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Abstract. In this work, we show that the system of difference equations

xn+1 =
ayn−2xn−1yn + bxn−1yn−2 + cyn−2 + d

yn−2xn−1yn
,

yn+1 =
axn−2yn−1xn + byn−1xn−2 + cxn−2 + d

xn−2yn−1xn
,

where n ∈ N0, x−2, x−1, x0, y−2, y−1 and y0 are arbitrary nonzero real numbers and a,
b, c and d are arbitrary real numbers with d , 0, can be solved in a closed form.
We will see that when a = b = c = d = 1 the solutions are expressed using the famous
Tetranacci numbers. In particular, the results obtained here extend those in our recent
work.

Keywords: System of difference equations, general solution, Tetranacci numbers.

2020 Mathematics Subject Classification: 39A05, 39A06, 39A10.

1 Introduction

Nonlinear difference equations and their systems are hot topics that attract the attention of
several researchers. A significant number of papers are devoted to this field of research. One
can consult, for example, the papers [3, 5–18, 20–23, 26, 27, 30, 31, 36–44, 46], where one can
find concrete models of such equations and systems, as well as understand the techniques
used to solve them and investigate the behavior of their solutions. Recently, in [1] and as a
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generalization of the equations and systems studied in [4,19,32,45], we have solved in a closed
form the system of difference equations

xn+1 =
aynxn−1 + bxn−1 + c

xn−1yn
,

yn+1 =
axnyn−1 + byn−1 + c

yn−1xn
.

(1.1)

Here, and motivated by the above papers, one shows that one can express in closed form the
well-defined solutions of the following system of difference equations

xn+1 =
ayn−2xn−1yn + bxn−1yn−2 + cyn−2 + d

yn−2xn−1yn
,

yn+1 =
axn−2yn−1xn + byn−1xn−2 + cxn−2 + d

xn−2yn−1xn
,

(1.2)

where n ∈ N0, the initial values x−2, x−1, x0, y−2, y−1 and y0 are arbitrary nonzero real
numbers and the parameters a, b, c and d are arbitrary real numbers with d , 0.

Clearly if d = 0, then System (1.2) is nothing other than system (1.1). For the readers
interested in the solutions of this system, one refers to [1], where the system (1.1) has been
completely solved.
Noting also that the system (1.2) can be seen as a generalization of the equation

xn+1 =
axn−2xn−1xn + bxn−1xn−2 + cxn−2 + d

xn−2xn−1xn
, n ∈N0. (1.3)

In fact, the solutions of (1.3) can be obtained from the solutions of (1.2) by choosing y−i =

x−i, i = 0, 1, 2. The equation (1.3) was the subject of a substantial part of the paper [4], which
also motivated our present study. The same equation was studied in complex numbers by
Stevic in [29].

We will see that the explicit formulas of the well defined solutions of system (1.2) are
expressed using the terms of the sequence (Jn)

+∞
n=0 which are the solutions of the fourth-order

linear homogeneous difference equation defined by the relation

Jn+4 = aJn+3 + bJn+2 + cJn+1 + dJn, n ∈N0, (1.4)

and the special initial values

J0 = 0, J1 = 0, J2 = 1 and J3 = a. (1.5)

In this article one solves in closed form the equation (3.3). This well-known equation (with
the same or different initial values and parameters) was the subject of some papers in the
literature, see for example [25, 29, 47].

The characteristic equation associated to (3.3) is

λ4 − aλ3 − bλ2 − cλ− d = 0, (1.6)

and let α, β, γ and δ its four roots, then
α + β + γ + δ = a

αβ + αγ + αδ + βγ + βδ + γδ = −b

αβγ + αβδ + αγδ + βγδ = c

αβγδ = −d

(1.7)
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One has:
Case 1: If all roots are real and equal. In this case,

Jn =
(
c1 + c2n + c3n2 + c4n3) αn.

Now using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =

(
−n + n3

6α2

)
αn. (1.8)

Case 2: If three roots are real and equal, i.e. β = γ = δ. In this case

Jn = c1αn +
(
c2 + c3n + c4n2) βn.

Now using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =
−α

(β− α)3 αn +

(
α

(β− α)3 −
n(α + β)

2β(β− α)2 +
n2

2β(β− α)

)
βn, (1.9)

Case 3: If two real roots are equal, i.e. γ = δ. In this case

Jn = c1αn + c2βn + (c3 + c4n) γn.

Now using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =
−α

(γ− α)2(β− α)
αn +

β

(γ− β)2(β− α)
βn +

(
αβ− γ2

(γ− α)2(γ− β)2 +
n

(γ− α)(γ− β)

)
γn,

(1.10)
Case 4: If two double real roots are equal, i.e. α = β , γ = δ. In this case

Jn = (c1 + c2n) αn + (c3 + c4n) γn.

Now using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =

(
γ + α

(γ− α)3 +
n

(γ− α)2

)
αn +

(
− γ + α

(γ− α)3 +
n

(γ− α)2

)
γn, (1.11)

Case 5: If all the roots are real and different. In this case

Jn = c1αn + c2βn + c3γn + c4δn.

Again, using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =
−α

(δ− α)(γ− α)(β− α)
αn +

β

(δ− β)(γ− β)(β− α)
βn +

−γ

(δ− γ)(γ− β)(γ− α)
γn

+
δ

(δ− γ)(δ− β)(δ− α)
δn. (1.12)

Case 6: If two real roots are equal, i.e. α = β and two roots are complex conjugate, i.e.
δ = γ. In this case

Jn = (c1 + c2n)αn + c3γn + c4γn.
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Again, using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =

(
γγ− α2

(γ− α)2(γ− α)2 +
n

(γ− α)(γ− α)

)
αn +

−γ

(γ− γ)(γ− α)2 γn

+
γ

(γ− γ)(γ− α)2 γn. (1.13)

Case 7: If two real roots α, β are different and two roots are complex conjugate, i.e.
δ = γ. In this case

Jn = c1αn + c2βn + c3γn + c4γn.

Again, using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =
−α

(γ− α)(γ− α)(β− α)
αn +

β

(γ− β)(γ− β)(β− α)
βn +

−γ

(γ− γ)(γ− β)(γ− α)
γn

+
γ

(γ− γ)(γ− β)(γ− α)
γn. (1.14)

Case 8: If two complex roots are equal, i.e. α = γ and β = δ = α. In this case

Jn = (c1 + c2n)αn + (c3 + c4n)αn.

Again, using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =

(
α + α

(α− α)3 +
n

(α− α)2

)
αn +

(
−α− α

(α− α)3 +
n

(α− α)2

)
αn. (1.15)

Case 9: If the roots are all complex and different, i.e. β = α and δ = γ. In this case

Jn = c1αn + c2αn + c3γn + c4γn.

Again, using (1.7) and the fact that J0 = 0, J1 = 0, J2 = 1 and J3 = a, one obtains

Jn =
−α

(γ− α)(γ− α)(α− α)
αn +

α

(γ− α)(γ− α)(α− α)
αn +

−γ

(γ− γ)(γ− α)(γ− α)
γn

+
γ

(γ− γ)(γ− α)(γ− α)
γn. (1.16)

2 The main theorem and some particular cases

Here, one gives a closed form for the well defined solutions of the system (1.2) with d , 0.
One will use the same change of variables as in [1] to transform the system (1.2) to a linear
one and then follows the same procedure as in [1] to obtain the closed-form of the solutions.
To get the solutions of the corresponding linear system, one needs to solve some fourth-order
linear difference equations. In particular, one derives from the main result (Main Theorem),
for which one leaves the proof to the next section, the solutions of some particular systems
and equations where their solutions are related to the famous Tetranacci numbers.
One recalls that by a well defined solution of system (1.2), one means a solution that satisfies
xnyn , 0, n ≥ −2. The set of well defined solutions is not empty. In fact, it suffices to choose
the initial values and the parameters a, b, c and d positive, to see that every solution of (1.2)
will be well defined.
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2.1 Closed form of well defined solutions of the system (1.2)

The following result gives an explicit formula for well-defined solutions of the system (1.2).

Theorem 2.1. (Main Theorem) Let {xn, yn}n≥−2 be a well defined solution of (1.2). Then, for
n ∈N0, one has

x2n+1 =
dJ2n+2 + (cJ2n+2 + dJ2n+1) y−2 + (J2n+4 − aJ2n+3) x−1y−2 + J2n+3y0x−1y−2

dJ2n+1 + (cJ2n+1 + dJ2n) y−2 + (J2n+3 − aJ2n+2) x−1y−2 + J2n+2y0x−1y−2
,

x2n+2 =
dJ2n+3 + (cJ2n+3 + dJ2n+2) x−2 + (J2n+5 − aJ2n+4) y−1x−2 + J2n+4x0y−1x−2

dJ2n+2 + (cJ2n+2 + dJ2n+1) x−2 + (J2n+4 − aJ2n+3) y−1x−2 + J2n+3x0y−1x−2
,

y2n+1 =
dJ2n+2 + (cJ2n+2 + dJ2n+1) x−2 + (J2n+4 − aJ2n+3) y−1x−2 + J2n+3x0y−1x−2

dJ2n+1 + (cJ2n+1 + dJ2n) x−2 + (J2n+3 − aJ2n+2) y−1x−2 + J2n+2x0y−1x−2
,

y2n+2 =
dJ2n+3 + (cJ2n+3 + dJ2n+2) y−2 + (J2n+5 − aJ2n+4) x−1y−2 + J2n+4y0x−1y−2

dJ2n+2 + (cJ2n+2 + dJ2n+1) y−2 + (J2n+4 − aJ2n+3) x−1y−2 + J2n+3y0x−1y−2
,

where the initial values x−2, x−1, x0, y−2, y−1 and y0 ∈ (R− {0})− F, with F is the Forbidden
set of system (1.2) given by

F =
∞⋃

n=0

{(x−2, x−1, x0, y−2, y−1, y0) ∈ (R− {0}) : An = 0 or Bn = 0} ,

where

An = dJn+1 + (cJn+1 + dJn) y−2 + (Jn+3 − aJn+2) x−1y−2 + Jn+2y0x−1y−2,

Bn = dJn+1 + (cJn+1 + dJn) x−2 + (Jn+3 − aJn+2) y−1x−2 + Jn+2x0y−1x−2.

2.2 Particular cases

Now, we focus our study on some particular cases of system (1.2).

2.2.1 The solutions of the equation xn+1 = (axn−2xn−1xn + bxn−1xn−2 + cxn−2 + d) / (xn−2xn−1xn)

If one chooses y−2 = x−2, y−1 = x−1 and y0 = x0, then system (1.2) is reduced to the equation

xn+1 =
axn−2xn−1xn + bxn−1xn−2 + cxn−2 + d

xn−2xn−1xn
, n ∈N0. (2.1)

So, it follows from the Main Theorem

Corollary 2.2. Let {xn}n≥−2 be a well defined solution of the equation (2.1). Then for n ∈ N0, one
has

x2n+1 =
dJ2n+2 + (cJ2n+2 + dJ2n+1) x−2 + (J2n+4 − aJ2n+3) x−1x−2 + J2n+3x0x−1x−2

dJ2n+1 + (cJ2n+1 + dJ2n) x−2 + (J2n+3 − aJ2n+2) x−1x−2 + J2n+2x0x−1x−2
,

x2n+2 =
dJ2n+3 + (cJ2n+3 + dJ2n+2) x−2 + (J2n+5 − aJ2n+4) x−1x−2 + J2n+4x0x−1x−2

dJ2n+2 + (cJ2n+2 + dJ2n+1) x−2 + (J2n+4 − aJ2n+3) x−1x−2 + J2n+3x0x−1x−2
.

It is worth noting that this equation was studied in [4, 29].
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2.3 The solutions of the system (1.2) with a = b = c = d = 1

Consider the system
xn+1 =

yn−2xn−1yn + xn−1yn−2 + yn−2 + 1
yn−2xn−1yn

,

yn+1 =
xn−2yn−1xn + yn−1xn−2 + xn−2 + 1

xn−2yn−1xn
, n ∈N0,

(2.2)

which is a particular case of the system (1.2) with a = b = c = d = 1. In this case the sequence
{Jn} is nothing other than the sequence of Tetranacci numbers {Tn}, that is

Tn+4 = Tn+3 + Tn+2 + Tn+1 + Tn, n ∈N0, where T0 = T1 = 0, T2 = 1 and T3 = 1,

and one has

Tn =
−α

(γ− α)(γ− α)(β− α)
αn +

β

(γ− β)(γ− β)(β− α)
βn +

−γ

(γ− γ)(γ− β)(γ− α)
γn

+
γ

(γ− γ)(γ− β)(γ− α)
γn, n ∈N0,

with

α =
1
4
+

1
2

ω +
1
2

√
11
4
−ω2 +

13
4

ω−1, β =
1
4
+

1
2

ω− 1
2

√
11
4
−ω2 +

13
4

ω−1,

γ =
1
4
− 1

2
ω +

1
2

√
11
4
−ω2 − 13

4
ω−1, δ =

1
4
− 1

2
ω− 1

2

√
11
4
−ω2 − 13

4
ω−1,

ω =

√√√√√√11
12

+

(
−65
54

+

√
563
108

)1
3
+

(
−65
54
−
√

563
108

)1
3

.

The 1-dimensional version of the system (2.2), is the equation

xn+1 =
xn−2xn−1xn + xn−1xn−2 + xn−2 + 1

xn−2xn−1xn
, n ∈N0. (2.3)

From the main theorem it follows respectively.

Corollary 2.3. Let {xn, yn}n≥−2 be a well defined solution of (2.2). Then, for n ∈N0, one has

x2n+1 =
T2n+2 + (T2n+2 + T2n+1) y−2 + (T2n+4 − T2n+3) x−1y−2 + T2n+3y0x−1y−2

T2n+1 + (T2n+1 + T2n) y−2 + (T2n+3 − T2n+2) x−1y−2 + T2n+2y0x−1y−2
,

x2n+2 =
T2n+3 + (T2n+3 + T2n+2) x−2 + (T2n+5 − T2n+4) y−1x−2 + T2n+4x0y−1x−2

T2n+2 + (T2n+2 + T2n+1) x−2 + (T2n+4 − T2n+3) y−1x−2 + T2n+3x0y−1x−2
,

y2n+1 =
T2n+2 + (T2n+2 + T2n+1) x−2 + (T2n+4 − T2n+3) y−1x−2 + T2n+3x0y−1x−2

T2n+1 + (T2n+1 + T2n) x−2 + (T2n+3 − T2n+2) y−1x−2 + T2n+2x0y−1x−2
,

y2n+2 =
T2n+3 + (T2n+3 + T2n+2) y−2 + (T2n+5 − T2n+4) x−1y−2 + T2n+4y0x−1y−2

T2n+2 + (T2n+2 + T2n+1) y−2 + (T2n+4 − T2n+3) x−1y−2 + T2n+3y0x−1y−2
.
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Corollary 2.4. Let {xn}n≥−2 be a well defined solution of the equation (2.3). Then for n ∈ N0, one
has

x2n+1 =
T2n+2 + (T2n+2 + T2n+1) x−2 + (T2n+4 − T2n+3) x−1x−2 + T2n+3x0x−1x−2

T2n+1 + (T2n+1 + T2n) x−2 + (T2n+3 − T2n+2) x−1x−2 + T2n+2x0x−1x−2
,

x2n+2 =
T2n+3 + (T2n+3 + T2n+2) x−2 + (T2n+5 − T2n+4) x−1x−2 + T2n+4x0x−1x−2

T2n+2 + (T2n+2 + T2n+1) x−2 + (T2n+4 − T2n+3) x−1x−2 + T2n+3x0x−1x−2
.

Remark 2.5. When a = d = 0, the system (1.2) takes the form

xn+1 =
bxn−1 + c

ynxn−1
, yn+1 =

byn−1 + c
xnyn−1

n ∈N0. (2.4)

As it is noted in [1], the solutions are expressed using Padovan numbers. This system, and
some particular cases of it, were the subject of the papers [19, 45].

If d = c = 0, the system (1.2) becomes

xn+1 =
ayn + b

yn
, yn+1 =

axn + b
xn

, n ∈N0. (2.5)

Again, it is noted in [1] that:
- The system (2.5) is a particular case of the more general system

xn+1 =
ayn + b
cyn + d

, yn+1 =
αxn + β

γxn + λ
, n ∈N0, (2.6)

which was completely solved by Stevic in [33] and the solutions are expressed using a gener-
alized Fibonacci sequence.

- Also, particular cases of System (2.6) were studied in [24, 28, 34, 35].

- If also b = 0, then the solutions of the system (2.5) are given by

{(x0, y0) , (a, a) , (a, a) , ..., } .

3 Proof of the Main Theorem

In order to solve the system (1.2), one needs first to solve the following two homogeneous
fourth-order linear difference equations

Rn+1 = aRn + bRn−1 + cRn−2 + dRn−3, n ∈N0, (3.1)

Sn+1 = −aSn + bSn−1 − cSn−2 + dSn−3, n ∈N0, (3.2)

where the initial values R0, R−1, R−2, R−3, S0, S−1, S−2 and S−3 and the constant coefficients
a, b, c and d are real numbers with d , 0. In fact, one will express the terms of the sequences
(Rn)

+∞
n=−3 and (Sn)

+∞
n=−3 using the sequence (Jn)

+∞
n=0.

The difference equation (3.1) has the same characteristic equation as (Jn)
+∞
n=0, that is the

equation (1.6).
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To solve the difference equation (3.2) using terms of (3.3), one needs the following fourth-order
linear difference equation defined by

jn+4 = −ajn+3 + bjn+2 − cjn+1 + djn, n ∈N0, (3.3)

and the special initial values

j0 = 0, j1 = 0, j2 = 1 and j3 = −a. (3.4)

The characteristic equation of (3.2) and (3.3) is

λ4 + aλ3 − bλ2 + cλ− d = 0. (3.5)

Clearly the roots of (3.5) are −α, −β, −γ and −δ.
Now following the same procedure in solving {Jn}, it is not hard to see that

jn = (−1)n Jn.

Now, it is possible to prove the following result.

Lemma 3.1. One has for all n ∈N0,

Rn = dJn+1R−3 + (cJn+1 + dJn) R−2 + (Jn+3 − aJn+2) R−1 + Jn+2R0, (3.6)

Sn = (−1)n+1 [dJn+1S−3 − (cJn+1 + dJn) S−2 + (Jn+3 − aJn+2) S−1 − Jn+2S0] . (3.7)

Proof. Assume that α, β, γ and δ are the distinct roots of the characteristic equation (1.6), so

Rn = c′1αn + c′2βn + c′3γn + c′4δn, n ≥ −3.

Using the initial values R0, R−1, R−2 and R−3, one get



1
α3 c′1 +

1
β3 c′2 +

1
γ3 c′3 +

1
δ3 c′4 = R−3

1
α2 c′1 +

1
β2 c′2 +

1
γ2 c′3 +

1
δ2 c′4 = R−2

1
α

c′1 +
1
β

c′2 +
1
γ

c′3 +
1
δ

c′4 = R−1

c′1 + c′2 + c′3 + c′4 = R0,

(3.8)
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after some calculations using the Cramer method one get

c′1 =
βγδα3

(δ− α)(γ− α)(β− α)
R−3 −

(γβ + γδ + βδ)α3

(δ− α)(γ− α)(β− α)
R−2

+
(β + γ + δ)α3

(δ− α)(γ− α)(β− α)
R−1 −

α3

(δ− α)(γ− α)(β− α)
R0

c′2 = − αγδβ3

(δ− β)(γ− β)(β− α)
R−3 +

(γα + γδ + αδ)β3

(δ− β)(γ− β)(β− α)
R−2

− (α + γ + δ)β3

(δ− β)(γ− β)(β− α)
R−1 +

β3

(δ− β)(γ− β)(β− α)
R0

c′3 =
αβδγ3

(δ− γ)(γ− β)(γ− α)
R−3 −

(αβ + αδ + βδ)γ3

(δ− γ)(γ− β)(γ− α)
R−2

+
(α + β + δ)γ3

(δ− γ)(γ− β)(γ− α)
R−1 −

γ3

(δ− γ)(γ− β)(γ− α)
R0

c′4 = − αβγδ3

(δ− γ)(δ− β)(δ− α)
R−3 +

(γα + γβ + αβ)δ3

(δ− γ)(δ− β)(δ− α)
R−2

− (α + β + γ)δ3

(δ− γ)(δ− β)(δ− α)
R−1 +

δ3

(δ− γ)(δ− β)(δ− α)
R0

that is,

Rn =

(
βγδα3

(δ− α)(γ− α)(β− α)
αn − αγδβ3

(δ− β)(γ− β)(β− α)
βn +

αβδγ3

(δ− γ)(γ− β)(γ− α)
γn

− αβγδ3

(δ− γ)(δ− β)(δ− α)
δn
)

R−3

+

(
− (γβ + γδ + βδ)α3

(δ− α)(γ− α)(β− α)
αn +

(γα + γδ + αδ)β3

(δ− β)(γ− β)(β− α)
βn − (αβ + αδ + βδ)γ3

(δ− γ)(γ− β)(γ− α)
γn

+
(γα + γβ + αβ)δ3

(δ− γ)(δ− β)(δ− α)
δn
)

R−2

+

(
(β + γ + δ)α3

(δ− α)(γ− α)(β− α)
αn − (α + γ + δ)β3

(δ− β)(γ− β)(β− α)
βn +

(α + β + δ)γ3

(δ− γ)(γ− β)(γ− α)
γn

− (α + β + γ)δ3

(δ− γ)(δ− β)(δ− α)
δn
)

R−1

+

(
− α3

(δ− α)(γ− α)(β− α)
αn +

β3

(δ− β)(γ− β)(β− α)
βn − γ3

(δ− γ)(γ− β)(γ− α)
γn

+
δ3

(δ− γ)(δ− β)(δ− α)
δn
)

R0.

Rn = dJn+1R−3 + (cJn+1 + dJn) R−2 + (Jn+3 − aJn+2) R−1 + Jn+2R0.

The proof of the other cases is similar and will be omitted.
Let A := −a, B := b, C := −c and D := d then, equation (3.2) takes the form (3.1) and the

equation (3.3) takes the form (3.3). Then analogous to the formula of (3.1) one obtains

Sn = Djn+1S−3 + (Cjn+1 + Djn) S−2 + (jn+3 − Ajn+2) S−1 + jn+2S0.

Using the fact that jn = (−1)n Jn, A = −a and C := −c one get

Sn = (−1)n+1 [dJn+1S−3 − (cJn+1 + dJn) S−2 + (Jn+3 − aJn+2) S−1 − Jn+2S0] .



10 Y. Akrour, N. Touafek and Y. Halim

�

Proof of the Main Theorem.
Replacing

xn =
un

vn−1
, yn =

vn

un−1
, n ≥ −2, (3.9)

in system (1.2) one get the following linear fourth-order system of difference equations

un+1 = avn + bun−1 + cvn−2 + dun−3, vn+1 = aun + bvn−1 + cun−2 + dvn−3, n ∈N0, (3.10)

where the initial values u−3, u−2, u−1, u0, v−3, v−2, v−1, v0 are nonzero real numbers.
From (3.10) one has for n ∈N0,{

un+1 + vn+1 = a(vn + un) + b(un−1 + vn−1) + c(vn−2 + un−2) + d(un−3 + vn−3),

un+1 − vn+1 = a(vn − un) + b(un−1 − vn−1) + c(vn−2 − un−2) + d(un−3 − vn−3).

Putting again
Rn = un + vn, Sn = un − vn, n ≥ −3, (3.11)

one obtains two fourth-order homogeneous linear difference equations:

Rn+1 = aRn + bRn−1 + cRn−2 + dRn−3, n ∈N0,

and
Sn+1 = −aSn + bSn−1 − cSn−2 + dSn−3, n ∈N0. (3.12)

Using (3.11), one get for n ≥ −3,

un =
1
2
(Rn + Sn), vn =

1
2
(Rn − Sn).

From Lemma 3.1 one obtains,



u2n−1 =
1
2
[dJ2n(R−3 + S−3) + (cJ2n + dJ2n−1) (R−2 − S−2) + (J2n+2 − aJ2n+1) (R−1 + S−1)

+J2n+1(R0 − S0)] , n ∈N,

u2n =
1
2
[dJ2n+1(R−3 − S−3) + (cJ2n+1 + dJ2n) (R−2 + S−2) + (J2n+3 − aJ2n+2) (R−1 − S−1)

+J2n+2(R0 + S0)] , n ∈N0,

(3.13)



v2n−1 =
1
2
[dJ2n(R−3 − S−3) + (cJ2n + dJ2n−1) (R−2 + S−2) + (J2n+2 − aJ2n+1) (R−1 − S−1)

+J2n+1(R0 + S0)] , n ∈N,

v2n =
1
2
[dJ2n+1(R−3 + S−3) + (cJ2n+1 + dJ2n) (R−2 − S−2) + (J2n+3 − aJ2n+2) (R−1 + S−1)

+J2n+2(R0 − S0)] , n ∈N0.

(3.14)

Substituting (3.13) and (3.14) in (3.9), one get for n ∈N0,

x2n+1 =
dJ2n+2 + (cJ2n+2 + dJ2n+1)

R−2 − S−2

R−3 + S−3
+ (J2n+4 − aJ2n+3)

R−1 + S−1

R−3 + S−3
+ J2n+3

R0 − S0

R−3 + S−3

dJ2n+1 + (cJ2n+1 + dJ2n)
R−2 − S−2

R−3 + S−3
+ (J2n+3 − aJ2n+2)

R−1 + S−1

R−3 + S−3
+ J2n+2

R0 − S0

R−3 + S−3

,

(3.15)
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x2n+2 =
dJ2n+3 + (cJ2n+3 + dJ2n+2)

R−2 + S−2

R−3 − S−3
+ (J2n+5 − aJ2n+4)

R−1 − S−1

R−3 − S−3
+ J2n+4

R0 + S0

R−3 − S−3

dJ2n+2 + (cJ2n+2 + dJ2n+1)
R−2 + S−2

R−3 − S−3
+ (J2n+4 − aJ2n+3)

R−1 − S−1

R−3 − S−3
+ J2n+3

R0 + S0

R−3 − S−3

,

(3.16)

y2n+1 =
dJ2n+2 + (cJ2n+2 + dJ2n+1)

R−2 + S−2

R−3 − S−3
+ (J2n+4 − aJ2n+3)

R−1 − S−1

R−3 − S−3
+ J2n+3

R0 + S0

R−3 − S−3

dJ2n+1 + (cJ2n+1 + dJ2n)
R−2 + S−2

R−3 − S−3
+ (J2n+3 − aJ2n+2)

R−1 − S−1

R−3 − S−3
+ J2n+2

R0 + S0

R−3 − S−3

,

(3.17)
and

y2n+2 =
dJ2n+3 + (cJ2n+3 + dJ2n+2)

R−2 − S−2

R−3 + S−3
+ (J2n+5 − aJ2n+4)

R−1 + S−1

R−3 + S−3
+ J2n+4

R0 − S0

R−3 + S−3

dJ2n+2 + (cJ2n+2 + dJ2n+1)
R−2 − S−2

R−3 + S−3
+ (J2n+4 − aJ2n+3)

R−1 + S−1

R−3 + S−3
+ J2n+3

R0 − S0

R−3 + S−3

.

(3.18)
One has

x−2 =
u−2

v−3
=

R−2 + S−2

R−3 − S−3
, x−1 =

u−1

v−2
=

R−1 + S−1

R−2 − S−2
, x0 =

u0

v−1
=

R0 + S0

R−1 − S−1
, (3.19)

y−2 =
v−2

u−3
=

R−2 − S−2

R−3 + S−3
, y−1 =

v−1

u−2
=

R−1 − S−1

R−2 + S−2
, y0 =

v0

u−1
=

R0 − S0

R−1 + S−1
. (3.20)

From (3.19), (3.20) one get,
R−1 + S−1

R−3 + S−3
=

R−1 + S−1

R−2 − S−2
× R−2 − S−2

R−3 + S−3
= x−1y−2,

R0 − S0

R−3 + S−3
=

R0 − S0

R−1 + S−1
× R−1 + S−1

R−2 − S−2
× R−2 − S−2

R−3 + S−3
= y0x−1y−2,

(3.21)


R−1 − S−1

R−3 − S−3
=

R−1 − S−1

R−2 + S−2
× R−2 + S−2

R−3 − S−3
= y−1x−2,

R0 + S0

R−3 − S−3
=

R0 + S0

R−1 − S−1
× R−1 − S−1

R−2 + S−2
× R−2 + S−2

R−3 − S−3
= x0y−1x−2.

(3.22)

Using (3.15), (3.16), (3.17), (3.18), (3.21) and (3.22), one obtains the closed form of the solutions
of the system (1.2), that is for n ∈N0, one has

x2n+1 =
dJ2n+2 + (cJ2n+2 + dJ2n+1) y−2 + (J2n+4 − aJ2n+3) x−1y−2 + J2n+3y0x−1y−2

dJ2n+1 + (cJ2n+1 + dJ2n) y−2 + (J2n+3 − aJ2n+2) x−1y−2 + J2n+2y0x−1y−2
,

x2n+2 =
dJ2n+3 + (cJ2n+3 + dJ2n+2) x−2 + (J2n+5 − aJ2n+4) y−1x−2 + J2n+4x0y−1x−2

dJ2n+2 + (cJ2n+2 + dJ2n+1) x−2 + (J2n+4 − aJ2n+3) y−1x−2 + J2n+3x0y−1x−2
,


y2n+1 =

dJ2n+2 + (cJ2n+2 + dJ2n+1) x−2 + (J2n+4 − aJ2n+3) y−1x−2 + J2n+3x0y−1x−2

dJ2n+1 + (cJ2n+1 + dJ2n) x−2 + (J2n+3 − aJ2n+2) y−1x−2 + J2n+2x0y−1x−2
,

y2n+2 =
dJ2n+3 + (cJ2n+3 + dJ2n+2) y−2 + (J2n+5 − aJ2n+4) x−1y−2 + J2n+4y0x−1y−2

dJ2n+2 + (cJ2n+2 + dJ2n+1) y−2 + (J2n+4 − aJ2n+3) x−1y−2 + J2n+3y0x−1y−2
.
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Remark 3.2. - The content of the present paper was posted on arXiv on 31.10.2019, ref.
arXiv:1910.14365.

- Some parts of the results of this paper were used in the reference [2] in which the authors
have generalized the system (1.2).
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1 Introduction

A generalized balancing sequence {Wn}n≥0 = {Wn(W0, W1)}n≥0 is defined by the second-
order recurrence relation

Wn = 6Wn−1 −Wn−2 (1.1)

with the initial values W0 = c0, W1 = c1 not all being zero.
The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n = 6W−(n−1) −W−(n−2)

for n = 1, 2, 3, .... Therefore, recurrence (1.1) holds for all integer n.
The Binet formula of generalized balancing numbers can be written as

Wn =
W1 − βW0

α− β
αn − W1 − αW0

α− β
βn,

where α and β are the roots of the quadratic equation x2 − 6x + 1 = 0. Moreover

α = 3 + 2
√

2,

β = 3− 2
√

2.
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Note that

α + β = 6,

αβ = 1,

α− β = 4
√

2.

Now, one defines three special cases of the sequence {Wn}. Balancing sequence {Bn}n≥0,
modified Lucas-balancing sequence {Hn}n≥0 and Lucas-balancing sequence {Cn}n≥0 are de-
fined, respectively, by the second-order recurrence relations

Bn = 6Bn−1 − Bn−2, B0 = 0, B1 = 1, (1.2)

Hn = 6Hn−1 − Hn−2, H0 = 2, H1 = 6, (1.3)

Cn = 6Cn−1 − Cn−2, C0 = 1, C1 = 3. (1.4)

The sequences {Bn}n≥0, {Hn}n≥0 and {Cn}n≥0 can be extended to negative subscripts by
defining

B−n = 6B−(n−1) − B−(n−2),

H−n = 6H−(n−1) − H−(n−2),

C−n = 6C−(n−1) − C−(n−2),

for n = 1, 2, 3, ... respectively. Therefore, recurrences (1.2)-(1.4) hold for all integer n. For more
information on generalized balancing numbers, see Soykan [29].

In [1], Behera and Panda defined balancing numbers n as solutions of the diophantine
equation

1 + 2 + · · ·+ (n− 1) = (n + 1) + (n + 2) + · · ·+ (n + r)

for some natural number r, called the balancer corresponding to n. The nth balancing number
is denoted by Bn. Moreover, Cn =

√
8B2

n + 1 is called the nth Lucas-balancing number (see
[16]). In fact, Bn and Cn satisfy the second order linear recurrence relations (1.2) and (1.4)
respectively. (Bn)n≥0 is the sequence A001109 in the OEIS [27], whereas (Bn)n≥0 is the id-
number A001541 in OEIS. Balancing and Lucas-balancing sequences have been studied by
many authors and more detail can be found in the extensive literature dedicated to these
sequences, see for example, [1–4, 9–26].

2 The Sum Formula ∑n
k=0 xkW2

mk+j

The following theorem presents sum formulas of generalized balancing numbers.

Theorem 2.1. Let x be a real (or complex) number. For all integers m and j, for generalized balancing
numbers (the case r = 6, s = −1), the following sum formulas hold:

(a) If (1 + (−s)2mx2 − xH2m)((−s)mx− 1) , 0, then

n

∑
k=0

xkW2
mk+j =

Ω1

32(1 + x2 − xH2m)(x− 1)
, (2.1)

where

Ω1 = 32(x − 1)(x − H2m)xn+1W2
mn+j + 32(x − 1)xn+1W2

mn−m+j + 32(x − 1)W2
j − 32(x −

1)xW2
j−m + 2(W2

1 + W2
0 − 6W1W0)(xn − 1)(H2m − 2)x.
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(b) If (1 + (−s)2mx2 − xH2m)((−s)mx− 1) = u(x− a)(x− b)(x− c) = 0 for some u, a, b, c ∈ C

with u , 0 and a , b , c, i.e., x = a or x = b or x = c, then

n

∑
k=0

xkW2
mk+j =

Ω2

32(3x2 − 2(H2m + 1)x + H2m + 1)
,

where

Ω2 = 32((x− H2m)xn+1 + (x− 1)((n + 2) x− (n + 1)H2m)xnW2
mn+j + 32((n + 2)x− (n +

1))xn)W2
mn−m+j + 32W2

j − 32(2x− 1)W2
j−m + 2(W2

1 +W2
0 − 6W1W0)(xn(n+ 1)− 1)(H2m−

2).

(c) If (1 + (−s)2mx2 − xH2m)((−s)mx − 1) = u(x − a)2(x − c) = 0 for some u, a, c ∈ C with
u , 0, a , c, when x = c, then

n

∑
k=0

xkW2
mk+j =

Ω3

32(3x2 − 2(H2m + 1)x + H2m + 1)
,

where

Ω3 = 32((x− H2m)xn+1 + (x− 1)((n + 2) x− (n + 1)H2m)xnW2
mn+j + 32((n + 2)x− (n +

1))xn)W2
mn−m+j + 32W2

j − 32(2x− 1)W2
j−m + 2(W2

1 +W2
0 − 6W1W0)(xn(n+ 1)− 1)(H2m−

2),

and when x = a, then
n

∑
k=0

xkW2
mk+j =

Ω4

64(3x− 1− H2m)
,

where

Ω4 = 32((n+ 3)(n+ 2)x2− x(n+ 2)(n+ 1)(H2m + 1)+n(n+ 1)H2m)xn−1W2
mn+j + 32(n+

1)((2+n)xn−nxn−1)W2
mn−m+j− 64W2

j−m + 2n (n + 1) (W2
1 +W2

0 − 6W1W0) (H2m − 2) xn−1.

(d) If (1 + (−s)2mx2 − xH2m)((−s)mx − 1) = u(x − a)3 = 0 for some u, a ∈ C with u , 0, i.e.,
x = a, then

n

∑
k=0

xkW2
mk+j =

Ω5

192
,

where

Ω5 = 32 (n + 1) ((n + 3)(n + 2)x2 − n(n + 2)(H2m + 1)x + n(n − 1)H2m)xn−2W2
mn+j +

32n (n + 1) ((n + 2)x + 1− n) xn−2W2
mn−m+j + 2(n− 1)n(n+ 1)(H2m− 2)(W2

1 +W2
0 − 6W1W0)xn−2.

Proof. Take r = 6, s = −1 in Soykan [28], Theorem 2.1.. �

Note that (2.1) can be written in the following form

n

∑
k=1

xkW2
mk+j =

Ω6

32(1 + x2 − xH2m)(x− 1)
,

where
Ω6 = 32(x− 1)(x−H2m)xn+1W2

mn+j + 32((−s)mx− 1)xn+1W2
mn−m+j− 32(x− 1)(x−H2m)x

W2
j − 32(x− 1)W2

j−mx + 2(W2
1 + W2

0 − 6W1W0)(xn − 1)(H2m − 2)x.
As special cases of m and j in the last theorem, one obtains the following proposition.
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Proposition 2.2. For generalized balancing numbers (the case r = 6, s = −1) one has the following
sum formulas for n ≥ 0:

(a) (m = 1, j = 0)

If (x− 1)
(
x2 − 34x + 1

)
, 0, i.e., x , 1, x , 17− 12

√
2, x , 17 + 12

√
2, then

n

∑
k=0

xkW2
k =

∆
(x− 1) (x2 − 34x + 1)

,

where

∆ = (x − 1)(x − 34)xn+1W2
n + (x − 1)xn+1W2

n−1 + (x − 1)W2
0 − (x − 1)x(W1 − 6W0)2 +

2(W2
1 + W2

0 − 6W1W0)(xn − 1)x,

and

if (x− 1)
(

x2 − 34x + 1
)
= 0, i.e., x = 1 or x = 17− 12

√
2 or x = 17 + 12

√
2, then

n

∑
k=0

xkW2
k =

Ψ
(3x2 − 70x + 35)

,

where

Ψ = ((x− 34)xn+1 + (x− 1)((n + 2) x− 34(n+ 1))xnW2
n + ((n+ 2)x− (n+ 1))xnW2

n−1 +

W2
0 − (2x− 1)(W1 − 6W0)2 + 2(W2

1 + W2
0 − 6W1W0)(xn(n + 1)− 1)

(b) (m = 2, j = 0)

If (x− 1)
(
x2 − 1154x + 1

)
, 0, i.e., x , 1, x , 577− 408

√
2, x , 577 + 408

√
2, then

n

∑
k=0

xkW2
2k =

∆
(x− 1) (x2 − 1154x + 1)

,

where

∆ = (x− 1)(x− 1154)xn+1W2
2n +(x− 1)xn+1W2

2n−2 +(x− 1)W2
0 − (x− 1)x(6W1− 35W0)2 +

72(W2
1 + W2

0 − 6W1W0)(xn − 1)x,

and

if (x− 1)
(
x2 − 1154x + 1

)
= 0, i.e., x = 1 or x = 577− 408

√
2 or x = 577 + 408

√
2 then

n

∑
k=0

xkW2
2k =

Ψ
3 (x2 − 770x + 385)

,

where

Ψ = ((x− 1154)xn+1 +(x− 1)((n + 2) x− 1154(n+ 1))xn)W2
2n +((n+ 2)x− (n+ 1))xnW2

2n−2 +

W2
0 − (2x− 1)(6W1 − 35W0)2 + 72(W2

1 + W2
0 − 6W1W0)(xn(n + 1)− 1)

(c) (m = 2, j = 1)

If (x− 1)
(
x2 − 1154x + 1

)
, 0, i.e., x , 1, x , 577− 408

√
2, x , 577 + 408

√
2, then

n

∑
k=0

xkW2
2k+1 =

∆
(x− 1) (x2 − 1154x + 1)

,
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where

∆ = (x− 1)(x− 1154)xn+1W2
2n+1 +(x− 1)xn+1W2

2n−1 +(x− 1)W2
1 − (x− 1)x (W1 − 6W0)

2 +

72(W2
1 + W2

0 − 6W1W0)(xn − 1)x,

and

if (x− 1)
(

x2 − 1154x + 1
)
= 0, i.e., x = 1 or x = 577− 408

√
2 or x = 577 + 408

√
2 then

n

∑
k=0

xkW2
2k+1 =

Ψ
3 (x2 − 770x + 385)

,

where

Ψ = ((x − 1154)xn+1 + (x − 1)((n + 2) x − 1154(n + 1))xn)W2
2n+1 + ((n + 2)x − (n +

1))xnW2
2n−1 + W2

1 − (2x− 1)(W1 − 6W0)2 + 72(W2
1 + W2

0 − 6W1W0)(xn(n + 1)− 1)

(d) (m = −1, j = 0)

If (x− 1)
(
x2 − 34x + 1

)
, 0, i.e., x , 1, x , 17− 12

√
2, x , 17 + 12

√
2, then

n

∑
k=0

xkW2
−k =

∆
(x− 1) (x2 − 34x + 1)

,

where

∆ = (x− 1)xn+1W2
−n+1 + (x− 1)(x− 34)xn+1W2

−n + (x− 1)W2
0 − (x− 1)xW2

1 + 2(W2
1 +

W2
0 − 6W1W0)(xn − 1)x,

and

if (x− 1)
(
x2 − 34x + 1

)
= 0, i.e., x = 1 or x = 17− 12

√
2 or x = 17 + 12

√
2, then

n

∑
k=0

xkW2
−k =

Ψ
(3x2 − 70x + 35)

,

where

Ψ = ((n+ 2)x− (n+ 1))xnW2
−n+1 +((x− 34)xn+1 +(x− 1)((n + 2) x− 34(n+ 1))xn)W2

−n +

W2
0 − (2x− 1)W2

1 + 2(W2
1 + W2

0 − 6W1W0)(xn(n + 1)− 1)

(e) (m = −2, j = 0)

If (x− 1)
(

x2 − 1154x + 1
)
, 0, i.e., x , 1, x , 577− 408

√
2, x , 577 + 408

√
2, then

n

∑
k=0

xkW2
−2k =

∆
(x− 1) (x2 − 1154x + 1)

,

where

∆ = (x − 1)xn+1W2
−2n+2 + (x − 1)(x − 1154)xn+1W2

−2n + (x − 1)W2
0 − (x − 1)x(W0 −

6W1)
2 + 72(W2

1 + W2
0 − 6W1W0)(xn − 1)x,

and

if (x− 1)
(

x2 − 1154x + 1
)
= 0, i.e., x = 1 or x = 577− 408

√
2 or x = 577 + 408

√
2, then

n

∑
k=0

xkW2
−2k =

Ψ
3 (x2 − 770x + 385)

,

where

Ψ = ((n + 2)x − (n + 1))xnW2
−2n+2 + ((x − 1154)xn+1 + (x − 1)((n + 2) x − 1154(n +

1))xn)W2
−2n + W2

0 − (2x− 1)(W0 − 6W1)
2 + 72(W2

1 + W2
0 − 6W1W0)(xn(n + 1)− 1)
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(f) (m = −2, j = 1)

If (x− 1)
(
x2 − 1154x + 1

)
, 0, i.e., x , 1, x , 577− 408

√
2, x , 577 + 408

√
2, then

n

∑
k=0

xkW2
−2k+1 =

∆
(x− 1) (x2 − 1154x + 1)

,

where

∆ = (x− 1)xn+1W2
−2n+3 + (x− 1)(x− 1154)xn+1W2

−2n+1 + (x− 1)W2
1 − (x− 1)x(6W0 −

35W1)
2 + 72(W2

1 + W2
0 − 6W1W0)(xn − 1)x,

and

if (x− 1)
(

x2 − 1154x + 1
)
= 0, i.e., x = 1 or x = 577− 408

√
2 or x = 577 + 408

√
2, then

n

∑
k=0

xkW2
−2k+1 =

Ψ
3 (x2 − 770x + 385)

,

where

Ψ = ((n + 2)x − (n + 1))xnW2
−2n+3 + ((x − 1154)xn+1 + (x − 1)((n + 2) x − 1154(n +

1))xn)W2
−2n+1 + W2

1 − (2x− 1)(6W0 − 35W1)
2 + 72(W2

1 + W2
0 − 6W1W0)(xn(n + 1)− 1)

From the above proposition, one has the following corollary, which gives sum formulas of
balancing numbers (take Wn = Bn with B0 = 0, B1 = 1).

Corollary 2.3. For n ≥ 0, balancing numbers have the following properties:

(a) (m = 1, j = 0)

If (x− 1)
(

x2 − 34x + 1
)
, 0, i.e., x , 1, x , 17− 12

√
2, x , 17 + 12

√
2, then

n

∑
k=0

xkB2
k =

(x− 1)(x− 34)xn+1B2
n + (x− 1)xn+1B2

n−1 + x(2xn − x− 1)
(x− 1) (x2 − 34x + 1)

,

and

if (x− 1)
(

x2 − 34x + 1
)
= 0, i.e., x = 1 or x = 17− 12

√
2 or x = 17 + 12

√
2, then

n

∑
k=0

xkB2
k =

Θ1

(3x2 − 70x + 35)
,

where

Θ1 = ((x− 34)xn+1 +(x− 1)((n + 2) x− 34(n+ 1))xn)B2
n +((n+ 2)x− (n+ 1))xnB2

n−1 +

2(n + 1)xn − 2x− 1.

(b) (m = 2, j = 0)

If (x− 1)
(

x2 − 1154x + 1
)
, 0, i.e., x , 1, x , 577− 408

√
2, x , 577 + 408

√
2, then

n

∑
k=0

xkB2
2k =

(x− 1)(x− 1154)xn+1B2
2n + (x− 1)xn+1B2

2n−2 − 36x(−2xn + x + 1)
(x− 1) (x2 − 1154x + 1)

and
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if (x− 1)
(

x2 − 1154x + 1
)
= 0, i.e., x = 1 or x = 577− 408

√
2 or x = 577 + 408

√
2, then

n

∑
k=0

xkB2
2k =

Θ2

3 (x2 − 770x + 385)
,

where

Θ2 = ((x− 1154)xn+1 +(x− 1)((n + 2) x− 1154(n+ 1))xn)B2
2n +((n+ 2)x− (n+ 1))xnB2

2n−2 +

36(2(n + 1)xn − 2x− 1).

(c) (m = 2, j = 1)

If (x− 1)
(

x2 − 1154x + 1
)
, 0, i.e., x , 1, x , 577− 408

√
2, x , 577 + 408

√
2, then

n

∑
k=0

xkB2
2k+1 =

(x− 1)(x− 1154)xn+1B2
2n+1 + (x− 1)xn+1B2

2n−1 − (−72xn+1 + x2 + 70x + 1)
(x− 1) (x2 − 1154x + 1)

,

and

if (x− 1)
(

x2 − 1154x + 1
)
= 0, i.e., x = 1 or x = 577− 408

√
2 or x = 577 + 408

√
2, then

n

∑
k=0

xkB2
2k+1 =

Θ3

3 (x2 − 770x + 385)
,

where

Θ3 = ((x − 1154)xn+1 + (x − 1)((n + 2) x − 1154(n + 1))xn)B2
2n+1 + ((n + 2)x − (n +

1))xnB2
2n−1 + 2(36(n + 1)xn − x− 35).

(d) (m = −1, j = 0)

If (x− 1)
(

x2 − 34x + 1
)
, 0, i.e., x , 1, x , 17− 12

√
2, x , 17 + 12

√
2, then

n

∑
k=0

xkB2
−k =

(x− 1)xn+1B2
−n+1 + (x− 1)(x− 34)xn+1B2

−n + x(2xn − x− 1)
(x− 1) (x2 − 34x + 1)

,

and

if (x− 1)
(

x2 − 34x + 1
)
= 0, i.e., x = 1 or x = 17− 12

√
2 or x = 17 + 12

√
2, then

n

∑
k=0

xkB2
−k =

Θ4

(3x2 − 70x + 35)

where

Θ4 = ((n+ 2)x− (n+ 1))xnB2
−n+1 +((x− 34)xn+1 +(x− 1)((n + 2) x− 34(n+ 1))xn)B2

−n +

2(n + 1)xn − 2x− 1.

(e) (m = −2, j = 0)

If (x− 1)
(

x2 − 1154x + 1
)
, 0, i.e., x , 1, x , 577− 408

√
2, x , 577 + 408

√
2, then

n

∑
k=0

xkB2
−2k =

(x− 1)xn+1B2
−2n+2 + (x− 1)(x− 1154)xn+1B2

−2n − 36x(−2xn + x + 1)
(x− 1) (x2 − 1154x + 1)

and



A Study on the Sum of the Squares of Generalized Balancing Numbers 23

if (x− 1)
(
x2 − 1154x + 1

)
= 0, i.e., x = 1 or x = 577− 408

√
2 or x = 577 + 408

√
2, then

n

∑
k=0

xkB2
−2k =

Θ5

3 (x2 − 770x + 385)
,

where

Θ5 = ((n + 2)x − (n + 1))xnB2
−2n+2 + ((x − 1154)xn+1 + (x − 1)((n + 2) x − 1154(n +

1))xn)B2
−2n + 36(2(n + 1)xn − 2x− 1).

(f) (m = −2, j = 1)

If (x− 1)
(

x2 − 1154x + 1
)
, 0, i.e., x , 1, x , 577− 408

√
2, x , 577 + 408

√
2, then

n

∑
k=0

xkB2
−2k+1 =

(x− 1)xn+1B2
−2n+3 + (x− 1)(x− 1154)xn+1B2

−2n+1 + (72xn+1 − 1225x2 + 1154x− 1)
(x− 1) (x2 − 1154x + 1)

,

and

if (x− 1)
(
x2 − 1154x + 1

)
= 0, i.e., x = 1 or x = 577− 408

√
2 or x = 577 + 408

√
2, then

n

∑
k=0

xkB2
−2k+1 =

Θ6

3 (x2 − 770x + 385)
,

where

Θ6 = ((n + 2)x − (n + 1))xnB2
−2n+3 + ((x − 1154)xn+1 + (x − 1)((n + 2) x − 1154(n +

1))xn)B2
−2n+1 + 2(36(n + 1)xn − 1225x + 577).

Taking Wn = Hn with H0 = 2, H1 = 6 in the last proposition, one has the following
corollary, which presents sum formulas of modified Lucas-balancing numbers.

Corollary 2.4. For n ≥ 0, modified Lucas-balancing numbers have the following properties:

(a) (m = 1, j = 0)

If (x− 1)
(

x2 − 34x + 1
)
, 0, i.e., x , 1, x , 17− 12

√
2, x , 17 + 12

√
2, then

n

∑
k=0

xk H2
k =

(x− 1)(x− 34)xn+1H2
n + (x− 1)xn+1H2

n−1 − 4(16xn+1 + 9x2 − 26x + 1)
(x− 1) (x2 − 34x + 1)

,

and

if (x− 1)
(

x2 − 34x + 1
)
= 0, i.e., x = 1 or x = 17− 12

√
2 or x = 17 + 12

√
2, then

n

∑
k=0

xk H2
k =

Θ7

(3x2 − 70x + 35)
,

where

Θ7 = ((x− 34)xn+1 +(x− 1)((n + 2) x− 34(n+ 1))xn)H2
n +((n+ 2)x− (n+ 1))xn)H2

n−1−
8(8(n + 1)xn + 9x− 13).
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(b) (m = 2, j = 0)

If (x− 1)
(

x2 − 1154x + 1
)
, 0, i.e., x , 1, x , 577− 408

√
2, x , 577 + 408

√
2, then

n

∑
k=0

xk H2
2k =

(x− 1)(x− 1154)xn+1H2
2n + (x− 1)xn+1H2

2n−2 − 4(576xn+1 + 289x2 − 866x + 1)
(x− 1) (x2 − 1154x + 1)

,

and

if (x− 1)
(

x2 − 1154x + 1
)
= 0, i.e., x = 1 or x = 577− 408

√
2 or x = 577 + 408

√
2, then

n

∑
k=0

xk H2
2k =

Θ8

3 (x2 − 770x + 385)
,

where

Θ8 = ((x− 1154)xn+1 +(x− 1)((n + 2) x− 1154(n+ 1))xn)H2
2n +((n+ 2)x− (n+ 1))xnH2

2n−2−
8 (288(n + 1)xn + 289x− 433)).

(c) (m = 2, j = 1)

If (x− 1)
(
x2 − 1154x + 1

)
, 0, i.e., x , 1, x , 577− 408

√
2, x , 577 + 408

√
2, then

n

∑
k=0

xk H2
2k+1 =

(x− 1)(x− 1154)xn+1H2
2n+1 + (x− 1)xn+1H2

2n−1 − 36(64xn+1 + x2 − 66x + 1)
(x− 1) (x2 − 1154x + 1)

,

and

if (x− 1)
(

x2 − 1154x + 1
)
= 0, i.e., x = 1 or x = 577− 408

√
2 or x = 577 + 408

√
2, then

n

∑
k=0

xk H2
2k+1 =

Θ9

3 (x2 − 770x + 385)
,

where

Θ9 = ((x − 1154)xn+1 + (x − 1)((n + 2) x − 1154(n + 1))xn)H2
2n+1 + ((n + 2)x − (n +

1))xnH2
2n−1 − 72(32(n + 1)xn + x− 33).

(d) (m = −1, j = 0)

If (x− 1)
(

x2 − 34x + 1
)
, 0, i.e., x , 1, x , 17− 12

√
2, x , 17 + 12

√
2, then

n

∑
k=0

xk H2
−k =

(x− 1)xn+1H2
−n+1 + (x− 1)(x− 34)xn+1H2

−n − 4(16xn+1 + 9x2 − 26x + 1)
(x− 1) (x2 − 34x + 1)

,

and

if (x− 1)
(

x2 − 34x + 1
)
= 0, i.e., x = 1 or x = 17− 12

√
2 or x = 17 + 12

√
2 then

n

∑
k=0

xk H2
−k =

Θ10

(3x2 − 70x + 35)
,

where

Θ10 = ((n+ 2)x− (n+ 1))xnH2
−n+1 +((x− 34)xn+1 +(x− 1)((n + 2) x− 34(n+ 1))xn)H2

−n−
8(8(n + 1)xn + 9x− 13).
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(e) (m = −2, j = 0)

If (x− 1)
(
x2 − 1154x + 1

)
, 0, i.e., x , 1, x , 577− 408

√
2, x , 577 + 408

√
2, then

n

∑
k=0

xk H2
−2k =

(x− 1)xn+1H2
−2n+2 + (x− 1)(x− 1154)xn+1H2

−2n − 4(576xn+1 + 289x2 − 866x + 1)
(x− 1) (x2 − 1154x + 1)

,

and

if (x− 1)
(
x2 − 1154x + 1

)
= 0, i.e., x = 1 or x = 577− 408

√
2 or x = 577 + 408

√
2, then

n

∑
k=0

xk H2
−2k =

Θ11

3 (x2 − 770x + 385)
,

where

Θ11 = ((n + 2)x − (n + 1))xnH2
−2n+2 + ((x − 1154)xn+1 + (x − 1)((n + 2) x − 1154(n +

1))xn)H2
−2n − 8(288(n + 1)xn + 289x− 433).

(f) (m = −2, j = 1)

If (x− 1)
(

x2 − 1154x + 1
)
, 0, i.e., x , 1, x , 577− 408

√
2, x , 577 + 408

√
2, then

n

∑
k=0

xk H2
−2k+1 =

(x− 1)xn+1H2
−2n+3 + (x− 1)(x− 1154)xn+1H2

−2n+1 − 36(64xn+1 + 1089x2 − 1154x + 1)
(x− 1) (x2 − 1154x + 1)

,

and

if (x− 1)
(

x2 − 1154x + 1
)
= 0, i.e., x = 1 or x = 577− 408

√
2 or x = 577 + 408

√
2, then

n

∑
k=0

xk H2
−2k+1 =

Θ12

3 (x2 − 770x + 385)
,

where

Θ12 = ((n + 2)x − (n + 1))xnH2
−2n+3 + ((x − 1154)xn+1 + (x − 1)((n + 2) x − 1154(n +

1))xn)H2
−2n+1 − 72(32(n + 1)xn + 1089x− 577).

From the above proposition, one has the following corollary, which gives sum formulas of
Lucas-balancing numbers (take Wn = Cn with C0 = 1, C1 = 3).

Corollary 2.5. For n ≥ 0, Lucas-balancing numbers have the following properties:

(a) (m = 1, j = 0)

If (x− 1)
(

x2 − 34x + 1
)
, 0, i.e., x , 1, x , 17− 12

√
2, x , 17 + 12

√
2, then

n

∑
k=0

xkC2
k =

(x− 1)(x− 34)xn+1C2
n + (x− 1)xn+1C2

n−1 − (16xn+1 + 9x2 − 26x + 1)
(x− 1) (x2 − 34x + 1)

,

and

if (x− 1)
(

x2 − 34x + 1
)
= 0, i.e., x = 1 or x = 17− 12

√
2 or x = 17 + 12

√
2, then

n

∑
k=0

xkC2
k =

Θ13

(3x2 − 70x + 35)
,

where

Θ13 = ((x− 34)xn+1 +(x− 1)((n + 2) x− 34(n+ 1))xn)C2
n +((n+ 2)x− (n+ 1))xn)C2

n−1−
2(8(n + 1)xn + 9x− 13).
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(b) (m = 2, j = 0)

If (x− 1)
(

x2 − 1154x + 1
)
, 0, i.e., x , 1, x , 577− 408

√
2, x , 577 + 408

√
2, then

n

∑
k=0

xkC2
2k =

(x− 1)(x− 1154)xn+1C2
2n + (x− 1)xn+1C2

2n−2 − (576xn+1 + 289x2 − 866x + 1)
(x− 1) (x2 − 1154x + 1)

,

and

if (x− 1)
(

x2 − 1154x + 1
)
= 0, i.e., x = 1 or x = 577− 408

√
2 or x = 577 + 408

√
2, then

n

∑
k=0

xkC2
2k =

Θ14

3 (x2 − 770x + 385)
,

where

Θ14 = ((x− 1154)xn+1 +(x− 1)((n + 2) x− 1154(n+ 1))xn)C2
2n +((n+ 2)x− (n+ 1))xnC2

2n−2−
2(288(n + 1)xn + 289x− 433).

(c) (m = 2, j = 1)

If (x− 1)
(
x2 − 1154x + 1

)
, 0, i.e., x , 1, x , 577− 408

√
2, x , 577 + 408

√
2, then

n

∑
k=0

xkC2
2k+1 =

(x− 1)(x− 1154)xn+1C2
2n+1 + (x− 1)xn+1C2

2n−1 − 9(64xn+1 + x2 − 66x + 1)
(x− 1) (x2 − 1154x + 1)

,

and

if (x− 1)
(

x2 − 1154x + 1
)
= 0, i.e., x = 1 or x = 577− 408

√
2 or x = 577 + 408

√
2, then

n

∑
k=0

xkC2
2k+1 =

Θ15

3 (x2 − 770x + 385)
,

where

Θ15 = ((x − 1154)xn+1 + (x − 1)((n + 2) x − 1154(n + 1))xn)C2
2n+1 + ((n + 2)x − (n +

1))xnC2
2n−1 − 18(32(n + 1)xn + x− 33).

(d) (m = −1, j = 0)

If (x− 1)
(

x2 − 34x + 1
)
, 0, i.e., x , 1, x , 17− 12

√
2, x , 17 + 12

√
2, then

n

∑
k=0

xkC2
−k =

(x− 1)xn+1C2
−n+1 + (x− 1)(x− 34)xn+1C2

−n − (16xn+1 + 9x2 − 26x + 1)
(x− 1) (x2 − 34x + 1)

,

and

if (x− 1)
(

x2 − 34x + 1
)
= 0, i.e., x = 1 or x = 17− 12

√
2 or x = 17 + 12

√
2, then

n

∑
k=0

xkC2
−k =

Θ16

(3x2 − 70x + 35)
,

where

Θ16 = ((n+ 2)x− (n+ 1))xnC2
−n+1 +((x− 34)xn+1 +(x− 1)((n + 2) x− 34(n+ 1))xn)C2

−n−
2(8(n + 1)xn + 9x− 13).
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(e) (m = −2, j = 0)

If (x− 1)
(
x2 − 1154x + 1

)
, 0, i.e., x , 1, x , 577− 408

√
2, x , 577 + 408

√
2, then

n

∑
k=0

xkC2
−2k =

(x− 1)xn+1C2
−2n+2 + (x− 1)(x− 1154)xn+1C2

−2n − (576xn+1 + 289x2 − 866x + 1)
(x− 1) (x2 − 1154x + 1)

,

and

if (x− 1)
(

x2 − 1154x + 1
)
= 0, i.e., x = 1 or x = 577− 408

√
2 or x = 577 + 408

√
2, then

n

∑
k=0

xkC2
−2k =

Θ17

3 (x2 − 770x + 385)
,

where

Θ17 = ((n + 2)x − (n + 1))xnC2
−2n+2 + ((x − 1154)xn+1 + (x − 1)((n + 2) x − 1154(n +

1))xn)C2
−2n − 2(288(n + 1)xn + 289x− 433).

(f) (m = −2, j = 1)

If (x− 1)
(
x2 − 1154x + 1

)
, 0, i.e., x , 1, x , 577− 408

√
2, x , 577 + 408

√
2, then

n

∑
k=0

xkC2
−2k+1 =

(x− 1)xn+1C2
−2n+3 + (x− 1)(x− 1154)xn+1C2

−2n+1 − 9(64xn+1 + 1089x2 − 1154x + 1)
(x− 1) (x2 − 1154x + 1)

,

and

if (x− 1)
(
x2 − 1154x + 1

)
= 0, i.e., x = 1 or x = 577− 408

√
2 or x = 577 + 408

√
2, then

n

∑
k=0

xkC2
−2k+1 =

Θ18

3 (x2 − 770x + 385)
,

where

Θ18 = ((n + 2)x − (n + 1))xnC2
−2n+3 + ((x − 1154)xn+1 + (x − 1)((n + 2) x − 1154(n +

1))xn)C2
−2n+1 − 18(32(n + 1)xn + 1089x− 577).

Taking x = 1 in the last two corollaries, one gets the following corollary.

Corollary 2.6. For n ≥ 0, balancing numbers, modified Lucas-balancing and Lucas-balancing num-
bers have the following properties:

1.

(a) ∑n
k=0 B2

k = 1
32 (33B2

n − B2
n−1 − 2n + 1).

(b) ∑n
k=0 B2

2k =
1

1152 (1153B2
2n − B2

2n−2 − 72n + 36).

(c) ∑n
k=0 B2

2k+1 = 1
1152 (1153B2

2n+1 − B2
2n−1 − 72n).

(d) ∑n
k=0 B2

−k =
1
32 (−B2

−n+1 + 33B2
−n − 2n + 1).

(e) ∑n
k=0 B2

−2k =
1

1152 (−B2
−2n+2 + 1153B2

−2n − 72n + 36).

(f) ∑n
k=0 B2

−2k+1 = 1
1152 (−B2

−2n+3 + 1153B2
−2n+1 − 72n + 1224).

2.
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(a) ∑n
k=0 H2

k = 1
32 (33H2

n − H2
n−1 + 64n + 32).

(b) ∑n
k=0 H2

2k =
1

1152 (1153H2
2n − H2

2n−2 + 2304n + 1152).

(c) ∑n
k=0 H2

2k+1 = 1
1152 (1153H2

2n+1 − H2
2n−1 + 2304n).

(d) ∑n
k=0 H2

−k =
1

32 (−H2
−n+1 + 33H2

−n + 64n + 32).

(e) ∑n
k=0 H2

−2k =
1

1152 (−H2
−2n+2 + 1153H2

−2n + 2304n + 1152).

(f) ∑n
k=0 H2

−2k+1 = 1
1152 (−H2

−2n+3 + 1153H2
−2n+1 + 2304n + 39168).

3.

(a) ∑n
k=0 C2

k = 1
32 (33C2

n − C2
n−1 + 16n + 8).

(b) ∑n
k=0 C2

2k =
1

1152 (1153C2
2n − C2

2n−2 + 576n + 288).

(c) ∑n
k=0 C2

2k+1 = 1
1152 (1153C2

2n+1 − C2
2n−1 + 576n).

(d) ∑n
k=0 C2

−k =
1

32 (−C2
−n+1 + 33C2

−n + 16n + 8).

(e) ∑n
k=0 C2

−2k =
1

1152 (−C2
−2n+2 + 1153C2

−2n + 576n + 288).

(f) ∑n
k=0 C2

−2k+1 = 1
1152 (−C2

−2n+3 + 1153C2
−2n+1 + 576n + 9792).

3 Conclusion

Recently, there have been so many studies of the sequences of numbers in the literature. The
sequences of numbers were widely used in many research areas, such as architecture, nature,
art, physics, and engineering. In this work, sum identities were proved. The method used
in this paper can be used for the other linear recurrence sequences, too. We have written
sum identities in terms of the generalized balancing sequence. Then, we have presented
the formulas as special cases, the corresponding identity for the balancing, modified Lucas-
balancing, and Lucas-balancing numbers. All the listed identities in the corollaries may be
proved by induction, but that proof method gives no clue about their discovery. We have
provided proofs to show how these identities were discovered in general.

Computations of the Frobenius norm, spectral norm, maximum column length norm, and
maximum row length norm of circulant (r-circulant, geometric circulant, semicirculant) ma-
trices with the generalized m-step Fibonacci sequences require the sum of the numbers of
the sequences. So, our results can be used to study r-circulant matrices with m-order linear
recurrence sequences.
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Abstract. In this paper, we study the existence of a continuous solution for a nonlinear
integral equation of a product type. The analysis uses the techniques of measures
of noncompactness and Darbo’s fixed point Theorem. Our results are obtained under
rather general assumptions. Moreover, the method used in the proof allows us to obtain
the asymptotic stability of the solutions.

Keywords: Integral equation of a product type, measure of weak noncompactness,
fixed point theorem, continuous solutions.
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1 Introduction

In this paper, we consider the following nonlinear integral equation of product type

x(t) = f (t, x(t)) +
[

p(t) +
∫ t

0
u(t, s, x(s))ds

]
×
[

q(t) +
∫ t

0
v(t, s, x(s))ds

]
, t ∈ R+, (1.1)

where f , p, q, u, v are continuous functions and x(t) ∈ C(R+, R) is an unknown function.
A variety of problems in physics and biology have their mathematical setting as integral
equations of product type. In particular, in the study of the spread of an infectious disease
that does not induce permanent immunity (see, for example [3, 10, 11, 16]).
Recently, there has been a growing interest in integral equations of product type. In [12]
Gripenberg studied the qualitative behavior of solutions of the following integral equation of
product type

x(t) = k
[

p(t) +
∫ t

0
A(t− s)x(s)ds

]
×
[

q(t) +
∫ t

0
B(t− s)x(s)ds

]
. (1.2)

More exactly, the author studied the existence and uniqueness of a bounded continuous and
nonnegative solution of (1.2). Moreover, Pachpatte [15], Abdeldaim [1] and Li et al. [13] stud-
ied the boundedness, the asymptotic behavior and continuous solutions of (1.2).
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Bellour et al. [8] studied the existence of an integrable solution of (1.1) on the interval [0, 1].
On the other hand, Ardjouni and Djoudi [2] studied the existence and approximation of so-
lutions of the initial value problems of nonlinear hybrid Caputo fractional integro-differential
equations, which can be transformed to the following integral equation of product type

x(t) =
[

p(t) +
1

Γ(β)

∫ t

0
(t− s)β−1g(s, x(s))ds

]
×
[

θ +
1

Γ(α)

∫ t

0
(t− s)α−1 f (s, x(s))ds

]
,

on a bounded interval [0, a].
In the paper [14], Olaru studied the existence and the uniqueness of the continuous solution
of the following integral equation

x(t) =
m

∏
i=1

(
gi(t) +

∫ t

a
Ki(t, s, x(s))ds

)
, (1.3)

on a bounded interval [a, b], where Ki, i = 1, ..., n are continuous functions satisfying Lipschitz
conditions with respect to the last variable.
Later, Boulfoul et al. [9] studied the existence of an integrable solution of a generalization of
(1.3) on R+.

The purpose of the present work is to study the existence of a continuous solution and
bounded solution to (1.1) under fairly simple conditions. Moreover, the method used in the
proof allows us to obtain the asymptotic stability of the solutions. An example is presented to
show the importance and the applicability of our results.

2 Auxiliary facts and results

In this section, we provide some notations, definitions and auxiliary facts which will be needed
for stating our results. Denote by BC(R+, R) the Banach space of all real functions defined,
continuous and bounded on R+. It is equipped with the standard norm

‖x‖ = sup
t∈R+

|x(t)|.

For later use, we assume that X be a Banach space. Let B(X) denote the family of all nonempty
bounded subsets of X and W(X) the subset of B(X) consisting of all relatively compact
subsets of X. Finally, let Br denote the closed ball centered at 0 with radius r.
Recall the following definition of the concept of the axiomatic measure of noncompactness.

Definition 2.1. [6]. A function µ : B(X) −→ R+ is said to be a measure of noncompactness
if it satisfies the following conditions:

(1) The family ker(µ) = {M ∈ B(X) : µ(M) = 0} is nonempty and ker(µ) ⊂ W(X).

(2) M1 ⊂ M2 ⇒ µ(M1) ≤ µ(M2).

(3) µ(co(M)) = µ(M), where co(M) is the convex hull of M.

(4) µ(λM1 + (1− λ)M2) ≤ λµ(M1) + (1− λ)µ(M2) for λ ∈ [0, 1].

(5) If (Mn)n≥1 is a sequence of nonempty, weakly closed subsets of X with M1 bounded and
M1 ⊇ M2 ⊇ ... ⊇ Mn ⊇ ... such that lim

n→∞
µ(Mn) = 0, then M∞ :=

⋂∞
n=1 Mn is nonempty.

A measure µ is said to be sublinear if it satisfies the following two conditions:
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(6) µ(λM) = |λ|µ(M) for λ ∈ R.

(7) µ(M1 + M2) ≤ µ(M1) + µ(M2).

The family ker(µ) described in (1) is called the kernel of the measure of noncompactness µ.
More information about measures of noncompactness and their properties can be found in [5].
For our purposes, we will only need the following fixed point theorem [5].

In what follows, we will use a measure of noncompactness in the space BC(R+, R) which
was introduced in [5]. In order to recall the definition of this measure let us fix a nonempty
bounded subset X ∈ BC(R+, R) and a positive number T > 0. For x ∈ X and ε > 0, let us
define the following quantities (cf. [5]):

ωT(x, ε) = sup {|x(s)− x(t)| : t, s ∈ [0, T], |t− s| ≤ ε} .

Further, let us put

ωT(X, ε) = sup
{

ωT(x, ε) : x ∈ X
}

,

ωT
0 (X) = lim

ε−→0
ωT(X, ε), ω0(X) = lim

T−→∞
ωT

0 (X).

For a fixed number t ≥ 0, we denote

d(X(t)) = sup {|x(t)− y(t)| : x, y ∈ X} .

and
d(X) = lim sup

t−→∞
d(X(t)).

Finally, the function µ is defined by putting

µ(X) = ω0(X) + d(X).

It can be shown [5] that the function µ is a measure of noncompactness in the space BC(R+, R)

with the kernel ker(µ) consisting of all nonempty and bounded sets X such that functions from
X are equicontinuous and nondecreasing on R+. For other properties of µ, see [5].

3 Main result

We will use the following fixed point theorem.

Theorem 3.1. [4] Let Q be nonempty bounded closed convex subset of the space E and let F : Q −→
Q be a continuous operator such that µ(FX) ≤ kµ(X) for any nonempty subset X of Q, where
k ∈ [0, 1) is a constant. Then F has a fixed point in the set Q.

Equation (1.1) will be studied under the following assumptions:

(i) The functions p, q : R+ → R are continuous and bounded functions on R+. Let ‖p‖ be
the norm of p in BC(R+, R) and ‖q‖ be the norm of q in BC(R+, R).

(ii) The function f : R+ ×R → R is Lipschizian with respect to the second variable with a
Lipschitz constant α, that is, | f (t, x)− f (t, y)| ≤ α|x− y| for all t ∈ R+ and all x, y ∈ R.
Let β(t) = | f (t, 0)| ∈ BC(R+, R).
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(iii) The function u : R+ ×R+ ×R→ R is continuous and there exist a positive constant b1

and a function a1 ∈ BC(R+, R) such that |u(t, s, x)| ≤ k1(t, s) [a1(s) + b1 |x|] for (t, s, x) ∈
R+×R+×R, where k1 : R+×R+ → R+ is measurable function and the linear Volterra
operator K1 generated by k1,

(K1x) (t) =
∫ t

0
k1(t, s)x(s)ds, (3.1)

transforms the space BC(R+, R) into itself. Let ‖K1‖ be the norm of this operator.

(iv) The function v : R+ × R+ × R → R is continuous and there exists a function a2 ∈
BC(R+, R) such that |v(t, s, x)| ≤ k2(t, s)a2(s) for (t, s, x) ∈ R+ ×R+ ×R, where k2 :
R+ ×R+ → R+ is measurable function and the linear Volterra operator K2 generated
by k2,

(K2x) (t) =
∫ t

0
k2(t, s)x(s)ds, (3.2)

transforms the space BC(R+, R) into itself. Let ‖K2‖ be the norm of this operator.

(v) lim
t−→+∞

(Ki1) (t) = lim
t−→+∞

∫ t
0 ki(t, s)ds = 0, for i = 1, 2.

(vi) α + b1‖K1‖(‖q‖+ ‖K2‖‖a2‖) < 1.

To prove our main result, we need the following lemma.

Lemma 3.2. Under the assumptions (i)-(v) the operators

(Ux)(t) = p(t) +
∫ t

0
u(t, s, x(s))ds,

(Vx)(t) = q(t) +
∫ t

0
v(t, s, x(s))ds.

map BC(R+, R) continuously into itself.

Proof. We prove only that U maps BC(R+, R) continuously into itself and the proof of V is
similarly.
It is clear that the operator U maps BC(R+, R) into C(R+, R). Moreover, let x ∈ BC(R+, R),
since

| (K1x) (t)| ≤ ‖x‖ (K11) (t).

On the other hand, from the assumption (v), there exists T > 0 such for all t ≥ T

(K11) (t) ≤ 1.

Hence, from the assumption (iii), we have for all t ≥ T

|(Ux)(t)| ≤ (‖a1‖+ b1‖x‖) (K11) (t) ≤ ‖a1‖+ b1‖x‖.

On the other hand, (Ux) is bounded on [0, T], we deduce that U maps BC(R+, R) into itself.
Now, to prove that U is continuous, let {xn} be an arbitrary sequence in BC(R+, R) which
converges to x ∈ BC(R+, R).
Then, for ε > 0 there exist n1 ∈N and T > 0, such that for all n ≥ n1 and t ≥ T, we have

‖xn‖ ≤ 1 + ‖x‖, (K11) (t) ≤ ε

2‖a1‖+ b1(2‖x‖+ 1)
.
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It follows that, for n ≥ n1 and t ≥ T, we have

|(Uxn −Ux)(t)| ≤ (2‖a1‖+ b1(2‖x‖+ 1)) (K11) (t) ≤ ε. (3.3)

On the other hand, since u is uniformly bounded on the compact set [0, T] × [0, T] × [−1−
‖x‖, 1 + ‖x‖], hence there exists n2 ∈N such that for all n ≥ n2, we have

sup{|u(t, s, xn(s))− u(t, s, x(s))|, (t, s) ∈ [0, T]× [0, T], n ≥ n2} ≤
ε

T
,

which implies that, for all n ≥ n2 and t ∈ [0, T]

|(Uxn −Ux)(t)| ≤ ε. (3.4)

Then, from (3.3) and (3.4), we deduce that, for all n ≥ n0 = max(n1, n2)

‖Uxn −Ux‖ ≤ ε.

Thus, U maps BC(R+, R) continuously into itself. �

Remark 3.3. [7] The concept of the asymptotic stability of a solution x = x(t) of Eq. (1.1) is
understood in the following sense.
For any ε > 0 there exist T > 0 and r > 0 such that if x = x(t), y = y(t) are solutions of (1.1)
then |x(t)− y(t)| ≤ ε for t ≥ T.

Now we are able to state our main result.

Theorem 3.4. Under the assumptions above the nonlinear integral equation (1.1) has at least an
asymptotically stable solution x ∈ BC(R+, R).

Proof. Solving Eq. (1.1) is equivalent to finding a fixed point of the operator A, where Ax(t) =
f (t, x(t)) + (Ux)(t)× (Vx)(t). We will show that A satisfies the conditions of Theorem 3.1.
The proof is split into four steps.

Step 1. We first show that there exists Br0 from BC(R+, R) such that A(Br0) ⊂ Br0 . To see this,
let x ∈ Br. Then

‖Ax‖ ≤‖ f (t, x(t))‖+ ‖(Ux)(t)× (Vx)(t)‖
≤α‖x‖+ ‖β‖+ (‖p‖+ ‖K1(a1 + b1x)‖)× (‖q‖+ ‖K2(a2)‖)
≤α‖x‖+ ‖β‖+ (‖p‖+ ‖K1‖(‖a1‖+ b1‖x‖))× (‖q‖+ ‖K2‖‖a2‖)
≤αr + ‖β‖+ (‖p‖+ ‖K1‖‖a1‖+ b1‖K1‖r)× (‖q‖+ ‖K2‖‖a2‖)
≤(α + b1‖K1‖(‖q‖+ ‖K2‖‖a2‖))r + ‖β‖+ (‖p‖+ ‖K1‖‖a1‖)(‖q‖+ ‖K2‖‖a2‖).

Since α + b1‖K1‖(‖q‖+ ‖K2‖‖a2‖) < 1, we deduce that the operator A transforms the ball Br0

into itself for r0 = ‖β‖+(‖p‖+‖K1‖‖a1‖)(‖q‖+‖K2‖‖a2‖)
1−(α+b1‖K1‖(‖q‖+‖K2‖‖a2‖)) .

Step 2. The operator A maps Br0 continuously into itself. To see this, take an arbitrary number
ε > 0 and a convergent sequence (xn) to (x) in Br0 .
Hence, by Lemma 3.2, there exists n0 such that for all n ≥ n0, we have

‖xn − x‖ ≤ ε

3α
, ‖Uxn −Ux‖ ≤ ε

3(‖q‖+ ‖K2‖‖a2‖)
,

‖Vxn −Vx‖ ≤ ε

3(‖p‖+ ‖K1‖(‖a1‖+ b1r0))
.
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Which implies, for all n ≥ n0,

‖Axn − Ax‖ ≤α‖xn − x‖+ ‖(Uxn)× (Vxn)− (Ux)× (Vx)‖
≤α‖xn − x‖+ ‖Uxn‖‖Vxn −Vx‖+ ‖Vx‖‖Uxn −Ux‖
≤α‖xn − x‖+ (‖p‖+ ‖K1‖(‖a1‖+ b1‖xn‖))‖Vxn −Vx‖
+ (‖q‖+ ‖K2‖‖a2‖)‖Uxn −Ux‖
≤α‖xn − x‖+ (‖p‖+ ‖K1‖(‖a1‖+ b1r0))‖Vxn −Vx‖
+ (‖q‖+ ‖K2‖‖a2‖)‖Uxn −Ux‖
≤ε.

We deduce that the operator A maps Br0 continuously into itself.
Step 3. We illustrate that there exists γ ∈ [0, 1) such that µ(AX) ≤ γµ(X) for all subset X of
Br0 . To see this, take an arbitrary number t ≥ 0. Then for any x, y ∈ X, we have

|Ax(t)− Ay(t)| ≤α|x(t)− y(t)|+ |Ux(t)||Vx(t)−Vy(t)|+ |Vy(t)||Ux(t)−Uy(t)|
≤α‖x(t)− y(t)‖+ (‖p‖+ ‖K1‖(‖a1‖+ b1r0))|Vx(t)−Vy(t)|
+ (‖q‖+ ‖K2‖‖a2‖)|Ux(t)−Uy(t)|
≤α‖x(t)− y(t)‖+ 2(‖p‖+ ‖K1‖(‖a1‖+ b1r0))‖a2‖K21(t)

+ 2(‖q‖+ ‖K2‖‖a2‖)(‖a1‖+ b1r0))K11(t).

Which implies that

d(AX(t)) ≤αd(X(t)) + 2(‖p‖+ ‖K1‖(‖a1‖+ b1r0))‖a2‖K21(t)

+ 2(‖q‖+ ‖K2‖‖a2‖)(‖a1‖+ b1r0))K11(t).

Now, taking into account the assumption (v) we obtain the following estimate:

d(AX) ≤ αd(X). (3.5)

Further, let us fix arbitrarily numbers T > 0, ε > 0, let x ∈ X and take t1, t2 ∈ [0, T] such that
|t2 − t1| ≤ ε. Without loss of generality we may assume that t1 < t2.
Then, in view of our assumptions, we have

|Ax(t2)− Ax(t1)| ≤α|x(t2)− x(t1)|+ |Ux(t2)||Vx(t2)−Vx(t1)|
+ |Vx(t1)||Ux(t2)−Ux(t1)|
≤α|x(t2)− x(t1)|+ (‖p‖+ ‖K1‖(‖a1‖+ b1r0))|Vx(t2)−Vx(t1)|
+ (‖q‖+ ‖K2‖‖a2‖)|Ux(t2)−Ux(t1)|.

(3.6)

Now, from the assumption (iii), we have

|Ux(t2)−Ux(t1)| ≤
∫ t2

0
|u(t2, s, x(s))− u(t1, s, x(s))|ds

+
∫ t2

t1

|u(t1, s, x(s))|ds

≤TωT(u, ε) + |t2 − t1|u
≤TωT(u, ε) + εu,

(3.7)
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where,

ωT(u, ε) = sup{|u(t2, s, x)− u(t1, s, x)|, t1, t2, s ∈ [0, T], |t2 − t1| ≤ ε, |x| ≤ r0},
u = sup{|u(t, s, x)|, t, s ∈ [0, T], |x| ≤ r0}.

Similarly, from the assumption (iv), we obtain

|Vx(t2)−Vx(t1)| ≤ TωT(v, ε) + εv, (3.8)

where,

ωT(v, ε) = sup{|v(t2, s, x)− v(t1, s, x)|, t1, t2, s ∈ [0, T], |t2 − t1| ≤ ε, |x| ≤ r0},
vT = sup{|v(t, s, x)|, t, s ∈ [0, T], |x| ≤ r0}.

Hence, from (3.6), (3.7) and (3.8), we obtain

ωT(Ax, ε) ≤αωT(x, ε) + (‖p‖+ ‖K1‖(‖a1‖+ b1r0))(TωT(v, ε) + εv)

+ (‖q‖+ ‖K2‖‖a2‖)(TωT(u, ε) + εu).

Since lim
ε−→0

ωT(u, ε) = lim
ε−→0

ωT(v, ε) = 0, then

ω0(AX) ≤ αω0(X). (3.9)

We deduce, from (3.5) and (3.9), that

µ(AX) ≤ αµ(X).

Hence the third step is completed by taking γ = α < 1.
Finally, using Theorem 3.1, we can see that (1.1) has at least one solution x ∈ BC(R+, R).
Step 4. The solution x is asymptotically stable on R+.
Let ε > 0, and taking r = r0, then, for any other solution y ∈ Br0 , we have from Step 3

|Ax(t)− Ay(t)| ≤α‖x(t)− y(t)‖+ 2(‖p‖+ ‖K1‖(‖a1‖+ b1r0))‖a2‖K21(t)

+ 2(‖q‖+ ‖K2‖‖a2‖)(‖a1‖+ b1r0))K11(t).

Since α < 1, we obtain

|Ax(t)− Ay(t)| ≤2(‖p‖+ ‖K1‖(‖a1‖+ b1r0))‖a2‖
1− α

K21(t)

+
2(‖q‖+ ‖K2‖‖a2‖)(‖a1‖+ b1r0)

1− α
K11(t).

By using Assumption (v), we deduce that there exists T > 0 such that for all t ≥ T

|Ax(t)− Ay(t)| ≤ ε.

Which implies that the solution is asymptotically stable on R+. �
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4 Example

Consider the following integral equation

x(t) = t exp(−t) + 1 +
1
2

x(t)+
(

1
5 + t

+
∫ t

0

cos(s + t)
t + λ

ln(1 + x2(s))ds
)
×(

exp(−t) +
∫ t

0

sin(t)
(1 + 2t− s + |x(s)|)2 ds

)
,

(4.1)

where t ∈ R+ and λ is a positive number.
Set

f (t, x) = t exp(−t) + 1 +
1
2

x, p(t) =
1

5 + t
, q(t) = exp(−t), k1(t, s) =

| cos(s + t)|
t + λ

,

and

k2(t, s) =
1

(1 + 2t− s)2 , a1(s) = 0, b1 = 1, a2(s) = | sin(t)|.

Using the notations of Theorem 3.4, we can easily show that

α =
1
2

, ‖p‖ = 1
5

, ‖q‖ = ‖a2‖ = 1, K11(t) ≤ 2
t + λ

, K21(t) ≤ 1
1 + t

,

and

‖K1‖ ≤
2
λ

, ‖K2‖ ≤ 1.

Then the assumption (v) is satisfied, therefore, the inequality (vi) takes the form

1
2
+

4
λ
< 1⇐⇒ λ > 8.

Then by Theorem 3.4, we conclude that the integral equation (4.1) has an asymptotically stable
solution x ∈ BC(R+, R) whenever λ > 8.

5 Conclusion

In this paper, we have considered a general form of integral equations of product type on
the half-axis. The existence of a continuous solution and its asymptotic stability have been
investigated using the measures of non-compactness and Darbo’s fixed point theorem. Finally,
an example is provided to illustrate our main result.
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Abstract. Recently, we have introduced the notion of standard single valued neutro-
sophic (SSVN) metric space as a generalization of the notion of standard fuzzy metric
spaces given by J.R. Kider and Z.A. Hussain. In this paper, we study the fundamen-
tal properties of standard single valued neutrosophic metric spaces. Furthermore, we
introduce the notion of continuous mapping and uniformly continuous mapping in
standard single-valued neutrosophic metric spaces. To that end, we give a number of
properties and characterizations of these notions.

Keywords: Neutrosophic set, single valued neutrosophic set, neutrosophic metric
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1 Introduction

In 1995, F. Smarandache [11] has generalized the concepts of fuzzy and intuitionistic fuzzy sets
to the notion of neutrosophic sets to know the correct way of dealing with imprecise and in-
determinate data. Neutrosophic sets are characterized by three independent components that
truth membership function (T), indeterminacy membership function (I), and falsity member-
ship function (F), and they have been useful in many real applications in several branches
(see for e.g., [3,7,8,12,14]). Recently, we have introduced the notion of standard single valued
neutrosophic metric space [2, 6] and studied some of their fundamental properties.

Many authors have taken great care in studying the critical properties of various types
of topological spaces. For instance, Latreche et al [5] have established the property of conti-
nuity in single valued neutrosophic topological space and investigated relationships among
various types of single valued neutrosophic continuous mapping. Later on, Milles et al [6]
have introduced other topological properties, such as the completeness and compactness in
standard single valued neutrosophic metric spaces, where they have investigated their most
interesting properties and characterizations. In particular, J Kider and Z Hussain [4] intro-
duced a continuous mapping and uniformly continuous mapping from standard fuzzy metric
space (X, M, ∗) into a standard fuzzy metric space (Y, M, ∗). In this paper, we will focus on
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studying these properties, especially in standard single valued neutrosophic metric spaces.
Furthermore, we discuss some characterizations of these notions. This paper is structured
as follows. In Section 2, we recall the necessary basic notions and properties of standard
fuzzy metric space and single valued neutrosophic sets with some related concepts that will
be needed throughout this paper. In Section 3, the notion of standard fuzzy metric space is
introduced, and some fundamental properties related to this concept are studied. By intro-
ducing the notions of continuous mapping and uniformly continuous mapping in a standard
single-valued neutrosophic metric space, we discuss the interesting continuity properties in
these spaces in Section 4. Finally, we present some conclusions and discuss future research in
Section 5.

2 Preliminaries

This section contains the basic definitions and properties of single valued neutrosophic sets
and some related notions that will be needed throughout this paper.

Definition 2.1. [16] Let X be a nonempty set. A fuzzy set A = {〈x, µA(x)〉 | x ∈ X} is
characterized by a membership function µA : X → [0, 1], where µA(x) is interpreted as the
degree of membership of the element x in the fuzzy subset A for any x ∈ X.

In 1983, Atanassov [1] proposed a generalization of Zadeh membership degree and intro-
duced the notion of the intuitionistic fuzzy set.

Definition 2.2. [1] Let X be a nonempty set. An intuitionistic fuzzy set (IFS, for short) A on
X is an object of the form A = {〈x, µA(x), νA(x)〉 | x ∈ X} characterized by a membership
function µA : X → [0, 1] and a non-membership function νA : X → [0, 1] which satisfy the
condition:

0 ≤ µA(x) + νA(x) ≤ 1, for any x ∈ X.

In 1998, Smarandache [11] defined the concept of a neutrosophic set as a generalization of
Atanassov’s intuitionistic fuzzy set. Also, he introduced neutrosophic logic, neutrosophic set,
and its applications in [9, 10]. In particular, Wang et al. [15] introduced the notion of a single
valued neutrosophic set.

Definition 2.3. [9] Let X be a nonempty set. A neutrosophic set (NS, for short) A on X is
an object of the form A = {〈x, µA(x), σA(x), νA(x)〉 | x ∈ X} characterized by a membership
function µA : X →]−0, 1+[ and an indeterminacy function σA : X →]−0, 1+[ and a non-
membership function νA : X →]−0, 1+[ which satisfy the condition:

−0 ≤ µA(x) + σA(x) + νA(x) ≤ 3+, for any x ∈ X.

Certainly, intuitionistic fuzzy sets are neutrosophic sets by setting σA(x) = 1− µA(x) −
νA(x).

Next, one shows the notion of single valued neutrosophic set as an instance of the neutro-
sophic set, which can be used in real scientific and engineering applications.

Definition 2.4. [15] Let X be a nonempty set. A single valued neutrosophic set (SVNS, for
short) A on X is an object of the form A = {〈x, µA(x), σA(x), νA(x)〉 | x ∈ X} characterized
by a truth-membership function µA : X → [0, 1], an indeterminacy-membership function
σA : X → [0, 1] and a falsity-membership function νA : X → [0, 1].
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The class of single valued neutrosophic sets on X is denoted by SVN(X).

For any two SVNSs A and B on a set X, several operations are defined (see, e.g., [13, 15]);
mainly, we will present those related to the present paper.

(i) A ⊆ B if µA(x) ≤ µB(x) and σA(x) ≤ σB(x) and νA(x) ≥ νB(x), for all x ∈ X,

(ii) A = B if µA(x) = µB(x) and σA(x) = σB(x) and νA(x) = νB(x), for all x ∈ X,

(iii) A ∩ B = {〈x, µA(x) ∧ µB(x), σA(x) ∧ σB(x), νA(x) ∨ νB(x)〉 | x ∈ X},

(iv) A ∪ B = {〈x, µA(x) ∨ µB(x), σA(x) ∨ σB(x), νA(x) ∧ νB(x)〉 | x ∈ X},

(v) A = {〈x, 1− νA(x), 1− σA(x), 1− µA(x)〉 | x ∈ X}.

3 Standard single valued neutrosophic metric space

In this section, one generalizes the notion of standard fuzzy metric space introduced by J.R.
Kider and Z.A. Hussain [4] to the setting of single valued neutrosophic sets.

Definition 3.1. [2] A quintuple (X, M, ∗, /, �) is said to be a standard single valued neutro-
sophic metric space if X is an arbitrary set, ∗, / are a continuous t−norms, � is a t−conorm
and M is a continuous single valued neutrosophic set on X2 satisfying the following condi-
tions:

(i) µM(x, y) > 0, σM(x, y) > 0 and νM(x, y) < 1 for all x, y ∈ X,

(ii) µM(x, y) = 1, σM(x, y) = 1 and νM(x, y) = 0 if and only if x = y,

(iii) µM(x, y) = µM(y, x), σM(x, y) = σM(y, x) and νM(x, y) = νM(y, x) for all x, y ∈ X,

(iv) µM(x, z) ≥ µM(x, y) ∗ µM(y, z), σM(x, z) ≥ σM(x, y) / σM(y, z) and νM(x, z) ≤ νM(x, y) �
νM(y, z) for all x, y, z ∈ X.

The functions µM(x, y), σM(x, y) and νM(x, y) denote the degree of nearness, the degree of
neutralness and the degree of non-nearness between x and y, respectively.

Example 3.2. Let (X, d) be an ordinary metric space. Define the t-norms x ∗ y = min{x, y}, x /
y = min{x, y} and the t-conorm x � y = max{x, y}, for all x, y ∈ [0, 1]. Define the single valued
neutrosophic set M on X2 as:
µM(x, y) = 1

1+d(x,y) , σM(x, y) = 1 + d(x, y), νM(x, y) = d(x,y)
1+d(x,y) .

Then, (X, M, ∗, /, �) is a standard single valued neutrosophic metric space.

Next, one introduces the standard single valued neutrosophic distance between an element
and a subset of X and the standard single valued neutrosophic distance between two subsets
of X.

Definition 3.3. Let (X, M, ∗, /, �) be a standard single valued neutrosophic metric space. For
x ∈ X and A, B are a subsets of X. Then

(i) the standard single valued neutrosophic distance between x and A is defined as

µM(x, A) = in f {µM(x, y) | y ∈ A}, σM(x, A) = in f {σM(x, y) | y ∈ A},

and νM(x, A) = sup{νM(x, y) | y ∈ A},
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(ii) the standard single valued neutrosophic distance between A and B is defined as

µM(A, B) = in f {µM(x, y) | x ∈ A, y ∈ B}, σM(A, B) = in f {σM(x, y) | x ∈ A, y ∈ B},

and νM(A, B) = sup{νM(x, y) | x ∈ A, y ∈ B}.

Definition 3.4. Let (X, M, ∗, /, �) be a standard single valued neutrosophic metric space. For
x ∈ X and r ∈]0, 1[, the open ball B(x, r) with radius r and center x is defined by

B(x, r) = {y ∈ X | µM(x, y) > 1− r, σM(x, y) > 1− r and νM(x, y) < r}.

Definition 3.5. Let (X, M, ∗, /, �) be a standard single valued neutrosophic metric space, a
subset A of X is said to be an open set (OS, for short) if for any x ∈ A there exists r ∈]0, 1[
such that B(x, r) ⊆ A. The complement of an open set is called a closed set (CS, for short) in
X.

Definition 3.6. Let (X, M, ∗, /, �) be a standard single valued neutrosophic metric space, and
A ⊆ X a subset. One defines the interior of A to be the set int(A) = {a ∈ A | B(x, r) ⊆ A |
r ∈]0, 1[}.

Theorem 3.7. Let (X, M, ∗, /, �) be a standard single valued neutrosophic metric space, and A ⊆ X
a subset. Then int(A) is open and is the largest open set of X inside of A.

Proof. Firstly, one shows that int(A) is open. By its definition if x ∈ int(A) then B(x, rx) ⊆ A,
rx ∈]0, 1[. But since B(x, rx) is itself an open set, one sees that any y ∈ B(x, rx) has some
B(y, ry) ⊆ B(x, rx) ⊆ A, rx ∈]0, 1[, which forces y ∈ int(A). That is, one has shown B(x, rx) ⊆
int(A), whence int(A) is open. If U ⊆ A is an open set in X, then for each u ∈ U there is
ru ∈]0, 1[ such that B(u, ru) ⊆ U, whence B(u, ru) ⊆ A, so u ∈ int(A). This is true for all
u ∈ U, so U ⊆ int(A). �

Corollary 3.8. A subset A in a standard single valued neutrosophic metric space X is open if and only
if A = int(A).

Definition 3.9. Let (X, M, ∗, /, �) be a standard single valued neutrosophic metric space. Then,

(i) a sequence (xn) in X is said to be convergent to a point x ∈ X (i.e., limn→∞ xn = x) if,

lim
n→∞

µM(xn, x) = 1, lim
n→∞

σM(xn, x) = 1 and lim
n→∞

νM(xn, x) = 0,

(ii) a sequence (xn) in X is said to be Cauchy sequence if for each k > 0,

lim
n→∞

µM(xn+k, xn) = 1, lim
n→∞

σM(xn+k, xn) = 1 and lim
n→∞

νM(xn+k, xn) = 0.

Definition 3.10. Let (X, M, ∗, /, �) be a standard single valued neutrosophic metric space.
Then

(i) if every Cauchy sequence is convergent, then X is said to be complete.

(ii) X is said to be compact if every sequence contains a convergent subsequence.
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3.1 Properties of standard single valued neutrosophic metric space

In this section, one investigates some properties of standard single valued neutrosophic metric
space.

Proposition 3.11. Every open ball in a standard single valued neutrosophic metric space (X, M, ∗, /, �)
is an open set.

Proof. Let B(x, r) be an open ball with radius r and center x, where r ∈]0, 1[ and x ∈ X.
Suppose that y ∈ B(x, r), this implies that

µM(x, y) > 1− r, σM(x, y) > 1− r and νM(x, y) < r.

Let r0 = µM(x, y). Then, there exist s ∈]0, 1[ such that r0 > 1− s > 1− r. Now, for a given r0

and s such that r0 > 1− s. Then, there exist r1, r2, r3 ∈]0, 1[ such that

r0 ∗ r1 ≥ 1− s, r0 / r2 ≥ 1− s and (1− r0) � (1− r3) ≤ s.

Next, if one puts r4 = max{r1, r2, r3} and considers the open ball B(y, 1− r4), then from the
above, one can show that B(y, 1− r4) ⊂ B(x, r) as follows:
Let z ∈ B(y, 1− r4). Then, µM(y, z) > r4, σM(y, z) > r4 and νM(y, z) < 1− r4. Furthermore,
one obtains

µM(x, z) ≥ µM(x, y) ∗ µM(y, z) ≥ r0 ∗ r4 ≥ r0 ∗ r1 ≥ 1− s > 1− r,

σM(x, z) ≥ σM(x, y) / σM(y, z) ≥ r0 / r4 ≥ r0 / r2 ≥ 1− s > 1− r

and νM(x, z) ≤ νM(x, y) � νM(y, z) ≤ (1− r0) � (1− r4) ≤ (1− r0) � (1− r3) ≤ s < r.

It follows that z ∈ B(x, r), and hence B(y, 1− r4) ⊂ B(x, r). According to Definition 3.5, it
holds that B(x, r) is an open set. �

Proposition 3.12. Let B(x, r1) and B(x, r2) be two open balls with the same center x in a standard
fuzzy metric space (X, M, ∗, /, �). Then, either B(x, r1) ⊆ B(x, r2) or B(x, r2) ⊆ B(x, r1) where
r1, r2 ∈]0, 1[.

Proof. Let x ∈ X and r1, r2 ∈]0, 1[. If r1 = r2, then B(x, r1) = B(x, r2), hence the result trivially
holds. Next, one assumes that r1 , r2. Then, one can distinguish two cases: r1 < r2 and
r2 > r1.

(i) If r1 < r2 and suppose that y ∈ B(x, r1), then µM(x, y) > 1 − r1, σM(x, y) > 1 −
r1 and νM(x, y) < r1, which implies that µM(x, y) > 1− r2, σM(x, y) > 1− r2 and νM(x, y) <
r2. Therefore, y ∈ B(x, r2), and hence B(x, r1) ⊆ B(x, r2).

(ii) If r1 > r2, then by applying a similar reasoning, one gets B(x, r2) ⊆ B(x, r1).

�

Theorem 3.13. Let (X, M, ∗, /, �) be a standard single valued neutrosophic metric space. Then, it
holds that the set

τM = {A ⊆ X | x ∈ A if and only if there exists r ∈]0, 1[ such that B(x, r) ⊆ A}

is a topology on X called the topology induced by the single valued neutrosophic set M.
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4 Standard single valued neutrosophic continuous mappings

In this section, one will study some interesting properties of continuity in standard single
valued neutrosophic metric spaces. First, one introduces the notion of continuous mapping
and uniformly continuous mapping in a standard single valued neutrosophic metric space.

Definition 4.1. Let (X, M, ∗, /, �) and (Y, M′, ∗, /, �) be two SSVN-metric spaces. A function
f : X −→ Y is said to be single valued neutrosophic continuous at a ∈ X, if for every r ∈]0, 1[,
there exists δ ∈]0, 1[ such that

µM′( f (x), f (a)) > 1− r, σM′( f (x), f (a)) > 1− r and νM′( f (x), f (a)) < r ,

whenever µM(x, a) > 1− δ, σM(x, a) > 1− δ and νM(x, a) < δ .

There is another approach to define the continuous mapping in single valued neutrosophic
metric space.

Definition 4.2. Let (X, M, ∗, /, �) and (Y, M′, ∗, /, �) be two SSVN-metric spaces. A function
f : X −→ Y is said to be single valued neutrosophic continuous at a ∈ X, if and only if
whenever a sequence (xn) in X converge to a, the sequence ( f (xn)) converges to f (a).

Proposition 4.3. Let (X, M, ∗, /, �) and (Y, M′, ∗, /, �) be two SSVN-metric spaces. A function
f : X −→ Y is said to be single valued neutrosophic continuous at a ∈ X, if and only if for every
0 < ε < 1, there exists 0 < δ < 1 such that B(a, δ) ⊆ f−1(B( f (a), ε)), where B(a, δ) denotes the
open ball of radius δ with center a.

Proof. The mapping f : X −→ Y is continuous at a ∈ X if and only if for every ε ∈]0, 1[, there
exists δ ∈]0, 1[ such that

µM′( f (x), f (a)) > 1− ε, σM′( f (x), f (a)) > 1− ε and νM′( f (x), f (a)) < ε ,

whenever µM(x, a) > 1− δ, σM(x, a) > 1− δ and νM(x, a) < δ .

i.e x ∈ B(a, δ) implies f (x) ∈ B( f (a), ε) or f (B(a, δ)) ⊆ B( f (a), ε)

This is equivalent to the condition

B(a, δ) ⊆ f−1(B( f (a), ε)).

�

Theorem 4.4. Let (X, M, ∗, /, �) and (Y, M′, ∗, /, �) be two SSVN-metric spaces. A function f :
X −→ Y is said to be single valued neutrosophic continuous on X, if and only if f−1(G) is open in X
for all open subset G of Y.

Proof. Suppose f is a single valued neutrosophic continuous on X and let G be an open subset
of Y.
One has to show that f−1(G) is open in X. Since ∅ and X are open, one may suppose that
f−1(G) , ∅ and f−1(G) , X. Let x ∈ f−1(G). Then, f (x) ∈ G. Since G is open, there exists
0 < ε < 1 such that B( f (x), ε) ⊆ G. Since f is a single valued neutrosophic continuous at x,
by Proposition 4.3 for this ε there exists δ ∈]0, 1[ such that B(x, δ) ⊆ f−1(B( f (x), ε)) ⊆ f−1(G)

Thus, every point x of f−1(G) is an interior point, and so f−1(G) is open in X. Suppose,
conversely, that f−1(G) is open in X for all open subsets G of Y. Let x ∈ X for each 0 < ε < 1,
the set B( f (x), ε) is open and so f−1(B( f (x), ε)) is open in X. Since x ∈ f−1(B( f (x), ε)) it
follows that there exists 0 < δ < 1 such that B(x, δ) ⊆ f−1(B( f (x), ε)). By Proposition 4.3 it
follows that f is continuous of x. �
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Corollary 4.5. Let (X, M, ∗, /, �) and (Y, M′, ∗, /, �) be two SSVN-metric spaces. A function f :
X −→ Y is said to be single valued neutrosophic continuous on X, if and only if f−1(G) is closed in
X for all closed subset F of Y.

Theorem 4.6. Let (X, M, ∗, /, �), (Y, M′, ∗, /, �), (Z, M′′, ∗, /, �) be three SSVN-metric spaces and
let f : X −→ Y and g : Y −→ Z be a continuous mappings, then the composition g ◦ f is a continuous
mapping of X into Z.

Proof. Let G be open subset of Z. By Theorem 4.4, g−1(G) is an open subset of Y and another
application of the same theorem shows that f−1(g−1(G)) is an open subset of X. Since (g ◦
f )−1(G) = f−1(g−1(G)), it follows from the same theorem again that g ◦ f is continuous . �

Definition 4.7. Let (X, M, ∗, /, �) and (Y, M′, ∗, /, �) be two SSVN-metric spaces. A function
f : X −→ Y is said to be single valued neutrosophic uniformly continuous on X, if for every
r ∈]0, 1[, there exists δ ∈]0, 1[ such that

µM′( f (x1), f (x2)) > 1− r, σM′( f (x1), f (x2)) > 1− r and νM′( f (x1), f (x2)) < r ,

whenever µM(x1, x2) > 1− δ, σM(x1, x2) > 1− δ and νM(x1, x2) < δ .

Theorem 4.8. Let f : (X, M, ∗, /, �) −→ (Y, M′, ∗, /, �) to be a one-to-one and uniformly continuous.
If f−1 is a single valued neutrosophic continuous and Y is complete, then X is complete.

Proof. Suppose that (xn) is a Cauchy sequence and let the sequence yn = f (xn). One shows
that (yn) is a Cauchy sequence. Since (xn) is a Cauchy sequence, it follows that

µM(x1, x2) > 1− δ, σM(x1, x2) > 1− δ and νM(x1, x2) < δ ,

for any δ ∈]0, 1[. This implies that

µM′( f (x1), f (x2)) > 1− r, σM′( f (x1), f (x2)) > 1− r and νM′( f (x1), f (x2)) < r ,

for any r ∈]0, 1[ and, there exists k ∈N such that m, n > k imply that

µM(xn, xm) > 1− δ, σM(xn, xm) > 1− δ and νM(xn, xm) < δ .

It follows that for m, n > k

µM′(yn, ym) > 1− r, σM′(yn, ym) > 1− r and νM′(yn, ym) < r .

Hence, (yn) is Cauchy sequence which implies that there exists a subsequence (ynk) such that
ynk converge to y, where y ∈ Y. Since f−1 is a single valued neutrosophic continuous mapping,
it follows that xnk = f−1(ynk) converges to f−1(y) = x. One concludes that X is complete. �

5 Conclusion

In this paper, we have studied the notions of continuous mapping and uniformly continuous
mapping on standard single valued neutrosophic metric spaces, with their characterizations
as interesting topological properties. Due to the usefulness of these notions, we think it makes
sense to study these notions for other types of structure. Future efforts will be directed to the
type of metric spaces with respect to SVN-sets.
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Abstract. In this work, we study a nonlinear inverse problem for an elliptic partial dif-
ferential equation known as the Calderón problem or the inverse conductivity problem.
We give a quick survey on the reconstruction question of conductivity from measure-
ments on the boundary, by covering the main currently known results regarding the
isotropic problem with full data in two and higher dimensions. We present Nachman’s
reconstruction procedure and summarize the theoretical progress of the technique to
more recent results in the field. An open problem of significant interest is proposed to
check whether extending the method for Lipschitz conductivities is possible.

Keywords: Calderón problem, inverse conductivity problem, Dirichlet-to-Neumann
map, complex geometrical optics solutions, ∂̄-method, boundary integral equation.
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1 Introduction

The present paper aims to summarize some reconstruction results from boundary measure-
ments for less regular conductivities in the inverse conductivity problem, which has been
developed for over 30 years and provides references for further research and practical applica-
tions on the topic. The Calderón problem [15] asks to recover a conductivity of a domain from
measurements that are taken on the boundary. For a formal definition, let Ω ⊂ Rn, n ≥ 2 be
a bounded domain with sufficiently smooth boundary ∂Ω, and let γ be a positive real-valued
function representing the electrical conductivity of Ω such that for almost every x ∈ Ω and
for a constant c0 > 0, the condition

γ(x) ≥ c0, (1.1)

is satisfied. The application of a voltage ψ ∈ H1/2(∂Ω) on the boundary induces an electrical
potential w ∈ H1(Ω) in the interior of Ω, where w is the unique weak solution of the following
elliptic boundary value problem {

∇ · γ∇w = 0 in Ω,
w = ψ on ∂Ω.

(1.2)
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In this case, the Dirichlet-to-Neumann map (DN map) relating the boundary voltage ψ

(Dirichlet data) to the flux at the boundary γ ∂w
∂ν (Neumann data) is defined as follows

Λγ : H1/2(∂Ω)→ H−1/2(∂Ω),

ψ 7→ Λγ(ψ) = γ
∂w
∂ν

∣∣∣∣
∂Ω

,

where ∂
∂ν is the outward normal derivative at ∂Ω.

In this paper, we consider the Calderón problem of reconstructing a conductivity from
measurements on the boundary. Since the motivation to reconstruct a conductivity comes
from its uniqueness, we should first ask if it is possible to determine γ from the knowledge of
Λγ, i.e., whether the map γ 7→ Λγ is injective? In 1980, Alberto Calderón, who proposed the
problem, gave a positive answer. He proved in his pioneer paper [15] that for γ a perturbation
of the identity, the injectivity of the linearized inverse problem holds. For n ≥ 3, Sylvester
and Uhlmann [42] were the first to show uniqueness for C2 conductivities. They reduced
the problem to a similar one for a Schrödinger equation. This reduction is based on the
well-known Liouville transformation: if z is a weak solution of the conductivity equation
∇ · γ∇z = 0, then w = γ1/2z is a solution to the Schrödinger equation (−∆ + q)w = 0,
where the potential q = γ−1/2∆γ1/2. Under the standard assumption that 0 is not a Dirichlet
eigenvalue for the Schrödinger equation, and for q ∈ L∞(Ω), ψ ∈ H1/2(∂Ω), they considered
the following Dirichlet problem {

−∆w + qw = 0 in Ω,
w = ψ on ∂Ω.

(1.3)

The DN map associated with q is well-defined from H1/2(∂Ω) into H−1/2(∂Ω) by ψ 7→
Λq(ψ) =

∂w
∂ν

∣∣∣
∂Ω

. The idea of Sylvester and Uhlmann was to look for special solutions w(x, ζ), ζ ∈
Cn, ζ · ζ = 0 satisfying (−∆ + q)w = 0, which are asymptotically exponential, i.e., w ∼ eiζ.x

when |ζ| → ∞. The functions w(x, ζ) = eiζ.x(1 + yζ(x)) are called complex geometrical optics
solutions (CGOs), where yζ(x) ∈ H1(Ω) is a correction term that is needed to transit from an
approximate solution to the exact one by taking |ζ| → ∞. Their result inspired many authors
to find the lowest regularity condition on the conductivity under which uniqueness holds.
More recent uniqueness results, and the used techniques are listed in table 1.1.

Table 1.1: Recent uniqueness results for n ≥ 3.

n γ Techniques Ref
≥ 3 W3/2,2n+ Approximation argument [14]
≥ 3 C1, W1,∞ with ||∇ log γ||L∞ small Bs, averaging argument [23]
≥ 3 W1,∞ Bourgain’s spaces (Bs) [16]

3 H3/2+ Standard Sobolev spaces [36]
3,4 W1,n Bs, Lp harmonic analysis [22]
5,6 W1+(1−θ)(1/2−2/n),n/(1−θ), θ ∈ [0, 1) Bs, Lp harmonic analysis [22]
5 W41/40+,5 Bilinear estimate [24]
6 W11/10+,6 Bilinear estimate [24]

≥ 5 W1+ n−5
2p +,p, p ∈ [n, ∞) Bilinear estimate [39]
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The observation of the table makes us wonder how much it would be interesting to check
whether it is possible to prove Brown’s conjecture [11], which affirms that in three and higher
dimensions γ ∈ W1,n is the minimum possible regularity for which uniqueness holds. Notice
that the approaches used in [22, 24, 36] are not useful for reconstructing γ, because the proofs
there are not constructive, meaning that they did not give a procedure to recover γ from Λγ.

The two-dimensional problem is also of significant interest but differs mainly from the
higher dimensional one so that different techniques are used to address this case. Nachman
[33] was the first who proved uniqueness for γ ∈W2,d, d > 1 in the plane. This last regularity
assumption was relaxed by Brown-Uhlmann [12] to γ ∈ W1,2+, and by Astala-Päivärinta [8]
to γ ∈ L∞.

Once uniqueness holds, one can be interested in the reconstruction problem. In practice,
Nachman’s reconstruction procedure was widely applied in the implementation of algorithms
[40]. For example, in medical imaging technology, the electrical impedance tomography (EIT)
with several applications, including the detection of breast cancer and pulmonary imaging.
See the review papers [11, 25] for more detailed arguments on this technique.

While the current paper deals mainly with the entire data problem, we note that the
partial data problem is subject to huge advances. The partial data type problem aims to
reduce as much as possible the part of the boundary, where measurements are taken, and
excitations on the studied body are imposed because, from a realistic view, it is not practical
to consider measurements on the whole boundary of some domain. We refer the reader to
the excellent survey paper [26] by Kenig and Salo on the recent progress in this problem.
For the reconstruction results with partial data, we give further references [3, 5, 35]. When
γ depends on direction, we are in the presence of the anisotropic Calderón problem. In
the plane, uniqueness was shown for L∞ anisotropic conductivities in [7]. For n ≥ 3, this
problem is also called Calderón’s inverse problem on Riemannian manifolds, and as Lassas
and Uhlmann pointed out in [30], this is a geometrical problem that has up to now remained
open.

We aim to offer the interested reader a short introduction to the reconstruction problem.
We hope that this work could inspire a different way of proposing a method of reconstructing
the conductivity. We have not attempted to be exhaustive in this introduction. In particular,
we have neglected stability and numerical results and closely related inverse problems. As
the research field on the Calderón problem is too broad, we refer the reader to the review
works [4, 9, 17, 25, 46] on the general problem.

The rest of this article is organized in the following way: the applied notation and back-
ground knowledge are summarized in Section 2. In Section 3, we give the precise statements
of the known reconstruction results. Section 4 discusses the proof strategy. Section 5 contains
an open problem.

2 Preliminaries

Throughout this article

• Ω denotes a bounded open set of Rn with smooth boundary ∂Ω.

• n ≥ 2 denotes the space dimension.
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• q : Ω→ R denotes an electrical potential.

• dS denotes the surface on ∂Ω.

• S(Rn) denotes Schwartz space.

• S ′(Rn) denotes the space of tempered distributions.

• 〈, 〉 denotes the dual pairing between H1/2(∂Ω) and H−1/2(∂Ω).

• D denotes the unit disc in C.

• BR(0) denotes the closed ball with center 0 and radius R > 0.

• a . b denotes that it exists a constant c > 0 such that a ≤ cb.

2.1 Fourier transform and function spaces

For ξ ∈ Rn, the applied notation for the Fourier transform is

ŵ(ξ) =
∫

Rn
e−iξ.xw(x)dx.

The inverse Fourier transform is noted by

w̌(x) =
1

(2π)n

∫
Rn

eiξ.xw(ξ)dξ.

For s ∈ R, we define Sobolev spaces Hs(Rn) via Fourier transform as follows:

Hs(Rn) = {w ∈ S ′(Rn) : 〈ξ〉sŵ ∈ L2(Rn)},
where 〈ξ〉 = (|ξ|2 + 1)1/2.
The associated norm is
‖w‖Hs(Rn) = ‖〈ξ〉sŵ‖L2(Rn).

Recalling the Schrödinger equation from the problem (1.3), substituting with w(x, ζ) = eiζ.x(1+
yζ(x)), we deduce an equivalent equation for yζ , precisely

4ζyζ = (∆ + 2iζ · ∇)yζ = q(1 + yζ) in Ω.

The right inverse of the differential operator 4ζ is defined by

4̂−1
ζ f (ξ) = pζ(ξ)

−1 f̂ (ξ). (2.1)

with symbol
pζ(ξ) = −|ξ|2 + 2iζ · ξ.

Using this symbol, we can define the space Ẋb
ζ with the associated norm

||w||Ẋb
ζ
= |||pζ(ξ)|bŵ(ξ)||L2 ,

and the inhomogeneous spaces Xb
ζ with the associated norm

||w||Xb
ζ
= ||(|ζ|+ |pζ(ξ)|)bŵ(ξ)||L2 .

In Section 5, we will only need to use the exponent b = ±1/2. Notice that those two spaces
were firstly considered by Haberman and Tataru [23] in the spirit of Bourgain’s spaces, see
[10, 45].
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2.2 DN map and integral identity

From the variational formulation of the problem (1.2), it follows the following Alessandrini
identity [2].

〈Λγψ, φ〉 =
〈

γ
∂w
∂ν

, φ

〉
=
∫

Ω
γ∇w∇zdx ∀ψ, φ ∈ H1/2(∂Ω),

where z ∈ H1(Ω), z
∣∣
∂Ω = φ.

By recalling from the introduction the DN map Λq associated with (1.3), we can give
another useful identity when q = γ−1/2∆γ1/2. It is easy to check that the DN map Λq can be
obtained from the DN map Λγ, where the explicit expression relating those two maps is given
by

Λq f = γ−1/2Λγ(γ
−1/2 f ) +

1
2

γ−1 ∂γ

∂ν
f
∣∣∣∣
∂Ω

. (2.2)

One other important relation is the following integral identity that relates boundary measure-
ments with interior potentials.

〈
(Λq1 −Λq2)w1

∣∣
∂Ω, w2

∣∣
∂Ω

〉
=
∫

Ω
(q1 − q2)w1w2 dx, (2.3)

for q ∈ L∞(Ω) and wj ∈ H1 uniquely solve −∆wj + qjwj = 0, for j = 1, 2.

2.3 Faddeev’s Green’s function and layer operator

While the equation (2.1) implicitly gives the right inverse Gζ of 4ζ , the following explicit
functions

gζ(x) =
1

(2π)n

∫
Rn

eiξ.x

pζ(ξ)
dξ, Gζ(x) = eiζ.xgζ(x), (2.4)

are the Faddeev’s Green’s functions for (∆ + 2iζ.∇) and the Laplacian, respectively.
Now, we introduce some useful operators, which will be needed later in Section 4. Using

the family Gζ of Green’s functions for x ∈ Rn\∂Ω, we define the following layer potentials.
Single layer potential:

Sζ f (x) =
∫

∂Ω
Gζ(x, y) f (y)dS(y). (2.5)

Double layer potential:

Dζ f (x) =
∫

∂Ω

∂Gζ(x, y)
∂ν(y)

f (y)dS(y).

We define also for x ∈ ∂Ω, the boundary double layer potential:

Bζ f (x) = p.v.
∫

∂Ω

∂Gζ(x, y)
∂ν(y)

f (y)dS(y). (2.6)
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3 Reconstruction results

Throughout this section, we try to give precise statements of the known reconstruction results.
We will split the section into two subsections, depending on the study domain dimension.
Notice that the used approach for the two-dimensional problem, which is essentially based
on complex analysis, is quite different from the higher-dimensional problem. Thus, we first
present the known reconstruction results in the plane.

3.1 Reconstruction in two dimensions

For the two-dimensional problem, Novikov and Nachman were the first to answer the recon-
struction question in [38] and [33]. Nachman’s result is presented as follows:

Theorem 3.1. [33] Let Ω ⊂ R2 be an open, bounded, smooth domain, and let γ ∈ W2,p(Ω), p > 1.
Then there is a procedure to reconstruct γ uniquely from Λγ.

Inspired by the uniqueness proof of Brown and Uhlmann [12], Knudsen and Tamasan [28]
applied the ∂̄-method to produce a reconstruction algorithm for γ ∈ W1,p, p > 2. Their result
is considered as a sharp improvement over the last one due to Nachman.

Theorem 3.2. [28] Let Ω ⊂ R2 be a bounded, smooth domain, and let 0 < ς < 1 with γ ∈
W1+ς,p(Ω), p > 2 satisfying (1.1). Then γ can be reconstructed on Ω from the knowledge of Λγ.

In 2018 Lytle, Perry, and Siltanen [31] proved that Nachman’s reconstruction method still
holds for L∞ conductivities, which are 1 in a neighborhood of the boundary. Here we present
their main Theorem, and further details on their work are given in Section 4.

Theorem 3.3. [31] Let γ ∈ L∞(D) satisfying (1.1), and suppose that the condition

there is a x0 ∈ (0, 1)such that γ = 1 for |x| ≥ x0, (3.1)

holds. Then, for each ζ ∈ C, there exists a unique w|∂D ∈ H1/2(∂D) such that

w|∂D = eiζ.x|∂D − Sζ(Λγ −Λ1)w|∂D. (3.2)

By abuse of notation, the map Λ1 = Λ0 is the DN map for harmonic functions on D that
correspond to q = 0 and γ = 1.

3.2 Reconstruction in higher dimensions

In 1988 for higher dimensions, Nachman [34] and Novikov [37] were also the first who pro-
vided a constructive procedure to recover γ ∈ C1,1 from the knowledge of Λγ.

Theorem 3.4. [34] Let Ω ⊂ Rn, n ≥ 3 be a bounded domain with a C1,1 boundary, and let γ ∈
C1,1(Ω̄) satisfying (1.1). Then there is a procedure to reconstruct γ uniquely from Λγ.

Novikov [37] has independently shown a similar result to the previous one given by Nach-
man. He was the first who introduced the key ingredient of the boundary integral equation,
which will be explained later in the next section.

Based on the uniqueness result of Haberman and Tataru [23], Nachman’s procedure was
followed by García and Zhang in [20] to reconstruct C1, or Lipschitz conductivities with
|∇ log γ| sufficiently small.
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Theorem 3.5. [20] Let Ω be a bounded Lipschitz domain on Rn, n ≥ 3, and let γ be a strictly positive
real-valued function on Ω satisfying (1.1).

1. γ ∈ C1(Ω̄).

2. γ ∈ Lip(Ω), such that |∇ log γ(x)| < δΩ,n with δΩ,n a constant.

If 1 or 2 is satisfied, then γ can be reconstructed on Ω from the knowledge of Λγ.

In 2020, Tarikere extended the uniqueness result of Brown and Torres [14] to prove the
validity of Nachman’s method for W3/2,2n conductivities.

Theorem 3.6. [44] Let Ω be a bounded Lipschitz domain on Rn, n ≥ 3, and let γ ∈W3/2,2n(Ω) be a
strictly positive real-valued function on Ω satisfying (1.1) with γ ≡ 1 in a neighborhood of ∂Ω. Then
γ can be reconstructed from Λγ.

While all the previous results concern the full data problem, Nachman was also interested
in the reconstruction of the partial data type problem. Based on the well-known Carleman
estimate approach in [27], Nachman and Street obtained a reconstruction proof with partial
data measurements on a slightly overlapping partition of the boundary ∂Ω. The reader is
referred to ( [35], Theorem 1.3) for the precise result. Their result was recently approved by
Garde [21] to piecewise constant layered conductivities. Grade’s reconstruction method only
relies on the monotonicity principles of the local DN map, and therefore lends well to efficient
numerical implementation models.

4 Proof strategy

In the present section, we briefly review the proof of the reconstruction results described above
and the main theoretical tools used therein. The two-dimensional problem is quite different
from the higher dimensional case. For example, it is no longer over-determined. To show
that, we propose the following explanation. Since it is a linear operator from H1/2(∂Ω) to
H−1/2(∂Ω), the DN map Λγ can be expressed in terms of the Schwartz kernel K : ∂Ω× ∂Ω −→
R by

Λγ f (x) =
∫

∂Ω
K(x, y) f (y)dS(y). (4.1)

From one side, it is known that the dimension of ∂Ω is n − 1. Then, the kernel K is
a function of 2(n − 1) variables. On the other side, the conductivity γ, which we wish to
recover, is defined in an n-dimensional domain. Thus, for n = 2, the Calderón problem in the
plane is formally well-determined and fairly well-understood.
From (4.1), it is clear that for n ≥ 3, the inverse problem is formally over-determined since
the known data has more degree of freedom than the quantity γ, which we are trying to
recover. That means that sometimes (but certainly not always) the problem may be easier to
manipulate in higher dimensions.
The precedent motivates in some way that, to deal with the two-dimensional problem, we
need to invoke a different technique than the one used when n ≥ 3.



Review on Conductivity Reconstruction 55

4.1 Preliminary reductions

To simplify the problem, we use the following two types of reductions. On the one hand,
Nachman ( [33], Section 6) proceeds to a reduction of γ in a neighborhood of ∂Ω. His idea
was to reduce the Calderón problem to a problem having a constant γ ≡ 1 near ∂Ω, then to
extend γ outside the study domain Ω such that the initial regularity assumption is conserved.
Thus, solving the extended problem on the large domain means that the original problem on
Ω is implicitly solved.

The main idea behind this reduction is based on the following step of reconstructing the
boundary value of the unknown conductivity and its derivative from the DN map.

4.1.1 Reconstruction at the boundary

From identity (2.2), it is clear that to find the value of Λq, we need a procedure to recover
the values of γ and ∂γ

∂ν on the boundary ∂Ω from Λγ. Thus, we deduce the importance of
boundary determination, which depends on the regularity of both the domain boundary and
the conductivity itself. For the case of smooth conductivities in smooth domains, Kohn and
Vogelius [29] proved that Λγ determines γ and all its normal derivatives on the boundary.
More results and approaches to boundary determination of the conductivity were shown
in [1, 43]. In particular, Brown [13] proved that we could recover the boundary values of a
W1,1, or a C0 conductivity from the knowledge of Λγ.

In the appendix of [20], the gradient at the boundary of a C1 conductivity in a Lipschitz
domain was recovered by Brown in collaboration with García and Zhang. In all ways, this
boundary determination is based on testing the DN map against highly oscillatory functions
at the domain boundary.
On the other hand, we saw in the introduction that the conductivity problem (1.2) could be
reduced to the Schrödinger problem (1.3) by a well-known transformation under the condition
that the conductivities are sufficiently regular (which is the case here). The desired conclusion
behind those reductions is to possess a potential q having a compact support in Ω.

4.2 Nachman’s method

After reducing the inverse conductivity problem to the inverse problem for a Schrödinger
equation, the reconstruction method of Nachman could be decomposed into three steps. First,
we extend q to be 0 in R2 outside the study domain. The second step consists of computing
the scattering transform t of the Schrödinger equation associated with the extended potential q
from the given DN map. Finally, the ∂-method permits solving the scattering problem, which
is used to calculate the value of γ.
Below, we will give a discerption of the reconstruction process in the plane [33].
We identify R2 with the complex plane C. For q = γ−1/2∆γ1/2, Nachman used Faddeev’s [18]
CGOs in the problem (1.3) to get{

−∆w + qw = 0,
lim|x|→∞ e−iζ.xw(x, ζ)− 1 = 0.

(4.2)

We define the useful complex derivative operators ∂̄ and ∂ as follows:

∂̄ =
1
2
(

∂

∂x1
+ i

∂

∂x2
), ∂ =

1
2
(

∂

∂x1
− i

∂

∂x2
).
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By substituting with a(x, ζ) = e−iζ.xw(x, ζ) in (4.2), we get{
∂̄(∂ + ix)a = 1

4 qa,
lim|x|→∞ a = 1.

(4.3)

Then, one can use (4.3) to define the scattering transform t

t(ζ) =
∫

R2
bζ(x)q(x)a(x, ζ)dx, (4.4)

where bζ(x) = ei(ζ.x+ζ.x).
Nachman showed that the solutions a(x, ζ) solve{

∂̄ζ a = t(ζ)
4πζ b−ζ(x)ā,

lim|ζ|→∞ a = 1.
(4.5)

Since we know from the preceding subsection that the used reduction guarantees that q has a
compact support in Ω, then (4.3) and (4.4) can be reduced to the following boundary integral
equations, respectively.

w|∂Ω = eiζ.x|∂Ω − Sζ(Λq −Λ0)w|∂Ω. (4.6)

t(ζ) =
∫

∂Ω
eiζ̄.x̄(Λq −Λ0)w|∂Ω dS. (4.7)

Where Sζ is defined in (2.5). As was mentioned in Section 3, the boundary integral identity
(4.6) was developed for the first time by Novikov [37].
Finally, by giving the value of t from (4.7), we can solve (4.5) to recover the conductivity from
the identity

γ(x) = a(x, 0)2. (4.8)

In the plane, we recapitulate Nachman’s reconstruction method for γ ∈ W2,p in the following
four steps.

1. Solve (4.6) for w|∂Ω.

2. Calculate the value of t from (4.7).

3. Solve the ∂̄ζ-equation (4.5).

4. Recover γ from (4.8).

Remark 4.1. • The Knudsen-Tamasan result in Theorem 3.2 for a less regular γ was pro-
posed by following the uniqueness proof of Brown and Uhlmann [12], and by making
every step in their proof constructive.

• The reconstruction algorithm of Knudsen-Tamasan [28] is a generalization of the above-
summarized one, and the proof steps are almost the same. For other kinds of algorithms
based on a linearized or iterative schema, see [9, 17].
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4.3 Beltrami equation

The construction of CGOs viewed before relies on the available regularity assumption on γ.
Another construction that requires no smoothness on γ was introduced in [8] for γ ∈ L∞

strictly positive, using the Beltrami equation approach.
Next, we describe the analysis steps of the reconstruction process proposed by Lytle, Perry,
and Siltanen in Theorem 3.3.
Without loss of generality, we assume that the domain Ω is the unit disc D and γ = 1 in
a neighborhood of D. More precisely, we consider that condition (3.1) holds. The Beltrami
coefficient µ used by Astala and Päivärinta [8] is defined by

µ =
1− γ

1 + γ
,

satisfying |µ(x)| < 1, and having a compact support since that the conductivity is set to
be equal to one outside a compact set. Then, for any function w ∈ H1(D) that solves the
conductivity equation given in (1.2), there exists w̃ ∈ H1(D) a real-valued function named the
conjugate harmonic function of w such that the Beltrami equation

∂̄ẇ = µ∂ẇ (4.9)

has a solution ẇ = w + iw̃.
The key ingredient in the analysis in [31] is this last Beltrami equation (4.9), which admits
CGOs. Those CGOs can be used to define an associated scattering transform, which is iden-
tified as a natural analog of Nachman’s one (4.7). This transform remains well-defined under
the weaker regularity assumption µ ∈ L∞(Ω) by Theorem 4.2 from [8]. Theorem 3.3 combined
with Corollary 18.1.2 from [6] about the uniqueness of CGOs for the conductivity equation,
establish the unique solvability of the integral equation (3.2).
Notice that the followed strategy to prove Theorem 3.3 is to show the compactness of the
integral operator Tζ = Sζ(Λγ − Λ1) from H1/2(∂D) to H−1/2(∂D). Then, to prove that the
integral equation (3.2) is uniquely solvable, it suffices by Fredholm theory, to show that the
only vector υ ∈ H1/2(∂D) with Tζυ = −υ is the zero vector.
For more efficient algorithms for the computation of CGOs ẇ, and numerical examples, see
( [32], Chapter 14, page: 215-221). Interested readers are referred to ( [32], Chapter 15), and the
references therein for readings on the D-bar method, which is based on Nachman’s result [33].

4.4 Boundary integral equation

In the present subsection, we will describe more carefully each step in the reconstruction pro-
cedure in higher dimensions. For n ≥ 3, the valuable tool of CGOs, which was presented in
the introduction to show the uniqueness in Calderón problem in the work of Sylvester and
Uhlmann [42], was used later by Nachman in Theorem 3.4 and by Novikov in [37] indepen-
dently to reconstruct the conductivity γ. We will describe Nachman’s idea [34] as follows. As
it was already seen in subsection 4.1, we can give the boundary reconstruction of γ and ∂γ

∂ν

from the DN map. Then, if Λγ is knew, Λq is calculated from identity (2.2). Hence, the prob-
lem is reduced to the reconstruction of q from Λq. Once we have the value of q = γ−1/2∆γ1/2,
we can solve the following problem to deduce γ.{

−∆w + qw = 0 in Ω,
w = γ1/2 on ∂Ω.
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Now, let q1 = q, q2 = 0 in the integral identity (2.3). Then we get∫
Ω

qw1w2 dx =
∫

∂Ω
(Λq −Λ0)(w1

∣∣
∂Ω)w2

∣∣
∂Ω dS, (4.10)

where w1, w2 ∈ H1(Ω) solves −∆w1 + qw1 = 0, and −∆w2 = 0, respectively.
In the following, we use expression (4.10) and appropriate CGOs to reconstruct the Fourier
transform of q. We consider ξ ∈ Rn, ξ , 0, and we define the set B by B = {ζ j ∈ Cn : ζ j · ζ j =

0, |ζ1| = |ζ2| = h, ζ1 + ζ2 = ξ, j = 1, 2}. The application of the argument from [42] ensures
the existence of CGOs w1 = eiζ1.x(1 + yζ1) for −∆w1 + qw1 = 0, with the correction term yζ1

decaying to zero when |ζ1| → ∞. Furthermore, the appropriate choice of ζ2.ζ2 = 0 implies
that ∆eiζ2.x = 0.
By substituting in (4.10) and by using the decay property of yζ1 , we have

q̂(ξ) = lim
h→∞

∫
∂Ω

(Λq −Λ0)(w1
∣∣
∂Ω)e

iζ2.x∣∣
∂Ω dS. (4.11)

From (4.11), we deduce that the Fourier transform of q for ξ , 0 can be recovered from the
DN map if w1|∂Ω is knew. We know that q is compactly supported, then q̂(ξ) is continuous
so that q̂(0) can be determined by continuity [41]. Hence, q̂(ξ) is known as a tempered distri-
bution, and the potential q can be recovered in Rn by simply inverting the Fourier transform.
Therefore, it is a question to get the value of w1|∂Ω to recover q̂(ξ).
The aim now is to find a method to calculate w1

∣∣
∂Ω. The idea is to look at the exterior problem,

which means that we extend q to Rn to be q = 0 outside the study domain Ω. Since q = 0
in Rn\Ω̄, the equation (−∆ + q)w1 = 0 in Rn becomes −∆w1 = 0 in Rn\Ω̄. Therefore, the
function w1 is a solution to the following exterior problem.

−∆w1 = 0 in Rn\Ω̄,
w1|∂Ω = fζ ,

∂w1
∂ν |∂Ω = Λq fζ .

(4.12)

For a fixed R > R0 such that Ω ⊂ BR(0), it is known from [34] that if w1 satisfies the following
analog of Sommerfeld radiation condition

lim
R→∞

∫
|y|=R

(
Gζ(x, y)

∂(w1 − eiζ.x)

∂ν(y)
− (w1 − eiζ.x)

∂Gζ(x, y)
∂ν(y)

)
dS(y) = 0, (4.13)

then, by using Green’s formula in (4.12), we can show that the boundary value w1|∂Ω can
be characterized as the unique solution fζ of the following boundary integral equation of
Fredholm type.

eiζ.x − Sζ(Λq −Λ0) fζ = fζ on ∂Ω. (4.14)

As we notice that the operator on the left-hand side of the boundary integral equation (4.14),
depends on the DN map and other known quantities, we can recover the value of w1|∂Ω by
solving (4.14). Moreover, (4.14) is an inhomogeneous integral equation for fζ having a unique
solution fζ ∈ H3/2(∂Ω). By Fredholm alternative, the uniqueness of the solution follows from
the fact that the homogeneous equation

−Sζ(Λq −Λ0) fζ = fζ on ∂Ω,

only has the zero solution, which follows by its turn from the uniqueness of the CGOs.
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Remark 4.2. • Nachman derived the slight different type of boundary integral equation:

eiζ.x − (SζΛq − Bζ −
1
2

I) fζ = fζ on ∂Ω, (4.15)

where the operator Bζ is defined in (2.6). Since we can easily show that SζΛ0 = Bζ +
1
2 I,

it is clear that the expressions (4.15) and (4.14) are equivalent.

• Because it is complicated to check that the condition (4.13) is satisfied by w1, Nachman’s
idea was to construct from (4.15) CGOs to the Schrödinger equation (−∆ + q)w = 0 in
Rn, that automatically satisfy condition (4.13), then to prove that those CGOs coincide
with the ones constructed by Sylvester and Uhlmann [42].

Now, we turn to give the sketch of the proof of theorems 3.5 and 3.6. Mainly, the strategy
used there was to follow the discussed Nachman’s method for Theorem 3.4.

Due to the weak assumption regularity on γ in Theorem 3.5 (γ ∈ C1 or γ Lipschitz with
|∇ log γ(x)| < δΩ,n) and Theorem 3.6 (γ ∈ W3/2,2n), some changes are made in the above
steps. The proof outline consists of constructing CGOs to the conductivity equation or the
Schrödinger equation in Rn, respectively, from the boundary integral-equation on the bound-
ary. Then, to show that these solutions coincide with the ones constructed by Haberman-
Tataru [23] and Brown-Torres [14], respectively. Note that the reconstruction presentation
in [44] follows mainly the analysis and notations from ( [19], Chapter 4.7), which focuses on
reconstructing γ ∈ C2(Ω).
We know that by plugging w(x, ζ) = eiζ.x(1 + yζ(x)) in the Schrödinger equation, we get

(−∆− 2iζ · ∇)yζ(x) + q(x)yζ(x) = −q(x) in Rn. (4.16)

By convolving (4.16) with gζ which is defined in (2.4), we obtain the Lippmann-Schwinger-
Faddeev integral equation

(I + gζ ∗ q)yζ(x) = gζ ∗ q. (4.17)

The last equation (4.17) is equivalent to the following integral equation

w(x, ζ) +
∫

Rn
Gζ(x, y)q(y)w(y, ζ)dy = eiζ.x, (4.18)

where Gζ is defined in (2.4). It is clear that the combination of (2.3) and (4.18) gives (4.14) for
w. Moreover, the homogenous version of (4.18) is

w(x, ζ) =
∫

Rn
Gζ(x, y)q(y)w(y, ζ)dy. (4.19)

The analysis in [20] and [44] showed that the operator at the right-hand side of (4.19) is
a contraction, provided the corresponding CGOs are constructed for sufficiently large |ζ|.
Finally, the problem is reduced to a fixed point problem.

5 Open problem, conjecture, and discussion

In the precedent sections, some methods for conductivity reconstruction were reviewed. Those
methods were analyzed, compared, and their steps were summarized. The results show that
all the cited methods are in some way a generalization of Nachman’s (or Novikov’s) method.
Besides, those results can provide a reference to the reconstruction subject of the problem.
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Under the broad research field of Calderón’s problem, we wrote this note to motivate and
draw more attention to the reconstruction topic. Therefore, we hope that something might lie
beyond this paper. In this final section, we propose the following open question and discuss
plausibly research extensions that can be subject to new results in the reconstruction direction
of the problem.

Question. ( Reconstruction of Lipschitz conductivities) If Ω is a bounded Lipschitz domain on
Rn, n ≥ 3, γ ∈ Lip(Ω) a strictly positive real-valued function on Ω satisfying (1.1), with γ ≡ 1 in a
neighborhood of ∂Ω, show that γ can be reconstructed on Ω from the knowledge of Λγ.

Recently, Caro and Rogers [16] used Bourgain’s spaces to prove the uniqueness of Lips-
chitz conductivities in three and higher dimensions. Their result makes us wonder how much
it would be interesting to check whether it is possible to use this uniqueness proof to gener-
alize Nachman’s method to Lipschitz conductivities by taking off the smallness condition on
|∇ log γ| to improve the results of Theorem 3.5. The key ingredient in the uniqueness proof
in [16] for Lipschitz conductivities without a smallness condition is the following a priori
estimate:

||w||X1/2
ζ
. ||(−∆ + 2ζ · ∇+ q)w||X−1/2

ζ
,

for a function w ∈ S(Rn) with support in Ω, and the function spaces X±1/2
ζ were defined in

Section 2. From the last estimate and a standard functional analysis argument, it follows a
key bound on the potential q

||yζ ||X1/2
ζ (Ω) . ||q||X−1/2

ζ
,

for some corrector function yζ . The occurring complication is that the solutions here are local,
but in our case, we need to extend them in some way to Rn. Therefore, we conjecture that the
techniques used until now, which have been reviewed in this survey, have reached some sort
of limit. Thus, we can not follow the contraction mapping approach to apply the fixed point
argument used in the above methods. However, it is straightforward that this problem seems
more complicated and may require new ideas beyond the known techniques to overcome its
difficulties.
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Abstract. The fractional-order derivative of a non-constant periodic function is not pe-
riodic with the same period. Consequently, any time-invariant fractional-order systems
do not have a non-constant periodic solution. This property limits the applicability of
fractional derivatives and makes it unfavorable to model periodic real phenomena. This
article introduces a modification to the Caputo and Rieman-Liouville fractional-order
operators by fixing their memory length and varying the lower terminal. It is shown
that this modified definition of fractional derivative preserves the periodicity. There-
fore, periodic solutions can be expected in fractional-order systems in terms of the new
fractional derivative operator. To confirm this assertion, one investigates two examples,
one linear system for which one gives an exact periodic solution by its analytical ex-
pression and another nonlinear system for which one provides exact periodic solutions
using qualitative and numerical methods.

Keywords: Fractional-order derivative; sliding fixed memory length; periodic solution.
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1 Introduction

The history of fractional calculus goes back to the end of the 17th century when L’Hopital
asked Leibniz what meaning could be ascribed to Dn f if n were a fraction? Since that,
time-fractional calculus has drawn the attention of many famous mathematicians, such as
Euler, Laplace, Fourier, Abel, Liouville, Riemann, and Laurent [18]. The advantages of
fractional calculus have been described and pointed out in the last few decades by many
authors [8, 15–19]. It has been shown that the fractional-order models of realistic systems
are regularly more adequate than usually used integer-order models. Applications of these
fractional-order models spread in many fields, such as viscoelastic systems, dielectric polar-
ization, electrode-electrolyte polarization, electromagnetic waves, quantum evolution of com-
plex systems, and so on [6, 10, 11, 14, 20]. There are three definitions most frequently used
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for the general fractional differential operators. The first one is the Grünwald-Letnikov (GL)
fractional differential operator defined by the limit of a fractional-order backward difference
and has an advantage for numerical simulations. The second type is the Riemann-Liouville
(RL) definition; this operator played a pivotal role in developing the fractional calculus the-
ory. Using these two fractional differential operators in modeling real phenomena leads to
mathematical models with initial conditions expressed in terms of fractional derivatives that
do not have known physical interpretation. The third type is the Caputo derivative having the
advantage of dealing models with initial conditions expressed in terms of the field variables
and their integer-order derivatives, having clear physical interpretations [9]. Recently it has
been demonstrated that the fractional-order derivative of a non-constant periodic function is
not a periodic function with the same period [13, 22, 23] and in [5] the authors studied quasi-
periodic properties of fractional order integrals and derivatives of periodic functions. As a
consequence of the non-periodicity of the fractional derivative of a T−periodic function, the
time-invariant fractional-order systems do not have any non-constant exact periodic solution
unless the lower terminal of the derivative is ±∞ [12, 13,23], which is not realistic. This prop-
erty limits the applicability of the fractional derivative and makes it unfavorable for periodic
real phenomena. In [1], the authors have proposed a modification of the Grünwald-Letnikov
fractional differential operator, which consists of fixing the memory length and varying the
lower terminal of the derivative. They have demonstrated that the modified definition of
fractional derivative preserves the periodicity. The present paper extends this modification to
the Caputo and Rieman-Liouville fractional-order operators. Tow examples are investigated
to confirm that periodic solutions arise in fractional-order systems when the new fractional
derivative operator is used. One linear system for which one gives an exact periodic solution
defined by its analytical expression and another nonlinear system for which one provides an
exact periodic solution using both qualitative and numerical methods.

2 Fractional-Order Derivatives

As said above, the most usual definitions of fractional-order derivative are the Grünwald-
Letnikov, the Riemann-Liouville and the Caputo definitions [17]. For 0 < α < N, the α−th
order derivative of a function f (t) with respect to t and a terminal value a is given in the sense
of

• Grünwald-Letnikov by

GL
a Dα

t f (x) = lim
h→ 0

nh = x− a

h−α
n

∑
k=0

(−1)k
(

α

k

)
f (x− kh), (2.1)

where
(

α

k

)
= Γ(α+1)

k!Γ(α−k+1) .

• Riemann-Liouville by

RL
a Dα

t f (t) =
1

Γ(m− α)

dm

dtm (

t∫
a

(t− τ)m−α−1 f (τ)dτ). (2.2)
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• Caputo by

C
a Dα

t f (t) =
1

Γ(m− α)

t∫
a

(t− τ)m−α−1 f (m)(τ)dτ. (2.3)

In (2.2) and (2.3), m is the first integer greater than α, and Γ(.) is the Gamma function.
The following theorems reveal a remarkable property for the fractional derivatives based on
Caputo definition, Grünwald-Letnikov definition, Riemann-Liouville definition [22].

Theorem 2.1. Suppose that f (t) is a non constant periodic function with period T.
If f (t) is m-times differentiable, then the functions C

a Dα
t f (t), where 0 < α < N and m is the first

integer greater than α, cannot be a periodic functions with period T.

Theorem 2.2. Suppose that f (t) is (m-1)-times continuously differentiable and f (m)(t) is bounded. If
f (t) is a non-constant periodic function with period T, then the functions GL

a Dα
t f (t) and RL

a Dα
t f (t),

where 0 < α <N and m is the first integer greater than α, cannot be periodic functions with period T.

Example 2.3. Let f (t) = sin(t). One has

sin(t) =
∞

∑
p=0

(−1)p t2p+1

(2p + 1)!
.

Hence

RL
a Dα

t sin(t) = t1−αE2,2−α(−t2),

where 0 < α < 1 and Eα,β(t) is the generalized Mittag-Leffler function defined by

Eα,β(t) =
∞

∑
k=0

tk

Γ(αk + β)
.

Numerical simulations showed that t1−αE2,2−α(−t2) is not a periodic function where 0 < α <

1, even if α = 1 this function is the periodic function cos(t).

As a consequence of the above theorems, periodic solution cannot be expected in fractional-
order systems, under any circumstances [22, 23].

Corollary 2.4. A differential equation of fractional-order in the form

.
a Dα

t x(t) = f (x(t)),

where 0 < α <N, cannot have any non-constant smooth periodic solution.

This property highlights one of the basic differences between fractional-order derivative
and integer-order one, and it makes fractional-order systems unfavourable for a wide range
of real periodic phenomena. Therefore in this paper one overcomes this problem by imposing
a simple modification to both Riemann-Liouville and Caputo definitions.
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3 The Fractional-Order Derivative with Sliding Fixed Memory Length

one first recalls the Grünwald-Letnikov fractional-order derivative with fixed memory length
introduced in [1].

Definition 3.1. (The Grünwald-Letnikov fractional derivative with fixed memory length)
Let α ≥ 0, L > 0, m an integer such that m− 1 ≤ α < m and f an integrable function in the
interval [a− L, b]. The operator

MG

L
Dα

t defined by :

MG

L
Dα

t f (t) = lim
h→0

1
hα

L
h

∑
k=0

(−1)k Γ(α + 1)
k!Γ(α− k + 1)

f (t− kh), t ∈ [a, b], (3.1)

is called the Grünwald-Letnikov fractional derivative with sliding fixed memory length.

The following proposition gives an evaluation of the limit in the definition of Grünwald-
Letnikov fractional derivative with sliding fixed memory length.

Proposition 3.2. Under the assumptions of definition (3.1), if the function f is m-differentiable with
f (m) ∈ L1[a− L, b], then

MG

L Dα
t f (t) =

m−1

∑
k=0

f (k)(t− L)Lk−α

Γ(k− α + 1)
+

1
Γ(m− α)

t∫
t−L

(t− τ)m−α−1 f (m)(τ)dτ. (3.2)

It has been demonstrated that this modified fractional-order derivative possesses two im-
portant properties: the preservation of periodicity and the short memory, which considerably
reduces the cost of numerical computations. Furthermore, it has been proven that contrarily
to fractional autonomous systems defined using classical fractional derivative, the fractional
autonomous systems in terms of the modified fractional derivative can generate exact periodic
solutions.
In order to generalize this work, one introduces in this section a similar modification to both
Caputo fractional-order derivative and Riemann-Liouville fractional-order derivative as fol-
lows.

Definition 3.3. (The Caputo fractional derivative with sliding fixed memory length) Let α > 0,
L > 0, m an integer such that m = [α] + 1 and f ∈ Cm[a − L, b]. The Caputo fractional
derivative with sliding fixed memory length is defined by

MC
L Dα

t f (t) =
1

Γ(m− α)

t∫
t−L

(t− τ)m−α−1 f (m)(τ)dτ. (3.3)

Definition 3.4. (The Riemann-Liouville fractional derivative with sliding fixed memory length)
Let α ≥ 0, L > 0, m an integer such that m− 1 ≤ α < m and f is a continuous function in
[a− L, b],the Riemann-Liouville fractional derivative with sliding fixed memory length is de-
fined by

MRL

L Dα
t f (t) =

1
Γ(m− α)

dm

dtm

∫ t

t−L
(t− τ)m−α−1 f (τ)dτ, (3.4)

Remark 3.5. From (3.2) and (3.3) one gets

MC

LDα
t f (t) =

MG

LDα
t f (t)−

m−1

∑
k=0

f (k)(t− L)Lk−α

Γ(k− α + 1)
. (3.5)
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Proposition 3.6. Under the assumption that the function f (t) is m-times continuously differentiable

MRL

L Dα
t f (t) =

MG

L
Dα

t f (t)−
m−1

∑
k=0

f (k)(t− L)Lk−α

Γ(k− α + 1)
. (3.6)

Proof. By differentiation and performing repeatedly integration by parts, one has

MRL

L Dα
t f (t) =

1
Γ(m− α)

dm

dtm

∫ t

t−L
(t− τ)m−α−1 f (τ)dτ,

= − f (m−1)Lm−α−1(t− L)
Γ(m− α)

+
1

Γ(m− α− 1)
dm−1

dtm−1

∫ t

t−L
(t− τ)m−α−2 f (τ)dτ,

...

= −
m−1

∑
k=0

f (k)(t− L)Lk−α

Γ(k− α + 1)
+

1
Γ(−α)

∫ t

t−L
(t− τ)−α−1 f (τ)dτ,

setting I = 1
Γ(−α)

∫ t
t−L(t− τ)−α−1 f (τ)dτ, and performing successive integrations by parts

one obtains

I =
f (t− L)L−α

Γ(1− α)
+

1
Γ(1− α)

∫ t

t−L
(t− τ)−α f ′(τ)dτ,

=
f (t− L)L−α

Γ(1− α)
+

f ′(t− L)L1−α

Γ(2− α)
+

1
Γ(2− α)

∫ t

t−L
(t− τ)−α+1 f (2)(τ)dτ,

...

=
m−1

∑
k=0

f (k)(t− L)Lk−α

Γ(k− α + 1)
+

1
Γ(m− α)

∫ t

t−L
(t− τ)−α+m−1 f (m)(τ)dτ,

=
MG

L
Dα

t f (t).

Therefore
MRL

L Dα
t f (t) =

MG

L
Dα

t f (t)−
m−1

∑
k=0

f (k)(t− L)Lk−α

Γ(k− α + 1)
.

�

Remark 3.7. From (3.5) and (3.6) one has

MRL

L Dα
t f (t) =

MC

LDα
t f (t) =

MG

L
Dα

t f (t)−
m−1

∑
k=0

f (k)(t− L)Lk−α

Γ(k− α + 1)
. (3.7)

In the following parts, one denotes the operators of Caputo and Riemann-Liouville frac-
tional derivative with sliding fixed memory length by M

LDα
t .

3.1 Fractional derivative of some elementary functions

In order to highlight the amazing properties of the fractional derivative with sliding fixed
memory length one consider two elementary functions (the power and exponential functions),
for which one computes their new derivatives.
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3.1.1 New fractional derivative of the power function

Let f (t) = tn, n ∈N∗, α > 0, L > 0 and m is an integer such that m− 1 < α < m.
If n < m, then f (m)(t) = 0, substituting in (3.3) yields M

LDα
t (t

n) = 0.
If n ≥ m then by repeated integrations by parts of the relation (3.3) one obtains

M
LDα

t (t
n) =

n−m

∑
k=0

n!L−α+m+k(t− L)n−m−k

(n−m− k)!Γ(−α + m + k + 1)
. (3.8)

Remark 3.8. (Fractional derivative of a constant function)
If f is a constant function (i.e. f (t) = C for all t ∈ [a− L, b], and C any constant including zero)
then one has

M
LDα

t C = 0.

3.1.2 Fractional derivative of the exponential function

Let f (t) = et =
∞
∑

p=0

tp

p! , α > 0, L > 0 and m is an integer such that m− 1 < α < m.

One has
M
LDα

t et = M
LDα

t

∞

∑
p=0

tp

p!
=

∞

∑
p=0

1
p!

M
LDα

t tp.

From (3.8), one obtains that

M
LDα

t (e
t) =

∞

∑
p=0

p−m

∑
k=0

L−α+m+k(t− L)p−m−k

(p−m− k)!Γ(−α + m + 1 + k)
,

=
∞

∑
p=0

p−m

∑
k=0

L−α+m+k(t− L)p−m−k

(p−m− k)!Γ(k− α + m + 1)
,

=
∞

∑
p=0

p

∑
k=0

L−α+m+k(t− L)p−k

(p− k)!Γ(k− α + m + 1)
,

=
∞

∑
p=0

L−α+m(t− L)p

p!Γ(−α + m + 1)
+

∞

∑
p=0

L−α+m+1(t− L)p

p!Γ(−α + m + 2)
+ . . . ,

=

(
∞

∑
p=0

(t− L)p

p!Γ(−α + m + 1)

)(
∞

∑
k=0

L−α+m+k

Γ(−α + m + 1 + k)

)
,

= et−LL−α+m
∞

∑
k=0

Lk

Γ(−α + m + 1 + k)
,

= et−LLm−αE1,m+1−α(L).

3.2 Derivative of a periodic function

The main result of this paper is stated in the following theorem.

Theorem 3.9. Let α > 0, L > 0 and m an integer such that m− 1 < α < m and f ∈ Cm[a− L, b].
If f is a periodic function with period T, Then M

LDα
t f is a periodic function with the same period T.

Proof. Suppose that f is a periodic function with a period T. The aim of this proof is to
demonstrate that the function g(t) = M

LDα
t f is a periodic function with the same period T (i.e.
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g(t + T) = g(t)).
One has

g(t + T) = M
LDα

t+T f (t + T) =
1

Γ(m− α)

∫ t+T

t+T−L
(t + T − τ)m−α−1 f (m)(τ + T)dτ,

=
1

Γ(m− α)

∫ t

t−L
(t− s)m−α−1 f (m)(s + 2T)ds,

=
1

Γ(m− α)

∫ t

t−L
(t− s)m−α−1 f (m)(s)ds,

= M
LDα

t f (t) = g(t).

Thus, M
LDα

t f is a periodic function with the same period T.
�

3.2.1 Fractional derivative of some fundamental periodic functions

Note first that the functions MG
L Dα

t sin(t) and MG
L Dα

t cos(t) have been calculated in [1].

Example 3.10. (Fractional derivative with sliding fixed memory length of the sine function)
By definition

M
LDα

t f (t) =
MG

LDα
t f (t)−

m−1

∑
k=0

f (k)(t− L)Lk−α

Γ(k− α + 1)
.

Therefore

M
LDα

t sin(t) =
MG

LDα
t sin(t)−

m−1

∑
k=0

dk

dtk (sin(t− L))Lk−α

Γ(k− α + 1)
,

= L−α sin(t− L)E2,1−α(−L2) + L1−α cos(t− L)E2,2−α(−L2)

− L−α
[m−1

2 ]

∑
k=0

(−L2)k

Γ(2k + 1− α)
sin(t− L)− L1−α

[m−2
2 ]

∑
k=0

(−L2)k

Γ(2k + 2− α)
cos(t− L),

= L−α sin(t− L)(E2,1−α(−L2)−
[m−1

2 ]

∑
k=0

(−L2)k

Γ(2k + 1− α)
)

+ L1−α cos(t− L)(E2,2−α(−L2)−
[m−2

2 ]

∑
k=0

(−L2)k

Γ(2k + 2− α)
),

= a sin(t− L) + b cos(t− L), (3.9)

where, a = L−α(E2,1−α(−L2)−
[m−1

2 ]

∑
k=0

(−L2)k

Γ(2k + 1− α)
), b = L1−α(E2,2−α(−L2)−

[m−2
2 ]

∑
k=0

(−L2)k

Γ(2k + 2− α)
).

One notices that, M
LDα

t sin(t) is a periodic function with the period T = 2π. This analytical
result is displayed in figure (3.1), for some values of α and L = 32.1.

Example 3.11. (Fractional derivative of cosine function)



On periodic solutions of fractional-order systems 71

0 2 4 6 8 10 12 14 16 18

t

-1.5

-1

-0.5

0

0.5

1

1.5

  
LM

 D
t,

 s
in

(t
)

,=0.6
,=0.8
,=1

Figure 3.1: Fractional derivative of the Sine function for L = 32.1 and some values of α.

By definition

M
LDα

t cos(t) =
MG

LDα
t cos(t)−

m−1

∑
k=0

dk

dtk (cos(t− L))Lk−α

Γ(k− α + 1)
,

= L−α cos(t− L)E2,1−α(−L2)− L1−α sin(t− L)E2,2−α(−L2)

− L−α
[m−1

2 ]

∑
k=0

(−L2)k

Γ(2k + 1− α)
cos(t− L) + L1−α

[m−2
2 ]

∑
k=0

(−L2)k

Γ(2k + 2− α)
sin(t− L),

= L−α cos(t− L)(E2,1−α(−L2)−
[m−1

2 ]

∑
k=0

(−L2)k

Γ(2k + 1− α)
)

− L1−α sin(t− L)(E2,2−α(−L2)−
[m−2

2 ]

∑
k=0

(−L2)k

Γ(2k + 2− α)
),

= a cos(t− L)− b sin(t− L), (3.10)

where,

a = L−α(E2,1−α(−L2)−
[m−1

2 ]

∑
k=0

(−L2)k

Γ(2k + 1− α)
),

and

b = L1−α(E2,2−α(−L2)−
[m−2

2 ]

∑
k=0

(−L2)k

Γ(2k + 2− α)
).

Obviously M
LDα

t cos(t) is a periodic function with period T = 2π.

3.3 An interpolation property

It is known that the operator of Grünwald-Letnikov fractional derivative with sliding fixed
memory length is an extension of the integer-order operator dm

tm , (see [1]).
The following proposition proves that the Caputo and Riemann-Liouville operators of the
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fractional derivative with sliding fixed memory length verifies this property for α → m, but
not for α→ m− 1.

Proposition 3.12. Let L > 0 and 0 ≤ m− 1 < α < m such that m is an integer number, and let f (t)
having (m + 1) continuous bounded derivatives in [a− L, b]. Then , for all t ∈ [a, b], one has

lim
α→m

M
LDα

t f (t) = f (m)(t),

and
lim

α→m−1
M
LDα

t f (t) = f (m−1)(t)− f (m−1)(t− L).

Proof. One has

lim
α→m

M
LDα

t f (t) = lim
α→m

1
Γ(m− α)

∫ t

t−L
(t− τ)m−α−1 f (m)(τ)dτ,

= lim
α→m

Lm−α f (m)(t− L)
Γ(m− α + 1)

+ lim
α→m

1
Γ(m− α + 1)∫ t

t−L
(t− τ)m−α f (m+1)(τ)dτ,

= f (m)(t− L) +
∫ t

t−L
f (m+1)(τ)dτ,

= f (m)(t).

For α→ m− 1, one has

lim
α→m−1

MC

LDα
t f (t) = lim

α→m−1

1
Γ(m− α)

∫ t

t−L
(t− τ)m−α−1 f (m)(τ)dτ,

=
∫ t

t−L
f (m)(τ)dτ,

= f (m−1)(t)− f (m−1)(t− L).

�

Example 3.13.
Let f (t) = et, then

M
LDα

t et = et−LLm−αE1,m+1−α(L),

Therefore,
lim
α→m

M
LDα

t et = et−LE1,1(L) = et = f (m)(t).

However,

lim
α→m−1

M
LDα

t et = et−LLE1,2(L) = et−L(eL − 1),

= et − et−L = f (m)(t)− f (m−1)(t− L).

Example 3.14.
Let f (t) = tn, one has

M
LDα

t (t
n) =

n−m

∑
k=0

n!L−α+m+k(t− L)n−m−k

(n−m− k)!Γ(−α + m + k + 1)
.
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Putting N = n−m and t− L = a, then

lim
α→m

M
LDα

t (t
n) =

N

∑
k=0

n!LkaN−k

(N − k)!k!
,

=
n!
N!

N

∑
k=0

N!LkaN−k

(N − k)!k!
,

=
n!
N!

(a + L)N =
n!

(n−m)!
tn−m,

=
dm

dt
tn = f (m)(t).

However,

lim
α→m−1

M
LDα

t (t
n) =

N

∑
k=0

n!Lk+1aN−k

(N − k)!(k + 1)!
,

=
n!

(N + 1)!

N+1

∑
k=0

(N + 1)!LkaN+1−k

(N + 1− k)!k!
− n!

(n−m + 1)!
(t− L)n−m+1,

=
n!

(N + 1)!
tN+1 − n!

(n− (m− 1))!
(t− L)n−(m−1),

=
n!

(n− (m− 1))!
tn−(m−1) − n!

(n− (m− 1))!
(t− L)n−(m−1),

=
dm−1

dt
tn − dm−1

dt
(t− L)n = f (m−1)(t)− f (m−1)(t− L).

3.4 Comparison between some results of classical fractional-order derivatives and
fractional order derivatives with sliding fixed memory length

The previous results are summarized in the table (3.1), in order to highlight the differences
between classical fractional-order derivative and fractional-order derivative with sliding fixed
memory length.

3.5 Fractional-order autonomous system with exact periodic solution

As previously mentioned, any autonomous fractional-order system expressed in terms of clas-
sical fractional derivatives cannot have any exact periodic solutions [13, 22, 23].
Conversely to these results, one presents some examples showing that fractional-order au-
tonomous systems (linear and nonlinear) expressed in terms of fractional derivatives with
sliding fixed memory length can have exact periodic solutions.

Example 3.15. (Linear fractional-order system)
Let consider the following linear fractional-order autonomous system

M
L Dα

t X(t) = AX(t), (3.11)

where X(t) ∈ R and A =

(
a −b
b a

)
, with a = L−α(E2,1−α(−L2)−

[m−1
2 ]

∑
p=0

(−L2)p

Γ(2p+1−α)
),

b = L1−α(E2,2−α(−L2)−
[m−2

2 ]

∑
p=0

(−L2)p

Γ(2p+2−α)
) .
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Classical fractional derivative Fractional derivative with sliding fixed
C
aDα

t or RL
a Dα

t memory length M
LDα

t

C
a Dα

t f (t) =
RL

aDα
t f (t)−

m−1
∑

k=0

f (k)(a)(t−a)k−α

Γ(k−α+1)
MC

LDα
t f (t) =

MR

LDα
t f (t)

lim
α→m

RL
a Dα

t f (t) = lim
α→m

C
a Dα

t f (t) = f (m)(t) lim
α→m

M
L Dα

t f (t) = f (m)(t)

lim
α→m−1

RL
a Dα

t f (t) = f (m−1)(t), lim
α→m−1

M
L Dα

t f (t)

lim
α→m−1

C
a Dα

t f (t) = f (m−1)(t)− f (m−1)(a) = f (m−1)(t)− f (m−1)(t− L)

RL
0 Dα

t (t
n) = C

0Dα
t (t

n) = Γ(n+1)
Γ(n−α+1) tn−α M

LDα
t (t

n) =
n−m
∑

k=0

n!L−α+m+k(t−L)n−m−k

(n−m−k)!Γ(−α+m+k+1)

RL
a Dα

t C = C
Γ(1−α)

(t− a)α , 0,
C
aDα

t C = 0 M
LDα

t C = 0
RL
a Dα

t sin t = t1−αE2,2−α(−t2) M
a Dα

t sin t = a sin(t− L) + b cos(t− L).

Table 3.1: Comparison between some results of classical fractional-order derivatives and frac-
tional order derivatives with sliding fixed memory length.

- For L = 2kπ, where k is a non-zero integer. The vector function X(t) = c
(

cos(t)
sin(t)

)
, c ∈ R

is an exact 2π−periodic solution for the system (3.11).
By definition,

M
2kπDα

t X(t) = c
( M

2kπDα
t cos(t)

M
2kπDα

t sin(t)

)
.

Then, from (3.9) and (3.10) one obtains

M
2kπDα

t X(t) = c
(

a cos(t− 2kπ)− b sin(t− 2kπ)

a sin(t− 2kπ) + b cos(t− 2kπ)

)
,

= c
(

a −b
b a

)(
cos(t− 2kπ)

sin(t− 2kπ)

)
,

= cA
(

cos(t− 2kπ)

sin(t− 2kπ)

)
,

= AX(t).

Therefore, X(t) = c
(

cos(t)
sin(t)

)
is an exact 2π−periodic solution of (3.11) with L = 2kπ.

- For L = π
2 , one has

M
π
2

Dα
t X(t) = c

(
a cos(t− π

2 )− b sin(t− π
2 )

a sin(t− π
2 ) + b cos(t− π

2 )

)
,

= c
(

a sin(t) + b cos(t)
−a cos(t) + b sin(t)

)
,

= c
(

b a
−a b

)(
cos(t)
sin(t)

)
,

= cB
(

cos(t)
sin(t)

)
,

= BX(t),
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with B =

(
b a
−a b

)
, A. Thus, X(t) = c

(
cos(t)
sin(t)

)
is not solution of (3.11), but it is an

exact 2π−periodic solution of the system M
π
2

Dα
t X(t) = BX(t).

Example 3.16. (The predator-prey model with Holling type II response function)
All population species possess the property of heredity, which means the passing on traits
from parents to their offspring, either through asexual reproduction or sexual reproduction.
The offspring cells or organisms acquire the genetic information of their parents through
heredity. This property makes fractional differential systems models more efficiently regard-
ing some specific problems than ordinary differential ones.
Motivated by this fact, we introduce the fractional version of the Holling-Tanner model [21]
as follows {

Dαx = r1x(1− x
K )−

qxy
m+x ,

Dαy = r2y(1− y
γx ).

(3.12)

Where D. denotes a standard fractional-order derivative operator and α ∈ [0, 1] is the fractional-
order related to the hereditary property of the population (a value of α close to an integer
number means that the population has a weak hereditary property), x(t) ≥ 0 and y(t) ≥ 0 are
the density of prey and predator populations at time t respectively. The parameters r1 and r2

are the intrinsic growth rates, K represents the carrying capacity of the prey, q is the maximum
number of preys that can be eaten per predator per unit of time, m is the saturation value (it
corresponds to the number of preys necessary to achieve one half the maximum rate q), γ is a
measure of the quality of the prey as a portion of food for the predator.

Since exact analytical resolution of this nonlinear system is unavailable, one resorts to
qualitative and numerical study. For this purpose the parameters are set to r1 = 1, r2 =

0.2, K = 25, q = 6
7 , m = 1 and γ = 0.95, the system (3.12) has two equilibrium points

E0 = (25, 0) and E1 ≈ (7.1429, 6.7857).

• The characteristic polynomial of the Jacobian matrix evaluated at E0 is given by

P(λ) = λ2 + a1λ + a2 = λ2 + 0.8λ− 0.2.

So a2 = −0.2 < 0, then according to Proposition 1 in [7] E0 is unstable for all α ∈ [0, 2).

• The characteristic polynomial of the Jacobian matrix evaluated at E1 is given by

P(λ) = λ2 − 0.1409λ + 0.0747.

So a1 ≈ −0.1409 and a2 ≈ 0.0747 > 0.

Applying Hopf-Like Bifurcation theory [2–4] and using Proposition 1 in [7], one obtains
the Hopf-Like bifurcation value

α∗ =
2
π

cos−1(
−a1

2
√

a2
) ≈ 0.8341.

The fixed point E1 losses its stability, and a periodic motion (S−asymptotically periodic
for the classical fractional derivative and exact periodic for fractional derivative with
sliding fixed memory length) appears.
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Figure 3.2: Time evolution and phase portrait of system (3.12) for α = 0.9 (a,b)
S−asymptotically T−periodic solution with T ≈ 27.2 for classical fractional operator. (c,d)
Exact T−periodic solution for the fractional derivative operator with sliding fixed memory
length. (e,f) Comparison between the two solutions.

To illustrate these results, one solves the system (3.12) numerically by developing a Matlab
code using a discretization technique based on the formula (3.7).
Choosing a value for α greater than α∗, for example, α = 0.9, one compares the solution
of (3.12) in terms of classical fractional operator and its solution in terms of the fractional
operator with sliding fixed memory length L = 30. The two trajectories are start from the
same initial point X0 = (2.64, 4.88), belonging to the attracting limit cycle. The results are
shown in Fig. 3.2.
An S−asymptotically T−periodic solution with T ≈ 27.2 is obtained for classical fractional
operator as shown in Fig. 3.2(a,b), and an exact T−periodic solution is obtained for the
fractional derivative operator with sliding fixed memory length as shown in Fig. 3.2(c,d).

4 Conclusion

In this article, one modifies the Caputo and Rieman-Liouville fractional-order derivatives by
fixing the memory length and varying the lower terminal of the derivative. It is shown that
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the modified fractional derivative operator preserves the periodicity. Consequently, periodic
solutions can be obtained in fractional-order systems expressed in terms of the new operator.
Two examples are investigated to highlight this property for a linear system provides an
analytic expression of an exact periodic solution is computed and for another nonlinear system
for which exact periodic solutions are obtained using qualitative and numerical methods.
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Abstract. In this paper, we first introduce the conformable fractional Laplace trans-
form. Then, we give its generalization for higher-order. Finally, as an application, we
solve a non-homogeneous conformable fractional differential equation with variable
coefficients and a system of fractional differential equations.
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1 Introduction

Fractional derivative emergence date back to the time of calculus. In 1695, L’Hospital won-
dered about the meaning of dn f

dxn if n = 1
2 , since then, researchers have been attempting to de-

fine a fractional derivative. Some of which are : Riemann-Liouville fractional definitions [15],
Caputo fractional definitions [9, 15], Grünwald-Letnikov fractional derivative [16], Atangana-
Baleanu fractional definitions [5], Hadamard fractional integral [14], Caputo-Fabrizio frac-
tional derivative [9] and conformable fractional definitions [12]. Most of the definitions give
numerical solution to the problems. However, the conformable fractional derivative is a natu-
ral definition which gives us simple and easy solutions for the problems. For more different
applications on conformable fractional derivative, the reader can refer to [1, 2, 4, 6–8, 10, 11].

In 2015, Abdeljawad Thabet defined the conformable fractional Laplace transform [1]
which will help to solve many fractional differential equations. In order to study the solution
of the most challenging problems, like a non-homogeneous fractional differential equation
with variables coefficients for higher-order, we generalize the conformable fractional Laplace
transform for higher-order. Finally, we use this generalization to solve fractional differential
equations and a system as an application.

For more details on conformable fractional Laplace transform, we refer the reader to [1, 3,
6, 13, 18].
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2 Basics of conformable fractional Laplace transform

Definition 2.1. Let f : [0, ∞) → R be a real valued function and 0 < α ≤ 1. Then the
conformable fractional Laplace transform of f is defined as:

Lα { f (x)} = Fα(ξ) =
∫ ∞

0
e−ξ xα

α f (x) dαx =
∫ ∞

0
e−ξ xα

α f (x) xα−1dx.

provided the integral exists.

Let us have as an example for the conformable fractional Laplace transform of the usual
functions in the theorem bellow.

Theorem 2.2. Let a, p, c ∈ R and 0 < α ≤ 1. Then
(1) Lα {c} (ξ) = c

ξ , ξ > 0.

(2) Lα {xp} (ξ) = α
p
α

Γ(1+ p
α )

ξ1+ p
α

, ξ > 0.

(3) Lα

{
ea xα

α

}
(ξ) = 1

ξ−a , ξ > 0.

(4) Lα

{
sin a xα

α

}
(ξ) = a

ξ2+a2 , ξ > 0.

(5) Lα

{
cos a xα

α

}
(ξ) = ξ

ξ2+a2 , ξ > 0.

(6) Lα

{
sinh a xα

α

}
(ξ) = a

ξ2−a2 , ξ > |a| .

(7) Lα

{
cosh a xα

α

}
(ξ) = ξ

ξ2−a2 , ξ > |a| .

Proof. Follows by applying Definition 2.1 �

One of the excellent results is the relation between the usual, and the conformable frac-
tional Laplace transforms, given in the theorem below.

Theorem 2.3. Let f : [0, ∞)→ R be a function such that Lα { f (x)} (ξ) = Fα(ξ) exists. Then

Lα { f (x)} (ξ) = Fα(ξ) = L
{

f
(
(αx)

1
α

)}
(ξ) , 0 < α ≤ 1.

Proof. See [1, 3]. �

Theorem 2.4. Let f : [0, ∞)→ R, g : [0, ∞)→ R and let λ, µ, a ∈ R and 0 < α ≤ 1. Then
(1) Lα {λ f (x) + µg (x)} = λFα(ξ) + µGα (ξ) , ξ > 0.
(2) Lα

{
e−a xα

α f (x)
}
(ξ) = Fα(ξ + a), ξ > |a| .

(3) Lα {Iα f (x)} (ξ) = Fα(ξ)
ξ , ξ > 0.

(4) Lα

{
xnα

αn f (x)
}
(ξ) = (−1)n dn

dξnFα(ξ), ξ > 0.
(5) Lα {( f ∗ g) (x)} = Fα(ξ)Gα (ξ) , ξ > 0.
whereFα and Gα are the conformable fractional Laplace transform of the functions f and g respectively,
f ∗ g is the convolution product of f and g and Iα f (x) is the conformable fractional integral.

Proof. See [1, 3]. �
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2.1 Generalization of fractional Laplace transform

Theorem 2.5. Let f : [0, ∞)→ R be a continuous real valued differentiable function and 0 < α ≤ 1.
Then

Lα {Dα f (x)} = ξFα(ξ)− f (0) , ξ > 0.

Proof. See [1, 3]. �

Theorem 2.6. Let f : [0, ∞)→ R be a continuous real valued differentiable function and 0 < α ≤ 1.
Then

Lα

{
D2α f (x)

}
= ξ2Fα(ξ)− f α (0)− ξ f (0) , ξ > 0.

Proof. By using Definition 2.1 and integration by parts, we find:

Lα

{
D2α f (x)

}
=

∫ ∞

0
e−ξ xα

α D2α f (x) dαx

=
∫ ∞

0
DαDα f (x) e−ξ xα

α xα−1dx

=
∫ ∞

0
e−ξ xα

α x1−α d
dx

Dα f (x) xα−1dx

=
∫ ∞

0
e−ξ xα

α
d

dx
Dα f (x) dx

= lim
b→∞

[
e−ξ xα

α Dα f (x)
]b

0
+
∫ ∞

0
Dα f (x)

(
ξ

α
αxα−1

)
e−ξ xα

α dx

= − f α (0) + ξ
∫ ∞

0
e−ξ xα

α Dα f (x) dαx

= − f α (0) + ξLα {Dα f (x)} .

By the previous theorem we get the result.

Lα

{
D2α f (x)

}
= ξ2Fα(ξ)− f α (0)− ξ f (0) .

�

Theorem 2.7. Let f : [0, ∞)→ R be a continuous real valued differentiable function and 0 < α ≤ 1.
Then

Lα

{
D3α f (x)

}
= ξ3Fα(ξ)− f 2α (0)− ξ f α (0)− ξ2 f (0) , ξ > 0.

Proof. By using Definition 2.1 and integration by parts, we have:

Lα

{
D3α f (x)

}
=

∫ ∞

0
e−ξ xα

α D3α f (x) dαx

=
∫ ∞

0
DαD2α f (x) e−ξ xα

α xα−1dx

=
∫ ∞

0
e−ξ xα

α
d

dx
D2α f (x) dx

= lim
b→∞

[
e−ξ xα

α D2α f (x)
]b

0
+
∫ ∞

0
D2α f (x) ξxα−1e−ξ xα

α dx

= − f 2α (0) + ξ
∫ ∞

0
e−ξ xα

α
(

D2α f (x)
)

dαx

= − f 2α (0) + ξLα

{
D2α f (x)

}
.
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By the previous theorem we get the result.

Lα

{
D3α f (x)

}
= ξ3Fα(ξ)− f 2α (0)− ξ f α (0)− ξ2 f (0) .

�

Theorem 2.8. Generalization of (C.F.L.T)
Let f : [0, ∞) → R be a continuous real valued differentiable function and 0 < α ≤ 1, then for any
integer number n we have :

Lα

{
D(nα) f (x)

}
= ξnFα(ξ)− f (n−1)α (0)− ξ f (n−2)α (0)− ξ(2) f (n−3)α (0)

− .......− ξ(n−2) f α (0)− ξ(n−1) f (0)

= ξnFα(ξ)− ξ(0) f (n−1−0)α (0)− ξ(1) f (n−1−1)α (0)− ξ(2) f (n−1−2)α (0)

− .......− ξ(n−1−1) f (1)α (0)− ξ(n−1) f (0) .

Hence

Lα

{
D(nα) f (x)

}
= ξnFα(ξ)−

n−1

∑
j=0

ξ j f (n−j−1)α (0) , ξ > 0.

Proof. We are going to prove this theorem by induction.
For n = 1, 2, 3 the formula is true ( see the previous theorems ).
Now, suppose that the formula is true for n and prove it for n + 1.

that is Lα

{
D(nα) f (x)

}
= ξnFα(ξ)−

n−1

∑
j=0

ξ j f (n−j−1)α (0) , ξ > 0 is true.

By using Definition 2.1 and integration by parts, we have:

Lα

{
D(n+1)α f (x)

}
=

∫ ∞

0
e−ξ xα

α D(n+1)α f (x) dαx

=
∫ ∞

0
e−ξ xα

α D(n+1)α f (x) xα−1dx

=
∫ ∞

0
DαDnα f (x) e−ξ xα

α xα−1dx

=
∫ ∞

0
e−ξ xα

α x1−α d
dx

Dnα f (x) xα−1dx

=
∫ ∞

0
e−ξ xα

α
d

dx
Dnα f (x) dx

=
[
e−ξ xα

α Dnα f (x)
]∞

0
+
∫ ∞

0
Dnα f (x) ξxα−1e−ξ xα

α dx

= − f nα (0) + ξ
∫ ∞

0
e−ξ xα

α (Dnα f (x)) dαx

= − f nα (0) + ξ
∫ ∞

0
e−ξ xα

α (Dnα f (x)) dαx

= − f nα (0) + ξLα {Dnα f (x)} (since the formula is true)

= − f nα (0) + ξ

(
ξnFα(ξ)−

n−1

∑
j=0

ξ j f (n−j−1)α (0)

)
.
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Therefore

Lα

{
D(n+1)α f (x)

}
= − f nα (0) + ξ(n+1)Fα(ξ)− ξ

n−1

∑
j=0

ξ j f (n−j−1)α (0)

= ξ(n+1)Fα(ξ)− f nα (0)−
n−1

∑
j=0

ξ(j+1) f (n−j−1)α (0)

= ξ(n+1)Fα(ξ)−
n

∑
j=0

ξ j f (n−j−1)α (0) .

Which complete the proof of the theorem. �

3 Applications

We use the conformable fractional Laplace transform as an application to solve some prob-
lems. In the first one, we solve a system of fractional differential equations with constant
coefficients of three unknowns. In the second, we apply the generalization of (C.F.L.T) to
solve a non-homogeneous fractional differential equation with variables coefficients.

Problem 1 : 
Y(α)

1 = Y1 −Y2 + Y3,

Y(α)
2 = − 2Y1 + Y2 −Y3,

Y(α)
3 = −Y2 + Y3.

Conditions 1 :
Y1 (0) = Y2 (0) = Y3(0) = 1, 0 < α ≤ 1.

Solution :
Let Lα {Y1} = Fα(ξ), Lα {y2} = Gα(ξ) and Lα {Y3} = Hα(ξ).
When applying the conformable fractional Laplace transform on all the system of fractional
differential equation and using the giving conditions, we get:

ξFα(ξ)− 1 = Fα(ξ)− Gα(ξ) + Hα(ξ),

ξGα(ξ)− 1 = − 2Fα(ξ) + Gα(ξ)− Hα(ξ),

ξHα(ξ)− 1 = − Gα(ξ) + Hα(ξ).

Which implies 
(ξ − 1)Fα(ξ) + Gα(ξ)− Hα(ξ) = 1,

2Fα(ξ) + (ξ − 1)Gα(ξ) + Hα(ξ) = 1,

Gα(ξ) + (ξ − 1)Hα(ξ) = 1.

Now, we can use Cramers rule to obtain solutions for Fα(ξ), Gα(ξ) and Hα(ξ).
First

∆ =

∣∣∣∣∣∣
(ξ − 1) 1 −1

2 (ξ − 1) 1
0 1 (ξ − 1)

∣∣∣∣∣∣ = (ξ3 − 3ξ2).
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Hence

Fα {ξ} =
1
∆

∣∣∣∣∣∣
1 1 −1
1 (ξ − 1) 1
1 1 (ξ − 1)

∣∣∣∣∣∣ = (ξ2 − 2ξ)

(ξ3 − 3ξ2)
.

We are going to find Gα {ξ} again using Cramer,s Rule.

Gα {ξ} =
1
∆

∣∣∣∣∣∣
(ξ − 1) 1 −1

2 1 1
0 1 (ξ − 1)

∣∣∣∣∣∣ = (ξ2 − 5ξ + 2)
(ξ3 − 3ξ2)

.

In the similar way, we get Hα(ξ)

Hα {ξ} =
1
∆

∣∣∣∣∣∣
(ξ − 1) 1 1

2 (ξ − 1) 1
0 1 1

∣∣∣∣∣∣ = (ξ2 − 3ξ + 2)
(ξ3 − 3ξ2)

Using partial fraction to rewrite Fα, Gα and Hα in this way

c1
1
ξ
+ c2

1
ξ2 + c3

1
(ξ − 3)

,

for some constants c1, c2 and c3 to make the calculation easy.
Therefore, we get 

Fα(ξ) = 6
9

1
ξ +

3
9

1
(ξ−3) ,

Gα(ξ) = 13
9

1
ξ −

6
9

1
ξ2 − 4

9
1

(ξ−3) ,

Hα(ξ) = 7
9

1
ξ −

6
9

1
ξ2 +

2
9

1
(ξ−3) .

(3.1)

Applying the conformable fractional Laplace inverse transform on all the system (3.1)
using the properties in Theorem 2.2 and Theorem 2.4 we obtain the solution of our problem.

L−1
α {Fα(ξ)} = 6

9L
−1
α

{
1
ξ

}
+ 3

9L
−1
α

{
1

(ξ−3)

}
,

L−1
α {Gα(ξ)} = 13

9 L
−1
α

{
1
ξ

}
− 6

9L
−1
α

{
1
ξ2

}
− 4

9L
−1
α

{
1

(ξ−3)

}
,

L−1
α {Hα(ξ)} = 7

9L
−1
α

{
1
ξ

}
− 6

9L
−1
α

{
1
ξ2

}
+ 2

9L
−1
α

{
1

(ξ−3)

}
.

Then 
Y1(x) = 6

9 +
3
9 e3 xα

α ,

Y2(x) = 13
9 −

6
9

xα

α −
4
9 e3 xα

α ,

Y3(x) = 7
9 −

6
9

xα

α + 2
9 e3 xα

α .

Hence a result as required.

Problem 2 :

Y3α(x) + Y2α(x)− xα

α
Y(x) + 2Y(x) = cos

xα

α
. (3.2)

Conditions 2 :
Y2α(0) = Yα(0) = Y(0) = 0. (3.3)
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Solution :
Let us take the conformable fractional Laplace transform of both sides and using the given
conditions, we get equation 3.4

ξ3Ψ(ξ) + ξ2Ψ(ξ)− (−1)
d

dξ
(ξΨ(ξ)) + 2Ψ(ξ) =

ξ

ξ2 + 1
. (3.4)

Where Ψ(ξ) = Lα{Y} and ξ > 0.
This follows from the properties of (C.F.L.T) in Theorem 2.2 and Theorem 2.4,(
Lα

{
xnα

αn f (x)
}
(ξ) = (−1)n dn

dξnFα(ξ), ξ > 0
)

.
Then :

(ξ3 + ξ2 + 2)Ψ(ξ) + Ψ(ξ) + ξΨ
′
(ξ) =

ξ

ξ2 + 1
. (3.5)

This equation can be simplified to:

ξΨ
′
(ξ) + (ξ3 + ξ2 + 3)Ψ(ξ)+ =

ξ

ξ2 + 1
.

Hence, we find :

Ψ
′
(ξ) +

(
ξ3 + ξ2 + 3

ξ

)
Ψ(ξ)+ =

1
ξ2 + 1

. (3.6)

Which is a first order ordinary non-homogeneous linear differential equation with variable
coefficients.
Applying theory of linear differential equations we obtain:

Ψ (ξ) = e
−
∫ ( ξ3+ξ2+3

ξ

)
dξ
[∫

e
∫ ( ξ3+ξ2+3

ξ

)
dξ 1

ξ2 + 1
dξ + k

]

= e
−
(

ξ3
3 + ξ2

2 +3 ln ξ

) [∫
e

(
ξ3
3 + ξ2

2 +3 ln ξ

)
1

ξ2 + 1
dξ + k

]
.

for some constant k.
Therefore

Ψ (ξ) =

∫
e

(
ξ3
3 + ξ2

2 +3 ln ξ

)
1

ξ2+1 dξ + k

e
(

ξ3
3 + ξ2

2 +3 ln ξ
) for some constant k.

Claim :
The conformable fractional Laplace inverse transform exists (Ψ(ξ) ∈ Dom(L−1

α )).

Proof.
1. lim

ξ→∞
Ψ (ξ) =

∞
∞

indeterminate.

Then we have to use L
′
Hopital

′
s rule to get :

lim
ξ→∞

Ψ (ξ) = lim
ξ→∞

e

(
ξ3
3 + ξ2

2 +3 ln ξ

) (
1

ξ2+1

)
(

ξ2 + ξ + 3
ξ

)
e
(

ξ3
3 + ξ2

2 +3 ln ξ
) = lim

ξ→∞

1(
ξ2 + ξ + 3

ξ

)
(ξ2 + 1)

= 0.
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2. lim
ξ→∞

ξΨ (ξ) = lim
ξ→∞

ξ

∫
e

(
ξ3
3 + ξ2

2 +3 ln ξ

)
1

ξ2+1 dξ + k

e
(

ξ3
3 + ξ2

2 +3 ln ξ
) =

∞
∞

indeterminate.

Thus we have to use L
′
Hopital

′
s rule to find :

lim
ξ→∞

ξΨ (ξ) = lim
ξ→∞

 e

(
ξ3
3 + ξ2

2 +3 ln ξ

) (
ξ

ξ2+1

)
+
∫

e

(
ξ3
3 + ξ2

2 +3 ln ξ

)
1

ξ2+1 dξ + k(
ξ2 + ξ + 3

ξ

)
e
(

ξ3
3 + ξ2

2 +3 ln ξ
)

 =
∞
∞

.

Which is also indeterminate, so we reuse L
′
Hopital

′
s rule again :

lim
ξ→∞

ξΨ (ξ) = lim
ξ→∞


(

1
ξ2+1

)
+
(

ξ2 + ξ + 3
ξ

) (
ξ

ξ2+1

)
+
(

1−ξ2

(ξ2+1)2

)
(

2ξ + 1− 3
ξ2

)
+
(

ξ2 + ξ + 3
ξ

)2

 .

After simplifying and using the properties of limits calculations, we get :

lim
ξ→∞

ξΨ (ξ) = lim
ξ→∞

ξ5

ξ6 = 0.

Hence a result as required. �

Now, we can reformulate Ψ(ξ) to become :

Ψ (ξ) =

∫
ξ3e

(
ξ3
3 + ξ2

2

)
1

ξ2+1 dξ + k

ξ3e
(

ξ3
3 + ξ2

2

) for some constant k.

Let us approximate the Exponential by the first 2-terms of the series expansion.

ie :

(
e

(
ξ3
3 + ξ2

2

)
≈
(

1 + ξ3

3 + ξ2

2

))
.

Therefore

Ψ (ξ) ≈

∫
ξ3
(

1 + ξ3

3 + ξ2

2

)
1

ξ2+1 dξ + k

ξ3
(

1 + ξ3

3 + ξ2

2

) =

1
6

[∫ (
ξ6 + 3ξ5 + 6ξ3) 1

ξ2+1 dξ + 6k
]

1
6 (2ξ6 + 3ξ5 + 6ξ3)

.

Hence

Ψ (ξ) ≈

∫ (
2ξ6 + 3ξ5 + 6ξ3) 1

ξ2+1 dξ + 6k

(2ξ6 + 3ξ5 + 6ξ3)
.

Choose

I =
(
2ξ6 + 3ξ5 + 6ξ3)

(ξ2 + 1)
.

By division algorithm we obtain :

I = 2ξ4 + 3ξ3 − 2ξ2 + 3ξ + 2 +
−2− 3ξ

ξ2 + 1

= 2ξ4 + 3ξ3 − 2ξ2 + 3ξ + 2− 2
ξ2 + 1

− 3
2

2ξ

ξ2 + 1
.
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Then

∫
I dξ + 6k =

∫
2ξ4 + 3ξ3 − 2ξ2 + 3ξ + 2− 2

ξ2 + 1
− 3

2
2ξ

ξ2 + 1
dξ + 6k

= 2
ξ5

5
+ 3

ξ4

4
− 2

ξ3

3
+ 3

ξ2

2
+ 2ξ − 2 tan−1 ξ − 3

2
ln |ξ2 + 1|+ 6k.

So Ψ (ξ) after simplification becomes :

Ψ (ξ) ≈
2 ξ5

5 + 3 ξ4

4 − 2 ξ3

3 + 3 ξ2

2 − 2ξ + 2 tan−1 ξ − 3
2 ln |ξ2 + 1|+ 6k

(2ξ6 + 3ξ5 + 6ξ3)
.

For some constant k.
Now, we approach tan−1 ξ + 6k and ln |ξ2 + 1| using the series expansion (1-term).
Starting by tan−1 ξ + 6k :

tan−1 ξ + 6k =
∫ 1

1 + ξ2 dξ =
∫ 1

1− (−ξ2)
dξ =

∫ ∞

∑
n=0

(−ξ2)ndξ, |ξ| < 1

=
∫

1− ξ2 + ξ4 − ξ6 + ....dξ =
∫ ∞

∑
n=0

(−1)n ξ2ndξ

= c + ξ − ξ3

3
+

ξ5

5
− ξ7

7
+ ... for some constant c.

Then

tan−1 ξ = (c− 6k) +
∞

∑
n=0

(−1)n ξ2n+1

2n + 1
.

Letting ξ = 0 then we obtain (c− 6k) = 0, so

tan−1 ξ =
∞

∑
n=0

(−1)n ξ2n+1

2n + 1
= ξ − ξ3

3
+

ξ5

5
− ξ7

7
+ ...

So the approach can be taken as :

tan−1 ξ ≈ ξ.

Secondly ln
∣∣ξ2 + 1

∣∣ :

ln
∣∣ξ2 + 1

∣∣ =
∞

∑
n=0

(−1)n ξ2n+2

n + 1

= ξ2 − ξ4

2
+

ξ6

3
...

Hence

ln
∣∣ξ2 + 1

∣∣ ≈ ξ2.
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Finally, after these estimations Ψ(ξ) becomes :

Ψ (ξ) ≈
2 ξ5

5 + 3 ξ4

4 − 2 ξ3

3 + 3 ξ2

2 + 2ξ − 2ξ − 3
2 ξ2

(2ξ6 + 3ξ5 + 6ξ3)

=
2 ξ5

5 + 3 ξ4

4 − 2 ξ3

3
(2ξ6 + 3ξ5 + 6ξ3)

=
2 ξ2

5 + 3 ξ
4 −

2
3

(2ξ3 + 3ξ2 + 6)

=
1
6

[
(2.4ξ2 + 4.5ξ − 4)
(2ξ3 + 3ξ2 + 6)

]
.

Now, we have to reformulate Ψ(ξ) to take the conformable fractional Laplace inverse trans-
form easier.
Let us start by the denominator.

2ξ3 + 3ξ2 + 6 = 0.

Rewrite the equation as,

ξ3 +
3
2

ξ2 + 3 = 0. (3.7)

It is important to mention a formula called the cubic formula for finding the roots of (2.6) .
The cubic formula for finding roots of (2.6) as contained is given by,
let P = b− a2

3 = − 3
4 and q = 2a3

27 −
ab
3 + c = 13

4 , where, a = 3
2 , b = 0 and c = 3.

Discriminant

(4) =
q2

4
+

p3

27
=

168
64

> 0.

As noted earlier, the nature of the roots of a cubic equation depends on whether the associated
discriminant is positive, negative or zero.
Roots of a cubic equation when 4 > 0 there is only one real solution.

ξ =
(
− q

2
+
√
4
) 1

3
+
(
− q

2
−
√
4
) 1

3 − a
3

= −2.14937...

By division algorithm we conclude

2ξ3 + 3ξ2 + 6
ξ + 2.14937...

= 2ξ2 − 1.29875...ξ + 2.79150...

2ξ3 + 3ξ2 + 6 = (ξ + 2.14937...)(2ξ2 − 1.29875...ξ + 2.79150...)

Ψ (ξ) ≈
1
6

[(
2.4ξ2 + 4.5ξ − 4

)
2ξ3 + 3ξ2 + 6

]
=

1
6

[ (
2.4ξ2 + 4.5ξ − 4

)
(ξ + 2.14937...)(2ξ2 − 1.29875...ξ + 2.79150...)

]
.

Now, we have to use partial fraction decomposition where the degree of the polynomial in
the numerator is less than the degree of the polynomial in the denominator to make the
conformable fractional Laplace inverse (L−1) transform exist.
Hence

Ψ (ξ) ≈
1
6

[
c1

(ξ + 2.14937...)
+

c2ξ + c3

(2ξ2 − 1.29875...ξ. + 2, 79150...)

]
.
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By identification we get 
c1 =− 0.17437...

c2 = + 2.74874...

c3 =− 1.63455...

Therefore

Ψ (ξ) ≈
1
6

[
−0.17437...

(ξ + 2.14937...)
+

2.74874...ξ − 1.63455...
(2ξ2 − 1.29875...ξ + 2, 79150...)

]
. (3.8)

Applying the conformable fractional Laplace inverse transform to the both sides of equation
(2.7) we obtain

L−1
α {Ψ (ξ)} ≈ 1

6
L−1

α

{
−0.17437...

(ξ + 2.14937...)

}
+

1
6
L−1

α

{
2.74874...ξ − 1.63455...

(2ξ2 − 1.29875...ξ + 2, 79150...)

}
.

By linearity of L−1
α we get

L−1
α {Ψ (ξ)} = −1

6
L−1

α

{
0.17437...

(ξ + 2.14937...)

}
+

1
6
L−1

α

{
2.74874...ξ

(2ξ2 − 1.29875...ξ + 2, 79150...)

}

− 1
6
L−1

α

{
1.63455...

(2ξ2 − 1.29875...ξ + 2, 79150...)

}
.

To facilitate and simplify our calculation we must rewrite the second denominator as we apply
the property of Theorem 2.4

(
Lα

{
e−a xα

α f (x)
}
(ξ) = Fα(ξ + a), ξ > |a|

)
.

Y (x) ≈ −1
6
L−1

α

{
0.17437...

(ξ + 2.14937...)

}
+

1
12
L−1

α

{
2.74874...ξ

(ξ − 0.325...)2 + 1.29012...

}

− 1
12
L−1

α

{
1.63455...

(ξ − 0.325...)2 + 1.29012...

}
.

Finally we conclude that

Y(x) ≈ −0.029061... e−(2.14937... xα

α ) + 0.22906... e(0.325... xα

α ) cos
(√

1.29012...
xα

α

)

− 1.63455...
12
√

1.29012...
e(0.325... xα

α ) sin
(√

1.29012...
xα

α

)
.

Hence a result as required.

Problem 3 :
Now, we will use the conformable fractional Laplace transform method to find the induced

deflection function Y(x) of a cantilever beam subjected to a uniform distributed load with
intensity W0 on half of the beam span, as illustrated in the figure bellow.

Y(4α)(x) =
W(x)

EI
. (3.9)

Where E and I are respectively the Young’s modulus of the beam material and the section
moment of inertia of the beam and

W(x) =

{
W0 if 0 ≤ x ≤ L

2 ,

0 if L
2 ≤ x ≤ L.
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Figure 3.1: A cantilever beam subjected to uniform distributed load.

Conditions 3 :

Y(3α)(L) = Y(2α)(L) = 0, Y(α)(0) = Y(0) = 0. (3.10)

Solution :

Take the conformable fractional Laplace transform of both sides of equation (2.8) and using
the conditions (2.9) we get :

ξ4Ψ(ξ)−Y3α(0)− ξY2α(0) =
W0

EI
(1− e−ξk)

ξ
, k =

Lα

α2α
.

Since

Lα {W(x)} =
∫ ∞

0
e−ξ xα

α W(x)dαx =
∫ L

2

0
e−ξ xα

α W0dαx

= −W0

ξ

∫ L
2

0
−ξxα−1e−ξ xα

α dx = −W0

ξ

[
e−ξ xα

α

] L
2

0

=
W0

ξ

[
1− e−ξk

]
, k =

Lα

α2α
.

Thus

Ψ(ξ) =
Y(3α)(0)

ξ4 +
Y(2α)(0)

ξ3 +
W0

EI
(1− e−ξk)

ξ5 , k =
Lα

α2α
. (3.11)

Clearly


1. lim

ξ→∞
Ψ(ξ) = 0,

2. lim
ξ→∞

ξΨ(ξ) = 0 (bounded).

Then we apply the conformable fractional Laplace inverse transform on all equation (2.10)
to get the solution.

L−1
α {Ψ(ξ)} = L−1

α

{
Y(3α)(0)

ξ4

}
+ L−1

α

{
Y(2α)(0)

ξ3

}
+ L−1

α

{
W0

EI
(1− e−ξk)

ξ5

}
, k =

Lα

α2α
.
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From the property
(
Lα {xp} (ξ) = α

p
α

Γ(1+ p
α )

ξ1+ p
α

, ξ > 0, p
α > −1

)
, we get

L−1
α

{
Y(3α)(0)

ξ4

}
= Y(3α)(0)L−1

α

{
ξ4
}

=
Y(3α)(0)

α3Γ(1 + 3)
α3Γ(1 + 3)

ξ(1+3)
, p = 3α

=
Y(3α)(0)

24α3 x3α.

similarly

L−1
α

{
Y(2α)(0)

ξ3

}
=

Y(2α)(0)
6α2 x2α.

Let approach the exponential by two first terms of expansion
(
e−ξk ≈ 1− ξk

)
, then

L−1
α

{
W0

EI
(1− e−ξk)

ξ5

}
≈ W0

EI
L−1

α

{
1
ξ5 +

1
ξ5 −

(ξk)
ξ5

}

=
W0

EI

(
2

120α4 x4α − k
24α3 x3α

)
.

Hence, the solution is given as

Y(x) ≈ Y(3α)(0)
24α3 x3α +

Y(2α)(0)
6α2 x2α +

W0

EI

(
2

120α4 x4α − k
24α3 x3α

)
.

It is easy to use the conditions to calculate Y(3α)(0) and Y(2α)(0).
Finally, the solution of equation (2.8) is given as:

Y(x) ≈


Y(3α)(0)

24α3 x3α + Y(2α)(0)
6α2 x2α + W0

EI

(
2

120α4 x4α − k
24α3 x3α

)
if0 ≤ x ≤ L

2 ,

0 if L
2 ≤ x ≤ L.

4 Conclusion

We conclude that the conformable fractional Laplace transform can be used in solving the
most difficult fractional differential equations and systems, as we provide in the solution of
Problem 1 and Problem 2. Also, this fractional transform has many applications in physics
and engineering, as mentioned in Problem 3.
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plied to a fractional IHCP, Inverse Prob. Sci. Eng. 17(2) (2009), 229–243.

[17] K. Oldham, J. Spanier, The Fractional Calculus, Theory and Applications of Differentiation
and Integration of Arbitrary Order, Academic Press, USA, 1974.

[18] F. S. Silva, D. M. Moreira, M. A. Moret, Conformable Laplace Transform of Fractional
Differential Equations. J. axioms, 7(3) (2018), 50. DOI: 10.20944/preprints201807.0025.v1

http://dx.doi.org/10.37394/23206.2021.20.48
http://dx.doi.org/10.18514/MMN.2016.1635
http://dx.doi.org/10.20944/preprints201807.0025.v1

	1
	2
	Introduction
	The main theorem and some particular cases
	Closed form of well defined solutions of the system (1.2)
	Particular cases
	The solutions of the equation xn+1=( axn-2xn-1xn+bxn-1xn-2+cxn-2+d) /( xn-2xn-1xn) 

	The solutions of the system (1.2) with  a=b=c=d=1

	Proof of the Main Theorem

	3
	Introduction
	The Sum Formula k=0nxkWmk+j2
	Conclusion

	4
	Introduction
	Auxiliary facts and results
	Main result
	Example
	Conclusion

	5
	Introduction
	Preliminaries
	Standard single valued neutrosophic metric space
	Properties of standard single valued neutrosophic metric space

	Standard single valued neutrosophic continuous mappings
	Conclusion

	6
	Introduction
	Preliminaries
	 Fourier transform and function spaces
	DN map and integral identity
	Faddeev's Green's function and layer operator

	Reconstruction results
	Reconstruction in two dimensions
	Reconstruction in higher dimensions

	Proof strategy
	Preliminary reductions
	Reconstruction at the boundary

	Nachman's method
	Beltrami equation
	Boundary integral equation

	Open problem, conjecture, and discussion

	7 
	Introduction
	Fractional-Order Derivatives
	The Fractional-Order Derivative with Sliding Fixed Memory Length
	Fractional derivative of some elementary functions
	New fractional derivative of the power function
	Fractional derivative of the exponential function

	Derivative of a periodic function
	Fractional derivative of some fundamental periodic functions

	An interpolation property
	Comparison between some results of classical fractional-order derivatives and fractional order derivatives with sliding fixed memory length 
	Fractional-order autonomous system with exact periodic solution

	Conclusion

	8
	Introduction
	Basics of conformable fractional Laplace transform
	 Generalization of fractional Laplace transform 

	Applications
	Conclusion


