

 الجمھوریـة الجزائـریـة الدیمقراطیـة الشعبیـة

République Algérienne Démocratique et Populaire
 وزارة التعلیــم العالـي والبحـث العلمـي

Ministère de l’Enseignement Supérieur et de la Recherche Scientifique

No Réf : ……………

Centre Universitaire

 Abd Elhafid Boussouf Mila

Institut des Sciences et Technologie

Département de Mathématiques et Informatique

Mémoire préparé en vue de l’obtention du diplôme de
Master

 En : Informatique
 Spécialité : Sciences et Technologies de l’Information et de la

Communication (STIC)

Préparé par : Zahri chaima
 Ferdi Ranya

 Soutenue devant le jury
 Encadré par Dr. Aissa Boulmerka C.U. Abd Elhafid Boussouf
 Président Dr.Sadek Benhammada C.U. Abd Elhafid Boussouf
 Examinatrice Dr.Souheila Khalfi C.U. Abd Elhafid Boussouf

Année Universitaire : 2021/2022

Semantic Segmentation of Remote sensing image

Abstract

CwOl� Ty�¯d�� T¶z�t�� �A�m� ��AJ �h� Yl� �wO��� w¡ T�AFr�� £@¡ �d¡

,Tflt�� �AkbJ ��d�tF� Annkm§ �y�¤ �ym`�� �l`t�� �A�� ¨� Qw��� Y�� T�AR³A�

¤ VGG �Ayn� �ybW� , A¾d§d�� r��� �kK�¤ ,Tyfy�®t�� TybO`�� �AkbK�� AmyF ¯

�Amyyqt��¤
CA�t�� rh\u� .d`u� �� CA`KtF¯� Cw} ¨� U-Net ¤ Inception ¤ Resnet
Y�� T�AR³A� �AkbK�� £@¡ ��d�tF� d¶�w� £®�� Cw�@m�� �AmymOt�A� T}A���

.CwOl� Ty�¯d�� T¶z�t�A� Tql`tm�� �®kKm�� �� ¨� Ah�ºAf�

,Tyfy�®t�� TybO`�� �AkbK�� ,�ym`�� �l`t�� ,Ty�¯d�� T¶z�t�� - Tysy¶r�� �Amlk��

.T§w��� CwO�� ,CwO, d`� �� CA`KtF¯� Cw} ,VGG ,Resnet ,Inception ,U-Net

This dissertation’s objective is to gain a thorough understanding of the field of
image semantic segmentation as well as a deep dive into the field of deep learning
and how we can use different networks, particularly convolutional neural networks
and, more specifically, the application of VGG, Resnet, Inception, and U-Net archi-
tectures in the Remote Sensing imagery. The experiments and evaluations of the
aforementioned models show the benefits of using such networks as well as their
efficiency in resolving several problems with image semantic segmentation.

Keywords — Semantic segmentation, deep learning, convolutional neural net-
works CNN, U-Net, VGG, Resnet, Inception, Remote sensing image, Aerial image.

1

2

Acknowledgement

العمل ، والص�� ع�� تحقيق ا�حلم الذي �شرف�ي تكريس هذا �القدرة ع�� الكتابة والتفك� ا�حمد � الذي منح�ي

و��� �سمھ سليمان أهدي تخر�� إ�� من �للھ الله بالوقار و��� من احمل اسمھ ب�ل افتخار والدي العز�ز . المتواضع

،إ�� من بوعروج ز�نب،ا�� امي الثانية حملاوي صور�ةا�حياه وسر الوجود و��� مع�ى ا�حب وا�حنان أمي ا�حبيبھ

 موراس سفيان وأعاد إ�ّ� ثق�ي بقدر�ي ع�� التقدّم: إليك زو�� أخذ بيدي نحو ما أر�د

ع�� دعمك عي�ىى بو المرقة : الدكتور و أود أن أغتنم هذه الفرصة ح�ى أشكر اك�� مكسب �� مس���ي الدراسية

الس�� والكب�� �� ل�خروج ��ذا البحث ح�ى ال��اية، أنا ممتنة جدًا لك ولمساعدتك، وا�حمد � الذي �خر هذه

 .الفرصة ��، وألف شكر لقلبك الطيب و�خصك الكر�م

 زهري شيماء ا�� سندي ورفيق�ي �� هدا العمل المتواضع

كما نود أن �شكر أعضاء �جنة الأعزاء، وا�� �ل صديقا�ي واخوا�ي واخو�ي موراس فردي حملاوي ل�ي ئ�� عاإ

 التحكيم الذين شرفونا بفحص هذا العمل.

 ر�اضيات واعلام ا��المعهد أساتذةأخ�ً�ا ، نجدد شكرنا لأولئك الذين ساعدونا للقيام ��ذا العمل دون أن نن�ىى

 . والنجاح الدائماسال الله ان يمن علينا بالتوفيق

 فردي رانية

� الذي بتوفيقھ و �سهيل منھ حققت هذا � رب العالم�ن الذي بنعمتھ تتم الصا�حات ا�حمد والشكرا�حمد

ي تخر�� ا�� قدو�ي الاو�� و سندي �� ا�حياة ا�� من رفعت رأ�ىي عاليا داه المتواضع.ا�حلم �� انجاز هذا العمل

�� من و�. طال�ي لطيفة أمي ا�حنونة ،تمل�� تلك المرأة العظيمة ال�ي ر�ت و ع�و ياس�ن زهري العز�ز أ�ي ،بھ اافتخار

� �ل افراد و�� , فرحات عبد الرزاق�� زو�� ا�� من دعم�ي و �ان سندو�رحمھ الله. جديتم�ى بلو�� هذا الهدف

 مس���ي خوا�ي الذين وقفو بجان�ي طوال أخو�ي و خاصة إعائل�ي

الذي عي�ىى بوالمرقةكما �سر�ي ان اوجھ خالص شكري ا�� اعظم استاذ �� مس���ي الدراسية مشر�� الدكتور

 و ا�حمد � الدي �خر لنا هده الفرصة.و انا ممتنة لك ع�� دعمك و مساعدتك و ارشادك لنا عاليةيتمتع بخ��ة

 فردي رانية ا�� صديق�ي و رفيق�ي �� هدا العمل

كما �شكر اساتذة معهد العمل،كما نتقدم بالشكر ا�� اعضاء �جنة التحكيم الذي نتشرف بفحصهم لهذا

�ل من ساعدنا ع�� اتمام هذه المذكرة من قر�ب و من �عيد و �ل من وقفوا بجان�ي �� وا��الراضيات و الاعلام الا�� .

 مس���ي الدراسية و �سأل الله التوفيق و النجاح.

 زهري شيماء

Contents

Abstract 1

Contents 3

List of Figures 6

List of Tables 8

List of Abbreviations 9

General Introduction 11

1 Deep Learning 13
1.1 Introduction . 13
1.2 General concepts . 14

1.2.1 Definitions . 14
1.2.2 Artificial neural networks . 14
1.2.3 Perceptrons . 15
1.2.4 Activation functions . 16

1.2.4.1 Sigmoid . 16
1.2.4.2 Tanh . 16
1.2.4.3 ReLU . 17
1.2.4.4 Softmax . 17

1.2.5 Batch normalization . 18
1.2.6 Performance metrics . 19

1.2.6.1 Intersection-Over-Union 19
1.2.6.2 Accuracy . 19
1.2.6.3 Precision . 20
1.2.6.4 Recall . 20
1.2.6.5 F-Measure (F1 Score) 20
1.2.6.6 Jaccard similarity coefficient 20

1.2.7 Loss functions . 21
1.2.7.1 Regression losses . 21
1.2.7.2 Classification losses 21

1.2.8 Hyperparameters . 22
1.2.8.1 Gradient descent algorithms 22
1.2.8.2 Learning rate . 22
1.2.8.3 Batch size . 23
1.2.8.4 Epochs . 23

3

CONTENTS

1.2.8.5 Steps per epoch . 24
1.2.9 Forward propagation and backpropagation 24

1.2.9.1 Forward propagation 25
1.2.9.2 Backpropagation . 25

1.2.10 Data augmentation . 25
1.3 Basic deep learning architectures . 26

1.3.1 Convolutional neural networks 26
1.3.2 Common convolutional neural network architectures 27

1.3.2.1 LeNet-5 . 28
1.3.2.2 AlexNet . 29
1.3.2.3 VGG-16 . 30
1.3.2.4 ResNet . 31
1.3.2.5 GoogleNet . 32
1.3.2.6 MobileNet . 33

1.3.3 Pooling Layer . 34
1.3.4 Fully-Connected Layer . 34
1.3.5 Recurrent neural networks and the LSTM 35
1.3.6 Encoder-Decoder and Auto-Encoder Models 36
1.3.7 Generative Adversarial Networks 37

1.4 Deep learning frameworks . 38
1.4.1 TensorFlow . 38
1.4.2 PyTorch . 39
1.4.3 Keras . 39

1.5 Hardware used in deep learning . 39
1.5.1 Central processing units . 39
1.5.2 Graphics processing units . 40
1.5.3 Tensor processing units . 40

1.6 Conclusion . 41

2 Semantic Segmentation 42
2.1 Introduction . 42
2.2 General concepts of semantic segmentation 43

2.2.1 Definition . 43
2.2.2 Comparison with other computer vision tasks 43
2.2.3 Traditional Techniques for Semantic segmentation 46
2.2.4 Deep learning Methods . 46

2.3 Deep learning-based semantic segmentation methods 46
2.3.1 Fully convolutional networks 47
2.3.2 SegNet . 47
2.3.3 DeepLab . 47
2.3.4 U-net . 48

2.4 Conclusion . 49

3 Semantic segmentation of remote sensing images 50
3.1 Introduction . 50
3.2 Problem definition . 51
3.3 Dataset . 51
3.4 Data preparation and Data augmentation 52
3.5 Model building blocks . 52

4

CONTENTS

3.5.1 Unet . 52
3.5.2 Backbone . 53
3.5.3 Training . 53

3.6 Experiments, tests, and results . 54
3.6.1 Evaluation and Comparison 54
3.6.2 Visual results . 54

3.7 Software and tools . 59
3.7.1 Python programming language 59
3.7.2 PyCharm IDE . 59
3.7.3 Google Colaboratory . 59
3.7.4 PySimpleGUI . 60
3.7.5 NumPy . 60
3.7.6 Matplotlib . 60
3.7.7 Pandas . 61
3.7.8 Scikit-learn . 61

General Conclusion 62

5

List of Figures

1.1 Illustration showing the relationship between AI, ML, and DL [44]. . 14
1.2 Illustration of Schematic representation of the mathematical model

of an artificial neuron (processing element) [10] 15
1.3 The architecture of ANN[11] . 15
1.4 Sigmoid activation function . 16
1.5 Hyperbolic Tangent activation function 17
1.6 Rectified Linear Units activation function 17
1.7 Multi-class classification with NN and softmax function 18
1.8 Batch normalization first step . 18
1.9 Benefits of γ and β parameters . 19
1.10 3D Gradient Descent . 22
1.11 Learning Rate expletive illustration[19] 23
1.12 Underfitting, Optimum and Overfitting[44] 24
1.13 Backpropagation expletive illustration 25
1.14 Representation of data augmentation[3] 26
1.15 Architecture of a simple CNN . 26
1.16 Legend used for the various architectures 28
1.17 LeNet architecture . 28
1.18 AlexNet architecture . 29
1.19 VGG-16 architecture . 30
1.20 ResNet-50 architecture . 31
1.21 ResNet identity block . 31
1.22 GoogleNet architecture (Inception V1) 32
1.23 MobileNet architecture . 33
1.24 Architecture of a simple RNN . 35
1.25 Architecture of LSTM . 36
1.26 Architecture of an Encoder-Decoder 36
1.27 exemple of Encoder-Decoder . 37
1.28 Architecture of Auto-Encoder . 37
1.29 structure of GANs . 38
1.30 Architecture of Generative Adversarial Networks 38

2.1 An example of semantic segmentation[46] 43
2.2 An example of Image classification 44
2.3 Classification with Localization . 44
2.4 An example of Object Detection . 45
2.5 An example of semantic image segmentation 45
2.6 An example of Instance segmentation 46

6

LIST OF FIGURES

2.7 SegNet architecture . 47
2.8 The DeepLab model[66] . 48
2.9 U-Net architecture . 49

3.1 Example of Satellite image and its corresponding segmentation 51
3.2 samples example of augmented images and masks from the dataset . . 52
3.3 samples example of Back Bone . 53
3.4 Prediction results on test images (U-net) 55
3.5 Prediction results on test images (Resnet50 backbone) 56
3.6 Prediction results on test images(VGG19 backbone) 57
3.7 Prediction results on test images (InceptionV3 backbone) 58
3.8 Python logo . 59
3.9 PyCharm logo . 59
3.10 Google Colaboratory logo . 60
3.11 PysimpleGUI logo . 60
3.12 NumPy logo . 60
3.13 Matplotlib logo . 61
3.14 Pandas logo . 61
3.15 Scikit-learn logo . 61

7

List of Tables

1.1 LeNet structural details . 29
1.2 AlexNet structural details . 29
1.3 VGG-16 structural details . 30
1.4 ResNet structural details . 31
1.5 GoogleNet structural details . 33
1.6 MobileNet structural details . 34

3.1 Example of execution time results for the form Unet 53
3.2 Results of the performance metrics for each model 54

8

List of Abbreviations

AE Auto-Encoder

ALUS Arithmetic Logic Units

AMD Advanced Micro Devices

ANN Artificial Neural Network

API Application Programming Interface

ARM Automatic Restart Manager

ASICs Application-Specific Integrated Circuits

ASPP Atrous Spatial Pyramid Pooling

BN Batch Normalization

CNN Convolutional Neural Network

CPU Central Processing Unit

DNN Deep Neural Network

DL Deep Learning

ED Encoder-Decoder

EMA Exponential Moving Average

FC Fully Connected

FCN Fully Convolutional Network

GAN Generative Adversarial Network

GLS Gray Level Segmentation

GPU Graphics processing Unit

GUI Graphical User Interface

IBM International Business Machines

IDE Integrated Development Environment

ILSVRC ImageNet Large Scale Visual Recognition Challenge

IoU Intersection-Over-Union

LR Learning Rate

LSTM Long Short-Term Memory

9

List of Abbreviations

MAC Multiply and accumulate

MLP Multi-Layer Perceptron

NN Neural Network

RGB Red Green Blue

ReLU Rectified Linear Unit

ResNet Residual Neural Network

RNN Recurrent Neural Network

Tanh Hyperbolic Tangent

TPU Tensor Processing Unit

SVM Machine Vertical Suport

RGB Rouge,Vert,blue

DCNN Depp Convolition Neural Network

10

General introduction

Many visual understanding systems, especially remote sensing imaging systems,
rely on image segmentation and object detection to understand images (or video
frames). Image segmentation has been a fundamental challenge in computer design
from the beginning.

On the one hand, there are two approaches to image segmentation: semantic
image segmentation (classifying pixels with semantic labels) and instance segmenta-
tion (partitioning of specific objects). Semantic segmentation is more difficult than
whole-image classification, which assigns a single label to the entire image. Object
categories (e.g., human, automobile, tree, sky) are applied at the pixel level, making
semantic segmentation a more difficult task. Using instance segmentation, each ob-
ject of interest in an image can be detected and separated, extending the semantic
segmentation process (e.g., individual people). There are many approaches for image
segmentation from simple algorithms like active contours, graph cuts, and Markov
random fields to more advanced algorithms like histogram-based approaches, area
growth, k-means clustering, watershed methods.

Deep learning has led to a new generation of image segmentation models that
outperform prior approaches, achieving the best accuracy rates on established bench-
marks. This has resulted in a paradigm shift in the area of image analysis, with
advances in machine learning and artificial intelligence at the heart of the field.

In this dissertation, we have looked at some of the key concepts and approaches
that allow the implementation of image semantic segmentation. The content of the
present dissertation can be described as follows:

The content of first chapter begins by defining and explaining a few keywords and
ideas relevant to deep learning (DL). Then we go through some fundamental deep
learning architectures including CNN, RNN, LSTM, ED and AE models, and GANs.
Following that, we go through some of the most popular deep learning frameworks,
such as TensorFlow, PyTorch, and Keras. Finally, we describe and present certain
DL-related hardware, such as CPUs, GPUs, and TPUs.

We begin chapter two by describing and comparing semantic segmentation to
other computer vision problems, explaining methodologies and techniques that are
comparable to semantic segmentation, and clarifying the link between the latter
and DL. Following that, a look at some of CNN’s most popular models, including
LeNet-5, AlexNet, VGG-16, ResNet, GoogleNet, and MobileNet, is taken, with im-
ages and tables used to define the most significant elements and components that

11

General introduction

make them up. Finally, we look at the entire bypass networks, SegNet, DeepLab,
Pyramid Landscape Analysis Network, and U-Net, and discuss DL-based semantic
segmentation methods, including explanations and details.

In the final chapter, we explain the U-net Model for the semantic segmentation
of remote-sensing images. We give some details about the network architecture and
technology used to address this problem. Next, we describe our experiments, tests,
and results. The predictions of each trained model are represented by a set of visual
figures. Finally, we evaluate and compare the performance of the studied model.

12

Chapter 1

Deep Learning

1.1 Introduction
This chapter introduces the concepts of deep learning (DL) and describes some of
the popular frameworks used in DL. Starting by general concepts of ANNs, percep-
trons, MLPs, activation functions, cost functions, gradient descent, LR, and finally,
forward propagation and backpropagation. In addition, we will describe DNN ar-
chitectures used widely by the computer vision community, including CNN, RNN,
and LSTM. Then we will explain some of the popular frameworks used in DL, such
as TensorFlow, PyTorch, and Keras. At the end of this chapter, we will talk about
the hardware used by DL techniques such as CPUs, GPUs, and TPUs.

13

Chapter 1 – Deep Learning

1.2 General concepts

1.2.1 Definitions

DL is considered as a subset of ML and AI, and thus DL can be seen as an AI func-
tion that mimics the human brain’s processing of data. The worldwide popularity
of “Deep learning” is increasing day by day, as shown in [1].

DL technology originated from the artificial neural network (ANN), and has be-
come one of the hot topics within the area of machine learning, artificial intelligence
as well as data science and analytics, due to its learning capabilities from the given
data, Many corporations including Google, Microsoft, Nokia, etc., study it actively
as it can provide significant results in different classification and regression problems
and datasets [2].

this technology uses multiple layers to represent the abstractions of data to build
computational models. While deep learning takes a long time to train a model due
to a large number of parameters, it takes a short amount of time to run during
testing as compared to other machine learning algorithms.

By demonstrating how a machine’s internal parameters are employed to generate
the representation in each layer from the representation in the preceding layer, DL
unveils intricate patterns in big data sets using the backpropagation technique.

One of the key differences between machine learning and DL models is feasibility.
feature extraction; feature extraction is done by humans in machine learning.DL
models, on the other hand, come to their own conclusions.

Figure 1.1: Illustration showing the relationship between AI, ML, and DL [44].

1.2.2 Artificial neural networks

ANNs are influenced by the way biological neural systems process information, such
as the brain [4].

The data processing system is made up of numerous highly interconnected pro-
cessing elements called neurons that collaborate to fix targeted problems.

14

Chapter 1 – Deep Learning

1.2.3 Perceptrons

The perceptron is the essential part of an Artificial Neural Network (ANN); a Per-
ceptron is a learning approach for supervised binary classifiers. Binary classifiers
use a series of vectors to determine if an input belongs to a particular class. A
single-layer neural network is what a perceptron is, in a nutshell. Weights and bias
are included for each of the input value[5], in addition to a net sum and activation
function.

The first step is to multiply all the input values by their respective weights.
Then, the weighted sum is calculated by multiplying each of the multiple values.
Weighted sums are added together and used to a perceptron’s activation function to
produce its output[6]. Using the activation function, we can ensure that the output
is mapped to values like 0 and 1 (or -1 and 1). The strength of a node can be gauged
by looking at the weight of an input. Activation function curves can be shifted up
or down by varying the bias value of an input in a similar way.

Figure 1.2: Illustration of Schematic representation of the mathematical model of an arti-
ficial neuron (processing element) [10]

ANNs are a logical progression from perceptrons. An example of a feed-forward
neural network is a multi-layered perceptron. Input, output, and perceptron neurons
(as well as synaptic weights) would all be part of it [9].

Figure 1.3: The architecture of ANN[11]

15

Chapter 1 – Deep Learning

1.2.4 Activation functions

The activation function is critical for an artificial neural network to learn. It con-
verts an input signal to an output signal like any other function. This output signal
is the input to the next layer [7].

A neural network that lacks an activation function is a linear regression model;
the weights and biases would perform a linear transformation without the activa-
tion feature. Among the most well-known activation functions, we find Sigmoid
function, Tanh, ReLU, Softmax, etc.

1.2.4.1 Sigmoid

A sigmoid function is a mathematical function with a characteristic S-shaped curve
or sigmoid curve that spans the range of 0 to 1, It is utilized in models where the
outcome is required to estimate a probability [8].

It is defined as follows:

Sigmoid(x) =
1

1 + e−x

The sigmoid transformation produces a continuous range of values between 0
and 1.

Figure 1.4: Sigmoid activation function

1.2.4.2 Tanh

The Hyperbolic Tan can also be called as symmetric sigmoid is, in fact, a scaled
sigmoid function. Keep in mind that the slope for tanh is stronger than for sigmoid
(derivatives are steeper).

It is defined as follows:

tanh(x) = 2sigmoid(2x)− 1

which is:
f(x) = tanh(x) =

2

1 + e−2x
− 1

16

Chapter 1 – Deep Learning

Figure 1.5: Hyperbolic Tangent activation function

1.2.4.3 ReLU

ReLU is another popular function, and it’s preferred over sigmoid in recent networks.
it is simply defined as follows:

f(x) = max(x, 0)

Figure 1.6: Rectified Linear Units activation function

The main advantage of using ReLU is that its derivative value is constant for
all inputs greater than 0. The constant derivative value allows the network to train
more quickly.

1.2.4.4 Softmax

It is a mathematical function that turns a vector of integers into a vector of proba-
bilities, with the probability of each value proportional to the vector’s relative scales,
It can be defined as the sum of several sigmoid functions .[12].

S(xi) =
exi∑n
j=1 e

x
j

The sigmoid function would be appropriate if we had a binary output; however,
if we have a multiclass classification problem, softmax makes it extremely simple to
assign values to each class that can be easily interpreted as probabilities.

17

Chapter 1 – Deep Learning

Figure 1.7: Multi-class classification with NN and softmax function

1.2.5 Batch normalization

As an algorithmic technique, batch-normalization speeds up and improves the sta-
bility of DNNs. After BN alters the signal at each hidden layer, it looks like this:

(1) µ =
1

n

∑
i

Z(i) (2) σ =
1

n

∑
i

(Z(i) − µ)

(3) Z(i)
norm =

(Z(i) − µ)√
σ2 − ε

(4) Z̆ = γ ∗ Z(i)
norm + β

Using (1) and (2), the BN layer first calculates the mean µ and standard de-
viation σ of the activation values throughout the batch (2). The activation vector
Z(i)

norm is then normalized with (3). As a result, the output of each neuron follows
a conventional normal distribution across the batch (For numerical stability, ε is
utilized as a constant).

Figure 1.8: Batch normalization first step. Example of a 3-neurons hidden layer, with a
batch of size b. Each neuron follows a standard normal distribution from .

By applying a linear transformation with two trainable parameters γ and β, it
calculates the layer’s output Z(i)

norm at the end (4). This phase allows the model to
select the best distribution for each hidden layer by modifying two parameters: γ
allows to alter the standard deviation; β permits to alter the bias by moving the
curve to the right or left.

18

Chapter 1 – Deep Learning

Figure 1.9: Benefits of γ and β parameters. Modifying the distribution (on the top) allows
us to use different regimes of the nonlinear functions (on the bottom) from [13]

The network calculates the mean µ and standard deviation σ for the current
batch at each iteration. When γ and β are ready, they are trained using gradient
descent and an EMA to provide more weight to recent iterations.

1.2.6 Performance metrics

The following step is to determine how well a machine learning model can predict
using categories. We must separate our data into a training set and a validation set
in order to compute these measures.

1.2.6.1 Intersection-Over-Union

DNNs are frequently trained using simple loss functions (e.g., softmax loss). These
loss functions are well suited to traditional classification problems in which overall
classification accuracy is the primary objective. When it comes to picture segmen-
tation, the two classes (foreground and background) are extremely imbalanced. The
IoU method is frequently used to assess the performance of picture segmentation
techniques [14]. Mean IoU is a typical semantic image segmentation assessment met-
ric that computes the IoU for each semantic class before averaging over all classes.
IoU is defined as follows:

IOU =
True Positive

(True Positive+ False Positive+ False Negative)
.

The predictions are accumulated in a confusion matrix, weighted by a variable, and
the metric is then calculated.

1.2.6.2 Accuracy

Accuracy is one of the most significant factors to consider when evaluating machine
learning models. Simply said, accuracy refers to our model’s proportion of right
predictions. The formal definition of accuracy is as follows:

Accuracy =
Number of correct predictions

Total number of predictions

19

Chapter 1 – Deep Learning

The following formula can be used to calculate accuracy if we had positive and
negative numbers in a binary classification:

Accuracy =
True Positives+ True Negatives

True Positives+ True Negatives+ False Positives+ False Negatives

1.2.6.3 Precision

Precision is a statistic that counts the number of correct positive predictions made.
As a consequence, precision calculates the minority class’s accuracy. It is calculated
using the proportion of correctly predicted positive cases divided by the total number
of positive examples expected.

Precision =
True Positives

False Positives+ True Positives

1.2.6.4 Recall

The recall is a statistic that counts how many valid positive predictions were made
out of all the potential ones. Unlike precision, which only takes into account the most
accurate positive predictions out of all positive forecasts, recall takes into account
the positive predictions that were missed. In this technique, recollection provides
some insight into the coverage of the positive class.

Recall =
True Positives

True Positives+ False Negatives

1.2.6.5 F-Measure (F1 Score)

Because classification accuracy is a single metric used to describe model performance,
it is extensively utilized. F-measure is a technique for combining precision and recall
into a single metric.

Neither precision nor recall can give the complete picture on their own. We
might have high precision but poor recall, or vice versa. With the F-measure, it
may convey both worries with a single score.

Once precision and recall for a binary or multiclass classification problem have
been determined, the two scores may be combined to calculate the F-Measure. This
is how the conventional F measure is calculated:

F1Score = 2 ∗ Precision ∗ Recall

Precision + Recall

1.2.6.6 Jaccard similarity coefficient

The Jaccard similarity coefficient is a simple, intuitive formula that can be used
for various applications, including image segmentation and other activities. Image
segmentation quality is evaluated using this metric, which measures the similarity
between the ground truth and segmentation results. The Jaccard similarity coeffi-
cient is defined as: let S and G denote the segmentation result and ground truth,
respectively.

E =
A(G ∩ S)

A(G ∪ S)

20

Chapter 1 – Deep Learning

Where A(x) is the operation of counting quantity. The numerator in the equation
refers to the number of matching pixels or true positives[15]. The total number of
matching and mismatched pixels is counted in the denominator.

1.2.7 Loss functions

When creating a neural network, the network tries to predict the output as similar
to the existing value as possible. The loss or cost function also called the error func-
tion, is used to assess the network’s accuracy. When the network makes mistakes,
the cost or loss function attempts to penalize it.

While running the network, our goal is to improve prediction accuracy and re-
duce error, thereby minimizing the loss function. The most optimized output is the
one with the lowest cost or loss function value.

The learning process is centered on reducing costs. Depending on the type of
learning task, loss functions can be divided into two major categories — Classifica-
tion and regression losses [16].

1.2.7.1 Regression losses

• Mean Square Error/Quadratic Loss/L2 Loss

MSE =

∑n
i=1(yi − ŷi)

2)

n

• Mean Absolute Error/L1 Loss

MAE =

∑n
i=1 |yi − ŷi|

n

• Mean Bias Error
MBE =

∑n
i=1(yi − ŷi))

n

1.2.7.2 Classification losses

• Hinge Loss/Multi class SVM Loss

SVMLOSS =
∑
j ̸=yi

max(0, sj − syi+ 1)

• Cross Entropy Loss/Negative Log Likelihood

CrossEntropyLoss = −(yilog(ŷi) + (1− yi)log(1− ŷi))

• Focal Loss
FocalLoss = FL(pt) = −(1− pt)

γlog(pt)

The FL function for binary classification generalizes binary cross-entropy by
incorporating a hyperparameter called the focusing parameter that penalizes hard-
to-classify samples more strongly than easy-to-classify examples. [17].

21

Chapter 1 – Deep Learning

1.2.8 Hyperparameters

There are various hyperparameters in DL models, and figuring out the best config-
uration for these parameters is difficult. Experience, as well as a lot of observation
and experimenting, are required to set the hyperparameters [3]. Setting up hyper-
parameters such as gradient descent, LR, epochs, steps per epoch, and batch size is
difficult. They act as controls that the model may adjust as she proceeds through
her training. We must discover the perfect value for these hyperparameters in order
for the model to produce the best outcomes.

1.2.8.1 Gradient descent algorithms

Gradient descent is among the most popular optimization algorithms, and it has
always been the most common way to optimize neural networks [18].

Gradient descent has three variants that differ in how much data is used to
compute the gradient of the objective function.

• Batch gradient descent
θ = θ − η · ∇θJ(θ)

• Stochastic gradient descent

θ = θ − η · ∇θJ(θ;x
(i); y(i))

• Mini-batch gradient descent

θ = θ − η · ∇θJ(θ;x
(i:i+n); y(i:i+n))

Figure 1.10: 3D Gradient Descent

However, vanilla mini-batch gradient descent does not guarantee good conver-
gence and presents a few challenges, As a result, some algorithms are widely used by
the DL community to address those challenges such as Momentum [20], Nesterov
accelerated gradient [21] etc.

1.2.8.2 Learning rate

The LR is a much-needed parameter in gradient descent. As seen in the figures
above (red curve), the steps are larger at first, indicating a higher LR, and as the
point decreases, the LR decreases due to the smaller step size. In addition, the loss
function is dropping (which is a good sign).

22

Chapter 1 – Deep Learning

The learning rate is a configurable hyperparameter used in the training of neural
networks that has a small positive value, often in the range between 0.0 and 1.0 [22].

Multistep tuning of LR values at various stages of the training process is required
for dynamic LRs, which provide high accuracy and rapid convergence. This hyper-
parameter’s setting is a difficult balancing act between underfitting and overfitting.
Textbfunderfitting occurs when a model is unable to reduce error for either the test
or training set. An underfitting model cannot fit the data distributions because of
their underlying complexity[3]. overfitting, on the other hand, occurs when a model
is so powerful that it overfits the training set, increasing the generalization error.
Overfitting may occur if the LR is too low. Large LRs aid in maintaining consistency
in training, however excessively high LRs lead training to diverge.

In simple words, the LR is the rate at which we descend toward the cost function
minima. We should choose the LR carefully because it should not be so high that
the optimal solution is missed, nor should it be so low that the network takes forever
to converge.

Figure 1.11: Learning Rate expletive illustration[19]

1.2.8.3 Batch size

The batch size is a hyperparameter that defines the number of samples to work
through before updating the internal model parameters. Think of a batch as a for-
loop iterating over one or more samples and making predictions. When the batch
is over, the error value is calculated based on comparing the predictions and the
expected output. From this error, the update algorithm is used to improve the
model[79]. A training dataset can be divided into one or more batches.

1.2.8.4 Epochs

It is called an epoch when an entire dataset is only processed through the neural
network once. We break the epoch into numerous smaller batches since one epoch is

23

Chapter 1 – Deep Learning

too large to provide the computer all at once. Because one epoch is insufficient for
updating the weights, we employ numerous epochs. As the number of epochs grows,
the weights in the neural network are modified more often, and the curve shifts
from underfitting to the optimum to overfitting, as seen in (Figure 1.12). There is
no set number of epochs. However, we can assume that the number of epochs is
proportional to the diversity of the data[79].

Figure 1.12: Underfitting, Optimum and Overfitting[44]

1.2.8.5 Steps per epoch

The number of times the training loop in the learning algorithm will run to update
the parameters in the model is known as step per epoch. It will process a block
of data, which is essentially a batch, at each loop iteration. The gradient descent
technique is commonly used in this loop. Because this will use all the data points,
one batch size worth at a time, the steps per epoch are traditionally calculated as
train length divided by the batch size. In the case of augmented data, we multiply
the previous operation by 2 or 3, and so on. However, if the training has been going
on for too long, we’ll just keep to the old method[79].

1.2.9 Forward propagation and backpropagation

An analogy may help to understand brain network mechanisms. There are many
similarities between neural network learning and human learning, such as learning
in our daily lives and activities. For example, when we do an action and receive
feedback from a trainer, we improve our performance. A trainer is also needed to
explain what the output should have been when it comes to neural networks. Based
on this discrepancy between actual and anticipated values, a cost function error
value is calculated and sent back to the system. Cost functions are assessed and
utilized to change thresholds and weights for the following input in the network at
each layer. As a team, we are working to reduce the cost function. The closer the
projected value to the actual value is the lower the cost function. In this approach,
the network improves at analyzing values, and the error decreases over time. The
results are fed back into the neural network and reprocessed. We can control the
weighted synapses that connect input variables to the neuron. Adjusting the weights
is necessary if there is a discrepancy between the actual and projected values[23]. If
we tweak the parameters and repeat the neural network, a new cost function will be
created, hopefully, less than the previous one. We must continue this approach in
order to reduce the cost function to the lowest size achievable. Back-propagation is
a method that is continually deployed throughout a network to maintain the error
number as low as feasible[23].

24

Chapter 1 – Deep Learning

1.2.9.1 Forward propagation

The input flow via the hidden layers to the output layers is referred to as forward
propagation. It is the movement of information in only one direction. The layer
input will provide information to hidden layers, generating output that keeps moving
in the same direction without going backward.

1.2.9.2 Backpropagation

Backpropagation of error is a technique used to train feed-forward Neural network
training relies on back-propagation to do its task. It is a technique for optimiz-
ing neural network weights based on the previous epoch’s error rate (i.e., itera-
tion). By modifying the weights, we may reduce error rates and improve model
generalization[24].

Figure 1.13: Backpropagation expletive illustration

In neural networks, "backward propagation of mistakes" is known as "back-
propagation." It is a common practice in artificial neural network training. A loss
function’s gradient can be calculated using this method for all network weights.
This algorithm uses the chain rule to compute a single weight loss function gradi-
ent using back-propagation. A feed-forward neural network’s weight-space gradient
concerning a loss function is computed using back-propagation. The chain rule is
crucial in back-propagation. Here is a partial differentiation of loss (L) in terms of
weights/parameters (w).

1.2.10 Data augmentation

data augmentation is the process of applying a sequence of deformations to a set
of labeled training data to generate more diverse and extra training data. IT is
needed to teach the network the required invariance, and resilience [25]. Geometric
transformations (flipping and rotation, clipping and scaling), color space transforma-
tions (alteration of RGB channel intensities), kernel filters, mixing images, random
erasing, adversarial training, neural style transfer, noise injection, and meta-learning
schemes are just a few of the data augmentation techniques that have been proposed.
The most fundamental premise of data augmentation is that the deformations used
should not modify the labels’ semantic meaning [26][27].

25

Chapter 1 – Deep Learning

Figure 1.14: Representation of data augmentation[3]

1.3 Basic deep learning architectures

1.3.1 Convolutional neural networks

DL algorithms such as Convolutional Neural Networks (CNNs or ConvNets) can
distinguish between distinct aspects and objects in an image and then use that
knowledge to create new images based on that information [113]. There is far less
pre-processing necessary when using a CNN than other classification methods[28].
CNN can learn certain filters/characteristics if they are given enough training.

A CNN’s architecture is similar to the connectivity pattern of neurons in the
human brain and was inspired by the visual cortex’s arrangement. The receptive
field is the area of the visual field in which individual neurons respond to stimuli.
A collection of these fields covers the entire visual field. A CNN can capture the
spatial and temporal dependencies in an image through relevant filtering techniques.
The reduced number of parameters and reusability of weights allow the architecture
to fit the picture collection better. In other words, the network may be trained
to comprehend the image’s complexity better. Figure 4.8 displays a generic CNN
architecture [30].

Figure 1.15: Architecture of a simple CNN from [41]

Convolutional Layers The convolutional layer is the fundamental block, as it is
responsible for most of the computations. It comprises three components: input

26

Chapter 1 – Deep Learning

data, a filter, and a feature map. The kernel or filter traverses the image’s receptive
fields, checking for the presence of features; this is referred to as convolution. The
kernel is a two-dimensional (2-D) weighted array representing a portion of the image.
While filter sizes vary, they are commonly a 3×3 matrix; this also dictates the size
of the receptive field. The dot product of the filter and the portion of the input
array is calculated and loaded into an output array. Following that, the filter shifts
by one stride, and the procedure is repeated until the kernel has swept across the
entire image[31][29]. A feature map, activation map, or convolved feature is the
ultimate result of a series of dot products from the input and the filter.

As illustrated , the convolution procedure does not require that each output
pixel in the feature map be connected to each pixel value in the input array. For
that, convolutional layers are frequently referred to as partially-connected layers.
The filter weights remain constant as it traverses images, a phenomenon is known
as parameter sharing. Specific parameters, such as the weight values, are adjusted
during training using back-propagation and gradient descent. However, three hyper-
parameters must be set before the neural network training begins. Among them are
[31].

1) The number of filters: It affects the output’s depth. n distinct filters, for
example, would result from n different feature maps.

2) The stride parameter: specifies the distance or the number of pixels that the
filter moves across the input array.

3) Zero-padding is typically used when the filters do not fit the input image; this
reduces the size of all items outside the input matrix to zero, resulting in a larger
or equal-sized output.

1.3.2 Common convolutional neural network architectures

As we previously stated, certain deep networks have made such significant contri-
butions to the field that they have become widely known standards. It is the case
of Le Net-5,AlexNet, VGG-16, GoogLeNet, and ResNet. Such was their importance
that they are currently being used as building blocks for many segmentation archi-
tectures [49]. For that reason, we will devote this section to review them see (figure
1.16) .

We will use the following mathematical equation to calculate the output of con-
volutional layers: [

n+ 2p− f

s
+ 1

]
∗
[
n+ 2p− f

s
+ 1

]
Where we consider a n ∗ n image as an input, a f ∗ f filter, a padding p, and a

stride s.

27

Chapter 1 – Deep Learning

Figure 1.16: Legend used for the various architectures from [52]

1.3.2.1 LeNet-5

LeNet-5 is a pioneering 7-level convolutional network develope[54] it is one of the
earliest pre-trained models proposed by Yann LeCun and others in the year 1998,
in the research paper Gradient-Based Learning Applied to Document Recognition.
They used this architecture for recognizing the handwritten and machine-printed
characters [53].

The main reason behind the popularity of this model was its simple and straight-
forward architecture. It is a multi-layer convolution neural network for image clas-
sification. The input to this model is a 32 X 32 grayscale image hence the number
of channels is one[53] see (Table 1.1).

Figure 1.17: LeNet architecture from [52]

28

Chapter 1 – Deep Learning

Layer Feature
Map Size Kernel Size Stride Activation Parameters

Input Image (Grayscale) 1 32x32 - - - -
1 Convolution 6 28x28 5x5 1 tanh 156
2 Average Pooling 6 14x14 2x2 2 tanh 0
3 Convolution 16 10x10 5x5 1 tanh 2416
4 Average Pooling 16 5x5 2x2 2 tanh 0
5 Convolution 120 1x1 5x5 1 tanh 48120
6 FC - 84 - - tanh 10164

Output FC - 10 - - softmax 850
Total number of parameters 61,706

Table 1.1: LeNet structural details

1.3.2.2 AlexNet

AlexNet was the pioneering deep CNN that won the ILSVRC-2012 with a TOP-5 test
accuracy of 84.6The architecture presented by Krizhevsky et al[55].The network’s
architecture was quite similar to LeNet, but it was deeper, with 62M parameters
and more filters per layer and layered convolutional layers was relatively simple.
It consists of five convolutional layers, max-pooling ones, Rectified Linear Units
(ReLUs) as non-linearities, three fully-connected layers.[56] see (Table 1.2)

Figure 1.18: AlexNet architecture from [52]

Layer Feature
Map Size Kernel Size Stride Activation Parameters

Input Image (RGB) 1 227x227x3 - - - -
1 Convolution 96 55x55x96 11x11 4 relu 34944

Max Pooling 96 27x27x96 3x3 2 relu 0
2 Convolution 256 27x27x256 5x5 1 relu 614656

Max Pooling 256 13x13x256 3x3 2 relu 0
3 Convolution 384 13x13x384 3x3 1 relu 885120
4 Convolution 384 13x13x384 3x3 1 relu 1327488
5 Convolution 256 13x13x256 3x3 1 relu 884992

Max Pooling 256 6x6x256 3x3 2 relu 0
6 FC - 4096 - - relu 37752832
7 FC - 4096 - - relu 16781312

Output FC - 1000 - - softmax 4097000
Total number of parameters 62,378,344

Table 1.2: AlexNet structural details

29

Chapter 1 – Deep Learning

1.3.2.3 VGG-16

It is a Convolutional Neural Network (CNN) model proposed by Karen Simonyan
and Andrew Zisserman at the University of Oxford. The idea of the model was
proposed in 2013, but the actual model was submitted during the ILSVRC ImageNet
Challenge in 2014 [57]. The ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) was a large-scale competition that assessed picture categorization (and
object identification) systems. They fared well in the competition but were unable
to win.

Figure 1.19: VGG-16 architecture from [52]

The distinction between VGG and AlexNet is that it has numerous characteristics
that set it apart from other competing models:

• Rather than using big receptive fields like AlexNet (11x11 with a stride of 4),
VGG employs extremely small receptive fields (3x3 with a stride of 1). The
decision function is much more discriminative now that there are three ReLU
units instead of simply one. There are also fewer parameters (27 channels as
opposed to AlexNet’s 49 channels).

• VGG employs 1x1 convolutional layers to increase the nonlinearity of the de-
cision function without modifying the receptive fields.

• Because of the small dimensions of the convolution filters, VGG can have a
large number of weight layers.

Layer Feature
Map Size Kernel Size Stride Activation Parameters

Input Image (RGB) 1 224x224x3 - - - -
1 2xConvolution 64 224x224x64 3x3 1 relu 38720

Max Pooling 64 112x122x64 2x2 2 relu 0
3 2xConvolution 128 112x122x128 3x3 1 relu 221440

Max Pooling 128 56x56x128 2x2 2 relu 0
5 3xConvolution 256 56x56x256 3x3 1 relu 1475328

Max Pooling 256 56x56x256 2x2 2 relu 0
7 3xConvolution 512 28x28x512 3x3 1 relu 5899776

Max Pooling 512 14x14x512 2x2 2 relu 0
10 3xConvolution 512 14x14x512 3x3 1 relu 7079424

Max Pooling 512 7x7x512 2x2 2 relu 0
14 FC - 4096 - - relu 102764544
15 FC - 4096 - - relu 16781312

Output FC - 1000 - - softmax 4097000
Total number of parameters 134,264,641

Table 1.3: VGG-16 structural details using padding = 1

30

Chapter 1 – Deep Learning

1.3.2.4 ResNet

Microsoft’s ResNet [58] is specially remarkable thanks to winning ILSVRC-2016 ac-
curacy. Apart from that fact, the network is well-known due to its depth (152 layers)
and the introduction of residual blocks . The residual blocks solve the challenge of
training a deep architecture by incorporating identity skip links, which allow layers
to replicate their inputs to the next layer.

Figure 1.20: ResNet-50 architecture from [52]

Figure 1.21: ResNet identity block from [52]

The intuitive idea behind this approach is that it ensures that the next layer
learns something new and different from what the input has already encoded (since it
is provided with both the output of the previous layer and its unchanged input)[56].
Furthermore, such linkages aid in the resolution of the vanishing gradients problem.

Layer Input size Output size Filter Parameters
Convolution1 224x224x3 112x122x64 7x7x64, stride = 2 9472

3xConvolution2
(Convolution Block + 2x(Identity block)) 112x122x64 56x56x64 3x3 Max pooling, stride = 2 0

1x1x64
3x3x64
1x1x256

214800

4xConvolution3
1x(Convolution Block) + 3x(Identity block) 56x56x64 28x28x128

1x1x128
3x3x128
1x1x512

1216000

6xConvolution4
1x(Convolution Block) + 5x(Identity block) 28x28x128 14x14x256

1x1x256
3x3x256
1x1x1024

7088128

3xConvolution5
1x(Convolution Block) + 2x(Identity block) 14x14x256 7x7x512

1x1x512
3x3x512
1x1x2048

14953472

FC 7x7x512 1x1x1000 Average pooling, 1000-d FC, Softmax 2049000
Total number of parameters 25,636,712

Table 1.4: ResNet structural details

31

Chapter 1 – Deep Learning

1.3.2.5 GoogleNet

Google Net (or Inception V1) was proposed by research at Google (with the collab-
oration of various universities) in 2014 in the research paper titled “Going Deeper
with Convolutions”. This architecture was the winner at the ILSVRC 2014 image
classification challenge.[59] It has a much lower error rate than previous winners
AlexNet (Winner of ILSVRC 2012) and ZF-Net (Winner of ILSVRC 2013), as well
as a significantly lower error rate than VGG (2014 runner up). 1×1 convolutions in
the centre of the design and global average pooling are used in this architecture.

Figure 1.22: GoogleNet architecture (Inception V1) from [52]

The GoogLeNet architecture is very different from previous state-of-the-art ar-
chitectures such as AlexNet . It uses many different kinds of methods such as 1×1
convolution and global average pooling that enables it to create deeper architecture
[59]. GoogLeNet contains about 6.8 million parameters (without auxiliary layers),
which is 9 times less than AlexNet and 20 times less than VGG-16.

32

Chapter 1 – Deep Learning

Type Patch size / Stride Output size Depth #1x1 #3x3
Reduce #3x3 #5x5

Reduce #5x5 Pool Proj Parameters

Convolution 7x7/2 112x112x64 1 - - - - - - 2.7K
Max Pooling 3x3/2 56x56x64 0 - - - - - - -
Convolution 3x3/1 56x56x192 2 - 64 192 - - - 112K
Max Pooling 3x3/2 28x28x192 0 - - - - - - -
Inception (3a) - 28x28x256 2 64 96 128 16 32 32 159K
Inception (3b) - 28x28x480 2 128 128 192 32 96 64 380K
Max Pooling 3x3/2 14x14x480 0 - - - - - - -
Inception (4a) - 14x14x512 2 192 96 208 16 48 64 364K
Inception (4b) - 14x14x512 2 160 112 224 24 64 64 437K
Inception (4c) - 14x14x512 2 128 128 256 24 64 64 463K
Inception (4d) - 14x14x528 2 112 144 288 32 64 64 580K
Inception (4e) - 14x14x832 2 256 160 320 32 128 128 840K
Max Pooling 3x3/2 7x7x832 0 - - - - - - -
Inception (5a) - 7x7x832 2 256 160 320 32 128 128 1072K
Inception (5b) - 7x7x1024 2 384 192 384 48 128 128 1388K

Average Pooling 7x7/1 1x1x1024 0 - - - - - - -
Dropout (40%) - 1x1x1024 0 - - - - - - -

Linear - 1x1x1000 1 - - - - - - 1000K
Softmax - 1x1x1000 0 - - - - - - -

Total number of parameters 6,8M

Table 1.5: GoogleNet structural details

1.3.2.6 MobileNet

MobileNet is a CNN architecture that is both efficient and portable and is employed
in real-world applications. To develop lighter models, MobileNets typically employ
depthwise separable convolutions instead of the usual convolutions used in previous
designs. MobileNets adds two new global hyperparameters (width multiplier and
resolution multiplier) that let model creators trade off latency or accuracy for speed
and small size, depending on their needs.

Figure 1.23: MobileNet architecture from

Convolution layers that are depthwise separable are used to build MobileNets. A
depthwise convolution and a pointwise convolution are included in each depthwise
separable convolution layer. A MobileNet contains 28 layers if you count depthwise
and pointwise convolutions separately. The width multiplier hyperparameter can
be adjusted to reduce the number of parameters in a conventional MobileNet to 4.2
million. The size of the input image is 224 × 224 × 3. The detailed architecture of
a MobileNet is given below :

33

Chapter 1 – Deep Learning

Layer Input size Stride Filter Parameters
Convolution1 224x224x3 2 3x3x3x32 992

Convolution_dw1 112x112x32 1 3x3x32 dw 416
Convolution_pw1 112x112x32 1 1x1x32x64 2304
Convolution_dw2 112x112x32 2 3x3x64 dw 832
Convolution_pw2 56x56x64 1 1x1x46x128 8704
Convolution_dw3 56x56x128 1 3x3x128 dw 1664
Convolution_pw3 56x56x128 1 1x1x128x128 16896
Convolution_dw4 56x56x128 2 3x3x128 dw 1664
Convolution_pw4 56x56x128 1 1x1x128x256 33792
Convolution_dw5 56x56x256 1 3x3x256 dw 3328
Convolution_pw5 56x56x256 1 1x1x256x256 66560
Convolution_dw6 56x56x256 2 3x3x256 dw 3328
Convolution_pw6 14x14x256 1 1x1x256x512 133120

5xConvolution_dw7 14x14x512 1 3x3x512 dw 33280
5xConvolution_pw7 14x14x512 1 1x1x512x512 1320960
Convolution_dw8 14x14x512 2 3x3x512 dw 6656
Convolution_pw8 7x7x512 1 1x1x512x1024 528384
Convolution_dw9 7x7x1024 2 3x3x1024 dw 13312
Convolution_pw10 7x7x1024 1 1x1x1024x1024 1052672

Average pooling 7x7x1024 1 7x7x1024 0
FC 7x7x1024 1 1024x1000 1025000

Softmax 1x1x1000 1 - 0
Total number of parameters 4,253,864

Table 1.6: MobileNet structural details

1.3.3 Pooling Layer

is a technique for lowering input dimensionality by reducing the number of factors.
The pooling operation sweeps an unweighted filter across the entire input using an
aggregation function to populate the output array with the values contained within
the receptive field. It can be classified into two broad categories [32]:

• Pooling to a maximum: The filter traverses the input array. It selects the pixel
with the highest value for the output array.

• Average pooling: The filter determines the average value contained inside the
receptive field. While the pooling layer loses much information, it also provides
several benefits for the CNN. They contribute to the reduction of complexity, the
enhancement of efficiency, and the avoidance of over-fitting [33].

1.3.4 Fully-Connected Layer

The Full-Connected (FC) layer is what its name implies. Layers that are only
partially connected have no direct connection between the input image and the
output layer. Nevertheless, in a completely interconnected layer, every node in the
output layer is directly linked to a node in the previous layer [34]. Classification is
done here using the information from the previous layers and their various filters. FC
layers often employ a softmax activation function to categorize inputs adequately,

34

Chapter 1 – Deep Learning

whereas convolutional and pooling layers typically use ReLu functions, resulting in
a probability ranging from zero to one.

1.3.5 Recurrent neural networks and the LSTM

We focus on the RNN first, because the LSTM network is a type of an RNN, Recur-
rent neural networks are one of the powerful models for data. RNNs can use their
internal state (memory) to process sequences of inputs.

RNNs are used in many fields such as speech recognition, machine translation,
music composition, gamma learning, stock prediction, self-driving cars, to name a
few.
RNNs are widely used in the following domains/ applications:

Prediction problems;Language Modelling and Generating Text; Machine Trans-
lation;Speech Recognition;Generating Image Descriptions;Video Tagging and Other
applications like Music composition

RNN model consists of a system of three layers: an input layer, a hidden layer
(the core network), and an output layer;the hidden layer or middleware is the layer
that contains a complex form of neural networks ,that are interconnected through
weighted synapses (connection weights),The input and output layers are connected
to the hidden layer, again through weighted synapses.. (Figure 1.24).

Figure 1.24: Architecture of a simple RNN

But we have e problem that RNNs have a very short-term memory, and they
will have terrible results with long sequences and often suffer from problems such
as vanishing/exploding gradients. what is LSTM or in the sense the Long Short-
Term Memory network?,this last one was the key to avoid these problems, with an
appropriate gradient-based learning algorithm[35].

The architecture of LSTM includes three gates (input gate, output gate, forget
gate)enforcing constant error flow through internal states of special units called
memory cells that store values for arbitrary time intervals, see (Figure 1.25)

35

Chapter 1 – Deep Learning

Figure 1.25: Architecture of LSTM from [38]

1.3.6 Encoder-Decoder and Auto-Encoder Models

A decoder in data processing retrieves the information in its original form, whereas
an encoder can compress digital information for transport or storage.

The encoder compresses the information contained in the four inputs into two
outputs. The inputs are light of four different wavelengths that photoisomerize the
fulgimide, dithienylethene, or both. The outputs are absorbance at two wavelengths[36].

Excitation at two wavelengths is used as a decoder input, while absorbance at
two wavelengths, transmittance at one wavelength, and fluorescence emission are
used as outputs to retrieve the information compressed within the inputs.

Figure 1.26: Architecture of an Encoder-Decoder from [37]

Auto-encoders are a specific type of feedforward neural networks where the input
is the same as the output. 1.27).

36

Chapter 1 – Deep Learning

Figure 1.27: an exemple of Encoder-Decoder from [37]

An auto-encoder consists of 3 components: encoder, code and decoder. the
encoder takes a sequence as the input and compresses it into a fixed-length numeric
vector (feature), the decoder then predicts the output from that vector see (Figure
1.27).

An AE is a particular variant of the ED models with a distinguished change. The
number of neurons is the same in the input and the output (called reconstructed
input). Therefore we can expect that the input and the output to be the same
sequence of data.

Figure 1.28: Architecture of Auto-Encoder from

1.3.7 Generative Adversarial Networks

GANs, or Generative Adversarial Networks are one of the most modern DL models.
The use of the GAN for conditionally producing an output is a significant extension.

The generative model may be trained to produce new instances from the input
domain, where the input, a random vector from the latent space, is (conditionally)
given.

In the case of creating photos of handwritten numbers, the extra input may be a
class value, such as male or female in the case of generating photographs of humans,
or a digit in the case of generating photographs of handwritten digits[27].

Generative adversarial networks may be enlarged to a conditional model if both
the generator and the discriminator are conditioned on some extra information y,
such as class labels or input from other modalities. Conditioning can be accom-
plished in a number of ways.

One of the many major advancements in the use of deep learning algorithms in
disciplines like computer vision is a method known as data augmentation.

37

Chapter 1 – Deep Learning

Figure 1.29: structure of GANs

They are made up of two key elements: a generator network G and a discrim-
inator network D. It works by feeding a random noise vector z into the system.to
G so that it may utilize it to create fictitious samples to feed toD Meanwhile, real
life continues. D is given photos, and its duty is to try to discern between actual
and fraudulent data . If discriminator D fails to discriminate between actual and
bogus data,[37] then we receive ModelG, a well-trained generator that has learnt
the distribution of real numbers.

Figure 1.30: Architecture of Generative Adversarial Networks

1.4 Deep learning frameworks

1.4.1 TensorFlow

TensorFlow, a Google open-source platform, is likely the most widely used tool for
Machine Learning and Deep Learning. TensorFlow is a JavaScript-based framework
that includes a variety of tools and community resources for quickly training and de-
ploying machine learning and deep learning models. Learn more about the best deep
learning software [38]. TensorFlow is the greatest tool for creating Deep Learning
models and experimenting with architectures.

It is used to do data integration tasks, such as combining graphs, SQL tables,
and photos.

38

Chapter 1 – Deep Learning

1.4.2 PyTorch

PyTorch is a complete machine learning platform with a user-friendly front-end,
distributed training, and an ecosystem of tools and modules that allow for rapid,
modular exploration and development[39]. PyTorch has a rich ecosystem of soft-
ware and libraries for expanding it and promoting growth in fields ranging from
machine vision to reinforcement learning, thanks to an engaged group of researchers
and developers. PyTorch is well-supported on major cloud platforms, allowing for
frictionless deployment and scaling through pre-configured images, wide GPU train-
ing, and the ability to execute models in a manufacturing environment, among other
features.

1.4.3 Keras

Another open-source Deep Learning framework on our list is Keras, Keras is a
human-centric API, not a machine-centric one. Keras adheres to best practices for
minimizing cognitive burden, such as providing reliable and easy APIs[40], decreas-
ing the amount of user activities required for common use cases, and giving clear
and meaningful error messages It includes several documentation and developer in-
structions.

keras is excellent for beginners who have just started their journey in this field.
It allows for easy learning and prototyping simple concepts.

Keras provides the opportunity to do new experiments, test more hypotheses,
and do better than the competition. Keras is an industrial-strength architecture
built on top of TensorFlow 2.0 that can scale to massive clusters of GPUs or an
entire TPU pod. It is not only feasible; it is also easy.

Keras is a crucial component of the TensorFlow 2.0 ecosystem, and it covers
every aspect of the machine learning process, from data management to hyperpa-
rameter training to deployment solutions.

Keras is used by CERN, NASA, the National Institutes of Health, and sev-
eral other research institutions worldwide. it has the low-level stability to execute
any research hypothesis while still providing high-level convenience functionality to
shorten experimentation intervals.

Keras is the DL solution of choice for many university courses due to its ease
of use and emphasis on user experience. It is generally viewed as one of the most
effective methods for studying DL.

1.5 Hardware used in deep learning

1.5.1 Central processing units

The majority of deep learning models now run on GPU, with the CPU being used
solely for data prepossessing. If you’re working with terabytes of data and run-
ning analytics queries, you’ll need a powerful CPU. They have a lot of programma-
bility and can handle a lot of different workloads. In comparison to other CPU

39

Chapter 1 – Deep Learning

manufacturers, Intel is the most prominent (ARM,AMD,IBM POWER,ORACLE
SPARC,Fujitsu etc). In datacenters, Intel’s Xeon and Xeon Phi are examples, while
Qualcomm’s Snapdragon in mobile devices are instances of CPUs,any CPUs, includ-
ing AMD Ryzen 9 3900X, Intel Core i9-9900K, AMD Ryzen Threadripper 3990X,
AMD Ryzen 5 2600, are currently considered the most appropriate when it comes
to training DL models[41].

A CPU is a computer that consists of numerous ALUs, a Control Unit that
controls particular ALUs, a Cache Memory, and DRAM. Computers can accom-
plish every work with precision and variety because CPUs are more powerful. The
CPU’s memory power, which may surpass 1TB of RAM, provides this adaptability
by allowing it to fetch memory packages in the RAM quicker and with reduced la-
tency. Unlike GPUs, CPUs do not yet match the DL’s strict requirements. CPUs,
on the other hand, help GPUs prepare data by giving them adequate data and
reading/writing files from/to RAM/HDD.

1.5.2 Graphics processing units

GPUs are the most extensively utilized machine learning and neural network hard-
ware. These were created with high parallelism and memory bandwidth in mind.
GPUs are thought to be the greatest choice for training [42]. This is used in 2D
or 3D graphics rendering to speed up a lot of MAC (Multiply and accumulate)
processes.

GPUs are graphics processors that create polygon-based computer graphics.
GPUs have acquired huge computing powers in recent years, because of the complex-
ity and desire for realism in recent video games and graphic engines [42]. NVIDIA
is the industry leader, with processors that have hundreds of cores and are designed
to compute at about 100% efficiency. These processors can also conduct neural net-
work calculations and matrix multiplications, as it turns out.

GPUs are currently the standard for training DL systems, whether they are
CNNs (CNN) or RNNs (RNN). In only a few milliseconds, they will practice on
massive batches of images, such as 128 or 256 images.

However, they absorb 250 W and need a full PC with an additional 150 W of
power to run. A greater GPU system can use up to 400 watts of power.

1.5.3 Tensor processing units

Google’s Tensor Processing Unit came in 2015 as one of the specialized architec-
ture for Machine Learning and AI applications. It focus on fast inference via high
throughput 8-bit arithmetic.Most of the chip is dedicated to perform dense-matrix
multiplication, and it uses 32-bit accumulator to sum up the result. Google supports
running tensorflow code on TPUs, this makes it easy to train and infer deep neural
networks.You can run your own programs on TPUs on google cloud.

From Google-designed ASICs we find TPUs that accelerate machine learning
caseloads[43]. TPUs were created from the ground up with the considerable ma-
chine learning know-how and guidance of Google. Cloud TPU tools speed up linear
algebra computing, which is widely utilized in machine learning applications.

40

Chapter 1 – Deep Learning

While training large, complex neural network models, TPUs decrease the time-
to-accuracy. Models that took weeks to master on other hardware platforms will
now take only hours to learn. TPUs in the cloud are best for specific workloads.
You might want to use GPUs or CPUs on Compute in various situations. In some
cases, you might want to run machine learning tasks on Compute Engine instances
with GPUs or CPUs. In general, you should choose equipment that is suited for the
job at hand.

1.6 Conclusion
We explored the most common deep learning concepts and delved deeper into their
architectures and the main frameworks used by the community. In the next chap-
ter, we will examine applications in computer vision, specifically semantic image
segmentation.

41

Chapter 2

Semantic Segmentation

2.1 Introduction
In computer vision, semantic segmentation is considered a challenging task. DL
techniques have immensely enhanced the performance of semantic segmentation in
recent years. Several innovative methods have been proposed, making segmentation
algorithms more efficient and precise, and various new applications have widely used
them.
In this chapter, we will go over some of the most typical CNN architectures by
giving information about its production and content. We will also go through the
state-of-the-art methods in DL-based semantic image segmentation. These methods
include FCN, SegNet, DeepLab, and U-net.

42

Chapter 2 – Semantic Segmentation

2.2 General concepts of semantic segmentation

2.2.1 Definition

Semantic segmentation is the process of classifying each pixel belonging to a par-
ticular label. It doesn’t differ across different instances of the same object [46].
Semantic segmentation plays a vital role in computer vision. For example, if an
image contains two women, semantic segmentation assigns the same label to all the
pixels for both women see figure 2.1.

Handwriting recognition, medical imaging, autonomous driving, industrial robotics,
indoor navigation, virtual or augmented reality systems, portrait mode in modern
smartphones, and even social media filters and virtual make-up are just a few of the
innovative applications that have evolved from this discipline.

Figure 2.1: An example of semantic segmentation[46]

2.2.2 Comparison with other computer vision tasks

Semantic segmentation differentiates itself from other familiar computer vision tasks
like image classification, object detection, and instance segmentation.

The most fundamental building block in Computer Vision is the Image classifi-
cation problem were given an image, we expect the computer to output a discrete
label, which is the main object in the image. In image classification, we assume that
there is only one (and not multiple) objects in the image [47]see (figure 2.2).

43

Chapter 2 – Semantic Segmentation

Figure 2.2: An example of Image classification

In localization along with the discrete label, we also expect the computer to lo-
calize where exactly the object is present in the image. This localization is typically
implemented using a bounding box which can be identified by some numerical pa-
rameters with respect to the image boundary [47]. Even in this case, the assumption
is to have only one object per image, see (figure 2.3).

Figure 2.3: Classification with Localization

Object Detection extends localization to the next level where now the image is
not constrained to have only one object but can contain multiple objects. The task
is to classify and localize all the objects in the image [47]. Localization is done
utilizing the bounding box notion once more, see (figure 2.4).

44

Chapter 2 – Semantic Segmentation

Figure 2.4: An example of Object Detection

The goal of semantic image segmentation is to label each pixel of an image with
a corresponding class of what is being represented. Because we’re predicting for
every pixel in the image, this task is commonly referred to as dense prediction [47]
see (figure 2.5).

Figure 2.5: An example of semantic image segmentation

Instance segmentation is one step ahead of semantic segmentation wherein along
with pixel-level classification, we expect the computer to classify each instance of
a class separately. For example, in the image above there are 3 people, technically
3 instances of the class “Person”. All the 3 are classified separately (in a different
color). But semantic segmentation does not differentiate between the instances of a
particular class[47] see (figure 2.6).

45

Chapter 2 – Semantic Segmentation

Figure 2.6: An example of Instance segmentation

2.2.3 Traditional Techniques for Semantic segmentation

Before the advent of deep learning, classical machine learning techniques like SVM,
Random Forest, GLS [50], [51] or K-means Clustering were used to solve the prob-
lem of image segmentation [46]. However, like with other image-related problem
statements, deep learning has outperformed earlier solutions and has now become
the standard for dealing with Semantic Segmentation.

2.2.4 Deep learning Methods

The significance of scene understanding as a core computer vision problem is il-
lustrated by the fact that a growing number of applications benefit from inferring
knowledge from visual images. Various conventional computer vision and machine
learning techniques have been used in the past to tackle this problem.

Despite their prominence, the DL revolution has reversed conditions so that
many computer vision problems, including semantic segmentation, are now being
solved using deep architectures, typically CNNs, which outperform other approaches
in terms of accuracy and efficiency.

2.3 Deep learning-based semantic segmentation meth-
ods

The constant superiority of deep learning methods in a variety of high-level com-
puter vision tasks – mostly supervised approaches like CNNs for image classification
or object recognition – motivated researchers to investigate their possibilities for
challenges like semantic segmentation. We will highlight only a few of the over a

46

Chapter 2 – Semantic Segmentation

hundred DL-based segmentation approaches proposed through 2021 that have had
a substantial influence on the domain.

2.3.1 Fully convolutional networks

Fully Convolutional Networks (FCN) was one of the earliest DL methods for seman-
tic picture segmentation 61. Equivalently, an FCN is a CNN without fully connected
layers allowing it to take an image of any size and generate a segmentation map of
the same size. The model converts all FC layers to convolutional layers and outputs
spatial maps rather than classification scores.

2.3.2 SegNet

SegNet is another promising work proposed by V. Badrinarayanan et al. [62], Seg-
Net is a semantic segmentation model. This core trainable segmentation architecture
consists of an encoder network, and a corresponding decoder network followed by a
pixel-wise classification layer. The architecture of the encoder network is topologi-
cally identical to the 13 convolutional layers in the VGG16 network.

Its encoder part is topologically identical to the VGG-16[63]. The unique aspect
of SegNet is how the decoder upsamples the lower-resolution input feature maps.
To conduct non-linear upsampling, the decoder leverages pooling indices obtained
in the matching encoder’s max-pooling phase.

Figure 2.7: SegNet architecture from [62]

2.3.3 DeepLab

DeepLabv1[64] and DeepLabv2[65] were created by Chen et al., which are two of
the most widely used image segmentation methods. DeepLabv1 and DeepLabv2
are reviewed together because they both use Atrous Convolution and Fully Con-
nected Conditional Random Field (CRF) except that DeepLabv2 has one additional
technology called Atous Spatial Pyramid Pooling (ASPP), which is the main dif-
ference from DeepLabv1 [66]. (Of course, there are other differences as well, e.g.:
DeepLabv2 uses ResNet and VGGNet for experiment but DeepLabv1 only uses VG-
GNet.)

47

Chapter 2 – Semantic Segmentation

Figure 2.8: The DeepLab model[66]

The above figure is the DeepLab model architecture. First, the input image goes
through the network with the use of atrous convolution and ASPP. Then the output
from the network is bilinearly interpolated and goes through the fully connected
CRF to fine-tune the result and get the final output[66].

DeepLabv3, a semantic segmentation architecture, makes a number of improve-
ments over DeepLabv2. Modules that use atrous convolution in cascade or parallel to
capture multi-scale context by adopting numerous atrous rates are aimed to address
the issue of segmenting objects at different scales.

2.3.4 U-net

U-net, which was initially developed for medical/biomedical image segmentation, is
also based on FCN and is inspired by ED architecture [68]. Data augmentation is a
key component of the network and training process for getting the most out of the
labeled data that is already available. A contracting path for context capture and a
symmetric extending path for precise localization make up the U-Net design. Fully
Convolutional Networks (FCN) was one of the earliest DL methods for semantic
picture segmentation.

48

Chapter 2 – Semantic Segmentation

Figure 2.9: U-Net architecture

An FCN-like architecture is used during the downsampling stage to extract fea-
tures using 3x3 convolutions. During the up-sampling process, deconvolution is
used to increase the size of the feature maps while reducing the number of feature
maps. To avoid losing pattern information, feature maps from the network’s down-
sampling portion are replicated to the network’s up-sampling portion. The feature
maps are then processed using a 1x1 convolution to create a segmentation map that
categorizes each pixel in the input picture.

2.4 Conclusion
In this chapter, we discussed a set of principles related to semantic segmentation.
We defined and connected it to DL and also compared it to other tasks. After
that, we went over various prominent CNN architectures before introducing a set of
DL-based image segmentation methods.

49

Chapter 3

Semantic segmentation of remote
sensing images

3.1 Introduction
In this chapter, we start by defining the problem of remote sensing image segmen-
tation. Then we give more details about the dataset used to test and evaluate the
proposed model. After that, we explain how we use data augmentation to have more
data available for the training and test phases. Subsequently, we present the model
building blocks, where we explain the construction of the network architecture of
the proposed model and how to train it. Next, we discuss the experiments, tests,
and results, starting by explaining the method of conducting the experiments and
the environment used, then we show the test results, and then compare those re-
sults. Finally, we evaluate our results using the standard IoU and accuracy metrics,
suitable for semantic segmentation problems.

50

Chapter 3 – Semantic segmentation of remote sensing images

3.2 Problem definition
Aerial and satellite imagery allows monitoring of different types of terrain using
images and videos taken by satellites or aerial vehicles. It can be used to measure
forest monitoring, and deforestation, to map damaged areas after natural disasters,
in addition to other not exploited use cases. On the other hand, the enormous
growing amount of images presents a challenge: how to extract relevant knowledge
from all this big data? Human beings are unable to look at all the pictures all the
time. This is why we are looking for tools and techniques to improve computer
vision capability and to see beyond human beings.

Our project aims to develop techniques based on deep learning approaches for
the semantic segmentation of remote-sensing images. This feature is intended to
aid users to gain insight into the geospatial data quickly and automatically. The
semantic segmentation methods developed within this project are based on several
deep convolutional neural network architectures such as the U-Net architecture.
To implement the proposed approaches, the use of open-source libraries such as
Tensorflow and Keras and scientific datasets offered by the scientific community will
be privileged.

3.3 Dataset
The MBRSC dataset is freely available for download under the CC0 license. It’s
made up of aerial footage of Dubai captured by MBRSC satellites and tagged with
pixel-by-pixel semantic segmentation into six groups. With the dataset, there are
three major challenges:

1- The mask pictures are in RGB, but the class colors are in hex.
2- The dataset contains 72 photos, which are divided into six bigger tiles. A

neural network may be trained using 72 photos, which is a pretty little dataset.
3-Images of various heights and widths are found on each tile, and some images

within the same tile vary in size. Inputs of identical spatial dimensions are expected
by the neural network model. [70].

Figure 3.1: Example of Satellite image and its corresponding segmentation

51

Chapter 3 – Semantic segmentation of remote sensing images

3.4 Data preparation and Data augmentation
The dataset contains just 72 photos (of various resolutions), of which 65 images
(90 percent) were utilized for training and 7 images (10 percent) were used for
validation. Because there is such a little quantity of data, we prefer to use data
augmentation to artificially enhance the amount of data and minimize overfitting
[70]. Data augmentation is done by the following techniques.

• vertical/horizontal flipping.

• Rotation.

Here are some sample augmented images and masks from the dataset:

Figure 3.2: samples example of augmented images and masks from the dataset .

3.5 Model building blocks

3.5.1 Unet

U-Net, derived from the traditional CNN neural network, was designed and first
applied in 2015 to process biomedical images. It is able to locate and distinguish
the borders of the regions composing a certain image by doing the classification on
each pixel.

Visually, it has a "U" shape. The architecture is symmetrical and consists of two
main parts The left part is called Encoder, which is the general convolution process.
The right part is a Decoder, which consists of transposed 2d convolutional layers.

The first block consists of an assembly of convolution layers and max pooling
layers to capture the characteristics of an image and reduce its size. It consists of
the repeated application of two 3x3 convolution layers. Then a 2x2 max pooling
operation is applied to reduce the spatial dimensions.

The bridge connects the encoder and the network of decoders. It consists of two
layers of 3x3 convolutions. The second decoder block begins with an upsampling of
the feature map followed by a transposed 2x2 convolution layer. Next, two layers of
3x3 convolutions are used, where each convolution is followed by a ReLU activation
function. The output of the last decoder goes through a 1x1 convolution layer.

52

Chapter 3 – Semantic segmentation of remote sensing images

1 epoch 100 epochs
U-Net 83 S 2h 18min

Table 3.1: Example of execution time results for the form Unet

3.5.2 Backbone

The backbone is the architectural element that defines how the layers are arranged
in the encoder network and determines how the decoder network is constructed.
Often, the backbone is made up of CNNs such as VGG, ResNet, Inception, etc.

Figure 3.3: samples example of Back Bone

3.5.3 Training

To train our models, we use 90% of all of the training stack’s available slices, which
is 72 images of the membrane with 256x256 resolution, and 10% we use it for the
validation process. we use the binary focal loss function since there are only two
classes; white for the pixels of segmented objects and black for the rest of pixels
(which correspond mostly to membranes). We use a batch size of 16, with 200
epochs (which we can control as we like) and the default number of steps per epoch
which is 22.5 calculated by dividing the number of training images by the batch size
(65/4 = 16.25 17), and it was trained using a learning rate of 10−2.

We also compute semantic segmentation standard performance measures, which
are the accuracy and IoU metrics. We trained the models on a Google Colab GPU
(NVIDIA ® Tesla ® K80),

53

Chapter 3 – Semantic segmentation of remote sensing images

3.6 Experiments, tests, and results

3.6.1 Evaluation and Comparison

The obtained performance metrics such as accuracy and IoU are given in table 3.2.
In the process of training our models, we have fixed the Hyperparameters of training,
so we can put all the models in the same training environment and evaluate them.

Model IoU Accuracy
U-Net 0.51 0.80
Unet+ Resnet50 0.53 0.83
Unet+VGG19 0.64 0.88
Unet+InceptionV3 0.65 0.89

Table 3.2: Results of the performance metrics for each model

From table 3.2, we can observe that the best results are given by the approach
composed of U-net architecture combined with InceptionV3 as the backbone. This
approach gives an IOU metric of 0.65 which is the best among all the studied models.
The same remark can be noted with the evaluation using the accuracy metric, where
the best value is given by the U-net with the InceptionV3 backbone which gives the
best accuracy value of 0.89. Also, we can observe that Unet+InceptionV3 is followed
by Unet+VGG19, Unet+ Resnet50, and simple U-net, respectively.

These results show the importance of combining U-net architecture with pre-
trained backbones to improve the performance of semantic segmentation.

3.6.2 Visual results

In this section, we will calculate and predict the labels of seven specific test images.
The test images, the ground truth masks, and the obtained masks are given in the
following figures.

54

Chapter 3 – Semantic segmentation of remote sensing images

(a) U-Net prediction (Image1)

(b) U-Net prediction (Image2)

(c) U-Net prediction (Image3)

(d) U-Net prediction (Image4)

(e) U-Net prediction (Image5)

(f) U-Net prediction (Image6)

(g) U-Net prediction (Image7)

Figure 3.4: Prediction results on test images (U-net)

55

Chapter 3 – Semantic segmentation of remote sensing images

(a) Unet+Resnet50 prediction (Image1)

(b) Unet+Resnet50 prediction (Image2)

(c) Unet+resnet50 prediction (Image3)

(d) Unet+Resnet50 prediction (Image4)

(e) Unet+Resnet50 prediction (Image5)

(f) Unet+Resnet50 prediction (Image6)

(g) Unet+Resnet50 prediction (Image7)

Figure 3.5: Prediction results on test images (Resnet50 backbone)

56

Chapter 3 – Semantic segmentation of remote sensing images

(a) Unet+Vgg 19 prediction (Image1)

(b) Unet+Vgg 19 prediction (Image2)

(c) Unet+Vgg 19 prediction (Image3)

(d) Unet+Vgg 19 prediction (Image4)

(e) Unet+Vgg 19 prediction (Image5)

(f) Unet+Vgg 19 prediction (Image6)

(g) Unet+ Vgg 19 prediction (Image7)

Figure 3.6: Prediction results on test images(VGG19 backbone)

57

Chapter 3 – Semantic segmentation of remote sensing images

(a) Unet+inception v2 prediction (Image1)

(b) Unet+inception v2 prediction (Image2)

(c) Unet+inception v2 prediction (Image3)

(d) Unet+inception v2 prediction (Image4)

(e) Unet+inception v2 prediction (Image5)

(f) Unet+inception v2 prediction (Image6)

(g) Unet+inception v2 prediction (Image7)

Figure 3.7: Prediction results on test images (InceptionV3 backbone)

58

Chapter 3 – Semantic segmentation of remote sensing images

In (figures 3.3, 3.4, 3.5 and 3.6) we show the segmentation created using the
four studied networks. We notice some differences between the obtained results,
especially between the predictions given by the U-net+GG model (figures 3.5) and
the U-net+InceptionV3 model (figures 3.6). We can observe that the best results
are given by the application of U-Net+InceptionV3 model.

3.7 Software and tools
This section will provide the definitions of the languages, software, and tools we
have used to develop our application.

3.7.1 Python programming language

Python is a dynamically semantic high-level programming language that is inter-
preted and object-oriented. Combined with dynamic type and dynamic binding, its
high-level built-in data structures make it ideal for Faster Development and for us-
age as a scripting or glue language to bring existing components together. Python’s
straightforward, easy-to-learn syntax prioritizes readability, lowering the cost of pro-
gram maintenance. Python has support for modules and packages, which promotes
program modularity and code reuse. Python’s interpreter and substantial standard
library are freely accessible in source or binary form for all major platforms. It can
be open to public distribution [72].

Figure 3.8: Python logo

3.7.2 PyCharm IDE

PyCharm is a specialized python IDE that offers a wide range of necessary python
developer tools that are deeply intertwined to offer a pleasant environment for pro-
ductive python, data science development, and the web [73].

Figure 3.9: PyCharm logo

3.7.3 Google Colaboratory

Google research’s Collaboratory, or Colab for short, is a product. Colab is a web-
based Python editor that allows anybody to create and run arbitrary Python code.
It is notably helpful for machine learning, data analysis, and teaching. Colab is
a hosted Jupyter notebook service that does not require any setup and offers free
access to computational resources, including GPUs, for free [74].

59

Chapter 3 – Semantic segmentation of remote sensing images

Figure 3.10: Google Colaboratory logo

3.7.4 PySimpleGUI

PySimpleGUI is a python library that allows Python programmers of all abilities to
construct GUIs. PySimpleGUI defines the GUI window using a layout that consists
of widgets (Elements). Using the layout, one of the four supporting frameworks
creates a window that may be displayed and interacted with. Frameworks that are
supported include Tkinter, Qt, WxPython, and Remi. These packages are commonly
referred to as "wrappers" [75].

Figure 3.11: PysimpleGUI logo

3.7.5 NumPy

NumPy is a python package that is essential for numerical computation. It offers
a multidimensional array object, derivative objects (including masked arrays and
matrices), and a variety of routines for quick array operations such as mathematical,
logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms,
basic linear algebra, basic statistical operations, random simulation, and more [76].

Figure 3.12: NumPy logo

3.7.6 Matplotlib

Matplotlib is a python 2D plotting framework that generates publication-quality
figures in a range of hard copy and interactive formats across several platforms.
It is compatible with python scripts, the python and IPython shells, the Jupyter
notebook, web application servers, and four graphical user interface toolkits. Among
the visualizations that can be created using matplotlib are bar graph and pie chart,
box plot and histogram plots, scatter plot, as well as figures [77].

60

Chapter 3 – Semantic segmentation of remote sensing images

Figure 3.13: Matplotlib logo

3.7.7 Pandas

Pandas is a popular open-source python library for data science, data analysis, and
machine learning activities. It is based on the NumPy library, which supports mul-
tidimensional arrays. Pandas, as one of the most popular data-wrangling packages,
integrates well with many other data science modules within the python ecosystem
and is typically included in every python distribution [67].

Figure 3.14: Pandas logo

3.7.8 Scikit-learn

Scikit-learn is an open-source python machine learning library. It is regarded as a
straightforward and effective technique for analyzing predictive data. It is based on
the NumPy, SciPy, and matplotlib libraries. This library can be used in a variety of
uses, such as classification, regression, clustering, dimensionality reduction, model
selection, and preprocessing [78].

Figure 3.15: Scikit-learn logo

61

General conclusion

The main goal was to develop a number of networks that would help with the image
segmentation problem in remote sensing. Deep learning and neural networks, in
particular, were the focus of this dissertation.

The dissertation was divided into three different chapters for structure. The first
chapter dealt with definitions and general concepts about deep learning, the second
was a deep dive into the theoretical notions for semantic segmentation and deep
learning approaches, and the third was the experimental part where we had our
tests and results.

The first chapter presents the basic principles of deep learning and the fun-
damental deep learning architectures, along with the most popular deep learning
frameworks, as well as the benefits and drawbacks of each one.

In the second chapter, we discussed semantic segmentation, which is an impor-
tant element of our dissertation. Also, we went over some of the most well-known
CNN architectures. In addition, we’ve covered all of the deep-learning-based seman-
tic segmentation algorithms.

In the last chapter, we present the remote sensing image segmentation problem,
the dataset used for the evaluation and the obtained results given by the appli-
cation of four methods, namely; simple Unet, Unet+VGG19, Unet+ResNet50 and
Unet+InceptionV3. At the last of his chapter, we came up with the main result
that the Unet+InceptionV3 is the best model compared to the four studied models
in term of IoU and Accuracy metrics.

Finally, we think that we are far from obtaining the optimal results for seman-
tic segmentation of remote sensing images. Future works will improve the current
models and add new elements to them to make them work more efficiently.

62

63

Bibliography

 [1] Dr. Iqbal H. ,Sarker. , Deep Cybersecurity: A Comprehensive Overview from Neural

Network and Deep Learning Perspective ,SN Computer,vol 1 ,(2021). 1–16 .Doi :

https://10.1007/s42979-021-00535-6.

[2] Karhunen J, Raiko T, Cho KH. Unsupervised deep learning: a short review. In: Advances

in independent component analysisand learning machines. (2015); p. 125–42.

https://doi.org/10.1016/B978-0-12-802806-3.00007.

[3] Jamil Ahmad ,Khan Muhammad,Sung Wook Baik, Data augmentation-assisted deep

learning of hand-drawn partially colored sketches for visual search .12(8). (August

2017),doi=10.1371/journal.pone.0183838

[4] Crina Grosan, Ajith Abraham,.‘Intelligent Systems’,A Modern Approach. (2011),Doi

:https://link.springer.com/book/10.1007/978-3-642 -21004-4.

[5] Sarker IH, Colman A, Han J, Khan AI, Abushark YB, Salah K. Behavdt: a behavioral

decision tree learning to build usercentric context-aware predictive model. Mob Netw Appl.

2020;25(3):1151–61.

[6] Sarker IH, Colman A, Kabir MA, Han J. Individualized timeseries segmentation for

mining mobile phone user behavior. Comput J. 2018;61(3):349–68.

 [7] Sarker IH, Hoque MM, Uddin MK. Mobile data science and intelligent apps: concepts,

ai-based modeling and research directions. Mob Netw Appl. 2021;26(1):285–303 doi :

https://link.springer.com/article/10.1007/s11036-020-01650-z.

[8] Sarker IH, Kayes ASM, Badsha S, Alqahtani H, Watters P, Ng A. Cybersecurity data

science: an overview from machine learning perspective. J Big data. 2020;7(1):1–29 doi

: https://10.1186/s40537-020-00318-5.

[9] Sarker IH, Furhad MH, Nowrozy R. Ai-driven cybersecurity: an overview, security

intelligence modeling and research directions. SN Computer. Science. 2021;2(3):1–18.}

[10] Hashim Qamar,‘Perceptron Learning’. Information Security Engineer at Rewterz .

 (2020). URL :h//www.linkedin.com/pulse/perceptron-learning-hashim-qamar.

[11] Facundo BreJuan M. Gimenez aVíctor, D.Fachinotti.Prediction of wind pressure

coefficients on building surfaces using Artificial Neural Networks.

 (Nov 2017), URL :https://www.researchgate.net/figure/Artificial-neural-network-

architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051.

[12] Sebastian Ruder. “An overview of gradient descent optimization algorithms”.In:

CoRR abs/1609.04747 (2016). arXiv: 1609.04747. url: http://arxiv.org/abs/1609.04747 .

[13] Scikit-learn. Scikit-learn - Machine Learning in Python. url: https://scikit-

learn.org/stable/. url :https://scikit-learn.org/stable/.

[14] Jieneng Chen et al. TransUNet: Transformers Make Strong Encoders for Med-

ical Image Segmentation. 2021. arXiv: 2102.04306 [cs.CV].}

64

[15] NumPy. What is NumPy? url: https://numpy.org/doc/stable/user/ whatisnumpy.html

 whatisnumpy.html.

[16] C.M. Bishop. Pattern Recognition and Machine Learning. Springer, Berlin:

Information Science and Statistics, 2006. isbn: 0387310738.

[17] PysimpleGUI. Python GUIs for Humans. url: https://pypi.org/project/

PySimpleGUI/ . url: https://pypi.org/project/PySimpleGUI/.

[18] Ravindra Parmar. Common Loss functions in machine learning. Ed. by To-

wards Data Science. Sept. 2018. url: https://towardsdatascience.com/

common-loss-functions-in-machine-learning-46af0ffc4d23.

[19] B. D. Hammel. Common Loss functions in machine learning. To- wards Data Science

.(2018).URL :https://towardsdatascience.com/.

[20] Yurii Nesterov. “A method for unconstrained convex minimization problem

with the rate of convergence o(1/k2)”. In: Doklady AN USSR 269 (1983),

pp. 543–547. url: https://ci.nii.ac.jp/naid/20001173129/en/.

[21] John Duchi, Elad Hazan, and Yoram Singer. “Adaptive Subgradient Methods

for Online Learning and Stochastic Optimization”. In: Journal of Machine

Learning Research 12.61 (2011), pp. 2121–2159. url: http : / / jmlr . org /

papers/v12/duchi11a.html.

[22] Timothy Dozat. “Incorporating Nesterov Momentum into Adam”. In: ICLR

Workshop (2016).

[23] Abdul Mueed Hafiz and Ghulam Mohiuddin Bhat. “A survey on instance seg-

mentation: state of the art”. In: International Journal of Multimedia Informa-

tion Retrieval 9.3 (July 2020), pp. 171–189. issn: 2192-662X. doi: 10.1007/

s13735- 020- 00195- x. url: http://dx.doi.org/10.1007/s13735- 020-

00195-x.

[24] Sevakula RK, Singh V, Verma NK, Kumar C, Cui Y. Transfer

learning for molecular cancer classification using deep

neural networks. IEEE/ACM Trans Comput Biol Bioinf.

2018;16(6):2089–100.

[25] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional

Networks for Biomedical Image Segmentation. 2015. arXiv: 1505.04597 [cs.CV].

https://numpy.org/doc/stable/user/

65

[26] Andrew G. Howard et al. MobileNets: Efficient Convolutional Neural Networks

for Mobile Vision Applications. 2017. arXiv: 1704.04861 [cs.CV].

[27] Kim K et al. “A Deep Learning-Based Automatic Mosquito Sensing and Con-

trol System for Urban Mosquito Habitats”. In: Sensors 2785.12 (2019). doi:

https://doi.org/10.3390/s19122785

[28] Siami-Namini S, Tavakoli N, Namin AS. The performance of

lstm and bilstm in forecasting time series. In: 2019 IEEE International

Conference on Big Data (Big Data), 2019; p. 3285–292.

 IEEE.

[29] Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C. A survey on deep transfer learning. In:

International Conference on artificial neural networks, 2018; p. 270–279. Springer.

[30] Ślusarczyk B. Industry 4.0: are we ready? Pol J Manag Stud.2018; p. 17

[31] Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, ErhanD, Vanhoucke V,

Rabinovich A. Going deeper with convolutions.In: Proceedings of the IEEE Conference on

computer vision and pattern recognition, 2015; p. 1–9.

[32] Vesanto J, Alhoniemi E. Clustering of the self-organizing map.

IEEE Trans Neural Netw. 2000;11(3):586–600.

[33] Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A,

Bottou L. Stacked denoising autoencoders: Learning useful representations

in a deep network with a local denoising criterion.

J Mach Learn Res. 2010;11(12).

[34] Wang W, Zhao M, Wang J. Effective android malware detection

with a hybrid model based on deep autoencoder and convolutional

neural network. J Ambient Intell Humaniz Comput.

2019;10(8):3035–43.

[35] S. Hochreiter and J. Schmidhuber. “Long short-term memory”. In: Neural com-putation,

vol. 9, no. 8 (1997), pp. 1735–1780

[36] Liu W, Wang Z, Liu X, Zeng N, Liu Y, Alsaadi FE. A survey of

deep neural network architectures and their applications. Neurocomputing.

[37] Laurence Moroney. AI and Machine Learning for Coders. O’Reilly Media, Inc.,

Oct. 2020. isbn: 9781492078197.

[38] S Tokui, K Oono, S Hido, J Clayton.

 workshop on machine learning,learningsys.org .(2015),

https://doi.org/10.3390/s19122785

66

[39] Keras. Mar. 2015. url: https://keras.io/

https://www.oreilly.com/library/view/hands-on-machine-learnig/9781492032632/.

[40] Aurélien Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and

TensorFlow, 2nd Edition. O’Reilly Media, Inc., Sept. 2019. isbn: 9781492032649.

https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/}.

[41] Sourav Samantaa et al. Multilevel Threshold Based Gray Scale Image Segmen-

tation using Cuckoo Search. 2013. arXiv: 1307.0277 [cs.CV].

[42] Anurag Arnab et al. “Conditional Random Fields Meet Deep Neural Networks

for Semantic Segmentation: Combining Probabilistic Graphical Models with

Deep Learning for Structured Prediction”. In: IEEE Signal Processing Maga-

zine 35.1 (2018), pp. 37–52. doi: 10.1109/MSP.2017.2762355.

[43] Google Cloud. Cloud Tensor Processing Units (TPUs). May 2016. url: https:

//cloud.google.com/tpu/docs/tpus.

[44] jOm Prakash.Associate Data Scientist at CEIPAL.(2019).

 Doi :https://www.quora.com/What-are-the-key-trade-offs-between-overfitting-and-

underfitting.

[45] H. Yu, Z. Yang, L. Tan, Y. Wang, W. Sun, M. Sun and Y. Tang.Methods and datasets on

semantic segmentation: A review. Methods and datasets on semantic segmentation: A review.

304}.Aug. 2018. 82–103.

[46] Anil Chandra Naidu Matcha.A 2021 guide to Semantic Segmentation.2021.

 Doi :https://nanonets.com/blog/semantic-image-segmentation-2020/.

[47] Harshall Lamba.A Salt Identification Case Study.Understanding Semantic Segmentation

with UNET. Feb 17, 2019. doi= :https://towardsdatascience.com/understanding-semantic-

segmentation-with-unet-6be4f42d4b47.

 [48] TechTarget Contributor.convolutional neural network.2021.

 Doi :https://www.techtarget.com/searchenterpriseai/definition/convolutional-neural-

network.

 [49] A Review on Deep Learning Techniques Applied to Semantic Segmentation.Alberto

Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez, Jose Garcia-

Rodriguez.22 Apr 2017.arXiv : 1704.06857 .(cs.CV). Doi : https://arxiv.org/abs/1704.06857.

[50] Multilevel Threshold Based Gray Scale Image Segmentation using Cuckoo Search.

Sourav Samantaa et al.2013.arXiv : 1307.0277 .(cs.CV).

[51] Anurag Arnab et al.IEEE Signal Processing Magazine.Conditional Random Fields Meet

Deep Neural Networks .for Semantic Segmentation: Combining Probabilistic Graphica

https://keras.io/

67

Models withDeep Learning for Structured Prediction.35.1.2018.37–52. Doi :

10.1109/MSP.2017.2762355.

[52] Medium –Towards.Renu Khandelwa. Anomaly Detection using Autoencoders.35.1.Jan.

2021.

 Doi :https://towardsdatascience.com/

 anomaly-detection-using-autoencoders-5b032178a1ea.

[53] Shipra Saxena . The Architecture of Lenet-5.March 18, 2021},

 Doi : https://www.analyticsvidhya.com/blog/2021/03/the-architecture-of-lenet-5/.

 [54] P. Vincent et al. Journal ofmachine learning research. Stacked denoising autoencoders:

Learning usefu representations in a deep network with a local denoising criterion.11. Dec

2010.

 3371–3408.

[55] A. Krizhevsky, I. Sutskever, and G. E. Hinton.in Advances in neural information

processing systems. Imagenet classification with deep convolutional neural networks(2012).

1097–1105.

[56] Alberto Garcia-Garcia, Sergio Orts-Escolano, Sergiu Oprea, Victor Villena-Martinez,

Jose Garcia-Rodriguez.A Review on Deep Learning Techniques Applied to Semantic

Segmentation.22 Apr 2017},

 arXiv :1704.06857.(cs.CV).

[57] Avinash Thite.By Great Learning Team. Introduction to VGG16 | What is VGG16?.Oct

1, 2021.

 Doi :https://www.mygreatlearning.com/blog/introduction-to-vgg16/.

 [58] K. He, X. Zhang, S. Ren, and J. Sun.Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition.Deep residual learning for image recognition.(2016)770–778.

 [59] geeksforgeeks.Understanding GoogLeNet Model.CNN Architecture.18 Nov, 2021},

 Doi :https://www.geeksforgeeks.org/understanding-googlenet-model-cnn-architectur/.

 [60] Proceedings of the IEEE Conference on Computer Vision and Pattern .MobileNet V1

Architecture.Doi :https://iq.opengenus.org/mobilenet-v1-

architecture/#:~:text=MobileNet%20is%20an%20efficient%20and,architectures%20to%20bui

ld%20lighter%20models.

68

 [61] Jonathan Long, Evan Shelhamer, and Trevor Darrell.Fully Convolutional Networks for

Semantic Segmentation.

2015. arXiv :1411.4038 . cs.CV.

 [62] V. Badrinarayanan, A. Kendall, and R. Cipolla. IEEE Transactions on Pattern Analysis

and Machine Intelligence. SegNet: A deep convolutional encoder-decoder architecture for

image segmentation.(2017). 11. 2481–2495.

 [63] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-

Scale Image Recognition.(2015).arXiv 1409.1556.(cs.CV).

 [64] Keras .Mar. 2015. doi :https://keras.io/.

[65] Yasmeen Khaled and Amr Kayid.In: Artificial General Intelligence . Performance of

CPUs/GPUs for Deep Learning workloads.May 2018.doi : 10.13140/RG.2.2.22603.54563.

 [66,] Sik-Ho Tsang.Semantic Segmentation. Review: DeepLabv1 & DeepLabv2 — Atrous

Convolution.Nov 9, 2018.

 Doi :https://towardsdatascience.com/review-deeplabv1-deeplabv2-atrous-convolution-

semantic-segmentation-b51c5fbde92d.

 [67] Matplotlib. Pandas Documentation. url: https : / / pandas . pydata . org /

docs/.

[68] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.U-Net: Convolutional Networks

for Biomedical Image Segmentation.2015. arXiv : 1505.04597 .(cs.CV).

[69] Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. O’Reilly

Media. Aurélien Géron.Sept. 2019. Doi :9781492032649.

[70] Andrew Joseph Davies. Semantic Segmentation of Aerial Imagery Using U-Net in

Python

Semantic Segmentation of MBRSC Aerial Imagery of Dubai Using a TensorFlow U-Net

Model in Python. https://towardsdatascience.com/semantic-segmentation-of-aerial-imagery-

using-u-net-in-python-552705238514.

[71] Liang-Chieh Chen et al.Atrous Convolution, and Fully Connected CRFs.DeepLab:

Semantic Image Segmentation with DeepConvolutional Nets.(2017).

 arXiv :1606.00915 .(cs.CV).

[72] Python. What is Python? Executive Summary. url: https://www.python.

org/doc/essays/blurb/.

[73] Jetbrains. PyCharm documentation (Quick start guide). url: https://www.

jetbrains.com/help/pycharm/quick-start-guide.html.

69

[74] Google Research. Colaboratory - Frequently Asked Questions. url: https :

//research.google.com/colaboratory/faq.html.

[75] PysimpleGUI. Python GUIs for Humans. url: https://pypi.org/project/

PySimpleGUI/.

[76] NumPy. What is NumPy? url: https://numpy.org/doc/stable/user/

whatisnumpy.html.

[77] Hu Cao et al. Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation.

2021. arXiv: 2105.05537 [eess.IV].

[78] Scikit-learn. Scikit-learn - Machine Learning in Python. url:

https://scikitlearn.org/stable/.

[79] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks

for Large-Scale Image Recognition. 2015. arXiv: 1409.1556 [cs.CV].

https://scikitlearn.org/stable/

	Abstract
	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	General Introduction
	Deep Learning
	Introduction
	General concepts
	Definitions
	Artificial neural networks
	Perceptrons
	Activation functions
	Sigmoid
	Tanh
	ReLU
	Softmax

	Batch normalization
	Performance metrics
	Intersection-Over-Union
	Accuracy
	Precision
	Recall
	F-Measure (F1 Score)
	Jaccard similarity coefficient

	Loss functions
	Regression losses
	Classification losses

	Hyperparameters
	Gradient descent algorithms
	Learning rate
	Batch size
	Epochs
	Steps per epoch

	Forward propagation and backpropagation
	Forward propagation
	Backpropagation

	Data augmentation

	Basic deep learning architectures
	Convolutional neural networks
	 Common convolutional neural network architectures
	 LeNet-5
	AlexNet
	VGG-16
	ResNet
	GoogleNet
	MobileNet

	Pooling Layer
	Fully-Connected Layer
	Recurrent neural networks and the LSTM
	Encoder-Decoder and Auto-Encoder Models
	Generative Adversarial Networks

	Deep learning frameworks
	TensorFlow
	PyTorch
	Keras

	Hardware used in deep learning
	Central processing units
	Graphics processing units
	Tensor processing units

	Conclusion

	Semantic Segmentation
	Introduction
	General concepts of semantic segmentation
	Definition
	Comparison with other computer vision tasks
	Traditional Techniques for Semantic segmentation
	Deep learning Methods

	Deep learning-based semantic segmentation methods
	Fully convolutional networks
	SegNet
	DeepLab
	U-net

	Conclusion

	Semantic segmentation of remote sensing images
	Introduction
	Problem definition
	Dataset
	Data preparation and Data augmentation
	Model building blocks
	Unet
	Backbone
	Training

	Experiments, tests, and results
	Evaluation and Comparison
	Visual results

	Software and tools
	Python programming language
	PyCharm IDE
	Google Colaboratory
	PySimpleGUI
	NumPy
	Matplotlib
	Pandas
	Scikit-learn

	General Conclusion

