an advanced in research in computer vision fields, where

it’s exist in various fields such as medical, industry, surveillance, entertainment

and until we find it in games and advertising. So computer vision has taken a

great place in human life and has facilitated many things that were difficult in

the past. The main benefits of such applications in the computer vision field are

gaining time which means gaining money. To this end, one of the crucial tasks is

segmentation which is the operation of separate things and objects in an image

and/or a video with an acceptable and meaningful way.

There is a fast outbreak of segmentation algorithms over the last years, which

proves that segmentation algorithms have fortified its position in the world of

digital vision where this indicates to the great benefit that it gave to humans.

For video segmentation, there are two main classes:

supervised approaches that where you have input variable (x) and an output

variable (Y) and you use an algorithm to learn the mapping function from the input

to the output.

unsupervised approaches where you only have input data (X for example

an image)and no corresponding output variables, and those classes are used to

discover patterns in a video that leads to actionable insights. Note that in our

dissertation we are interested only in unsupervised approaches which is the most

interesting one.

1.1 Applications of video segmentation

The applications of video segmentation in the field of automatic vision processing

are interesting, where there are several. among them, we find the following:
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1.1.1 Object Based Surveillance Analysis

Surveillance allows identifying any abnormal activity in a given environment thereby

enhancing public safety and reducing crime. If there are more number of smart

cameras used in surveillance process, then there is a risk that person who monitors

may not be able to analyse the videos effectively [19]. .

So for that, many algorithms are proposed to solve this problem and make this

task easy and automatic based on the concept of video segmentation to detect

cars in roads, detect unattended bags, uncover suspicious activity and abnormal

behavior [19].

(a) cars detection (b) abnormal behavior (c) unattended luggages

Figure 1.1: Object-based surveillance analysis applications [42], [41], [45].

1.1.2 Tourism

Depending on the tourist spot, system presents the cultural or heritage story.

where system displays the user movement along with narration. Actually, using

segmentation the virtual tourist guide can be associated along with the narration

as is shown in Figure.1.2. This is one of the interesting applications adding real

world experience through mobile devices [19].
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Figure 1.2: An illustration of a tourism application of video segmentation [36].

1.1.3 Interactive computer games

Computer games are a popular consumer electronics item, the game players find

it captivating to interact with games and they may find it even more engaging to

interact through natural, unencumbered hand or body motions [32]. The struc-

ture of games provides a context which can allow dramatic, appropriate responses

from simple visual measurements (Figure. 1.3). The vision system may track the

position of the visual center of mass of the player to detect his different movements

to make a balance between the player and the game [32].

Figure 1.3: Interactive computer games [46], [47].

1.2 Outline of the dissertation

In this dissertation, we followed the main structure composed of a general intro-

duction, three chapters, and a conclusion and perspective work. The first chapter

represents state of the art about video segmentation and most concepts to be used
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later. The second chapter represents the proposed approach which is based on spa-

tiotemporal object proposals. The third chapter represents the experimentations

and the evaluation of the proposed approach along with some compared state-of-

the-art methods. Finally, the present dissertation finished with a conclusion that

summaries all the chapters of the dissertation and presents our perspectives and

future interests.



2
State of the art and related works

2.1 Introduction

In this Chapter, we provide an overview of video segmentation. Firstly, we present

the definition and challenges of video segmentation as well as some features which

are effective in the process of segmentation either in images or in videos. Then,

we describe some refinement methods that can be used to improve segmentation

results. Next, we present some successful algorithms in video segmentation. After

that, we mention some evaluation metrics that are used in the third chapter of this

6
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dissertation to evaluate segmentation methods and applications of video segmen-

tation. Finally, we provide three of the most used datasets in order to evaluate

video segmentation algorithms.

2.2 Video segmentation

2.2.1 Definitions

An image can be a reflection of a perceptible reality. From a mathematical point

of view, an image is a matrix of numbers that represent semantic information. We

can define an image as a function z = f(x, y). Which, at each point of the plane

(x, y), associates a value z and that is illustrated on Figure. 2.1.

Figure 2.1: Mathematical representation of an image[48].

Image segmentation is the process of partitioning an image into non-overlapped,

consistent regions that are uniform with respect to some characteristics like inten-

sity, color, tone or texture, to name a few.

A video is composed of a sequence of images. and as it’s shown on Figure.

2.2.Different from still image segmentation, video segmentation should take into

account the temporal information [19].
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Figure 2.2: Representation of time factor in video segmentation.

Video segmentation is a way of dividing a movie into meaningful segments for

visual information extraction to use them in different applications. The Figure.

2.3 represents an example of video segmentation process.

Figure 2.3: Illustration of video segmentation results[33].

2.2.2 Video segmentation challenges

Several challenges may affect and obstruct video segmentation. In the following,

we mention a non-exhaustive list of these challenges:

• Cast shadows:

tend to be classified as parts of the foreground. Indeed, they may generate

patterns of movement.

• Dynamic backgrounds:
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can be caused by moving background , such as swaying tree leafs, water

flowing, etc.

• Noisy videos:

noise can be generated by several sources such as sensor noise, low-quality

cameras or compression artifacts. Indeed, noisy videos tend to produce nu-

merous false detections.

• Camouflage effects:

occur when a moving object or some of its parts are made of colors similar

to the background. They may cause false negatives for foreground detection.

• Camera jitter:

can be caused by camera instability (e.g., by wind or vibrations).

2.3 Segmentation features

The goal of segmentation is to simplify and/or change the representation of an

image into something that is more meaningful and easier to analyze. Selecting the

right features (such as color, optical-flow ...etc) plays a critical role in image and

video segmentation.

2.3.1 Color

An image is created by sampling the incoming light. The colors of the incoming

light depending on the color of the light source illuminating the scene and the

material that the object is made of [18]. Going back some years, many cameras

(and displays, e.g., TV-monitors) only handled gray-scale images. As the technol-

ogy matured, it became possible to capture color images, and today most cameras
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capture color images [18].

2.3.1.1 Color spaces

Color is one of the fundamental properties of objects that has been used as impor-

tant cue in several object segmentation and there are many different color spaces

each with its own properties and advantages, in this section, we choose two of the

most used ones, namely RGB and CIE Lab [34].

RGB: Color is considered as one of the fundamental properties of objects, that

has been used as an important cue in several object segmentation works where each

pixel color in the image is described by the primary colors (red, green and blue)

[18] where each pixels is represented as formula 2.1 and this is illustrated by the

Figure. 2.4.

Colorpixel = [Red,Green,Blue] = [R,G,B] (2.1)

Figure 2.4: Example of an image and its RGB color space values [18].
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CIE Lab: this color space is defined by the International Commission on

Illumination (CIE), it expresses color as three numerical values L* represents the

lightness of color going from 0 (dark) to 100 (white), while the a* and b* channels

are the two chromatic components. The first of these two (a*) represents the

colors position between red/magenta (+a) and green (-a). Similarly, b* indicates

its position between yellow (+b) and blue (-b). In practice, their range goes from

−128 to 127 with 256 levels [34].

Figure 2.5: Illustration of the CIE LAB color space [44].

2.3.2 Edges

Edges are useful in many applications since they define the contour of an object(see

Figure.2.6(d)). It is therefore of great importance to have a clear definition of where

an object starts and ends [18]. An edge in an image is defined as a position where

a significant change between regions of different color, intensity, or texture.

To enable edge detection, we use the concept of the gradient; we can define the

gradient as the difference between the previous and next value. For each point in

the image, we have two gradients: one in the x-direction and one in the y-direction.

The resulting gradient is defined as a vector G(gx, gy)(in Eq.2.2), where gx is the

gradient in the x-direction and gy is the gradient in the y-direction.
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Figure 2.6: Illustration of image gradient[43]. (a) gray-level image, (b) the first-
order partial derivatives in the x-direction and (c) y-direction, and (d) the length of the
gradient.

gx(x, y) =f(x+ 1, y)− f(x− 1, y) (2.2)

gy(x, y) =f(x, y + 1)− f(x, y − 1) (2.3)

The approach used to extract the edges is to make thresholding for the am-

plitude of the gradient, knowing that the amplitude represents the length of the

gradient vector and calculated as:

Magnitude(x, y) = |gx(x, y)|+ |gy(x, y)| (2.4)

The orientation of the gradient vector is another feature that can be extracted

from the gradient information. The orientation of the gradient represents the angle

of change in intensity between pixels shown by the following formula:
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Orientation(x, y) = arctan
gx(x, y)

gy(x, y)
(2.5)

As shown in the images of Figure. 2.6, the x-derivative seems to emphasise

vertical edges while the y-derivative seems to emphasise horizontal edges. Unlike

to the gradient that it contains information about both derivatives and therefore

emphasizes edges in all directions.

2.3.3 Optical-flow

Motion detection is a hot study field of computer vision. Its purpose is to extract

moving object area in image sequences. Extracting moving object effectively and

exactly is the foundation of tracking and sorting of moving target in computer

vision. Up to the present, there are several proposals; one of them is optical-flow.

Optical-flow is the displacement field for each of the pixels in an image sequence.

For every pixel, a velocity vector
(

dx
dt
, dy
dt

)

is found which says:

• How quickly a pixel is moving across the image.

• The direction of its movement.

Usually, video segmentation algorithms begin by computing optical-flow be-

tween pairs of subsequent frames (t, t + 1) using the state-of-the-art algorithms

[4, 26]. Figure. 2.7) shows an illustration of the optical-flow feature. In this Fig-

ure, the optical-flow in Figure 2.7)-(c) is obtained by the application of the method

in [4] on the two input images given in Figures 2.7)-(a) and 2.7)-(b), respectively.

Note that the implementation by [26] supports large displacements between frames

and has a computationally very efficient GPU implementation.
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(a) frame It (b) frame It+1 (c) optical-flow

Figure 2.7: Illustration of the optical-flow feature. (a)-(b) input frames. (c) the
resulting optical flow using the method in [4].

2.3.4 Superpixels

A superpixel is a set of pixels in image that have common properties(the same

color for instance), which can be used to replace the rigid structure of the pixel

grid and the major advantage of superpixels is to reduce the input and the quantity

of data which are used in algorithms for example and that minimize the runtime

which is an important and sensitive point [1]. There are a set of methods and

algorithms that are used to segment images of pixels into images of superpixels,

one of them is the SLIC method. Figure 2.8 illustrates the results of superpixels

oversegmentation by the application of the SLIC method.

Figure 2.8: Images over-segmented using SLIC approach into superpixels of size 64,
256, and 1024 pixels [1].
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2.3.5 Object proposals

Object-level features namely object proposals are used to bridge the gap between

low-level features and object-level object detection [10]. For an input image, object

proposal methods generate a set of object candidates which are likely to include

the object of interest. Thus, those object candidates can cover the entire objects

in the image with excellent accuracy [8].

Let I = {I1, I2, ...} be the set of input frames. For the t-th frame It, static

region-ranking method generate object proposal segmentations Pt = {p1t , p2t , ...}
(see Figure. 2.9 for an illustrative example). The proposals are generated via

method in [8] where the goal of this method is to propose candidates for any

object in an image based on estimated boundaries, geometry, color, texture and

part of learning, each stage of this process must encourage diversity among the

proposals while minimizing the number of candidates to consider.

Each frame would have hundreds of object candidates. Different from super-

pixel regions, these proposal segments are more ”object-like” as they have more

distinct occlusion boundaries and their appearances are in obvious contrast with

nearby pixels [10].

2.4 Refinement methods

When dealing with video segmentation, there exists a variety of methods that

are used to improve the quality of the segmentation and give efficiency to the

algorithms. In this section, we give the principal ones such as the GMM models

(Gaussian mixture models), the MRF (Markov Random Field), to cite a few.
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Figure 2.9: Illustration of an image and their object proposals generated using the
method in [8]. (a) Input frame. (b) Object proposals from the frame in (a). (c) A set of
proposal candidates selected via a ranking strategy.

2.4.1 Markov random field model (MRF)

Markov random field models are undirected probabilistic graphical models which

are a wide-spread model in computer vision. The unifying ideas in using MRFs

for vision are the following [2]:

• Images are dissected into an assembly of nodes that may correspond to pixels

or superpixels.

• Hidden variables associated with the nodes are introduced into a model de-

signed to ”explain” the values (colors) of all the pixels.

• A joint probabilistic model is built over the pixel values and the hidden

variables(for example a graph ).

The motivation for constructing such a graph is to connect the hidden variables

associated with the nodes. For example, for the task of segmenting an image into

foreground and background. Each node x (pixel or superpixel) has an associated

random variable y that may take the value of 0 or 1, corresponding to the fore-

ground or background [2]. The Figure.2.10 demonstrates a graph that has been
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constructed using MRF model.

Figure 2.10: Representation of the graph constructed by the Markov random field
(MRF) model [2].

2.4.2 Gaussian mixture model (GMM)

Gaussian functions are suitable for describing many processes in mathematics,

science, and engineering, making them very useful in the fields of image and video

processing. For example, an image can be simply modeled with the Gaussian

distribution according to the central limit theorem from the probability theory

[11] and calculated in Eq. (2.6).

g(x) =
1√
2πσ

exp
−(x− µ)2

2σ2
(2.6)

where

µ =
1

n

n
∑

i=1

xi (2.7)

and
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σ =
1

n

n
∑

i=1

(xi − µ)2 (2.8)

with n is the whole number of the pixels in the image, µ is the mean and σ is

the variance.

Gaussian mixture model (GMM) is a probabilistic model for representing nor-

mally distributed subpopulations within an overall population. Techniques based

on GMM are applied to many different tasks such as are speech recognition, image

segmentation, to cite a few see [23]. In the case of image segmentation, GMM

is used to represent the image units (as in Eq.(2.9), For example, in foreground

image segmentation, colors of objects can be represented with a GMM model [23].

p(x) =
∑

αig(x|µi, σi) (2.9)

where each αi is the mixting probability and each µi and σi are parameters that

defining the i-th component of the GMM model. As being probabilities, the αi

must satisfy αi > 0, i = 1...K and
∑K

i=1 αi = 1. For example, Figure 2.11 presents

a Gaussian mixture model with two components.

2.4.3 Graph cut methods (GC)

An undirected graph G = {V,E} is defined as a set of nodes (vertices) V and a

set of undirected edges E that connect these nodes. A cut on a graph is a partition

of V into two subsets A and B where
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Figure 2.11: A Gaussian mixture model with two components [23].

A ∪B = V,A ∩B = ∅ (2.10)

Perhaps the simplest and best-known graph cut method is the min-cut for-

mulation. The min-cut of a graph is the cut that partitions G into disjoints

segments such that the sum of the weights associated with edges between the dif-

ferent segments are minimized. That is the partition that minimizes Cmin(A,B)

as the following:

Cmin(A,B) =
∑

u∈A,v∈B

Wuv (2.11)

Basically, each pixel in the image is viewed as a node in a graph and links (E)

are formed between nodes with weights corresponding(as is shown in Figure.2.12),

each pixel has links with all its neighbors and one with background node and

another one with foreground node [3]. The link weight between pixel i and pixel
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j will be denoted WI
ijand the terminal weights between pixel i and the foreground

node (s) and background node (t) as Ws
i and W t

i as is shown in Figure.2.11.

The schema in Figure. 2.12 represents a construction of an undirected graph

from an image and the cut that separate the nodes belong to the object from the

nodes that belong to the background [3].

Figure 2.12: Image representation as a graph with the cut results [3].

2.5 Unsupervised video segmentation

In video object segmentation, the task is to separate out foreground objects from

the background across all frames. To this end, video segmentation approaches

can be classified into two main categories, namely, unsupervised approaches vs.

supervised approaches.

In this work, we are interested in the unsupervised approaches, where the main

assumption is that there is no human involvement on the video. The goal of unsu-

pervised approaches is to model the underlying structure, distribution or features

of the data to learn more about the data.

In addition to the appearance information which also drives image segmenta-

tion, video data provide a rich and complementary source of information in form
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of object motion. It is natural to expect that both appearance and motion should

play a key role in successfully segmenting objects in videos [15].

2.5.1 Appearance models

A number of appearance priors (spatial information) have been proposed for object

video segmentation, and the most widely used ones are contrast saliency cue and

background prior score. In this section, we present some appearance models.

2.5.1.1 Contrast saliency cue

Many works [7, 10, 31] use the region contrast against its surrounding scales as

a saliency cue, which is computed as the summation of its appearance differences

from all other regions and weighted by their spatial distances. In this way, the

contrast saliency cue for superpixel rnt in frame It can be written as

Fcnt(R
n
t ) =

|Rt|
∑

m=1

φ(Rn
t , R

m
t )‖cnt − cmt ‖2 (2.12)

where cnt and cmt are colors of regions Rn
t and Rm

t , respectively.

φ(Rn
t , R

m
t ) = exp(D(Rn

t , R
m
t )/σ

2) controls the spatial influence between two

regions Rn
t and Rm

t . D(Rn
t , R

m
t ) is a square of Euclidean distance between region

centers of Rn
t and Rm

t .

2.5.1.2 Background prior

The background prior called boundary connectivity [31] is a measure to quantify

how heavily a region Rn
t is connected to the boundaries of frame It. It is defined

as
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BndCon(Rn
t ) =

|p|p ∈ Rn
t , p ∈ Bnd(It)|

√

|{p|p ∈ Rn
t }|

(2.13)

where Bnd(It) is the set of image boundary patches and p is an image patch.

It has an intuitive geometrical interpretation; it is the ratio of a region’s perimeter

on the boundary to the region’s overall perimeter, or the square root of its area.

The background prior wbg(R
n
t ) is mapped from the boundary connectivity value

of the region rnt . It is close to 1 when boundary connectivity is large, and close to

0 when it is small, it is defined by 2.15

wbg(R
n
t ) = 1− exp

(

−Fbg(R
n
t )

2σ2
bg

)

(2.14)

where σ is a parameter such that σbg ∈ [0.5, 2.5].

2.5.1.3 Background weighted contrast

The contrast saliency cue in Eq. (2.12) can be extended by introducing the back-

ground prior wbg(R
n
t ) as a new weighting term. The enhanced contrast, called

background weighted contrast, is defined as:

Fwcnt(R
n
t ) =

|Rt|
∑

m=1

φ(Rn
t , R

m
t )‖cnt − cmt ‖2wbg(R

n
t ) (2.15)

2.5.1.4 Objectness score

Objectness score is a measure that quantifies how likely it is for a region to be

a part of the foreground, otherwise, the objectness score of a region tells us how
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likely it is to contain an object.

2.5.2 Motion models

When dealing with video sequences, motion (temporal information) provides a

powerful feature for unsupervised video segmentation in addition to appearance.

That is because segment objects that have a different motion pattern (i.e., the

objects that move differently than their surroundings) often attract more attention

[10, 20]. In this section, we give some used spatiotemporal features based on

motion.

2.5.2.1 Motion boundaries

Motion boundaries (i.e., image points where the optical-flow field changes abruptly)

reveal the location of occlusion boundaries, which very often correspond to physical

object boundaries.

Let ~fp be the optical-flow vector at pixel p. The simplest way to estimate

motion boundaries is by computing the magnitude of the gradient of the optical-

flow field(as in Eq.2.16):

bmp = 1− exp(−λm‖∇~fp‖) (2.16)

where bmp ∈ [0, 1] is the strength of the motion boundary at pixel p; λm is a

parameter controlling the steepness of the function.

2.5.2.2 Difference in direction of motion

While the motion boundaries (bmp ) correctly detects boundaries at rapidly moving

pixels, where bmp is close to 1, it is unreliable for pixels with intermediate bmp
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values around 0.5, which could be explained either as boundaries or errors due to

inaccuracies in the optical-flow. Based on the difference in direction between the

motion of pixel p and its neighbors N , a second estimator is proposed by [20] to

disambiguate between those two cases:

bθp = 1− exp(−λθ max
q∈N

(δθ2θp,q)) (2.17)

where δθ2θp,q denotes the angle between
~fp and ~fq. The idea is that if n is moving

in a different direction than all its neighbors, it is likely to be a motion boundary.

2.5.2.3 Motion contrast-based saliency

Given the optical-flow vector ot = (u, v) between two consecutive frames It and

It+1, the motion distribution of region rnt is encoded by two descriptors: a normal-

ized histogram of the flow magnitude ograd = grad(
√
u2 + v2), and the distribution

of flow orientation oori = arctan(v/u). Based on the histogram Histflow of motion

feature flow = {ograd, oori}, we compute the motion contrast score Mbg for region

rtn with Eq.??:

Mbg(r
t
n) = 1− exp

(

− χ2
(

Histflow(r
t
n), Histflow(BP )

)

)

(2.18)

where BP represents the background proposals.

2.5.2.4 Motion Gradient Summation

The motion gradient score Mgrd(r
t
n) (as in Eq2.19 is computed by making use of

the motion gradient summation technique [10, 30]. This score is defined as the
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average Frobenius norm of optical-flow gradient in the boundary of object region

r.

Mgrd(r
t
n) = ‖ot‖F =

√

∑

i=x,y

∑

j=x,y

|(ui, vj)|2 =
√

u2x + u2y + v2x + v2y (2.19)

where ot = (u, v) is the optical-flow of consecutive frames It and It+1, ux, and

uy are optical-flow gradients in the x direction and vx and vy are those in the y

direction.

2.5.2.5 Object Region Consistency

Interframe score for each Region rtn in frame It is defined based on the salient

regions of the previous frame [10]. Specifically, each object region rt−1
n for frame

It−1 can be warped to frame It according to the forward optical-flow. By estimating

the overlap between region rtn in frame It and the warped object regions, the

temporal consistency score Mcnt can be given by the following formula:

Mcnt(r
t
n) =

r̂t−1
n

⋂

rtn
Area(rtn)

(2.20)

where r̂t−1
n denotes the warped regions of the region rtn from frame It−1 to frame

It according to optical-flow ot.

2.5.3 Some recent illustrative approaches

To illustrate the overall process of unsupervised video segmentation, we present

briefly three recent methods from the state-of-the-art.
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2.5.3.1 Fast video segmentation

The goal of the method in [21] is to separate moving objects from the background;

this approach has two main steps which are:

A) Efficient initial foreground estimation :

In this stage, there is a primary estimation for the object boundaries based on

motion boundaries estimation using optical-flow to determine which pixels

are inside the object and which ones are outside in video sequence. The

result of this step is the inside-outside maps.

B) Foreground-background labelling refinement :

In the previous stage, there is an approximation estimation of the object

which can be false or not correct due to wrong optical-flow estimation. For

this reason that this stage has come to refine the spatial accuracy of the

inside-outside maps and to segment the whole object in all frames.

Each superpixel sit ∈ St can take a label lti ∈ {0, 1}. A labelling L = {lti}t,i
of all superpixels in all frames represents a segmentation of the video. To

evaluate a labeling, an energy function is defined as:

E(L) =
∑

i,t

At
i(l

t
i) + α1

∑

i,t

Lt
i(l

t
i) + α2

∑

(i,j,t)∈Es

V t
i,j(l

t
i, l

t
j) + α3

∑

(i,j,t)∈Et

W t
i,j(l

t
i, l

t+1
j )

(2.21)

where At is a unary potential evaluating how likely a superpixel is to be

foreground or background according to the appearance model of frame It.

The second unary potential Lt is based on a location prior model encouraging

foreground labelings in areas where independent motion has been observed.
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Both the appearance model and the location prior parameters are derived

from the inside-outside maps. The pairwise potentials V and W encourage

spatial and temporal smoothness, respectively. The scalars α weight the

various terms.

The output segmentation is the labeling that minimizes :

L∗ = argmin
L

E(L) (2.22)

As E is a binary pairwise energy function with submodular pairwise poten-

tials, we minimize it exactly with graph-cuts.

2.5.3.2 Consistent video saliency

The main idea behind the approach in [28] is to estimate salient regions included

in frames of a video sequence. To this end, it oversegments each frame into a

set of superpixels and uses different spatial and motion features such as the color

gradient, and optical-flow. In addition, energy optimization is used in order to

perform global refinement. This novel spatiotemporal saliency detection method

can estimate the background and the foreground (object), even in the case where

the scene of the input video is complex. More precisely, this method has three main

steps: saliency estimation, saliency cues refinement and spatiotemporal saliency

optimization.

A) Saliency estimation:

The purpose of this stage is to produce a primary estimation of the object.

Figure. 2.13 summarizes all phases of saliency estimation steps where (a)
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Figure 2.13: Illustration of a saliency estimation method steps [28].

Represents two frames from different videos, first they computes the optical-

flow field v for each frame of video sequence (Figure. 2.13.(b)) and also

computes the optical-flow gradient magnitude Mo of v (Figure. 2.13.(c)).

Then they abstract each frame into superpixels (Fig. 2.13.(d)) and after

that they Compute the color gradient magnitude M c of abstraction that

previously abstracted (Fig. 2.13.(e)). Thereafter they Combine the color

gradient magnitude and the optical-flow gradient magnitude into spatiotem-

poral gradient field M as in Figure. 2.13.(f) and finally saliency detection

results is computed using the gradient flow field (see Figure. 2.13.(g)).

B) Saliency cues refinement:

In this step, there is a detection of the salient regions by considering the local

spatiotemporal consistency for each frame. It is based on local Saliency cue

and global saliency cue.

• Local Saliency cue:

The region contrast against its surrounding scales is used as a saliency

cue, which is computed as the summation of its color differences from

other regions and weighted by their spatial distances.

• Global Saliency cue:

The global saliency measure of a superpixel is defined as the length of
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its shortest distance to the virtual backgrounds. The distance between

any two superpixels Rt,n and Rt,m considers the color distance and the

gradient flow field distance.

C) Spatiotemporal saliency optimization:

The saliency of superpixel q is Skq(xq) computed by the last step. An en-

ergy function is proposed to encourage the spatiotemporal consistency of the

whole video saliency map. The final saliency of each superpixel is defined as

sq, which is further optimized through the proposed spatiotemporal saliency

energy function as follows:

F = Funary + Fsmooth (2.23)

= α
∑

q

(

sq − Skq(xq)
)2

+
∑

q,q′∈N

wq,q′ (sq − sq′)2 (2.24)

where the set N contains all the spatially adjacent superpixels within one

frame and the temporally adjacent superpixels in a neighborhood: if ‖xq −
xq′‖ ≤ 800 and |kq − kq′| = 1, superpixels q and q′ are temporally adjacent.

The parameter α is the positive coefficient for balancing the relative influence

between Funary and Fsmooth.

2.5.3.3 Saliency geodesic video segmentation

In this method, there is an abstraction of each frame into superpixels, after that for

each superpixel two kinds of edges are extracted, namely spatial edge and motion

boundary edges. Then these two types of features are combined to produce the

spatiotemporal edge probability map. After that, the distance geodesic is used to

generate foreground probability map (initial object) [27].
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Figure 2.14: General review of saliency-aware geodesic video object segmentation
[27].

Similarly to other segmentation works [21], an energy function is defined for

labeling L of all the pixels is in Eq. (2.21).

2.6 Datasets

There are several datasets of different sizes and varying resolution that are used

in video processing and segmentation. In this work we choose three of them Seg-

TrackV2 [16], FBMS [4] and DAVIS [22].

2.6.1 SegTrackV2 dataset

SegTrackV2 is a small dataset composed of 14 densely annotated videos of humans

and animals contains((see Figure.2.15). It is designed to be challenging with re-

spect to background-foreground color similarity, fast motion, and complex shape

deformation [16].

Although several approaches have extensively used it, its content does not

sufficiently span the variety of challenges encountered in realistic video object

segmentation applications. Furthermore, the image quality is not any more repre-

sentative of modern consumer devices, and due to the limited number of available
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Figure 2.15: Sample sequences from the SegtrackV2 dataset [16].

video sequences, progress on this dataset plateaued.

2.6.2 FBMS dataset

The Freiburg-Berkeley Motion Segmentation (FBMS) dataset that contains 59

video sequences with 720 frames is a popular dataset for motion segmentation, i.e.

clustering regions with similar motion. Despite being recently adopted by works

focusing on video object segmentation [4].

The dataset does not fulfill several important requirements. Most of the videos

have low spatial resolution, segmentation is only provided on a sparse subset of the

frames, and the content is not sufficiently diverse to provide a balanced distribution

of challenging situations such as fast motion and occlusions.
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Figure 2.16: Sample sequences from the FBMS dataset [4].

2.6.3 DAVIS dataset

The Densely Annotated Video Segmentation (DAVIS) [22] is a novel dataset that

specifically designed for the task of video object segmentation. This dataset has

a sufficiently large amount of data to ensure content diversity and to provide a

uniformly distributed set of challenges. The quality of the data also plays a crucial

role, as it should be representative of the current state of technology. To this end,

DAVIS comprises a total of 50 sequences, 3455 annotated frames, all captured at

Full HD 1080p spatial resolution [22] (see Figure.2.17).
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Figure 2.17: Sample sequences from the DAVIS dataset [22].

2.7 Evaluation Metrics

We report the precision versus recall curves (PR curves), F − score curves, and

mean absolute errors (MAEs) for evaluation.

2.7.1 F − score

The precision value represents the ratio of correctly assigned salient pixels to all

the pixels in the detected regions, while the recall rate is the percentage of de-

tected regions among the true positive samples. The curves are averaged over

each video sequence. The F − measure considers both precision and recall and

can be computed as

Fβ =
(1 + β2) · Precision ·Recall
β2 · Precision+Recall

(2.25)

We set β2 = 0.3 throughout our experiments.
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2.7.2 Mean absolute error (MAE)

The mean absolute error (MAE) is defined between a saliency map S and the

binary GT as

MAE =
1

|I|
∑

x

|S(x)GT (x)| (2.26)

where |I| represents the number of pixels and x stands for all image pixels.

2.8 Conclusion

In this chapter, a general survey about video segmentation is presented. Also, some

useful methods and features for improving video segmentation have been presented.

In addition, a brief review of some state-of-the-art unsupervised methods for video

segmentation has been given. In the following chapter, we extend our study by

proposing a new video segmentation approach based on combining and voting

spatiotemporal object proposals.



3
Video segmentation using spatiotemporal

object proposals

3.1 Introduction

In this chapter, we proposed a new video segmentation approach by combining

a spatiotemporal proposal generating technique with a proposal-based video seg-

mentation approach. For the best understanding of the proposed approach, we

present a detailed description of the components included in the proposed overall

algorithm.

35
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3.2 Object proposals-based saliency detection

The main idea of the proposed approach is the use of the object proposals which

are regions that represent segments of objects (see Figure. 3.1 for an illustration

of object proposals). These regions (proposals) are then used to identify salient

object regions by using some saliency cues. The graphic in Figure. 3.1 summarizes

the main steps of the proposed object proposals approach.

Figure 3.1: Video saliency detection using object proposals process.
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3.2.1 Spatiotemporal generation of object proposals

For each input frame from the input video I = {I1, I2, . . .}, the static spatial region-
ranking method is used to generate hundreds or thousands of proposals via [8]. We

note this set of proposals Psp. As shown by the Algorithm 1, this method can

generate good initial candidates based on spatial cues such as occlusion boundaries,

geometric context, and texture. However, using only spatial cues can lead to

non-temporally consistent proposals. To overcome this limitation, we propose

to use a new spatiotemporal approach to filter out the proposals which are not

temporally consistent. In other words, remove out object proposals located out of

the region of interest (ROI) detected by a given spatiotemporal approach. Note

that, sophisticated spatiotemporal approaches such as [27] or [28] can be used to

detect accurate location priors. In our case, we use the [27] one.

Let Psp be the set of candidate spatial proposals generated by Algorithm 1 as

described in the previous paragraph. And let Pst be the set of resulting filtered

spatiotemporal proposals, where Pst = {p1t , p2t , · · · }. Algorithm 2 summarizes the

steps of the proposed procedure used to filter out ”bad” spatiotemporal proposals.

In fact, the proposed technique filters out proposals in Pst based on the saliency

map generated by the method in [27]. Firstly, the values of the input saliency map

are rescaled in the range [0, 1]. Let M be the resulting saliency map. Then, the

resulting saliency mapM is processed using the following equation 1−exp(−f∗M).

After that, the saliency map M is binarized using the Otsu’s algorithm and let

FG be the resulting binary mask. Finally, we take the set of proposals inside the

binary mask FG with an overlapping ratio of ξ. The rest of proposals are removed

out. The new set of proposals is noted Pst.

Once the spatiotemporal proposals are generated, we use the approach in [10]

to generate the final video saliency map. To this end, two kinds of saliency cues are

fused. Namely, the spatial saliency cues and motion saliency cues, respectively.
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Algorithm 1: Generate spatial object proposals [8].

Data: The input frame from the video sequence It
Result: The set of spatial proposals Psp

Precomputation;
- Occlusion Boundaries ;
- Geometric Context (non-planar vertical surface);
- Hierarchical Segmentation;
- Probability of BG region classifier ;

Train Classifiers;
- Homogeneous Region Classifier ;
- Region Affinity Classifier ;
- Layout Classifier ;
- Ranking Model ;

Region Proposal;
- Select seeds ;
- For each image I, seed S ∈ SI and parameters (γ, β) ;
* Compute superpixel affinity map;
* Propose Region;

- Split regions with disconnected components and add to set ;
- Remove redondant regions with ≥ 90% overlap;

Region ranking;
- For each proposal p ∈ P , compute appearance features xp;
- For each image I find (approximate) highest scoring ranking with greedy

inference;

3.2.2 Ranking of spatiotemporal object proposals

Based on the objectness score from [8] that refers how likely a proposal is to contain

an object, top 200 candidates are selected for each frame. After that, a ranking

score R(pnt ) is computed for each proposal pnt in frame It, which is defined as Eq.

(3.1) [10]:

R(pnt ) = RF (pnt ) +RM(pnt ) (3.1)

where RF and RM represent spatial and motion saliency scores, respectively
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Algorithm 2: Proposed procedure to detect spatiotemporal proposals.

Data: Spatial candidates Psp, Saliency map M, Parameters (list of factors
F , list of levels L, overlap threshold ξ)

Result: The set of filtered spatiotemporal proposals Pst

Rescale the saliency map M in the range [0, 1];
for each factor f in the factors list F do

M← 1− exp(−f ∗M);
th← grey thresholding of M using Otsu’s thechnique;
for each level l in the levels list L do

thnew ← th + l;
FG← binarise(M, thnew);
for each proposal p in the spatial candidates Psp do

Mp ← the binary mask of the proposal p;
ω ← the overlap between Mp and FG;
if ω > ξ then

Add the proposal p to the list of spatiotemporal proposals
Pst;

end

end

end

end

[10].

3.2.3 Spatial saliency analysis

In addition to the abjectness score Fobj, we use two other saliency priors for

saliency detection, namely, background prior score Fbg and center-surround con-

trast prior score Fcnt in order to calculate spatial score RF formulated as Eq.(3.2)

[10]:

RF (pnt ) = Fobj(p
n
t ) + Fbg(p

n
t ) + Fcnt(p

n
t ) (3.2)

Note that the three previous(Fobj , Fbg, Fcnt) terms must be normalized to [0, 1],
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Figure 3.2: Saliency results generated with each prior score. (a) Proposal back-
ground prior, which is generated by accumulating all the proposals with their back-
ground scores as in Eq. (3.3). (b) center-surround contrast prior Eq. (3.4). (c) The
proposal object prior has been obtained during the process of extracting object segmen-
tation candidates (d) Motion contrast as in Eq. (3.7). (e) Gradient summation in Eq.
(3.8). (f) Object proposal consistency by Eq. (3.9). (g) Initial saliency results by using
the combined scores of all priors as in Eq. (3.11)

(see Figure. 3.2 (a), (b), and (c) for an illustration of spatial saliency priors)[10].

3.2.3.1 Background prior score

The background regions are the most probable regions that could be connected

with the image boundaries. Zhu and al [31] proposed a type of region-level back-

ground prior called boundary connectivity. Boundary connectivity is defined as the

percentage of intersection between object proposal pnt and the boundary Bnd(It)

of frame It to the square root of its area Area(pnt ).

The background prior score Fbg for proposal pnt is defined as Eq. (3.3) [10]:

Fbg(p
n
t ) = exp(−p

n
t ∩Bnd(It)
√

Area(pnt )
) (3.3)

Whenever that the proposal occupies a large part of the boundaries, it will be
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assigned by a higher background prior score which indicates that it is less likely

to be a salient object proposal [10].

3.2.3.2 Proposal center-surround contrast score

This saliency cue is used to measure the contrast between a proposal and its sur-

roundings, to get the ratio of how this proposal is homogeneous with their neigh-

bors. For that, first for proposal pnt and its neighboring regions a CIELab color

space histogram is computed for each one. The contrast score Fcnt for proposal p
n
t

is computed as Eq. (3.4) [10]:

Fcnt(p
n
t ) = 1− exp(−χ2(Histc(p

n
t ), Histc(Dil(p

n
t )))) (3.4)

whereDil(pnt ) denotes the dilated region of proposal pnt , and χ
2(Histc(p

n
t ), Histc(Dil(p

n
t )))

is the chi-squared distance between color histograms [10].

3.2.4 Spatiotemporal saliency analysis

In addition to appearance cues, the motion cues are an important factor to be

taken into account for video saliency detection. To this end, motion contrast-

based saliency method is designed. Firstly, the optical-flow is computed using the

large displacement optical-flow method [5]. After that, smoothing processing is

applied on the initial optical-flow maps over the temporal domain to obtain more

robust motion information. Finally, a motion saliency score is formulated as Eq.

(3.5)[10]:

RM(pnt ) =Mbg(p
n
t ) +Mgrd(p

n
t ) +Mcnt(p

n
t ) (3.5)
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where Mbg is a motion contrast score, Mgrd is an optical-flow gradient based

score and Mcnt represents a motion consistency score (see Figures 3.2 (d), (e), and

(f) for an illustration of spatiotemporal saliency priors)[10].

3.2.4.1 Smoothing optical-flow

Generally, the object is not moving in all the sequence of video which means

it may stop moving abruptly, that will cause discontinuities and inaccuracies in

the optical-flow. To this end, a Gaussian filter G is used to preserve temporal

continuity and obtain a more robust optical-flow estimation and get a smoothing

version of the optical-flow information[10].

The smoothed optical-flow ot is define as Eq 3.6:

ot =

∑l

i=−lG(i; 0, 1) ∗ ot+i
∑l

i=−l ot+i

(3.6)

where l is the number of adjacent frames used in smoothing the optical-flow.

3.2.4.2 Motion contrast-based saliency

In video sequences, the optical-flow of foreground objects and background are gen-

erally distinguishable. Consequently, a motion background contrast score Mbg(p
n
t )

is designed to reflect this theory. From the background prior score Fbg computed

via Eq. (3.3), we get the background proposals where their Fbg is less than e
1 [10].

For each two consecutive frames It and It+1, we get the smoothed optical-

flow ot = (u, v) from Eq. (3.6), then we calculate the flow magnitude ograd =

grad(
√
u2 + v2) and the distribution of flow orientation oori = arctan(v/u) to

make flow histograms of pnt and BP, where BP is the background of frame It that

contains all proposals that represent background (calculated via Eq. (3.3)) [10].
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Mbg(p
n
t ) = 1− exp(−χ2(Histflow(p

n
t ), Histflow(BP ))) (3.7)

Whenever that the motion contrast score of proposal pnt is small that indicates

it is less likely to be a salient object proposal [10].

3.2.4.3 Motion gradient summation

The rationale behind motion contrast is that the motion pattern of an object is

distinct from that of the background. This assumption can also be exploited via

the gradient of the optical-flow. Indeed, distinct motion patterns cause velocity

and orientation discontinuities. That is, the optical-flow gradient will be large

around the salient object boundary. Therefore, a motion gradient score Mgrd(p
n
t )

is computed by making use of the motion gradient summation technique such

in [39]. This score is defined as the average Frobenius norm of the optical-flow

gradient in the boundary of object proposal pnt [10].

Mgrd(p
n
t ) = ‖ot‖F =

√

∑

i=x,y

∑

j=x,y

|(µi, υj)|2 =
√

µ2
x + µ2

y + υ2x + υ2x (3.8)

where ot = (µ, υ) is the smoothed optical-flow of consecutive frames It and It+1

, µx, and µy are optical-flow gradients in the x−direction and υx and υy are those

in the y− direction [10].

According to the definition of the motion gradient score, the higher value a pixel

is, the higher the possibility it associates with moving salient object boundary.

Actually, due to the approximation of optical-flow computation, the gradient of

optical-flow cannot correspond to magnitude values in the boundaries of a moving
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object exactly. Therefore, we compare the average optical-flow gradient magnitude

at the proposal boundary and in a dilated version of this boundary (10 pixels)[10].

3.2.4.4 Object proposal consistency

It is clear that salient object regions are consistent over time. Therefore, proposals

corresponding to salient objects should also remain temporally consistent in adja-

cent frames. An interframe score is defined for each proposal pnt in frame It, based

on the salient proposals of the previous frame. Specifically, each object proposal

pnt1 for frame It1 can be warped to frame It according to the forward optical-flow.

The overlap between proposal pnt in frame It and the warped object proposals is

then estimated. This yields the temporal consistency score Mcnt defined by Eq.

(3.9)

Mcnt(p
n
t ) =

P̂ n
t−1 ∩ P n

t

Area(P n
t )

(3.9)

where P̂ n
t−1 denotes the warped regions of the proposal P n

t from frame t1 to

frame t according to optical-flow ot. Based on this function, fractional proposals

corresponding to the background should be filtered out, while object proposals

should remain consistent over time [10].

3.2.5 Voting for Saliency

After the calculation of the previous saliency scores, a ranking score R(pnt ) is

computed for each proposal pnt using Eq. (3.1) where for each frame It, the 20% of

proposals are taken and a subset P s
t of proposals Pt that have the highest ranking

scores are constructed, and m as the number of salient object proposals in P s
t [10].

for each salient proposal pit ∈ PS
t , a binary mask M i

t is generated where:
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M i
t (x) =











1 if pixel x in frame It belongs to proposal pit

0 otherwise

then for each pixel x, the saliency value is computed by accumulating the binary

masks of the selected proposals PS
t , which is computed as:

Ot(x) =
1

m

∑

i

M i
t (x) (3.10)

Then this value is normalized to get an initial saliency estimation as (see Figure.

3.2) Eq. (3.11)[10]:

SIni
t (x) = 1− exp(−Ot(x)

σ2
) (3.11)

where σ is a constant parameter set to σ = 0.3,

3.2.6 Spatiotemporal saliency refinement

Generally, the initial saliency can be considered as an acceptable solution. How-

ever, some ambiguities appear at the boundary of the objects, along with temporal

non-consistency. Consequently, a saliency refinement process is introduced to im-

prove the initial saliency estimation [10].

3.2.6.1 Object boundary refinement

The idea behind this step is to refine the saliency map to improve the initial

estimation. Firstly, the SLIC method [1] is applied for each frame It to get su-

perpixels Rt = {r1t , r2t , ...} (about 500 superpixels per frame). Then we obtain
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the set SIni
t (rit) of superpixels r

i
t where its value is the averaged saliency value of

its pixels. After that, there is a classification of superpixels Rt according to two

thresholds τhigh and τ low into three distinct parts: 1) foreground (salient) regions

Ft; 2) background (nonsalient) regions Bt; and 3) uncertain regions Ut [10].

Ft =
{

rft |SIni
t (rft > τhigh, ∀rft ∈ Rt)

}

(3.12)

Bt =
{

rbt |SIni
t (rbt < τ low, ∀rbt ∈ Rt)

}

(3.13)

Ut = Rt − Ft −Bt (3.14)

Where the two thresholds τhigh and τ low are set to 0.8 and 0.2, respectively

[10].

Moreover, a graph-based approach is followed to refine the saliency value of the

uncertain regions, where nodes are superpixels and links between any two adjacent

superpixels (rit, r
j
t ) are weighted by the Euclidean distance between features (the

average CIELab color space and the mean optical-flow magnitude).

In addition, the geodesic distance is computed between uncertain superpixels

rut ∈ Ut and background superpixels rbt ∈ Bt and foreground superpixels rft ∈ Ft.

Note that, the weight is set as zero between any two background superpixels and

any two foreground superpixels. The saliency value of each uncertain superpixel

rut ∈ Ut is then given by Eq. (3.15) [10]

SRef
t (rut ) = 1− exp

(

max
r
f
t ∈Ft

dgeo(rut , r
f
t )× min

rbt∈Bt

dgeo(rut , r
b
t )
)

(3.15)
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3.2.6.2 Temporal saliency consistency

Although the refined saliency estimation SRef gives satisfactory results, it can be

further improved, especially regarding the temporal consistency. So, a propagation

process is introduced to propagate the per-frame saliency maps over time. For the

first frame I1, the location prior is initialized with the refined proposal saliency

map SRef
1 . For the following frames, the saliency value of superpixel rj is computed

as Eq. (3.2.6.2)[10]:

SF in
t+1 (r

j
t+1) =

∑

i φ(r
i
t, r

j
t+1).ψ(r

i
t)

∑

i φ(r
i
t

SRef
t (rit)

with ψ(rit) = exp(−ograd(rit)) (3.16)

Where φ(rit, r
j
t+1) indicates the overlap between superpixel rti warped by optical-

flow and superpixel rj+1
t , and ograd is the same normalized histogram of flow mag-

nitude to compute the motion contrast score [10].

3.3 Conclusion

In this Chapter of our thesis, we highlight our proposed video segmentation ap-

proach which is based on a new spatiotemporal proposal generation technique

combined with a recently proposed approach for video saliency detection using

object proposals. In the next Chapter, we present the qualitative and quantitative

results that we have obtained during the experimental analysis [10].



4
Experimentations

4.1 Introduction

In this Chapter, we provide a comparison between the proposed method and a set

of video segmentation approaches. We use the implementations provided by the

authors of these methods to extract the characteristics of each approach compared

to the proposed one. In this experiment, all the tests were performed on a Windows

platform and under the same computer configuration Intel(R) Core(TM) i3-4005U

CPU @ 1.70 GHz with 4.00 Go, on Matlab as a development tool.

48
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4.2 Evaluation

We use a set of models that used for the segmentation whether the spatial or

the spatiotemporal and we evaluate them on two datasets Segtrack V2 and Davis

which are with 14, and 50 video sequences, respectively and each dataset contain

manually annotated pixelwise ground-truth for every frame. Our main purpose,

in this Chapter, is this section is to make an experimental comparison between

their quality and their performance and to give the readers a comprehensive view

of those methods compared with the proposed method.

For our experiments, we apply some evaluation measures to determinate how

are close model predictions to human annotations (groundtruth) and to measure

the proportion of the accurate segmentation from the inaccurate one for all the

models that we choose and the proposed method.

And to achieve that, we utilize three metrics which are ”F-measure”, ”the

MAE measure” and precision-recall (PR) measure.

Concerning F-measure, we need for each method to binarize the obtained

saliency maps to compute Precision and Recall in order to utilize them in the

calculation of the F-measure in each video for every threshold, after that, we take

the average of the F-measure over videos in a dataset. Either for the MAE, for

each method, we use the obtained saliency maps and the groundtruth to calculate

the error percentage for each video then we take the average. Finally, the best

method is that which gives a value of F-measure close to 1 and a percentage of

error MAE close to 0.

4.2.1 Comparison on SegtrackV2 dataset

The SegTrackV2 dataset was originally introduced to evaluate tracking algorithms.

For this dataset, we choose a set of segmentation methods, which are : Saliency
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Filters Contrast Based Filtering for Salient Region Detection SF [9], Saliency

detection: A spectral residual approach SR [12], Saliency Detection via Absorb-

ing Markov Chain MC [13], Saliency estimation using a non-parametric low-level

vision model SIM [14], Static and space-time visual saliency detection by self-

resemblance SeR [24], Visual saliency detection by spatially weighted dissimilarity

SWD[6], Consistent Video Saliency Using Local Gradient Flow Optimization and

Global Refinement. CVS [28], Saliency aware geodesic video object segmentation

SAGV [27], and Video Saliency Detection Using Object Proposals method (VS-

DOP) [10]. We compare these approaches with the proposed method to show the

effectiveness of the proposed approach.

Table 4.1 presents a simple description of aforementioned methods:

Method Year
Features

Imlementation
Color Space Edges Region Motion

Spatial

SR 2007 Rgb No pixel No Matlab
SeR 2009 Rgb yes Pixel No Matlab
SIM 2011 Rgb No Pixel No Matlab

SWD 2011 Rgb No patches No
Matlab and
C/C++

SF 2012 Rgb No
pixel and
region No Matlab

MC 2013 Rgb No No Matlab

SP 2014 Rgb and Lab No
pixel and
superpixel Yes

Matlab and
C/C++

Spatiotemporel

CVS 2015
RGB and

LAB yes
pixel and
superpixel yes

Matlab and
C/C++

SAGV 2015 Rgb and Lab yes
pixel and
superpixel yes Matlab

SGSP 2015 Rgb and Lab yes
pixel and
superpixel yes

Matlab and
C/C++

VSDOP2017 Rgb and Lab yes

superpixel
an object
proposals yes

Matlab and
C/C++

Table 4.1: Description of used spatial and spatiotemporal methods.
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Figure 4.1: Illustration of segmentation methods results on SegTrackv2 dataset. (a)
F-measure. (b) Recall and Precision. (c) MAE.

As we can see in the Figure. 4.1 and Table 4.2, there is a difference in methods

results, where we can observe that there is two main groups of those models. We

can observe also that the first group of methods has better results in terms of all

the three metrics.

In fact, the first group contains CVS, SAGV, SP, along with the proposed

method. Firstly, one characteristic of those models is that they have a high F-

measure value, in most of cases superior to 0.5. Secondly, its main absolute error

is small compared with the second group that contains the rest of methods and

their highest F-measure are inferior to 0.5.

These results can be justified by the fact that the first group are spatiotempo-

ral models which take into account motion cues (optical flow) in addition to the

appearance factor (superpixels, color...) where that enhances the process of the
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Method
Proposed
method

Object
pro-
posal SAGV CVS SP MC SF SIM SWD SeR SR

bird of
paradise 0.927 0.845 0.607 0.534 0.959 0.878 0.883 0.224 0.545 0.310 0.259
birdfall 0.044 0.036 0.252 0.057 0.778 0.041 0.017 0.122 0.054 0.029 0.031
bmx 0.837 0.824 0.699 0.518 0.773 0.758 0.390 0.444 0.526 0.505 0.592

cheetah 0.538 0.158 0.727 0.754 0.606 0.473 0.262 0.687 0.568 0.601 0.704
drift 0.823 0.836 0.743 0.578 0.562 0.382 0.132 0.498 0.451 0.515 0.460
frog 0.764 0.777 0.703 0.726 0.711 0.408 0.290 0.480 0.466 0.558 0.437
girl 0.867 0.868 0.861 0.891 0.793 0.792 0.293 0.739 0.676 0.692 0.428

hummingbird0.504 0.448 0.565 0.462 0.540 0.282 0.180 0.347 0.417 0.271 0.539
monkey 0.800 0.804 0.891 0.827 0.664 0.689 0.507 0.431 0.506 0.260 0.602
monkeydog 0.285 0.188 0.412 0.475 0.248 0.220 0.051 0.073 0.307 0.200 0.299
parachute 0.886 0.583 0.933 0.659 0.950 0.814 0.040 0.785 0.626 0.886 0.318
penguin 0.136 0.612 0.586 0.493 0.518 0.709 0.631 0.479 0.593 0.494 0.478
soldier 0.770 0.683 0.619 0.504 0.647 0.516 0.074 0.651 0.171 0.394 0.453
worm 0.820 0.835 0.831 0.876 0.687 0.784 0.036 0.579 0.544 0.530 0.412

F-measure 0.615 0.550 0.581 0.531 0.595 0.471 0.191 0.396 0.402 0.386 0.389

Table 4.2: The best result of F-measure for each method per video.

segmentation and makes it more precise in determining the object, contrary to the

second group which contains only the spatial methods where only the appearance

model is used to infer the segmentation mask.

Also as shown on Figure. 4.1, we can observe that the PR curve(4.1(b)) and

F-measure curve(4.1(a)) given by the proposed method is clearly above baselines

and have a lower MAE value compared the other methods which indicate that

their prediction values are close to the groundtruth and it has a higher accuracy

in video segmentation.

More precisely, we can observe that the proposed method which is a combi-

nation of spatiotemporal generation of object proposals and video segmentation

using object proposals surpasses the original method [10]. In fact, the original

method of [10] gives an F-mesure of 0.55, however the proposed method results

gieves an F-measure=0.61. This is due to the fact that the original method is

based only on spatial object proposals which leads to inaccurate segmentations,
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especially when there is a camouflage between object and background. So, the

spatial features is insufficient to give correct object proposals. Consequently, we

include the spatiotemporal cues on the object proposals generation step which

gives a more accurate location of the object.

To get a qualitative comparison, we take five frames for each chosen videos (bird

of paradise, girl, monkeydog, parachute). Note that every video have a challenge.

This allows to evaluate the robustness of the proposed method compared with the

rest of methods.

Figures. 4.2, 4.3, 4.4 and 4.5 show qualitative results given by the proposed

approach along with the compared methods. We notice that the result of the

spatiotemporal methods is more accurate than the spatial ones excepting the MC

and SF where their result is close to the spatiotemporal in ”bird of paradise” video

because the object was very salient (the background and the foreground colors are

easy to discriminate).

As we can observe from the qualitative results, the results of the proposed

method are very close to the groundtruth annotations which gives an accurate

detection of the objects.



4.2 Evaluation 54

Original frame

Groundtruth

Proposed Method
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Figure 4.2: Visual comparison of methods with GT on SegtrackV2 for bird of par-
adise video.
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Original frame
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Figure 4.3: Visual comparison of methods with GT on SegtrackV2 for girl video.
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Original frame
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Figure 4.4: Visual comparison of methods with GT on SegtrackV2 for monkeydog
video
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Original frame

Groundtruth

Proposed Method
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Figure 4.5: Visual comparison of methods with GT on SegtrackV2 for parachute
video
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4.2.1.1 Comparison on Computational time

When we compute the three metrics on methods and found a method better than

the others, this doesn’t really indicate that it is the optimum one. There are

other factors to consider, among them we find the computational time which is a

sensitive factor to be observed.

So we calculate the computational time for each method for a typical 327×259

and 360 × 640 frame from Segtrackv2. The obtained results are shown in the

Table 4.3. As a general observation, the computational time of the spatiotemporal

methods is bigger than the spatial ones and that is because the first ones use in

addition to the spatial features, the spatiotemporal features such as the optical

flow.

Method MC SF SIM SWD SeR SR CVS SAGV
Proposed
method

Computational
time(s) per

frame 327x259 1.45 0.76 1.26 0.23 2.12 0.16 35.51 14.62 166.27

Computational
time(s) per

frame 360x640 0.42 1.93 4.76 0.43 1.55 0.03 20.02 20.15 601.78

Table 4.3: Computational time of methods on Segtrackv2 dataset

4.2.2 Comparison on Davis dataset

Regarding this dataset, due to our limited project time and because the Davis

dataset is so big, we evaluate it in just spatial methods (the same methods that

we use in segtrack) which are : SF [9], SR [12], MC [13], SIM [14], SeR [24],
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SWD[6], and for the spatiotemporal ones, we take precomputed results which are

available on [38] where we take the precomputed masks for following methods:

arp, cvos, fseg, fst,key, lmp, msg, nlc, trc.

Figure 4.6: Illustration of segmentation methods results on Davis dataset given by
spatial methods. (a) F-measure. (b) Recall and Precision. (c) MAE.

Method MC SF SIM SWD SeR SR

bear 0.7312 0.1842 0.3528 0.3009 0.3008 0.2190

blackswan 0.2883 0.3348 0.1416 0.3220 0.1471 0.1794

bmx-bumps 0.2055 0.0182 0.3243 0.1561 0.3103 0.4861
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bmx-trees 0.2692 0.0231 0.3716 0.3329 0.0673 0.3310

boat 0.1890 0.1380 0.4362 0.4262 0.4692 0.3048

breakdance 0.6071 0.3526 0.1915 0.3892 0.2987 0.2144

breakdance-flare 0.5946 0.4557 0.3178 0.6513 0.2637 0.4077

bus 0.8339 0.5742 0.4516 0.5860 0.2744 0.6177

camel 0.6917 0.1795 0.2503 0.4902 0.1857 0.3609

car-roundabout 0.6994 0.4821 0.2710 0.4942 0.2071 0.2508

car-shadow 0.5362 0.2267 0.5459 0.7189 0.3160 0.6364

car-turn 0.2706 0.1021 0.4215 0.2537 0.2880 0.7253

cows 0.6326 0.2099 0.4815 0.6825 0.3114 0.5130

dance-jump 0.3417 0.4303 0.1694 0.3850 0.1997 0.1295

dance-twirl 0.2807 0.1073 0.2230 0.4083 0.2030 0.2050

dog 0.5744 0.8037 0.4196 0.4869 0.3630 0.4523
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dog-agility 0.2252 0.1849 0.1471 0.2109 0.1463 0.1658

drift-chicane 0.0493 0.0565 0.5655 0.5127 0.2236 0.1906

drift-straight 0.4555 0.1643 0.2746 0.2261 0.3597 0.2102

drift-turn 0.4225 0.3054 0.5209 0.4747 0.6104 0.4933

elephant 0.5627 0.2984 0.1694 0.4543 0.1698 0.1684

flamingo 0.5341 0.3123 0.2359 0.4853 0.2041 0.1746

goat 0.4429 0.1078 0.0954 0.3108 0.0861 0.1798

hike 0.5109 0.0690 0.2485 0.5490 0.1476 0.4717

hockey 0.6058 0.0608 0.3726 0.4734 0.1712 0.4339

horsejump-high 0.5915 0.3436 0.3654 0.5183 0.2143 0.5009

horsejump-low 0.3578 0.1694 0.2390 0.3934 0.2007 0.5894

kite-surf 0.4736 0.0175 0.7135 0.4176 0.5765 0.5805

kite-walk 0.8422 0.6399 0.7116 0.7282 0.6975 0.5605
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libby 0.1876 0.0607 0.1651 0.3035 0.1233 0.2197

lucia 0.6650 0.0999 0.4536 0.5703 0.4203 0.5032

mallard-fly 0.4532 0.0406 0.2081 0.1329 0.4114 0.2253

mallard-water 0.4866 0.0568 0.2028 0.4574 0.0925 0.1986

motocross-bumps 0.3611 0.3395 0.6676 0.3566 0.6791 0.6531

motocross-jump 0.5010 0.3993 0.5218 0.5869 0.5904 0.5751

motorbike 0.1597 0.0676 0.5399 0.2934 0.4497 0.6127

paragliding 0.6448 0.6881 0.6385 0.6160 0.5000 0.8165

paragliding-launch 0.8094 0.5140 0.6510 0.7395 0.5690 0.6784

parkour 0.4669 0.3845 0.3172 0.3551 0.1441 0.3492

rhino 0.6894 0.4458 0.2011 0.4945 0.2001 0.2035

rollerblade 0.1772 0.0400 0.2236 0.1429 0.2363 0.6286

scooter-black 0.3437 0.3269 0.1703 0.3702 0.1428 0.2096
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scooter-gray 0.2570 0.1009 0.3005 0.2891 0.2261 0.5661

soapbox 0.4948 0.2137 0.5248 0.5225 0.4053 0.3914

soccerball 0.6711 0.2972 0.3629 0.1039 0.1497 0.1967

stroller 0.4892 0.3628 0.4292 0.5752 0.2905 0.4007

surf 0.5928 0.5757 0.6539 0.5656 0.8423 0.7200

swing 0.7281 0.4380 0.3960 0.6785 0.2540 0.6015

tennis 0.5322 0.0314 0.6394 0.5085 0.5482 0.5971

train 0.5727 0.5407 0.5293 0.4636 0.5557 0.3916

F-measure 0.4102 0.2086 0.3262 0.4044 0.2671 0.3653

Table 4.4: The best results of F-measure for spatial meth-

ods on Davis dataset.
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Figure 4.7: Illustration of segmentation methods results on Davis dataset given by
spatiotemporal methods. (a) F-measure. (b) MAE. (c) Recall and Precision.

Method arp cvos fseg fst key lmp msg nlc trc

bear 0.95 0.94 0.95 0.95 0.92 0.89 0.94 0.94 0.96

blackswan 0.95 0.48 0.90 0.89 0.88 0.69 0.59 0.91 0.64

bmx-

bumps 0.58 0.60 0.16 0.22 0.24 0.62 0.53 0.76 0.65

bmx-trees 0.62 0.53 0.65 0.19 0.22 0.69 0.50 0.53 0.47
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boat 0.51 0.07 0.76 0.43 0.08 0.62 0.18 0.01 0.16

breakdance 0.87 0.49 0.61 0.54 0.68 0.66 0.55 0.84 0.35

breakdance-

flare 0.93 0.67 0.84 0.71 0.68 0.90 0.43 0.93 0.57

bus 0.94 0.88 0.92 0.92 0.84 0.92 0.96 0.82 0.90

camel 0.96 0.91 0.93 0.66 0.82 0.92 0.91 0.88 0.92

car-

roundabout 0.85 0.91 0.95 0.87 0.67 0.89 0.58 0.65 0.80

car-

shadow 0.87 0.82 0.95 0.79 0.66 0.88 0.91 0.81 0.74

car-turn 0.90 0.86 0.95 0.89 0.88 0.86 0.49 0.88 0.77

cows 0.97 0.79 0.94 0.88 0.70 0.93 0.92 0.96 0.95

dance-

jump 0.87 0.71 0.79 0.68 0.84 0.70 0.08 0.82 0.67
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dance-

twirl 0.89 0.70 0.89 0.55 0.42 0.83 0.76 0.66 0.71

dog 0.88 0.62 0.94 0.85 0.86 0.92 0.73 0.92 0.93

dog-agility 0.38 0.32 0.86 0.44 0.17 0.58 0.14 0.73 0.38

drift-

chicane 0.89 0.45 0.62 0.80 0.20 0.76 0.90 0.38 0.81

drift-

straight 0.69 0.62 0.84 0.81 0.22 0.77 0.72 0.62 0.59

drift-turn 0.81 0.81 0.93 0.73 0.31 0.74 0.66 0.39 0.51

elephant 0.90 0.75 0.94 0.88 0.74 0.90 0.89 0.58 0.92

flamingo 0.89 0.84 0.86 0.94 0.89 0.80 0.94 0.63 0.90

goat 0.87 0.10 0.91 0.62 0.76 0.89 0.88 0.02 0.92

hike 0.96 0.94 0.91 0.94 0.96 0.94 0.85 0.96 0.91

hockey 0.89 0.89 0.85 0.54 0.60 0.92 0.77 0.87 0.76
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horsejump-

high 0.92 0.92 0.82 0.65 0.39 0.90 0.82 0.90 0.73

horsejump-

low 0.89 0.87 0.85 0.63 0.76 0.86 0.83 0.71 0.84

kite-surf 0.83 0.64 0.45 0.25 0.71 0.60 0.50 0.54 0.62

kite-walk 0.86 0.63 0.78 0.73 0.53 0.90 0.74 0.91 0.07

libby 0.87 0.57 0.74 0.83 0.82 0.86 0.09 0.84 0.33

lucia 0.95 0.94 0.89 0.75 0.94 0.94 0.75 0.93 0.88

mallard-fly 0.61 0.60 0.81 0.60 0.78 0.60 0.04 0.81 0.53

mallard-

water 0.60 0.28 0.89 0.11 0.86 0.42 0.06 0.88 0.13

motocross-

bumps 0.88 0.64 0.88 0.49 0.87 0.82 0.51 0.66 0.55

motocross-

jump 0.89 0.45 0.84 0.69 0.31 0.77 0.54 0.44 0.45
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motorbike 0.80 0.56 0.49 0.64 0.58 0.84 0.79 0.77 0.77

paragliding 0.96 0.96 0.80 0.69 0.96 0.95 0.98 0.96 0.95

paragliding-

launch 0.87 0.86 0.82 0.69 0.70 0.87 0.80 0.85 0.82

parkour 0.94 0.47 0.88 0.61 0.36 0.81 0.64 0.94 0.70

rhino 0.96 0.79 0.94 0.86 0.77 0.93 0.96 0.85 0.95

rollerblade 0.92 0.71 0.83 0.39 0.63 0.81 0.88 0.89 0.81

scooter-

black 0.83 0.82 0.84 0.58 0.61 0.80 0.50 0.36 0.52

scooter-

gray 0.83 0.68 0.85 0.44 0.53 0.83 0.63 0.68 0.63

soapbox 0.89 0.88 0.85 0.50 0.88 0.85 0.55 0.83 0.57

soccerball 0.95 0.52 0.90 0.94 0.96 0.77 0.71 0.92 0.69

stroller 0.92 0.79 0.82 0.64 0.86 0.73 0.78 0.92 0.84
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surf 0.98 0.64 0.96 0.59 0.93 0.70 0.76 0.86 0.32

swing 0.93 0.84 0.87 0.43 0.88 0.91 0.86 0.92 0.74

tennis 0.91 0.78 0.83 0.44 0.77 0.88 0.84 0.92 0.52

train 0.95 0.94 0.89 0.89 0.64 0.91 0.92 0.85 0.93

F-measure 0.855 0.690 0.826 0.655 0.665 0.810 0.666 0.752 0.675

Table 4.5: The obtained F-measure results for spatiotem-

poral methods per video.
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Figure 4.8: Visual comparison of methods with GT on Davis (bear video).
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Figure 4.9: Visual comparison of methods with GT on Davis(Bus video)
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Figure 4.10: Visual comparison of methods with GT on Davis(train video)
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Figure 4.11: Visual comparison of methods with GT on Davis(dog video)
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As we can see in the previous Figures. 4.8, 4.9, 4.11 and 4.10, we can observe

that there is a difference between methods and as we said in the previous section

(segtrack dataset) and because those methods use only spatial cues, the results are

not so good and lack precision. This is due to the absence of motion cues which

is robust to estimate the objects in motion especially in complex scenes.

4.2.2.1 Comparison on computational time

We calculate the computational time for each method for a typical 480×854 frame.

The results are shown in the Table 4.6.

Method MC SF SIM SWD SeR SR

Computational
time per frame 6.82 s 1.19 s 4.94 s 1.08 s 1.71 s 0.48 s

Table 4.6: The observed computational time of the compared methods on the Davis
dataset.

4.3 Conclusion

In this chapter, we conducted an experimental study on the proposed approach

along with some video segmentation methods. We used three metrics to measure

accurately the performance of video segmentation methods and make a comparison

between them to extract the characteristics and the performance of each one.

We have observed that using spatiotemporal generation of object proposals can

improve the video segmentation results.



5
Conclusions and perspectives

Video segmentation is a hot topic in computer vision that has been studied for

many years and opened the way for researchers to compete among themselves to

develop effective and practical algorithms and methods in this area, which is why

we have chosen to be the subject of our thesis.

In this thesis, Firstly, we studied several concepts about video segmentation

such as features (superpixels, optical flow ...etc), refinement methods and other

related concepts to master the subject. After that, we choose a recent method in

video segmentation to support these theoretical concepts by something practical

and give more examples to extend thesis content, and the reason that makes us

75



76

select it, is that this method is based on object proposals where they give us

prior information about the object because they are more ”object-like” which are

expected to cover all objects in an image. Another adventage of using object

proposals in segmentation methods is to reduce the search space of objects in an

image/video. Although the process to generate these proposal segments is very

expensive where a single image required about 2-7 muinutes, the reason that make

us also select this method is that it uses various saliency cues whether spatial or

temporal and that helps to give a well initial estimation.

Although this method is robust to detect objects, but it have a weakness point

which is using only spatial information to generate object proposals. However, in

some video using only spatial information is not effective to detect moving object.

This is what led us to think about a way to solve this problem as we proposed a

method that generate spatiotemporal object proposals.

To evaluate the method proposed approach, we have used several evaluation

metrics to illustre the effectiveness of each approach and give a quantitative and

qualitative comparison.

At this stage, we can say that we have realized most of the work requested,

nevertheless, there are still prospects to enrich this project among them the run-

time and testing the proposed method with all the possible values of the used

parameters.
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