
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/251970927

Scatter search for real-time scheduling with timing, precedence and exclusion

constraints

Article in International Journal of Advanced Operations Management · October 2010

DOI: 10.1109/ICMWI.2010.5648002

CITATION

1
READS

48

3 authors, including:

Some of the authors of this publication are also working on these related projects:

bio-inspired approach for Association Rules Mining View project

Wisdom Web Information System View project

Adel Bouridah

Centre universitaire de Mila

6 PUBLICATIONS 15 CITATIONS

SEE PROFILE

Habiba Drias

University of Science and Technology Houari Boumediene

235 PUBLICATIONS 1,676 CITATIONS

SEE PROFILE

All content following this page was uploaded by Adel Bouridah on 18 February 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/251970927_Scatter_search_for_real-time_scheduling_with_timing_precedence_and_exclusion_constraints?enrichId=rgreq-7ca7b2ee3c55a2f9f3e9e875310d746f-XXX&enrichSource=Y292ZXJQYWdlOzI1MTk3MDkyNztBUzozMzA0MTM2MDkzNzM2OThAMTQ1NTc4ODE1MTI3OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/251970927_Scatter_search_for_real-time_scheduling_with_timing_precedence_and_exclusion_constraints?enrichId=rgreq-7ca7b2ee3c55a2f9f3e9e875310d746f-XXX&enrichSource=Y292ZXJQYWdlOzI1MTk3MDkyNztBUzozMzA0MTM2MDkzNzM2OThAMTQ1NTc4ODE1MTI3OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/bio-inspired-approach-for-Association-Rules-Mining?enrichId=rgreq-7ca7b2ee3c55a2f9f3e9e875310d746f-XXX&enrichSource=Y292ZXJQYWdlOzI1MTk3MDkyNztBUzozMzA0MTM2MDkzNzM2OThAMTQ1NTc4ODE1MTI3OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Wisdom-Web-Information-System?enrichId=rgreq-7ca7b2ee3c55a2f9f3e9e875310d746f-XXX&enrichSource=Y292ZXJQYWdlOzI1MTk3MDkyNztBUzozMzA0MTM2MDkzNzM2OThAMTQ1NTc4ODE1MTI3OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-7ca7b2ee3c55a2f9f3e9e875310d746f-XXX&enrichSource=Y292ZXJQYWdlOzI1MTk3MDkyNztBUzozMzA0MTM2MDkzNzM2OThAMTQ1NTc4ODE1MTI3OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adel-Bouridah?enrichId=rgreq-7ca7b2ee3c55a2f9f3e9e875310d746f-XXX&enrichSource=Y292ZXJQYWdlOzI1MTk3MDkyNztBUzozMzA0MTM2MDkzNzM2OThAMTQ1NTc4ODE1MTI3OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adel-Bouridah?enrichId=rgreq-7ca7b2ee3c55a2f9f3e9e875310d746f-XXX&enrichSource=Y292ZXJQYWdlOzI1MTk3MDkyNztBUzozMzA0MTM2MDkzNzM2OThAMTQ1NTc4ODE1MTI3OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Centre_universitaire_de_Mila?enrichId=rgreq-7ca7b2ee3c55a2f9f3e9e875310d746f-XXX&enrichSource=Y292ZXJQYWdlOzI1MTk3MDkyNztBUzozMzA0MTM2MDkzNzM2OThAMTQ1NTc4ODE1MTI3OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adel-Bouridah?enrichId=rgreq-7ca7b2ee3c55a2f9f3e9e875310d746f-XXX&enrichSource=Y292ZXJQYWdlOzI1MTk3MDkyNztBUzozMzA0MTM2MDkzNzM2OThAMTQ1NTc4ODE1MTI3OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Habiba-Drias?enrichId=rgreq-7ca7b2ee3c55a2f9f3e9e875310d746f-XXX&enrichSource=Y292ZXJQYWdlOzI1MTk3MDkyNztBUzozMzA0MTM2MDkzNzM2OThAMTQ1NTc4ODE1MTI3OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Habiba-Drias?enrichId=rgreq-7ca7b2ee3c55a2f9f3e9e875310d746f-XXX&enrichSource=Y292ZXJQYWdlOzI1MTk3MDkyNztBUzozMzA0MTM2MDkzNzM2OThAMTQ1NTc4ODE1MTI3OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Science_and_Technology_Houari_Boumediene?enrichId=rgreq-7ca7b2ee3c55a2f9f3e9e875310d746f-XXX&enrichSource=Y292ZXJQYWdlOzI1MTk3MDkyNztBUzozMzA0MTM2MDkzNzM2OThAMTQ1NTc4ODE1MTI3OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Habiba-Drias?enrichId=rgreq-7ca7b2ee3c55a2f9f3e9e875310d746f-XXX&enrichSource=Y292ZXJQYWdlOzI1MTk3MDkyNztBUzozMzA0MTM2MDkzNzM2OThAMTQ1NTc4ODE1MTI3OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adel-Bouridah?enrichId=rgreq-7ca7b2ee3c55a2f9f3e9e875310d746f-XXX&enrichSource=Y292ZXJQYWdlOzI1MTk3MDkyNztBUzozMzA0MTM2MDkzNzM2OThAMTQ1NTc4ODE1MTI3OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Scatter search for Real-Time Scheduling with
Timing, Precedence and Exclusion Constraints

Adel Bouridah Habiba Drias Yacine Laalaoui
 Mila University center Research Laboratory in National School of

Artificial Intelligence (LRIA), USTHB computer science
 Mila, Algeria Algiers, Algeria Algiers, Algeria
 a.bouridah@centre-univ-mila.dz hdrias@usthb.dz yacine.laalaoui@gmail.com

ABSTRACT- Tasks scheduling is one of the most important
challenges in embedded hard real time systems. The problem is
known to be NP-Hard and exhaustive search algorithms have no
significant benefit in large-scale context. This paper proposes a
scatter search based approach for mono-processor systems with
timing, precedence and exclusion constraints with no pre-
emption. An empirical study is undertaken and comparison is
done with results of previous works.

Keywords: real-time, pre-run-time scheduling, meta-heuristic,
Scatter search.

I. INTRODUCTION

The technology of embedding hardware and software
components is becoming ubiquitous. The presence of this
technology varies from simple domestic devices to complex
and critical applications. Usually the latter systems are under
stringent timing constraints (known also as real-time systems).
Failure to satisfy specified timing constraints can lead to
disastrous damage. The real-time task system has to meet
timing constraints in order to maintain the process in an
acceptable state. The problem here is to find a schedule of
tasks on one or more processors architecture such that all
timing constraints will be met. Such a schedule is named a
feasible schedule.

To produce a feasible schedule, one can use blind search
methods like Best-First-Search and Depth-First-Search, or
Branch-Bound-First methods [9] [7] [1]. It is well known that
all these methods have an exponential time complexity,
because the general scheduling problem is NP-Hard [4].
Consequently, results can not be computed in a reasonable time
and search space. One can also use meta-heuristic like
Cooperative Ants [6]. The use of such meta-heuristic was
shown very helpful to handle the problem of time and search
space and reduce those costs to reasonable values.

This paper addresses the problem of scheduling tasks with
timing, precedence and exclusion constraints on single
processor architecture with no pre-emption. The scheduling
under study is considered as a Combinatorial Optimization
Problem (COP) wherein feasible solutions are feasible
schedules. Solutions are modeled as permutations of tasks (real
permutation of segments) and the search space is composed of
these permutations. During the search process, the scatter
search uses only solutions that meet exclusion and precedence
constraints to find the feasible solution in which all timing
constraints are fulfilled.

the work presented in this paper aims at enhancing
researches in pre-run-time scheduling methods in order to deal
with more imposed constraints on complex real-time

embedded systems like context switching minimization, jitter
minimization [3], combining off-line and priority based
scheduling methods [2] [8].

II. REAL-TIME SCHEDULING

A. THE TASK MODEL

The task model we use is the same presented in [6]. A
periodic task τi is characterized by the tuple <ri, Ci,Di,Pi>,
where ri is the first release time, Ci is the worst computation
time, Pi is the period of activation, and Di which is called the
deadline is the amount of time given to the task to complete its
execution.

B. MODELLING A REAL TIME APPLICATION

As mentioned in [6] we consider only periodic tasks in our
study for the task model. Our approach includes the same steps
presented in [6]. Also, the synchronization constraints
(Exclusion and precedence constraints) are the same of those
presented in [6].

a) Optimization criteria
The objective of our algorithm is to find a feasible solution

in which each segment must have a positive lateness. We
define lateness of the segment Si as Lateness(Si) = d(Si)-
End(Si).

The solution quality depends on the number of segments
that have negative lateness. If X is a solution in which k
segments do not respect their deadline and F(X) the quality of
X then F(X) = k. The goal is to minimize F(X) knowing that a
solution is feasible when F(X) = 0.

III. THE SCHEDULING ALGORITHM

A. OVERVIEW

The proposed scheduling algorithm is an adaptation of
Scatter Search defined in [5] to the problem of scheduling hard
real-time tasks with no pre-emption for mono-processor
environment. Let S1, S2, …, Sn denote the set of all segments
that compose our real-time task system. Our algorithm searches
the feasible solution between the couple of permutation (Si,
Start execution time of Si). The start execution time of any
segment is calculated automatically from the position of the
segment as the maximal value between the End execution time
of the segment that it precedes in the solution and its release
time i.e. StartTime(Si) = Max(EndTime(Si-1), ri) thus solutions
are simplified as the permutations of segment. Any segment
must appear only once in a solution.

B. SCATTER SEARCH ALGORITHM

The general framework of scatter search algorithm is
defined as follows:

Algorithm
Begin
I. initialization phase
1. Use the diversification generator to generate the initial

population.
2. Deduct the reference set refset from the initial population.

II. Evolution phase
While ((number of evaluated solutions < MaxSol) and

(Number of iterations < MaxIter)) do
1. Generate subset from the reference set using the

subset generating method.
2. Apply the combination method and put the result

solutions in the pool of the combined solutions.
3. Apply the improvement method to the pool of the

combined solution and put the result solutions in the
pool of the improved solutions.

4. Update refset using the improved solutions of this
iteration.

 EndWhile
End.

1) GENERATING THE INITIAL POPULATION
In the initial phase of the algorithm we need to construct

the set of trial solutions that we call initial population. From
these trial solutions we deduce the reference set RefSet that will
be used by the algorithm in the evolution phase. The initial
population is constructed as follows:

1. Generate a random trial solution called sbegin that meets
all exclusion and precedence constraints.

2. Apply the diversification generator on sbegin to generate
all trial solutions of the initial population.

2) DESIGN OF SCATTER SEARCH COMPONENTS
FOR THE SCHEDULING PROBLEM

a) Diversification generator
The diversification generator uses one seed solution to

produce k diverse solutions. All solutions generated with this
generator must meet exclusion and precedence constraints so
that the generator can check the eligibility of any segment
before its insertion in any position of the solution which it tries
to construct. When the diversification generator tries to build
any trial solution, it may use the two lists named Candidate
List and Admissible List in order to check the eligibility of
segments. These two lists are defined as follows:

Candidate List:
This list is used to insure the satisfaction of precedence

constraints. Initially, it contains the set of segments with no
predecessors. At the end of execution of each segment Si
belonging to the Candidate List, this last segment Si is
removed and all their successors are added to this list.

Admissible List:
This list is a subset of the candidate list. It contains only

admissible segments with respect to all exclusion and
precedence constraints. We propose three different
diversification generators:

Random diversification generator:
This generator generates randomly diverse trail solutions

but these solutions must meet the synchronization constraints.

Diversification generator maximizing distances:
This generator is inspired from the one described in [5] for

the permutation problems. Assume that a given trial solution C
used as a seed is represented by indexing its segments such that
they can appear in consecutive order, to yield C = (S1, S2, ...,
Sn). Define the subsequence C(h:k), where k is a positive
integer between 1 and h, to be given by C(h:k) = (Sk, Sk+h,
Sk+2h, ..., Sk+rh), where r is the largest non negative integer
such that k+rh ≤n. Then define the permutation C(h), for h ≤
n, to be C(h) = (C(h:h), C(h:h-1), ..., C(h:1)).

Diversification generator using mutation:
This generator makes a mutation between two positions, i

and j, drawn randomly in the seed solution but the result
solution must meet the synchronization constraints.

b) Improvement method
The improvement method of scatter search enables local

search to improve the quality of the seed solution. For this
purpose this method tries to reduce the number of segments
which do not meet their deadline by shifting them to the left of
the solution. While the improvement method makes shifting, it
may not falsify the synchronization constraints of the solutions
and also the segments which meet their deadline.

The improvement method uses two mechanisms of shifting
defined as follows:

1. The push(sk,si) mechanism tries to insert the segment si
between sk and sk-1
Example: let c=s1, s2, s3, s4, s5, s6, s7, s8, if Push(s3,s7)
succeeds then

 c= s1, s2, s7, s3, s4, s5, s6, s8.
2. The interchange(sk,si) mechanism tries to exchange

positions between si and sk.
 Example: let c=s1, s2, s3, s4, s5, s6, s7, s8, if
Interchange(S3,S7) succeeds then

 c= s1, s2, s7, s4, s5, s6, s3,s8.
The algorithm of the improvement method is the following:

Algorithm
Begin
 Assume that C is the seed solution to improve.
3. C* � C ;
4. sort all segments which violate their deadline :
 ViolSet={Sviol1,Sviol2,….,Sviolk} ;
5. for each segment Si of ViolSet do

Assume that SprecSi is the last segment of c that has
precedence relation with Si

 Sk� Successeur (SprecSi);
While (Sk != Si and (Not Push(Sk,Si) and Not

Interchange(Sk,Si)))
 Sk� Successeur (Sk) ;
 EndWhile
 End For each
End

c) Reference Set Update Method
RefSet is composed of two subsets, the first one, namely

RefSet1 consists of b1 high quality solutions and the second
called RefSet2 consists of b2 diverse solutions.

The first subset is referred to as the “high quality” subset
and the second is referred to as the “diverse subset”. The
solutions in RefSet1 are ordered according to their objective
function value (optimization criteria) and the set is updated
with the goal of increasing the quality, decreasing F(X)
because we have defined the problem as a minimization
problem. That is, a new solution X replaces a reference
solution Xb1 if F(X)<F(Xb1). The solutions in RefSet2 are
ordered according to their diversity value and the update has
the goal of increasing diversity. Therefore, a new solution X
replaces reference solution Xb if dmin(X)> dmin(Xb). We note
that dmin(X) is the distance between X and RefSet1 and not
RefSet2.

The distance between two solutions is the number of
positions that we must change for the first solution to obtain
the second one. Assume that Ci et Cj are two solutions and
D(Ci,Cj) is the distance between these solutions. Both
solutions have the same segments S1,S2…Sk...,Sn but in two

different orders. We note S
i

k the position of Sk in Ci,

SS
j

k

i

k
−

 is the number of positions that separate the
position of Sk in Ci from these in Cj then:

∑
=

−=
nk

j
k

i
k

ji SSCCD
,1

),(

And

),(

)1Re,()Re,(

1Re

i

fsetC
CXDMin

fSetXDfSetXD

i∈
=

=

The Reference set updating method uses a static
mechanism to update RefSet so that the reference set is updated
when all improved solutions of the iteration are generated. This
method is simple to implement because there is no interaction
between the order of generated subsets and the updated
reference set.

d) Subsets generation method
We limit our subsets generation method to yield only

subsets of all pair-wise combinations of the solutions in RefSet.

e) Combination method
Three variants for the combination method have been

developed. All variants are based on voting procedure. The
proposed combination method operates on several seed
solutions but really it operates only on two seed solutions
regarding to our subsets generation method. Therefore, the
combination method produces at most one result solution
which is the centre of gravity for the seed solutions. In some

situation, the combination method does not compute any
solution because this combined solution violates
synchronization constraints of the real time application. In
order to check the synchronization constraints, we use the two
lists of candidate and admissible segments defined above.

The skeleton of the algorithm for the three variants is the
following:

Algorithm
Begin

Assume that x1,x2,…,xk are seed solutions and xc is the
combined solution which we want to generate. All solutions are
composed of n segments;

Initialisation : - initialise the candidate and admissible lists;
Size(xc)=0 because no segments are yet in xc;
While (Size(xc)≤n and not Stop)
1. Each solution xi(s1,s2,..,sn) votes for its first segment not

yet in xc only if this segment belongs to the admissible list
of the actual position of xc.

2. If there is no solution xi voted for then stop=true, the
centre of gravity does not meet synchronization
constraints;
Else
- Select the segment to be inserted in xc by applying one
of the combination variants criteria;
- Put this segment at the end of xc;
- Update candidate and admissible lists for the new free
position of xc that we need to fill in the next step;

 End While
 if (not Stop) then xc is the centre of gravity else there is no

combined solution for the seed solutions x1,x2,…,xk.
End.

The selection of the next segment to be inserted in xc is
done according to one of the following variants:

Combination according to the segments positions
The segment priority depends on the position of this

segment in the reference solution which votes for it. Therefore
in this variant after the voting procedure, we choose the
segment with the lowest position.

Combination according to solutions qualities
Each solution cooperates in the combined solution with a

percentage depending on its quality as follows:

Assume that x1,…,xk are the reference solutions which will
be combined and xc is the combined solution to construct.
Assume also that x1,…,xk have respectively f1,…,fk as
objective functions such that each solution xi will cooperate in

xc with n
v

v
k

j

j

i

*

1
∑

=

 segments where vi=n-fi.

 At the beginning each solution Xi has

∑
=

k

j

j

i

f

f

1

 as

score.

This score is decremented by one when a segment voted by
xi is assigned to xc.

Combination according to the segments deadlines
From the several segments voted, the segments with the

lowest deadline will be affected to xc.

IV. EXPERIMENTAL RESULTS

In order to test the performance of our approach, we have
implemented the algorithm we have developed. We have
integrated our implementation in the Framework HeuristicLab
(www.Heuristiclab.com) as Plug-ins. HeuristicLab is a very
efficient framework for developing and testing optimization
methods, parameters and applying all these ingredients on a
multitude of problems. We have used C# as programming
language with the framework .net 1.1, Windows XP as the
operating system on laptop machine with AMD Athlon
processor 1.8GHZ and 512Mb of RAM.

The algorithm is tested with several instances generated for
different problem sizes. These problem instances are inspired
from a real instance called Mine-Pump reduced to 4 tasks
instead of 6 tasks of the original system.

- Reduced Mine-Pump and our instance: The Mine-Pump
system describes a system of pumping water in mine
environment. It is composed of a set of four periodic tasks in
the instance. The timing parameters of each task are shown in
Table I. Pi is changed for each test (random value) to obtain
different problem sizes. The problem size is the number of
segments in the system after the transformation to the periodic
case of this instance.

TABLE I. EMPIRICAL INSTANCES TIMING PARAMETERS

Tasks\parameters ri Ci Di Pi

τ1 0 10 20 Random≥20

τ2 0 15 50 Random≥50

τ3 0 1 1000 Random≥1000

τ4 0 25 500 Random≥500

A. Diversification generators comparison

We have tested the three alternatives proposed for the
diversification generator on our 4 task instances. We have
fixed the following parameters for the algorithm:

Stop criterion: Max Number of steps (iterations): 50; Max
Number of evaluations: 50 000.

We change the population size and the size of RefSet1
(high quality solutions) and RefSet2 (diverse solutions) as

shown in Table II then the search time (second column) and the
number of generated solution are evaluated.

TABLE II. COMPARISON OF THE ALTERNATIVES OF THE
DIVERSIFICATION GENERATOR

Alternative \

Parameters

Population
Size = 10.
RefSet1
size = 3.
RefSet2
size= 2.

Population
Size = 20.
RefSet1
size = 3.
RefSet2
size = 2.

Population
Size = 40.
RefSet1 size
= 5.
RefSet2 size
= 3.

Random
diversification
generator

17.31 s
3199

24.50 s

3771

01:24.29 s

14218

Diversification
generator
maximizing
distances

Stagnation Stagnation Stagnation

Diversification
generator
using mutation

Stagnation Stagnation Stagnation

We conclude that according to these results, only the

random diversification generator avoids stagnation, the two
other generators found in the literature stagnate before reaching
the result. This is affected by our problem modeling because
we manipulate during the search of the feasible solution only
the solutions that meet synchronization constraints.

We have made the same tests to compare the combination
methods and we have concluded that the performances of the
three variants are approximately equal. We have concluded
also that the algorithm settings such as population size and high
quality reference set size affect the performance of the
algorithm.

B. Comparison with other algorithms

After the integration of the problem under study and the

scatter search algorithm in the Heuristiclab environment, we
have taken advantage of the presence of other algorithms in this
environment to solve the real time scheduling problem, without
any effort of modeling or programming. It concerns specifically
genetic algorithms and Random search.

Here we present the test of comparison between these two
approaches with ours. We reintroduce the same settings for
scatter search defined in the precedent test (Table III). The
parameters for the Genetic algorithms are tuned as follows:
population size=40, mutation rate=0.05. The replacement
strategy named ‘Elitism’ is proper to Heuristiclab as well as the
selection operator named “roulette”. The crossover operator
represents our combination method according to the segments
positions and the mutation operator is our improvement
operator. For the random search, the only parameter that we
need to set is the maximal rounds. It was set to 1 000.

TABLE III. SCATTER SEARCH SETTINGS

Population Size 40

RefSet1 size 5

RefSet2 size 3

Diversification generator Random diversification

generator

Combination method Combination according to

the segments positions

Max number of steps 50

Max number of evaluations 50 000

Considering that the solution quality is the segments
number that do not meet their deadlines, the result of search
time and solution quality returned by each algorithm are shown
in Table V (ST for search time, SQ for solution quality):

TABLE IV. COMPARISON WITH OTHER ALGORITHMS

Scatter
search

Genetic
algorithms

Random
search

Problem
size \
Algorithm ST SQ ST SQ ST SQ
10 3.55 0 15.21 0 00.42 0
35 94 0 331.95 0 07.55 17
40 149 0 451.55 0 12.38 20
85 1851 0 5 705.20 0 94.24 49
95 2837 0 6 442.99 0 177.42 56

According to this set of tests, we conclude that the random

search has the best search time but with the worst solution
quality when the problem size increases. Therefore this
algorithm, which is a local optimum search, is not important
for the real time scheduling problem. According to this
conclusion the random search algorithm will not be compared
with genetic algorithms and scatter search.

0

1000

2000

3000

4000

5000

6000

7000

10 35 40 85 95

Problem size

S
ea

rc
h

 ti
m

e

Scatter search Genetics algorithms

Figure 1. Comparison between scatter search and genetic algorithms

Both genetic algorithms and scatter search retrieve the
feasible solution and scatter search outperforms genetic
algorithms for search time. Therefore, the difference between
the search time of both methods increases when the problem
size increases, this is clarified by Figure 1.

V. CONCLUSION

We have presented in this paper a pre-run-time scheduling
algorithm for real time tasks with timing, precedence and
exclusion constraints. It is based on the scatter search meta-
heuristic. We have implemented and tested the algorithm on
different instance sizes. With the support of the Heuristic-Lab
environment, a GA algorithm and a random search have been
developed. Then we have compared the three approaches: the
scatter search, the genetic algorithm and the random search
between them. In terms of solution quality (finding feasible
solution) both scatter search and genetic algorithm retrieve the
feasible solution while scatter search response time is faster.

In the future, we intend to consider several other aspects of
scheduling and we plan to handle especially the pre-emption
issue. Another perspective is to extend scatter search for real
time system on multi-processor architecture.

REFERENCES

[1] Cavalcante, S.V, “A Hardware-Software Co- Design System for

Embedded Real-Time Applications,” PhD Thesis University of
Newcastle upon Tone, 1997.

[2] Dobrin, R, “Combining Off-line Schedule and Fixed Priority Scheduling
in Real-Time Computer Systems,” PhD Thesis Mälardalen University,
Sweden, 2005.

[3] Dinatale, M., Stankovic, J.A, “Applicability of simulated annealing
methods to real-time scheduling and jitter control,” Proceeding of IEEE
Real-Time Systems Symposium, Pisa, Italy, pp. 190-199, 1995.

[4] Garey, M. R. and Johnson, D. S, Computers and Intractability: A Guide
to the Theory of NP-Completeness, Freeman, USA, 1979.

[5] Glover, F., “A Template for Scatter Search and Path Relinking,” In
Artificial Evolution, Lecture Notes in Computer Science 1363, J.-K. Hao,
E. Lutton, E. Ronald , M. Schoenauer and D. Snyers (Eds.), Springer-
Verlag, pp. 13-54, 1998.

[6] Laalaoui, Y., Drias, H., Bouridah, A., Badlishab, A., “Ant Colony
System with Stagnation Avoidance for the Scheduling of Real-time
Tasks,” IEEE SSCI CI-Sched 2009, Nashville, Tennessee, USA, 2009.

[7] Shepard, T., Gagne, M., “A pre-time schudling algorithme for hardreal
time system,” IEEE Transactions on Software Engineering, Vol.17,
No.7, pp. 669-677, 1991.

[8] Xu, J., Lam, K.-Y., “Integrating RunTime Scheduling and Preruntime
Scheduling of Real-Time Processes,” Proc 23rd IFAC/ IFIP Workshop
Real-Time Programming, 1998.

[9] Xu, J., Parnas, D., “Pre-run-time scheduling of processes with exclusion
relations on nested or overlapping critical sections,” Proc, Eleventh
Annual IEEE International Phoenix Conference on Computers and
Communications (IPCCC-92), Scottsdale, Arizona, pp. 774-782, 1992.

View publication statsView publication stats

https://www.researchgate.net/publication/251970927

