
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/294887199

A scatter search algorithm for real-time scheduling with timing, precedence

and exclusion constraints

Article in International Journal of Advanced Operations Management · January 2013

DOI: 10.1504/IJAOM.2013.053531

CITATIONS

0
READS

154

3 authors, including:

Some of the authors of this publication are also working on these related projects:

Community detection problem in complex networks View project

Accès personnalidé multicritères à de multiples spurces d'information View project

Adel Bouridah

Centre universitaire de Mila

6 PUBLICATIONS 15 CITATIONS

SEE PROFILE

Habiba Drias

University of Science and Technology Houari Boumediene

235 PUBLICATIONS 1,676 CITATIONS

SEE PROFILE

All content following this page was uploaded by Adel Bouridah on 18 February 2016.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/294887199_A_scatter_search_algorithm_for_real-time_scheduling_with_timing_precedence_and_exclusion_constraints?enrichId=rgreq-c85e725610200db933345a5d07aae7d2-XXX&enrichSource=Y292ZXJQYWdlOzI5NDg4NzE5OTtBUzozMzA0MTE5NjEwMTIyMjRAMTQ1NTc4Nzc1ODI5OA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/294887199_A_scatter_search_algorithm_for_real-time_scheduling_with_timing_precedence_and_exclusion_constraints?enrichId=rgreq-c85e725610200db933345a5d07aae7d2-XXX&enrichSource=Y292ZXJQYWdlOzI5NDg4NzE5OTtBUzozMzA0MTE5NjEwMTIyMjRAMTQ1NTc4Nzc1ODI5OA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Community-detection-problem-in-complex-networks?enrichId=rgreq-c85e725610200db933345a5d07aae7d2-XXX&enrichSource=Y292ZXJQYWdlOzI5NDg4NzE5OTtBUzozMzA0MTE5NjEwMTIyMjRAMTQ1NTc4Nzc1ODI5OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Acces-personnalide-multicriteres-a-de-multiples-spurces-dinformation?enrichId=rgreq-c85e725610200db933345a5d07aae7d2-XXX&enrichSource=Y292ZXJQYWdlOzI5NDg4NzE5OTtBUzozMzA0MTE5NjEwMTIyMjRAMTQ1NTc4Nzc1ODI5OA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-c85e725610200db933345a5d07aae7d2-XXX&enrichSource=Y292ZXJQYWdlOzI5NDg4NzE5OTtBUzozMzA0MTE5NjEwMTIyMjRAMTQ1NTc4Nzc1ODI5OA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adel-Bouridah?enrichId=rgreq-c85e725610200db933345a5d07aae7d2-XXX&enrichSource=Y292ZXJQYWdlOzI5NDg4NzE5OTtBUzozMzA0MTE5NjEwMTIyMjRAMTQ1NTc4Nzc1ODI5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adel-Bouridah?enrichId=rgreq-c85e725610200db933345a5d07aae7d2-XXX&enrichSource=Y292ZXJQYWdlOzI5NDg4NzE5OTtBUzozMzA0MTE5NjEwMTIyMjRAMTQ1NTc4Nzc1ODI5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Centre_universitaire_de_Mila?enrichId=rgreq-c85e725610200db933345a5d07aae7d2-XXX&enrichSource=Y292ZXJQYWdlOzI5NDg4NzE5OTtBUzozMzA0MTE5NjEwMTIyMjRAMTQ1NTc4Nzc1ODI5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adel-Bouridah?enrichId=rgreq-c85e725610200db933345a5d07aae7d2-XXX&enrichSource=Y292ZXJQYWdlOzI5NDg4NzE5OTtBUzozMzA0MTE5NjEwMTIyMjRAMTQ1NTc4Nzc1ODI5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Habiba-Drias?enrichId=rgreq-c85e725610200db933345a5d07aae7d2-XXX&enrichSource=Y292ZXJQYWdlOzI5NDg4NzE5OTtBUzozMzA0MTE5NjEwMTIyMjRAMTQ1NTc4Nzc1ODI5OA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Habiba-Drias?enrichId=rgreq-c85e725610200db933345a5d07aae7d2-XXX&enrichSource=Y292ZXJQYWdlOzI5NDg4NzE5OTtBUzozMzA0MTE5NjEwMTIyMjRAMTQ1NTc4Nzc1ODI5OA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Science_and_Technology_Houari_Boumediene?enrichId=rgreq-c85e725610200db933345a5d07aae7d2-XXX&enrichSource=Y292ZXJQYWdlOzI5NDg4NzE5OTtBUzozMzA0MTE5NjEwMTIyMjRAMTQ1NTc4Nzc1ODI5OA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Habiba-Drias?enrichId=rgreq-c85e725610200db933345a5d07aae7d2-XXX&enrichSource=Y292ZXJQYWdlOzI5NDg4NzE5OTtBUzozMzA0MTE5NjEwMTIyMjRAMTQ1NTc4Nzc1ODI5OA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Adel-Bouridah?enrichId=rgreq-c85e725610200db933345a5d07aae7d2-XXX&enrichSource=Y292ZXJQYWdlOzI5NDg4NzE5OTtBUzozMzA0MTE5NjEwMTIyMjRAMTQ1NTc4Nzc1ODI5OA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

 Int. J. Advanced Operations Management, Vol. 5, No. 2, 2013 181

 Copyright © 2013 Inderscience Enterprises Ltd.

A scatter search algorithm for real-time scheduling
with timing, precedence and exclusion constraints

Adel Bouridah*
Mila University Center,
Mila, 43000, Algeria
E-mail: a.bouridah@centre-univ-mila.dz
*Corresponding author

Habiba Drias
LRIA Laboratory,
Faculty of Computer Science,
USTHB University,
16111 El-Alia, Bab-Ezzouar, Algiers, Algeria
E-mail: h_drias@hotmail.fr

Yacine Laalaoui
Department of Postgraduate Studies,
National Computer Science School,
16000 Oued-Smar, Algiers, Algeria
E-mail: yacine.laalaoui@gmail.com
E-mail: y_laalaoui@esi.dz

Abstract: Tasks scheduling is one of the most important challenges in
embedded hard-real-time systems. The problem is known to be NP-hard and
exhaustive search algorithms have no significant benefit in large-scale context.
This paper proposes a scatter search-based approach for mono-processor
systems with timing, precedence and exclusion constraints with no
pre-emption. An empirical study is undertaken and comparison is done with
results of other algorithms.

Keywords: real-time; pre-run-time scheduling; meta-heuristic; scatter search.

Reference to this paper should be made as follows: Bouridah, A., Drias, H. and
Laalaoui, Y. (2013) ‘A scatter search algorithm for real-time scheduling with
timing, precedence and exclusion constraints’, Int. J. Advanced Operations
Management, Vol. 5, No. 2, pp.181–197.

Biographical notes: Adel Bouridah has received his BSc and MSc from the
National High School of Computer Science (Ex. INI) of Algeria in 2005 and
2008 respectively. Currently, he is a PhD student at the same school. His
main research interests span artificial intelligence field with a focus on
meta-heuristics, scheduling under timing constraints and intrusion detection
problem.

 182 A. Bouridah et al.

Habiba Drias earned his Master in Computer Science from Case Western
Reserve University, Cleveland, USA in 1984 and doctorate prepared at Paris 6
University from Algiers USTHB University in 1993. She has directed the
Computer Science Institute of USTHB, the Laboratory of Research in Artificial
Intelligence (LRIA) and the National High School of Computer Science (Ex.
INI) for several years. She has more than 50 published papers in the domains of
AI, e-commerce, computational complexity and the satisfiability problem.

Yacine Laalaoui received his BSc, MSc and PhD from National High School of
Computer Science (Ex. INI) of Algeria in 2002, 2005 and 2010 respectively.
His main research interests span artificial intelligence field with a focus on
meta-heuristics, constraints satisfaction problems (CSP), machine learning and
scheduling under timing constraints.

This paper is a revised and expanded version of a paper entitled ‘Scatter search
for real-time scheduling with timing, precedence and exclusion constraints’
presented at International Conference on Machine and Web Intelligence
ICMWI 2010, Algiers, 3–5 October 2010.

1 Introduction

The technology of embedding hardware and software components is becoming
ubiquitous. The presence of this technology varies from simple domestic devices to
complex and critical applications. Usually, the latter systems are under stringent timing
constraints (known also as real-time systems). Failure to satisfy specified timing
constraints can lead to disastrous damage. In typical real-time system, there is a
computing unit of one or more processors which is connected to several devices. A
real-time program (known also as real-time task system) runs on the computing unit. It
acquires sensors data to get information about the state of the process, computes these
inputs, and then produces outputs to be sent to the devices throughout actuators. In the
simplest case, devices produce inputs at regular intervals of time and outputs to be sent
are also periodic. The real-time task system has to meet timing constraints in order to
maintain the process in an acceptable state. The problem here is to find a schedule of
tasks on one or more processors architecture such that all timing constraints will be met.
Such a schedule is named a feasible schedule.

There are two classes of scheduling methods, online methods and offline methods.
The validation of online methods is done using analytic conditions. Online methods are
easy to implement but these methods are limited for simple real time systems with no
shared resources and precedence constraints. Offline methods are applied in case of
complex hard real-time systems with a great number of shared resources and precedence
constraints. In offline methods, the system characteristics must be known in advance in
order to produce a feasible schedule and the result will be saved in a data structure and
consulted at run time by a dispatcher.

To produce a feasible schedule, one can use blind search methods like
best-first-search and depth-first-search, or branch-bound-first methods (Xu and Parnas,
1992; Shepard and Gagne, 1991; Cavalcante, 1997). It is well known that all these
methods have an exponential time complexity, because the general scheduling problem is
NP-hard (Garey and Johnson, 1979). Consequently, results cannot be computed in a

 A scatter search algorithm for real-time scheduling 183

reasonable time and search space. One can also use a learning-based algorithm to address
the deadline scheduling problem (Laalaoui and Drias, 2009) or meta-heuristic like
cooperative ants (Laalaoui et al., 2009). The use of such meta-heuristic was shown very
helpful to handle the problem of time and search space and reduce those costs to
reasonable values.

Scatter search is a population-based approach that has recently been shown to yield
promising outcomes for solving combinatorial and non-linear optimisation problems.
Based on formulations originally proposed in the 1960s for combining decision rules and
problem constraints, scatter search uses strategies for combining solution vectors that
have been proven effective in a variety of problem settings. Scatter search has given
interesting results in solving many combinatorial optimisation problems like the Max-Sat
problem (Drias, 2001), hard Max-Sat problem (Drias and Khabzaoui, 2001), DNA
sequencing (Blazewicz et al., 2004), project scheduling (Debels et al., 2006) and other
problems.

This paper addresses the problem of scheduling tasks with timing, precedence
and exclusion constraints on single processor architecture with no pre-emption. The
scheduling under study is considered as a combinatorial optimisation problem (COP)
wherein feasible solutions are feasible schedules. Solutions are modelled as permutations
of tasks (real permutation of segments) and the search space is composed of these
permutations. During the search process, the scatter search uses only solutions that meet
exclusion and precedence constraints to find the feasible solution in which all timing
constraints are fulfilled.

The work presented in this paper aims at enhancing researches in pre-run-time
scheduling methods in order to deal with more imposed constraints on complex real-time
embedded systems like context switching minimisation, jitter minimisation (Dinatale and
Stankovic, 1995), combining offline and priority-based scheduling methods (Dobrin,
2005; Xu and Lam, 1998).

2 Related works

Only few meta-heuristics including simulated annealing, genetic algorithms and ant
colony optimisation have been devoted to real-time scheduling. The former was used by
Tindell et al. (1992) to treat the problem of scheduling in distributed environment with a
special communication protocol. It was also used by Dinatale and Stankovic (1995)
to handle the problem in multiprocessor architecture with jitter minimisation and
non-pre-emptive of tasks. Genetic algorithms were used by Nossal (1998) to tackle the
problem of pre-emptive scheduling of inter-related tasks with precedence and exclusion
constraints in extensible multiprocessor architecture. Navet and Migge (2003) have used
genetic algorithms to solve a non-standard problem of real-time scheduling which is the
assignment of policies (round Robin or FIFO scheduling) and priorities to tasks in
POSIX1003.1b compliant systems. Also Laalaoui et al. (2009) have used ant colony
system for mono-processor scheduling of hard real-time tasks with timing, precedence
and exclusion constraints including pre-emption. To our knowledge no work has been
done yet using scatter search to address the problem of scheduling hard real-time tasks in
single processor architecture with timing precedence and exclusion relations, which is the
main focus of the present paper. Scatter search is known to be more complicated to
design than other meta-heuristics because it handles both the quality of solutions and

 184 A. Bouridah et al.

their dispersion in the search space. However, when well developed; scatter search can
yield very interesting outcomes.

3 Real-time scheduling

3.1 The task model

The task model we use is inspired from the task model of Liu and Layland (1973). A
periodic task τi is characterised by the tuple < ri, Ci, Di, Pi >, where ri is the first release
time, Ci is the worst computation time, Pi is the period of activation and Di, called the
deadline, is the amount of time given to the task to complete its execution. We note
di = ri + Di, the moment when the task should be completed. It is assumed that Di ≥ Ci,
otherwise no feasible schedule exists. A sporadic task is not released at regular intervals
of time, but the minimum duration between two requests is known in advance (Mok,
1983). In this paper, no sporadic tasks are considered because there are several methods
to make an automatic transformation of sporadic tasks to periodic tasks (Xu, 2003). We
assume that ri, Ci, Di and Pi as well as any other parameters expressed in time have
integer values representing the number of time units. Processor resources are measured in
terms of processor time units.

Because the periods of tasks are not necessary equal, more instances of tasks should
be added in the schedule length period in order to study the scheduling feasibility over a
relevant finite time interval. In our case, the schedule length period is the least common
multiple of all periods of specified tasks (Xu and Parnas, 1993).

Since tasks can share resources and in order to identify time slices of using resources,
some parameters must be added to the previous tuple as follows: τi = < ri, Ci, Di, Pi, {R1
< α1, β1, γ1 >, R2 < α2, β2, γ2 >,….} >,where Rk is the kth resource used in the task τi,
αk is the time duration before the use of the resource Rk, βk is the time duration of using
the resource Rk and γk is the time interval after the use of the resource Rk. We note that
for each Rk: αk + βk + γk = Ci. Before dealing with the problem of scheduling tasks, we
need to introduce the following definitions and notations:

• Let P denote the set of all tasks.

• Each task τi consists of a finite set of segments: S0, S1…Sn, where Si denotes its ith
segment (0 ≤ i ≤ n).

• Some segments can together encapsulate a shared resource, and then constitute a
critical section. Let X denotes the set of all critical sections.

• For each critical section x ∈ X, we note x0 and xn their first and last segments
respectively.

• Let Start(S) be the start time of the segment S. It represents the moment when a
segment S starts its execution.

• Let End(S) be the finished time of the segment S yielding the processor to another
segment.

• Let Lateness(S) = d(S) – End(S), where d(S) is the deadline of the segment S.

 A scatter search algorithm for real-time scheduling 185

3.2 Modelling a real time application

As mentioned above, we consider only periodic tasks in our study. Our approach includes
the following steps:

1 Identification of all critical sections of the real time application caused by sharing
resources or precedence relations.

2 Divide each task of the real time application into several segments to simplify the
definition of synchronisation constraints between critical sections.

3 For each task τi that has ri as its release time, Di as its deadline time and constituted
from the set of segments : Si,1, Si,2,…,Si,n where C(Si,j) is the worst computation time
of the jth segment of this set. The release time and the deadline time of each segment
is defined as follows:

() () () ()
1

, , , ,
1 1

 and
j n

i j i i k i j i k
k k j

r S r C S D S Di C S
−

= = +

= + = −∑ ∑

4 Redefining synchronisation constraints between segments or a set of segments to
prevent shared resources from simultaneous access of concurrent tasks and to insure
the correct order between dependent segments of the real time application.

5 Each solution of the search space is an ordered list of segments (Sk, Si,…,Sn) which is
called a permutation. Each segment of the real time application must appear in the
permutation only once. A solution is feasible when all end executions time of
segments are lower then their deadlines and all synchronisation constraints of the
system are fulfilled.

3.2.1 The synchronisation constraint

We need to define exclusion constraints between segments or a set of segments to prevent
shared resources from simultaneously accessing concurrent tasks and precedence
constraints to insure the correct order between dependent segments of the real time
application. The set of all constraints is denoted Ω.

3.2.1.1 The exclusion constraints

Exclusion constraints, denoted ‘⊗’, are defined between critical sections of different
tasks in order to specify mutual exclusion. For instance a critical section can contain one
or more segments that share resources in read/write. If x, y are two critical sections and
the relationship: x ⊗ y is specified, we have to forbid any execution of any segment
belonging to y during the execution of any segment of x and vice versa. Exclusion
constraints are:

• Commutative: x ⊗ y = y ⊗ x.

• Distributed: if x ⊗ y and x is composed of the segments Sx,1, Sx,2,…, Sx,i and y is
composed of the segments Sy,1, Sy,2,…,Sy,j. So, {Sx,1 ⊗ Sy,1; Sx,1 ⊗ Sy,2;…; Sx,i ⊗ Sy,j}
are all exclusion constraints for the system.

 186 A. Bouridah et al.

• We note that if x ⊗ y is specified, and x, y are two critical section compounds with
only one unit segment, so there is no need to specify the exclusion constraint because
no pre-emption can occur during one processor time unit.

The set of all exclusion constraints is denoted EXCLUDES.

3.2.1.2 The precedence constraints
Precedence constraints, denoted ‘ ’, are defined between segments in order to insure the
correct order of segments belonging to the same task and to force the producer/consumer
paradigm between segments belonging to different tasks1. The key property of
precedence constraints is the transitivity, i.e., if S1 S2 and S2 S3, then S1 S3. The
set of all precedence constraints is denoted PRECEDES.

3.2.1.3 Optimisation criteria

The objective of our algorithm is to find a feasible solution in which each segment
must have a positive lateness. We define lateness of the segment Si as Lateness(Si) =
d(Si) – End(Si).

The solution quality depends on the number of segments that have negative lateness.
If X is a solution in which k segments do not respect their deadline and F(X) the quality of
X then F(X) = k. The goal is to minimise F(X) knowing that a solution is feasible when
F(X) = 0.

4 The scheduling algorithm

4.1 Overview

The proposed scheduling algorithm is an adaptation of scatter search defined in Glover
(1998) to the problem of scheduling hard real-time tasks with no pre-emption for
mono-processor environment. Let S1, S2,…,Sn denote the set of all segments that
compose our real-time task system. Really, our algorithm searches a feasible
solution which is one of the permutations of the couple (Si, start execution time of Si).
However, The start execution time of any segment is calculated automatically from the
position of the segment in the solution as the maximal value between the end
execution time of the segment that it precedes in the solution and its release time, i.e.,
StartTime(Si) = Max(EndTime(Si – 1), ri). Thus, permutations (solutions) are simplified as
the permutations of segment. Any segment must appear only once in a solution.

The special issue of our algorithm is that the search space that it will really explore is
not composed of all permutations possibilities (if we have n segments so there will be n!
possibilities) but only by permutations (solutions) that meet the exclusion and precedence
constraints of the real time system. Therefore during the search, our algorithm never
manipulates any solution that violates exclusion or precedence constraints.

4.2 Scatter search algorithm

The general framework of our scatter search algorithm is defined as follows:

 A scatter search algorithm for real-time scheduling 187

Algorithm
Begin
I Initialization phase
 1 Use the diversification generator to generate the initial population.
 2 Deduct the reference set refset from the initial population.
II Evolution phase
 While ((number of evaluated solutions < MaxSol) and (number of iterations < MaxIter)) do
 1 Generate subset from the reference set using the subset generating method.
 2 Apply the combination method and put the result solutions in the pool of the combined

solutions.
 3 Apply the improvement method to the pool of the combined solution and put the result

solutions in the pool of the improved solutions.
 4 Update Refset using the improved solutions of this iteration.
 EndWhile
End.

4.2.1 Generating the initial population

In the initial phase of the algorithm, we need to construct a set of trial solutions that we
call initial population. From these trial solutions, we deduce the reference set RefSet that
will be used by the algorithm in the evolution phase. The initial population is constructed
as follows:

1 generate a random trial solution called sbegin that meets all exclusion and precedence
constrains

2 apply the diversification generator on sbegin to generate all trial solutions of the initial
population.

4.2.2 Design of scatter search components for the scheduling problem

4.2.2.1 Diversification generator

The diversification generator uses one seed solution to produce k diverse solutions. All
solutions generated with this generator must meet exclusion and precedence constraints
so that the generator can check the eligibility of any segment before its insertion in any
position of the solution which it tries to construct. When the diversification generator
tries to build any trial solution, it may use the two lists named candidate list and
admissible list in order to check the eligibility of segments. These two lists are defined as
follows:

• Candidate list: This list is used to insure the satisfaction of precedence constraints.
Initially, it contains the set of segments with no predecessors. At the end of
execution of each segment Si belonging to the candidate list, this last segment Si is
removed and all their successors are added to this list.

 188 A. Bouridah et al.

• Admissible list: This list is a subset of the candidate list. It contains only admissible
segments which respect to all exclusion constraints besides the respect of precedence
constraints. We propose three different diversification generators:
1 Random diversification generator: This generator generates randomly diverse

trail solutions but these solutions must meet the synchronisation constraints.
2 Diversification generator maximising distances: This generator is inspired from

the one described in Glover (1998) for the permutation problems. Assume that a
given trial solution C used as a seed is represented by indexing its segments such
that they can appear in consecutive order, to yield C = (S1, S2,…,Sn). Define the
subsequence C(h:k), where k is a positive integer between 1 and h, to be given by
C(h:k) = (Sk, Sk+h, Sk+2h,…,Sk+rh), where r is the largest non-negative integer such
that k + rh ≤ n. Then define the permutation C(h), for h ≤ n, to be C(h) = (C(h:h),
C(h:h–1),…,C(h:1)).

3 Diversification generator using mutation: This generator makes a mutation
between two positions, i and j, drawn randomly in the seed solution but the
result solution must meet the synchronisation constraints.

4.2.2.2 Improvement method

The improvement method of scatter search enables local search to improve the quality of
the seed solution. For this purpose this method tries to reduce the number of segments
which do not meet their deadline by shifting them to the left of the solution. While the
improvement method makes shifting, it may not falsify the synchronisation constraints of
the solutions and also the segments which meet their deadline.

The improvement method uses two mechanisms of shifting defined as follows:

1 The Push(Sk, Si) mechanism tries to insert the segment Si between Sk and Sk–1.

1 2 3 4 5 6 7 8

3 7 1 2 7 3 4 5 6 8

Example: , , , , , , , .
If (,) succeeds then , , , , , , ,

C S S S S S S S S
Push S S C S S S S S S S S

=
=

2 The Interchange(Sk, Si) mechanism tries to exchange positions between Si and Sk.

1 2 3 4 5 6 7 8

3 7 1 2 7 4 5 6 3 8

Example: , , , , , , , .
If (,) succeeds then , , , , , , ,

C S S S S S S S S
Interchange S S C S S S S S S S S

=
=

The algorithm of the improvement method is the following:

Algorithm
Begin
Assume that C is the seed solution to improve.
3 C* ← C;
4 SORT ALL SEGMENTS WHICH VIOLATE THEIR DEADLINE:
 ViolSet = {Sviol1, Sviol2,…,Sviolk};
5 FOR EACH SEGMENT SI OF VIOLSET DO
 Assume that SprecSi is the last segment of C that has precedence relation with Si

 A scatter search algorithm for real-time scheduling 189

 Sk ← Successeur(SprecSi);
 While (Sk! = Si and (Not Push(Sk, Si) and Not Interchange(Sk, Si)))
 Sk ← Successeur(Sk);
 EndWhile
 End For each
End

4.2.2.3 Reference set update method

RefSet is composed of two subsets, the first one, namely RefSet1 consists of b1 high
quality solutions and the second called RefSet2 consists of b2 diverse solutions.

The first subset is referred to as the ‘high quality’ subset and the second is referred to
as the ‘diverse subset’. The solutions in RefSet1 are ordered according to their objective
function value (optimisation criteria) and the set is updated with the goal of increasing the
quality, that is to say decreasing F(X) because we have defined the problem as a
minimisation problem. That is, a new solution X replaces a reference solution Xb1 if
F(X) < F(Xb1). The solutions in RefSet2 are ordered according to their diversity value
and the update has the goal of increasing diversity. Therefore, a new solution X replaces
reference solution Xb if dmin(X) > dmin(Xb). Note that dmin(X) is the distance between
X and RefSet1, and not the one between X and RefSet2.

The distance between two solutions is the number of positions that we must change
for the first solution to obtain the second one. Assume that Ci and Cj are two solutions
and D(Ci, Cj) is the distance between these solutions. Both solutions have the same
segments S1, S2…Sk…,Sn but in two different orders. We note by ,i

kS the position of Sk in

Ci, and by | |,ji
k kS S− the number of positions that separate the position of Sk in Ci from

these in Cj then:

()
1,

, ji
i j k k

k n

D C C S S
=

= −∑

and

()
1

(,) (, 1)
, .

i
i

C RefSet

D X RefSet D X RefSet
Min D X C
∈

=

=

The reference set updating method uses a static mechanism to update RefSet so that the
reference set is updated when all improved solutions of the iteration are generated. This
method is simple to implement because there is no interaction between the order of
subsets generation and the reference set updating.

4.2.2.4 Subsets generation method

We limit our subsets generation method to yield only subsets of all pair-wise
combinations of the solutions in the RefSet.

 190 A. Bouridah et al.

4.2.2.5 Combination method

Three variants for the combination method have been developed. All variants are based
on voting procedure. The proposed combination method can operate on several seed
solutions but regarding to our subsets generation method (described above) it will operate
really on only two seed solutions (solutions of the subsets). Therefore, the combination
method produces at most one result solution which is the centre of gravity for the seed
solutions. In some case, the combination method does not compute any solution because
this combined solution violates synchronisation constraints of the real time application. In
order to check the synchronisation constraints, we use the two lists of candidate and
admissible segments defined above.

The skeleton of the algorithm for the three variants is the following:

Algorithm
Begin
Assume that X1, X2,…,Xk are seed solutions and XC is the combined solution which we want to
generate. All solutions are composed of n segments;
Initialisation: - initialise the candidate and admissible lists; Size(XC) = 0 because no segments
are yet in XC;
While (Size(XC) ≤ n and not Stop)
1 Each solution xi(s1, s2,…,sn) votes for its first segment not yet in xc only if this segment

belongs to the admissible list of the actual position of xc.
2 If there is no solution xi voted for then stop = true, the centre of gravity does not meet

synchronization constraints;
 Else
 - Select the segment to be inserted in XC by applying one of the combination variants criteria;
 - Put this segment at the end of XC;
 - Update candidate and admissible lists for the new free position of XC that we need to fill in

the next step;
 End While
 if (not Stop) then XC is the centre of gravity else there is no combined solution for the seed

solutions X1, X2,…,Xk.
End.

The selection of the next segment to be inserted in XC is done according to one of the
following variants:

• Combination according to the segments positions: The segment priority depends on
the position of this segment in the reference solution which votes for it. Therefore in
this variant after the voting procedure, we choose the segment with the lowest
position.

• Combination according to solutions qualities: Each solution cooperates in the
combined solution with a percentage depending on its quality as follows:

Assume that X1,…,Xk are the reference solutions which will be combined and XC
is the combined solution to construct. Assume also that X1,…,Xk have respectively

 A scatter search algorithm for real-time scheduling 191

f1,…,fk as objective functions such that each solution Xi will cooperate in XC with

1

*i
k

j
j

v n
v

=
∑

 segments where vi = n – fi.

At the beginning each solution Xi has

1

*i
k

j
j

v n
v

=
∑

 as its score.

This score is decremented by one when a segment voted by Xi is assigned to XC.

• Combination according to the segments deadlines: From the several segments voted,
the segments with the lowest deadline will be affected to XC.

5 Experimental results

In order to test the performance of our approach, we have implemented the proposed
algorithm. We have integrated our implementation in the Framework HeuristicLab
(http://www.Heuristiclab.com) as a plug-ins. HeuristicLab is a very efficient framework
for developing and testing optimisation methods, parameters and applying all these
ingredients on a multitude of problems. We have used C# as programming language with
the framework.net 1.1, Windows XP as the operating system on laptop machine with
AMD Athlon processor 1.8 GHZ and 512 Mb of RAM.

The algorithm is tested with several instances generated for different problem sizes.
These problem instances are inspired from a real instance called Mine-Pump reduced to
four tasks instead of six tasks of the original system.

• Reduced Mine-Pump and our instance: The Mine-Pump system describes a system
of pumping water in mine environment. It is composed of a set of four periodic tasks
in the instance. The timing parameters of each task are shown in Table 1. Tasks
decomposition and critical sections definition with precedence and exclusion
constraints are explained in the Appendix. Pi is changed for each test (random value)
to obtain different problem sizes. The problem size is the number of segments in the
system after the transformation to the periodic case of this instance.

Table 1 Empirical instances timing parameters

Tasks\parameters ri Ci Di Pi

τ1 0 10 20 Random ≥ 20
τ2 0 15 50 Random ≥ 50
τ3 0 1 1,000 Random ≥ 1,000
τ4 0 25 500 Random ≥ 500

5.1 Diversification generators comparison

We have tested the three alternatives proposed for the diversification generator on our
four task instances. We have fixed the following parameters for the algorithm:

 192 A. Bouridah et al.

• stop criterion: max number of steps (iterations): 50;
max number of evaluations: 50,000.

We have changed the population size and sizes of RefSet1 (height quality solutions) and
RefSet2 (diverse solutions) as shown in Table 2 then the search time (second) and the
number of generated solution are evaluated.

The conclusion is that according to these results, only the random diversification
generator avoids stagnation, the two other generators found in the literature stagnate
before reaching the result. This is affected by our modelling of the problem because we
manipulate during the search of the feasible solution only the solutions that meet
synchronisation constraints.
Table 2 Comparison of the alternatives of the diversification generator

Alternative\parameters
Population size = 10.

RefSet1 size = 3.
RefSet2 size= 2.

Population size = 20.
RefSet1 size = 3.
RefSet2 size = 2.

Population size = 40.
RefSet1 size = 5.
RefSet2 size = 3.

Random diversification
generator

17.31 s
3,199

24.50 s
3,771

01:24.29 s
14,218

Diversification generator
maximising distances

Stagnation Stagnation Stagnation

Diversification generator
using mutation

Stagnation Stagnation Stagnation

5.2 Combination methods comparison

The same parameters fixed for diversification generators comparison are used. The
results are shown in Table 3.
Table 3 Comparison of the alternatives of the combination generator

Alternative\parameters
Population size = 10.

RefSet1 size = 3.
RefSet2 size= 2.

Population size = 20.
RefSet1 size = 3.
RefSet2 size = 2.

Population size = 40.
RefSet1 size = 5.
RefSet2 size = 3.

Combination according to
the segments positions

17.31 s
3,199

24.50 s
3,771

01:24.29 s
14,218

Combination according to
the solutions qualities

17.93 s
3,235

25.4 s
3,947

01:24.90 s
14,184

Combination according to
the segments deadlines

17.67 s
3,207

26.34 s
21,770

45.00 s
31,780

From these tests results, we conclude that the performances of the three variants are
approximately equal. We conclude also that the algorithm settings such as population size
and height quality reference set size affect the performance of the algorithm.

5.3 Comparison between search time and average search time

Here we repeat the same test ten times and evaluate the variation between the search time
of every test and the average search time of these tests. The algorithm settings for this test
are shown in Table 4.

 A scatter search algorithm for real-time scheduling 193

Table 4 Algorithm settings for tests 3 and 4

Population size 40
RefSet1 size 5
RefSet2 size 3
Diversification generator Random diversification generator
Combination method Combination according to the segments positions
Max number of steps 50
Max number of evaluations 50,000

According to the curve of Figure 1, the variation between search time and average search
time is very small (about one per ten). This result is very interesting for the search
algorithm because the search time depends strongly on the problem instance and
algorithm settings.

Figure 1 Comparison between search time and average search time (see online version
for colours)

74
76
78
80
82
84
86
88
90

1 2 3 4 5 6 7 8 9 10

Tests

Se
ar

ch
 ti

m
e

Average search time Search time

5.4 Comparison with other algorithms

After the integration of the problem under study and the scatter search algorithm in the
Heuristiclab environment, we have taken into advantage of the presence of other
algorithms in this environment that can be used to solve the real time scheduling
problem, without any effort of modelling or programming. The approaches of interest
here are genetic algorithms and random search. In the case of the genetic algorithms, our
scatter search methods will be used as operators.

In what follows, we present comparison results between our approach and these two
approaches. We reintroduce the same settings for scatter search defined in the precedent
test (Table 4). The settings fixed for the genetic algorithms are the following: population
size = 40, mutation rate = 0.05. The replacement strategy named ‘elitism’ is proper to
Heuristiclab as well as the selection operator named ‘roulette’. The crossover operator is
our combination method according to the segments positions and the mutation operator is
our improvement operator. For the random search, the only parameter that we need to set
is the maximal rounds. It was set to 1,000.

 194 A. Bouridah et al.

Table 5 Comparison with other algorithms

Scatter search Genetic algorithms Random search Problem size\
algorithm ST SQ

ST SQ

ST SQ

10 3.55 0 15.21 0 00.42 0
35 94 0 331.95 0 07.55 17
40 149 0 451.55 0 12.38 20
85 1,851 0 5,705.20 0 94.24 49
95 2,837 0 6,442.99 0 177.42 56

Considering that the solution quality is the segments number that do not meet their
deadlines, the result of search time and solution quality returned by each algorithm are
shown in Table 5 (ST for search time, SQ for solution quality):

According to this set of tests, we conclude that the random search has the best search
time but with the worst solution quality when the problem size increases. Therefore this
algorithm, which is a local optimum search, is not important for the real time scheduling
problem. According to this conclusion the random search algorithm will not be compared
with genetic algorithms and scatter search.

Both genetic algorithms and scatter search retrieve the feasible solution and scatter
search outperforms genetic algorithms for search time. Therefore, the difference between
the search time of both methods increases when the problem size increases, this is
clarified by Figure 2.

Figure 2 Comparison between scatter search and genetic algorithms (see online version
for colours)

0

1000

2000

3000

4000

5000

6000

7000

10 35 40 85 95

Problem size

Se
ar

ch
 ti

m
e

Scatter search Genetics algorithms

6 Conclusions

We have presented in this paper a pre-run-time scheduling algorithm for real time tasks
with timing, precedence and exclusion constraints. The algorithm is based on the scatter
search meta-heuristic. We have implemented and tested the algorithm on different
instance sizes. Using the heuristic-lab environment, a GA algorithm and a random search
have been implemented. We then compared the three approaches: the scatter search, the

 A scatter search algorithm for real-time scheduling 195

genetic algorithm and the random search between them. In terms of solution quality
(finding feasible solution) both scatter search and genetic algorithm found a feasible
solution while scatter search response time was faster.

In the future, we intend to consider several other aspects of scheduling and we plan to
handle the pre-emption issue more specifically. Another perspective is to extend scatter
search for real time systems on multi-processor architecture.

Acknowledgments

The authors would like to thank anonymous reviewers for their valuable comments to
improve the presentation of this work.

References
Blazewicz, J., Glover, F. and Kasprzak, M. (2004) ‘DNA sequencing – tabu and scatter search

combined’, INFORMS Journal on Computing, Vol. 16, No. 3, pp.232–240.
Cavalcante, S.V. (1997) ‘A hardware-software co-design system for embedded real-time

applications’, PhD thesis, University of Newcastle upon Tone.
Debels, D., De Reyck, B., Leus, R. and Vanhoucke, M. (2006) ‘A hybridscatter

search/electromagnetism meta-heuristic for project scheduling’, European Journal of
Operational Research, Vol. 169, No. 2, pp.638–653.

Dinatale, M. and Stankovic, J.A. (1995) ‘Applicability of simulated annealing methods to real-time
scheduling and jitter control’, Proceeding of IEEE Real-time Systems Symposium, Pisa, Italy,
pp.190–199.

Dobrin, R. (2005) ‘Combining off-line schedule and fixed priority scheduling in real-time computer
systems’, PhD thesis, Mälardalen University, Sweden.

Drias, H. (2001) ‘Scatter search for Max-Sat problem’, Proceedings of IEEE SSST, USA.
Drias, H. and Khabzaoui, M. (2001) ‘Scatter search with random walk strategy for solving hard

Max-W-Sat problems’, LNAI 2070, pp.35–44.
Garey, M.R. and Johnson, D.S. (1979) Computers and Intractability: A Guide to the Theory of

NP-Completeness, Freeman, USA.
Glover, F. (1998) ‘A template for scatter search and path relinking’, in Hao, J-K., Lutton, E.,

Ronald, E., Schoenauer, M. and Snyers, D. (Eds.): Artificial Evolution, Lecture Notes in
Computer Science 1363, pp.13–54.

Laalaoui, Y. and Drias, H. (2009) ‘Learning-based approach for multiprocessor scheduling under
timing constraints and N-Queens problems’, International Journal of Advanced Operations
Management (IJAOM), Vol. 1, No. 4, pp.290–311.

Laalaoui, Y., Drias, H., Bouridah, A. and Badlishab, A. (2009) ‘Ant colony system with stagnation
avoidance for the scheduling of real-time tasks’, IEEE SSCI CI-Sched 2009, Nashville,
Tennessee, USA.

Liu, C.L. and Layland, J.W. (1973) ‘Scheduling algorithms for multiprogramming in a hard
real-time environment’, Journal of the ACM, Vol. 20, No. 1, pp.46–61.

Mok, A.K. (1983) ‘Fundamental design for the hard real-time environments’, PhD thesis,
Department of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, Boston, MA, USA.

Navet, N. and Migge, J. (2003) ‘Fine tuning the scheduling of tasks through a genetic algorithm:
application to Posix1003.1b compliant systems’, IEE Proc-Software, Vol. 150, No. 1,
pp.13–24.

 196 A. Bouridah et al.

Nossal, R. (1998) ‘An evolutionary approach to multiprocessor scheduling of dependant tasks’,
Future Generation Comp. Syst., Vol. 14, Nos. 5–6, pp.383–392.

Shepard, T. and Gagne, M. (1991) ‘A pre-time scheduling algorithm for hard-real time system’,
IEEE Transactions on Software Engineering, Vol. 17, No. 7, pp.669–677.

Tindell, K., Burns, A. and Wellings, A.J. (1992) ‘Allocating hard-real-time tasks: an NP-hard
problem made easy’, Journal of Real-Time Systems, Vol. 4, No. 2, pp.145–165.

Xu, J. (2003) ‘On inspection and verification of software with timing requirements’, IEEE
Transactions on Software Engineering, Vol. 29, No. 8, pp.705–720.

Xu, J. and Lam, K-Y. (1998) ‘Integrating runtime scheduling and pre-runtime scheduling of
real-time processes,’ Proc. 23rd IFAC/IFIP Workshop Real-time Programming.

Xu, J. and Parnas, D. (1992) ‘Pre-run-time scheduling of processes with exclusion relations on
nested or overlapping critical sections’, Proc. Eleventh Annual IEEE International
Phoenix Conference on Computers and Communications (IPCCC-92), Scottsdale, Arizona,
pp.774–782.

Xu, J. and Parnas, D. (1993) ‘On satisfying timing constraints in hard-real-time systems’, IEEE
Transactions on Software Engineering, Vol. 19, No. 1, pp.70–84.

Notes
1 It is known for the real time community that precedence constraints are specified between

segments of tasks only when tasks have the same periods.

Appendix

Test problem description

The system is a set of four real time periodic tasks. We note that we have used this
problem as a model in our tests and we have changed the period duration of each task to
obtain different problem sizes. Timing, precedence and exclusion constraints are defined
in the following lines.

Task T_1 < 0, 10, 20, 80 >
Segments:
T_11 <0, 8, 18>
T_12 <8, 2, 20>
Critical sections:
T_1_SC1(T_11, T_12)
Task T_2 < 0, 15, 50, 500 >
Segments:
T_21 < 0, 12, 47 >
T_22 < 12, 3, 50 >
Critical sections :
T_2_SC1(T_21, T_22)
Task T_3 < 0, 1, 1,000, 1,000 >

 A scatter search algorithm for real-time scheduling 197

Segments:
T_31 < 0, 1, 1,000>
Critical sections:
T_3_SC1(T_31)
TaskF T_4 < 0, 25, 500, 500 >
Segments:
T_41 < 0, 25, 500 >

Critical sections:
T_4_SC1(T_41)
Constraints:
EXCLUSION:
T_1_SC1 EXCLUDE T_2_SC1
PRECEDENCE:
T_21 PRECED T_41

Precedence constraints between segments belonging to the same tasks are naturally
added. The problem size is calculated after the transformation of the real time task system
to the periodic case using the schedule length period.

View publication statsView publication stats

https://www.researchgate.net/publication/294887199

