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Foreground Segmentation in Videos Combining
General Gaussian Mixture Modeling and Spatial

Information
Aı̈ssa Boulmerka and Mohand Saı̈d Allili

Abstract—We present a new statistical approach combining tem-
poral and spatial information for robust online background subtrac-
tion (BS) in videos. Temporal information is modeled by coupling
finite mixtures of Generalized Gaussian (MoGG) distributions with
foreground/background co-occurrence analysis. Spatial information
is modeled by combining multi-scale inter-frame correlation anal-
ysis and histogram matching. We propose an online algorithmthat
efficiently fuses both information to cope with several BS challenges,
such as cast shadows, illumination changes, and various complex
background dynamics. In addition, global video information is used
through a displacement measuring technique to deal with pan-tilt-
zoom (PTZ) camera effects. Experiments with comparison with
recent state-of-the-art methods have been conducted on standard
datasets. Obtained results have shown that our approach surpasses
several state-of-the-art methods on the aforementioned challenges
while maintaining comparable computational time.

Index Terms—Background subtraction (BS), temporal/spatial
information, mixture models, co-occurrence/correlation analysis,
cast shadows, dynamic backgrounds, pan-tilt-zoom (PTZ).

I. I NTRODUCTION

Background subtraction (BS)is a fundamental and crucial task
for several video processing applications such as smart video
surveillance [10], human activity recognition [52] and interactive
gaming [16]. Over the past years, a tremendous number of BS
techniques have been proposed (see [5], [38], [40] and refs
therein). To simplify the problem formulation and ensure good
success, BS algorithms generally assume three conditions [5]:
stationary cameras, constant illumination conditions andstatic
background (i.e., no dynamics or noise occur in the background).
Several challenges arise from the violation of these conditions,
among which:cast shadows and illumination changes, dynamic
backgrounds, noisy videos, camera jitter, stationary objects,
camouflageandpan-tilt-zoom(PTZ) camera effects. These chal-
lenges usually produce a huge amount of false positives and/or
negatives (see [5] for an extended list of BS challenges).

Considering the case of static-camera videos, several ap-
proaches have been proposed to address some of the afore-
mentioned challenges [5], [45].Temporal approacheshave been
proposed to cope with multimodal backgrounds and gradual
illumination changes, for example,parametric statistical models
and non-parametric modelshave been used to model pixel
history. Generally, statistical models can achieve good success
in separating moving objects from mild background changes
(e.g., swaying trees, gradual daylight changes, etc.). However,
assuming independent temporal constraint is not sufficientto
handle complex BS challenges. Therefore, temporal approaches
may lead to a huge amount of false detections especially in
the presence of shadows, sudden illumination changes and/or
complex background dynamics (e.g. fountains, camera jitter).

To cope with BS challenges such as complex dynamic back-
grounds or illumination changes,spatiotemporalapproaches
have been proposed. These approaches have the advantage of tak-
ing into account dependencies between pixels by incorporating
both temporal and spatial information. Spatiotemporal analysis
can be performed through several techniques, such as spatial
GMM [53], texture analysis [21], [7], Markov random fields [41],
video bricks [31], [9], and low-rank and sparse decomposition
[14], [18], [23], [49], to name a few. Usually, these methodsgive
more robust BS results than using only temporal information.
However, most of the proposed algorithms are dedicated to
dealing with one or two challenges but give poor performance
for other challenges [6]. For example, methods dealing with
dynamic backgrounds are generally less efficient to deal with
cast shadows and sudden illumination changes [5]. Finally,most
of these methods are limited by their high computational cost
and they are not easily adaptable to online video processing.

Real-world videos may also be acquired using moving cam-
eras. Most of methods dealing with such case use motion-
compensated BS or video segmentation. Motion-compensated
BS estimate first the motion of the camera from the video,
and then operate the BS using static-camera techniques [47],
[62]. Video segmentation approachesgroups pixels into spa-
tiotemporal regions that exhibit coherence in both appearance
and motion [20]. Foreground objects are then detected using
techniques such as ranking object proposals [29], [32], [63],
[37], saliency detection [57], [59], [58], multi-state selection
graph [17], constrained Laplacian optimization [48] and point
trajectories [8]. Video segmentation techniques are more adapted
for videos acquired by moving cameras. However, most of
these methods are computationally intensive and are designed
to perform in an offline scenario [57].

We propose an online approach for background subtraction
(BS) that is efficient for coping with several challenges con-
cerning videos acquired by static cameras or containing PTZ
effects. Our model combines temporal and spatial information
for BS. Temporal information is modeled locally using an online-
learned mixture of generalized Gaussian (MoGG) distributions
[1]. In fact, MoGGs are more efficient than GMMs to fit a broad
range of data histograms (e.g., withleptokurtic and platykurtic
modes) and is more robust to noise and outliers. Herein, we
introduce a new procedure for real-time online updating of the
MoGG parameters in the context of BS. Moreover, we use
background/foreground co-occurrence analysis to enhancethe
MoGG ability to model different background dynamics. This
allows to drastically decrease the amount of false positives
caused by complex background dynamics (e.g., fountains) and
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give more flexibility to model variable pixel state duration. Spa-
tial information is incorporated through multi-scale inter-frame
correlation analysis and histogram matching. Our approachnot
only allows for dissociating changes due to shadows and illu-
mination changes from those of moving objects, but also for
enhancing the accuracy of BS in the presence of noise, camera
jitter and complex background dynamics. Finally, we use a global
technique based on inter-frame displacement analysis to deal
with simple PTZ camera motion effects. Experiments on standard
datasets have shown that our method outperforms several state-
of-the-art methods on most of the challenges mentioned above.

This paper is organized as follows: Section II presents related
work. Section III describes our approach combining temporal
and spatial information modeling for BS. Section IV presents our
experimental results. We end with a conclusion and perspectives.

II. RELATED WORK

A. Temporal-based approaches

Temporal approaches consider the history of independent
pixels; and thus construct a global background model. They can
be classified in two following subcategories.

1) Parametric models:Gaussian mixture models (GMMs) are
the most popular parametric models used for BS [50], [25].
GMMs are able to cope with gradual illumination changes and
backgrounds with small repetitive motions (e.g., moving vege-
tation, etc.) [35], [65]. However, slow objects tend to be rapidly
absorbed by the background. In addition, sudden illuminations
changes and shadows generate object-like patterns of motion
that are classified as foreground. Finally, the GMM learning
rate is usually hand-tuned and does not adapt to the video
content. Several improvements have been proposed to mitigate
these limitations by automatic updating of the GMM component
number and learning rate [25], [65], using adaptive thresholds
[35], or by replacing the Gaussian distribution with more flexible
ones [13]. These improvements can achieve some automation
in adapting the GMM parameters to background dynamics.
However, the performance drastically decreases with challenges
such as thick shadows and complex background dynamics.

Pixel history can also be modeled as finite states corre-
sponding to events (e.g., lights on/off, cloudy/sunny or object
presence/absence) [51]. For instance, hidden Markov models
(HMMs) have been successfully used to model motorway events
(”background”, ”shadow” and ”moving cars”) [26], [43]. Meth-
ods using HMMs can be effective in modeling scenarios with
consistent temporal behavior. However, they lack flexibility by
having tight temporal duration for each state [26].

2) Non-parametric models:Kernel Density Estimation (KDE)
is a non-parametric pixel level background modeling approach
[12]. KDE guarantees a smooth and continuous version of
the background distribution. However, it is very demanding
regarding computational time and memory storage. Besides,
shadows and illumination changes are not well handled using
this approach. In [27], the background model is built using
codewords which are created by clustering sample background
values at the pixel level during a training phase. This allows to
describe dynamic background regions and avoid stopped object
using a limited memory. However, this approach cannot handle
permanent background changes since the updating mechanism
does not allow the creation of new codewords.

Temporal-based approaches have been used a lot in the
literature since they are simple to implement and give more
precise detection. However, these methods may fail with complex
scenarios, as they consider only the pixel history and disregard
any kind of pixel spatial context.

B. Spatiotemporal-based approaches

Instead of exploiting temporal history of pixels independently,
spatiotemporal approachestake into consideration both spatial
and temporal information when modeling and/or separating the
background/foreground. According to the level at which spatial
information is used, spatiotemporal approaches can be broadly
classified in three categories: region, brick and frame levels.

1) Region-level models:A fixed size region is used around
a pixel to include neighborhood information. For example, [24]
proposed a BS method where local temporal and spatial data
are assumed to follow the same distribution. This method can
achieve some robustness to noise and coherence for foreground
detection. However, it is not efficient in dealing with shadows,
illumination changes, and complex background dynamics. In
[53], a GMM extension is proposed by taking into account
the spatial dependency between pixels at the region level. This
allows to perform BS in scenes with dynamic background and
camera jitter. Hofmannet al. proposed the PBAS [22] which is
based on dynamic thresholding anda neighboring random ruleto
update the background model over time. This method is efficient
in coping with background dynamics (e.g., swaying trees, jitter),
but objects tend to be rapidly absorbed by backgrounds while
shadows and illumination changes can be detected as objets.

Inspired by PBAS, the SuBSENSE algorithm [7] useslocal
binary patterns(LBP) to model the relationship between neigh-
boring pixels along with pixel-level feedback loop for dynamic
decision thresholds. This enables to model several types of
background dynamics. However, it does not deal efficiently with
illumination changes, shadows, and camouflage problems. In
[41], Markov random fields(MRFs) have been used to model
the spatial coherence between pixels for BS. Generally, MRFs
provide spatial consistency for BS labeling but are less efficient
to handle challenges such dynamic backgrounds, shadows, cam-
era jitter and PTZ effects. In addition, they are computational
intensive which is limitation to real-time processing. Generally,
region-based approaches allow to deal locally with noisy scenes
and mild background dynamics, but are sensitive to sudden
illumination and complex dynamics.

2) Brick-level models:In these approaches, 3D spatiotem-
poral structures namedvideo bricks are exploited to build
background models for BS. Linet al. [31] have designed a
3D descriptor to deal with complex background scenes by
pursuing subspaces within video bricks and using the ARMA
(auto regressive moving average model) to separate foregrounds
from instable backgrounds. However, the method lacks flexibility
to deal with more challenging scenes. In [34], a spatiotemporal
saliency algorithm is proposed for foreground detection. This
is carried out by combining 3D motion features and dynamic
texture models. This method outperforms its predecessors by
reducing the average error rate, but at a cost of a huge com-
putational time. Chenet al. [9] have used optical flow (OF)
to refine and update the noisy background obtained from the
GMMs. This enables to deal efficiently with scenes containing
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stopped objects or objects with slow motion (e.g., stoppingcars,
person waiting in a queue). However, errors in OF estimation
may badly influence the accuracy of the derived BS.

3) Frame-level models:These can be considered as the ex-
treme case of the brick level when the size of bricks are the
frames. One of the most used approaches in this category is
eigenvalue decompositionof spatiotemporal video volumes [36].
It enables implicit encoding of spatial relation between pixels
while avoiding tiling effects of block partitioning. Several works
in the past have proposed to extract video foregrounds usinglow-
rank and sparse decompositionvia Robust Principal Component
Analysis (RPCA) [11], [49], [18]. Videos are decomposed into
two matrices, a low-rank matrix representing the background
and a sparse matrix representing the foreground. Other versions
of this approach using Higher-order RPCA (HoRPCA) [18],
Bayesian Tensor Factorization (BRTF) [64] and RPCA with a
dynamic tree-structured foreground [11] have been proposed.

One of the major limitations of RCPA-based approaches is
their tendency to recognize foreground objects with slow motion
as background. Moreover, they are not efficient in processing
videos in an online fashion in addition of being computational
demanding. To overcome these drawbacks, some online ap-
proaches have been proposed [14], [23], [49]. In [49], an online
tensor decomposition of spatiotemporal features is proposed for
foreground detection. In the same vein, online tensor subspace
learning [23] is used to represent spatial dependencies between
pixels for foreground detection. These approaches can dealeffi-
ciently with some challenges in an online fashion. However,are
not generalizable to all challenges (e.g., complex backgrounds
dynamics, camera jitter, local illumination changes, shadows and
PTZ effects), while they are computationally expensive.

C. Overview of our contribution

Our goal is to achieve an online BS by a simple yet efficient
new procedures for combining spatial and temporal informa-
tion. In addition to dealing with several complex background
dynamics, our approach is less sensitive to shadows, illumination
changes, camera jitter and PTZ camera effects. Finally, it is
optimized to process videos with near real-time capability. We
briefly summarize our contributions as follows:

1) We propose and online approach for foreground segmen-
tation combining temporal and spatial information. Compared
to previous spatia-temporal methods, our approach can cope
efficiently with several challenges such as cast shadows, illu-
mination changes and complex background dynamics. We also
propose several procedures to optimize the computation time of
our algorithm. 2) a new scheme is proposed for temporal infor-
mation modeling by coupling MoGGs and objects/background
co-occurrence analysis. This enables to accurately modeling
random background dynamics (e.g., fast foreground/background
switching, fountains), 3) we model spatial information using
inter-frame spatial structure and histogram analysis. Spatial
information makes our BS method less sensitive to shadows and
illumination changes. We propose also a procedure for adapting
the learning rate of the MoGG model to the scene context. This
enables, for example, a quick absorption of drastic background
changes induced by PTZ operations.

III. T EMPORAL/SPATIAL INFORMATION MODELING

The proposed algorithm is composed of temporal and spatial
modules interacting with each other for efficient BS (see Fig. 1).
Temporal information is modeled by combining MoGGs and co-
occurrence analysis, which allows for an accurate representation
of various complex background dynamics. Spatial information
is incorporated into the method using correlation analysisand
histogram matching which mitigate effects of cast shadows,high-
lights, illumination changes and PTZ effects. This information is
also used to derive an adaptive scheme to estimate the learning
rate of the MoGG parameters. This scheme contributes also to
accelerate the convergence rate of the background model and
prevent it from rapidly absorbing objects.

A. Basic temporal information modeling using MoGGs

The MoGG model has the flexibility to accurately fit different
histogram shapes while ensuring robustness to noise and/or
outliers which cause heavy-tailed distributions [2]. The one-
dimensional generalized Gaussian density (GGD) is defined in
R as follows:

p(X |θ) = K(λ, σ) exp
(

−A(λ) |(X − µ)/σ|λ
)

, (1)

where θ = {µ, σ, λ} is the set of GGD parameters,
K(λ, σ) = λ

√

Γ(3/λ)/Γ(1/λ)/(2σΓ(1/λ)) and A(λ) =
[Γ(3/λ)/Γ(1/λ)]λ/2; Γ(.) being the gamma function. The pa-
rametersµ and σ are the GGD location and scale parameters.
The parameterλ controls the kurtosis of the probability density
function (pdf) and determines whether its shape is peaked orflat.
To model temporal changes in video, we consider the history of
each pixel(x, y) at time t as { ~X0, ..., ~Xt}. Each vector~Xt is
D-dimensional~Xt = (X1,t, ..., XD,t) ∈ R

D (D = 3 for RGB
color). Suppose that the history of the pixel at timet is modeled
as a mixture ofK components where, given that the dimensions
of ~Xt are independent in each class, the probability of observing
the vector ~Xt is given as [1]:

p( ~Xt) =

K
∑

i=1

ωi,t ∗ΠD
d=1p(Xd,t|~θi,d,t), (2)

where ~θi,d,t = (µi,d,t, σi,d,t, λi,d,t) are parameters describing
the dimensiond of the ith component of the mixture,ω1,t,...,
ωK,t are the weights of components such that

∑K
i=1 ωi,t = 1

andK is a parameter that represents the maximum number of
foreground/background components.

We assume that at frameIt+1, a pixel(x, y) have value~Xt+1

and a match is found with one of the components of the mixture
(let’s say with componentk) if we have the following condition:

p(~θk,t| ~Xt+1) > τ, with k = argmax
i
{p(θi,t| ~Xt+1)}, (3)

whereτ is a given threshold andp(θi,t| ~Xt+1) is the posterior
probability of theith mixture component. If a match is found, all
the parameters of the matched componentk are updated, whereas
only the weight parameters are updated for the other components.
In no match is found, a new component of the mixture is created.
Note that an online updating method has been proposed in [1] us-
ing the Expectation-Maximisation (EM) algorithm. However, the
procedure uses Fisher scoring which incurs a huge computation
time to calculate the likelihood derivatives. Here, we propose a
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Fig. 1. The proposed algorithm architecture. In the binary masks: white, black, red, green and gray colors represent thetrue positives (TP), true negatives (TN),
false positives (FP), false negatives (FN) and unknown pixels, respectively.

faster procedure based on statistical moments for online updating
the MoGG parameters. First, since

∑K
i=1 ωi,t = 1, the weights

are updated as follows [50]:

ωi,t+1 = (1− ρ) ∗ ωi,t + ρ ∗ δ(i = k), i = 1, ...,K (4)

where δ is the delta function andρ is a learning parameter.
After this updating, we normalize all the weights. The entries of
the shape parameter vector~λk are updated using the following
property [46]:
[

σk,d,t

E
[

| Xk,d,t − µk,d,t |
]

]2

=
Γ (1/λk,d,t) Γ (3/λk,d,t)

Γ2 (2/λk,d,t)
, (5)

whereXk,d,t are values of thedth dimension of~X assigned to
componentk until time t, µk,d,t is the location parameter of the
same component andE

[

| Xk,d,t − µk,d,t |
]

is the mean of
centered absolute values (MAV), given as:

E
[

| Xk,d,t − µk,d,t |
]

=
1

Nk

t
∑

s=1

| Xk,d,s − µk,d,t |, (6)

whereNk is the number of data assigned to componentk. Using
the shorthandX̃k,d,t to designate|Xk,d,t − µk,d,t|, the MAV is
updated online as follows:

E(t+1)

[

X̃k,d,t+1

]

= (1− φ) ∗ E(t)

[

X̃k,d,t

]

+ φ ∗ X̃k,d,t+1. (7)

For a matched componentk, ~λk can be efficiently updated for
each dimension using Eq. (5) via a quick look-up table search
[46]. The location parameter of the same component is updated
using Eq. (8) as follows [1]:

µk,d,t+1 =

∑t+1
s=1 X̃

(λk,d,t+1−2)
k,d,s ∗Xk,d,s

∑t+1
s=1 X̃

(λk,d,t+1−2)
k,d,s

=
αk,d(t+ 1)

βk,d(t+ 1)
, (8)

whereλk,d,t+1 is the shape parameter for dimensiond computed
at timet+1. The termsαk,d(.) andβk,d(.) can be updated online
using the following equations:

αk,d(t+ 1) = αk,d(t) +Xk,d,t+1 ∗ X̃(λk,d,t+1−2)
k,d,t (9)

βk,d(t+ 1) = βk,d(t) + X̃
(λk,d,t+1−2)
k,d,t . (10)

Finally, the scale parameterσk,d,. is updated in frameIt+1 using
the following online equation:

σk,d,t+1 =
[

(1− φ) ∗ (σk,d,t)
λk,d,t + φ ∗ λk,d,t+1∗

A(λk,d,t+1) ∗ (X̃k,d,t)
λk,d,t+1

]1/λk,d,t+1

, (11)

whereA(λ) is given in Eq. (1). The parameterρ represents a
learning rate in all the above equations whereρ = φ/ωi andφ
is named the learning factor. This factor is adaptively estimated
using the spatial information as explained in section III-D. See
Appendix A for a detailed description of the MoGG parameters
derivations.

B. Temporal co-occurrence and persistence modeling

In the original GMM-based BS and its variants [5], the mixture
components of each pixel are first sorted in the descending
order of their weights (i.e.,ω parameters). Then, the background
model is constituted by the components with the highest weight
values. This achieves good results only if background patterns
are stable over time. In case of fast intermittent switchingof
object/background components over time, the performance of
the model will decrease. Fig. 2 illustrates this fact by taking
two samples in different locations of the image. The video
is ’fountain01’ from the ’dynamicBackground’ category of the
CDnet dataset [60]. The first location is illustrated in Fig.2-
(a) where the background (grass) is well separated from the
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Fig. 2. An illustration for static and dynamic backgrounds.(a) The pixel at the
white box illustrates a static background. In the top left: asample frame from
the CDnet dataset [60], ’dynamicBackground’ category, ’fountain01’ sequence.
In the top right: Red channel history of the spotted pixel (frames: 651 to 750).
(b) A dynamic background illustrated by the pixel at the black box. Captions
are the same as in (a).

object (black car). Indeed, the grass component weight in the
mixture overpasses80%. The second location is illustrated in
Fig. 2-(b) where the background contains dynamic random
appearances of the ground-grass and the water drop fountain. The
rapidly intermittent switching between the two has prevented the
background from converging rapidly to two components.

To cope with this problem, we propose to analyse theco-
occurrenceand persistenceof mixture components for acceler-
ating the convergence of the background model. Letp be a pixel
at position(x, y), K is the number of components, and let the
set of variables and parameters be defined as follows:
• The component co-occurrence matrix (CCM)A: is aK×K

matrix with each elementaij , 1 ≤ i, j ≤ K, giving the number
of times the pixelp is labelled with componentsci andcj at time
t and t+ 1, respectively. LetB = (A +A

T )/2, with diagonal
set to zero.
• The co-occurrence weightsη: is a K-element normalized

vector constituted of therm-th row of the matrixB, wherem =
1, ...,M .
• The persistence vectorυ: is a K-element vector generated

at each pixel with each elementυj , j = 1, ...,K, expressing the
duration of the component occurrence without interruptionsince
its activation.
• The number of dominant componentsM : represents the

number of dominant background components that interacts with
the rest of components which may represent moving patterns of
background. It is obvious thatM ≪ K (usuallyM is set to1).
• R = {r1, r2, ..., rM}: is the set of dominant component

indices sorted in descending order of their temporal weights ω.
• The co-occurrence factorν: defines the importance given

to the co-occurrence weightsη versus the temporal weightsω,
whereν ∈ [0, 1].
• The set of combined weightsΠ = {π1,π2, ...,πM}: is the

set of combined temporal/co-occurrence weight vectors, where
each vectorπm is computed considering therm-th line of the
co-occurrence matrix, and wherem = 1, ...,M .

•The final combined weightsπ: is aK-element vector defined
as the average of theM combined weight vectors in the setΠ.

Note that componentpersistenceis a complementary concept
to the co-occurrence. At a given pixelp, we keep for each
mixture componentcj for j = 1, ...,K a count reflecting the
number of successive occurrences ofcj in time. In other words, if
cj is matched in two successive framest andt+1, its persistence
is incremented by1. Otherwise, it is reset to1. It follows that
stable components (background or foreground) will tend to have
high persistence values.

Algorithm 1 combines the MoGG temporal information with
the co-occurrence/persistance information. It starts with updating
the CCM and extractingthe co-occurrence weightsη, then each
value ηj is divided by the corresponding persistence valueυj .
The new vectorη encodes approximate probabilities of the
components switching, in a similar way as the Markov chain
transition matrix.The co-occurrence weightsη are then com-
bined with the MoGGtemporal weightsω to build the combined
weightsπm using the linear formulaπm = ν ∗ω+(1− ν) ∗η,
whereν ∈ [0, 1] is a parameter that defines the importance given
to the co-occurrence weightsη versusthe temporal weightsω.
At the end,the final combined weightsπ can be computed as
the average of theM combined weight vectors using the formula
π = 1

M

∑M
m=1 πm.

The co-occurrence factorν can be adjusted according to the
scene nature. If the processed scene contains dynamic areas
like swaying trees or fountains, then a higher value ofν is
preferred, otherwise (i.e. the scene is only composed of stable
background/foreground components) the co-occurrence weights
have no effect on the computation of the combined weights that
will be equal to the temporal weights. In our experiments, the
parameterν is set to0.5 to carry the general case and provide a
good trade-off between the co-occurrence and temporal model.

For illustration, consider the two scenarios presented in Fig.
2. Let us setK = 7 for the pixel p (the center of the square)
with mixture component labels activated from frame651 to
frame750. In Fig. 2-(a), the spotted pixel at position(240, 110)
represents a stable green grass ground with a black car passing
over it. The matched MoGG temporal labels and the CCM
A are given in Tab. I-(a) and Tab. I-(b), respectively. We can
observe that the majority of the CCM entries are null and,
consequently, all the co-occurrence weights vectorη in Tab. I-(e)
are also null. This is because there is practically one dominant
stable background component (the grass) and there is littleco-
occurrence with the other foreground components (the blackcar
crossing the road).

In Fig. 2-(b), the selected pixel is characterized by a rapidly
intermittent switch between the grass ground and water of the
fountain. The correspondent timeline labels and CCM are given
in Tab. II-(a) and Tab. II-(b), respectively. For example,a11 (top
left) is the number of times that the pixelp with component
c1 appears after the same component anda14 (top middle) is
the number of times that the pixelp with componentc4 appears
after componentc1. Indeed, the pixel switches rapidly between
several components which can explain why all CCM entries are
relatively high.

Contrarily to past works based on GMMs [5], our model
assigns high weights to components that occur successivelyin
time or have high switching rate with other components. This
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Frames Activated components

651 - 670 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
671 - 690 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
691 - 710 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 3 3
711 - 731 4 4 3 5 3 5 5 3 3 3 2 6 6 7 3 1 1 1 1 1
731 - 750 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

(a)
650 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

729 1 0 0 0 0 0
0 1 1 0 0 1 0
1 1 3 1 2 0 0
0 0 1 1 0 0 0
0 0 2 0 1 0 0
0 0 0 0 0 1 1
0 0 1 0 0 0 0

c1 0.9964
c2 0.0006
c3 0.0019
c4 0.0003
c5 0.0006
c6 0.0003
c7 0.0000

0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000

0.9964
0.0006
0.0019
0.0003
0.0006
0.0003
0.0000

(b) (c) (d) (e) (f)

TABLE I
CO-OCCURRENCE MODEL RELATED TO THE EXAMPLE ATFIG. 2-(A). (A)
MOGG ACTIVATED COMPONENT LABELS. (B) CCM AT FRAME #651. (C)

CCM AT FRAME #750. (D) MOGG TEMPORAL WEIGHTSω. (E)
CO-OCCURRENCE WEIGHTSη. (F) COMBINED MOGG AND

CO-OCCURRENCE WEIGHTSπ.

Frames Activated components

651 - 670 1 1 1 1 2 6 3 7 1 1 1 1 1 1 1 1 1 1 2 1
671 - 690 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1
691 - 710 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1
711 - 731 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1
731 - 750 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1

(a)
504 9 9 13 7 7 1
8 0 0 0 0 0 0
9 0 0 0 0 0 0
14 0 0 3 1 0 0
6 0 0 2 1 0 0
7 0 0 0 0 2 0
0 1 0 0 0 0 0

586 13 12 13 7 7 1
11 0 0 0 0 1 0
12 0 0 0 0 0 1
14 0 0 3 1 0 0
6 0 0 2 1 0 0
7 0 1 0 0 2 0
1 1 0 0 0 0 0

c1 0.9322
c2 0.0338
c3 0.0165
c4 0.0051
c5 0.0024
c6 0.0094
c7 0.0006

0.0000
0.2353
0.2353
0.2647
0.1275
0.1373
0.0000

0.4661
0.1346
0.1259
0.1349
0.0649
0.0733
0.0003

(a) (b) (c) (d) (e)

TABLE II
CO-OCCURRENCE MODEL RELATED TO THE EXAMPLE ATFIG. 2-(B).

CAPTIONS AS IN TAB . I.

Algorithm 1: Compute the combined weightsπ.
Data: MoGG models, co-occurrence matrices (CCM)A,

persistence vectorsυ, number of dominant
componentsM , and co-occurrence factorν.

Result: Component combined weightsπ.
for each pixelp do

Let A be the CCM andcold, cnew be the old and new
activated components, resp.;
A(cold, cnew)← A(cold, cnew) + 1; // update the

CCM
if cold = cnew then

υ(cnew)← υ(cnew) + 1;
else

υ(c)← 1 with c 6= cnew ;
end
B← (A+A

T )/2;
diag(B)← 0; // reset diagonal of B to 0
for each component indexm = 1 : M in R do

η ← B(r, :) with r ← R(i);
η ← η/υ;// divide the co-occurrence

weights by the persistence
η ← η/(

∑

j ηj); // normalize η

πm ← ν × ω + (1− ν)× η;// compute the
combined temporal/co-occurrence
weights

πm ← πm/(
∑

j πm,j); // normalize
weights

end
π ← 1

M

∑M
m=1 πm; // final weights

end

allows to reduce significantly false positives caused by back-
ground dynamics, such as fast swaying tree leaves, fountains,

camera jitter, etc. The detailed procedure for updating theCCM
and combining the MoGG and co-occurrence weights is outlined
in Algorithm 1.

C. Spatial information modeling

Spatial information is added to our approach using local
structure (or texture) and color distribution. This information is
relatively stable under soft shadows, and illumination changes
and will enforce our BS to overcome these challenges.

1) Correlation analysis:The spatial structure conformity with
the background is done by multi-scale correlation analysisbe-
tween patches. We recall that the normalized cross correlation
(NCC) between two vectors~v1 and~v2 is defined as:

NCC(~v1, ~v2) =
~v1 · ~v2

‖ ~v1 ‖‖ ~v2 ‖
(12)

where‖ ~v ‖=
√
~v · ~v is the norm of~v. The NCC is invariant to

linear scaling of the form~v′ = γ~v, whereγ ∈ R
∗. For our BS

algorithm, for each pixel we approximate the current background
reference by the mean of components withM highest mixture
weights {ω{1},t+1, ..., ω{M},t+1}, whereM is the number of
dominant background components. The set of resulting reference
frames{I1, ..., IM} for the spatial module is build with local
value for each pixel determined as follows:

Im(x, y) = µ{m},t+1(x, y),m ∈ {1, ...,M}, (13)

whereµ{m},t+1(x, y) is the mean parameter of the GGD corre-
sponding to the weightω{m},t+1.

Using the correlation between the reference frameIm and the
current frameIt+1, we can compare the local structure between
the current and the reference frames. We then derive an approx-
imation of the spatial foreground/background probabilities. For
more reliable estimation of these probabilities, we use multiple
window sizes surrounding each pixel. That is, for each reference
frame Im,m ∈ {1, ...,M}, S correlation maps are computed:
NCC1, NCC2,..., NCCS for square blocks of sizeN1 × N1,
N2×N2,...,NS×NS, respectively, whereN1 < N2 < ... < NS

(typically S = 3). These maps are obtained by factorizing
correlations over color channels as:

NCCm,j =

D
∏

d=1

NCCm,j,d, (14)

whereNCCm,j,d corresponds to the correlation calculated with
referenceIm using scalej and color channeld. Then, the
maximum correlation among the reference frames is retained:

NCCf = max
m=1..M

(

max
j=1..S

NCCm,j

)

. (15)

To reduce the computational cost of computing the correlation
maps, the integral image is used [54]. In fact, template matching
can be efficiently obtained in thed-th channel in the reference
frame Id and the corresponding channel in the current frame
Id,t+1 by computing the integral images ofI2d , I2d,t+1, and
Id ∗ Id,t+1 images, then Eq. (12) can be computed at all
image locations using simple arithmetic operations. The final
correlation maps are then computed using Eqs. (14) and (15).

Finally, the spatial foreground and background probabilities
are approximated using the lenient functions:ps,f ( ~Xt+1) ≃
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(a) (b) (c)

Fig. 3. Spatial maps obtained for sample frames. Rows from top to down repre-
sent the reference frame, current frame, NCC map, histogrammap, discrimination
map and learning factor map (the black, white and gray colorsrepresentφlow,
φavg andφhigh respectively). (a) frame#2700 from ’overpass’, (b) frame #850
from the ’bungalows’ sequence and (c) frame#1080 from the ’copyMachine’
sequence.

exp(−f(NCCf )) and ps,b( ~Xt+1) ≃ 1 − exp(−f(NCCf )),
wheref is a linear function defined asf(x) = w1x + w2 and
w1, w2 are constants controlling the sensitivity of the probability
to the spatial correlation.

Fig. 3 shows theNCCf map obtained for a sample of
frames from the Change Detection dataset [60]. The reference
and original frames are shown in the first and second rows,
respectively. The third row shows the obtainedNCCf map
where darker regions are pixel surroundings which are closeto
those of the reference frame. By opposite, brighter regionsare
pixel surroundings with high foreground spatial probability.

2) Histogram matching:Spatial information can also be ex-
ploited through local color distribution. This can be useful when
a video contains dynamic backgrounds (i.e., waving trees, water
fountain, camera jitters, etc.) where the local structure of the
background may slightly change but not the color distribution.
Suppose that we have a reference imageI at the fameIt+1.
Let R andRt+1 be the regions centered around a pixel(x, y)
in framesI andIt+1, respectively,H andHt+1 their respective
histograms andNbins is the number of bins in the histograms
Ht andHt+1. We use the Bhattacharyya distanced(Ht, Ht+1)
to compareHt andHt+1 as follows:

d(Ht, Ht+1) = 1−
Nbins
∑

i=1

√

Ht(i) ∗Ht+1(i); (16)

We compute the histograms for each reference frameIm,m ∈
{1, ...,M} in Eq. (13) at different scales using window sizes
W1 < W2 < ... < WS (typically S = 3) and all D color
channels using [39]. The histogram distance mapHISTf given

by Eq. (17), whereHISTm,s,d corresponds to the distance map
calculated with referenceIm at scales and color channeld.

HISTf =

S
∏

s=1

(

max
m=1..M

(

max
d=1..D

HISTm,s,d

)

)

. (17)

Finally, we build a discrimination mapSφ by combining the
histogram final distance mapHISTf and the correlation map
NCCf as shown in the Eq. (18).

Sφ = exp(−f(NCCf )) ∗
(

1− exp(−g(HISTf))
)

, (18)

wheref andg are two linear functions definedf(x) = w1x +
w2 and g(x) = w3x + w4, with w1 to w4 set experimentally.
Basically, the mapSφ enables to discriminate between changes
due to illumination changes to those caused by jitter, background
dynamics and the presence of foreground objects.

D. Adaptive learning rate for MoGG modeling

A bi-level thresholding is carried out on the discrimination
mapSφ using two thresholdsT1 andT2 to obtain the learning
factor used by each MoGG temporal model. Consequently, the
learning factor map should contain three levels of learning
factors:φlow < φavg < φhigh that correspond to high plausibility
of foreground, unknown and high plausibility background, re-
spectively. The dynamic estimation of the learning factor allows
the temporal MoGG update procedure to assign a low learning
factor φlow to stopped objects or objects with slow motion.
Background regions will be assigned a high learning factor
φhigh that enables those regions to be quickly integrated into the
background model. The third valueφavg is assigned to pixels not
identified strongly as either foreground or background according
to the discrimination mapSφ. The learning parameterρ of Eq.
(4) is updated for each pixel using the equationρ = φ/ωi.

Fig. 3 shows NCC maps, histogram matching and the resulting
learning factor for the sample frames. We can observe that the
correlation analysis (CA) and the histogram matching (HM) are
complementary in their nature. For example, in the ’overpass’
frame, CA detects the tree leaves as false positives. On the other
hand, HM failed to remove the person shadow and illumination
changes that caused false detections. However, we can observe
that most of these false detections are removed by combiningthe
two spatial maps and, therefore, an appropriate learning factor
map has been generated. Finally, the stopped object challenge
given by the waiting woman in the ’copyMachine’ sequence
can not be integrated into the background model due to the low
learning factorφlow assigned to the woman pixels.

E. Detection of PTZ camera effect scenarios

Several works have been proposed to deal with PTZ camera
effects [15], [61]. To detect the presence of PTZ camera effect
in a given sequence, a global-level processing is performed
based on the displacement estimation between two successive
frames using cross-correlation. At each timet, both the previous
and current frames are compared each other using a two-step
cross-correlation algorithm. In the first step, we compute the
correlation coefficients between overlapping patches of the two
frames. In the second step, we find the best-match positions
using the maximum of cross-correlation values obtained forall
possible displacement in the search matrix. Finally, PTZ effects
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are detected using the average of displacements calculatedin a
temporal window sizeL, which is formulated as:

dptz =
1

L

t
∑

i=t−L

‖~di‖ (19)

where ~di is the displacement vector computed between the two
framesIi−1 andIi.

The presence of a PTZ effect is decided by a threshold test
on the displacement averagedptz . If dptz overpasses a given
thresholdǫ then a PTZ scenario is started. Consequently, the
learning rate is set to a high valueαptz for the nextNptz frames
to allow the new background to be quickly absorbed into the
background model.

F. The overall background subtraction algorithm

Suppose that at timet, the model in Eq. (2) has generated
kf and kb components associated with the foreground (f ) and
background (b), respectively, wherekf+kb = K. The foreground
and background probabilities are given bypt,f ( ~Xt) andpt,b( ~Xt),
respectively.

Firstly, the presence of PTZ camera effect is checked as
explained in Section III-E. If a PTZ scenario is started, then
a high value is assigned to the learning rate. Otherwise, the
learning rate is updated as explained in Section III-D. At each
pixel in frameIt+1, we may have one of the following scenarios:

1) If the vector ~Xt+1 is matched with one of the mixture
components, the matched component parameters (ωk,t+1, µk,t+1,
σk,t+1 and λk,t+1) are updated using Eqs. (4) to (11) and
only the weight value of the unmatched components (ωk,t+1)
is updated using Eq. (4). The CCM and persistence values
are updated as detailed in Section III-B. Finally, the matched
component’s label (b:background orf :foreground) is assigned
to the pixel.

2) If no match is found, a new componentK+1 is created for
the mixture model with parameters set as follows:ωK+1,t+1 =

α, µK+1,d,t+1 = ~Xt+1, σK+1,d,t+1 = σ0 and λK+1,d,t+1 =
λ0, where σ0 and λ0 are initial scale and shape parameters,
respectively. The CCM and persistence entries that correspond
to this component are reset to zero.

Next, the mixture components are sorted in descending order
of temporal co-occurrence weights (πi,t+1) computed by Algo-
rithm 1 and the new background temporal modelpt+1,b(.) is
formed using the firstB largest mixture components, where

B = argmin
b

(

b
∑

i=1

πi,t+1 > T

)

. (20)

The thresholdT is the minimum portion of data considered
to belong to the dynamic background (typicallyT = 0.8). At
this step, the reference frame used by the spatial module is
constructed by taking the mean parameter of the first component
among the B components resulting in Eq. (20) as the pixel value
(see Eq. (13) ).

Next, based on the two temporal and spatial probabilities (i.e.
pt,f and ps,f , respectively), the current pixel will be assigned
label f if:

Sfcm ∗ ps,f ( ~Xt+1) + (1− Sfcm) ∗ pt,f ( ~Xt+1) ≥ δ (21)

whereδ is a threshold andSfcm (spatial foreground coherence
map) is a smoothed map of the correlation mapps,f using an

(a) (b) (c) (d) (e) (f)

Fig. 4. Shadow removing using correlation analysis (Sampleframe #1200 from
the ’CDnet’ dataset, ’shadow’ category, ’cubicle’ sequence). (a) Original frame.
(b) Ground truth frame. (c) Spatial correlation map. (d) Temporal map. (e)
Temporal and spatial combination map. (f) Final detection.

Module Required parameters

MoGG K = 7, τ = 0.002, σ0 = 20.0, λ0 = 1.0, φlow = 10−5,
φavg = 10−3, φhigh = 0.05

Co-occurrence M = 1, ν = 0.5, T = 0.80

NCC analysis N1 = 11, N2 = 35, N3 = 65, w1 = 1.10, w2 = 0.82, δ = 0.9

Histogram matching W1 = 13, W2 = 33, W3 = 53, Nbins = 16, w3 = 0.25,
w4 = 0.01, T1 = 0.23, T2 = 0.53

PTZ detection L = 10, ǫ = 6, Nptz = 15, αptz = 0.1

TABLE III
PARAMETER SETTING OF THE PROPOSED ALGORITHM USED IN OUR

EXPERIMENTATIONS.

average filter of5× 5 pixels size. Otherwise, it is assigned label
b (i.e., a potential shadow or highlight).

Finally, a post-processing step is performed through the binary
masks generated after the temporal and spatial combination. The
”salt and pepper noise” is a common problem that arise in BS.
First, we apply the median filter to reduce this type of noise.
Then, a morphological correction is applied to smooth silhouettes
and fill their ”internal holes”. This allows also to remove small
wrongly detected artifacts from the resulting binary masks.

The combination of temporal and spatial models is demon-
strated in Fig. 4, where the correlation analysis is used to
remove casting shadows. We can see that the shadow cast by
the walking person is wrongly classified as foreground by the
temporal model. However, by using the spatial information,the
shadow is detected and removed. On the other hand, the temporal
model helps to detect precisely the walking person silhouette.

IV. EXPERIMENTAL RESULTS

We conducted experiments using three different benchmark
datasets: the CDnet dataset [60], the SABS dataset [6] and the
MSVS [4] dataset. To evaluate the merit of our approach, internal
comparisons are done between the temporal and spatial modules
of the proposed approach. Moreover, the proposed approach
results are compared with those produced by new state-of-the-
art methods. The choice of optimal parameters is critical tothe
evaluation task, therefore, preliminary experiments havebeen
conducted to adjust the best set of parameters. Tab. III shows
the optimal parameters selected for the proposed algorithm.

A. Used evaluation datasets

We run our algorithm on the following datasets:
1) The Change Detection Dataset (CDnet): This dataset

has been proposed recently [60] to address the shortcomings
of previous datasets regarding challenges and ground truth
availability. It provides 53 videos that have been acquiredin
different scenarios: baseline, dynamic backgrounds, camera jitter,
shadows, intermittent object motion, thermal, bad weather, low
frame-rate, night, PTZ camera motion and air turbulence. They
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are grouped into 11 categories according to the type of challenge
each video exhibits.

2) The Stuttgart Artificial BS Dataset (SABS): This dataset
proposed in [6] contains synthetic videos for pixel-wise eval-
uation of BS methods. It includes 9 realistic scenarios: basic,
dynamic background, bootstrapping, darkening, light switch,
noisy night, camouflage, no Camouflage and Video compression.
Each video sequence exhibits one or more challenges such as
shadows, waving trees and traffic lights. High-quality ground
truth annotation is provided as color-coded foreground masks
for every frame of each test video.

3) The Multispectral Video Sequences Dataset (MSVS):
The MSVS dataset [4] is the first BS dataset that uses multispec-
tral band (MSB) video data. It is composed of5 multispectral
video sequences containing between250 and2300 frames of the
size of658× 491 for each video frame. Each video sequence is
composed of7 spectral bands, six in the visible spectrum and one
in the near infrared (NI). This video dataset represents different
challenges such as gradual illumination changes, shadows,and
camouflage effects. The video sequences and their ground truth
data are available online.

To conduct a quantitative comparison between the proposed
model and state-of-the-art approaches, we use the evaluation
metrics provided by the CDnet dataset [60]. The seven metrics
used are Recall (Re), Specificity (Sp), False Positive Rate (FPR),
False Negative Rate (FNR), Percentage of Wrong Classifications
(PWC), Precision (Pr) and F-measure (F).

B. Quantitative evaluation of the temporal/spatial modules

We conduct a separate quantitative evaluation of the proposed
temporal and spatial modules to illustrate the improvementthat
can be achieved by the integration of each module. The bar
chart of the Fig. 5 highlights the results obtained by the appli-
cation of the proposed modules separately for the ’shadow’ and
’dynamicBackground’ categories from the CDnet [56] dataset
along with five RGB and MSB video sequences from the MSVS
dataset [4]. We note that the videos in the same category may
include different kinds of challenges. As shown in the Fig.
5, three modules have been evaluated, (1) the temporal model
without co-occurrence analysis (MoGG), (2) the temporal model
with co-occurrence analysis (MoGG+CooC), and (3) the overall
approach including the combination of temporal co-occurrence
information with spatial analysis (MoGG+CooC+Spatial).

Fig. 5 reports that the co-occurrence information improvesthe
precision for the ’dynamicBackground’ category by removing
false detections results from the rapidly switching background
that characterizes videos in this category. However, the use
of MoGGs with co-occurrence gives similar results in terms
of F-measure compared to using only the temporal MoGGs
for the ’shadow’ category. We can also observe that the use
of spatial information has improved both recall and precision
metrics in the two categories. Considering the MSVS dataset,
the experimental evaluations given in the Fig. 5 show that the
use of co-occurrence analysis increases the performance ofthe
temporal model. Furthermore, the results given by the temporal
modules are significantly improved by integrating the spatial
modules. This fact can be observed for both RGB and multi-
spectral (MSB) video sequences.
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Fig. 5. Comparison of evaluation metrics obtained by the different proposed
modules for the CDnet and the MSVS dataset.

The observed performance improvement has been carried out
thanks to the combination of temporal and spatial modules that
cooperate each other to cope with several challenges. Firstly,
the MoGGs modeling has been improved by co-occurrence and
adaptive updating of the learning rate to detect and remove false
positives in background dynamics scenarios such as noise and
camera jitter. Secondly, soft changes in illumination and shadow
are absorbed to the background by the MoGG updating mech-
anism along with the multi-scale correlation analysis. Thirdly,
the convergence of the background model is accelerated using
an adaptive learning rate which is updated using the correlation
and histogram spatial information.

C. Overall evaluation of the proposed method

1) The CDnet Dataset:Fig. 6 contains the performance
metrics obtained by the application of the proposed approach
for the 53 videos of the CDnet dataset (The overall results for
the CDnet dataset are given in Tab. VII. The graphics in Fig.
6 show that the proposed approach gives competitive results
for several categories such as ’shadow’, ’dynamicBackground’,
’cameraJitter’, and ’PTZ’. We can note that the majority of
videos show F-Measure metrics above 80% which indicates
that the proposed approach is efficient in dealing with shadows
and dynamic backgrounds. However, one can observe that the
proposed approach gives relatively low scores regarding some
categories such as ’intermittentObjectMotion’ and ’nightVideos’.
In fact, most of methods in the literature fail to give satisfactory
results for these categories for several reasons. For videos
containing intermittent objects, it is hard for some videosto build
an object-free background that enables good object detections.
In the ’parking’ video, for example, this difficulty has prevented
detecting the car in the majority of video frames which caused
a great number of false negatives (Re=0.06). For night videos,
erroneous detections can be caused by strong illuminationsthat
saturate pixels (e.g., car headlights) or in videos containing low
contrast between objects and the background.

For the ’PTZ’ category, the proposed algorithm gives good re-
sults for three sequences, namely: the ’continuousPan’, the ’inter-
mittentPan’, and the ’twoPositionPTZCam’ sequences. However,
the proposed technique fails to detect the PTZ scenario for the
’zoomInZoomOut’ sequence. This is because, in this video, the
displacement between two consecutive frames is very small and;
therefore, the PTZ detection and processing can not be started
throughout all the frames of this sequence.
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Fig. 6. BS scores obtained by the proposed algorithm on all CDnet videos.

To show the merit of our algorithm to deal with the shadow,
dynamic background, camera jitter, and PTZ challenges, compar-
ison tests have been conducted on all the videos of of the CDnet
dataset. The graphic in Fig. 7 shows a comparison evaluation
between category average values of the recall, precision and
F-measure metrics obtained by a set of BS methods. The
set of compared methods includes six state-of-the-art methods,
namely: SuBSENSE (Self-Balanced SENsitivity SEgmenter) [7],
BinWang [55], RMoG (Region based Mixture of Gaussians)
[53], GMM (Gaussian Mixture Model) by Grimson etal. [50],
GMM (Gaussian Mixture Model) by Zivkovic [65], KDE (Kernel
Density Estimation) [12], and the proposed approach.

From Fig. 7, we can observe that for the ’shadow’ and
’cameraJitter’ categories, the proposed approach gives the best
results and outperforms most of the compared methods in terms
of recall and F-measure. However, for the ’dynamicBackground’
category, the proposed method can be ranked second after the
FTSG method [56] which was ranked first at the CDnet 2014
overall challenges. For the ’PTZ’ category, our method gives
the highest precision and F-measure metrics along with good
results in terms of the recall metric. This is can be done due
to the global cross-correlation technique that has been added to
deal with PTZ camera sequences by finding large displacement
between consecutive frames.

Tab. IV shows the results obtained by the application of
the proposed algorithm on all the CDnet dataset categories as
well as the overall results computed according to the CDnet
evaluation methodology [60]. To make a comparison with a
method combining temporal and spatial information, Tab. V
shows results obtained by application of a patch-based approach
proposed in [42]. From Tabs. IV and V, we can observe that
our method achieves better results in terms of overall F-measure
and overall precision metrics than [42]. However, the patch-
based approach surpasses our method in only the Recall metric.
This is due to the fact that [42] does not deal explicitly with
background subtraction challenges such as illumination changes,
shadow, dynamic background and PTZ challenges.

Fig. 8 shows a sample of foreground masks generated by
each compared BS method. The original frames and ground truth
masks are displayed in the first and second rows, respectively.
The third row shows the foreground masks given by our proposed
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Fig. 7. Evaluation metrics obtained by state-of-the-art aswell as proposed
method for the ’shadow’, ’dynamicBackground’, ’cameraJitter’ and ’PTZ’ cate-
gories from CDnet dataset.

Category/Metric Re Sp FPR FNR PWC Pr F

badWeather 0.7079 0.9987 0.0013 0.2921 0.5504 0.8947 0.7815
baseline 0.9419 0.9934 0.0066 0.0581 0.7592 0.8600 0.8956
cameraJitter 0.8704 0.9903 0.0097 0.1296 1.5086 0.8118 0.8365
dyn. Back. 0.9224 0.9987 0.0013 0.0776 0.1868 0.8408 0.8749
int.Obj.Mot. 0.4744 0.9077 0.0923 0.5256 11.8726 0.5810 0.3885
lowFramerate 0.6396 0.9942 0.0058 0.3604 1.7770 0.5977 0.5785
nightVideos 0.5501 0.9812 0.0188 0.4499 2.8090 0.3969 0.4372
PTZ 0.6396 0.9941 0.0058 0.3603 1.7770 0.5977 0.5785
shadow 0.9610 0.9908 0.0092 0.0390 1.0220 0.8490 0.8997
thermal 0.7681 0.9930 0.0070 0.2319 1.3989 0.8771 0.7727
turbulence 0.7949 0.9977 0.0023 0.2051 0.3710 0.7136 0.6943

Overall 0.7643 0.9728 0.0271 0.2356 3.3484 0.7258 0.7001

TABLE IV
EVALUATION METRICS OBTAINED BY APPLICATION OF THE PROPOSED

METHOD FOR ALL CDNET CATEGORIES AS WELL AS THE OVERALL RESULTS.

method. The rest of BS methods are shown in the other rows.
Columns of Fig. 8 represent 6 sample sequences from the studied
categories. These sequences are as follows: ’traffic’ and ’side-
walk’ from the ’cameraJitter’ category, ’canoe’ and ’fountain01’
from the ’dynamicBackground’ category and ’busStation’ and
’cubicle’ from the ’shadow’ category.

The videos in the first and second column of Fig. 8 are
characterized by unstable cameras. We can observe that our
method significantly avoids false positives caused by camera
jitter and efficiently detects the car in the ’traffic’ sequence
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Category/Metric Re Sp FPR FNR PWC Pr F

badWeather 0.3939 0.9972 0.0028 0.6061 1.1915 0.8088 0.4557
baseline 0.9742 0.9966 0.0034 0.0258 0.4305 0.9064 0.9384
cameraJitter 0.8480 0.9856 0.0144 0.1520 2.0182 0.7203 0.7784
dyn. Back. 0.8982 0.9927 0.0073 0.1018 0.8253 0.6294 0.6823
int.Obj.Mot. 0.7444 0.8469 0.1531 0.2556 14.4944 0.4493 0.4955
lowFramerate 0.9177 0.9822 0.0178 0.0823 1.9655 0.5266 0.5887
nightVideos 0.8174 0.9600 0.0400 0.1826 4.2120 0.3871 0.4933
PTZ 0.7887 0.7613 0.2387 0.2113 23.8913 0.0491 0.0896
shadow 0.9792 0.9879 0.0121 0.0208 1.2570 0.7856 0.8669
thermal 0.3169 0.9920 0.0080 0.6831 6.1843 0.7035 0.3957
turbulence 0.8081 0.9992 0.0008 0.1919 0.2262 0.7483 0.7680

Overall 0.7715 0.9547 0.0453 0.2285 5.1542 0.6104 0.5957

TABLE V
EVALUATION METRICS OBTAINED BY THE APPLICATION OF THE REDDY
METHOD [42] FOR ALL CDNET CATEGORIES AS WELL AS THE OVERALL

RESULTS.

as well as the waiting person in the ’sidewalk’ video. The
dynamic background challenge is presented in columns 3 and 4.
The ’fountain01’ sequence contains a fountain and cars moving
over the dynamic background. The ’canoe’ sequence represents
a water rippling scene. We can note that most of the false
positives are eliminated by the proposed algorithm. The fifth
column shows a sample frame from the ’busStation’ sequence
which consists of persons waiting in a bus station. This sequence
is characterized by a hard shadow cast on the ground by the
walking persons. Our approach detects accurately the walking
man and separates a significant amount of shadow from the
ground. The last column shows a sample frame from the ’cubicle’
sequence. This video contains a person walking through a cubicle
corridor. This sequence is characterized by a hard shadow cast
on the ground by the walking person as well as some highlights
on the cubicle walls. We can note that the proposed method
detects the person and avoids false detections due to shadows.
These sample frames clearly show the advantage of combining
spatial and temporal information to deal with challenges such
as casting shadows, illumination changes, dynamic backgrounds
and camera jitter.

2) The SABS Dataset:To demonstrate the accuracy of the
proposed model, experiments are conducted on the SABS dataset
using the proposed method compared to the nine state-of-the-art
methods cited in the SABS dataset website1 which include: ViBe
[3], SOBS [33], Zivkovic [65], and GMM [50]. In addition, we
add two spatiotemporal BS approaches, namely: Spatiotemporal
[9] and a recently published method: SuBSENSE [7].

The chart in Fig. 9 presents compared quantitative results in
terms of the maximal F-measure as cited in [6]. We can observe
that our method gives competitive results for almost all scenarios.
More precisely, (in terms of F-measure metric) the proposed
method outperforms the compared ones for5 sequences out of
9 which are: the Basic, Dynamic Background, Bootstrapping,
Camouflage and H.264 (40kbps). However, the proposed method
presents the second or the third best F-measure evaluation for
the 4 remaining sequences. Nonetheless, the average F-measure
computed for all sequences is higher than the compared methods.

Fig. 10 shows some frames from the SABS dataset, the
associated ground truth as well as the foreground masks obtained
by the compared methods. It can be seen that the proposed
model has effectively discriminated between backgrounds and
moving objects. Indeed, thanks to adding multi-scale spatial

1http://www.vis.uni-stuttgart.de/˜hoeferbn/bse/

traffic sidewalk canoe fountain01 busStation cubicle
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BinWang [55]

Stauffer [50]

Zivkovic [65]

KDE [12]

Fig. 8. BS masks obtained for sample frames from the CDnet dataset [60] by
application of different compared methods.
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Li [30]

Stauffer [50]

Fig. 10. BS masks obtained for sample frames from the SABS dataset [6] by
application of different compared methods.

information, the proposed model has been able to reduce false
positives generated by the illumination changes cast on thewall
by the traffic lights. On the other hand, parasites produced by the
waving tree, the Gaussian noise or due to compression artifacts
are absorbed by the temporal co-occurrence module which has
considerably improved precision.

3) The MSVS Dataset:We evaluate the proposed method
on this multispectral dataset. Our purpose is to show the ef-
ficiency of the proposed approach by integrating multispectral
information. In fact, the multispectral data can be handledin the
proposed approach by adjusting theD parameter that appears in
the Eq. (2),(14) and (17).



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XX, NO. XX, MMMM YYYY 12

BA BD BO DA LS NN CA NC VC AVG
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
SABS dataset

Proposed
SuBSENSE [7]
Spatiotemporal [9]
ViBe [3]
SOBS [33]
Zivkovic [65]
GMM [50]

Fig. 9. F-measure metrics obtained by application of the compared methods for the SABS dataset sequences [6]. Each set ofbars represents one sequence from the
SABS dataset. From left to right: Basic (BA), Dynamic Background (DB), Bootstrap (BO), Darkening (DA), Light Switch (LS), Noisy Night (NN), Camouflage
(CA), No Camouflage (NC) and Video Compression (VC) H.264 codec with bitrate 40kbps/s. The last set of bars (AVG) represents the average of F-measure metric
computed for each method for all sequences.
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Fig. 11. F-measure metrics obtained by application of the compared methods
for the MSVS dataset sequences [4].

The graphic in Fig. 11 shows a quantitative comparison
between the proposed approach and the state-of-the-art methods
where the two types of input data are used: the multispectral
bands (MSB) which has7 channels (D = 7), and the usual
trichromatic images with the3 RGB channels (D = 3). The
F-measure score is computed for each video by comparing our
results with6 other methods such as MoGG, MoGG+CooC, CP-
ALS [28], HORPCA [18], BRTF [64], and OSTD [49]. Note that
the results for the compared methods are obtained from [49].

Fig. 11 reports that the results obtained by the proposed
approach and most of the compared methods for the MSB data
are better than those obtained for the RGB ones. This may be
due to fact that using the7 multispectral bands (MSB) is more
discriminant than using only3 RGB channels. In terms of F-
measure score, it can be observed from Fig. 11 that the proposed
approach outperforms the compared approaches in7 out of 10
videos and can be ranked secondly after the OSTD [49] approach
in the rest of3 videos.

Fig. 12 represents a visual comparison of background sub-
traction BS results obtained by the application of the proposed
method along with the compared methods over3 video se-
quences from the MSVS dataset [4]. It can be seen from Fig.
12 that most of the false positives generated by the state-of-the-
art methods can be mitigated by the application of the overall
proposed approach. For example, in the first row, most of the

(a) (b) (c) (d) (e) (f) (g)

Fig. 12. BS binary masks obtained for sample frames selectedfrom the MSVS
dataset [4], [49] by application of the compared methods. (a) Original frame.
(b) Ground truth frame. (c) Proposed approach. (d) MOGG. (e)OSTD [49]. (f)
BRTF [64]. (g) HORPCA [18].

walking man shadow and the illumination changes on ground
can be removed using the proposed approach. The same remark
can also be applied for the false positives caused by the moving
tree leaves in the second and third row of this figure.

D. Computational Time

Our tests were implemented using the MATLAB environment
with some optimization using MEX C++ subroutines. On a PC
with Intel Core i7 2.93 GHz CPU and 16 Go of RAM and
MS Windows 7 operating system, the proposed prototype runs
at about5 fps for videos of RGB color frames with a size of
320 × 240 pixels. Most of the processing time is dedicated to
the calculation of NCC and histogram distances along with the
updating procedure for the temporal/co-occurrence model.

Tab. VI shows the computational time recorded in CPU time
and required by application of each proposed module, the overall
proposed algorithm and some compared BS methods. The first
row of the Tab. VI represents the input frame sizeW ×H ×D
which correspond to the width, the height and the number of
channels of each frame, respectively. The second row of Tab.VI
includes the computational time of the four modules constituting
our approach, as well as the overall time. The last row includes
the CPU time required by application of a set of compared BS
methods, namely: KDE [12], GMM [50], OSTD [49], CP-ALS
[28], BRTF [64], and HORPCA [18].

V. CONCLUSION

A statistical approach for video background subtraction (BS)
by combining temporal and spatial information is presented. The
two types of information are fused in an algorithm that per-
forms efficient BS in the presence of cast shadows, illumination
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Method/Frame size 180 × 100 × 1 180 × 100 × 3 320× 240× 3 658× 492× 3

Temporal MoGG 0.007 0.027 0.113 0.421
Co-occurrence 0.011 0.011 0.054 0.229
Correlation analysis 0.002 0.005 0.022 0.122
Histogram matching 0.013 0.041 0.144 0.481
Proposed 0.032 0.085 0.333 1.254

KDE [12] 0.001 0.003 0.020 0.050
GMM [50] 0.002 0.007 0.037 0.118
OSTD [49] 0.009 0.038 0.120 0.699
CP-ALS [28] 0.120 0.411 1.290 5.437
BRTF [64] 0.073 0.220 2.250 9.216
HORPCA [18] 0,495 1,487 7.096 43.924

TABLE VI
COMPUTATIONAL TIME IN SECONDS FOR EACH FRAME REQUIRED BY EACH

MODULE, THE PROPOSED APPROACH AND SOME STATE-OF-THE-ART

METHODS.

changes, complex background dynamics and PTZ effects. Our
algorithm achieves accurate foreground detections compared to
well-known methods. Future work will address speeding-up the
proposed algorithm as well as the analysis of hard shadows
and other background subtraction challenging problems such as
camouflage and intermittent object motion.
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APPENDIX A
ONLINE UPDATE EQUATIONS FORMOGG MODEL

PARAMETERS

Following [1], the online estimations given in the Eq. (8) and
(11) can be derived as follows:

A. The location parameterµ:

We have the following formula for estimating the location
parameter at timet+ 1 [1]:

µ(t+ 1) =

∑t+1
i=1 |xi − µ|λ−2xi
∑t+1

i=1 |xi − µ|λ−2
. (22)

Therefore, we define:

α(t) =
t
∑

i=1

|xi − µ|λ−2xi (23)

and

β(t) =

t
∑

i=1

|xi − µ|λ−2, (24)

and by replacing Eqs. (23) and (24) in Eq. (22), we have

µ(t+ 1) =
α(t) + |xt+1 − µ|λ−2xt+1

β(t) + |xt+1 − µ|λ−2
(25)

B. The scale parameterσ:

The scale parameter att+ 1 is defined by the formula:

σ(t+ 1) =

[

λA(λ)

t+ 1

t+1
∑

i=1

|xi − µ|λ
]1/λ

. (26)

By replacing the inside ofσ(t + 1) with σ(t), we get what
follows:

σ(t+ 1) =

[

λA(λ)

t+ 1

[ tσ(t)λ

λA(λ)
+ |xt+1 − µ|λ

]

]1/λ

(27)

Therefore, we obtain:

σ(t+ 1) =
[

(1− φ)σ(t)λ + φλA(λ)|xt+1 − µ|λ
]1/λ

(28)

where:φ = 1
1+t is the learning factor.

C. The mean of centered absolute value (MAV):

The mean of centered absolute value of the MoGG distribution
(MAV) can be obtained as follows

Et+1

[

| X |
]

=
1

(t+ 1)

t+1
∑

i=1

| xi − µ |

=
1

(t+ 1)

(

t
∑

i=1

| xi − µ | + | xt+1 − µ |
)

=
t

t(t+ 1)

t
∑

i=1

| xi − µ | + 1

t+ 1
| xt+1 − µ |

=
(

1− φ
)

Et

[

| X |
]

+ φ | xt+1 − µ | (29)

whereφ = 1
1+t is the learning factor.

Category Video Re Sp FPR FNR PWC Pr F
ba

dW
ea

th
er blizzard 0.7177 0.9986 0.0014 0.0033 0.0047 0.8584 0.7818

skating 0.8607 0.9982 0.0018 0.0073 0.0086 0.9620 0.9085
snowFall 0.4518 0.9995 0.0005 0.0044 0.0048 0.8771 0.5964
wetSnow 0.8013 0.9986 0.0014 0.0026 0.0039 0.8814 0.8394

ba
se

lin
e PETS2006 0.9905 0.9965 0.0035 0.0001 0.0036 0.7888 0.8782

highway 0.9842 0.9944 0.0056 0.0010 0.0063 0.9165 0.9491
office 0.9608 0.9833 0.0167 0.0029 0.0182 0.8105 0.8792
pedestrians 0.8320 0.9993 0.0007 0.0017 0.0023 0.9242 0.8757

ca
m

er
aJ

itt
er badminton 0.8721 0.9979 0.0021 0.0045 0.0064 0.9368 0.9033

boulevard 0.7610 0.9904 0.0096 0.0118 0.0204 0.7955 0.7779
sidewalk 0.9524 0.9918 0.0082 0.0013 0.0092 0.7577 0.8440
traffic 0.8962 0.9809 0.0191 0.0069 0.0244 0.7571 0.8208

dy
n.

B
ac

k.

boats 0.9786 0.9996 0.0004 0.0001 0.0005 0.9386 0.9582
canoe 0.9583 0.9988 0.0012 0.0015 0.0027 0.9657 0.9620
fall 0.9608 0.9961 0.0039 0.0007 0.0045 0.8172 0.8832
fountain01 0.7825 0.9993 0.0007 0.0002 0.0008 0.4940 0.6056
fountain02 0.9020 0.9999 0.0001 0.0002 0.0003 0.9463 0.9236
overpass 0.9524 0.9983 0.0017 0.0006 0.0023 0.8833 0.9166

in
te

rm
.O

bj
.M

ot
.

abandonedBox 0.5483 0.9772 0.0228 0.0228 0.0434 0.5484 0.5484
parking 0.0665 0.9998 0.0002 0.0782 0.0724 0.9593 0.1243
sofa 0.7108 0.9890 0.0110 0.0132 0.0231 0.7470 0.7284
streetLight 0.3329 0.9992 0.0008 0.0340 0.0332 0.9527 0.4933
tramstop 0.4121 0.5246 0.4754 0.1286 0.4956 0.1594 0.2299
winterDriveway 0.7757 0.9567 0.0433 0.0017 0.0446 0.1191 0.2065

lo
w

F
r.r

at
e port 0 17fps 0.6578 0.9993 0.0007 0.0001 0.0008 0.2293 0.3400

tramCrossroad1fps 0.9560 0.9918 0.0082 0.0013 0.0092 0.7680 0.8518
tunnelExit 0 35fps 0.3334 0.9867 0.0133 0.0188 0.0312 0.4145 0.3696
turnpike 0 5fps 0.6113 0.9990 0.0010 0.0312 0.0299 0.9791 0.7527

ni
gh

tV
id

eo
s bridgeEntry 0.3835 0.9684 0.0316 0.0089 0.0399 0.1485 0.2141

busyBoulvard 0.3289 0.9907 0.0093 0.0246 0.0326 0.5645 0.4157
fluidHighway 0.5057 0.9741 0.0259 0.0071 0.0325 0.2188 0.3054
streetCornerAtNight 0.6887 0.9943 0.0057 0.0015 0.0072 0.3775 0.4877
tramStation 0.7353 0.9897 0.0103 0.0075 0.0173 0.6683 0.7002
winterStreet 0.6583 0.9703 0.0297 0.0104 0.0389 0.4036 0.5004

P
T

Z

continuousPan 0.4199 0.9986 0.0014 0.0037 0.0050 0.6560 0.5120
intermittentPan 0.8221 0.9985 0.0015 0.0025 0.0040 0.8879 0.8537
twoPositionPTZCam 0.8701 0.9942 0.0058 0.0020 0.0077 0.6972 0.7741
zoomInZoomOut 0.9979 0.4324 0.5676 0.0000 0.5664 0.0037 0.0074

sh
ad

ow

backdoor 0.9712 0.9992 0.0008 0.0006 0.0013 0.9633 0.9672
bungalows 0.9954 0.9783 0.0217 0.0003 0.0207 0.7455 0.8525
busStation 0.9351 0.9927 0.0073 0.0025 0.0094 0.8313 0.8802
copyMachine 0.9369 0.9903 0.0097 0.0047 0.0134 0.8782 0.9066
cubicle 0.9292 0.9967 0.0033 0.0014 0.0046 0.8500 0.8878
peopleInShade 0.9983 0.9874 0.0126 0.0001 0.0120 0.8258 0.9039

th
er

m
al

corridor 0.9154 0.9974 0.0026 0.0029 0.0053 0.9244 0.9198
diningRoom 0.9207 0.9894 0.0106 0.0075 0.0165 0.8906 0.9054
lakeSide 0.1801 0.9996 0.0004 0.0160 0.0161 0.9041 0.3003
library 0.9424 0.9853 0.0147 0.0138 0.0229 0.9388 0.9406
park 0.8821 0.9931 0.0069 0.0024 0.0091 0.7274 0.7973

tu
rb

ul
en

ce turbulence0 0.8486 0.9923 0.0077 0.0003 0.0079 0.1728 0.2871
turbulence1 0.6316 0.9991 0.0009 0.0014 0.0023 0.7379 0.6806
turbulence2 0.9478 1.0000 0.0000 0.0000 0.0000 0.9937 0.9702
turbulence3 0.7517 0.9994 0.0006 0.0041 0.0046 0.9502 0.8393

TABLE VII
BS SCORES OBTAINED BY THE PROPOSED ALGORITHM ON ALLCDNET

VIDEOS.
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