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a b s t r a c t 
The Routh–Hurwitz stability criterion is a useful tool for investigating the stability property of linear and 
nonlinear dynamical systems by analyzing the coefficients of the corresponding characteristic polynomial 
without calculating the eigenvalues of its Jacobian matrix. Recently some of these conditions have been 
generalized to fractional systems of order α ∈ [0, 1). In this paper we extend these results to fractional 
systems of order α ∈ [0, 2). Stability diagram and phase portraits classification in the ( τ , #)-plane for 
planer fractional-order system are reported. Finally some numerical examples from population dynamics 
are employed to illustrate our theoretical results. 

© 2020 Elsevier Ltd. All rights reserved. 

1. Introduction 
In the past few decades, fractional calculus theory has been im- 

proved significantly and has been successfully applied to various 
research fields. Compared with integer calculus, fractional calcu- 
lus is more suitable in describing the memory and genetic char- 
acteristics. We can find numerous applications of fractional order 
derivatives in the mathematical modeling of physical and biolog- 
ical phenomena in various fields of science and engineering, (see 
for example [1–17] ). The fractional order derivatives have many 
definitions such as the Riemann–Liouville definition, the Gürwald–
Letnikov definition, the Caputo definition and so on. In this paper, 
we consider the standard fractional differential equation: 
D αx (t) = f (x (t)) , α ∈ [0 , 2) , (1) 
where x (t) ∈ R n and D α is the Caputo derivative operator defined 
as follows: 
D α f (t) = 1 

$(m − α) 
t ∫ 

0 ( t − τ ) m −α−1 f (m ) ( τ ) dτ . (2) 
Where, m is the first integer greater than α, and $(.) is the 
Gamma function. For convention, we put: D 0 f (t) = f (t) . The sta- 

∗ Corresponding author. 
E-mail addresses: s.bourafa@centre-univ-mila.dz (S. Bourafa), 

m.abdelouahab@centre-univ-mila.dz (M-S. Abdelouahab), ali.moussaoui@univ- 
tlemcen.dz (A. Moussaoui). 

bility of a hyperbolic equilibrium point of any dynamical system 
with integer-order derivative is determined by the signs of the real 
parts of the eigenvalues of its Jacobian matrix. If all the eigenval- 
ues of the Jacobian matrix have negative real parts then this hy- 
perbolic equilibrium point is asymptotically stable. This result is 
equivalent to the algebraic procedure Routh–Hurwitz criterion . The 
Routh–Hurwitz criterion is well known for determining the stability 
of linear systems of the form 
˙ x ( t ) = Ax ( t ) , x ( t ) ∈ R n and A is n × n real matrix , (3) 

without involving root solving. So this criterion provides also an 
answer to the question of stability by considering the characteristic 
equation of the system, which can be written as 
P (λ) = λn + a 1 λn −1 + a 2 λn −2 + · · · + a n = 0 , (4) 
where all the coefficients a i are real constants. The n Hurwitz ma- 
trices are given by 
H 1 = (a 1 ) , H 2 = (a 1 1 

a 3 a 2 
)

, H 3 = 
( 

a 1 1 0 
a 3 a 2 a 1 
a 5 a 4 a 3 

) 
, ... 

H n = 
⎛ 
⎜ ⎜ ⎜ ⎜ ⎝ 

a 1 1 0 · · · 0 
a 3 a 2 a 1 · · · 0 
a 5 a 4 a 3 · · · 0 
. . . . . . . . . · · ·

. . . 
0 0 0 · · · a n 

⎞ 
⎟ ⎟ ⎟ ⎟ ⎠ , 

https://doi.org/10.1016/j.chaos.2020.109623 
0960-0779/© 2020 Elsevier Ltd. All rights reserved. 
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where a j = 0 if j > n . All of the roots of the polynomial P ( λ) have 
negative real part if and only if the determinants of all Hurwitz 
matrices are positive, that is: 
Det(H j ) > 0 , j = 1 , ..., n. (5) 
As in integer calculus, stability analysis is a central task in the 
study of fractional differential system and fractional control. Sta- 
bility analysis of fractional differential equations was investigated 
by Matignon who produced the following theorem when the order 
of derivative is between 0 and 1. 
Theorem 1. [18] The autonomous system: 
D αx (t) = Ax (t) with x (t 0 ) = x 0 , (6) 
is asymptotically stable if and only if 
| arg (spec(A )) | > απ

2 , (7) 
where α ∈ [0, 1), arg (. ) is the principal argument of a given complex 
number and spec ( A ) is the spectrum (set of all eigenvalues) of A. 

This work is in fact the starting point of several results in the 
field. In recent papers in [19–22] , the authors derived some opti- 
mal Routh–Hurwitz conditions of the dynamical systems involving 
the Caputo fractional derivative of orders between 0 and 1. These 
new optimal Routh–Hurwitz conditions serve as necessary and suf- 
ficient conditions to guarantee that all roots of the characteristic 
polynomial obtained from the linearization process are located in- 
side the Matignon stability sector when the order of the derivative 
is between 0 and 1. 

If 0 < α < 2, an extension of Matignon’s theorem is given in 
[23] . The given result permits to check the stability of any system 
of the form given by (6) with α ∈ [0, 2) can be analyzed in a uni- 
fied way by the location of the eigenvalues of matrix A in the com- 
plex plane. System described by (6) is hence asymptotically stable 
if and only if | arg (spec(A )) | > απ

2 , where 0 < α < 2. In this paper 
we extend the Routh–Hurwitz conditions to fractional order systems 
of order α ∈ [0, 2), and for the first time we report the stability 
diagram and phase portraits classification in the ( τ , #)-plane for 
planer fractional-order systems. We use these results to investigate 
the stability properties of some population models. Numerical sim- 
ulations which support our theoretical analysis are also given. 
2. The Routh–Hurwitz conditions for fractional-order systems 
of order α ∈ (0 , 2) 

Since most biological systems are 1, 2, 3 or 4 − dimensional, we 
will consider only fractional-order system with dimension n = 2 , 3 
and 4. 
Remark 1. 

- For α ∈ [0, 1[, the Routh–Hurwitz conditions (5) are sufficient 
but not necessary to have (7) satisfied. 

- For α ∈ ]1, 2), the Routh–Hurwitz conditions (5) are necessary 
but not sufficient in general case to have (7) satisfied. 

2.1. Fractional-order two dimensional systems 
Proposition 1. C onsider the fractional linear system (6) with its cor- 
responding characteristic Eq. (4) . For n = 2 , the necessary and suffi- 
cient conditions for every α ∈ [0, 2[ to have (7) satisfied are 
a 2 > 0 and a 1 > −2 √ 

a 2 cos (απ
2 ) . (8) 

Proof. For n = 2 the characteristic polynomial is 
P (λ) = λ2 + a 1 λ + a 2 . 
Its discriminant is D (P ) = a 2 1 − 4 a 2 . 

1. If D ( P ) ≥ 0 (i.e a 2 ∈ ] − ∞ , a 2 1 
4 ] ), then P ( λ) have two real roots 

given by 
λ± = −1 

2 
(

a 1 ∓ √ 
a 2 1 − 4 a 2 ). 

For α ∈ [0, 2[, we have 
a) (a 2 < 0 or (a 2 ∈ [0 , a 2 1 

4 ] and a 1 ≤ −2 √ 
a 2 )) ⇒ λ+ > 0 , 

then arg (λ+ ) = 0 ≤ α π
2 , thus (7) is not satisfied. 

b) (a 2 ∈ [0 , a 2 1 
4 ] and a 1 ≥ 2 √ 

a 2 ) ⇒ λ± < 0 , then arg (λ+ ) = π > 
α π

2 , thus (7) is satisfied. 
2. If D ( P ) < 0 (i.e a 2 ∈ ] a 2 1 

4 , ∞ [ ), then P ( λ) have two complex con- 
jugate roots given by 
λ± = −1 

2 
(

a 1 ∓ i √ 
4 a 2 − a 2 1 ), 

then tan (θ ) = −√ 
4 a 2 −a 2 

1 
a 1 , where θ = | arg (λ±) | . One emphasis 

two possibility 
(a) When α ∈ [0 , 1[ (

i.e α π
2 ∈ [0 , π2 [ ) then if (

a 1 > 0 and a 2 ∈ ] a 2 1 
4 , ∞ [ ), it follows that tan ( θ ) < 0, 

then θ ∈ ] π2 , π [ . Therefore θ > α π
2 . Thus, (7) is satisfied. 

But if −2 √ 
a 2 cos (α π

2 ) < a 1 < 0 and a 2 ∈ ] a 2 1 
4 , ∞ [ , then 

tan ( θ ) > 0 and tan 2 (θ ) > tan 2 (α π
2 ) , it follows that tan (θ ) > 

tan (α π
2 ) . Therefore θ > α π

2 , and, (7) is satisfied. On the 
other hand if ( a 1 < −2 √ 

a 2 cos (α π
2 ) < 0 and a 2 ∈ ] a 2 1 

4 , ∞ [) , 
then (tan ( θ ) > 0 and tan 2 (θ ) < tan 2 (α π

2 )) , it follows that 
tan (θ ) < tan (α π

2 ) . Therefore θ < α π
2 , and, (7) is not satis- 

fied. 
(b) When α ∈ [1 , 2[ (

i.e α π
2 ∈ [ π2 , π [ ), then if (

a 1 < 0 and a 2 ∈ ] a 2 1 
4 , ∞ [ ), it follows that tan ( θ ) > 0, 

hence θ ∈ ]0 , π2 [ . Therefore θ < α π
2 . Thus, (7) is not satisfied. 

But if (0 < a 1 < −2 √ 
a 2 cos (α π

2 ) and a 2 ∈ ] a 2 1 
4 , ∞ [ ), 

then (tan (θ ) < 0 and tan 2 (θ ) > tan 2 (α π
2 ) ), it follows that 

tan (θ ) < tan (α π
2 ) . Therefore θ < α π

2 . Thus, (7) is not satis- 
fied. 
On the other hand if (0 < −2 √ 

a 2 cos (α π
2 ) < a 1 and a 2 ∈ 

] a 2 1 
4 , ∞ [) , then (tan ( θ ) < 0 and tan 2 (θ ) < tan 2 (α π

2 )) , it fol- 
lows that tan (θ ) > tan (α π

2 ) . Therefore θ > α π
2 . Thus, (7) is 

satisfied. Finally we summarizes the proof as follows 
∗ From (1-b), (2-a) and (2-b) we have 

- if ( a 2 > 0 and a 1 > −2 √ 
a 2 cos (α π

2 )) , then θ = 
| arg (λ±) | > α π

2 . Thus, (7) is satisfied. 
- When a 2 = 0 then λ+ = 0 . Thus, arg (λ+ ) is not de- 

fined and (7) is not satisfied. 
∗ From (1-a), (2-a) and (2-b) we have 

- if (a 2 < 0 or (a 2 > 0 and a 1 ≤ −2 √ 
a 2 cos (α π

2 )) ), then 
| arg (λ+ ) | ≤ α π

2 . Thus, (7) is not satisfied. 
!

2.2. Stability diagram and phase portraits classification for 
fractional-order planar systems 

Consider the planar case of system (6) , where α ∈ [0 , 2) . The 
characteristic equation of the matrix A can be written as 
P (λ) = λ2 − τλ + # = 0 . 
where τ = T r(A ) = −a 1 is the trace of the matrix A and # = 
Det(A ) = a 2 its determinant. 
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Remark 2. The conditions in (8) to have (7) satisfied are equiva- 
lent to: 
# > 0 and τ

2 < √ 
#.cos ( απ

2 ) . (9) 
• For 0 ≤ α < 1, (9) is equivalent to 

τ 2 
4 sec 2 ( απ

2 ) < #. (10) 
• For 1 < α < 2, (9) is equivalent to 

τ 2 
4 sec 2 ( απ

2 ) > # > 0 . (11) 
Using the conditions (10), (11) and taking into account the fol- 

lowing observations: 
• For # < 0, the two eigenvalues are real and have opposite 

signs; hence the equilibrium point is a saddle. 
• For # > 0, the eigenvalues are either real with the same sign 

(node point if τ 2 − 4# > 0 ), or complex conjugate (spiral point 
if τ 2 − 4# < 0 . ). 

• The parabola τ 2 − 4# = 0 . is the borderline between nodes and 
spirals. 

• The curve of equation 
τ = 2 √ 

# cos (απ
2 ) 

(i.e a branches of parabola of equation # = τ2 
4 sec 2 ( απ

2 ) ) is the 
borderline between stability and instability region of the equi- 
librium point in the half plane # > 0. 
We can draw the stability diagram and phase portraits classifi- 

cation in the ( τ , #) plane as shown in Fig. 1 , where the stability 
area is with green colour. From this figure we observe that: 

- When α → 1 we find the same stability diagram and phase 
portrait classification as in the integer systems. 

- The stability area for α < 1 is wider than stability area for the 
integer case. 

- The stability area for α > 1 is narrower than stability area for 
the integer case. 

2.3. Fractional-order three dimensional systems 
Proposition 2. F or n = 3 

(1) If D ( P ) > 0, then the Routh–Hurwitz conditions ( 5 ) are the neces- 
sary and sufficient conditions for every α ∈ [0, 2[ to have (7) sat- 
isfied: 
a 1 > 0 , a 3 > 0 and a 1 a 2 > a 3 . 

(2) If D ( P ) < 0 and α ∈ [0, 2[, then 
(i) If a 1 ≥ 0, a 2 ≥ 0, a 3 > 0 then we have: If α < 2 

3 , then (7) is 
satisfied, but if α > 4 

3 , then (7) is not satisfied. 
(ii) If a 1 > 0, a 2 > 0, a 1 a 2 = a 3 , then (7) is satisfied for all α ∈ [0, 

1[, and (7) is not satisfied for all α ∈ ]1, 2[ . 
Proof. For n = 3 the characteristic polynomial is 
P (λ) = λ3 + a 1 λ2 + a 2 λ + a 3 . (12) 

(1) If D ( P ) > 0, then P (λ) = 0 have three real roots hence Routh–
Hurwitz conditions are necessary and sufficient for (7) . 

(2) If D ( P ) < 0, then P (λ) = 0 have one real root λ1 = −b and two 
complex conjugate roots λ2 , 3 = β ± iγ . Thus, 
P ( λ) = ( λ + b ) ( λ − β − iγ ) ( λ − β + iγ ) , 
it follow that 

⎧ 
⎪ ⎨ 
⎪ ⎩ 

a 1 = b − 2 β, 
a 2 = β2 + γ 2 − 2 bβ, 
a 3 = (β2 + γ 2 )b , b > 0 . 

(i) 
∗ If {

a 1 ≥ 0 , 
a 2 ≥ 0 , then {

b ≥ 2 β, 
β2 + γ 2 ≥ 2 bβ ≥ 4 β2 , hence θ ∈ 

[ π3 , 2 π3 ] , where θ = | arg(λ) | . 
∗ If α < 2 

3 , then θ > απ
2 . But if α > 4 

3 , then θ < απ
2 . 

(ii) If a 1 a 2 = a 3 , then β(β2 + γ 2 + b 2 − 2 bβ) = 0 , hence β = 0 
or β2 + γ 2 + b 2 − 2 bβ = 0 . The second equality is not valid, 
that is β = 0 , then | arg(λ±) | = π2 . Thus, (7) is satisfied for 
all α ∈ [0, 1[, and (7) is not satisfied for all α ∈ [1, 2[. 

!

In the general case we use the following proposition. 
Proposition 3. F or n = 3 and α ∈ [0 , 2) . If D ( P ) < 0, then, the nec- 
essary and sufficient conditions to have (7) satisfied are 
{ 

a 3 > 0 , 
2 
π

∣∣∣tan −1 (−3 √ 
3 u − v 

3( u + v ) + 2 a 1 ) 
∣∣∣ > α, 

where 
u = 3 √ 

−q + √ 
4 

27 p 3 + q 2 
2 and v = 3 √ 

−q − √ 
4 

27 p 3 + q 2 
2 , (13) 

with 
p = a 2 − a 2 1 

3 and q = a 1 
27 (2 a 2 1 − 9 a 2 ) + a 3 . (14) 

Proof. If D ( P ) < 0. Then, P ( λ) has one real root λ1 and two 
complex conjugate roots λi , i = 2 , 3 . Substituting λ in Eq. (12) by 
x − a 1 

3 (the Tschirnhaus transformation) we get the equation 
x 3 + px + q = 0 , (15) 
where p and q are given by (14) . The left hand side of Eq. (15) is 
a monic trinomial called a depressed cubic. Any formula for the 
roots of a depressed cubic may be transformed into a formula for 
the roots of Eq. (12) using (14) and the relation 
λ = x − a 1 

3 . (16) 
following Cardano’s method the real root of (15) is given by 
x 1 = u + v , (17) 
where the two variables u and v are given by (13) . The complex 
roots are given by 
x 2 = ju + j̄ v and x 3 = j 2 u + j̄ 2 v , (18) 
where j = e i 2 π3 = − 1 

2 + i √ 
3 

2 . Using (14) and (16) we obtain the 
roots of P ( λ). Namely, 
λ1 = u + v − a 1 

3 , 
λ2 = ju + j̄ v − a 1 

3 = −1 
6 (3(u + v ) + 2 a 1 − i 3 √ 

3 (u − v )) , 
λ3 = j 2 u + j̄ 2 v − a 1 

3 = −1 
6 (3(u + v ) + 2 a 1 + i 3 √ 

3 (u − v )) . 
We have 

P (λ) = (λ − λ1 )(λ + 1 
6 (3(u + v ) + 2 a 1 − i 3 √ 

3 (u − v ))) 
×(λ + 1 

6 (3(u + v ) + 2 a 1 + i 3 √ 
3 (u − v ))) , 

it follow that a 3 = −λ1 ((3 √ 
3 (u − v )) 2 + ( 1 6 (3(u + v ) + 2 a 1 ) 2 ) then 

a 3 > 0 imply that λ1 < 0. Thus, | arg (λ1 ) | > απ
2 . 

On the other hand | arg (λi ) | = ∣∣∣tan −1 (−3 √ 
3 u − v 

3( u + v ) + 2 a 1 ) 
∣∣∣, 

for all i = 2 , 3 . 
Thus, 2 

π

∣∣∣tan −1 (−3 √ 
3 u − v 

3( u + v ) + 2 a 1 ) 
∣∣∣ > α, imply that 

| arg (λ2 , 3 ) | > απ
2 . !
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Fig. 1. Stability diagram and phase portraits classification in the ( τ , #)-plane for planer fractional-order system. (For interpretation of the references to color in this figure, 
the reader is referred to the web version of this article.) 
2.4. Fractional-order four dimensional systems 
Proposition 4. F or n = 4 
1. The conditions (5) are sufficient conditions for the equilibrium 

point x ∗ to be locally asymptotically stable for all α ∈ [0, 1), but 
they are necessary conditions for all α ∈ [1, 2). 

2. If D ( P ) > 0, a 1 > 0, a 2 < 0 and α ∈ [ 2 
3 , 2] then the equilibrium 

point x ∗ is unstable. 
3. If D ( P ) < 0, a 1 > 0, a 2 > 0, a 3 > 0, a 4 > 0, then the equilibrium 

point x ∗ is locally asymptotically stable for all α ∈ [0 , 1 2 [ . Also, if 
D ( P ) < 0, a 1 < 0, a 2 > 0, a 3 < 0, a 4 > 0, then the equilibrium 
point x ∗ is unstable for all α ∈ [0, 2] . 

4. If D ( P ) < 0, a 1 > 0, a 2 > 0, a 3 > 0, a 4 > 0 and a 2 = a 1 a 4 
a 3 + a 3 

a 1 , 
then the equilibrium point x ∗ is locally asymptotically stable, for 
all α ∈ [0, 1[ and unstable for all α ∈ ]1, 2] . 

5. a 4 > 0 is the necessary condition for the equilibrium point x ∗ to 
be locally asymptotically stable. 

Proof. 
1. We emphasis two cases: 

• For α ∈ [0, 1[, assume that the conditions (5) are satisfied, 
then all real eigenvalues and all real parts of complex con- 
jugate eigenvalues of Eq. (4) are negative, hence, conditions 
(5) implies that all the eigenvalues of (4) lie in the left- 
half complex plane then | arg (λi ) | > π2 . Thus, | arg (λi ) | > 
π
2 > α π

2 . Therefore x ∗ is locally asymptotically stable. 
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• For α ∈ [1, 2], we have α π

2 ≥ π
2 . Assume that (7) is satis- 

fied then | arg (λi ) | > α π
2 , implies that | arg (λi ) | > π2 . There- 

fore the asymptotic stability of x ∗ imply that the conditions 
(5) are satisfied. 

2. Notice that if D ( P ) > 0 then there exists 4 distinct real roots r 1 , 
r 2 , r 3 , r 4 or two pairs of complex eigenvalues λ1 , 2 = β1 ± jγ1 , 
and λ3 , 4 = β2 ± jγ2 . 
In the case of real roots we have 
a 1 = −(r 1 + r 2 + r 3 + r 4 ) , 
a 2 = r 1 r 2 + r 1 r 3 + r 1 r 4 + r 2 r 3 + r 2 r 4 + r 3 r 4 , 
a 3 = −[ r 1 r 2 r 3 + r 1 r 2 r 4 + r 1 r 3 r 4 + r 2 r 3 r 4 ] , 
a 4 = r 1 r 2 r 3 r 4 . 
Clearly, a 2 < 0 implies that at last two real roots have opposite 
signs. Hence the equilibrium point x ∗ is unstable. In the other 
case: 
a 1 = −2(β1 + β2 ) , 
a 2 = β2 

1 + γ 2 
1 + β2 

2 + γ 2 
2 + 4 β1 β2 , 

a 3 = −2[ β1 (β2 
2 + γ 2 

2 ) + β2 (β2 
1 + γ 2 

1 )] , 
a 4 = (β2 

1 + γ 2 
1 )(β2 

2 + γ 2 
2 ) . 

We have a 2 < 0 imply that β2 
2 sec 2 θ + β2 

1 + γ 2 
1 + 4 β1 β2 < 0 , 

where θ = | arg λ3 , 4 | . Therefore β2 
2 sec 2 θ < −4 β1 β2 , which im- 

ply that β1 β2 < 0 (i.e β1 and β2 are of opposite signs), 
Without loss of generality, suppose that β1 < 0, β2 > 0, then 
using the condition a 1 > 0, we get 
β2 

2 sec 2 θ < −4 β1 β2 < 4 β2 
2 . 

This implies that θ < π /3. Hence, the equilibrium point x ∗ is 
unstable for all α ∈ [ 2 3 , 2] . 

3. If D ( P ) < 0 then there exists two real roots λ1 = r 1 , λ2 = r 2 , and 
one pair of complex eigenvalues λ3 , 4 = β ± jγ . Then we have 
a 1 = −(r 1 + r 2 + 2 β) , 
a 2 = r 1 r 2 + β2 + γ 2 + 2 β(r 1 + r 2 ) , 
a 3 = −2 βr 1 r 2 − (r 1 + r 2 )(β2 + γ 2 ) , 
a 4 = r 1 r 2 (β2 + γ 2 ) . 
Assume that a 1 > 0, a 2 > 0, a 3 > 0, a 4 > 0 there are zero 
changes in sign of the coefficients of the characteristic polyno- 
mial P ( λ), then by Descartes’ rule of signs, it follows that there 
is no positive real roots of P ( λ), this implies that r 1 < 0 and 
r 2 < 0. On the other hand a 3 > 0 implies that 2 βr 1 r 2 + (r 1 + 
r 2 ) β2 sec 2 θ < 0 . 
We distinguish two cases: 
1. If β ≤ 0, then x ∗ is locally asymptotically stable for all 

α ∈ [0, 1[, particularly for α ∈ [0 , 1 2 [ . 
2. If β > 0, then − (r 1 + r 2 ) 

2 β sec 2 θ > r 1 r 2 and a 2 > 0 implies 
that r 1 r 2 > −2 β(r 1 + r 2 ) − β2 sec 2 θ , where θ = | arg λ3 , 4 | . 
Therefore, − (r 1 + r 2 ) 

2 β sec 2 θ > −2 β(r 1 + r 2 ) − β2 sec 2 θ , 
then −(r 1 + r 2 )[ β2 sec 2 θ − 2 β] > −β2 sec 2 θ , it follow 
that β2 sec 2 θ > −(r 1 + r 2 )[ −β

2 sec 2 θ + 2 β] , then a 1 > 0 
implies that −(r 1 + r 2 ) > 2 β, therefore β2 sec 2 θ > 
2 β[ −β

2 sec 2 θ + 2 β] . Thus, β2 sec 2 θ > −β2 sec 2 θ + 4 β2 
which implies that sec 2 θ > 2 , therefore π

4 < θ < π
2 . Then 

x ∗ is locally asymptotically stable for all α ∈ [0 , 1 2 [ . 
If the conditions a 1 < 0, a 2 > 0, a 3 < 0, a 4 > 0 are satisfied, 
then there are zero changes in sign of the coefficients of the 
polynomial P (−λ) , then by Descartes’ rule of signs, it follows 
that there is no positive real roots of P (−λ) , this mean that 

there is no negative real roots for the characteristic polynomial 
P ( λ), therefore r 1 > 0 and r 2 > 0. Thus, the equilibrium point 
x ∗ is unstable for all α ∈ [0, 2]. 

4. Notice that D ( P ) < 0, a 1 > 0, a 2 > 0, a 3 > 0, a 4 > 0 imply 
that there are two negative real eigenvalues, and the condition 
a 2 = a 1 a 4 

a 3 + a 3 
a 1 implies that the two other eigenvalues are λ3 , 4 = 

±i √ 
a 3 
a 1 , which lie on the imaginary axis (i.e | arg λ3 , 4 | = π2 ). 

Consequently, if α ∈ [0, 1[, then all eigenvalues lie in the stable 
region, and if α ∈ ]1, 2], then λ3,4 lie on the unstable region. 

5. The part (5) is proved in [20] for general n , which includes our 
current case. 
!

Remark 3. 
• Although the stability criteria given by inequality (7) with the 

fractional order α as the main variable, remain valid for both 
cases α ∈ [0, 1) and α ∈ (1, 2] the stability area in the param- 
eter space does not remain the same as illustrated in Fig. 1 , 
where the stability region (green colour) for α ∈ (1, 2] is re- 
stricted than the stability region for α ∈ [0, 1), indicating a high 
requirement on the parameter to have stability for α ∈ (1, 2] 
than for α ∈ [0, 1). 
We have reported a common form of stability conditions on pa- 
rameters for both cases α ∈ [0, 1) and α ∈ (1, 2], for dimension 
n = 2 and n = 3 in Propositions 1 , and 3 , respectively, but for 
n = 4 no common form where fond. 

• Although the results presented in proposition 1 − 4 , elaborate 
conditions on parameters for satisfying necessary and suffi- 
cient conditions for stability of equilibrium points, the proposed 
analysis is limited to restricted order of characteristic equation 
resulted from the Jacobian matrix. 

Remark 4. The validity of Routh–Hurwitz conditions derived in 
[20] , for fractional order differential systems, is limited to frac- 
tional order α ∈ [0, 1), but the validity of conditions proposed 
in the present paper is demonstrated for fractional order α ∈ [0, 
2). Furthermore for the first time the stability diagram and phases 
portrait classification for fractional order planar differential sys- 
tems in the ( τ , #) plane are reported in the present paper. 
3. Applications to population dynamics 

The interactions between population models either prey and 
predator species or epidemiological models can be predicted by 
simple mathematical models [24–26] . All population species posses 
the property of heredity which means the passing on of traits 
from parents to their offspring, either through asexual reproduc- 
tion or sexual reproduction, the offspring cells or organisms ac- 
quire the genetic information of their parents. Through heredity. 
Variations between individuals can accumulate and cause species 
to evolve by natural selection. This property makes fractional dif- 
ferential equations may model more efficiently certain problems 
than ordinary differential equations. In this work we apply our 
theoretical results to three population fractional-order models. We 
consider some classical models existing in the literature, but mod- 
eled by a system of fractional differential equations. The first one 
is the fractional-order Holling-Tanner model [27] , the second one is 
the fractional-order super-predator, predator and prey community 
model [28] and the last one is a Heroin epidemic model [29] . 

Example 1: Let consider the fractional order Holling-Tanner 
model 
{

D αx = r 1 x (1 − x 
K ) − qxy 

m + x , 
D αy = r 2 y (1 − y 

γ x ) . (19) 
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Fig. 2. ( a) Phase portrait and (b) Time evolutions of system (19) for some values of α with the parameter values r 1 = 1 , r 2 = 0 . 2 , K = 7 , q = 6 
7 , m = 1 and γ = 0 . 4 . 

Where α ∈ [0 , 2) , x ( t ) ≥ 0 and y ( t ) ≥ 0 are the density of prey 
and predator populations at time t respectively. The parameters r 1 
and r 2 are the intrinsic growth rates, K represents the carrying ca- 
pacity of the prey, q is the maximum number of prey that can be 
eaten per predator per unit of time, m is a saturation value, it cor- 
responds to the number of prey necessary to achieve one half the 
maximum rate q, γ is a measure of the quality of the prey as a 
food for the predator. For example for r 1 = 1 , r 2 = 0 . 2 , K = 7 , q = 
6 
7 , m = 1 and γ = 0 . 4 , the system (19) has two equilibrium points 
E 0 = (7 , 0) and E 1 = (5 , 2) . 
• The characteristic polynomial of the Jacobian matrix evaluated 

at E 0 is given by 
P (λ) = λ2 + 0 . 8 λ − 0 . 2 . 
So a 2 = −0 . 2 < 0 , then according to Proposition 1 E 0 is unstable 
for all α ∈ [0, 2). 

• The characteristic polynomial of the Jacobian matrix evaluated 
at E 1 is given by 
P (λ) = λ2 + 71 

105 λ + 16 
105 . 

So a 1 = 71 
105 and a 2 = 16 

105 > 0 , according to Proposition 1 the 
critical value of α is 
αc = 2 

π
cos −1 ( −a 1 

2 √ 
a 2 ) ≈ 1 . 6 6 68 . 

Then E 1 is locally asymptotically stable for all α < αc , Fig. 2 
illustrate these results. We observe that for α = 1 . 5 and for 
α = 1 . 66 the trajectory initiated near E 1 spiral toward E 1 , which 
is locally asymptotically stable for all fractional order α < αc , 
but for α = 1 . 67 and α = 1 . 7 the trajectories initiated near E 1 
are repulsed by E 1 which is unstable for α > αc . Particularly 
for α not too far from αc the trajectories spiral toward an 
S−asymptotically periodic solution of (19) [30,31] , giving rise to 
a periodic behavior of the model. 
Example 2: The fractional-order super-predator, predator and 

prey community model introduced in [28] by 
{ 

D αx = x (ρ − ωy ) , 
D αy = y (−µ + βx − γ z) , 
D αz = z(1 − z) + δyz. (20) 

Where α ∈ [0 , 2) , x ≥ 0, y ≥ 0 and z ≥ 0 are the density of prey, 
predator and super-predator respectively. All parameters of the 
model are positive and constant values. The equilibrium point of 

(20) is E ∗ = (x ∗, y ∗, z ∗) such that: 
x ∗ = µ

β
+ γ

β
(1 + δρ

ω ) , y ∗ = ρ
ω , z ∗ = 1 + δρ

ω . 
The characteristic polynomial of the Jacobian matrix of (20) at E ∗
is 
P (λ) = λ3 + z ∗λ2 + (γ δz ∗ + ωβx ∗) y ∗λ + ωβx ∗y ∗z ∗. 
We have 
⎧ 
⎨ 
⎩ 

a 1 = z ∗ > 0 , 
a 2 = ( γ δz ∗ + ωβx ∗) y ∗ > 0 , 
a 3 = ωβx ∗y ∗z ∗ > 0 . 

If D ( P ) > 0, we have a 1 a 2 > a 3 , by Proposition 2 , we have the lo- 
cal asymptotic stability of E ∗ for all α ∈ [0 , 2[ . If D ( P ) < 0, then 
according to the Proposition 2 , E ∗ is locally asymptotically stable 
for all α < 2 

3 and it is unstable for all α > 4 
3 , as shown in Fig. 3 , 

where for α = 0 . 66 < 2 
3 the trajectory starting near E ∗ is attracted 

by it indicating local asymptotic stability, but for α = 1 . 34 > 4 
3 the 

trajectory starting near E ∗ is repulsed by it indicating its instabil- 
ity. Two values of the fractional order α. For α ∈ [ 2 3 , 4 3 ] , we use 
the Proposition 3 , for example for ω = 1 , β = 2 , µ = 1 , γ = 1 , 
ρ = 4 and δ = 3 . We have D (P ) = −15109584 < 0 , u = 7 . 2936 and 
v = −7 . 1142 . The critical value of α is 
αc = 2 

π

∣∣∣∣tan −1 ( −3 √ 
3 (u − v ) 

3(u + v ) + 2 a 1 
)∣∣∣∣ ≈ 1 . 2169 . 

Thus the equilibrium point E ∗ is locally asymptotically stable for all 
α < αc , as illustrated in Fig. 3 , where for α = 1 . 21 < αc the trajec- 
tory starting in the vicinity of E ∗ is attracted by it which confirm 
that E ∗ is locally asymptotically stable, but for α = 1 . 22 > αc the 
trajectory starting in the vicinity of E ∗ is repulsed by it indicating 
its instability. 

Example 3: Let consider the following fractional order Heroin 
epidemic model of four subpopulation [29] , with susceptibles x , 
heroin users not in treatment y , heroin users undergoing treatment 
z and heroin users who have been successfully treated from heroin 
use w : 
⎧ 
⎪ ⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ ⎩ 

D αx = - − βyx − µx, 
D αy = βyx + ρy − ( µ + δ1 + ξ ) y − κy 

1 + ωy , 
D αz = κy 

1 + ωy − ( ρ + σ + δ2 + µ) z, 
D αw = σ z + ξy − µw, 

(21) 
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Fig. 3. ( a) Phase portrait and (b) Time evolutions of system (20) for some values of α, with the parameter values ω = 1 , β = 2 , µ = 1 , γ = 1 , ρ = 4 and δ = 3 
where α ∈ [0 , 2) , and all parameters of the model are positive. The 
system (21) has two equilibrium points E = ( -µ , 0 , 0 , 0) and E ∗ = 
(x ∗, y ∗, z ∗, w ∗) , such that 
⎧ 
⎪ ⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ ⎩ 

x ∗ = -

βy ∗ + µ, 
z ∗ = κy ∗

Q 0 Q 2 , 
w ∗ = σκy ∗ + ξQ 0 Q 2 y ∗

µQ 0 Q 2 . 
and y ∗ is solution of the second order equation 
Ay ∗2 + By ∗ + C = 0 , 
where 
⎧ 
⎨ 
⎩ 

A = βωQ 1 Q 2 , 
B = ( β + µω ) Q 1 Q 2 + κβ( Q 2 − ρ) − β-, 
C = [ µQ 1 Q 2 + κµ( Q 2 − ρ) ] ( 1 − R 0 ) . 

And 
⎧ 
⎪ ⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ ⎩ 

Q 0 = 1 + ωy ∗, 
Q 1 = µ + δ1 + ξ , 
Q 2 = ρ + σ + δ2 + µ, 
R 0 = κβQ 2 

µQ 1 Q 2 + κµ( Q 2 − ρ) . 
The characteristic polynomial of the Jacobian matrix of (21) at E 
is 
P E (λ) = (λ + µ) 2 (λ2 + p 1 λ + p 2 ) , 
where 
{

p 1 = Q 1 + Q 2 + κ − β-
µ , 

p 2 = Q 2 (Q 1 + κ − β-
µ ) − κρ. 

The characteristic polynomial of the jacobian matrix of (21) at E ∗
is 
P E ∗ (λ) = λ4 + a 1 λ3 + a 2 λ2 + a 3 λ + a 4 , 
where ⎧ 
⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎩ 

a 1 = µ + I 1 + I 2 , 
a 2 = I 1 I 2 + I 3 − I 4 + µ( I 1 + I 2 ) , 
a 3 = I 1 I 3 − Q 2 I 4 + µ( I 1 I 2 + I 3 − I 4 ) , 
a 4 = µ( I 1 I 3 − Q 2 I 4 ) , 

and 
⎧ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 
⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

I 1 = βy ∗ + µ, 
I 2 = Q 1 + Q 2 + κ

Q 2 0 − βx ∗, 
I 3 = Q 2 (Q 1 + κ

Q 2 0 − βx ∗) − κρ

Q 2 0 , 
I 4 = β2 x ∗y ∗. 
For example we use the following parameter values 

- = 4 . 434486182758694 , κ = 0 . 5 , β = 0 . 001185 , ω = 0 . 1654 , 
σ = 20 , µ = 0 . 0099909 , ρ = 0 . 001 , δ1 = 0 . 001 , δ2 = 0 . 002 , 
ξ = 0 . 014999324798155 . We have: D ( P E ) > 0, p 1 > 0 and p 2 > 0, 
it means that all the roots of P E (λ) = 0 are real negative, then 
E is locally asymptotically stable for all α ∈ [0, 2). D (P E ∗ ) < 0 , 
a i > 0 for all i = 1 , 2 , 3 , 4 and a 2 = a 1 a 4 

a 3 − a 3 
a 1 , then according to 

Proposition 4 E ∗ is locally asymptotically stable for all α ∈ [0, 
1[ and unstable for all α ∈ ]1, 2], Fig. 4 illustrates these results, 
where we observe that for α ∈ [0, 1[ all trajectory initiated near E ∗
converge to it but for α ∈ [1, 2] all trajectory initiated near E ∗ are 
repulsed by it and attracted by E which is locally asymptotically 
stable for all α ∈ [0, 2]. 
Remark 5. Assume that a 3 − D integer-order system displays a 
chaotic attractor and suppose that Ω is the set of equilibrium 
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Fig. 4. ( a) Phase portrait and (b) Time evolutions of system (21) for some values of α, with the parameter values - = 4 . 434486182758694 , κ = 0 . 5 , β = 0 . 001185 , ω = 
0 . 1654 , σ = 20 , µ = 0 . 0099909 , ρ = 0 . 001 , δ1 = 0 . 001 , δ2 = 0 . 002 , ξ = 0 . 014999324798155 . 
points surrounded by scrolls. A necessary condition for the corre- 
sponding fractional order system to exhibit a chaotic attractor sim- 
ilar to its integer order counterpart is instability of the equilibrium 
points in Ω . Otherwise, one of these equilibrium points becomes 
asymptotically stable and attracts the nearby trajectories [32,33] . 
The proposed stability conditions are a powerful tool for determin- 
ing regions of possible chaos (instability region) in the parameters 
space (including fractional order) where chaotic phenomenon can 
be developed. Different figures of the presented examples show 
variation of state evolution (from stationary to periodic and diver- 
gent) as value of fractional order α changes indicating possibility 
of chaos. In the forthcoming papers we will investigate possible 
appearance of chaotic phenomena in such models. 
4. Conclusion 

In this paper we have derived some new optimal (non- 
improvable) Routh-Hurwitz conditions for fractional type models of 
orders between 0 and 2., i.e., some necessary and sufficient con- 
ditions guaranteeing that all zeros of the corresponding charac- 
teristic polynomial are located inside the Matignon stability sec- 
tor. The effect of parameter α (i.e. the order of model (1) ) on 
the model dynamics has been highlighted. These results can be 
regarded as a generalization of the classical Routh-Hurwitz sta- 
bility conditions. As application, the stability properties of some 
fractional-order mathematical models in population dynamics and 
epidemiology have been explored. Numerical simulations are pro- 
vided to exemplify the theoretical findings. 
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