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Abstract: Tasks scheduling is one of the most important challenges in 
embedded hard-real-time systems. The problem is known to be NP-hard and 
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1 Introduction 

The technology of embedding hardware and software components is becoming 
ubiquitous. The presence of this technology varies from simple domestic devices to 
complex and critical applications. Usually, the latter systems are under stringent timing 
constraints (known also as real-time systems). Failure to satisfy specified timing 
constraints can lead to disastrous damage. In typical real-time system, there is a 
computing unit of one or more processors which is connected to several devices. A  
real-time program (known also as real-time task system) runs on the computing unit. It 
acquires sensors data to get information about the state of the process, computes these 
inputs, and then produces outputs to be sent to the devices throughout actuators. In the 
simplest case, devices produce inputs at regular intervals of time and outputs to be sent 
are also periodic. The real-time task system has to meet timing constraints in order to 
maintain the process in an acceptable state. The problem here is to find a schedule of 
tasks on one or more processors architecture such that all timing constraints will be met. 
Such a schedule is named a feasible schedule. 

There are two classes of scheduling methods, online methods and offline methods. 
The validation of online methods is done using analytic conditions. Online methods are 
easy to implement but these methods are limited for simple real time systems with no 
shared resources and precedence constraints. Offline methods are applied in case of 
complex hard real-time systems with a great number of shared resources and precedence 
constraints. In offline methods, the system characteristics must be known in advance in 
order to produce a feasible schedule and the result will be saved in a data structure and 
consulted at run time by a dispatcher. 

To produce a feasible schedule, one can use blind search methods like  
best-first-search and depth-first-search, or branch-bound-first methods (Xu and Parnas, 
1992; Shepard and Gagne, 1991; Cavalcante, 1997). It is well known that all these 
methods have an exponential time complexity, because the general scheduling problem is 
NP-hard (Garey and Johnson, 1979). Consequently, results cannot be computed in a 
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reasonable time and search space. One can also use a learning-based algorithm to address 
the deadline scheduling problem (Laalaoui and Drias, 2009) or meta-heuristic like 
cooperative ants (Laalaoui et al., 2009). The use of such meta-heuristic was shown very 
helpful to handle the problem of time and search space and reduce those costs to 
reasonable values. 

Scatter search is a population-based approach that has recently been shown to yield 
promising outcomes for solving combinatorial and non-linear optimisation problems. 
Based on formulations originally proposed in the 1960s for combining decision rules and 
problem constraints, scatter search uses strategies for combining solution vectors that 
have been proven effective in a variety of problem settings. Scatter search has given 
interesting results in solving many combinatorial optimisation problems like the Max-Sat 
problem (Drias, 2001), hard Max-Sat problem (Drias and Khabzaoui, 2001), DNA 
sequencing (Blazewicz et al., 2004), project scheduling (Debels et al., 2006) and other 
problems. 

This paper addresses the problem of scheduling tasks with timing, precedence  
and exclusion constraints on single processor architecture with no pre-emption. The 
scheduling under study is considered as a combinatorial optimisation problem (COP) 
wherein feasible solutions are feasible schedules. Solutions are modelled as permutations 
of tasks (real permutation of segments) and the search space is composed of these 
permutations. During the search process, the scatter search uses only solutions that meet 
exclusion and precedence constraints to find the feasible solution in which all timing 
constraints are fulfilled. 

The work presented in this paper aims at enhancing researches in pre-run-time 
scheduling methods in order to deal with more imposed constraints on complex real-time 
embedded systems like context switching minimisation, jitter minimisation (Dinatale and 
Stankovic, 1995), combining offline and priority-based scheduling methods (Dobrin, 
2005; Xu and Lam, 1998). 

2 Related works 

Only few meta-heuristics including simulated annealing, genetic algorithms and ant 
colony optimisation have been devoted to real-time scheduling. The former was used by 
Tindell et al. (1992) to treat the problem of scheduling in distributed environment with a 
special communication protocol. It was also used by Dinatale and Stankovic (1995)  
to handle the problem in multiprocessor architecture with jitter minimisation and  
non-pre-emptive of tasks. Genetic algorithms were used by Nossal (1998) to tackle the 
problem of pre-emptive scheduling of inter-related tasks with precedence and exclusion 
constraints in extensible multiprocessor architecture. Navet and Migge (2003) have used 
genetic algorithms to solve a non-standard problem of real-time scheduling which is the 
assignment of policies (round Robin or FIFO scheduling) and priorities to tasks in 
POSIX1003.1b compliant systems. Also Laalaoui et al. (2009) have used ant colony 
system for mono-processor scheduling of hard real-time tasks with timing, precedence 
and exclusion constraints including pre-emption. To our knowledge no work has been 
done yet using scatter search to address the problem of scheduling hard real-time tasks in 
single processor architecture with timing precedence and exclusion relations, which is the 
main focus of the present paper. Scatter search is known to be more complicated to 
design than other meta-heuristics because it handles both the quality of solutions and 
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their dispersion in the search space. However, when well developed; scatter search can 
yield very interesting outcomes. 

3 Real-time scheduling 

3.1 The task model 

The task model we use is inspired from the task model of Liu and Layland (1973). A 
periodic task τi is characterised by the tuple < ri, Ci, Di, Pi >, where ri is the first release 
time, Ci is the worst computation time, Pi is the period of activation and Di, called the 
deadline, is the amount of time given to the task to complete its execution. We note  
di = ri + Di, the moment when the task should be completed. It is assumed that Di ≥ Ci, 
otherwise no feasible schedule exists. A sporadic task is not released at regular intervals 
of time, but the minimum duration between two requests is known in advance (Mok, 
1983). In this paper, no sporadic tasks are considered because there are several methods 
to make an automatic transformation of sporadic tasks to periodic tasks (Xu, 2003). We 
assume that ri, Ci, Di and Pi as well as any other parameters expressed in time have 
integer values representing the number of time units. Processor resources are measured in 
terms of processor time units. 

Because the periods of tasks are not necessary equal, more instances of tasks should 
be added in the schedule length period in order to study the scheduling feasibility over a 
relevant finite time interval. In our case, the schedule length period is the least common 
multiple of all periods of specified tasks (Xu and Parnas, 1993). 

Since tasks can share resources and in order to identify time slices of using resources, 
some parameters must be added to the previous tuple as follows: τi = < ri, Ci, Di, Pi, {R1 
< α1, β1, γ1 >, R2 < α2, β2, γ2 >,….} >,where Rk is the kth resource used in the task τi, 
αk is the time duration before the use of the resource Rk, βk is the time duration of using 
the resource Rk and γk is the time interval after the use of the resource Rk. We note that 
for each Rk: αk + βk + γk = Ci. Before dealing with the problem of scheduling tasks, we 
need to introduce the following definitions and notations: 

• Let P denote the set of all tasks. 

• Each task τi consists of a finite set of segments: S0, S1…Sn, where Si denotes its ith 
segment (0 ≤ i ≤ n). 

• Some segments can together encapsulate a shared resource, and then constitute a 
critical section. Let X denotes the set of all critical sections. 

• For each critical section x ∈ X, we note x0 and xn their first and last segments 
respectively. 

• Let Start(S) be the start time of the segment S. It represents the moment when a 
segment S starts its execution. 

• Let End(S) be the finished time of the segment S yielding the processor to another 
segment. 

• Let Lateness(S) = d(S) – End(S), where d(S) is the deadline of the segment S. 
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3.2 Modelling a real time application 

As mentioned above, we consider only periodic tasks in our study. Our approach includes 
the following steps: 

1 Identification of all critical sections of the real time application caused by sharing 
resources or precedence relations. 

2 Divide each task of the real time application into several segments to simplify the 
definition of synchronisation constraints between critical sections. 

3 For each task τi that has ri as its release time, Di as its deadline time and constituted 
from the set of segments : Si,1, Si,2,…,Si,n where C(Si,j) is the worst computation time 
of the jth segment of this set. The release time and the deadline time of each segment 
is defined as follows: 

( ) ( ) ( ) ( )
1

, , , ,
1 1

 and 
j n

i j i i k i j i k
k k j

r S r C S D S Di C S
−

= = +

= + = −∑ ∑  

4 Redefining synchronisation constraints between segments or a set of segments to 
prevent shared resources from simultaneous access of concurrent tasks and to insure 
the correct order between dependent segments of the real time application. 

5 Each solution of the search space is an ordered list of segments (Sk, Si,…,Sn) which is 
called a permutation. Each segment of the real time application must appear in the 
permutation only once. A solution is feasible when all end executions time of 
segments are lower then their deadlines and all synchronisation constraints of the 
system are fulfilled. 

3.2.1 The synchronisation constraint 

We need to define exclusion constraints between segments or a set of segments to prevent 
shared resources from simultaneously accessing concurrent tasks and precedence 
constraints to insure the correct order between dependent segments of the real time 
application. The set of all constraints is denoted Ω. 

3.2.1.1 The exclusion constraints 

Exclusion constraints, denoted ‘⊗’, are defined between critical sections of different 
tasks in order to specify mutual exclusion. For instance a critical section can contain one 
or more segments that share resources in read/write. If x, y are two critical sections and 
the relationship: x ⊗ y is specified, we have to forbid any execution of any segment 
belonging to y during the execution of any segment of x and vice versa. Exclusion 
constraints are: 

• Commutative: x ⊗ y = y ⊗ x. 

• Distributed: if x ⊗ y and x is composed of the segments Sx,1, Sx,2,…, Sx,i and y is 
composed of the segments Sy,1, Sy,2,…,Sy,j. So, {Sx,1 ⊗ Sy,1; Sx,1 ⊗ Sy,2;…; Sx,i ⊗ Sy,j} 
are all exclusion constraints for the system. 
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• We note that if x ⊗ y is specified, and x, y are two critical section compounds with 
only one unit segment, so there is no need to specify the exclusion constraint because 
no pre-emption can occur during one processor time unit. 

The set of all exclusion constraints is denoted EXCLUDES. 

3.2.1.2 The precedence constraints 
Precedence constraints, denoted ‘ ’, are defined between segments in order to insure the 
correct order of segments belonging to the same task and to force the producer/consumer 
paradigm between segments belonging to different tasks1. The key property of 
precedence constraints is the transitivity, i.e., if S1  S2 and S2  S3, then S1  S3. The 
set of all precedence constraints is denoted PRECEDES. 

3.2.1.3 Optimisation criteria 

The objective of our algorithm is to find a feasible solution in which each segment  
must have a positive lateness. We define lateness of the segment Si as Lateness(Si) =  
d(Si) – End(Si). 

The solution quality depends on the number of segments that have negative lateness. 
If X is a solution in which k segments do not respect their deadline and F(X) the quality of 
X then F(X) = k. The goal is to minimise F(X) knowing that a solution is feasible when 
F(X) = 0. 

4 The scheduling algorithm 

4.1 Overview 

The proposed scheduling algorithm is an adaptation of scatter search defined in Glover 
(1998) to the problem of scheduling hard real-time tasks with no pre-emption for  
mono-processor environment. Let S1, S2,…,Sn denote the set of all segments that  
compose our real-time task system. Really, our algorithm searches a feasible  
solution which is one of the permutations of the couple (Si, start execution time of Si). 
However, The start execution time of any segment is calculated automatically from the 
position of the segment in the solution as the maximal value between the end  
execution time of the segment that it precedes in the solution and its release time, i.e., 
StartTime(Si) = Max(EndTime(Si – 1), ri). Thus, permutations (solutions) are simplified as 
the permutations of segment. Any segment must appear only once in a solution. 

The special issue of our algorithm is that the search space that it will really explore is 
not composed of all permutations possibilities (if we have n segments so there will be n! 
possibilities) but only by permutations (solutions) that meet the exclusion and precedence 
constraints of the real time system. Therefore during the search, our algorithm never 
manipulates any solution that violates exclusion or precedence constraints. 

4.2 Scatter search algorithm 

The general framework of our scatter search algorithm is defined as follows: 
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Algorithm 
Begin 
I Initialization phase 
 1 Use the diversification generator to generate the initial population. 
 2 Deduct the reference set refset from the initial population. 
II Evolution phase 
 While ((number of evaluated solutions < MaxSol) and (number of iterations < MaxIter)) do 
 1 Generate subset from the reference set using the subset generating method. 
 2 Apply the combination method and put the result solutions in the pool of the combined 

solutions. 
 3 Apply the improvement method to the pool of the combined solution and put the result 

solutions in the pool of the improved solutions. 
 4 Update Refset using the improved solutions of this iteration. 
 EndWhile 
End. 

4.2.1 Generating the initial population 

In the initial phase of the algorithm, we need to construct a set of trial solutions that we 
call initial population. From these trial solutions, we deduce the reference set RefSet that 
will be used by the algorithm in the evolution phase. The initial population is constructed 
as follows: 

1 generate a random trial solution called sbegin that meets all exclusion and precedence 
constrains 

2 apply the diversification generator on sbegin to generate all trial solutions of the initial 
population. 

4.2.2 Design of scatter search components for the scheduling problem 

4.2.2.1 Diversification generator 

The diversification generator uses one seed solution to produce k diverse solutions. All 
solutions generated with this generator must meet exclusion and precedence constraints 
so that the generator can check the eligibility of any segment before its insertion in any 
position of the solution which it tries to construct. When the diversification generator 
tries to build any trial solution, it may use the two lists named candidate list and 
admissible list in order to check the eligibility of segments. These two lists are defined as 
follows: 

• Candidate list: This list is used to insure the satisfaction of precedence constraints. 
Initially, it contains the set of segments with no predecessors. At the end of 
execution of each segment Si belonging to the candidate list, this last segment Si is 
removed and all their successors are added to this list. 
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• Admissible list: This list is a subset of the candidate list. It contains only admissible 
segments which respect to all exclusion constraints besides the respect of precedence 
constraints. We propose three different diversification generators: 
1 Random diversification generator: This generator generates randomly diverse 

trail solutions but these solutions must meet the synchronisation constraints. 
2 Diversification generator maximising distances: This generator is inspired from 

the one described in Glover (1998) for the permutation problems. Assume that a 
given trial solution C used as a seed is represented by indexing its segments such 
that they can appear in consecutive order, to yield C = (S1, S2,…,Sn). Define the 
subsequence C(h:k), where k is a positive integer between 1 and h, to be given by 
C(h:k) = (Sk, Sk+h, Sk+2h,…,Sk+rh), where r is the largest non-negative integer such 
that k + rh ≤ n. Then define the permutation C(h), for h ≤ n, to be C(h) = (C(h:h), 
C(h:h–1),…,C(h:1)). 

3 Diversification generator using mutation: This generator makes a mutation 
between two positions, i and j, drawn randomly in the seed solution but the 
result solution must meet the synchronisation constraints. 

4.2.2.2 Improvement method 

The improvement method of scatter search enables local search to improve the quality of 
the seed solution. For this purpose this method tries to reduce the number of segments 
which do not meet their deadline by shifting them to the left of the solution. While the 
improvement method makes shifting, it may not falsify the synchronisation constraints of 
the solutions and also the segments which meet their deadline. 

The improvement method uses two mechanisms of shifting defined as follows: 

1 The Push(Sk, Si) mechanism tries to insert the segment Si between Sk and Sk–1. 

1 2 3 4 5 6 7 8

3 7 1 2 7 3 4 5 6 8

Example: , , , , , , , .
If ( , ) succeeds then , , , , , , ,

C S S S S S S S S
Push S S C S S S S S S S S

=
=

 

2 The Interchange(Sk, Si) mechanism tries to exchange positions between Si and Sk. 

1 2 3 4 5 6 7 8

3 7 1 2 7 4 5 6 3 8

Example: , , , , , , , .
If ( , ) succeeds then , , , , , , ,

C S S S S S S S S
Interchange S S C S S S S S S S S

=
=

 

The algorithm of the improvement method is the following: 

Algorithm 
Begin 
Assume that C is the seed solution to improve. 
3 C* ← C; 
4 SORT ALL SEGMENTS WHICH VIOLATE THEIR DEADLINE: 
 ViolSet = {Sviol1, Sviol2,…,Sviolk}; 
5 FOR EACH SEGMENT SI OF VIOLSET DO 
 Assume that SprecSi is the last segment of C that has precedence relation with Si 
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  Sk ← Successeur(SprecSi); 
  While (Sk! = Si and (Not Push(Sk, Si) and Not Interchange(Sk, Si))) 
   Sk ← Successeur(Sk); 
  EndWhile 
 End For each 
End 

4.2.2.3 Reference set update method 

RefSet is composed of two subsets, the first one, namely RefSet1 consists of b1 high 
quality solutions and the second called RefSet2 consists of b2 diverse solutions. 

The first subset is referred to as the ‘high quality’ subset and the second is referred to 
as the ‘diverse subset’. The solutions in RefSet1 are ordered according to their objective 
function value (optimisation criteria) and the set is updated with the goal of increasing the 
quality, that is to say decreasing F(X) because we have defined the problem as a 
minimisation problem. That is, a new solution X replaces a reference solution Xb1 if  
F(X) < F(Xb1). The solutions in RefSet2 are ordered according to their diversity value 
and the update has the goal of increasing diversity. Therefore, a new solution X replaces 
reference solution Xb if dmin(X) > dmin(Xb). Note that dmin(X) is the distance between 
X and RefSet1, and not the one between X and RefSet2. 

The distance between two solutions is the number of positions that we must change 
for the first solution to obtain the second one. Assume that Ci and Cj are two solutions 
and D(Ci, Cj) is the distance between these solutions. Both solutions have the same 
segments S1, S2…Sk…,Sn but in two different orders. We note by ,i

kS  the position of Sk in 

Ci, and by | |,ji
k kS S−  the number of positions that separate the position of Sk in Ci from 

these in Cj then: 
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The reference set updating method uses a static mechanism to update RefSet so that the 
reference set is updated when all improved solutions of the iteration are generated. This 
method is simple to implement because there is no interaction between the order of 
subsets generation and the reference set updating. 

4.2.2.4 Subsets generation method 

We limit our subsets generation method to yield only subsets of all pair-wise 
combinations of the solutions in the RefSet. 
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4.2.2.5 Combination method 

Three variants for the combination method have been developed. All variants are based 
on voting procedure. The proposed combination method can operate on several seed 
solutions but regarding to our subsets generation method (described above) it will operate 
really on only two seed solutions (solutions of the subsets). Therefore, the combination 
method produces at most one result solution which is the centre of gravity for the seed 
solutions. In some case, the combination method does not compute any solution because 
this combined solution violates synchronisation constraints of the real time application. In 
order to check the synchronisation constraints, we use the two lists of candidate and 
admissible segments defined above. 

The skeleton of the algorithm for the three variants is the following: 

Algorithm 
Begin 
Assume that X1, X2,…,Xk are seed solutions and XC is the combined solution which we want to 
generate. All solutions are composed of n segments; 
Initialisation: - initialise the candidate and admissible lists; Size(XC) = 0 because no segments 
are yet in XC; 
While (Size(XC) ≤ n and not Stop) 
1 Each solution xi(s1, s2,…,sn) votes for its first segment not yet in xc only if this segment 

belongs to the admissible list of the actual position of xc. 
2 If there is no solution xi voted for then stop = true, the centre of gravity does not meet 

synchronization constraints; 
 Else 
 - Select the segment to be inserted in XC by applying one of the combination variants criteria; 
 - Put this segment at the end of XC; 
 - Update candidate and admissible lists for the new free position of XC that we need to fill in 

the next step;  
 End While 
 if (not Stop) then XC is the centre of gravity else there is no combined solution for the seed 

solutions X1, X2,…,Xk. 
End. 

The selection of the next segment to be inserted in XC is done according to one of the 
following variants: 

• Combination according to the segments positions: The segment priority depends on 
the position of this segment in the reference solution which votes for it. Therefore in 
this variant after the voting procedure, we choose the segment with the lowest 
position. 

• Combination according to solutions qualities: Each solution cooperates in the 
combined solution with a percentage depending on its quality as follows: 

Assume that X1,…,Xk are the reference solutions which will be combined and XC  
is the combined solution to construct. Assume also that X1,…,Xk have respectively 
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f1,…,fk as objective functions such that each solution Xi will cooperate in XC with 

1

*i
k

j
j

v n
v

=
∑

 segments where vi = n – fi. 

At the beginning each solution Xi has 
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 as its score. 

This score is decremented by one when a segment voted by Xi is assigned to XC. 

• Combination according to the segments deadlines: From the several segments voted, 
the segments with the lowest deadline will be affected to XC. 

5 Experimental results 

In order to test the performance of our approach, we have implemented the proposed 
algorithm. We have integrated our implementation in the Framework HeuristicLab 
(http://www.Heuristiclab.com) as a plug-ins. HeuristicLab is a very efficient framework 
for developing and testing optimisation methods, parameters and applying all these 
ingredients on a multitude of problems. We have used C# as programming language with 
the framework.net 1.1, Windows XP as the operating system on laptop machine with 
AMD Athlon processor 1.8 GHZ and 512 Mb of RAM. 

The algorithm is tested with several instances generated for different problem sizes. 
These problem instances are inspired from a real instance called Mine-Pump reduced to 
four tasks instead of six tasks of the original system. 

• Reduced Mine-Pump and our instance: The Mine-Pump system describes a system 
of pumping water in mine environment. It is composed of a set of four periodic tasks 
in the instance. The timing parameters of each task are shown in Table 1. Tasks 
decomposition and critical sections definition with precedence and exclusion 
constraints are explained in the Appendix. Pi is changed for each test (random value) 
to obtain different problem sizes. The problem size is the number of segments in the 
system after the transformation to the periodic case of this instance. 

Table 1 Empirical instances timing parameters 

Tasks\parameters ri Ci Di Pi 

τ1 0 10 20 Random ≥ 20 
τ2 0 15 50 Random ≥ 50 
τ3 0 1 1,000 Random ≥ 1,000 
τ4 0 25 500 Random ≥ 500 

5.1 Diversification generators comparison 

We have tested the three alternatives proposed for the diversification generator on our 
four task instances. We have fixed the following parameters for the algorithm: 
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• stop criterion: max number of steps (iterations): 50; 
max number of evaluations: 50,000. 

We have changed the population size and sizes of RefSet1 (height quality solutions) and 
RefSet2 (diverse solutions) as shown in Table 2 then the search time (second) and the 
number of generated solution are evaluated. 

The conclusion is that according to these results, only the random diversification 
generator avoids stagnation, the two other generators found in the literature stagnate 
before reaching the result. This is affected by our modelling of the problem because we 
manipulate during the search of the feasible solution only the solutions that meet 
synchronisation constraints. 
Table 2 Comparison of the alternatives of the diversification generator 

Alternative\parameters 
Population size = 10. 

RefSet1 size = 3. 
RefSet2 size= 2. 

Population size = 20. 
RefSet1 size = 3. 
RefSet2 size = 2. 

Population size = 40. 
RefSet1 size = 5. 
RefSet2 size = 3. 

Random diversification 
generator 

17.31 s 
3,199 

24.50 s 
3,771 

01:24.29 s 
14,218 

Diversification generator 
maximising distances 

Stagnation Stagnation Stagnation 

Diversification generator 
using mutation 

Stagnation Stagnation Stagnation 

5.2 Combination methods comparison 

The same parameters fixed for diversification generators comparison are used. The 
results are shown in Table 3. 
Table 3 Comparison of the alternatives of the combination generator 

Alternative\parameters 
Population size = 10. 

RefSet1 size = 3. 
RefSet2 size= 2. 

Population size = 20. 
RefSet1 size = 3. 
RefSet2 size = 2. 

Population size = 40. 
RefSet1 size = 5. 
RefSet2 size = 3. 

Combination according to 
the segments positions 

17.31 s 
3,199 

24.50 s 
3,771 

01:24.29 s 
14,218 

Combination according to 
the solutions qualities 

17.93 s 
3,235 

25.4 s 
3,947 

01:24.90 s 
14,184 

Combination according to 
the segments deadlines 

17.67 s 
3,207 

26.34 s 
21,770 

45.00 s 
31,780 

From these tests results, we conclude that the performances of the three variants are 
approximately equal. We conclude also that the algorithm settings such as population size 
and height quality reference set size affect the performance of the algorithm. 

5.3 Comparison between search time and average search time 

Here we repeat the same test ten times and evaluate the variation between the search time 
of every test and the average search time of these tests. The algorithm settings for this test 
are shown in Table 4. 
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Table 4 Algorithm settings for tests 3 and 4 

Population size 40 
RefSet1 size 5 
RefSet2 size 3 
Diversification generator Random diversification generator 
Combination method Combination according to the segments positions 
Max number of steps 50 
Max number of evaluations 50,000 

According to the curve of Figure 1, the variation between search time and average search 
time is very small (about one per ten). This result is very interesting for the search 
algorithm because the search time depends strongly on the problem instance and 
algorithm settings. 

Figure 1 Comparison between search time and average search time (see online version  
for colours) 
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5.4 Comparison with other algorithms 

After the integration of the problem under study and the scatter search algorithm in the 
Heuristiclab environment, we have taken into advantage of the presence of other 
algorithms in this environment that can be used to solve the real time scheduling 
problem, without any effort of modelling or programming. The approaches of interest 
here are genetic algorithms and random search. In the case of the genetic algorithms, our 
scatter search methods will be used as operators. 

In what follows, we present comparison results between our approach and these two 
approaches. We reintroduce the same settings for scatter search defined in the precedent 
test (Table 4). The settings fixed for the genetic algorithms are the following: population 
size = 40, mutation rate = 0.05. The replacement strategy named ‘elitism’ is proper to 
Heuristiclab as well as the selection operator named ‘roulette’. The crossover operator is 
our combination method according to the segments positions and the mutation operator is 
our improvement operator. For the random search, the only parameter that we need to set 
is the maximal rounds. It was set to 1,000. 
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Table 5 Comparison with other algorithms 

Scatter search Genetic algorithms Random search Problem size\ 
algorithm ST SQ 

 

ST SQ 

 

ST SQ 

10 3.55 0  15.21 0  00.42 0 
35 94 0  331.95 0  07.55 17 
40 149 0  451.55 0  12.38 20 
85 1,851 0  5,705.20 0  94.24 49 
95 2,837 0  6,442.99 0  177.42 56 

Considering that the solution quality is the segments number that do not meet their 
deadlines, the result of search time and solution quality returned by each algorithm are 
shown in Table 5 (ST for search time, SQ for solution quality): 

According to this set of tests, we conclude that the random search has the best search 
time but with the worst solution quality when the problem size increases. Therefore this 
algorithm, which is a local optimum search, is not important for the real time scheduling 
problem. According to this conclusion the random search algorithm will not be compared 
with genetic algorithms and scatter search. 

Both genetic algorithms and scatter search retrieve the feasible solution and scatter 
search outperforms genetic algorithms for search time. Therefore, the difference between 
the search time of both methods increases when the problem size increases, this is 
clarified by Figure 2. 

Figure 2 Comparison between scatter search and genetic algorithms (see online version  
for colours) 
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6 Conclusions 

We have presented in this paper a pre-run-time scheduling algorithm for real time tasks 
with timing, precedence and exclusion constraints. The algorithm is based on the scatter 
search meta-heuristic. We have implemented and tested the algorithm on different 
instance sizes. Using the heuristic-lab environment, a GA algorithm and a random search 
have been implemented. We then compared the three approaches: the scatter search, the 
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genetic algorithm and the random search between them. In terms of solution quality 
(finding feasible solution) both scatter search and genetic algorithm found a feasible 
solution while scatter search response time was faster. 

In the future, we intend to consider several other aspects of scheduling and we plan to 
handle the pre-emption issue more specifically. Another perspective is to extend scatter 
search for real time systems on multi-processor architecture. 
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Notes 
1 It is known for the real time community that precedence constraints are specified between 

segments of tasks only when tasks have the same periods. 

Appendix 

Test problem description 

The system is a set of four real time periodic tasks. We note that we have used this 
problem as a model in our tests and we have changed the period duration of each task to 
obtain different problem sizes. Timing, precedence and exclusion constraints are defined 
in the following lines. 

Task T_1 < 0, 10, 20, 80 > 
Segments: 
T_11 <0, 8, 18> 
T_12 <8, 2, 20> 
Critical sections: 
T_1_SC1(T_11, T_12) 
Task T_2 < 0, 15, 50, 500 > 
Segments: 
T_21 < 0, 12, 47 > 
T_22 < 12, 3, 50 > 
Critical sections : 
T_2_SC1(T_21, T_22) 
Task T_3 < 0, 1, 1,000, 1,000 > 
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Segments: 
T_31 < 0, 1, 1,000> 
Critical sections: 
T_3_SC1(T_31) 
TaskF T_4 < 0, 25, 500, 500 > 
Segments: 
T_41 < 0, 25, 500 > 
 
Critical sections: 
T_4_SC1(T_41) 
Constraints: 
EXCLUSION: 
T_1_SC1 EXCLUDE T_2_SC1 
PRECEDENCE: 
T_21 PRECED T_41 

Precedence constraints between segments belonging to the same tasks are naturally 
added. The problem size is calculated after the transformation of the real time task system 
to the periodic case using the schedule length period. 
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