International Communications in Heat and Mass Transfer

Volume 126, July 2021, 105408

Numerical investigation on natural convection of Al₂O₃/water nanofluid with variable properties in an annular enclosure under magnetic field

Author links open overlay panelFaridBerrahil[®]AbdelkaderFilali[®]ChérifaAbid[®]SmailBenissaad[®]RachidBessaih[®]OmarMatar^d Show more Add to Mendeley Share Cite

https://doi.org/10.1016/j.icheatmasstransfer.2021.105408Get rights and content

Abstract

Numerical investigation of the <u>natural convection</u> of Al_2O_3 -water <u>nanofluid</u> is carried out in a differentially heated vertical annulus under a uniform magnetic field. An in-house Fortran code has been developed to solve the system of equations governing the magneto-hydrodynamic flow. Computations are carried out for different <u>Rayleigh numbers</u> ($10^4 \le Ra \le 10^6$), <u>nanoparticle</u> diameter ($d_p = 13$ and 47 *nm*), nanoparticle volume fraction ($0 \le \varphi \le 0.09$), radius ratio ($2 \le \lambda \le 10$), and different Hartmann numbers ($0 \le Ha \le 100$). According to the simulation data, nanoparticle size is crucial for evaluating nanofluid properties, such as viscosity and <u>thermal conductivity</u>. The computational results reveal that, for nanoparticles with a diameter $d_p = 47$ *nm*, the <u>average Nusselt number</u> Nu⁻i on the inner <u>cylinder</u> <u>wall</u> decreases as the nanofluid volume fraction increases. This decrease in Nu⁻i number is observed up to a volume fraction $\varphi = 0.05$, after which it increases again. For the full range of <u>volumetric</u> fractions, it is shown that increasing *Ra* number causes Nu⁻i to increase, while increasing *Ha* number and increasing the magnetic field causes Nu⁻i to decrease. Furthermore, as the *Ha* number increases, the <u>heat transfer enhancement</u> ratio *En* increases mainly when the magnetic field is oriented radially. Finally, new correlations of Nu⁻i versus *Ra*, φ , *Ha*, and λ are derived for the axial and radial magnetic fields cases.

Keywords

Natural convection, Al_2O_3 -water, Lorentz forces, annulus enclosure, variable properties