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Foreground Segmentation in Videos Combining
General Gaussian Mixture Modeling and Spatial
Information

Aissa Boulmerka and Mohand Said Allili

Abstract—We present a new statistical approach combining tem-

poral and spatial information for robust online background subtrac-
tion (BS) in videos. Temporal information is modeled by coufing
finite mixtures of Generalized Gaussian (MoGG) distributions with
foreground/background co-occurrence analysis. Spatiahiformation
is modeled by combining multi-scale inter-frame correlaton anal-
ysis and histogram matching. We propose an online algorithnthat
efficiently fuses both information to cope with several BS chllenges,
such as cast shadows, illumination changes, and various cphex
background dynamics. In addition, global video information is used
through a displacement measuring technique to deal with padtilt-
zoom (PTZ) camera effects. Experiments with comparison wit
recent state-of-the-art methods have been conducted on st@ard
datasets. Obtained results have shown that our approach spasses
several state-of-the-art methods on the aforementioned eflenges
while maintaining comparable computational time.

Index Terms—Background subtraction (BS), temporal/spatial
information, mixture models, co-occurrence/correlation analysis,
cast shadows, dynamic backgrounds, pan-tilt-zoom (PTZ).

I. INTRODUCTION

Background subtraction (B$ a fundamental and crucial tas

To cope with BS challenges such as complex dynamic back-
grounds or illumination changespatiotemporalapproaches
have been proposed. These approaches have the advantakye of t
ing into account dependencies between pixels by incorimgrat
both temporal and spatial information. Spatiotemporalyesis
can be performed through several techniques, such as Ispatia
GMM [53], texture analysis [21], [7], Markov random fieldsl[4
video bricks [31], [9], and low-rank and sparse decompaositi
[14], [18], [23], [49], to name a few. Usually, these methgilse
more robust BS results than using only temporal information
However, most of the proposed algorithms are dedicated to
dealing with one or two challenges but give poor performance
for other challenges [6]. For example, methods dealing with
dynamic backgrounds are generally less efficient to dedh wit
cast shadows and sudden illumination changes [5]. Finalhst
of these methods are limited by their high computationalt cos
and they are not easily adaptable to online video processing

Real-world videos may also be acquired using moving cam-

eras. Most of methods dealing with such case use motion-

for several video processing applications such as smagovicompPensated BS or video segmentation. Motion-compensated

surveillance [10], human activity recognition [52] anddrsctive

BS estimate first the motion of the camera from the video,

gaming [16]. Over the past years, a tremendous number of B&d then operate the BS using static-camera techniques [47]
techniques have been proposed (see [5], [38], [40] and r&f<l- Video segmentation approachesoups pixels into spa-

therein). To simplify the problem formulation and ensuredo
success, BS algorithms generally assume three conditi]ns

stationary cameras, constant illumination conditions atadic

tiotemporal regions that exhibit coherence in both appesra
fmd motion [20]. Foreground objects are then detected using
echniques such as ranking object proposals [29], [32]],[63

background (i.e., no dynamics or noise occur in the backgipu [37], saliency detection [57], [59], [58], multi-state setion

Several challenges arise from the violation of these cadit
among which:cast shadows and illumination changesynamic
backgrounds noisy videos camera jitter stationary objects

graph [17], constrained Laplacian optimization [48] andnpo
trajectories [8]. Video segmentation techniques are mdapted
for videos acquired by moving cameras. However, most of

camouflagandpan-tilt-zoom(PTZ) camera effects. These chalthes€ methods are computationally intensive and are dasign

lenges usually produce a huge amount of false positivesoan&P

negatives (see [5] for an extended list of BS challenges).

perform in an offline scenario [57].
We propose an online approach for background subtraction

Considering the case of static-camera videos, several &BS) that is efficient for coping with several challenges con
proaches have been proposed to address some of the afoeening videos acquired by static cameras or containing PTZ
mentioned challenges [5], [45Jemporal approachelsave been effects. Our model combines temporal and spatial inforomati
proposed to cope with multimodal backgrounds and graddatl BS. Temporal information is modeled locally using anioet
illumination changes, for examplparametric statistical models learned mixture of generalized Gaussian (MoGG) distrdnsti
and non-parametric modeldhave been used to model pixel[l]. In fact, MOGGs are more efficient than GMMs to fit a broad

history. Generally, statistical models can achieve goartass

range of data histograms (e.g., widptokurtic and platykurtic

in separating moving objects from mild background changesodes) and is more robust to noise and outliers. Herein, we

(e.g., swaying trees, gradual daylight changes, etc.). edew

introduce a new procedure for real-time online updatinghef t

assuming independent temporal constraint is not sufficient MOGG parameters in the context of BS. Moreover, we use
handle complex BS challenges. Therefore, temporal apphesacbackground/foreground co-occurrence analysis to enhémee

may lead to a huge amount of false detections especially MOGG ability to model different background dynamics. This
the presence of shadows, sudden illumination changes ran@ltows to drastically decrease the amount of false positive

complex background dynamics (e.g. fountains, camera)jitte

caused by complex background dynamics (e.g., fountaing) an
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give more flexibility to model variable pixel state durati@®pa- Temporal-based approaches have been used a lot in the
tial information is incorporated through multi-scale infeame literature since they are simple to implement and give more
correlation analysis and histogram matching. Our appraexth precise detection. However, these methods may fail withptem
only allows for dissociating changes due to shadows and illscenarios, as they consider only the pixel history and gk
mination changes from those of moving objects, but also fany kind of pixel spatial context.

enhancing the accuracy of BS in the presence of noise, camera

jitter and complex background dynamics. Finally, we usechal g Spatiotemporal-based approaches

technique based on inter-frame displacement analysis &b deI d of loit hi f vixels ind
with simple PTZ camera motion effects. Experiments on steshd nstead of exploiting temporal history of pixels indepentig

datasets have shown that our method outperforms sevetad Stapatiotempora_l approa_chetﬁke into copsideration both spatial
of-the-art methods on most of the challenges mentionedaabo@nd temporal information when_modellng and/or Sepfr’“am t
This paper is organized as follows: Section Il presentdedla packgrognd/_foreground. Accordmg o the level at whichtispa
work. Section 1ll describes our approach combining temboH%form_at'o_n Is used, spat|(_)te.mp0ral approaches can bedyroa
and spatial information modeling for BS. Section IV presemir ¢ assmed_ln three categorles: region, br'Ck. anql framelseve
experimental results. We end with a conclusion and pergsct 1) Region-level modelsA fixed size region is used around
a pixel to include neighborhood information. For examp24][

proposed a BS method where local temporal and spatial data
are assumed to follow the same distribution. This method can
A. Temporal-based approaches achieve some robustness to noise and coherence for foretjrou
Temporal approaches consider the history of independelgtection. However, it is not efficient in dealing with shado
pixels; and thus construct a global background model. Tlaey dllumination changes, and complex background dynamics. In
be classified in two following subcategories. [53], a GMM extension is proposed by taking into account
1) Parametric modelsGaussian mixture models (GMMs) arethe spatial dependency between pixels at the region leves T
the most popular parametric models used for BS [50], [25llows to perform BS in scenes with dynamic background and
GMMs are able to cope with gradual illumination changes amémera jitter. Hofmanmet al. proposed the PBAS [22] which is
backgrounds with small repetitive motions (e.g., movingere based on dynamic thresholding aamdeighboring random ruléo
tation, etc.) [35], [65]. However, slow objects tend to bpidly update the background model over time. This method is efficie
absorbed by the background. In addition, sudden illumamati in coping with background dynamics (e.g., swaying tre¢tr)i,
changes and shadows generate object-like patterns of motioit objects tend to be rapidly absorbed by backgrounds while
that are classified as foreground. Finally, the GMM learninghadows and illumination changes can be detected as objets.
rate is usually hand-tuned and does not adapt to the vidednspired by PBAS, the SUBSENSE algorithm [7] udesal
content. Several improvements have been proposed to ieitigainary patterngLBP) to model the relationship between neigh-
these limitations by automatic updating of the GMM compdneboring pixels along with pixel-level feedback loop for dynia
number and learning rate [25], [65], using adaptive thrisho decision thresholds. This enables to model several types of
[35], or by replacing the Gaussian distribution with moreifdée  background dynamics. However, it does not deal efficientt w
ones [13]. These improvements can achieve some automaflbnmination changes, shadows, and camouflage problems. In
in adapting the GMM parameters to background dynamidg.l], Markov random field{MRFs) have been used to model
However, the performance drastically decreases with ehglls the spatial coherence between pixels for BS. Generally, MRF
such as thick shadows and complex background dynamics. provide spatial consistency for BS labeling but are lesgiefit
Pixel history can also be modeled as finite states corie-handle challenges such dynamic backgrounds, shadowms, ca
sponding to events (e.g., lights on/off, cloudy/sunny ojeob era jitter and PTZ effects. In addition, they are computetlo
presence/absence) [51]. For instance, hidden Markov raodietensive which is limitation to real-time processing. @gily,
(HMMs) have been successfully used to model motorway evemggjion-based approaches allow to deal locally with noignss
("background”, "shadow” and "moving cars”) [26], [43]. Met and mild background dynamics, but are sensitive to sudden
ods using HMMs can be effective in modeling scenarios withumination and complex dynamics.
consistent temporal behavior. However, they lack flexipiby 2) Brick-level models:In these approaches, 3D spatiotem-
having tight temporal duration for each state [26]. poral structures namedideo bricks are exploited to build
2) Non-parametric modelKernel Density Estimation (KDE) background models for BS. Liet al. [31] have designed a
is a non-parametric pixel level background modeling apginoa3D descriptor to deal with complex background scenes by
[12]. KDE guarantees a smooth and continuous version pfirsuing subspaces within video bricks and using the ARMA
the background distribution. However, it is very demandin@uto regressive moving average model) to separate faragso
regarding computational time and memory storage. Besidé®mm instable backgrounds. However, the method lacks fikyib
shadows and illumination changes are not well handled usitgydeal with more challenging scenes. In [34], a spatiotaapo
this approach. In [27], the background model is built usinggliency algorithm is proposed for foreground detectiohisT
codewords which are created by clustering sample backgrous carried out by combining 3D motion features and dynamic
values at the pixel level during a training phase. This adld texture models. This method outperforms its predecessprs b
describe dynamic background regions and avoid stoppedtobjeducing the average error rate, but at a cost of a huge com-
using a limited memory. However, this approach cannot hendiutational time. Cheret al. [9] have used optical flow (OF)
permanent background changes since the updating mechartismefine and update the noisy background obtained from the
does not allow the creation of new codewords. GMMs. This enables to deal efficiently with scenes contajnin

Il. RELATED WORK
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stopped objects or objects with slow motion (e.g., stop o, [1l. TEMPORAL/SPATIAL INFORMATION MODELING
person waiting in a queue). However, errors in OF estimationTne proposed algorithm is composed of temporal and spatial
may badly influence the accuracy of the derived BS. modules interacting with each other for efficient BS (see E)g

3) Frame-level modelsThese can be considered as the eXremporal information is modeled by combining MoGGs and co-
treme case of the brick level when the size of bricks are tlecurrence analysis, which allows for an accurate reptagen
frames. One of the most used approaches in this categoryisvarious complex background dynamics. Spatial infororati
eigenvalue decompositiaf spatiotemporal video volumes [36].is incorporated into the method using correlation analysid
It enables implicit encoding of spatial relation betweerefs histogram matching which mitigate effects of cast shadbwggh-
while avoiding tiling effects of block partitioning. Sewaworks Jights, illumination changes and PTZ effects. This infotioi is
in the past have proposed to extract video foregrounds sing also used to derive an adaptive scheme to estimate thergarni
rank and sparse decompositiera Robust Principal Componentrate of the MoGG parameters. This scheme contributes also to
Analysis (RPCA) [11], [49], [18]. Videos are decomposedintaccelerate the convergence rate of the background model and
two matrices, a low-rank matrix representing the backgdouprevent it from rapidly absorbing objects.
and a sparse matrix representing the foreground. Otheionsrs
of this approach using Higher-order RPCA (HOoRPCA) [18] . . . . .
Bayesian Tensor Factorization (BRTF) [64] and RPCA with é' Basic temporal information modeling using MoGGs
dynamic tree-structured foreground [11] have been prapose The MoGG model has the flexibility to accurately fit different

One of the major limitations of RCPA-based approaches I?gstogram shapes while ensuring robustness to noise and/or

their tendency to recognize foreground objects with slowiomo o_utliers_ which cause heavy-tail_ed distri_butions [2]_' The_eo .
as background. Moreover, they are not efficient in procgssiﬂ'mens'onal generalized Gaussian density (GGD) is defined i

videos in an online fashion in addition of being computaﬂonR as follows:

demanding. To overcome these drawbacks, some online ap- ,(x|9) = K (X, o) exp ( — AN [(X — p)/o*), (1)
proaches have been proposed [14], [23], [49]. In [49], arnenl _

tensor decomposition of spatiotemporal features is pregpésr Where ¢ = {u,0,A} is the set of GGD parameters,
foreground detection. In the same vein, online tensor sadesp (A, o) = Ay/I'(3/A)/T'(1/A)/(20T(1/A)) and A(X) =

learning [23] is used to represent spatial dependenciegeket [['(3/A)/T'(1/3)]*/%; T(.) being the gamma function. The pa-
pixels for foreground detection. These approaches caneféal rametersy and o are the GGD location and scale parameters.
ciently with some challenges in an online fashion. Howereg, The parametei controls the kurtosis of the probability density
not generalizable to all challenges (e.g., complex baakuie function (pdf) and determines whether its shape is peakédtor
dynamics, camera jitter, local illumination changes, sivesland To model temporal changes in video, we consider the histbry o
PTZ effects), while they are computationally expensive. each pixel(z, y) at timet as {Xo, ..., X;}. Each vectorX, is

—

D-dimensionalX; = (Xi4,...,Xp:) € RP (D = 3 for RGB
color). Suppose that the history of the pixel at titnise modeled
as a mixture of’ components where, given that the dimensions
of X, are independent in each class, the probability of observing

Our goal is to achieve an online BS by a simple yet efficieft® VectorX; is given as [1]:

C. Overview of our contribution

new procedures for combining spatial and temporal informa- B K .
tion. In addition to dealing with several complex backgrdun p(Xy) = ZW“ * T p(Xa|0:.a.4), (2)
dynamics, our approach is less sensitive to shadows, iflatiain i=1

changes, camera jitter and PTZ camera effects. Finallys it i

oS . . . where tﬁiyd’t = (Widt, 0idt, Nia) are parameters describing
opt|m|zed to process V|deo§ W'.th near real-time capabite the dimensiond of the ith component of the mixturey, 4,...,
briefly summarize our contributions as follows: ’

wg+ are the weights of components such t@fil wip =1

. bini | and ol inf 4 c HNd K is a parameter that represents the maximum number of
tation combining temporal and spatial information. Coneglar foreground/background components.

to previous spatia-temporal methods, our approach can COPSve assume that at framig, 1, a pixel (z, y) have vaIue)?tH

efficiently with several challenges such as cast shadohs, i nd a match is found with one of the components of the mixture

mination changes and complex ba_lck_ground dynamlc_s. We AR's say with componeri) if we have the following condition:
propose several procedures to optimize the computatiom &im

our algorithm. 2) a new scheme is proposed for temporal 4nforp(§k_¢|)?t+1) > 7, with k= arg max{p(9i7t|)z)t+1)}, (3)
mation modeling by coupling MoGGs and objects/background !

co-occurrence analysis. This enables to accurately muglelivherer is a given threshold anﬂ(@i,tpﬁﬂ) is the posterior
random background dynamics (e.g., fast foreground/backgt probability of theith mixture component. If a match is found, all
switching, fountains), 3) we model spatial informationngsi the parameters of the matched comporieaite updated, whereas
inter-frame spatial structure and histogram analysis.ti&lpa only the weight parameters are updated for the other commisne
information makes our BS method less sensitive to shadods dn no match is found, a new component of the mixture is created
illumination changes. We propose also a procedure for auaptNote that an online updating method has been proposed irsf1] u
the learning rate of the MoGG model to the scene context. Thingy the Expectation-Maximisation (EM) algorithm. Howeyvire
enables, for example, a quick absorption of drastic backgto procedure uses Fisher scoring which incurs a huge comentati
changes induced by PTZ operations. time to calculate the likelihood derivatives. Here, we oep a
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'L recent firames »><_PTZ detection Yes
Temporal Modeling Spatial Modeling
v
MoGG Co-occurrence Reference .| Correlation Histogram Learning rate
modeling and persistance frame updating analysis matching updating
.
. - = |
I A B
9
|
Input video sequence Temporal mask Temporal mask Reference frame Multisccale Multiscale Adaptive updating
without co-occurrnce with co-occurrnce ’ ’ multichannel multichannel learning rate map
NCC map Histogram map
;Tempomlpmbability map 1 v Spatial probability map—l

Combining temporal and
spatial maps

[ Post-processing ‘

Final binary mask

Fig. 1. The proposed algorithm architecture. In the binagsks: white, black, red, green and gray colors representrileepositives (TP), true negatives (TN),
false positives (FP), false negatives (FN) and unknownlgixespectively.

faster procedure based on statlstlcal moments for onlidatiy where); 441 iS the shape parameter for dimensiboomputed
the MoGG parameters. First, sm@ iy wie = 1, the weights attimet+1. The termsy; 4(.) andjy 4(.) can be updated online

are updated as follows [50]: using the following equations:
witt1 =1 —p)xwig+p*xd(i=k),i=1,.. K (4) apa(t+1) = apalt )+Xkdt+1*X;£A;td +172) 9)
. . . . (Ak,d,t 2)
where § is the delta function ang is a learning parameter. Bralt+1) = Bralt)+ X000 (10)

After this updating, we normalize all the weights. The exgtrof Finally, the scale parametey, ;. is updated in framd,., ; using
the shape parameter vect® are updated using the following the following online equation:
property [46]:
2 Okdirr = | (1= @) % (0k.a.e) 0 + ¢ % Npasr1%
Ok,d,t _ D/ Aka ) T (3/Ak.at) N
E[ | Xrdt — tk,dt | ] 2(2/Ak,a,) ’ AMkd 1) * (Xg,g,) drt o, (1)

where X, 4, are values of thelth dimension ofX assigned to Where A(\) is given in Eq. (1). The parameter represents a
component: until time ¢, 1 4., is the location parameter of thelearning rate in all the above equations where: ¢/w; and ¢

same component anBl| | Xya: — pras | | is the mean of is named the learning factor. This factor is adaptivelyneated
centered absolute values (MAV), given as: using the spatial information as explained in section lliS2e

. Appendix A for a detailed description of the MoGG parameters

1 derivations.
E[| Xkat — trar | ] = N, Z | Xkds — Mr,de |, (6)
s=1

()

B. Temporal co-occurrence and persistence modeling

In the original GMM-based BS and its variants [5], the mitur
components of each pixel are first sorted in the descending
order of their weights (i.ey parameters). Then, the background
Ei11) [Xk,d,t+1] =(1-¢)*Eq [Xk,d7t} + ¢ * XW,HL (7) model is constituted by the components with the highest lteig

values. This achieves good results only if background peatte
For a matched componeht X; can be efficiently updated for are stable over time. In case of fast intermittent switchdrig
each dimension using Eqg. (5) via a quick look-up table seargbject/background components over time, the performarice o
[46]. The location parameter of the same component is uddatae model will decrease. Fig. 2 illustrates this fact by maki

where N}, is the number of data assigned to comporientising
the shorthandXy, 4, to designate Xy, 4, — k4], the MAV is
updated online as follows:

using Eg. (8) as follows [1]: two samples in different locations of the image. The video
41 X(’\’“ w12,y is 'fountain01’ from the 'dynamicBackground’ category dfet
P 251 Xhd)s ¥ Akds gt + 1)7 (8) CDnet dataset [60]. The first location is illustrated in Fi.
w Zt“ Xﬁ;;f“ 2 Br,a(t +1) (a) where the background (grass) is well separated from the
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i & B A
(b)

Fig. 2. An illustration for static and dynamic backgroun¢s). The pixel at the
white box illustrates a static background. In the top lefsaanple frame from

the CDnet dataset [60], 'dynamicBackground’ categoryurf@in01l’ sequence.
In the top right: Red channel history of the spotted pixedutfes: 651 to 750).

(b) A dynamic background illustrated by the pixel at the kldox. Captions
are the same as in (a).

eThe final combined weights: is a K -element vector defined
as the average of th&/ combined weight vectors in the sEL

Note that componergersistencas a complementary concept
to the co-occurrence. At a given pixel we keep for each
mixture component; for j = 1,..., K a count reflecting the
number of successive occurrencesgpin time. In other words, if
¢; is matched in two successive framesndt+1, its persistence
is incremented byl. Otherwise, it is reset ta. It follows that
stable components (background or foreground) will tendaeeh
high persistence values.

Algorithm 1 combines the MoGG temporal information with
the co-occurrence/persistance information. It starth widating
the CCM and extractinthe co-occurrence weightg, then each
valuen); is divided by the corresponding persistence valye
The new vectorn encodes approximate probabilities of the
components switching, in a similar way as the Markov chain
transition matrix.The co-occurrence weightg are then com-
bined with the MoGQGemporal weightsv to build the combined
weightsr,,, using the linear formular,,, = vxw+ (1 —v) xn,
wherev € [0, 1] is a parameter that defines the importance given
to the co-occurrence weightg versusthe temporal weights.

At the end,the final combined weights can be computed as

e average of th@/ combined weight vectors using the formula

object (black car). Indeed, the grass component weight én tW s v

mixture overpasse80%. The second location is illustrated in™ — 37 2im=1 Tm- _ _

Fig. 2-(b) where the background contains dynamic random The co-occurrence factar can be adjusted a_ccordmg tq the
appearances of the ground-grass and the water drop foufiten SCENe nature. If the processed scene contains dynamic areas

rapidly intermittent switching between the two has preedrihe
background from converging rapidly to two components.

To cope with this problem, we propose to analyse tloe

occurrenceand persistenceof mixture components for acceler-

ating the convergence of the background model.;Lbé a pixel

at position(z,y), K is the number of components, and let th

set of variables and parameters be defined as follows:
e The component co-occurrence matrix (CCMl)is a K x K

matrix with each element;;, 1 <1i,j < K, giving the number

of times the pixep is labelled with components andc; at time
t andt + 1, respectively. LeB = (A + A™)/2, with diagonal
set to zero.

e The co-occurrence weights: is a K-element normalized

vector constituted of the,,-th row of the matrixB, wherem =
1 M.

PREET)

like swaying trees or fountains, then a higher valuevofs
preferred, otherwise (i.e. the scene is only composed biesta
background/foreground components) the co-occurrencghigei
have no effect on the computation of the combined weights tha
will be equal to the temporal weights. In our experiments, th
parameter is set t00.5 to carry the general case and provide a
good trade-off between the co-occurrence and temporal mode
For illustration, consider the two scenarios presentedign F
2. Let us set = 7 for the pixelp (the center of the square)
with mixture component labels activated from frarigl to
frame750. In Fig. 2-(a), the spotted pixel at positig240, 110)
represents a stable green grass ground with a black cangassi
over it. The matched MoGG temporal labels and the CCM
A are given in Tab. I-(a) and Tab. I-(b), respectively. We can
observe that the majority of the CCM entries are null and,
consequently, all the co-occurrence weights vegtor Tab. I-(e)

* The persistence vectar: is a K -element vector generatedyre aiso null. This is because there is practically one dantin
at each pixel with each elemenf, j = 1,..., K, expressing the giapie hackground component (the grass) and there is dittle

duration of the component occurrence without interrupsimee
its activation.

e The number of dominant components: represents the

occurrence with the other foreground components (the dack
crossing the road).
In Fig. 2-(b), the selected pixel is characterized by a tgpid

number of dominant background components that interadts Wintermittent switch between the grass ground and water @f th
the rest of components which may represent moving pattdrnsi@ntain. The correspondent timeline labels and CCM arergiv

background. It is obvious that/ < K (usually M is set tol).

in Tab. II-(a) and Tab. 1I-(b), respectively. For example, (top

e R = {ri,r2,..,r;}: is the set of dominant componenteft) is the number of times that the pixgl with component

indices sorted in descending order of their temporal wsight

c1 appears after the same component angd (top middle) is

e The co-occurrence factor: defines the importance giventhe number of times that the pixglwith component, appears

to the co-occurrence weightg versus the temporal weights,
wherev € [0, 1].
e The set of combined weight$ = {7y, 72, ..., mas}: IS the

after component;. Indeed, the pixel switches rapidly between
several components which can explain why all CCM entries are
relatively high.

set of combined temporal/co-occurrence weight vectorgravh  Contrarily to past works based on GMMs [5], our model
each vectorr,,, is computed considering the,-th line of the assigns high weights to components that occur successively
co-occurrence matrix, and where =1, ..., M. time or have high switching rate with other components. This
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| Frames | Activated components |

651-670| 1
671 - 690
691 - 710
711 - 731
731 - 750

1
1
1
3
1

RN R R
BTN
[EEURYINN
[EERYENN

o

o| o|o|o|o|o| g
<]

c1 | 0.9964 0.0000 0.9964
c2 | 0.0006 0.0000 0.0006
c3 | 0.0019 0.0000 0.0019
0.0000 0.0003
c5 | 0.0006 0.0000 0.0006
cs | 0.0003 0.0000 0.0003
c7 | 0.0000 0.0000 0.0000
[C) ©) [0)

o| o|o|o|o| o| o
o| o|o|o|o|o| o
o| o|o|o|o|o| o
o| o|o|o|o|o| o
o| o|o|o|o|o| o
ol o|o|o| | | |
RN ERERE
o| o| k| o|n|o|of
o| k| o|o|o|r| o
o|~|o|o|o|o| o

o

o

Q|

s

S|

@|

S| o| o| o| | =] o| o

C,
T;(ABLE |
CO-OCCURRENCE MODEL RELATED TO THE EXAMPLE ATFIG. 2-(A). (A)
MOGG ACTIVATED COMPONENT LABELS. (B) CCM AT FRAME #651. ()

CCM AT FRAME #750. ©) MOGG TEMPORAL WEIGHTSw. (E)
CO-OCCURRENCE WEIGHT®). (F) COMBINED MOGG AND
CO-OCCURRENCE WEIGHTST.

| Frames | Activated components |

651-670| 1|1 |1|1|2|6|3|7|1|1]1|1|1|1|1|1]|]1]1|2]|1

671-690|( 31|11 (11|11 |1|1)2f1|1|1|1}|1|1]1|1|1

691-710( 1 (1|1 |11 |1 |1 |3 |1|1|1|1|1|1|1|1|1]1|1|1

711-731|1(1|1j|1j1|1|1|1}j1|38|1f1|1|1|1}j1|1]1|1|1

731-750| 11|11 |1 1|11 |1|)1|1|2|1|1|1]1]|]1]1|1|1

(@)
50499 [183]7]7]1 586 [ I3[ 1213 [ 771 c1 [ 0.9322 0.0000 0.4661
8 oOfojJoJoJoJoO 11 0 0 OJof1]o0 c | 0.0338 0.2353 0.1346
9 OfoJO0oJoJOoJO 12 0 0 0O JoJoJ1 c3 | 0.0165 0.2353 0.1259
14 ofo]3]1]0]O 14 0 0 3[1]0]0 cq | 0.0051 0.2647 0.1349
6 ofojJ2]1]0]0 6 0 0 2 [1]0]0 cs5 | 0.0024 0.1275 0.0649
7 0OJoJoJoO0]2]0 7 0 1 0oJo|2]o0 ce | 0.0094 0.1373 0.0733
0 1J]o0jo0ofo0jO0]JoO 1 1 0 Of[ojo]oO c7 | 0.0006 0.0000 0.0003
(@) ) ©) (d (e)
TABLE Il

CO-OCCURRENCE MODEL RELATED TO THE EXAMPLE ATFIG. 2-(B).
CAPTIONS AS INTAB. I.

Algorithm 1: Compute the combined weights
Data: MoGG models, co-occurrence matrices (CCH)
persistence vectors, number of dominant
componentsV/, and co-occurrence factor.
Result Component combined weights.

for each pixelp do
Let A be the CCM and:;4, chew b€ the old and new

activated components, resp.
A (Cotds Crew) < A(Cold, Cnew) +1; 11 update the
CCM

if Cold = Cnew then

| v(Cnew) < V(Cnew) + 1;

else

| v(e) 1 with ¢# chew;

end

B+ (A+AT)/2;

diag(B) < 0; // reset diagonal of B to O

for each componentindex =1: M in R do

n < B(r,:) with r < R(3);

n <« n/v;/l divide the co-occurrence
wei ghts by the persistence

n<n/Q_;m;); /1 normalize n

Tm < VvXxw+ (1—v)xmn;// conpute the
combi ned tenporal / co-occurrence
wei ght s

Tn — wm/(zj Tm,j); 11 normalize
wei ght's

end
7 55N i/l final weights
end

camera jitter, etc. The detailed procedure for updatingQa/
and combining the MoGG and co-occurrence weights is outline
in Algorithm 1.

C. Spatial information modeling

Spatial information is added to our approach using local
structure (or texture) and color distribution. This infation is
relatively stable under soft shadows, and illuminationnges
and will enforce our BS to overcome these challenges.

1) Correlation analysis:The spatial structure conformity with
the background is done by multi-scale correlation analpsis
tween patches. We recall that the normalized cross cooelat
(NCC) between two vectorg, and v, is defined as:

NCC(#,7) = —2 "2 (12)
|00 (I} o2 |
where|| ¥ ||= V¢ - ¥ is the norm ofd. The NCC is invariant to
linear scaling of the form/’ = 4, wherey € R*. For our BS
algorithm, for each pixel we approximate the current backgd
reference by the mean of components with highest mixture
weights {wi1y 441, -, W{ar},e41}, Where M is the number of
dominant background components. The set of resultingeater
frames{Iy,..., I} for the spatial module is build with local
value for each pixel determined as follows:

Im(xvy) = u{m},t+1(Iay)7m € {17 '--7M}a (13)

where i,y ++1(,y) is the mean parameter of the GGD corre-
sponding to the weight/;,, ;4 1-

Using the correlation between the reference frdipeand the
current framel;,,, we can compare the local structure between
the current and the reference frames. We then derive anxappro
imation of the spatial foreground/background probaleiiti For
more reliable estimation of these probabilities, we usetiplal
window sizes surrounding each pixel. That is, for each ssfee
frame I,,,,m € {1,...,M}, S correlation maps are computed:
NCCy1, NCCs,..., NCCys for square blocks of sizé&V; x Ny,

N3 X No,..., Ng x Ng, respectively, wher&V'; < Ny < ... < Ng
(typically S = 3). These maps are obtained by factorizing
correlations over color channels as:

D
NCCy, ;= [[ NCCrjas (14)
d=1
whereNCC,, ;.4 corresponds to the correlation calculated with
referencel,, using scalej and color channell. Then, the
maximum correlation among the reference frames is retained

NCCy= max. (jrilla_gs NCCpj). (15)

To reduce the computational cost of computing the coriatati
maps, the integral image is used [54]. In fact, template miatc
can be efficiently obtained in théth channel in the reference
frame I; and the corresponding channel in the current frame
Is++1 by computing the integral images df}, /7,,,, and

1q % 15441 images, then Eqg. (12) can be computed at all
image locations using simple arithmetic operations. Thal fin
correlation maps are then computed using Egs. (14) and (15).

allows to reduce significantly false positives caused bykbac Finally, the spatial foreground and background probaéesit
ground dynamics, such as fast swaying tree leaves, fowmtaiare approximated using the lenient functions;(X;+1) ~
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by Eq. (17), whered1ST,, s 4 corresponds to the distance map
calculated with referencég,, at scales and color channed.

S
HISTy = 1;[1 (m@%?(M(dfjlﬁgD HISTm,S,d)) . (@)
Finally, we build a discrimination mag, by combining the
histogram final distance maff/.ST; and the correlation map

NCCy as shown in the Eq. (18).
Sy = exp(—f(NCCy)) * (1 — exp(—g(HISTY))),  (18)

where f and g are two linear functions definefl(z) = wiz +

we and g(z) = wsz + wg, With wy to wy set experimentally.
Basically, the map5,, enables to discriminate between changes
due to illumination changes to those caused by jitter, bamked
dynamics and the presence of foreground objects.

D. Adaptive learning rate for MOGG modeling

A bi-level thresholding is carried out on the discriminatio
map S, using two thresholdd; andT; to obtain the learning
factor used by each MoGG temporal model. Consequently, the
learning factor map should contain three levels of learning
factors:giow < ¢avg < dnign that correspond to high plausibility
Fig. 3. Spatial maps obtained for sample frames. Rows frgmdalown repre- of foreground, unknown and high plausibility backgrounes r

sent the reference frame, current frame, NCC map, histogram discrimination ; i ; ; ;
map and learning factor map (the black, white and gray o SeNtbro spectively. The dynamic estimation of the learning facttoves

bavg andey,; g, respectively). (a) framgt2700 from ‘overpass’, (b) frame #850 the temporal MoGG Updat_e‘ procedurg to ass_ign a low |earning
from the "bungalows’ sequence and (c) fras¥e 080 from the 'copyMachine’ factor ¢;,,, t0 stopped objects or objects with slow motion.

sequence. Background regions will be assigned a high learning factor
®nign that enables those regions to be quickly integrated into the
background model. The third valug,,, is assigned to pixels not
identified strongly as either foreground or background etiog

to the discrimination mas,. The learning parameter of Eq.

(4) is updated for each pixel using the equatios ¢/w;.

exp(—f(NCCy)) and pyp(Xes1) = 1 — exp(—f(NCCY)),
where f is a linear function defined ag(z) = wiz + we and
w1, we are constants controlling the sensitivity of the probapili

to the spatial correlation. . . . .

. . Fig. 3 shows NCC maps, histogram matching and the resulting
¢ Fig. 3]: shotvr\]/s (t:thNCOJIS rtnag ob(tjaTedtfo(Sroa Tsrz:\mpI? OfIearning factor for the sample frames. We can observe tleat th
rames irom the L.hange Letection datase [60]. The re €N rrelation analysis (CA) and the histogram matching (H¥ a
and original frames are shown in the first and second rows

; . ) complementary in their nature. For example, in the 'ovespas
respeciively. The. third row shows the 0 btaan_CCCf map frame, CA detects the tree leaves as false positives. Ontlieg o
where darker regions are pixel surroundings which are dose

those of the reference frame. By opposite, brighter regamas hand, HM failed to remove the person shadow and illumination
. ; R - = changes that caused false detections. However, we canvebser

pixel sgrroundmgs W'th high fo.reg.round spaﬂal probaaili that most of these false detections are removed by combihang

2) Histogram matching:Spatial information can also be eX-ro spatial maps and, therefore, an appropriate learniatprta

ploited throug_h local colpr distribution. This can b_e usefhen map has been generated. Finally, the stopped object challen
a video contains dynamic backgrounds (i.e., waving treesemw given by the waiting woman in the ‘copyMachine’ sequence

fountain, camera jitters, etc.) where the local structuréhe .o, 1ot 'he integrated into the background model due to the low
background may slightly change but not the color distriuti learning factorey,, assigned to the woman pixels.
Suppose that we have a reference imdgat the famel,, .

Let R and R;1; be the regions centered around a pikely)
in frames/ and I, respectivelyH and H,, their respective
histograms andVy,,,, is the number of bins in the histograms Several works have been proposed to deal with PTZ camera
H; and H;, ;. We use the Bhattacharyya distant@{;, H;,,) effects [15], [61]. To detect the presence of PTZ cameraceffe
to compareH; and H,,; as follows: in a given sequence, a global-level processing is performed
based on the displacement estimation between two suceessiv
Noine - - frames using cross-correlation. At each timéoth the previous
d(Hy, Hipr) =1 — Z VH (i) % Hypq(i); (18) " and current frames are compared each other using a two-step
=t cross-correlation algorithm. In the first step, we comptie t
We compute the histograms for each reference frdpen € correlation coefficients between overlapping patches eftito
{1,...,M} in Eq. (13) at different scales using window sizeframes. In the second step, we find the best-match positions
Wiy < Wy < ... < Wg (typically S = 3) and all D color using the maximum of cross-correlation values obtainedafbr
channels using [39]. The histogram distance ntApST; given possible displacement in the search matrix. Finally, PTEot$

E. Detection of PTZ camera effect scenarios
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are detected using the average of displacements calcutated
temporal window sizd., which is formulated as:

A
1 t | 7 O . .
dpiz =7 D, il (19) - & - - -

i=t—L

®

Fig. 4. Shadow removing using correlation analysis (Sarfral@e #1200 from

whered; is the displacement vector computed between the tWfig ‘COnet dataset, 'shadow’ category, ‘cubicle’ sequginga) Original frame.
f I dr. (b) Ground truth frame. (c) Spatial correlation map. (d) penal map. (e)
ramesi;—; and.,. . . Temporal and spatial combination map. (f) Final detection.

The presence of a PTZ effect is decided by a threshold test

on the displacement averagh;.. If d,.. overpasses a given module | Required parameters
thresholde then a PTZ scenario is started. Consequently, thevoce ‘ K =17,7= 0002 00 =20.0, \o = 1.0, 610 = 1077,
learning rate is set to a high valag,. for the next\V,,;. frames Pavg = 1077, Pnigh = 0.05

. . Co- M=1,v=0.5 T =0.80
to allow the new background to be quickly absorbed into the > | reme
NCC analysis | N; =11, Ny = 35, N3 = 65, w; = 1.10, w2 = 0.82, 6 = 0.9
background model.

Histogram matching| Wi = 13, Wa = 33, W3 = 53, Npins = 16, w3 = 0.25,
wy = 0.01, Ty =0.2%, Tp = 0.5%
F. The overall background subtraction algorithm PTZ detection | L =10, € =6, Npiz = 15, aprz = 0.1
. . TABLE TN
Suppose that at time, the model in Eq. (2) has generated  parAMETER SETTING OF THE PROPOSED ALGORITHM USED IN OUR
ky andk, components associated with the foregroupiyl énd EXPERIMENTATIONS.

background), respectively, whergés+k, = K. The foreground
and background probabilities are givenjy; (X}) andptyb()?t),
respectively. _ average filter ob x 5 pixels size. Otherwise, it is assigned label
Firstly, the presence of PTZ camera effect is checked B%i.e., a potential shadow or highlight).
exp!amed in S_ectloq I-E. If a PTZ scenario is starteq,nthe Finally, a post-processing step is performed through tharli
a high value is assigned to the leaming rate. Otherwise, g sks generated after the temporal and spatial combinatien
learning rate is updated as explained in Section llI-D. Atheargyit and pepper noise” is a common problem that arise in BS.
pixelin frame/..,, we may have one of the following scenariosg;jyst we apply the median filter to reduce this type of noise.
1) If the vector X, is matched with one of the mixturé then 4 morphological correction is applied to smooth sitittes
components, the matched component paramet&rsi(, /u,i+1.  and fill their "internal holes”. This allows also to remove ain
Oke+1 @nd Ay,11) are updated using Egs. (4) to (11) angyrongly detected artifacts from the resulting binary masks
only the weight value of the unmatched components (,)  The combination of temporal and spatial models is demon-
is updated using Eq. (4). The CCM and persistence valugsyieq in Fig. 4, where the correlation analysis is used to
are updated as detailed in Section III-B. Finally, the matth o qye casting shadows. We can see that the shadow cast by
components labelibackground orf:foreground) is assigned yhe \alking person is wrongly classified as foreground by the
to the pixel. , temporal model. However, by using the spatial informatitwe,
2) If no match is found, a new componeit+ 1 is created for g5 qqyy is detected and removed. On the other hand, the tampor
the mixture model with parameters set as followgi+1.:+1 = model helps to detect precisely the walking person sillteuet

O UK4+1,dt41 = Xitlr OK4+1,dt41 = 00 and Ag 14441 =
Ao, Whereoy and \q are initial scale and shape parameters,
respectively. The CCM and persistence entries that cavresp
to this component are reset to zero. We conducted experiments using three different benchmark
Next, the mixture components are sorted in descending ordi@tasets: the CDnet dataset [60], the SABS dataset [6] and th
of temporal co-occurrence weights; (1) computed by Algo- MSVS [4] dataset. To evaluate the merit of our approachyimate
rithm 1 and the new background temporal mogel; ,(.) is comparisons are done between the temporal and spatial esodul
formed using the firsBB largest mixture components, where of the proposed approach. Moreover, the proposed approach
b results are compared with those produced by new stateeef-th
B = arg min (Z Tite1 > T) . (20) art met_hods. The choice of opti_mgl paramete_rs is criticah®
b\ evaluation task, therefore, preliminary experiments hbeen
Oconducted to adjust the best set of parameters. Tab. 11l show
the optimal parameters selected for the proposed algorithm

IV. EXPERIMENTAL RESULTS

The thresholdT’ is the minimum portion of data considere
to belong to the dynamic background (typically = 0.8). At
this step, the reference frame used by the spatial module is

constructed by taking the mean parameter of the first comgonA. Used evaluation datasets

among the B components resulting in Eq. (20) as the pixelevalu \wa run our algorithm on the following datasets:

(see Eq. (13)). ; ;
Next, based on the two temporal and spatial probabilities (i 1) The Change Detection Dataset (CDnef)This dataset

pes andp, ;, respectively), the current pixel will be assigneéi‘as been proposed recently [60] to address the shortcomings
label f if: of previous datasets regarding challenges and ground truth

" > availability. It provides 53 videos that have been acquiired
Spem * Do (Xe1) + (1= Spem) * pes (Xe41) 20 L) gigtarant scenarios: baseline, dynamic backgrounds, cajiteer,
whered is a threshold andy.,,, (spatial foreground coherenceshadows, intermittent object motion, thermal, bad weatloar
map) is a smoothed map of the correlation map using an frame-rate, night, PTZ camera motion and air turbulenceyTh
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are grouped into 11 categories according to the type of ehgd : Chnet datesel. shados category o —Songudateset dynanigBackground etegory
each video exhibits. oof - - oor W
2) The Stuttgart Artificial BS Dataset (SABS): This dataset o °
proposed in [6] contains synthetic videos for pixel-wisalev
uation of BS methods. It includes 9 realistic scenariosidhas LM L L
dynamic background, bootstrapping, darkening, light ahyit " s s nep ey " s e e ey
noisy night, camouflage, no Camouflage and Video compression .| m— ool l—
Each video sequence exhibits one or more challenges such as o os
shadows, waving trees and traffic lights. High-quality grdu o4 o4
truth annotation is provided as color-coded foregroundksas o o
for every frame of each test video. prcen oo
3) The Multispectral Video Sequences Dataset (MSVS) | 14066 E] oG+ Cooc. IR Proposes|
The MSVS dataset [4] is the first BS dataset that uses muttisp€&ig. 5. Comparison of evaluation metrics obtained by théerfit proposed
tral band (MSB) video data. It is composed ®imultispectral modules for the CDnet and the MSVS dataset.
video sequences containing betwasin and2300 frames of the
size of658 x 491 for each video frame. Each video sequence is The observed performance improvement has been carried out
composed of spectral bands, six in the visible spectrum and onanks to the combination of temporal and spatial modulas th
in the near infrared (NI). This video dataset represenfemint cooperate each other to cope with several challengeslyFirst
challenges such as gradual illumination changes, shadavgs, the MoGGs modeling has been improved by co-occurrence and
camouflage effects. The video sequences and their groutid tradaptive updating of the learning rate to detect and remaige f
data are available online. positives in background dynamics scenarios such as node an
To conduct a quantitative comparison between the propossinera jitter. Secondly, soft changes in illumination anadow
model and state-of-the-art approaches, we use the evamluatire absorbed to the background by the MoGG updating mech-
metrics provided by the CDnet dataset [60]. The seven nsetr@nism along with the multi-scale correlation analysis. rdlyi
used are Recall (Re), Specificity (Sp), False Positive ReR®], the convergence of the background model is accelerated usin
False Negative Rate (FNR), Percentage of Wrong Classiitsiti an adaptive learning rate which is updated using the cdivala
(PWC), Precision (Pr) and F-measure (F). and histogram spatial information.

Recall Pr F-score

C. Overall evaluation of the proposed method

1) The CDnet Dataset:Fig. 6 contains the performance
We conduct a separate quantitative evaluation of the pezposnetrics obtained by the application of the proposed approac
temporal and spatial modules to illustrate the improventleaitt for the 53 videos of the CDnet dataset (The overall results for
can be achieved by the integration of each module. The hhe CDnet dataset are given in Tab. VII. The graphics in Fig.
chart of the Fig. 5 highlights the results obtained by theliapp6 show that the proposed approach gives competitive results
cation of the proposed modules separately for the 'shadod’ afor several categories such as 'shadow’, ‘dynamicBackagdau
‘dynamicBackground’ categories from the CDnet [56] datas&ameraditter’, and 'PTZ’. We can note that the majority of
along with five RGB and MSB video sequences from the MSWideos show F-Measure metrics above 80% which indicates
dataset [4]. We note that the videos in the same category byt the proposed approach is efficient in dealing with sthado
include different kinds of challenges. As shown in the Figand dynamic backgrounds. However, one can observe that the
5, three modules have been evaluated, (1) the temporal mogielposed approach gives relatively low scores regardimgeso
without co-occurrence analysisi0GG), (2) the temporal model categories such as 'intermittentObjectMotion’ and 'nigheos’.
with co-occurrence analysi$loGG+CooQ, and (3) the overall In fact, most of methods in the literature fail to give satibry
approach including the combination of temporal co-ocawee results for these categories for several reasons. For wideo
information with spatial analysisdMoGG+CooC+Spatig). containing intermittent objects, it is hard for some vidembuild
Fig. 5 reports that the co-occurrence information imprdbhes an object-free background that enables good object detexti
precision for the 'dynamicBackground’ category by remayinin the 'parking’ video, for example, this difficulty has peswted
false detections results from the rapidly switching baokegd detecting the car in the majority of video frames which cause
that characterizes videos in this category. However, the us great number of false negatives (Re=0.06). For night wdeo
of MoGGs with co-occurrence gives similar results in termsrroneous detections can be caused by strong illuminatiats
of F-measure compared to using only the temporal MoGGaturate pixels (e.g., car headlights) or in videos coirtgiiow
for the 'shadow’ category. We can also observe that the usentrast between objects and the background.
of spatial information has improved both recall and precisi For the 'PTZ’ category, the proposed algorithm gives goad re
metrics in the two categories. Considering the MSVS datasstilts for three sequences, namely: the 'continuousPa'iriter-
the experimental evaluations given in the Fig. 5 show that tmittentPan’, and the 'twoPositionPTZCam’ sequences. hewe
use of co-occurrence analysis increases the performante ofthe proposed technique fails to detect the PTZ scenariohfor t
temporal model. Furthermore, the results given by the teaipo’zoominZoomOut’ sequence. This is because, in this videe, t
modules are significantly improved by integrating the spatidisplacement between two consecutive frames is very smdjl a
modules. This fact can be observed for both RGB and multherefore, the PTZ detection and processing can not be=dtart
spectral (MSB) video sequences. throughout all the frames of this sequence.

B. Quantitative evaluation of the temporal/spatial module
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Bad Weather category Baseline category Camera Jitter category.

0
blizzard skating snowFall wetsnow PETS2006 highway office pedestrians badminton boulevard sidewalk atfic

Dynamic Background category Intermittent Object Motion category Low Framerate category

boats  canoe fal  fountain0l fountain02 overpass abandonedBox parking  sofa  streetlight  tramstop winterDriveway Por_0_17fps  tramCrossroad_1fps tunnelExit 0_35fps  turnpike_0_Sips

Night Videos category PTZ category Shadow category

bridge  busyBoul  fluidHW  siComer tramStation  winterSt continuousPan  intermittentPan  twoPosiionPTZCam  zoominZoomOut backdoor  bungalows  busStation copyMachine —cubicle peoplelnShade

Thermal category Turbulence category

corridor diningRoom  lakeSide library park turbulenceo turbulencel twrbulence2 wrbulences

Fig. 6. BS scores obtained by the proposed algorithm on ateé@Dideos.

shadow category category
T

To show the merit of our algorithm to deal with the shadow, , ‘ ) ‘ ‘ ‘
dynamic background, camera jitter, and PTZ challengespeom ., 0
ison tests have been conducted on all the videos of of the €Dn. 0
dataset. The graphic in Fig. 7 shows a comparison evaluatic: 0
between category average values of the recall, precisiah ar: 0
F-measure metrics obtained by a set of BS methods. Tr .
set of compared methods includes six state-of-the-art oasth | ‘ caneraiter category ‘
namely: SUBSENSE (Self-Balanced SENsitivity SEgmentdr) [ ., 0
BinWang [55], RMoG (Region based Mixture of Gaussians)s. 0
[53], GMM (Gaussian Mixture Model) by Grimson et. [50], 0
GMM (Gaussian Mixture Model) by Zivkovic [65], KDE (Kernel - 0
Density Estimation) [12], and the proposed approach. 0 0

Recall Precision Fscore Recall Precision Fscore

From Fig. 7, we can observe that for the 'shadow’ and [SEeopoe B sussense r B srwang 55 T Rwos (50 ] o iso) I Zvkove (51 NN Ko [12]
‘cameralitter’ categories, the proposed approach givedést Fig. 7. Evaluation metrics obtained by state-of-the-artwadl as proposed
results and outperforms most of the compared methods irstenmethod for the 'shadow’, 'dynamicBackground’, ‘camertfitand 'PTZ’ cate-
of recall and F-measure. However, for the 'dynamicBackgau 9°1es from CDnet dataset,
category, the proposed method can be ranked second after the
FTSG method [56] which was ranked first at the CDnet 2014 _CaegoyMetic] Re  Sp  FPR FNR PWC  Pr F
overall challenges. For the 'PTZ’ category, our method give badweather 0.7079 0.9987 0.0013 0.2921  0.5504 0.8947 0.7815

: > ] { baseline 09419 09934 00066 0.058L 07592 0.8600 0.8956
the h|ghest precision and F-measure metrics a|ong with good cameralitter 0.8704 0.9903 0.0097 0.1296 1.5086 0.8118 0.8365

PTZ category

. . . dyn. Back. 0.9224 0.9987 0.0013 0.0776 0.1868 0.8408 0.8749

results in terms of the recall metric. This is can be done due int.obj.Mot. 04744 09077 00923 0.5256 11.8726 0.5810 0.3885
to the global cross-correlation technique that has beemdatll o | 05501 oooto o0l o4d0 28090 03060 04572
deal with PTZ camera sequences by finding large displacementPTz 06396 0.9941 0.0058 03603 17770 05977 05785
. shadow 0.9610 0.9908 0.0092 0.0390 1.0220 0.8490 0.8997

between consecutive frames. thermal 0.7681 0.9930 0.0070 0.2319 1.3989 0.8771 0.7727
Tab. IV shows the results obtained by the application of turbulence 0.7949 0.9977 0.0023 0.2051 0.3710 0.7136 0.6943
the proposed algorithm on all the CDnet dataset categoses a_©veral | 07643 09728 00271 02356 33484 07258 0.7001

. TABLE IV
well as the overall results computed according to the CDNet g, xrion METRICS OBTAINED BY APPLICATION OF THE PROPOSED

evaluation methodology [60]. To make a comparison with MeTHoD FOR ALL CDNET CATEGORIES AS WELL AS THE OVERALL RESULTS
method combining temporal and spatial information, Tab. V

shows results obtained by application of a patch-basedappr

proposed in [42]. From Tabs. IV and V, we can observe that

our method achieves better results in terms of overall Fsomea method. The rest of BS methods are shown in the other rows.
and overall precision metrics than [42]. However, the patckolumns of Fig. 8 represent 6 sample sequences from theestudi
based approach surpasses our method in only the Recalbmeg@tegories. These sequences are as follows: 'traffic’ aide-'s
This is due to the fact that [42] does not deal explicitly withvalk’ from the ‘cameralditter’ category, ‘canoe’ and 'foaimt01’
background subtraction challenges such as illuminati@mghs, from the ‘dynamicBackground’ category and 'busStationdan
shadow, dynamic background and PTZ challenges. ‘cubicle’ from the 'shadow’ category.

Fig. 8 shows a sample of foreground masks generated byrhe videos in the first and second column of Fig. 8 are
each compared BS method. The original frames and grourd traharacterized by unstable cameras. We can observe that our
masks are displayed in the first and second rows, respactivehethod significantly avoids false positives caused by camer
The third row shows the foreground masks given by our praghositer and efficiently detects the car in the ’traffic’ seqaen
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=

1

Category/Metric|  Re Sp FPR FNR PWC Pr F traffic busStation cubicle
~ .

badWeather 0.3939 0.9972 0.0028 0.6061 1.1915 0.8088 0.4557 N E w;

baseline 0.9742 0.9966 0.0034 0.0258 0.4305 0.9064 0.9384 k =3 @

cameralitter 0.8480 0.9856 0.0144 0.1520 2.0182 0.7203 0.7784 Original frame ES =

dyn. Back. 0.8982 0.9927 0.0073 0.1018 0.8253  0.6294 0.6823

int.Obj.Mot. 0.7444 0.8469 0.1531 0.2556 14.4944 0.4493 0.4955 il b ! JJ

lowFramerate | 0.9177 0.9822 0.0178 0.0823 1.9655 0.5266 0.5887 Ground Truth b

nightVideos 0.8174 0.9600 0.0400 0.1826  4.2120 0.3871 0.4933

PTZ 0.7887 0.7613 0.2387 0.2113 23.8913 0.0491 0.0896 ‘ j

shadow 0.9792 09879 0.0121 0.0208 1.2570 0.7856  0.8669 {3 ’

thermal 0.3169 0.9920 0.0080 0.6831 6.1843 0.7035 0.3957 Proposed

turbulence 0.8081 0.9992 0.0008 0.1919 0.2262  0.7483 0.7680

Overall | 07715 09547 0.0453 0.2285 5.1542 0.6104 0.5957 FTSG [56]

TABLE V

EVALUATION METRICS OBTAINED BY THE APPLICATION OF THE REDDY N
METHOD [42] FOR ALL CDNET CATEGORIES AS WELL AS THE OVERALL SUBSENSE [7]
RESULTS yd

CwisarDH [19]

E :

as well as the waiting person in the 'sidewalk’ video. The P 3014

HEIAEA
IIIIIIII

dynamic background challenge is presented in columns 3 and 4 . ',*‘
The 'fountain01’ sequence contains a fountain and cars mgovi %" 59
over the dynamic background. The 'canoe’ sequence repsesen ‘ A

a water rippling scene. We can note that most of the false S@ufers0
positives are eliminated by the proposed algorithm. Thé fift
column shows a sample frame from the ’busStation’ sequence #Vkevic [6s]
which consists of persons waiting in a bus station. This eage
is characterized by a hard shadow cast on the ground by the
walking persons. Our approach detects accurately the mglkFig. 8. BS masks obtained for sample frames from the CDnetsda{60] by
man and separates a significant amount of shadow from fglication of different compared methods.
ground. The last column shows a sample frame from the "cebicl
sequence. This video contains a person walking throughialeub
corridor. This sequence is characterized by a hard shadetv ca
on the ground by the walking person as well as some highlights
on the cubicle walls. We can note that the proposed method ¢, i -
detects the person and avoids false detections due to skadow
These sample frames clearly show the advantage of combining
spatial and temporal information to deal with challengeshsu
as casting shadows, illumination changes, dynamic backgi®
and camera jitter.

2) The SABS DatasetfTo demonstrate the accuracy of the viBe [3
proposed model, experiments are conducted on the SABSedatas
using the proposed method compared to the nine state-afrthe SOBS [

methods cited in the SABS dataset websitehich include: ViBe -
Zivkovic [65]
add two spatiotemporal BS approaches, namely: Spatiotexhpo -

Jeleoleleleletelets
‘ v
EEEEERERENZ

) ) [ N v
| )

KDE [12]

Basic

Bootstrap Camouflage Darkening  No Camouf. MPEG
s 2 o

Original frame

Proposed

o

SUBSENSE [7]

, v : A, A B

[3], SOBS [33], Zivkovic [65], and GMM [50]. In addition, we

[9] and a recently published method: SUBSENSE [7]. b 30
The chart in Fig. 9 presents compared quantitative resnilts i

terms of the maximal F-measure as cited in [6]. We can observe

that our method gives competitive results for almost alhsc®s. Fl'og nigu ofifrg?ffé‘;r?tbg%epdarfgé ?nag;r?é% Sframes from the SABSsdaf6] by

More precisely, (in terms of F-measure metric) the proposedD

method outperforms the compared ones Fmsequences out of

9 which are: the Basic, Dynamic Background, Bootstrappinghformation, the proposed model has been able to reduce fals

Camouflage and H.264 (40kbps). However, the proposed metipagitives generated by the illumination changes cast onviie

presents the second or the third best F-measure evaluationly the traffic lights. On the other hand, parasites produgetid

the 4 remaining sequences. Nonetheless, the average F-measiaéng tree, the Gaussian noise or due to compressionastifa

computed for all sequences is higher than the compared n®th@are absorbed by the temporal co-occurrence module which has
Fig. 10 shows some frames from the SABS dataset, thensiderably improved precision.

associated ground truth as well as the foreground masksebta 3) The MSVS DatasetWe evaluate the proposed method

by the compared methods. It can be seen that the proposedthis multispectral dataset. Our purpose is to show the ef-

model has effectively discriminated between backgroumds$ aficiency of the proposed approach by integrating multiséct

moving objects. Indeed, thanks to adding multi-scale apatinformation. In fact, the multispectral data can be handiheithe

proposed approach by adjusting theparameter that appears in
the Eg. (2),(14) and (17).

Stauffer [50]

http://www.vis.uni-stuttgart.de/"hoeferbn/bse/
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SABS dataset
I

I Proposed
. I SuBSENSE[7] [
m [ spatiotemporal [9]
M = [Cviee [3] =
<L SOBS [33]
[ Zivkovic [65] -
I GMM [50]

BA BD BO DA LS NN CA NC vC AVG

Fig. 9. F-measure metrics obtained by application of thepamed methods for the SABS dataset sequences [6]. Each katofepresents one sequence from the
SABS dataset. From left to right: Basic (BA), Dynamic Baakgnd (DB), Bootstrap (BO), Darkening (DA), Light Switch (,Noisy Night (NN), Camouflage
(CA), No Camouflage (NC) and Video Compression (VC) H.264ecodith bitrate 40kbps/s. The last set of bars (AVG) reprissthe average of F-measure metric
computed for each method for all sequences.

MSVS dataset, RGB videos

Fig. 12. BS binary masks obtained for sample frames seldobed the MSVS
dataset [4], [49] by application of the compared methods.(aginal frame.
(b) Ground truth frame. (c) Proposed approach. (d) MOGGQO®TD [49]. (f)
BRTF [64]. () HORPCA [18].

walking man shadow and the illumination changes on ground
can be removed using the proposed approach. The same remark

can also be applied for the false positives caused by thengovi

Fig. 11. F-measure metrics obtained by application of thmpared methods tree leaves in the second and third row of this figure
for the MSVS dataset sequences [4]. ’

D. Computational Time

The graphic in Fig. 11 shows a quantitative comparison Our tests were implemented using the MATLAB environment
between the proposed approach and the state-of-the-arbdset with some optimization using MEX C++ subroutines. On a PC
where the two types of input data are used: the multispectreith Intel Core i7 2.93 GHz CPU and 16 Go of RAM and
bands (MSB) which ha§ channels D = 7), and the usual MS Windows 7 operating system, the proposed prototype runs
trichromatic images with th& RGB channels ) = 3). The at about5 fps for videos of RGB color frames with a size of
F-measure score is computed for each video by comparing 8a0 x 240 pixels. Most of the processing time is dedicated to
results with6 other methods such as MoGG, MoGG+CooC, CRhe calculation of NCC and histogram distances along with th
ALS [28], HORPCA [18], BRTF [64], and OSTD [49]. Note thatupdating procedure for the temporal/co-occurrence model.
the results for the compared methods are obtained from [49]. Tab. VI shows the computational time recorded in CPU time

Fig. 11 reports that the results obtained by the proposafd required by application of each proposed module, theative
approach and most of the compared methods for the MSB dBfg@posed algorithm and some compared BS methods. The first
are better than those obtained for the RGB ones. This may e of the Tab. VI represents the input frame sizex H x D
due to fact that using the multispectral bands (MSB) is moreWhich correspond to the width, the height and the number of
discriminant than using onlp RGB channels. In terms of F- channels of each frame, respectively. The second row of\iab.
measure score, it can be observed from Fig. 11 that the pedpokicludes the computational time of the four modules coumttig
approach outperforms the Compared approachgsdnt of 10 our approach, as well as the overall time. The last row iresud

videos and can be ranked secondly after the OSTD [49] approdlze CPU time required by application of a set of compared BS
in the rest of3 videos. methods, namely: KDE [12], GMM [50], OSTD [49], CP-ALS

Fig. 12 represents a visual comparison of background sup8l, BRTF [64], and HORPCA [18].

traction BS results obtained by the application of the pszgb

method along with the compared methods ogewideo se- V. CONCLUSION

quences from the MSVS dataset [4]. It can be seen from Fig.A statistical approach for video background subtractio8)(B
12 that most of the false positives generated by the statkesf by combining temporal and spatial information is presentéuz

art methods can be mitigated by the application of the olerédvo types of information are fused in an algorithm that per-
proposed approach. For example, in the first row, most of tferms efficient BS in the presence of cast shadows, illunronat
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Method/Frame size | 180 x 100 x 1 | 180 x 100 x 3 | 320 x 240 x 3 | 658 x 492 x 3 Therefore. we obtain:
s :

Temporal MoGG 0.007 0.027 0.113 0.421

Co-occurrence 0.011 0.011 0.054 0.229 N N 1/

C lati lysi 0.002 0.005 0.022 0.122 —

H?srtfg?a%nrggtiﬁ; 0.013 0.041 0.144 0.481 o(t+1) = |(1 =)o) + pAAN)|ze41 — p } (28)

Proposed 0.032 0.085 0.333 1.254

KDE [12] 0.001 0.003 0.020 0.050 Where'qs - _1 is the |earning factor,

GMM [50] 0.002 0.007 0.037 0.118 : 1+t ’

OSTD [49] 0.009 0.038 0.120 0.699

CP-ALS [28] 0.120 0.411 1.290 5.437

BRTF [64] 0.073 0.220 2.250 9.216

HORPCA [18] 0,495 1,487 7.096 43.924 C. The mean of centered absolute value (MAV):

TABLE VI o
COMPUTATIONAL TIME IN SECONDS FOR EACH FRAME REQUIRED BY EACH  1he mean of centered absolute value of the MoGG distribution
MODULE, THE PROPOSED APPROACH AND SOME STAFBF-THE-ART (MAV) can be obtained as follows
METHODS.
A
Eeyr[ | X |] Zm2|$i—ﬂ|
changes, complex background dynamics and PTZ effects. Our Zzlt
algorithm achieves accurate foreground detections cosaiptar 1 (Z s — o | + | wep1 — | )
well-known methods. Future work will address speedinghep t t+\= """ i
proposed algorithm as well as the analysis of hard shadows ; ‘ )
and other backgr_ound §ubtract|_on challfenglng problemk sisc — - Z |z — | + - | 21 — |
camouflage and intermittent object motion. tt+1) = t+
=(1=@)E[| X []+¢| @1 —p] (29)
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Categol Video Re S| FPR FNR PWC Pr F
gory P
APPENDIXA 2 blizzard 07177 09986 00014 0.0033 00047 0.8584 0.7818
5 skating 0.8607 0.9982 0.0018 0.0073 0.0086 0.9620 0.9085
ONLINE UPDATE EQUATIONS FORMOGG MODEL = snowFall 0.4518  0.9995 0.0005 0.0044 0.0048 0.8771 0.5964
8 wetSnow 08013 0.9986 0.0014 0.0026 0.0039 0.8814 0.8394
PARAMETERS o PETS2006 0.9905 0.9965 0.0035 0.0001 0.0036 0.7888 0.8782
. . . . . . £ highway 09842 0.9944 00056 0.0010 00063 0.9165 0.9491
Following [1], the online estimations given in the Eq. (8dan  § | ofice 09608 09833 00167 00029 00182 08105 08792
. Qo i
. pedestrians 08320 0.9993 0.0007 0.0017 0.0023 0.9242 0.8757
(11) can be derived as follows: - :
2 badminton 08721 0.9979 0.0021 0.0045 0.0064 0.9368 0.9033
3 boulevard 07610 0.9904 0.0096 0.0118 0.0204 0.7955 0.7779
. . @ sidewalk 09524 0.9918 0.0082 0.0013 0.0092 0.7577 0.8440
A. The location parameteu: 5 traffic 0.8962 0.9809 0.0191 0.0069 0.0244 0.7571 0.8208
. . . . boats 09786 0.9996 0.0004 0.0001 0.0005 0.9386 0.9582
We have the following formula for estimating the location 3 | cance 09583 00088 00012 00015 00027 09657 0.9620
; . 8 fall 0.9608 0.9961 0.0039 0.0007 0.0045 0.8172 0.8832
parameter at time + 1 [1]: 2 | fountaino1 07825 09993 00007 00002 0.0008 0.4940 0.6056
2 | fountain02 0.9020 0.9999 0.0001 0.0002 0.0003 0.9463 0.9236
ZHl |2; — N|A72x_ overpass 09524 0.9983 0.0017 0.0006 0.0023 0.8833 0.9166
;= 1 K2 S
pt+1) = 1;1 1 (22) g abandonedBox 05483 0.9772 00228 0.0228 00434 05484 0.5484
Z_JF |x _ Iu|>\—2 = parking 0.0665 0.9998 0.0002 0.0782 0.0724 0.9593 0.1243
i=1 1" 2 sofa 07108 0.9890 00110 00132 00231 0.7470 0.7284
. g streetLight 03329 09992 00008 0.0340 0.0332 0.9527 0.4933
Therefore, we define: £ | wamstop 04121 05246 04754 0.1286 04956 01594 0.2299
. S winterDriveway 0.7757 0.9567 0.0433 0.0017 0.0446 0.1191 0.2065
A\ 2 port 0_17fps 0.6578 0.9993 0.0007 0.0001 0.0008 0.2293 0.3400
a(t) = E | T; — ,LL| -2 T (23) S tramCrossroadifps | 0.9560 0.9918 0.0082 0.0013 0.0092 0.7680 0.8518
' tunnelExit 0_35fps | 0.3334 0.9867 0.0133 0.0188 00312 0.4145 0.3696
i=1 3 turnpike_0_5fps 06113 09990 0.0010 0.0312 00299 0.9791 0.7527
d R bridgeEntry 0.3835 0.9684 0.0316 0.0089 0.0399 0.1485 0.2141
an 8 busyBoulvard 03289 0.9907 0.0093 0.0246 0.0326 0.5645 0.4157
t g fluidHighway 05057 0.9741 0.0259 0.0071 00325 0.2188 0.3054
B(t) = s — |>\—2 (24) 2 streetComerAtNight | 0.6887 ~ 0.9943  0.0057 0.0015 00072 0.3775 0.4877
= i ) 2 | tramStation 07353 0.9897 0.0103 0.0075 00173 0.6683 0.7002
=1 winterStreet 0.6583 0.9703 0.0297 0.0104 0.0389 0.4036 0.5004
. . continuousPan 04199 0.9986 0.0014 0.0037 0.0050 0.6560 0.5120
and by replacing Egs. (23) and (24) in Eq. (22), we have N | intermitentPan 08221 09985 00015 00025 00040 0.8879 0.8537
& twoPositionPTZCam| 0.8701  0.9942 0.0058 0.0020 0.0077 0.6972 0.7741
alt) + |z ] A-2, zoominZoomOut | 0.9979  0.4324 05676 0.0000 0.5664 0.0037 0.0074
t+1 — t+1
u(t+1)= * + (25) backdoor 09712 0.9992 0.0008 0.0006 0.0013 0.9633 0.9672
B(t) + | T — |>\—2 s bungalows 0.9954 0.9783 0.0217 0.0003 0.0207 0.7455 0.8525
t+1 — M & | pusstar
S usStation 09351 0.9927 0.0073 0.0025 0.0094 0.8313 0.8802
g copyMachine 09369 0.9903 0.0097 0.0047 00134 0.8782 0.9066
. cubicle 09292 0.9967 0.0033 0.0014 0.0046 0.8500 0.8878
B. The scale parameter: peoplelnShade 0.9983 0.9874 0.0126 0.0001 0.0120 0.8258 0.9039
i ; . corridor 09154 0.9974 0.0026 0.0029 0.0053 0.9244 0.9198
The scale parameter at+ 1 is defined by the formula: E diningRoom 09207 0.9894 0.0106 0.0075 0.0165 0.8906 0.9054
£ lakeSide 01801 0.9996 0.0004 0.0160 0.0161 0.9041 0.3003
t+1 1/x 2 library 09424 0.9853 0.0147 0.0138 0.0229 0.9388 0.9406
1 AA(N) A\ 26 park 08821 09931 00069 00024 00091 07274 07973
o(t+1) = t+1 § :|x1 —u : (26) 8 turbulence0 0.8486 0.9923 0.0077 0.0003 0.0079 0.1728 0.2871
i—1 k5 turbulencel 06316 0.9991 0.0009 0.0014 0.0023 0.7379 0.6806
2 turbulence2 0.9478 1.0000 0.0000 0.0000 0.0000 0.9937 0.9702
; inei ; E turbulence3 07517 0.9994 0.0006 0.0041 0.0046 0.9502 0.8393
By replacing the inside ob (¢t + 1) with o(¢), we get what =
y replacing (t+1) (t), we g TABLE VI
follows: BS SCORES OBTAINED BY THE PROPOSED ALGORITHM ON ALCDNET
1/x VIDEOS.

o A
—):i()i) [—t O |[e41 — MN (27)

o(t+1) = MY
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