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Abstract

¨�¯d�� T¶z�t�� �A�m� ��AJ �h� Yl� �wO��� w¡ r�@m�� £@¡ �� �dh��

��w�� ��d�tF� Annkm§ �y�¤ �ym`�� �l`t�� �A�� ¨� �m`t�� Y�� T�AR³A� CwOl�

Tyn� A¾d§d�� r��� �kK�¤ ,Tyfy�®t�� TybO`�� �AkbK�� T}A�¤ ,Tflt�m�� �AkbK��

CwO�� �A�� ¨� Attention Residual U-Net ¤ Attention U-Net Ah��ry�t�¤ U-Net
Ynb�� �yyq�¤ ��CAbt�¯� �¶At� �Rw� .¨�¤rtk�³� rh�m�� Cw} ��d�tFA� TybW��

�� ¨� Ahty�A`� �� ¾®S� ,�AkbK�� £@¡ ��� ��d�tF� A§�z� �wRw� Cw�@m��

.CwOl� Ty�¯d�� T¶z�t�� ��AK�

,Tyfy�®t�� TybO`�� �AkbK�� ,�ym`�� �l`t�� ,Ty�¯d�� T¶z�t�� - Tysy¶r�� �Amlk��

.Ty�¤rtk�³� T§rh�m�� CwO�� , Attention Residual U-Net , Attention U-Net , U-Net

The goal of this dissertation is to gain a thorough understanding of the field of
image semantic segmentation as well as a deep dive into the domain of deep learning
and how we can use various networks, particularly convolutional neural networks
and, more specifically, the U-Net architecture and its variants Attention U-Net and
Attention Residual U-Net, in the medical imaging field with electron microscopy
images. The tests and evaluation of the mentioned architectures demonstrate the
advantages of using such networks and their effectiveness in solving image semantic
segmentation problems.

Keywords — Semantic segmentation, deep learning, convolutional neural net-
works, U-Net, Attention U-Net, Attention Residual U-Net, electron microscopy im-
ages.
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RMSprop Root Mean Squared Propagation

Adagrad Adaptive Gradient Algorithm

LR Learning Rate

FC Fully Connected

ResNet Residual Neural Network

NLP Natural Language Processing

SDAE Stacked Denoising Auto-Encoder

VAE Variational Auto-Encoder

JIT Just-In-Time

FTRL Follow The Regularized Leader

API Application Programming Interface

ALUS Arithmetic Logic Units

DRAM Dynamic Random Access Memory

ASICs Application-Specific Integrated Circuits

GLS Gray Level Segmentation

CRF Conditional Random Field

ILSVRC ImageNet Large Scale Visual Recognition Challenge

FCN Fully Convolutional Network

ASPP Atrous Spatial Pyramid Pooling

PSPNet Pyramid Scene Parsing Network

EM Electron Microscopy

ISBI International Symposium on Biomedical Imaging

ssTEM serial section Transmission Electron Microscopy

hdf5 Hierarchical Data Format version 5

npy NumPy array file
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General introduction

Since the early days of computer vision, image segmentation has been a funda-
mental problem. Many visual understanding systems rely on image segmentation
and object detection to make sense of images (or video frames), including medical
image analysis (e.g., tumor boundary extraction and tissue volume measurement),
autonomous vehicles (e.g., navigable surface and pedestrian detection), and video
surveillance, to name a few.

On one hand, semantic image segmentation (classifying pixels with semantic la-
bels) and instance segmentation (partitioning of specific objects) are two ways to
approach image segmentation (panoptic segmentation). Object categories (e.g., hu-
man, automobile, tree, sky) are applied at the pixel level, making semantic segmen-
tation a more difficult task than whole-image classification, which assigns a single
label to the entire image. Each object of interest in an image can be detected and
separated using instance segmentation, extending the semantic segmentation pro-
cess (e.g., individual people). From early methods such as histogram-based methods,
region growth, k-means clustering, and watershed methods to more complex algo-
rithms like active contours, graph cuts, and Markov random fields.

On the other hand, DL models have produced a new generation of image seg-
mentation models that outperform the performance of the older methods, typically
obtaining the highest accuracy rates on standard benchmarks. In the field, this has
led to a paradigm change.

Throughout the contents of this dissertation, we have explained in great detail
several approaches and strategies that allow the implementation of image seman-
tic segmentation. The content of the present dissertation can be described as follows:

We begin the first chapter by introducing several terms and concepts that are
significant and related to deep learning (DL). Then we describe some basic DL
architectures such as CNN, RNN, LSTM, ED and AE Models, and GANs. Fol-
lowing that, we provide an overview of some prominent DL frameworks, such as
TensorFlow, PyTorch, and Keras. Finally, we provide and discuss some DL-related
hardware, which includes CPUs, GPUs, and TPUs.

In the second chapter, we begin by offering a broad understanding of image se-
mantic segmentation by defining and comparing it to other computer vision tasks,
providing similar approaches and techniques to semantic segmentation, and explain-
ing the link between this last and DL. This is followed by a look at some common
CNN designs, including LeNet-5, AlexNet, VGG-16, ResNet, GoogleNet, and Mo-
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bileNet, where we identify the most significant features and components that make
them up using graphics and tables. Finally, we discuss the DL-Based image seg-
mentation methods, including explanations and specifics, so we explore Fully con-
volutional networks, SegNet, DeepLab, Pyramid scene parsing network, and U-Net
and its variants (Attention U-net, Attention Residual U-net).

In the third and final chapter, we present an application to semantic segmentation
of electron microscope images. We begin by defining the problem we are trying to
solve. Then, we describe the dataset we will be using and how it will be augmented.
We next go to the network design details employed to solve the problem and how
they were trained. After that, we conclude by describing our experiments, tests,
and results. The obtained results are reported in tables and evolution curves of
metrics of each model. In addition, the predictions of each trained model are shown
in a collection of images. Finally, we analyze each model and make a comparison
between their performances.

12



Chapter 1

Deep Learning

1.1 Introduction
The structure of the human brain influenced the fundamental paradigm for DL in
an attempt to build structures that learn similarly to humans. As a result, several
foundational terms of DL can be traced back to neurology.

In this chapter, we will cover the topic of DL, starting by giving some general
concepts including ANNs, perceptrons, MLPs, activation functions, cost functions,
gradient descent, LR, and finally, forward propagation and backpropagation. Then,
we describe DNN architectures used widely by the computer vision community, in-
cluding CNN, RNN, and LSTM. After that, we go through the popular frameworks
used in DL: TensorFlow, PyTorch, and Keras. Finally, we introduce the hardware
used by DL techniques such as CPUs, GPUs, and TPUs.

This chapter will make terms, concepts and approaches clearer using solid defi-
nitions, details and examples.
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1.2 General concepts

1.2.1 Definitions

DL is a branch of machine learning that deals with ANNs, which are algorithms in-
spired by the biological structure and function of the brain. It enables computational
models constructed of numerous processing layers to learn data representations with
varying levels of abstraction.

These methods have significantly advanced the state-of-the-art in speech recog-
nition, visual object recognition, object detection, and a variety of other fields such
as drug discovery and genomics [1].

DL reveals complicated structures in large data sets by using the backpropaga-
tion algorithm to demonstrate how a machine’s internal parameters that are used
to compute the representation in each layer from the representation in the previous
layer should be adjusted.

One of the critical distinctions between machine learning and DL models is fea-
ture extraction; in machine learning, feature extraction is performed by humans,
whereas DL models figure it out on their own.

1.2.2 Artificial neural networks

ANNs are influenced by the way biological neural systems process information, such
as the brain [2].

The data processing system is made up of numerous highly interconnected pro-
cessing elements called neurons that collaborate to fix targeted problems. ANNs,
like human beings, learn by example and its learning process, just like learning in
biological systems, involves changes to the synaptic connections that exist between
neurons.

Figure 1.1: Illustration showing the similarities between biological neuron and artificial
neuron
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1.2.3 Perceptrons

A single-layer neural network is referred to as a perceptron. They are made up of
four major components: input values, weights and bias, net sum, and an activation
function [3].

The procedure begins by multiplying all the input values by their weights. The
weighted sum is then computed by adding all the multiplied values together.

The weighted sum would then be applied to the activation function, yielding the
output of the perceptron. The activation function is crucial in ensuring that the
output is mapped between required values such as (0,1) or (-1,1).

It is critical to understand that the weight of an input indicates the strength of a
node. Likewise, the bias value of an input allows you to shift the activation function
curve up or down.

Figure 1.2: Illustration of a Perceptron

1.2.4 Multi-Layer Perceptrons

Highly complex tasks would be impossible for a single neuron to perform. As a
result, we use neuron stacks to produce the ideal outputs. The most basic MLP
would consist of an input layer, a hidden layer, and an output layer [3].

Figure 1.3: Architecture of a Multi-Layer Perceptron containing 2 hidden layers

Each layer contains multiple neurons, and each layer’s neurons are all connected
to the neurons in the next layer; these networks are also referred to as FC networks
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MLPs are frequently used for classification, particularly when classes are exclu-
sive, as in the classification of digit pictures (in classes from 0 to 9). After using an
activation function, the output layer returns the probability of belonging to each of
the classes.

1.2.5 Activation functions

An activation function is a critical part of an ANN. It determines whether a neuron
is activated, and it defines the output of the input, or set of inputs of that node [4].

A neural network that lacks an activation function is a linear regression model;
the weights and biases would perform a linear transformation without the activation
feature. Among the most well-known activation functions we find Sigmoid function,
Tanh, ReLU, Softmax, etc.

1.2.5.1 Sigmoid

The Sigmoid or Logistic function is one of the most commonly used activation func-
tions [5].

It is defined as follows:

Sigmoid(x) =
1

1 + e−x

The sigmoid transformation produces a continuous range of values between 0
and 1.

Figure 1.4: Sigmoid activation function

1.2.5.2 Tanh

The Hyperbolic Tan can also be called as symmetric sigmoid is, in fact, a scaled
sigmoid function. Keep in mind that the slope for tanh is stronger than for sigmoid
(derivatives are steeper).

It is defined as follows:

tanh(x) = 2sigmoid(2x)− 1

which is:
f(x) = tanh(x) =

2

1 + e−2x
− 1
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Figure 1.5: Hyperbolic Tangent activation function

1.2.5.3 ReLU

ReLU is another popular function, and it’s preferred over sigmoid in recent networks.
it is simply defined as follows:

f(x) = max(x, 0)

Figure 1.6: Rectified Linear Units activation function

The main advantage of using ReLU is that its derivative value is constant for
all inputs greater than 0. The constant derivative value allows the network to train
more quickly [6].

1.2.5.4 Softmax

The softmax function is a form of sigmoid function that is particularly useful when
dealing with multi-class classification problems, It can be defined as the sum of
several sigmoid functions [7].

S(xi) =
exi∑n
j=1 e

x
j

The sigmoid function would be appropriate if we had a binary output; however,
if we have a multiclass classification problem, softmax makes it extremely simple to
assign values to each class that can be easily interpreted as probabilities.
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Figure 1.7: Multi-class classification with NN and softmax function

1.2.6 Batch normalization

As an algorithmic technique, batch-normalization speeds up and improves the sta-
bility of DNNs [8]. After BN alters the signal at each hidden layer, it looks like
this:

(1) µ =
1

n

∑
i

Z(i) (2) σ =
1

n

∑
i

(Z(i) − µ)

(3) Z(i)
norm =

(Z(i) − µ)√
σ2 − ε

(4) Z̆ = γ ∗ Z(i)
norm + β

Using (1) and (2), the BN layer first calculates the mean µ and standard de-
viation σ of the activation values throughout the batch (2). The activation vector
Z(i)
norm is then normalized with (3). As a result, the output of each neuron follows

a conventional normal distribution across the batch (For numerical stability, ε is
utilized as a constant).

Figure 1.8: Batch normalization first step. Example of a 3-neurons hidden layer, with a
batch of size b. Each neuron follows a standard normal distribution from [9].

By applying a linear transformation with two trainable parameters γ and β, it
calculates the layer’s output Z(i)

norm at the end (4). This phase allows the model to
select the best distribution for each hidden layer by modifying two parameters: γ
allows to alter the standard deviation; β permits to alter the bias by moving the
curve to the right or left.
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Figure 1.9: Benefits of γ and β parameters. Modifying the distribution (on the top) allows
us to use different regimes of the nonlinear functions (on the bottom) from [9]

The network calculates the mean µ and standard deviation σ for the current
batch at each iteration. When γ and β are ready, they are trained using gradient
descent and an EMA to provide more weight to recent iterations.

1.2.7 Performance metrics

After creating a machine learning model capable of forming classifications, the next
step is to calculate its predictive capability. We will need to divide our data into a
training set and a validation set to calculate these metrics.

1.2.7.1 Intersection-Over-Union

Simple loss functions are commonly used to train DNNs (e.g., softmax loss). These
loss functions are suited for conventional classification tasks where overall classifi-
cation accuracy is the criterion. The two classes (foreground and background) are
highly unbalanced when it comes to image segmentation. Any image segmentation
technique’s performance is often measured using the IoU approach [10]. Mean IoU
is a typical semantic image segmentation assessment metric that computes the IoU
for each semantic class before averaging over all classes. IoU is defined as follows:

IOU =
True Positive

(True Positive+ False Positive+ False Negative)
.

The predictions are accumulated in a confusion matrix, weighted by a variable, and
the metric is then calculated.

1.2.7.2 Accuracy

One of the most important parameters for assessing machine learning models is
accuracy. Casually, accuracy refers to the percentage of correct predictions made by
our model. The following is the formal definition of accuracy:

Accuracy =
Number of correct predictions

Total number of predictions
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The following formula can be used to calculate accuracy if we had positive and
negative numbers in a binary classification:

Accuracy =
True Positives+ True Negatives

True Positives+ True Negatives+ False Positives+ False Negatives

1.2.7.3 Precision

Precision is a metric that measures how many correct positive predictions have been
made. As a result, precision estimates the accuracy of the minority class. The
percentage of properly predicted positive instances divided by the total number of
positive examples anticipated is used to compute it.

Precision =
True Positives

False Positives+ True Positives

1.2.7.4 Recall

The recall is a metric that measures how many correct positive predictions were pro-
duced out of all possible positive predictions. Unlike precision, which only considers
the accurate positive predictions out of all positive predictions, recall considers the
positive predictions that were missed. In this approach, recall offers some indication
of the positive class’s coverage.

Recall =
True Positives

True Positives+ False Negatives

1.2.7.5 F-Measure (F1 Score)

Because classification accuracy is a single metric used to describe model performance,
it is extensively utilized. F-measure is a technique for combining precision and recall
into a single metric.

Neither precision nor recall can give the complete picture on their own. We
might have high precision but poor recall, or vice versa. With the F-measure, it
may convey both worries with a single score.

Once precision and recall for a binary or multiclass classification problem have
been determined, the two scores may be combined to calculate the F-Measure. This
is how the conventional F measure is calculated:

F1Score = 2 ∗ Precision ∗ Recall
Precision + Recall

1.2.7.6 Jaccard similarity coefficient

The Jaccard similarity coefficient is a simple, intuitive formula that can be used
for various applications, including image segmentation and other activities. Image
segmentation quality is evaluated using this metric, which measures the similarity
between the ground truth and segmentation results. The Jaccard similarity coeffi-
cient is defined as: let S and G denote the segmentation result and ground truth,
respectively.

E =
A(G ∩ S)

A(G ∪ S)
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Where A(x) is the operation of counting quantity. The numerator in the equation
refers to the number of matching pixels or true positives. The total number of
matching and mismatched pixels is counted in the denominator [11].

1.2.8 Loss functions

When creating a neural network, the network tries to predict the output as similar
to the existing value as possible. The loss or cost function also called the error func-
tion, is used to assess the network’s accuracy. When the network makes mistakes,
the cost or loss function attempts to penalize it.

While running the network, our goal is to improve prediction accuracy and re-
duce error, thereby minimizing the loss function. The most optimized output is the
one with the lowest cost or loss function value.

The learning process is centered on reducing costs. Depending on the type of
learning task, loss functions can be divided into two major categories — Classifica-
tion and regression losses [12].

1.2.8.1 Regression losses

• Mean Square Error/Quadratic Loss/L2 Loss

MSE =

∑n
i=1(yi − ŷi)2)

n

• Mean Absolute Error/L1 Loss

MAE =

∑n
i=1 |yi − ŷi|

n

• Mean Bias Error
MBE =

∑n
i=1(yi − ŷi))

n

1.2.8.2 Classification losses

• Hinge Loss/Multi class SVM Loss

SVMLOSS =
∑
j 6=yi

max(0, sj − syi+ 1)

• Cross Entropy Loss/Negative Log Likelihood

CrossEntropyLoss = −(yilog(ŷi) + (1− yi)log(1− ŷi))

• Focal Loss
FocalLoss = FL(pt) = −(1− pt)γlog(pt)

FL function for binary classification is a function that generalizes binary cross-
entropy by introducing a hyperparameter called the focusing parameter that allows
hard-to-classify examples to be penalized more heavily relative to easy-to-classify
examples [13].
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1.2.9 Hyperparameters

DL models have several hyperparameters, and determining the ideal configuration
for these parameters is not easy. Setting the hyperparameters necessitates experience
and a lot of observation and experimentation. Configuring hyperparameters, such as
gradient descent, LR, epochs, steps per epoch, and batch size, is not straightforward.
They function as knobs that can be adjusted throughout the model’s training. We
must discover the optimal value of these hyperparameters for the model to produce
the best results.

1.2.9.1 Gradient descent

Gradient descent is among the most popular optimization algorithms, and it has
always been the most common way to optimize neural networks [14].

Gradient descent has three variants that differ in how much data is used to
compute the gradient of the objective function.

• Batch gradient descent
θ = θ − η · ∇θJ(θ)

• Stochastic gradient descent

θ = θ − η · ∇θJ(θ;x(i); y(i))

• Mini-batch gradient descent

θ = θ − η · ∇θJ(θ;x(i:i+n); y(i:i+n))

Figure 1.10: 3D Gradient Descent

However, vanilla mini-batch gradient descent does not guarantee good conver-
gence and presents a few challenges, As a result, some algorithms are widely used
by the DL community to address those challenges such as Momentum [15], Nesterov
accelerated gradient [16], Adagrad [17], RMSprop, Adam [18], AdaMax [18], Nadam
[19], etc.

Because the method is iterative, we must obtain the results numerous times to
obtain an ideal outcome. The gradient descent’s iterative quality aids an under-fitted
graph in achieving the best possible fit to the data.
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(a) Step 1 (b) Step 3

(c) Step 8 (d) Step 12

Figure 1.11: Gradient descent optimization from [20]

The LR is a much-needed parameter in gradient descent. As seen in the figures
above (red curve), the steps are larger at first, indicating a higher LR, and as the
point decreases, the LR decreases due to the smaller step size. In addition, the loss
function is dropping (which is a good sign).

1.2.9.2 Learning rate

LR is an important hyperparameter to optimize for effective DNN training. Even
with a constant LR as a starting point, selecting a good constant value for training
a DNN is difficult [21].

Dynamic LRs entail multistep tuning of LR values at various stages of the train-
ing process and provide high accuracy and rapid convergence. The process of tuning
this hyperparameter is a delicate balancing act between underfitting and overfitting.
When a model is unable to minimize error for either the test or training set, this is
known as underfitting. The underlying complexity of the data distributions is too
complicated for an underfitting model to fit. On the other hand, when a model is so
powerful that it fits the training set too well, overfitting occurs, and the general-
ization error rises. Overfitting can also occur if the LR is too low. Large LRs assist
to keep training consistent, but if they are too high, the training will diverge.

In simple words, the LR is the rate at which we descend towards the cost function
minima. We should choose the LR carefully because it should not be so high that
the optimal solution is missed, nor should it be so low that the network takes forever
to converge.
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Figure 1.12: Learning Rate expletive illustration

1.2.9.3 Batch size

The batch size is a hyperparameter that defines the number of samples to work
through before updating the internal model parameters. Think of a batch as a for-
loop iterating over one or more samples and making predictions. When the batch
is over, the error value is calculated based on comparing the predictions and the
expected output. From this error, the update algorithm is used to improve the
model. A training dataset can be divided into one or more batches.

1.2.9.4 Epochs

It is called an epoch when an entire dataset is only processed through the neural
network once. We break the epoch into numerous smaller batches since one epoch is
too large to provide the computer all at once. Because one epoch is insufficient for
updating the weights, we employ numerous epochs. As the number of epochs grows,
the weights in the neural network are modified more often, and the curve shifts
from underfitting to the optimum to overfitting, as seen in (Figure 1.13). There is
no set number of epochs. However, we can assume that the number of epochs is
proportional to the diversity of the data.

Figure 1.13: Underfitting, Optimum and Overfitting
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1.2.9.5 Steps per epoch

The number of times the training loop in the learning algorithm will run to update
the parameters in the model is known as step per epoch. It will process a block
of data, which is essentially a batch, at each loop iteration. The gradient descent
technique is commonly used in this loop. Because this will use all the data points,
one batch size worth at a time, the steps per epoch are traditionally calculated as
train length divided by the batch size. In the case of augmented data, we multiply
the previous operation by 2 or 3, and so on. However, if the training has been going
on for too long, we’ll just keep to the old method.

1.2.10 Forward propagation and backpropagation

1.2.10.1 Forward propagation

The input flow via the hidden layers to the output layers is referred to as forward
propagation. It is the movement of information in only one direction. The layer
input will provide information to hidden layers, generating output that keeps moving
in the same direction without going backward.

1.2.10.2 Backpropagation

Backpropagation of error is a technique used to train feed-forward neural networks.
An iterative procedure that adjusts network weight parameters based on the gradient
of an error measure is a specific implementation of backpropagation. The procedure
is carried out by calculating an error value for each output unit and then propagating
the error values through the network [22].

Figure 1.14: Backpropagation expletive illustration

In simple terms, when we define a neural network, we specify arbitrary weights
and biases for each node. We can calculate the network’s error after receiving the
output for a single iteration. This error, along with the gradient of the cost function,
is then fed back into the network to update the network’s weights. These weights
are then updated to reduce errors in subsequent iterations, so backpropagation is
updating weights using the gradient of the cost function.

1.2.11 Data augmentation

When there are just a few training instances available, data augmentation is needed
to teach the network the required invariance, and resilience [23]. It is the process
of applying a sequence of deformations to a set of labeled training data to gener-
ate more diverse and extra training data. Geometric transformations (flipping and
rotation, clipping and scaling), color space transformations (alteration of RGB chan-
nel intensities), kernel filters, mixing images, random erasing, adversarial training,
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neural style transfer, noise injection, and meta-learning schemes are just a few of
the data augmentation techniques that have been proposed [24][25]. The most fun-
damental premise of data augmentation is that the deformations used should not
modify the labels’ semantic meaning [24].

Figure 1.15: Representation of data augmentation

1.2.12 Global Average Pooling

Global Average Pooling replaces the traditional FC layers in CNN. The aim is to
construct one feature map for each matched category of the classification task in
the final Multilayer Perceptron layer. Rather than constructing FC layers on top of
the feature maps, we take the average of each feature map and feed the resultant
vector directly into the softmax layer. Global average pooling has an advantage
over FC layers in that it is more natural to the convolution structure by enforcing
correspondences between feature maps and categories. As a result, the feature maps
may be thought of as category confidence maps. Another benefit of global average
pooling is that there are no parameters to tune. Thus overfitting is prevented at
this layer [26].

1.3 Basic deep learning architectures

1.3.1 Convolutional neural networks

CNNs are the obvious choice for image recognition tasks because of the capabil-
ity of multi-layer networks trained with gradient descent to learn complex, high-
dimensional, nonlinear mappings from extensive collections of examples. Unlike the
traditional models of pattern recognition that have problems dealing with large im-
ages, which may have several hundred variables (pixels) [1].

There are four important elements (layers) when stacked together they make a
CNN architecture, which are convolutional layers, nonlinear layers, pooling
layers and FC layers.
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Figure 1.16: Architecture of a simple CNN from [27]

A convolutional layer is where the extraction of various features from the input
images happens using a filter (kernel) that makes a dot product with the input im-
age; the resulting output is a feature map that is fed to a nonlinear layer, which
applies an activation function (ReLU, Softmax, etc) to feature maps, thus enabling
the network to model nonlinear function.

Usually, a convolutional layer is followed by a pooling layer that uses statistical
information (such as mean, max) to decrease the size of the feature maps by replac-
ing small neighborhoods.

Lastly, an FC layer is where all of the previous outputs of the previous layers get
flattened and fed to some mathematical functions to get the last result see (Figure
1.16).

Over the years, many successful CNNs architectures helped make smaller num-
bers of parameters than FC neural networks because all of the receptive fields in a
layer share parameters(weights). Some of the widely known architectures include
AlexNet [21], VGGNet [22], ResNet [28], and GoogLeNet [29].

1.3.2 Recurrent neural networks and the LSTM

For sequential data, RNNs are one of the powerful models for data. RNNs can
estimate the next value of the input data based on the old information (memory)
according to a special mechanism.

RNNs are used in many fields such as speech recognition, machine translation,
music composition, gamma learning, stock prediction, self-driving cars, to name a
few.

The RNN consists of 3 layers, the input and output are the first and last layers
in this order, and the middleware is the layer that contains a complex form of neural
networks. A cyclic form characterizes this layer; in each cycle, the network makes a
prediction until it ends at the desired output see (Figure 1.17).
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Figure 1.17: Architecture of a simple RNN

Since many years, developers have developed several types of RNN such as El-
man networks [30], Jordan networks [31], and Echo State Networks [32]. Moreover,
in the last few years, neural networks based on LSTM cells have become the most
performing neural network.

The problem with RNNs is that they have a very short-term memory, and in
many real-world applications, they will have terrible results with long sequences and
often suffer from problems such as vanishing/exploding gradients. LSTMwas the key
to avoid these problems, with an appropriate gradient-based learning algorithm[33].

The LSTM architecture, see (Figure 1.18). includes three gates (input gate,
output gate, forget gate) enforcing constant error flow through internal states of
special units called memory cells that store values for arbitrary time intervals.

Figure 1.18: Architecture of LSTM from [34]

1.3.3 Encoder-Decoder and Auto-Encoder Models

ED models are widely used, and they were proven to be very effective for dealing
with translation problems as well as for sequence models in NLP [35].

An ED model is architectured with two networks in mind, an encoder network
(might be of any type like CNN, RNN) and a corresponding decoder network; the
encoder takes a sequence as the input and compresses it into a fixed-length numeric
vector (feature), the decoder then predicts the output from that vector see (Figure
1.19).
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Figure 1.19: Architecture of an Encoder-Decoder from [36]

An AE is a particular variant of the ED models with a distinguished change. The
number of neurons is the same in the input and the output (called reconstructed
input). Therefore we can expect that the input and the output to be the same
sequence of data.

There are many well-known AE models such as the SDAE [37], and the VAE
[38], etc.

Figure 1.20: Architecture of Auto-Encoder from [39]

1.3.4 Generative Adversarial Networks

One of the most recent models of DL are GANs, they are used heavily in image
manipulation and generation, and they can also be deployed in tasks like under-
standing risk, recovery in health care and even in pharmacology, etc.

They consist of two crucial components a generator network G and a discrimi-
nator network D. The mechanism behind it is by feeding a random noise vector z
to G so it can use it to generate fake samples that are fed to D. In meanwhile, real
images are fed to D and its job is to try and distinguish real data from fake data.
If discriminator D fails in its job in distinguishing real data from fake data, then
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we get a well-trained generator model G, which has learned the distribution of real
data [40].

Figure 1.21: Architecture of Generative Adversarial Networks

1.4 Deep learning frameworks

1.4.1 TensorFlow

TensorFlow is a free and open-source tool for building and deploying machine learn-
ing models. It incorporates all of the standard algorithms and patterns required
for machine learning, concentrating on the scenario rather than learning all of the
fundamental math and logic. It is targeted at anyone from hobbyists to technical de-
velopers to artificial intelligence experts pushing the envelope. It also allows models
to be deployed to the internet, cloud, smartphone, and embedded systems [41].

Figure 1.22: Tensorflow logo

TensorFlow has the following features:

• Its essence is somewhat similar to NumPy, but with GPU support;

• It also supports distributed computing (across multiple devices and servers);
It has a kind of JIT compiler that helps it to customize computations for
speed and memory usage: it extracts the computation graph from a Python
function, optimizes it (for example, by pruning unused nodes), and then runs it
efficiently (e.g., by automatically running independent operations in parallel);

• Computation graphs can be exported to a portable format, allowing to train
a TensorFlow model in one environment (for example, Python on Linux) and
then run it in another (for example, Java on an Android device). It includes
auto diff as well as some excellent optimizers like RMSProp, Nadam, and
FTRL, allowing you to effectively reduce a variety of loss functions.
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• TensorFlow has a lot of functionality built on top of these key features: the
most critical is tf.keras, but it also has data loading and preprocessing ops
(tf.data, tf.io, and so on), gif processing ops (tf.image), signal processing
ops (tf.signal), and etc [42].

1.4.2 PyTorch

PyTorch is an end-to-end machine learning platform with a user-friendly front-end,
distributed training, and ecosystem of tools and libraries that enable quick, modular
exploration and productive development. PyTorch has a rich ecosystem of software
and libraries for expanding it and promoting growth in fields ranging from machine
vision to reinforcement learning, thanks to an engaged group of researchers and
developers [43].

Figure 1.23: Pytorch logo

PyTorch is well-supported on major cloud platforms, allowing for frictionless
deployment and scaling through pre-configured images, wide GPU training, and the
ability to execute models in a manufacturing environment, among other features.

1.4.3 Keras

Keras is a human-centric API, not a machine-centric one. Keras adheres to best
practices for minimizing cognitive burden, such as providing reliable and easy APIs,
reducing the number of user activities needed for typical use cases, and providing
transparent and actionable error messages. It comes with a lot of documents and
developer manuals [44].

Figure 1.24: Keras logo

Keras provides the opportunity to do new experiments, test more hypotheses,
and do better than the competition. Keras is an industrial-strength architecture
built on top of TensorFlow 2.0 that can scale to massive clusters of GPUs or an
entire TPU pod. It is not only feasible; it is also easy.

Keras is a crucial component of the TensorFlow 2.0 ecosystem, and it covers
every aspect of the machine learning process, from data management to hyperpa-
rameter training to deployment solutions.
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Keras is used by CERN, NASA, the National Institutes of Health, and sev-
eral other research institutions worldwide. it has the low-level stability to execute
any research hypothesis while still providing high-level convenience functionality to
shorten experimentation intervals.

Keras is the DL solution of choice for many university courses due to its ease
of use and emphasis on user experience. It is generally viewed as one of the most
effective methods for studying DL.

1.5 Hardware used in deep learning

1.5.1 Central processing units

A CPU is a computing machine that includes several ALUs, a Control Unit to control
certain ALUs, a Cache Memory, and a DRAM. Since CPUs are more powerful, com-
puters can perform any task with precision and versatility. This versatility comes
from the CPU’s memory power, which can exceed 1TB of RAM, allowing it to fetch
memory packages in the RAM faster and with lower latency CPUs, unlike GPUs, do
not yet meet the stringent standards of DL. CPUs, on the other hand, assist GPUs
by feeding them enough data, and reading/writing files from/to RAM/HDD during
preparation [45].

Many CPUs, including AMD Ryzen 9 3900X, Intel Core i9-9900K, AMD Ryzen
Threadripper 3990X, AMD Ryzen 5 2600, are currently considered the most appro-
priate when it comes to training DL models.

1.5.2 Graphics processing units

GPUs are graphics processors that create polygon-based computer graphics. GPUs
have acquired huge computing powers in recent years, because of the complexity
and desire for realism in recent video games and graphic engines. NVIDIA is the
market leader, with processors with thousands of cores built to compute at nearly
100% performance. It turns out that these processors are also capable of performing
neural network computations and matrix multiplications [46].

GPUs are currently the standard for training DL systems, whether they are
CNNs (CNN) or RNNs (RNN). In only a few milliseconds, they will practice on
massive batches of images, such as 128 or 256 images.

However, they absorb 250 W and need a full PC with an additional 150 W of
power to run. A greater GPU system can use up to 400 watts of power.

ZOTACGeForce GTX 1070, ASUS ROG Strix Radeon RX 570, Gigabyte GeForce
GT 710, and Sapphire Radeon Pulse RX 580 are among the top-rated GPUs used
for training DL neural networks.
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1.5.3 Tensor processing units

From Google-designed ASICs we find TPUs that accelerate machine learning caseloads.
TPUs was designed from the ground up with Google’s extensive machine learning
expertise and leadership. Linear algebra computing, which is extensively used in
machine learning applications, is accelerated by cloud TPU tools.

When training big, complex neural network models, TPUs reduce the time-to-
accuracy. They will converge models that historically took weeks to learn on other
hardware platforms in hours. TPUs in the cloud are tailored to individual workloads.
You may want to use GPUs or CPUs on Compute in some cases. In certain cases,
you might want to run the machine learning workloads on Compute Engine instances
using GPUs or CPUs. In general, you should choose the right hardware for your
workload [47].

1.6 Conclusion
This chapter discussed the most common DL concepts and delved deeper into their
architectures, the main frameworks used by the community, and the hardware re-
quired to achieve the best results.

In the following chapter, we will discuss DL applications in computer vision,
specifically semantic image segmentation.
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Semantic Segmentation

2.1 Introduction
In computer vision, semantic segmentation is considered a challenging task. DL
techniques have immensely enhanced the performance of semantic segmentation in
recent years. Several innovative methods have been proposed, making segmentation
algorithms more efficient and precise, and various new applications have widely used
them.

In this chapter, we will start by giving some general concepts of semantic seg-
mentation, starting by defining the term itself, noting its aims, old methods, and
techniques, and comparing it to other everyday computer vision tasks, and we will
finish by covering the impact of DL in semantic segmentation, as well as the link
between the two. After that, we will go over some of the most typical CNN ar-
chitectures by giving information about its production and content. We will target
LeNet-5, AlexNet, VGG-16, ResNet-50, GoogleNet and MobileNet. Most impor-
tantly, we will go through the state-of-the-art methods in DL-based semantic image
segmentation. These methods include FCN, SegNet, U-net, DeepLab, and PSPNet.

This chapter will attempt to detail the semantic segmentation of images and the
use of DL in this field.
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2.2 General concepts of semantic segmentation

2.2.1 Definition

Semantic segmentation plays a vital role in computer vision. It is the process of
categorizing each pixel as belonging to a specific label. This categorization is part
of scene comprehension, or better interpreting the image’s overall context. It does
not differ between instances of the same item. For example, if an image contains
two women, semantic segmentation assigns the same label to all the pixels for both
women see (figure 2.1).

Many new applications have emerged from this field, such as handwriting recog-
nition, medical imaging, autonomous driving, industrial robots, indoor navigation,
virtual or augmented reality systems, portrait mode in new smartphones, and even
social media filters and virtual make-up, which required the use of semantic segmen-
tation.

Figure 2.1: An example of semantic segmentation

2.2.2 Comparison with other computer vision tasks

Semantic segmentation differentiates itself from other familiar computer vision tasks
like image classification, object detection, and instance segmentation.

The goal of image classification is to appoint one or more category labels to an
entire image. In other words, an image classification algorithm tries to tell us which
objects are present in a given image.

Object detection takes things a step further. It must understand what objects
take place in an image and where they are in the image scene.

In contrast to these two tasks, semantic segmentation has relatively high require-
ments because it aims to accurately divide each object region from the background
region while defining the targeted object’s boundaries. It is far more complicated
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than the other two tasks because it requires fully bridging the semantic gap between
low-level features and high-level semantics [48].

In order to advance the evolution of semantic segmentation, instance segmen-
tation assigns various labels to distinguish instances of objects related to the same
class. As a result, instance segmentation can be characterized as a technique for si-
multaneously handling the problems of object detection, and semantic segmentation
[49].

Figure 2.2: An example of various computer vision tasks

2.2.3 Methods and Techniques

Before the introduction of DL, image segmentation challenges were solved using con-
ventional machine learning approaches such as GLS [50], CRFs [51] or using popular
algorithms like support vector machines, random forest, and K-means clustering.
However, as with most image-related research problems, DL outperformed earlier
solutions and has become state-of-the-art when dealing with semantic segmentation.

2.2.4 Deep learning for semantic segmentation

The significance of scene understanding as a core computer vision problem is il-
lustrated by the fact that a growing number of applications benefit from inferring
knowledge from visual images. Various conventional computer vision and machine
learning techniques have been used in the past to tackle this problem.

Despite their prominence, the DL revolution has reversed conditions so that
many computer vision problems, including semantic segmentation, are now being
solved using deep architectures, typically CNNs, which outperform other approaches
in terms of accuracy and efficiency.
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2.3 Common convolutional neural network archi-
tectures

Certain deep networks have made such substantial contributions to the domain
that they are now broadly accepted standards. This is truly the case for LeNet-
5, AlexNet, VGG-16, ResNet-50, and GoogleNet (InceptionV1). Because of their
significance, they are now used as a basic building block in several segmentation
architectures. As a result, we will devote this section to going over them, with the
help of the legend below see (figure 2.3).

We will use the following mathematical equation to calculate the output of con-
volutional layers: [

n+ 2p− f
s

+ 1

]
∗
[
n+ 2p− f

s
+ 1

]
Where we consider a n ∗ n image as an input, a f ∗ f filter, a padding p, and a

stride s.

Figure 2.3: Legend used for the various architectures from [39]

2.3.1 LeNet-5

LeNet-5 is a pioneering 7-level convolutional network developed by LeCun et al.
in 1998 [52] to recognize handwritten numbers on checks scanned in 32x32 pixel
grayscale input images used by several banks. It is among the most fundamental
architectural designs. It has 61K parameters and two convolutional, and three FC
layers.

This architecture has become the industry standard: convolutions with activa-
tion functions are stacked, layers are pooled, and the network is finished with one or
more completely linked layers. It has the architecture represented in the following
Table, see (Table 2.1).
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Figure 2.4: LeNet architecture from [39]

Layer Feature
Map Size Kernel Size Stride Activation Parameters

Input Image (Grayscale) 1 32x32 - - - -
1 Convolution 6 28x28 5x5 1 tanh 156
2 Average Pooling 6 14x14 2x2 2 tanh 0
3 Convolution 16 10x10 5x5 1 tanh 2416
4 Average Pooling 16 5x5 2x2 2 tanh 0
5 FC 120 1x1 5x5 1 tanh 48120
6 FC - 84 - - tanh 10164

Output FC - 10 - - softmax 850
Total number of parameters 61,706

Table 2.1: LeNet structural details

2.3.2 AlexNet

AlexNet beat all previous competitors in 2012 [53]. The network’s architecture was
quite similar to LeNet, but it was deeper, with 62M parameters and more filters per
layer and layered convolutional layers.

Figure 2.5: AlexNet architecture from [39]

Convolutions, max pooling, dropout, data augmentation, ReLU activations, and
SGD with momentum (which is a technique that aids in the acceleration of gradient
vectors in the proper directions, resulting in quicker convergence) were among the
features. After each convolutional and FC layer, it added ReLU activations. See
the difference in the layers and parameters in Table (2.2).
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Layer Feature
Map Size Kernel Size Stride Activation Parameters

Input Image (RGB) 1 227x227x3 - - - -
1 Convolution 96 55x55x96 11x11 4 relu 34944

Max Pooling 96 27x27x96 3x3 2 relu 0
2 Convolution 256 27x27x256 5x5 1 relu 614656

Max Pooling 256 13x13x256 3x3 2 relu 0
3 Convolution 384 13x13x384 3x3 1 relu 885120
4 Convolution 384 13x13x384 3x3 1 relu 1327488
5 Convolution 256 13x13x256 3x3 1 relu 884992

Max Pooling 256 6x6x256 3x3 2 relu 0
6 FC - 4096 - - relu 37752832
7 FC - 4096 - - relu 16781312

Output FC - 1000 - - softmax 4097000
Total number of parameters 62,378,344

Table 2.2: AlexNet structural details

2.3.3 VGG-16

Simonyan and Zisserman created VGGNet [22], the runner-up in the ILSVRC 2014
competition. VGGNet comprises 13 convolutional and three FC layers, all of which
build on the ReLU heritage established by AlexNet. While prior AlexNet derivatives
focused on reduced window sizes and strides in the first convolutional layer, VGG
addresses another critical element of CNNs, which is depth.

Figure 2.6: VGG-16 architecture from [39]

The distinction between VGG and AlexNet is that it has numerous characteristics
that set it apart from other competing models:

• Rather than using big receptive fields like AlexNet (11x11 with a stride of 4),
VGG employs extremely small receptive fields (3x3 with a stride of 1). The
decision function is much more discriminative now that there are three ReLU
units instead of simply one. There are also fewer parameters (27 channels as
opposed to AlexNet’s 49 channels).

• VGG employs 1x1 convolutional layers to increase the nonlinearity of the de-
cision function without modifying the receptive fields.

• Because of the small dimensions of the convolution filters, VGG can have a
large number of weight layers.
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Layer Feature
Map Size Kernel Size Stride Activation Parameters

Input Image (RGB) 1 224x224x3 - - - -
1 2xConvolution 64 224x224x64 3x3 1 relu 38720

Max Pooling 64 112x122x64 2x2 2 relu 0
3 2xConvolution 128 112x122x128 3x3 1 relu 221440

Max Pooling 128 56x56x128 2x2 2 relu 0
5 3xConvolution 256 56x56x256 3x3 1 relu 1475328

Max Pooling 256 56x56x256 2x2 2 relu 0
7 3xConvolution 512 28x28x512 3x3 1 relu 5899776

Max Pooling 512 14x14x512 2x2 2 relu 0
10 3xConvolution 512 14x14x512 3x3 1 relu 7079424

Max Pooling 512 7x7x512 2x2 2 relu 0
14 FC - 4096 - - relu 102764544
15 FC - 4096 - - relu 16781312

Output FC - 1000 - - softmax 4097000
Total number of parameters 134,264,641

Table 2.3: VGG-16 structural details using padding = 1

2.3.4 ResNet

During the ILSVRC 2015, Kaiming He et al. proposed the so-called ResNet [28], a
novel design with "skip connections" and substantial BN. They are also known as
gated units or gated recurrent units, and they look a lot like recent successful RNN
components.

Figure 2.7: ResNet-50 architecture from [39]

Figure 2.8: ResNet identity block from [39]

Many convolutional architectures include a skip connection module as a stan-
dard module [54]. We can use it to provide an alternate path for the gradient (with
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backpropagation). Skip connections in deep architectures, as the name implies, skip
some layers in the neural network and send the result of one layer as the input to
the subsequent layers (instead of only the next one).

They trained a neural network with 152 layers without sacrificing the model’s
generalization capacity while maintaining a lower complexity than VGGNet using
this methodology. The basic building blocks for ResNets are the convolutions and
identity blocks. It has approximately a total of 26 million parameters.

Layer Input size Output size Filter Parameters
Convolution1 224x224x3 112x122x64 7x7x64, stride = 2 9472

3xConvolution2
(Convolution Block + 2x(Identity block)) 112x122x64 56x56x64 3x3 Max pooling, stride = 2 0

1x1x64
3x3x64
1x1x256

214800

4xConvolution3
1x(Convolution Block) + 3x(Identity block) 56x56x64 28x28x128

1x1x128
3x3x128
1x1x512

1216000

6xConvolution4
1x(Convolution Block) + 5x(Identity block) 28x28x128 14x14x256

1x1x256
3x3x256
1x1x1024

7088128

3xConvolution5
1x(Convolution Block) + 2x(Identity block) 14x14x256 7x7x512

1x1x512
3x3x512
1x1x2048

14953472

FC 7x7x512 1x1x1000 Average pooling, 1000-d FC, Softmax 2049000
Total number of parameters 25,636,712

Table 2.4: ResNet structural details

2.3.5 GoogleNet

The Inception architecture is used to create GoogLeNet, a sort of CNN. It took
first place in the classification challenge at ILSVLC-2014 [29]. It employs Inception
modules, whose concept is to employ all of the operations simultaneously. It runs
many kernels of varying sizes in parallel on the same input map, concatenating their
results into a single output. Having multiple-size filters function on the same level.
The neural network would effectively become "wider" rather than "deeper". The
authors of this architecture intended for the inception module to represent this idea.

The network was built with computational efficiency and practicality in mind,
allowing inference to be performed on individual devices with minimal processing
capabilities, particularly those with a small memory footprint. When only layers
with parameters are counted, the network has 22 layers (or 27 layers if we also
count pooling).
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Figure 2.9: GoogleNet architecture (Inception V1) from [39]

The network is constructed using around 100 layers (independent building el-
ements). This number, however, is based on the machine learning infrastructure
system in use. Unlike VGGNet and AlexNet, the network structure is substan-
tially different. In the center of the network, it has a 1×1 Convolution. Also,
global average pooling is employed at the network’s conclusion rather than employ-
ing completely linked layers. GoogLeNet has around 6.8 million parameters (without
auxiliaries layers) 9 times fewer than AlexNet and 20 times fewer than its competitor
VGG-16.

Type Patch size / Stride Output size Depth #1x1 #3x3
Reduce #3x3 #5x5

Reduce #5x5 Pool Proj Parameters

Convolution 7x7/2 112x112x64 1 - - - - - - 2.7K
Max Pooling 3x3/2 56x56x64 0 - - - - - - -
Convolution 3x3/1 56x56x192 2 - 64 192 - - - 112K
Max Pooling 3x3/2 28x28x192 0 - - - - - - -
Inception (3a) - 28x28x256 2 64 96 128 16 32 32 159K
Inception (3b) - 28x28x480 2 128 128 192 32 96 64 380K
Max Pooling 3x3/2 14x14x480 0 - - - - - - -
Inception (4a) - 14x14x512 2 192 96 208 16 48 64 364K
Inception (4b) - 14x14x512 2 160 112 224 24 64 64 437K
Inception (4c) - 14x14x512 2 128 128 256 24 64 64 463K
Inception (4d) - 14x14x528 2 112 144 288 32 64 64 580K
Inception (4e) - 14x14x832 2 256 160 320 32 128 128 840K
Max Pooling 3x3/2 7x7x832 0 - - - - - - -
Inception (5a) - 7x7x832 2 256 160 320 32 128 128 1072K
Inception (5b) - 7x7x1024 2 384 192 384 48 128 128 1388K
Average Pooling 7x7/1 1x1x1024 0 - - - - - - -
Dropout (40%) - 1x1x1024 0 - - - - - - -

Linear - 1x1x1000 1 - - - - - - 1000K
Softmax - 1x1x1000 0 - - - - - - -

Total number of parameters 6,8M

Table 2.5: GoogleNet structural details
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2.3.6 MobileNet

The MobileNet model is TensorFlow’s first mobile computer vision model, and it
was developed for usage in mobile applications. This method uses depth-wise sep-
arable convolutions. Compared to a network with simple convolutions of the same
depth in the nets, it vastly decreases the number of parameters. As a consequence,
lightweight DNNs are created. Two procedures are used to create a depthwise sep-
arable convolution:

• Depthwise convolution: it’s is the channel-wise Dk ∗ Dk spatial convolution.
It is also a map of a single convolution applied to each input channel. As a
result, the number of output channels equals the number of input channels.
The cost of computing it is: D2

f ∗ M ∗ D2
k.

• pointwise convolution: A convolution with a kernel size of 1x1 simply mixes
the depthwise convolution’s characteristics. The cost of computing it is: X

Figure 2.10: MobileNet architecture from [55]

MobileNet is a CNN class that was open-sourced by Google [56], and it provides
us with an ideal starting point for training our ultra-small and ultra-fast classifiers.
the architecture of this class will be represented in the following table:
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Layer Input size Stride Filter Parameters
Convolution1 224x224x3 2 3x3x3x32 992

Convolution_dw1 112x112x32 1 3x3x32 dw 416
Convolution_pw1 112x112x32 1 1x1x32x64 2304
Convolution_dw2 112x112x32 2 3x3x64 dw 832
Convolution_pw2 56x56x64 1 1x1x46x128 8704
Convolution_dw3 56x56x128 1 3x3x128 dw 1664
Convolution_pw3 56x56x128 1 1x1x128x128 16896
Convolution_dw4 56x56x128 2 3x3x128 dw 1664
Convolution_pw4 56x56x128 1 1x1x128x256 33792
Convolution_dw5 56x56x256 1 3x3x256 dw 3328
Convolution_pw5 56x56x256 1 1x1x256x256 66560
Convolution_dw6 56x56x256 2 3x3x256 dw 3328
Convolution_pw6 14x14x256 1 1x1x256x512 133120

5xConvolution_dw7 14x14x512 1 3x3x512 dw 33280
5xConvolution_pw7 14x14x512 1 1x1x512x512 1320960
Convolution_dw8 14x14x512 2 3x3x512 dw 6656
Convolution_pw8 7x7x512 1 1x1x512x1024 528384
Convolution_dw9 7x7x1024 2 3x3x1024 dw 13312
Convolution_pw10 7x7x1024 1 1x1x1024x1024 1052672
Average pooling 7x7x1024 1 7x7x1024 0

FC 7x7x1024 1 1024x1000 1025000
Softmax 1x1x1000 1 - 0

Total number of parameters 4,253,864

Table 2.6: MobileNet structural details

2.4 Deep learning based semantic segmentation meth-
ods

The consistent excellence of DL methods in numerous high-level computer vision
tasks – mainly supervised approaches such as CNNs for image classification or object
detection – prompted researchers to examine the capabilities of these networks for
problems such as semantic segmentation. Over a hundred DL-based segmentation
methods proposed until 2021 have had a significant impact on the domain, but we
will be highlighting just some of them in this section.

2.4.1 Fully convolutional networks

One of the first DL approaches for semantic image segmentation was Fully Convo-
lutional Networks (FCN) [57], and it inspired some of the most successful state-of-
the-art DL techniques.

It contains only convolutional layers, allowing it to take an image of any size and
generate a segmentation map of the same size. The model converts all FC layers to
convolutional layers and outputs spatial maps rather than classification scores.
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Name Type Input Size Output Size Kernel Size Stride
data data 3 ×500 ×500 3 ×500 ×500 - -

2xconv1 convolution 3 ×500 ×500 64 ×500 ×500 3 -
pool1 max pooling 64 ×500 ×500 64 ×250 ×250 2 2

2xconv2 convolution 128 ×250 ×250 128 ×250 ×250 3 -
pool2 max pooling 128 ×250 ×250 128 ×125 ×125 2 2

3xconv3 convolution 256 ×125 ×125 256 ×125 ×125 3 -
pool3 max pooling 256 ×125 ×125 256 ×63 ×63 2 2

3xconv4 convolution 512 ×63 ×63 512 ×63 ×63 3 -
pool4 max pooling 512 ×63 ×63 512 ×32 ×32 2 2

3xconv5 convolution 512 ×32 ×32 512 ×32 ×32 3
pool5 max pooling 512 ×32 ×32 512 ×16 ×16 2 2
fc6 convolution 512 ×16 ×16 4096 ×10 ×10 7 -

drop6 dropout (rate 0.5) 4096 ×10 ×10 4096 ×10 ×10 - -
fc7 convolution 4096 ×10 ×10 4096 ×10 ×10 1

drop7 dropout (rate 0.5) 4096 ×10 ×10 4096 ×10 ×10 - -
score convolution 4096 ×10 ×10 21 ×10 ×10 1 -
score2 deconvolution 21 ×10 ×10 21 ×22 ×22 4 2

score-pool4 convolution 512 ×32 ×32 21 ×32 ×32 1 -
score-pool4c crop 21 ×32 ×32 21 ×22 ×22 - -
score-fuse eltwise 21 ×22 ×22 21 ×22 ×22 - -
bigscore deconvolution 21 ×22 ×22 21 ×368 ×368 32 16
upscore crop 21 ×368 ×368 21 ×500 ×500 - -
output softmax 21 ×500 ×500 21 ×500 ×500 - -

Table 2.7: Proposed architecture network based on FCN from [58]

This research is a pivotal point in image segmentation because it demonstrates
that deep networks can be trained for semantic segmentation on variable-sized im-
ages from start to finish.

Despite its popularity and effectiveness, the conventional FCN model has some
limitations: it is not fast enough for real-time inference, it does not efficiently account
for global context information, and it is not easily transferable to 3D images [27].

2.4.2 SegNet

SegNet is another promising work proposed by V. Badrinarayanan et al. [59], a con-
volutional encoder-decoder architecture for image segmentation, see (figure 2.11).

Its encoder part is topologically identical to the VGG-16 [22] in its 13 convo-
lutional layers. Moreover, the decoder network enhances the location information
first with max-pooling indices generated by the corresponding encoder, followed by
a pixel-wise classification layer.

The decoder up-samples its lower resolution input feature vector, removing the
necessity for up-sampling learning. The up-sampled maps are then convolved with
trainable filters to generate dense feature maps.

SegNet also has a significantly lower number of trainable parameters.
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Figure 2.11: SegNet architecture from [59]

2.4.3 DeepLab

DeepLabv1[60] and DeepLabv2[61] were created by Chen et al., which are two of
the most widely used image segmentation methods. The latter has three distin-
guishing characteristics. The first is the use of dilated convolution to deal with the
network’s declining resolution (caused by max-pooling and striding). The second
method is ASPP, which utilizes Atrous convolution with various dilation to capture
object multiscale information. The third improvement is enhanced object boundary
localization using a combination of deep CNNs and probabilistic graphical models.

Figure 2.12: The DeepLab model

The researchers then released DeepLabv3 [62], which includes cascaded and par-
allel dilated convolutions modules. The ASPP is where the parallel convolution
modules are gathered; it includes a 1×1 convolution and BN. To construct the final
output with logits for each pixel, all outputs are concatenated and processed by
another 1×1 convolution.
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Figure 2.13: The DeepLabv3+ model from [63]

Deeplabv3+ was released in 2018 [63], and it uses an encoder-decoder archi-
tecture see (figure 2.13) with atrous separable convolution, which is made up of a
depthwise (dw) convolution (spatial convolution for each channel of the input) and
a pointwise convolution (1×1 convolution with the depthwise convolution as input).
As an encoder, they employed the DeepLabv3 framework. The most relevant model
uses a modified Xception [64] backbone with additional layers, dilated depth-wise
separable convolutions rather than max pooling, and BN instead of max pooling.

2.4.4 Pyramid scene parsing network

Zhao et al.[65] developed PSPNet, which is based on DeepLab, and it is a multiscale
network that attempts to learn the global context representation of a scene.

It makes use of the pyramid pooling module to aggregate image global context
data with an auxiliary loss. PSPNet can be applied to VGG and ResNet-based
network structures because DeepLab provides two versions of the model adapted
from VGG-16 and ResNet-101, respectively.

Figure 2.14: PSPNet architecture from [23]
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A ResNet and a dilated network are used as feature extractors to derive differ-
ent patterns from an input image. These feature vectors are then forwarded into a
pyramid pooling module, which differentiates patterns of various dimensions.

They are pooled at four scales, each relative to a pyramid level, and reduced by
a 1x1 convolutional layer. The pyramid levels outputs are up-sampled and summed
with the initial feature maps to grasp local and global context information. Lastly,
pixel-wise predictions are generated using a convolutional layer.

2.4.5 U-Net and its variants

2.4.5.1 U-net

U-net, which was initially developed for medical/biomedical image segmentation, is
also based on FCN and is inspired by ED architecture [23].

The network and training method relies on data augmentation to learn more
effectively from the available labeled data. The U-Net architecture, see (figure 2.15),
is made up of a contracting path for context capture and a symmetric expanding
path for accurate localization.

Figure 2.15: U-Net architecture

The down-sampling phase employs an FCN-like architecture to extract features
using 3x3 convolutions. Deconvolution is used in the up-sampling phase to reduce
the number of feature maps while increasing their dimensions.

Feature maps from the network’s down-sampling part are copied to the network’s
up-sampling part to prevent losing pattern information. Finally, a 1x1 convolution
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processes the feature maps to produce a segmentation map that classifies each pixel
in the input image.

2.4.5.2 Attention U-Net

The Attention U-Net is a model based on the U-Net architecture see (figure 2.15) and
some attention gate blocks see (figure 2.16). In the context of image segmentation,
attention is a technique for highlighting only the activations that are relevant during
training. This technique aims to save computational resources by reducing the
number of activations that are not relevant, giving the network more generalization
power. In other words, the network may pay "attention" to certain areas of the
image.

Figure 2.16: Attention U-Net architecture from [66]

The attention gate requires two inputs, x, and g, which are vectors. The vector
g is obtained from the network’s next lowest tier. Given that it arrives from further
into the network, the vector has lower dimensions and better feature representation.
Vector x would be 64x64x64 (filters x height x width) in the example (figure 2.16),
while vector g would be 32x32x32. Vector x undergoes a stridden convolution,
resulting in dimensions of 64x32x32, while vector g undergoes a 1x1 convolution,
resulting in 64x32x32. Each of the vectors is added element-by-element. As a
result of this process, aligned weights grow in size while unaligned weights reduce
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in size. The resulting vector is processed with a ReLU activation layer and a 1x1
convolution, reducing the dimensions to 1x32x32. This vector is scaled between
[0,1] by a sigmoid layer, which produces the attention coefficients (weights), with
coefficients closer to 1 indicating significant features. Trilinear interpolation is used
to up-sample the attention coefficients to the original dimensions (64x64) of the x
vector. The original x vector is multiplied element-by-element with the attention
coefficients, scaling the vector according to relevance. This is then passed along
normally in the skip connection.

2.4.5.3 Attention Residual U-Net

Attention Residual U-Net is another model based on a previous architecture, specif-
ically, Attention U-Net. A regular convolutional block has inputs going into the
convolution block, and it may have one or more convolutional operations followed
by a ReLU activation and the option to have BN as a part of it. After those blocks,
we will have the outputs, and that is the basic model. The residual convolutional
blocks are what we can consider a typical convolutional block. However, then the
outputs are summed between the convolution block output and also the original
input itself, meaning the part in the middle (figure 2.17) when the training is hap-
pening, we are training those blocks for the residual part hence the name residual
CNNs.

Figure 2.17: Attention Residual U-Net architecture

2.5 Conclusion
In this chapter, we discussed a set of principles related to semantic segmentation.
We defined and connected it to DL and also compared it to other tasks. After that,
we went over various prominent CNN architectures before introducing a set of DL-
based image segmentation methods.

In the following chapter, we will deal with a real-world application for semantic
segmentation using U-Net architecture and both its variants we have mentioned ear-
lier, Attention U-Net and Attention Residual U-Net, and we will be experimenting
with a medical dataset and taking notes about the different results. We will see
the training process, the metrics used, how to incorporate augmented data, and the
result of our model.
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Application to semantic
segmentation of electron microscopy
images

3.1 Introduction
To discover more about what semantic segmentation can offer as a DL method, we
combined some methods and models discussed in the previous chapter with other
techniques to produce realistic results that allow us to evaluate the technology and
compare the methods used.

In this chapter, we start by defining the problem selected. Then we give more
details about the dataset used. After that, we explain how we use data augmen-
tation to have more data available for the training and test phases. Subsequently,
we talk about the model building blocks, where we explain the construction of the
network architectures of the models used and how to train it. Next, we discuss the
experiments, tests, and results, starting by explaining the method of conducting the
experiments and the environment used, then we show the test results, and then com-
pare those results. Finally, we evaluate our results using the standard IoU metric,
suitable for semantic segmentation problems.

This chapter will enable us to see the exclusive results, making it easier to study
the effectiveness of the follow-up methods used in semantic segmentation.
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3.2 Problem definition
The assembly of cells forms the so-called membrane, which is found in various organs
of the body of living organisms. Each cell of the membrane is made up of essential
components that allow it to take a specific shape and perform its vital functions.
We will identify a component, which is the cytoplasm, using microscopic images of
cross-sections in an organic membrane.

The fundamental issue we are going to address in our experiment and espe-
cially in the field of neuroanatomy is how to automate the segmentation of neuronal
structures displayed in stacks of EM images, see (Figure 3.1) which represent actual
images in the real-world, containing some noise and small image alignment errors.
This is required in order to map 3D brain anatomy and connectivity efficiently. To
segment biological neuron membranes, we employ a well-known network architecture
which is U-Net, and we use the ISBI challenge dataset [67].

3.3 Dataset
The dataset consists of 30 sections from a serial section Transmission ssTEM data
set of the ventral nerve cord of a Drosophila first instar larva. The microcube has a
4x4x50 nm/pixel resolution and measures approximately 2 x 2 x 1.5 microns. The
associated binary labels (ground truth) are provided in an in-out fashion, i.e., white
for segmented object pixels and black for the remaining pixels (which correspond
mostly to membranes) [67].

(a) Input image (b) Corresponding label

Figure 3.1: Example of membrane image and its corresponding segmentation

3.4 Data augmentation
In our dataset, we have 30 microscopical images and their masks, and we used
a Python library for fast and flexible image augmentations called Albumentations
[68]. We have used six spatial-level transforms that, along with modifying the input
image, will modify extra targets like masks simultaneously. Those transformers are:

• vertical/horizontal flip that flips the input vertically/horizontally around the
x-axis.

• random rotation that randomly rotates the input by 90 degrees zero or more
times.
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• transposes the input by swapping rows and columns.

• resizes the input to the given height and width.

• and lastly but not least grid distortion, which makes weird distortions to an
input image.

An important parameter that controls these transformers is the probability of
applying the transform, and it is 0.5 by default.

(a) Vertical flip (b) Random rotation 90° (c) Horizontal flip

(d) Transpose (e) Resize (f) Grid distortion

Figure 3.2: Deformations used in data augmentation for image in figure 3.1 (a)

3.5 Model building blocks

3.5.1 Network architectures

We had shown the network architecture in an earlier figure see (Figure 2.15) when
we discussed the U-Net architecture. It is made up of a contracting path (on the
left) and an expansive path (on the right). The network’s contracting path follows
the standard architecture of a CNN. It comprises two 3x3 convolutions (unpadded
convolutions) repeatedly applied, each followed by batch normalization, a ReLU,
and a 2x2 max pooling layer with a stride of 2 for downsampling. We quadruple
the number of feature channels with each downsampling step. Every step in the
expansive path starts with an upsampling of the feature map, then a 2x2 convolu-
tion (up-convolution) to half the number of feature channels, a concatenation with
the equally cropped feature map from the contracting path, and two 3x3 convo-
lutions, each followed by batch normalization, a ReLU. Because every convolution
loses border pixels, cropping is required. A 1x1 convolution is employed in the final
layer to convert each 64-component feature vector to the desired number of classes.
There are 23 convolutional layers in total in this network. The overall number of
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parameters used in this architecture was 31,402,501.

The other two models used in our application were the variants of U-Net which
are Attention U-Net (Figure 2.16) and Attention Residual U-Net (Figure 2.17). The
first model is perfectly similar to U-net except for the addition of the attention block
as mentioned in the earlier definition. The overall number of parameters used in
this one was 37,334,665. For the second model, we have completely changed the
convolutions with residual convolution blocks beside an attention block, and the
overall number of parameters used in this architecture was exactly 39,090,377.

Because unpadded convolution is employed, the output size is less than the input
size. The overlap-tile approach is utilized instead of downsizing before the network
and upsampling after the network. As a result, the entire image is predicted piece
by piece, as shown in the figure below see (Figure 3.3). The blue area in the image is
used to predict the yellow area. Mirroring is used to extend the image at the image
boundary.

Figure 3.3: The overlap-tile approach for seamless segmentation of arbitrary large images
from [23]

3.5.2 Training

To train our models, we use 90% of all of the training stack’s available slices, which
is 540 images of the membrane with 256x256 resolution, and 10% we use it for
the validation process. Our models were compiled with Adam optimizer, and we
use binary focal loss function since there are only two classes; white for the pixels
of segmented objects and black for the rest of pixels (which correspond mostly to
membranes). We use a batch size of 8, with 50 epochs (which we can control as we
like) and the default number of steps per epoch which is 68 calculated by dividing
the number of training images by the batch size (540/8 = 67.5 ≈ 68), and it was
trained using a learning rate of 10−2.

We save the models as a hdf5 file, and the history of the training containing our
metrics (Accuracy, Loss, and Jaccard coefficient) as a npy file after the completion
of the training, so we can use them any time we want without re-training the model
from scratch. We also compute a standard performance measure, which is the mean
IoU. We trained the models on a Google Colab GPU (NVIDIA ® Tesla ® K80),
and we made a table to note the execution time for all the models in two cases (per
epoch and the overall time):
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1 epoch 50 epochs
U-Net 84s 1h 11min 27s
Attention U-Net 94s 1h 19min 30s
Attention Residual U-Net 119s 1h 39min 00s

Table 3.1: Results of execution time for the three models

3.6 Experiments, tests and results

3.6.1 Experiments

In the process of training our three models, we have fixed the training hyperpa-
rameters so that we can put all the models in the same training environment and
evaluate their performance metrics such as Accuracy, Loss, and Jaccard coefficient
on both the training set and the validation (or test) set in the following table:

loss val_loss accuracy val_accuracy jacard_coef val_jacard_coef
U-Net 0.0239 0.0641 0.9603 0.9161 0.8540 0.8182
Attention U-Net 0.0296 0.0480 0.9502 0.9267 0.8325 0.8148
Attention Residual U-Net 0.0228 0.0636 0.9620 0.9227 0.8592 0.8342

Table 3.2: Results of the performance metrics for each model

In (Figures 3.4, 3.5 and, 3.6) we display the evolution of the values of the perfor-
mance metrics in every epoch of the training and validation process in our models.

(a) (b)

(c)

Figure 3.4: Evolution of the values of the performance metric in U-Net
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(a) (b)

(c)

Figure 3.5: Evolution of the values of the performance metric in Attention U-Net

(a) (b)

(c)

Figure 3.6: Evolution of the values of the performance metric in Attention Residual U-Net

When we look at the Loss, the three models almost overlap with the slightest
change in Attention Residual U-Net at the end, making the best value at 0.0228 of
Loss for the training set, but when it comes to the validation set, Attention U-Net
had the best value at 0.0480. For Accuracy, Attention Residual U-Net had the best
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value at the end at 0.9620 followed by U-Net at 0.9603, and Attention U-Net at
0.9502 for the training set. For the validation set, Attention U-Net and Attention
Residual U-Net were almost identical with a slight difference. For the Jaccard
coefficient, Attention Residual U-Net had the best value in both the training and
the validation set, but it was a minor advantage over the other two models. We
cannot conclude that a model is better than the others because the results were too
close, but some slight changes would help uncover more details of the segmentation
when we do the testing, and we might see them in the results.

3.6.2 Tests and results

In the next step, we will compute and predict labels of three given test images and
their ground truth using the three models, the results will be shown in the following
figures:

(a) Test image & Ground truth (b) U-Net prediction

(c) Attention U-Net prediction (d) Attention Residual U-Net prediction

Figure 3.7: Results of prediction on test image 1
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(a) Test image & Ground truth (b) U-Net prediction

(c) Attention U-Net prediction (d) Attention Residual U-Net prediction

Figure 3.8: Results of prediction on test image 2

(a) Test image & Ground truth (b) U-Net prediction

(c) Attention U-Net prediction (d) Attention Residual U-Net prediction

Figure 3.9: Results of prediction on test image 3

In (Figures 3.7, 3.8 and 3.9) we give an illustration of the segmentations generated
using the three networks. We notice in (Figure 3.7) some minor differences between
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the results, especially between the U-Net (b) and Attention Residual U-Net (d)
predictions, with the better result using Attention U-Net (c). In the next (Figure
3.8), we notice similar results with the earlier ones with clearly better performance
from the Attention U-Net (c) like always, followed by Attention Residual U-Net (d)
then U-Net (b). The last (Figure 3.9) Attention U-Net (c) continues with better
results than both of the other models but with a minor advantage over them.

3.6.3 Evaluation

In this section, we are going to evaluate our three models using the IoU of an
individual image and the mean IoU of all test images:

Mean IoU Image 1 Image 2 Image 3 All images
U-Net 0.823767 0.80377704 0.758395 0.79322557
Attention U-Net 0.8376042 0.838861 0.7944911 0.8146624
Attention Residual U-Net 0.8273399 0.8107518 0.7664076 0.79647577

Table 3.3: Results of Mean IoU for test images

As shown in (Table 3.3), we utilize three examples of test images and then all
images to get the mean IoU of every model. The table shows that the Attention
U-Net model outperforms other models in terms of the IoU of each of the three
images and in terms of the mean IoU of all images. However, there is a difference
in superiority between U-Net and Attention Residual U-Net. This latter is better
in two images, although U-Net is superior in the mean IoU.

3.7 Software and tools
This section will provide the definitions of the languages, software, and tools we
have used to develop our application.

3.7.1 Python programming language

Python is a dynamically semantic high-level programming language that is inter-
preted and object-oriented. Combined with dynamic type and dynamic binding, its
high-level built-in data structures make it ideal for Faster Development and for us-
age as a scripting or glue language to bring existing components together. Python’s
straightforward, easy-to-learn syntax prioritizes readability, lowering the cost of pro-
gram maintenance. Python has support for modules and packages, which promotes
program modularity and code reuse. Python’s interpreter and substantial standard
library are freely accessible in source or binary form for all major platforms. It can
be open to public distribution [69].

Figure 3.10: Python logo

59



Chapter 3 – Application to semantic segmentation of electron microscopy images

3.7.2 PyCharm IDE

PyCharm is a specialized python IDE that offers a wide range of necessary python
developer tools that are deeply intertwined to offer a pleasant environment for pro-
ductive python, data science development, and the web [70].

Figure 3.11: PyCharm logo

3.7.3 Google Colaboratory

Google research’s Collaboratory, or Colab for short, is a product. Colab is a web-
based Python editor that allows anybody to create and run arbitrary Python code.
It is notably helpful for machine learning, data analysis, and teaching. Colab is
a hosted Jupyter notebook service that does not require any setup and offers free
access to computational resources, including GPUs, for free [71].

Figure 3.12: Google Colaboratory logo

3.7.4 PySimpleGUI

PySimpleGUI is a python library that allows Python programmers of all abilities to
construct GUIs. PySimpleGUI defines the GUI window using a layout that consists
of widgets (Elements). Using the layout, one of the four supporting frameworks
creates a window that may be displayed and interacted with. Frameworks that are
supported include Tkinter, Qt, WxPython, and Remi. These packages are commonly
referred to as "wrappers" [72].

Figure 3.13: PysimpleGUI logo
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3.7.5 NumPy

NumPy is a python package that is essential for numerical computation. It offers
a multidimensional array object, derivative objects (including masked arrays and
matrices), and a variety of routines for quick array operations such as mathematical,
logical, shape manipulation, sorting, selecting, I/O, discrete Fourier transforms,
basic linear algebra, basic statistical operations, random simulation, and more [73].

Figure 3.14: NumPy logo

3.7.6 Matplotlib

Matplotlib is a python 2D plotting framework that generates publication-quality
figures in a range of hard copy and interactive formats across several platforms.
It is compatible with python scripts, the python and IPython shells, the Jupyter
notebook, web application servers, and four graphical user interface toolkits. Among
the visualizations that can be created using matplotlib are bar graph and pie chart,
box plot and histogram plots, scatter plot, as well as figures cite77.

Figure 3.15: Matplotlib logo

3.7.7 Pandas

Pandas is a popular open-source python library for data science, data analysis, and
machine learning activities. It is based on the NumPy library, which supports mul-
tidimensional arrays. Pandas, as one of the most popular data-wrangling packages,
integrates well with many other data science modules within the python ecosystem
and is typically included in every python distribution [74].

Figure 3.16: Pandas logo

3.7.8 Scikit-learn

Scikit-learn is an open-source python machine learning library. It is regarded as a
straightforward and effective technique for analyzing predictive data. It is based on
the NumPy, SciPy, and matplotlib libraries. This library can be used in a variety of
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uses, such as classification, regression, clustering, dimensionality reduction, model
selection, and preprocessing [75].

Figure 3.17: Scikit-learn logo

3.8 Application’s implementation
Our experiments, tests, and evaluations were done using a well-structured GUI
application which we will describe in detail in this section.

3.8.1 Main window

The main window is the first interface that users will have to face, which allows us
to launch every task in the application. It is composed of several buttons on the left
and a layout to choose and display dataset images on the right see (figure 3.18).

Figure 3.18: Main window interface

The images in the dataset can be seen by selecting an image number from the
combo box and clicking on the button show image, see (figure 3.19).
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Figure 3.19: Main window interface with images

• The Upload model button opens up a window that allows us to upload a
pre-trained model.

• The New model button opens up a window that allows us to choose a new
model and build it.

• The Train model button opens up a window that allows us to train the
chosen model.

• The Show metrics button opens up a window that allows us to check the
different metrics used.

• The Test model button opens up a window that allows us to test our model
on a test dataset.

• The Exit button is used to terminate the program.

3.8.2 Upload model window

The Upload model interface allows us to upload a pre-trained model from our
device and use it in our application, see (figure 3.20).

Figure 3.20: Browse model interface

The text field used to enter the file path. The Browse button allows us to search
for a file in our device using its path, see (figure 3.21).
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Figure 3.21: File searching interface

The Get file button allows us to collect the file path from the input field and
save it in a program variable.

3.8.3 New model window

The New Model interface allows us to choose a model from the three models we
have and build it, see (figure 3.22).
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Figure 3.22: New model interface

The combo box contains models that can be built into this program. The Build
button allows us to build the chosen model. The output frame is used to show the
summary of the chosen model after it has been built (compiled).

3.8.4 Training window

The Training interface is used to start the training of the chosen model, see (figure
3.23).
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Figure 3.23: Training interface

The text field is used to specify the number of epochs that are going to be used
to train the model. The Start training button is used to start training. The
output frame allows us to follow the steps and epochs of the training and to monitor
everything from time of execution to the different metrics used. The Done button
is used when the training is finished to close the window.

3.8.5 Metrics window

TheMetrics interface contains a list of buttons and a field to show different images.
TheAccuracy button is used to show the image that contains the training accuracy,
and validation accuracy curves see (figure 3.24).
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Figure 3.24: Accuracy interface

The Loss button is used to show the image that contains the training loss and
validation loss curves see (figure 3.25).

Figure 3.25: Loss interface

The Jacard Coefficient button is used to show the image that contains the
training Jaccard and validation Jaccard curves see (figure 3.26).
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Figure 3.26: Jacard Coefficient interface

The Save as csv file button allows us to save the output data from the earlier
metrics which they were generated during the training phase in a csv file. TheDone
button is used to close the window.

3.8.6 Test window

The Test interface contains several buttons on the right and two different fields to
show test images and the prediction, see (figure 3.27, and figure 3.28).

Figure 3.27: Test interface
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Figure 3.28: Test interface with results

The combo box is used to select the number of the image to be displayed. The
Show test image button is used to show the image that contains the selected image
from the test dataset and its ground truth in the upper image field. The Predict
button allows us to start the prediction process using the selected image and show
the result with an overlay image also in the bottom image field. The Mean IoU
(Predicted image) button is used to show the mean IoU value of the predicted
image in a popup window. The Mean IoU (All images) button is used to show
the mean IoU values of every image available in the test dataset. The Done button
is used to close the window.

3.8.6.1 Mean IoU (one image)

The Mean IoU (Predicted image) interface is used to show the IoU of the
predicted image, see (figure 3.29).
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Figure 3.29: Mean IoU (Predicted image) interface

The text field is used to show the mean IoU value. The Done button is used to
close the window.

3.8.6.2 Mean IoU (all images)

The Mean IoU (All image) interface is used to show the mean IoU values of
every image available in the test dataset and the overall result see (figure 3.30). The
Done button is used to close the window.

Figure 3.30: Mean IoU (all images) interface
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3.9 Conclusion
In this chapter, we have applied the methods and techniques we have learned in
the second chapter about U-Net and its variants to the semantic segmentation of
EM images. We have gone through the steps to build the models and tune the
hyperparameters, then we have trained all of them using the available data after
augmentation because of the lack of a big dataset. Next, we presented the experi-
ments, tests, and results we got and evaluated everything using the proper metrics.
Finally, we defined the software, tools, and language used to make our application,
in addition to the full explanation of all the graphical user interfaces we have made.
In general, our chosen models produced excellent results in semantic image segmen-
tation after they were trained for several hours, and there was a slight difference in
the results obtained. However, Attention U-Net outperformed U-Net and Attention
Residual U-Net overall.
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General conclusion

This dissertation was interested in deep learning in general and neural networks
used for semantic segmentation in particular. Our primary objective was to create
several networks (referred to as models) that would function best with an image
segmentation problem in the field of microscopical imagery.

The dissertation was divided into three different chapters for structure. The first
chapter dealt with definitions and general concepts about deep learning, the second
was a deep dive into the theoretical notions for semantic segmentation and deep
learning approaches, and the third was the experimental part where we have had
our tests and results.

The first chapter was simply a compilation of fundamental concepts and primary
information necessary to speed up this domain. Then the basic deep learning archi-
tectures, where we got to talk about them and how we could utilize them in different
scenarios. We have also mentioned the most used deep learning frameworks and the
advantages and inconveniences for each one. Lastly, we went over the best hardware
used for the process of deep learning.

In the second chapter, we got into the essential part of our dissertation, which
is the semantic segmentation, where we spoke about its general concepts from the
definition, comparison with other computer vision tasks to the methods and tech-
niques used in that field, especially using deep learning methods. Next, we have
gone through some of the most known CNN architectures. We have finished talking
about the deep-learning-based image segmentation methods, and finally, the most
important one that we used in our application is U-Net and its variants.

The last chapter was about displaying the results of our application tests, which
combined three models U-Net, Attention U-Net, and Attention Residual U-Net, in
one place. We have chosen a medical problem related to the segmentation of electron
microscopy images. We have augmented our dataset to get more images to work
with, and we have built all three models and trained them all with the same hyper-
parameters to compare them. The results proved that our models were very efficient
and adaptable in image segmentation problems, the results were close in terms of
performance metrics, but the Attention U-Net model showed a slight superiority in
some areas.

Without question, deep learning has considerably aided image segmentation, but
there are still numerous difficulties ahead. Future works will improve the current
models and add new elements to them to make them work more efficiently. We may
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use more difficult datasets with several objects and overlapping objects or utilize
3D image datasets. We can use newer models like transformer such as TransUNET
[76], or Swin-UNET [77] that may be used as strong encoders for medical image
segmentation challenges, with the addition of U-Net to improve finer details, and
they can outperform other approaches in a variety of medical applications, such as
multi-organ segmentation and cardiac segmentation.
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