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Abstract This note deals with the solution form of the system of difference equations

xn+1 = axn yn−1

yn − α
+ β, yn+1 = bxn−1yn

xn − β
+ α, n ∈ N0,

where the parameters a, b, α, β and initial values x−i , y−i , i = 0, 1, are non-zero
real numbers. The special case a = b is treated separately, and the qualitative behavior
of its solutions is examined. Also, conditions are determined so that the system admits
periodic solutions. Finally, numerical examples are provided to support the theoretical
results exhibited in the paper.
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440 N. Haddad et al.

1 Introduction

Difference equations have been of great interest to mathematicians and scientists in
recent decades. This interest continue to grow as more fascinating results and appli-
cations are obtained and discovered. Typically, this line of research is approach in two
directions: the first one is the study of the qualitative behavior of solutions and the
second one is to find for closed forms of the solutions whenever it is possible (see,
e.g., [1–3,5–15,28–31]). In general, solving nonlinear difference equations is a very
challenging task. The main reason behind this difficulty is due to the fact that there
is no known systematic method to follow in dealing with the solutions of these type
of problems. However, in some occasions, the form of solutions of some nonlinear
difference equations are derive through reduction to equations with known explicit
solutions. Several recent results can be found in the following papers [17–27].

In this work, we shall use appropriate substitutions on variables and reduction to
first order linear difference equations to explicitly solve for the well-defined solutions
of the following system of difference equations:

xn+1 = axn yn−1

yn − α
+ β, yn+1 = bxn−1yn

xn − β
+ α, n ∈ N0, (1.1)

where the parameters a, b, α, β and initial values x−i , y−i , i = 0, 1 are non-zero
real numbers.

This study is actually motivated by a recent result of Elabassy et al. found in [4].
In particular, the authors of [4] obtain, among other things, the form of solutions of
the difference equation

xn+1 = xnxn−1

xn − 1
+ 1, n ∈ N0.

Remark 1 By a well-defined solution of system (1.1), we mean a solution such that

yn − α �= 0, xn − β �= 0, n ∈ N0.

For example, if we choose the parameters a, b, α, β and initial values positive such
that x0 > β and y0 > α, then all solutions of system (1.1) are well-defined.

On the other hand, if at least one of the initial values x−i , y−i , i = 0, 1, is zero,
then the solutions of system (1.1) are not defined. Assume for example that x−1 = 0,
then we get y1 = α, and so x2 is not defined. This explains why we have to choose
the initial values to be nonzero.

For every well-defined solution of system (1.1) we have

xn �= 0, yn �= 0, ∀ n ≥ 1.

In fact suppose, for example, that there is n0 ≥ 1 such that xn0 = 0, then from system
(1.1), we get
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Well-defined solutions of a system of difference equations 441

xn0+1 = ayn0−1xn0
yn0 − α

+ β = β

and so, it follows that, yn0+2 is not defined.

The following well known lemma shall be central to our investigation.

Lemma 1.1 ([16]). Let (an)n∈N0 and (bn)n∈N0 be two sequences of real numbers and
consider the linear difference equation

yn+1 = an yn + bn, n ∈ N0.

Then,

yn =
(
n−1∏
i=0

ai

)
y0 +

n−1∑
r=0

(
n−1∏

i=r+1

ai

)
br .

Moreover, if (an)n∈N0 and (bn)n∈N0 are constant (i.e. an = a and bn = b for some
real numbers a and b for all n ∈ N0), then

yn =
⎧⎨
⎩

y0 + bn, a = 1,

an y0 +
(
an − 1

a − 1

)
b, otherwise,

n ∈ N0.

Throughout the rest of the discussion we assume,
∏k

j=i A j = 1 and
∑k

j=i A j = 0
for all k < i .

The rest of the paper is structured as follows: in Sect. 2, we derive the closed-
form solution of system (1.1). In Sect. 3, we examine the asymptotic behavior and
periodicity of solutions of system (1.1) when a = b. We present some numerical
examples in Sect. 4, and finally, in Sect. 5 we provide a summary and conclusion of
the present study.

2 Form of solutions of system (1.1)

We give in this section the following result describing the form of (well-defined)
solutions of system (1.1).

Theorem 2.1 Let {(xn, yn)}n≥−1 be a well-defined solution of system (1.1). Then, for
n ∈ N0,

x2n =
(
n−1∏
t=0

(a
b

)2t+1
d

)
x0 +

n−1∑
r=0

(
n−1∏

t=r+1

(a
b

)2t+1
d

) ((a
b

)r+1 x0 − β

x−1
+ 1

)
β,

x2n−1 =
(
n−1∏
t=0

(a
b

)2t
d

)
x−1 +

n−1∑
r=0

(
n−1∏

t=r+1

(a
b

)2t
d

) ((a
b

)r ay−1

y0 − α
+ 1

)
β,
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442 N. Haddad et al.

y2n =
(
n−1∏
t=0

(
b

a

)2t+1 ab

d

)
y0

+
n−1∑
r=0

(
n−1∏

t=r+1

(
b

a

)2t+1 ab

d

)((
b

a

)r+1 y0 − α

y−1
+ 1

)
β,

y2n−1 =
(
n−1∏
t=0

(
b

a

)2t ab

d

)
y−1 +

n−1∑
r=0

(
n−1∏

t=r+1

(
b

a

)2t ab

d

) ((
b

a

)r bx−1

x0 − β
+ 1

)
β,

where

d = ay−1(x0 − β)

x−1(y0 − α)
.

Proof We first rearrange system (1.1) as follows

xn+1 − β

xn
= a yn−1

yn − α
,

yn+1 − α

yn
= b xn−1

xn − β
.

Putting

vn := xn − β

xn−1
, un := yn − α

yn−1
, n ∈ N0, (2.1)

we get

vn+1 = a

un
, un+1 = b

vn
, n ∈ N0, (2.2)

and so

vn+2 = a

b
vn, un+2 = b

a
un, n ∈ N0.

Hence, for n ∈ N0, we have

v2n =
(a
b

)n
v0, v2n+1 =

(a
b

)n
v1, u2n =

(
b

a

)n

u0, u2n+1 =
(
b

a

)n

u1.

(2.3)

Rearranging Eq. (2.1), we get

xn = vnxn−1 + β, yn = un yn−1 + α. (2.4)

Replacing n by 2n and respectively by 2n + 1 in Eq. (2.4), we get (using the relations
in Eq. (2.3))
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Well-defined solutions of a system of difference equations 443

x2n = v2nx2n−1 + β =
(a
b

)n
v0x2n−1 + β, n ∈ N0,

x2n+1 = v2n+1x2n + β =
(a
b

)n
v1x2n + β, n ∈ N0,

y2n = u2n y2n−1 + α =
(
b

a

)n

u0y2n−1 + α, n ∈ N0,

y2n+1 = u2n+1y2n + α =
(
b

a

)n

u1y2n + α, n ∈ N0 .

which implies that

x2n+1 =
(a
b

)2n
v0v1x2n−1 +

(a
b

)n
v1β + β, n ∈ N0, (2.5)

x2n+2 =
(a
b

)2n+1
v0v1x2n +

(a
b

)n+1
v0β + β, n ∈ N0, (2.6)

y2n+1 =
(
b

a

)2n

u0u1y2n−1 +
(
b

a

)n

u1α + α, n ∈ N0, (2.7)

y2n+2 =
(
b

a

)2n+1

u0u1y2n +
(
b

a

)n+1

u0α + α, n ∈ N0 . (2.8)

Let,

Kn = x2n−1, Ln = x2n, Rn = y2n−1, Sn = y2n, n ∈ N0. (2.9)

Then, from (2.5)–(2.8), we get the following non-homogeneous linear first order recur-
sive sequence with variable coefficients

Kn+1 =
(a
b

)2n
v0v1 Kn +

((a
b

)n
v1 + 1

)
β, n ∈ N0,

Ln+1 =
(a
b

)2n+1
v0v1 Ln +

((a
b

)n+1
v0 + 1

)
β, n ∈ N0,

Rn+1 =
(
b

a

)2n

u0u1 Rn +
((

b

a

)n

u1 + 1

)
α, n ∈ N0,

Sn+1 =
(
b

a

)2n+1

u0u1 Sn +
((

b

a

)n+1

u0 + 1

)
α, n ∈ N0 .

By virtue of Lemma 1.1 and from Eq. (2.9), it follows that for n ∈ N0, we have

x2n−1 =
(
n−1∏
t=0

(a
b

)2t
v0v1

)
x−1 +

n−1∑
r=0

(
n−1∏

t=r+1

(a
b

)2t
v0v1

) ((a
b

)r
v1 + 1

)
β,

x2n =
(
n−1∏
t=0

(a
b

)2t+1
v0v1

)
x0+

n−1∑
r=0

(
n−1∏

t=r+1

(a
b

)2t+1
v0v1

)((a
b

)r+1
v0 + 1

)
β,
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444 N. Haddad et al.

y2n−1 =
(
n−1∏
t=0

(
b

a

)2t

u0u1

)
y−1 +

n−1∑
r=0

(
n−1∏

t=r+1

(
b

a

)2t

u0u1

) ((
b

a

)r

u1 + 1

)
β,

y2n =
(
n−1∏
t=0

(
b

a

)2t+1

u0u1

)
y0

+
n−1∑
r=0

(
n−1∏

t=r+1

(
b

a

)2t+1

u0u1

)((
b

a

)r+1

u0 + 1

)
β.

Now, let d = v0v1. Then, from (2.1) and (2.2), we have v0 = x0−β
x−1

, u0 = y0−α
y−1

, v1 =
ay−1
y0−α

, u1 = bx−1
x0−β

, d = ay−1(x0−β)
x−1(y0−α)

, and u0u1 = bx−1(y0−α)
y−1(x0−β)

= ab
d . Upon substituting

these values to the above formulas, we arrive at the conclusion. This ends the proof. ��

3 Asymptotic behavior and periodicity of solutions of system (1.1) when
a = b

In this section we study the case when a = b. Particularly, we examine the asymptotic
behavior and periodicity of well-defined solutions of system (1.1). In this regard, the
following corollary, which is a direct consequence of Theorem 2.1, is needed.

Corollary 3.1 Let {(xn, yn)}n≥−1 be a well-defined solution of system (1.1) with
a = b. Then, for n ∈ N0,

x2n−1 =
⎧⎨
⎩
x−1 + h1βn, d = 1,

dnx−1 +
(
dn − 1

d − 1

)
h1β, otherwise,

(3.1)

x2n =
⎧⎨
⎩
x0 + h0βn, d = 1,

dnx0 +
(
dn − 1

d − 1

)
h0β, otherwise,

(3.2)

y2n−1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y−1 + t1αn, d = a2,(
a2

d

)n

y−1 +
⎡
⎢⎣

(
a2
d

)n − 1

a2
d − 1

⎤
⎥⎦ t1α, otherwise,

(3.3)

y2n =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y0 + t0αn, d = a2,(
a2

d

)n

y0 +
⎡
⎢⎣

(
a2
d

)n − 1

a2
d − 1

⎤
⎥⎦ t0α, otherwise,

(3.4)

where

h0 = x0 − β

x−1
+ 1, h1 = ay−1

y0 − α
+ 1, t0 = y0 − α

y−1
+ 1, t1 = ax−1

x0 − β
+ 1.
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Well-defined solutions of a system of difference equations 445

In the following theorem, we study the limiting properties of solutions of system
(1.1).

Theorem 3.2 Let {(xn, yn)}n≥−1 be awell-defined solution of system (1.1)with a = b.
Then, the following statements are true.

(a) If (d − 1)x0 + h0β �= 0, then we have

lim
n→∞ |x2n| =

⎧⎨
⎩

∣∣∣∣ h0β

d − 1

∣∣∣∣ , |d| < 1,

∞, |d| > 1.

Otherwise, if (d − 1)x0 + h0β = 0 and d �= 1, then x2n = x0 for all n ∈ N0.
(b) Suppose d = 1. If x0 + x−1 �= β (i.e. h0 �= 0), then |x2n| → ∞, as n → ∞.

Otherwise, if x0 + x−1 = β (i.e. h0 = 0), then x2n = x0 for all n ∈ N0.
(c) If (d − 1)x−1 + h1β �= 0, then we have

lim
n→∞ |x2n−1| =

⎧⎨
⎩

∣∣∣∣ h1β

d − 1

∣∣∣∣ , |d| < 1,

∞, |d| > 1.

Otherwise, if (d − 1)x1 + h1β = 0 and d �= 1, then x2n−1 = x−1 for all n ∈ N0.
(d) Suppose d = 1. If ay−1 + y0 �= α (i.e. h1 �= 0), then |x2n−1| → ∞, as n → ∞.

Otherwise, if ay−1 + y0 = α (i.e. h1 = 0), then x2n−1 = x−1 for all n ∈ N0.

(e) If ( a
2

d − 1)y0 + t0α �= 0, then we have

lim
n→∞ |y2n| =

⎧⎨
⎩

∞, |d| < a2,∣∣∣∣ t0αd

d − a2

∣∣∣∣ , |d| > a2.

Otherwise, if ( a
2

d − 1)y0 + t0α = 0 and d �= a2, then y2n = y0 for all n ∈ N0.
(f) Suppose d = a2. If y0 + y−1 �= α, then |y2n| → ∞, as n → ∞. Otherwise, if

y0 + y−1 = α, then y2n = y0 for all n ∈ N0.

(g) If ( a
2

d − 1)y−1 + t1α �= 0, then we have

lim
n→∞ |y2n−1| =

⎧⎨
⎩

∞, |d| < a2,∣∣∣∣ t1αd

d − a2

∣∣∣∣ , |d| > a2.

Otherwise, if ( a
2

d − 1)y−1 + t1α = 0 and d �= a2, then y2n−1 = y−1 for all
n ∈ N0.

(h) Suppose d = a2. If ax−1 + x0 �= β, then |y2n−1| → ∞, as n → ∞. Otherwise,
if ax−1 + x0 = β, then y2n−1 = y−1 for all n ∈ N0.

Proof We’ll only prove properties (a) and (b). The rest follows the same inductive
lines. First, suppose that (d − 1)x0 + h0β �= 0. Then, it follows that, x2n �= 0.
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Evidently, if |d| < 1, then |d|n → 0 as n → ∞. On the other hand, if |d| > 1, then
|d|n → ∞ as n → ∞. So, from (3.2), we have

lim
n→∞ |x2n| = lim

n→∞

∣∣∣∣ (d − 1)x0 + h0β

d − 1
dn + h0β

1 − d

∣∣∣∣
=

∣∣∣∣ (d − 1)x0 + h0β

d − 1
lim
n→∞ dn + h0β

1 − d

∣∣∣∣
=

⎧⎨
⎩

∣∣∣∣ h0β

d − 1

∣∣∣∣ , |d| < 1,

∞, |d| > 1.

Now, on the other hand, if (d − 1)x0 + h0β = 0 and d �= 1. Then, we get

x2n = dnx0 +
(
dn − 1

d − 1

)
h0β = dnx0 +

(
dn − 1

d − 1

)
(−(d − 1)x0)

= dnx0 − (dn − 1)x0 = x0, ∀n ∈ N0.

This proves property (a). Now we proceed on proving (b). So we suppose that d = 1.
If x0 + x−1 �= β (i.e. h0 �= 0), then from (3.2) we have

x2n = x0 +
(
x0 + x−1 − β

x−1

)
βn �= 0.

Letting n → ∞ in above equation implies that |x2n| → ∞. On the other hand, if
x0 + x−1 = β (i.e. h0 = 0), then obviously,

x2n = x0 +
(
x0 + x−1 − β

x−1

)
βn = x0 + 0 · βn = x0, ∀ n ∈ N0.

This proves property (b). ��

The following result is devoted to the periodicity of the solutions.

Corollary 3.3 Let {(xn, yn)}n≥−1 be a well-defined solution of system (1.1) with
a = b. Then the following statements are true.

(a) If d = −1, then for all n ∈ N0, we have

⎧⎪⎪⎨
⎪⎪⎩
x4n−1 = x−1,

x4n = x0,
x4n+1 = −x−1 + h1β,

x4n+2 = −x0 + h0β.

123



Well-defined solutions of a system of difference equations 447

(b) If d = −a2, then for all n ∈ N0, we have

⎧⎪⎪⎨
⎪⎪⎩

y4n−1 = y−1,

y4n = y0,
y4n+1 = −y−1 + t1α,

y4n+2 = −y0 + t0α.

(c) If a = 1, αx0 + βy0 = αx−1 + βy−1 = αβ and x−1 + x0 �= β, then for all
n ∈ N0, we have

⎧⎪⎪⎨
⎪⎪⎩
x2n−1 = x−1,

x2n = x0,
y2n−1 = y−1,

y2n = y0.

Proof (a) When d = −1, then from (3.1) and (3.2), we have for n ∈ N0

x2n−1 = (−1)n x−1 +
(
1 − (−1)n

2

)
h1β,

x2n = (−1)n x0 +
(
1 − (−1)n

2

)
h0β.

Depending on the parity of n, we get for n ∈ N0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x4n−1 = (−1)2n x−1 +
(
1 − (−1)2n

2

)
h1β = x−1,

x4n+1 = (−1)2n+1 x−1 +
(
1 − (−1)2n+1

2

)
h1β = −x−1 + h1β,

x4n = (−1)2n x0 +
(
1 − (−1)2n

2

)
h0β = x0,

x4n+2 = (−1)2n+1 x0 +
(
1 − (−1)2n+1

2

)
h0β = −x0 + h0β.

(b) When d = −a2, from (3.3) and (3.4), we get for n ∈ N0

y2n−1 = (−1)n y−1 + (−1)n − 1

−2
t1α,

y2n = (−1)n y0 + (−1)n − 1

−2
t0α.
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Depending on the parity of n, we get for n ∈ N0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y4n−1 = (−1)2n y−1 +
(
1 − (−1)2n

2

)
t1α = y−1,

y4n+1 = (−1)2n+1 y−1 +
(
1 − (−1)2n+1

2

)
t1α = −y−1 + t1α,

y4n = (−1)2n y0 +
(
1 − (−1)2n

2

)
t0α = y0,

y4n+2 = (−1)2n+1 y0 +
(
1 − (−1)2n+1

2

)
t0α = −y0 + t0α.

(c) When a = 1 and αx0 + βy0 = αx−1 + βy−1 = αβ, we get

d − 1 = β − x−1 − x0
x−1x0

β, h1 = x−1 − β

x0
+ 1, and t0 = x0

x−1 − β
+ 1

from which it follows that (d − 1)x0 + h0β, (d − 1)x−1 + h1β, (1− d)y0 + t0αd and
(1 − d)y−1 + t1αd are zero. As x−1 + x0 �= β (i.e.d �= 1), then from the results of
Theorem 3.2, we obtain

x2n−1 = x−1, x2n = x0, y2n−1 = y−1, y2n = y0, ∀n ∈ N0.

��
The following result follows from Theorem 3.2 and Corollary 3.3.

Corollary 3.4 Let {(xn, yn)}n≥−1 be a well-defined solution of system (1.1) with a =
b. Then, the following statements are true.

(a) If |a| = 1 and ay−1(x0 − β) = x−1(α − y0) (i.e., d = −1), then the solution is
periodic of period 4.

(b) If a = 1, x−1 + x0 = β and y−1 + y0 = α (i.e., d = 1), then the solution is
periodic of period 2.

(c) If a = 1, x−1 + x0 �= β, and αx0 + βy0 = αx−1 + βy−1 = αβ, then the solution
is periodic of period 2.

The following remark provides an observation regarding the one-dimensional case
of system (1.1).

Remark 2 Let a = b and α = β. If we choose initial conditions which satisfy the
relation x−i = y−i , i = 0, 1, then system (1.1) will reduced to a one-dimensional
case. Particularly, we shall obtain the nonlinear difference equation

xn+1 = axnxn−1

xn − α
+ α, n ∈ N0. (3.5)

123



Well-defined solutions of a system of difference equations 449

By Corollary 3.1, we get for n ∈ N0, the following form of solutions of Eq. (3.5)

x2n =
⎧⎨
⎩
x0 + h0αn, a = 1,

anx0 +
(
an − 1

a − 1

)
h0α, otherwise.

(3.6)

x2n−1 =
⎧⎨
⎩
x−1 + h1αn, a = 1,

anx−1 +
(
an − 1

a − 1

)
h1α, otherwise.

(3.7)

In [4], the authors gave the form of the solutions of the equation

xn+1 = xnxn−1

xn − 1
+ 1, n ∈ N0,

which is a special case of Eq. (3.5) with a = α = 1. Clearly the formulas of the
solutions given in [4] follows from (3.6) and (3.7).

4 Numerical examples

In this section we provide some numerical examples which represent different types
of the asymptotic behavior and periodicity of well-defined solutions of system (1.1)
with a = b.

Example 4.1 (a) Consider the parameters

a b α β x−1 x0 y−1 y0
1 1 1 1/2 −5/12 1/4 5/4 1/4

(4.1)

We have d = −1 = −a2, then in view of cases (a) and (b) of Corollary 3.3, the
solution is periodic of period 4 and takes the form

{(−5

12
,
5

4

)
,

(
1

4
,
1

4

)
,

(
1

12
,
17

12

)
,

(
11

20
,
3

20

)
,

(−5

12
,
5

4

)
,

(
1

4
,
1

4

)
,

(
1

12
,
17

12

)
,

(
11

20
,
3

20

)
, . . .

}
.

See, Figs. 1 and 2.
(b) Consider the parameters

a b α β x−1 x0 y−1 y0
1 1 1 1/2 − 61

150 1/4 5/4 1/4
(4.2)

We have choose the same parameters as in case (a) except for x−1 we have take the
value − 61

150 = −5
12 + 1

100 . From Figs. 3, 4 and 5, we can see that

lim
n→∞ |x2n| = lim

n→∞ |x2n+1| = ∞
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Fig. 1 Plots of xn of Example 4.1.(a)

0 10 20 30 40 50
0

0.5

1

1.5

n

y(
n)

Fig. 2 Plots of yn of Example 4.1.(a)

and

lim
n→∞ |y2n| 
 0.2 


∣∣∣∣ t0αd

d − a2

∣∣∣∣ = 50

247
, lim
n→∞ |y2n+1| 
 1.33 


∣∣∣∣ t1αd

d − a2

∣∣∣∣ = 985

741
.

This is true because |d| = 125
122 > 1 = a2, see Theorem 3.2.
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Fig. 3 Plots of xn of Example 4.1.(b)
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n

y(
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)

Fig. 4 Plots of y2n+1 of Example 4.1.(b)

(c) Consider the parameters

a b α β x−1 x0 y−1 y0
1 1 1 1/2 − 32

75 1/4 5/4 1/4
(4.3)

We have choose the same parameters as in case (a) except for x−1 we have take the
value − 32

75 = −5
12 − 1

100 . From Figs. 6, 7 and 8, we can see that
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Fig. 5 Plots of y2n of Example 4.1.(b)
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Fig. 6 Plots of yn of Example 4.1.(c)

lim
n→∞ |y2n| = lim

n→∞ |y2n+1| = ∞

and

lim
n→∞ |x2n| 
 0.4 


∣∣∣∣ h0β

d − 1

∣∣∣∣ = 203

506
, lim
n→∞ |x2n+1| 
 0.17 


∣∣∣∣ h1β

d − 1

∣∣∣∣ = 128

759
.
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Fig. 7 Plots of x2n of Example 4.1.(c)
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0.2

n

x(
2n
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)

Fig. 8 Plots of x2n+1 of Example 4.1.(c)

This is true because |d| = 125
128 < 1 = a2, see Theorem 3.2.

Example 4.2 Consider the parameters

a b α β x−1 x0 y−1 y0
1 1 3 5 −10 10 9 −3

(4.4)
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Fig. 9 Plots of xn of Example 4.2

We have

x−1 + x0 �= β, αx0 + βy0 = αx−1 + βy−1 = αβ.

So, in view of case (c) of Corollary 3.4, the solution is periodic of period 2 and takes
the form

{(−10, 9), (10,−3), (−10, 9), (10,−3), . . .} .

See, Figs. 9 and 10.

Example 4.3 Consider the parameters

a b α β x−1 x0 y−1 y0
1/2 1/2 2 1 1 2 1 3

. (4.5)

We have 1
4 = a2 < |d| = 1

2 < 1 and we can see from Figs. 11, 12, 13 and 14 that the
sub-sequences (x2n), (x2n+1), (y2n) and (y2n+1) are convergent. This, agree with our
result stated in Theorem 3.2, that is

lim
n→∞ x2n =

∣∣∣∣ h0β

d − 1

∣∣∣∣ = 4, lim
n→∞ x2n+1 =

∣∣∣∣ h1β

d − 1

∣∣∣∣ = 3,

lim
n→∞ y2n =

∣∣∣∣ t0αd

d − a2

∣∣∣∣ = 8, lim
n→∞ y2n+1 =

∣∣∣∣ t1αd

d − a2

∣∣∣∣ = 6.
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Fig. 10 Plots of yn of Example 4.2
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Fig. 11 Plots of x2n of Example 4.3

5 Summary and conclusion

In this paper, we are able to derive analytically the form of well-defined solutions of
system (1.1). Also, we have obtained conditions on when the system (with a = b)
admits periodic solutions. In fact, we have shown that, under appropriate conditions
imposed on the parameters a, α and β, and the initial values x−1, x0, y−1 and y0,
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Fig. 12 Plots of x2n+1 of Example 4.3
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Fig. 13 Plots of y2n of Example 4.3

system (1.1) may admits periodic solutions with periodicity two or four. Moreover, we
have illustrate (through numerical examples) the asymptotic behavior and periodicity
character of the solutions. Consequently, the results presented here were analytically
justified, and verified through numerical examples. In addition, the results delivered
here contributed to the understanding of the complex behavior of solutions of the class
of nonlinear system of difference equations considered in this paper. We expect that
more interesting results will be obtained when a �= b.
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Fig. 14 Plots of y2n+1 of Example 4.3
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